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ABSTRACT

When D-wave was founded in 1999, quantum computing was still an ambitious vision.

In the past five years, quantum computing has moved from this vision to a very reach-

able goal with major companies such as Google, IBM, Intel, and Microsoft investigating

quantum computation investing in this technology. Together with a vivid start-up scene in-

cluding companies such as 1QBit, ionQ, Q-CTRL, QuantumCircuits, and Rigetti, they aim

to develop hardware and software for a new generation of computers which can tackle prob-

lems intractable on classical computers. This thesis revolves around the simulation of such

quantum systems and, thus, it has some direct connections to this intriguing new wave of

technology. Our focus is shifted toward the side of quantum simulators, which use quantum

systems to investigate a specific research question, e.g., predicting the properties of new ma-

terials. The results of such simulations can be thought of as an analog measurement outcome

of the final state of the quantum simulator. Quantum annealing is one prominent example

where the final state encodes the solution to an optimization problem. In contrast, quantum

computers work in the spirit of a classical computer calculating in terms of zeros and ones

while allowing superpositions and entanglement to reach a quantum advantage. They favor

a formulation in terms of quantum gates, which are adapted from the logical gates used in

classical computers.

We establish a common understanding of the terminology and questions arising in this

area of research in the first part of the thesis. We consider the dynamics of closed quantum

systems, which has direct connections to the quantum annealing architectures. We analyze

how long-range interactions in the quantum Ising model modify the quantum phase diagram.

The quantum critical point for the ferromagnetic model shifts to higher external fields to

break up the order in comparison to the nearest neighbor model. In contrast, the antifer-

romagnetic order breaks at lower external fields when including long-range interactions. In
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the dynamics, we quench through the quantum critical points evaluated for different values

for the long-range interactions and analyze the Kibble-Zurek hypothesis via the defects gen-

erated in the ferro- and antiferromagnetic limits. These simulations reveal how the number

of defects depends on the quench rate and the strength of the long-range interactions, where

we find that the defect density decreases toward the nearest-neighbor limit in the ferromag-

netic model. Such results are valuable when considering the balance between long-range

interactions and quench rates in adiabatic quantum computing.

We then move on to open quantum systems. Closed systems are an incomplete descrip-

tion of a quantum system when it is disturbed from an environment or measurement devices

not included in the description of the closed system; such effects lead to decoherence of the

system. We focus on large reservoirs described by the Lindblad master equation. The re-

search questions revolve around the thermalization of a many-body quantum system. This

study treating open quantum systems can be seen as the analog of the eigenstate thermal-

ization hypothesis vs. generalized Gibbs ensemble handling closed quantum systems with

regards to the question of whether or not thermalization occurs. The choice of the operator

in the interaction Hamiltonian between the system and the reservoir governs which limit

of the phase diagram cannot thermalize by definition in the global multi-channel approach.

Furthermore, we find regions in the phase diagram of a small quantum Ising chain protected

from thermalization and decoherence. Evidently, other regions are favorable to reach ther-

malization as quick as possible, which is essential to dissipative state preparation. In addition

to the global multi-channel model, we analyze the concept of neighborhood single-channel

Lindblad operators, which allows one to install non-trivial long-range order; this is a task

where single-site single-channel Lindblad operators fail.

The next part treats the numerical methods used in the first chapters of this thesis. We

describe the exact diagonalization and tensor network algorithms; both are available in our

open source package Open Source Matrix Product States. The algorithms contain a selection

of state-of-the-art methods for closed and open quantum system, e.g., matrix product den-
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sity operators as tensor network type and the time-dependent variational principle as time

evolution method. We aim for an upgrade from a stand-alone package to the integration

into a science gateway. Science gateways serve as a cloud resource for research software.

The results from the research on tensor network methods during this thesis will significantly

contribute to an efficient science gateway using the algorithms with optimal scaling and

versatile features such as meaningful error bars. The equations to estimate error bars for

many observables depend on easily accessible parameters such as the system size, the energy

gap to the first excited state, and the variance of the energy. The error bounds of the bond

entropy in the quantum Ising model are at the level of 10−2, where most other observables

such as spin measurements have a tighter error bound of around 10−3 for 256 sites. The

choice of the most efficient algorithm plays a key role in many-body mixed states as we

simulate the density matrix instead of a pure state. Providing all three major methods for

mixed states within our library, we have the option to pick locally purified tensor networks

to calculate thermal states and matrix product density operators for the dynamics governed

by the Lindblad equation. Both choices are based on the examples in this thesis. Quantum

trajectories are favorable for systems generating a large amount of entanglement and simu-

lations parallelized across a large number of CPU cores, which is on the order of magnitude

of the number of trajectories.

We close the thesis with a discussion of the results in the context of the present research

and highlight how the work presented raises even more intriguing questions. This collection

of open questions is considered in the second part of the conclusion. These projects can be

divided loosely into additions to the numerical methods enabling novel modeling of quantum

systems and simulations predicting the actual behavior of physical systems, where most of

them can be solved with the present software.
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CHAPTER 1

QUANTUM TECHNOLOGY WITH STRONGLY CORRELATED SYSTEMS

Quantum mechanics has been in the focus of research since the early 20th century, but

recent experimental advances suggest a wave of technological innovations. These new tech-

nologies including quantum simulators and quantum computers use quantum mechanics’

most fascinating attributes, such as entanglement and superpositions of states, down to

the level of single atoms. The European quantum manifesto [1–3] emphasizes the impor-

tance of these upcoming technologies and names, beyond quantum simulators and quantum

computers, new quantum measurement devices, quantum links and the quantum internet.

Another example of a large-scale effort is the Chinese program [4, 5]. This revolution in the

applications of quantum mechanics impacts many different aspects of technologies such as

high-precision measurements, encryption and computation. For this reason, we outline the

introduction; it is separated into a discussion of old technologies vs. the principles of their

quantum analog. Then, we describe the very rich variety of experimental platforms used

for today’s research. We briefly discuss the impact of theoretical and numerical quantum

physics for these technologies. Finally, we introduce the concepts of open quantum sys-

tems and tensor network methods representing the main tool for numerical simulations. As

these two topics constitute the main goal of this thesis, each topic has a dedicated, detailed

introduction in Sections 2 and 3.

Two of the technologies of the European quantum manifesto are already in discussion

outside the physics community today and underline the importance of quantum mechanics.

First, quantum encryption allows us to communicate with secure algorithms beyond classical

encryption such as the RSA method using large prime numbers. It is named after Ron Rivest,

Adi Shamir, and Leonard Adleman. It exploits the fact that two large prime numbers can be

multiplied with each other quickly, but the decomposition of the product in its prime numbers
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is NP-hard (non-deterministic polynomial time) on a classical computer. A quantum internet

infrastructure would extend or replace the current internet and use quantum encryption for

online banking and other applications. Point-to-point encryption is already available from

companies such as ID Quantique [6]. A Chinese effort has successfully demonstrated a

quantum link over 1200km using a satellite for distribution [7]. The generation of such

pairs of entangled qubits is, moreover, useful to test the laws of quantum physics. The Bell

inequality can prove the difference between quantum mechanics and local, hidden variable

theories. One of these tests has been implemented with Nitrogen-Vacancy (NV) centers [8].

Second, the general quantum computer is a well-discussed topic promising major speedup

compared to classical computers. These speedups allow quantum algorithms to break clas-

sical encryption through the factorization of prime numbers. This algorithm is known as

Shor’s algorithm [9]. Another application to be mentioned is Grover’s approach to search

databases leading to a speedup of the quantum algorithm over its classical counterpart [10].

In detail, algorithms are divided into different classes according to their scaling of resources.

The two most important classes are the polynomial time class, i.e., P class, and the NP time

class. For the latter class, a solution can be verified fast, but the actual algorithm, which

finds the solution, does not scale polynomially. These computational complexity classes are

formulated for classical computation and have been extended since then for quantum compu-

tation. The time scaling on a classical computer for integer factorization is sub-exponential,

while the quantum version is polynomial. Moreover, quantum computers would likely en-

sure Moore’s law, where classical computers are predicted to fail soon or do not fulfill the

expected improvement at present [11]. The balance between the increasing speed of the

processors and the substantial heat production with increasing clock-speeds is the crucial

problem. The computer chips for classical computers have reached sizes small enough such

that quantum effects are unavoidable when reducing their size even more. The current devel-

opment at major chip manufacturers is on 7 nm and 5 nm chips, where classical computation

can already be affected by quantum effects. Thus, quantum mechanics helps either way to
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improve the current computational architecture. For example, a hybrid quantum device may

use photons, possibly entangled, to communicate between machines at different locations or

differnt parts within a single quantum computer, while the actual computation is executed

with trapped ions. The storage of quantum states on a long time-scale can be carried out

by a third technology with large coherence times, e.g., NV centers. Quantum simulators are

an initial step toward a quantum computer, although their value cannot be underestimated;

they address a specific question or task. For example, they can improve the development of

new materials by mapping their characteristics to the quantum simulator and allow us to

predict the material’s behavior beforehand.

The experimental platforms are as diverse as the possible applications of quantum simu-

lators and quantum computers. The list of promising architectures includes ultracold atoms

and molecules, trapped ions, color/nitrogen-vacancy centers, Josephson-junction-based su-

perconducting quantum circuits, Rydberg systems, and integrated quantum optics. This set

of different technologies might be the key to build an efficient quantum device combining

the advantaged of each approach into one device. Initially, these differences might be ad-

dressability of the quantum states for computation and their lifetime for storing intermediate

results for long computations.

The ultracold atom experiments have had a huge impact since the first experimental

observation of the Bose-Einstein condensate (BEC) in 1995 [12]. Since then, the field has

expanded to many different types of ultracold atoms and molecules [13]. One of next im-

portant steps is the observation of the superfluid-Mott quantum phase transition [14], which

can be modeled with the Bose-Hubbard model. The underlying optical lattice generated by

counter-propagating laser fields allows for a much easier formulation of quantum simulator

approaches. Furthermore, the atoms can be individually imaged [15] and addressed [16] in

the optical lattice. Recent advances in experimental techniques allow for the creation of BEC

without evaporative cooling, using only Doppler cooling and sideband cooling [17]. The ben-

efit of this new approach is the faster generation of BECs. The original preparation included
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a two-step cooling process with a laser cooling [18] and evaporative cooling [19]. The laser

cooling uses counter-propagating laser beams below a transition energy of the atoms to be

cooled. Atoms moving faster have a higher probability of absorbing the photons due to the

Doppler shift. The following emission of the photon going back to the ground state is in a

random direction. Therefore, the atoms lose momentum after a series of absorptions and

emissions. This technique alone is not sufficient for the generation of a BEC. The subsequent

step of evaporative cooling takes advantage of the statistics, where the fastest atoms escape

from the trap and the atoms left in the trap have a lower temperature until the BEC phase

transition is reached.

Ultracold molecules follow the path of ultracold atoms [20]. Their higher degrees of

freedom and internal level structure comes at the price of more challenges for the generation

of the BEC. These additional degrees of freedom are the ro-vibrational states of the molecule,

i.e., rotational and vibrational degrees of freedom between the atoms in the molecule and

the different spin states, including nuclear hyperfine and internal angular momentum states.

A recent experiment using 23Na40K molecules measures coherence times in the order of

one second [21], which is an improvement by order of magnitudes to previous coherence

times. This improvement becomes valuable when trying to apply a sequence of gates towards

quantum computing applications. The cooling technique for ultracold molecules is based on

Feshbach resonances [22] and the Stimulated Adiabatic Raman Passage (STIRAP) [23]. The

Feshbach resonances allow experiments to transfer a fraction of their atoms into a molecule,

i.e., a bound state, by tuning the magnetic field. STIRAP can then be used to transfer

these molecules into their ro-vibrational ground states, which is necessary to achieve BECs

of ultracold molecules.

Trapped ions are a possible candidate for the efficient application of quantum gates for

over twenty years [24]. Recent experiments trap between 53 in a one-dimensional system

[25] to 300 ultracold ions in two dimensions [26]. The first uses a Paul trap and has access to

the measurement of single qubits in the chain. The latter uses a Penning trap. Both types
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of traps benefit from the repulsion of ions due to their charge; thus, they arrange in a lattice

type structure. An example of such an arrangement in a one-dimensional structure can be

found in the review [27]. An example of the two-dimensional structure in a Penning trap is

in [26]. The qubit in a one-dimensional trapped ion experiment is encoded into spin states;

motional degrees of freedom have to be cooled to the ground state.

Nitrogen-vacancy centers (NV centers) [28, 29] are another platform for highly tunable

quantum systems. The name color centers refers to the same type of architecture. The

defect in the diamond lattice, i.e., the nitrogen and the vacancy, are not affected by the

energy band structure of the diamond. One of their unique features among other structures

is their accessibility at room temperature. Their coherence time at low temperatures has

recently improved by orders of magnitude to the order of milliseconds [30]. In addition,

experiments can use the fine structure levels at low temperatures. The natural ratio of 12C

and 13C in the diamond leads to a few nuclear spins in the neighborhood of the NV center.

Protocols using the NV center and the nuclear spins can be designed. One disadvantage of

NV centers is their random location within diamond and the random location of nuclear spins

of the 13C atoms. Thus, regular lattices of NV centers are not available. The applications

of the NV centers go well beyond the aforementioned measurement of the Bell inequality

[8]. The nuclear spin of the 13C atom can serve as a quantum memory, which can store

information on the order of seconds [31]. The NV centers can serve as sensors for measuring

magnetic fields [32] or current flow in graphene [33]. Moreover, a variety of protocols to

implement quantum gates have been implemented in experiments. The fidelity of such gates

has reached 0.9 already more than ten years ago [34]. The system also has application to

open quantum systems. The decoherence of the qubit represented by the NV center is due to

the interaction with the nuclear spins of the surrounding 13C, as described in detail in [35].

Protocols for a dissipative state preparation of two NV center qubits have been proposed in

[36].
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Superconducting qubits are today one of the most commonly used platforms for early

industry quantum computers. Although suggestions tend towards hybrid systems of the

different types of superconducting qubits combining the strengths of each [37], it is worth

listing the different types first. There are flux qubits, phase qubits, and charge qubits. All

types have in common that they use superconducting circuits to protect from dissipation

and thus quantum decoherence. A second necessary feature for superconducting qubits is

a nonlinearity in the energy spectrum; this characteristic is achieved with the Josephson

junction. An accessible review is presented in [38]. The nonlinearity guarantees that the

transition between ground state and first excited state is not driven at the same time as

the transition between the first and second excited state. This nonlinearity is required in

all technologies using qubits. The fabrication techniques from classical semiconductor-based

transistors come with pros and cons. On the one hand, these techniques have a clear path

to scaling up the number of qubits, which can be difficult to foresee in other technologies.

On the other hand, qubits are not equal as in atomic transitions. If we look at the current

platforms designed by Google, D-Wave, and IBM, the advantages of this technology seem to

outweigh the disadvantages.

The current state-of-the-art quantum simulator using Rydberg atoms is a quantum sim-

ulator with 51 atoms [39]. The features of a Rydberg system are excellent for many appli-

cations in quantum technologies. While generating the Rydberg atom, i.e., an atom with a

highly excited electron, other atoms around this Rydberg atom cannot become a Rydberg

atom due to a blockade. This blockade, allowing one to have only one Rydberg atom in a

certain radius, leads to lattice-like structures as demonstrated in an experiment using 87Rb

atoms [40]. Rydberg systems can be used to mediate the interactions between photons as

demonstrated in [41]. The study of transient dynamics to equilibrium states [42] moves the

platform toward the application to quantum simulators. Rydberg systems have large dipole-

dipole interactions and are one important example for long-range interactions. With the

highly excited electron, the system looks similar to the electron in the hydrogen atom. The
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quantum number of this excited electron characterizes many features such as the blockade

radius. The quantum number is also the reason for the name Rydberg atom; Johannes Ryd-

berg presented the equation connecting the quantum number and the frequencies in spectral

lines dating as far back as 1889 [43].

We keep these experimental realizations in mind, and they are a meaningful basis and

context for the later work of this thesis. For example, during the exploration of long-range

models, it is important to keep in mind which systems exhibit stronger or weaker long-

range effects. While neutral cold atoms exhibit only 1/r6 decay over distance in their van

der Waals interactions and are therefore short range, exploring 1/r3 decay is meaningful for

dipole-dipole interactions as present in Rydberg systems; 1/r occurs for Coulomb interactions

in trapped ions, where in some systems the power law can even be tuned to 1/rα with α

ranging from 0, i.e., infinite range, to about 4. Even the inverse cube power law for the

dipole-dipole case can be seen as a rule of thumb, as transverse effects from an optical lattice

can tune the power law [44].

Based on the experimental platforms, we may take two different paths to derive many-

body models based on the interactions. The first approach is to start in the continuum limit,

e.g., with a Bose-Einstein condensate for more than 106 atoms. The state of the BEC can

be described in terms of the Bloch functions, which are plane waves. For the purpose of

the following discussion, we assume that the system has some underlying periodical lattice.

Counter-propagating laser fields create such a standing wave. The basis function of plane

waves, i.e., momentum states, is not the preferred basis most of the time. A basis describing

the position of the particle is convenient. The Wannier functions are such a set of orthogonal

basis functions localized around a certain position [45]. Using the periodicity of the lattice,

we can construct these Wannier functions from integrating over the entire Bloch function

in one Brillouin zone. During the process of this transformation, certain approximations

are usually made. For example, any population in the second band of the Bloch function is

neglected in the most simplistic approach.
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The second possibility for the derivation of many-body models is the consideration of

the actual particles. In the BEC scenario, the atoms are free to move; in contrast, nitrogen

vacancy centers, or more generally color vacancy centers, in diamonds are localized and do

not have a momentum themselves. Likewise, Rydberg systems with a lattice structure or

experiments with hundreds of trapped ions are better suited for this type of scenario.

Quantum computers and simulators are closely connected to the field of open quantum

systems. Briefly, an open quantum system can be any interacting composite system, where

the actual interest for measuring observables is only in one part of the composite system.

This description applies to quantum simulators and computers being linked to measurement

devices, exposed to background radiation, or coupled to thermal reservoirs. Moreover, an

open quantum system can describe the effects from one computational unit to the other,

e.g., two neighboring quasi one-dimensional systems in an optical lattice. The approaches

to tackle open quantum systems vary depending basically on the size of the environment.

A consideration of the full system and environment dynamics is feasible for small environ-

ments as the neighboring one-dimensional systems in the optical lattice; the environment

has approximately the same size as the system itself. The opposite limit of a large reservoir

coupled weakly to the system has a convenient treatment with the Lindblad master equation.

[46–49]. The most challenging regime is in between, where the environment is too large to be

included in the simulation and the approximations for the Lindblad master equation break

down.

All of the above mentioned experimental platforms benefit hugely from the interplay with

analytical and numerical techniques in quantum physics. The latter aspect is the focus of

this thesis. The analytically solvable models and approaches are very few. Among them is

the solution to the quantum Ising model with periodic boundary condition via the Jordan-

Wigner transformation. Analytical techniques are mean-field approaches, dynamical mean

field theory and perturbation theory, both for statics and dynamics. Furthermore, there

exists a number of computational solutions to handle quantum systems. These options in-
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clude density functional theory (DFT) and time-dependent density functional theory, which

are numerical methods available. Quantum Monte Carlo methods and phase space repre-

sentations are further options which are also not treated within this work, but belong to

a complete list of possible techniques. Detailed insights can be gained in literature, e.g.,

in [50]. We concentrate on exact diagonalization methods and tensor network algorithms,

where the tensor networks are introduced in detailed in a separate introduction in Sec. 3.

Throughout the work, we use a very wide definition of exact diagonalization methods

for our numerical simuations, which includes any approach acting on the quantum state

without truncating parts of the state. In contrast, a narrow definition of exact diagonalization

relies purely on the eigendecomposition of the Hamiltonian leading to the eigenenergies

and the energy-eigenstates. These approximations to the time evolution can be converged

similarly to the errors introduced by discretizing a time-dependent Hamiltonian at different

time steps; errors are well-controlled as a function of the time step. This approach allows

us to extract ground and excited states of systems and, therefore, thermal states. The

propagators for a time-evolution are based on the exponential of the Hamiltonian, and we also

calculate them via eigendecomposition. Our usage of the term exact diagonalization includes

approximations to the propagator in terms of a Trotter decomposition or approximations of

the propagated state, i.e., a Krylov method. Both approximations overcome the unfavorable

scaling of the eigendecomposition with the number of qubits in the system. The matrix

size of the Hamiltonian scales exponentially with the number of qubits; in addition, the

eigendecomposition scales cubically with the matrix dimension. This improvement does not

allow us to simulate systems up to or beyond forty-five qubits as done in the smallest quantum

circuits simulations [51]. In contrast to our effort optimized for a large set of different

Hamiltonians and applications even on desktop computers, these simulations are highly

optimized for answering a single question with a parallelized algorithm, here simulating

quantum advantage circuits.
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We may point out one important theme raised by this overview to exact diagonalization

methods and discussed in many chapters of this thesis: convergence and resolution of numer-

ical methods. Analytical results either yield exact results or allow one to specify the error

directly in terms of a small parameter, e.g., for perturbation theory. Numerically simulations

require a convergence study for each of the parameters used. This task becomes especially

challenging with an increasing number of parameters in complicated algorithms. Moreover,

numerical methods have to sample over parameter space, e.g., to find the critical point of a

phase transition within the resolution of the sampling, where analytical approaches would

yield the value of the critical point on one shot. The value of numerically tools, despite all

the obstacles just mentioned, is underlined in the vast amount of these methods available

and their ability to push physics beyond the limits of analytically solvable problems while

keeping the possibility to check the results against analytical limits. We find these examples

of checking numerical results against theoretical limits and evaluating errors throughout this

work.

The limits of exact diagonalization are the major motivation for the development of tensor

network methods. In summary, the tensor network methods use approximated quantum

states; we truncate parts of the entanglement. The approximate time evolution methods,

i.e., the Trotter decomposition and Krylov method, have their formulation in terms of tensor

networks, too. Again, we refer to Sec. 3 for a detailed introduction.

The numerical methods have a wide range of applications beyond the support of current

experimental architectures. They can provide the phase diagrams for novel Hamiltonians.

We can explore phenomena such as the Kibble-Zurek mechanism predicting the generation of

defects when changing external parameters leading to a crossing of the quantum critical point

obtained in the phase diagrams. This question is closely connected to adiabatic quantum

computing as the solution to a problem is obtained via a quench, and the rate of the quench

determines the density of defects.
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Finally, we give an outline of this work. We complete the introduction in the following two

chapters with a detailed look into open quantum systems, i.e., Chapter 2, and Chapter 3 leads

to tensor network methods for many-body quantum systems. The study of the Kibble-Zurek

hypothesis in the long-range quantum Ising model in Chapter 4 gives an impression of the

many-body simulations applied to closed quantum systems. Then, we turn to open quantum

systems. Chapter 5 contains a problem set intended to introduce advanced undergraduate

students or graduate students entering the field to open quantum systems. We continue

with the problem of thermalizing a quantum system coupled to a reservoir in Chapter 6,

where we choose the Lindblad master equations to govern the dynamics. We explain the

corresponding derivation of the Lindblad master equation in Chapter 7. The next part of this

thesis describes the numerics to simulate the quantum systems, i.e., exact diagonalization

methods in Chapter 8, tensor network methods for closed systems as present in the second

release of our Open Source Matrix Product States simulation platform [52] in Chapter 9, and

tensor networks methods for open quantum systems, see Chapter 10. This trio of numerical

recipes to simulate quantum physics is completed with Chapter 11, which treats coding,

software issues, and simulation platform questions related to the past and future releases

of our software. We provide a discussion of our results and conclusions in Chapter 12.

Additional material accompanying chapters is featured in the appendices.

This thesis contains the following publications and manuscripts under review:

• Chapter 4. Critical Phenomena and Kibble-Zurek Scaling in the Long-Range Quantum

Ising Chain, D. Jaschke, K. Maeda, J. D. Whalen, M. L. Wall, and L. D. Carr, New

Journal of Physics 19, 033032 (2017). http://doi.org/10.1088/1367-2630/aa65bc.

Permission is provided by the Creative Commons Attribution 3.0 Unported license

(CC-BY) [53] used by New Journal of Physics [54].
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and beyond , D. Jaschke, I. de Vega, and L. D. Carr, submitted to Quantum Science
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Carr, submitted to Journal of Physics A: Mathematical and Theoretical. http://
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cpc.2017.12.015. Permission is provided by the non-commercial Creative Commons

user license (CC-BY-NC-ND) [56] used by Computer Physics Communications [57].
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CHAPTER 2

OPEN QUANTUM SYSTEMS

Open quantum systems have the power to advance quantum physics in areas such as

quantum error correction, state preparation, or decoherence effects. The current research will

help unify the comprehension of open quantum systems and their notations. The applications

of quantum systems have already contributed to new technologies such as lasers, and the

advancement of open quantum systems has potential to contribute to refined applications

and enable new technologies, for example, the ones discussed in the quantum manifesto [1–3]

and pursued in the Chinese efforts [4, 5].

The aim of an open quantum system is simply the description of some system A coupled

to another system B, where we are solely interested in measuring subsystem A. We are

not interested in the measurements of subsystem B or observables acting on A and B at

the same time. Figure 2.1 represents a sketch of this configuration. Reservoir, bath, and

environment are common names for the subsystem B.

Subsystem A

Subsystem B (Reservoir, bath, environment)

Figure 2.1: Schematic of an open quantum system. The subsystem A interacts with sub-
system B, but the measurement on subsystem B is not of interest. Open quantum systems
look for the best technique to predict the state of the subsystem A. The best technique
is a balance between the necessary approximations and the feasibility of the approach with
regards to the analytical or numerical effort. We show a set of spins as the system and a
set of harmonic oscillators of different frequencies represented by the different colored waves.
This choice is one possible example which we revisit in Chapter 6.
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Open systems often rely on the formulation of the quantum system in terms of the density

matrix ρ, in contrast to the state vector for a pure, closed system. The main characteristics

of the density matrix are its positivity, or semi-positivity to be exact, and the trace equal to

one. Both trace and positivity are connected and can be explained via thermal states. In a

thermal state, we expect that each energy has a probability according to the Bose-Einstein

statistics or Fermi-Dirac statistics. The Gibbs distribution is one example for such a thermal

state, i.e.,

ρ =
exp(−βH)

Z
, Z = Tr [exp(−βH)] , (2.1)

where H is the Hamiltonian of the system, Z the partition function, and β = 1/(kBT ).

The trace of a matrix is written as Tr. Thus, the state depends on the temperature T and

kB is the Boltzmann constant. The description of such thermal states in open quantum

systems is of interest as we, in general, expect a system to thermalize if it is in contact

with a large reservoir at a certain temperature. This assumption has to be verified for each

quantum system as discrete spectra might prevent thermalization or multiple steady states

might exist. This question is a complete field of research for closed quantum system as

discussed in the eigenstate thermalization hypothesis vs. the generalized Gibbs ensemble

[58]. The integrability of the system plays the key role to prevent a closed system from

thermalizing [59, 60]. We can motivate the positivity and trace normalization of the density

matrix in the specific case of the thermal state when rewriting the Hamiltonian and, then,

the exponential in terms of the eigenstates H =
∑

k Ek | k〉〈k |. We define the probability

pk = exp(−βEk)/Z. The positivity and normalization of ρ follow from the characteristics

of the probability distribution represented by the pk’s; they are maintained throughout any

mixed state. From the positivity, we can derive the Hermitian characteristics of the density

matrix, because only Hermitian matrices are guaranteed to have real eigenvalues.

Open quantum systems have different paths to describe the evolution of the subsystem

of interest. The choice depends on the feasibility of analytical or numerical approaches
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and the choice of approximations made. We describe in the following different approaches,

i.e., the Lindblad master equation, decay operators in the Schrödinger equation, the Kraus

operators, and alternative techniques. We point out our view on feasibility and restrictions

due to approximations in each corresponding section.

(i) The approximations in the Lindblad master equation [46–49] only hold for systems

coupled weakly to large reservoirs. Despite this restrictive approximation, it is one of the

most common formulations of an open quantum system. Its appeal is the conservation of the

properties of the density matrix such as the trace and the positivity. The Lindblad master

equation can be simulated with the complete density matrix or via quantum trajectories

(QTs) [61] sampling over pure states, which is close to a measurement in an experiment

randomly observing one state out of the mixed state. Each quantum trajectory represents

one possible state in the probabilistic ensemble of the complete density matrix. Random

numbers generated for the choice of each trajectory ensure that any possible trajectory

contributes according to its weight in the limit of an infinite number of QTs. Only for

rare cases, more than 10,000 QTs are necessary; a couple of hundred are often sufficient.

Thus, the computational feasibility to simulate the Lindblad equation is acceptable for the

complete density matrix and via QTs. But we point out the conditions to use the Lindblad

master equation: (1) The environment has no memory and is big enough to stay in its state

without being disturbed by the quantum system considered. Thus, the timescale of the

environment is short in comparison with other time scales. (2) There is no correlation or

entanglement between the system and the environment at any time. This condition includes

the initial state. (3) The relaxation time of the system is long in comparison to the time step

considered. The corresponding approximations are the Born-Markov approximation followed

by the secular approximation. We present details on the approximations in Chapter 7 while

deriving the Lindblad equation for the case of the quantum Ising model. Examples which

clearly violate these assumptions are two small interacting spin chains with one acting as the

reservoir, and an NV center coupled to the few surrounding 13C nuclear spins. The evolution
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of the density matrix of the system is governed via

ρ̇ =
−i

~
[H, ρ]︸ ︷︷ ︸
(I)

+
∑
ν

γνLνρL
†
ν −

γν
2

{
L†νLν , ρ

}
︸ ︷︷ ︸

(II)

. (2.2)

The Hamiltonian H contains the system Hamiltonian of the closed system and possible

corrections of hermitian terms from the system-environment interaction. The Lindblad op-

erators Lν are solely from the system-environment interaction. Thus, we may change the

perspective and consider the terms of (II) as the dissipative part of the evolution. The terms

in (I) are the unitary part of the evolution. Note that (I) corresponds to the von-Neumann

equation for the unitary time evolution of a density matrix in the Schrödinger picture. The

Heisenberg equation for operators, i.e., observables, differs from the von-Neumann equation

by a minus sign.

A careful derivation for a single multi-level quantum system and its reservoir is accessible.

The implications for many-body quantum systems are in contrast non-trivial. Often, energy

eigenstates are not diagonal in the basis we choose to represent the system. Thus, the

operators yielded from the derivation leak a convenient representation in these basis states.

We have to overcome this obstacle to treat many-body systems beyond ten qubits carefully;

Chapter 6 develops an intuition for the many-body case. Every interacting system build from

a set of multi-level system can distinguish the single-channel and multi-channel Lindblad

approach. Briefly, the single-channel approach chooses a Lindblad operator acting on a local

neighborhood of the system, e.g., the spontaneous decay from an excited state to the ground

state. This approach does not necessarily match the energy landscape of the interacting

many-body system. Thus, the multi-channel approach includes the spectrum of the full

system Hamiltonian in its derivation.

(ii) In contrast to the Lindblad master equation, one can add terms representing the de-

cay directly to the Hamiltonian of a system and evolve according to the Schrödinger equation

[62]. Because such additional terms destroy the hermicity of the Hamiltonian, the quantum
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state does not preserve its norm under the time evolution and requires normalization. Fur-

thermore, we emphasize that this approach to the evolution remains a pure state and does

not reflect the statistical mixture usually associated with open quantum systems.

(iii) Another method conserving the properties of the density matrix is a set of Kraus

operators, which can be connected to the Lindblad equation, although it is more general

than the Lindblad equation. The Kraus operators can be seen as an open system analog

to a gate or quantum circuit. The matrix representation of a quantum circuit propagates a

quantum state for some time interval without solving the corresponding differential equation

as we do in the Lindblad master equation. The governing equation is

ρ(t+ dt) =
∑
ν

Kνρ(t)K†ν . (2.3)

Here, Kν are the different Kraus operators and ν is the index to iterate over the Kraus

operators. Reference [63] describes Kraus operators used for a non-Markovian evolution,

emphasizing the statement that they are more general than the Lindblad master equation.

The case of a single Kraus operator describes a unitary time evolution and the operators

can be considered as a quantum gate applied to the state. The Kraus operators are also

known as CPT maps, i.e., complete positive trace-preserving maps. While positive maps

only guarantee to get a positive density matrix, the CPT maps also ensure positivity for

every possible subsystem after a partial trace.

(iv) Apart from these techniques, Redfield master equations drop the characteristic of

positivity. Hierarchical equations of motions can treat open quantum systems correlated

to their environments. Ferialdi is presenting a technique based on Bloch vectors [64]. The

availability of multiple approaches makes it possible to test each existing and new method

in the corresponding limits to another technique. A review of methods for non-Markovian

systems can be found in [65].

The early applications of open quantum systems were directed at single-body physics.

The older formulations of the Lindblad equations were based on two-level systems. Electro-
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magnetically-induced transparency can be explained via a master equation for a three-level

Λ-system [66]. Making the transition to the many-body open quantum system, we encounter

various questions: (i) does the system have a unique steady state; and (ii) is the thermal

state the unique steady state? Resolving these two questions solely in the Lindblad equa-

tion requires a huge effort due to the pure dimension of the Hilbert space in a many-body

system. Although these questions might seem philosophical, they have a physical impact

once extended to a rate approaching the steady state. For example, a slow rate would leave

more time to realize experiments before the quantum system is affected by thermalization.

Next, (iii) can one target steady states with specific properties? The question of dissipative

state preparation is discussed in [67, 68], where the authors address the issue of open sys-

tems leading to decoherence and the corresponding steady state. On the other hand, they

point out the possibility of generating steady states with characteristics such as entangle-

ment using a proper engineering of the reservoir. Preparing the states as steady states of

an open system would make them less vulnerable; after a perturbation they would return

to the steady state. This feature is also known in classical attractors. The effects of the

environment on the system’s dynamics can be extended to the limit of purely dissipative

systems [69]. (iv) Furthermore, can one simulate the transport of heat, current, or particles

when coupling a quantum system to two reservoirs at different temperatures or with different

chemical potentials? Can coherent and incoherent transport be simulated with open quan-

tum systems? The transport problems for nano systems coupled to two separate reservoirs

in the case of electronic transport can go beyond the simulations for mesoscopic systems:

tensor network methods allow us to decrease the size of the system further. In contrast,

mesoscopic systems are based on tight-binding Hamiltonians and the scattering of the wave

function [70]. Leaving behind implementations based on semiconductors, field-effect tran-

sistors based on single molecules [71], e.g., benzene rings, represent a possibility for future

transistor technologies in addition to other approaches such as carbon nanotubes. These

composite systems of molecules connected to the source and drain can be represented as
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open systems. (v) Finally, do we have to reformulate theorems for closed systems under

the influence of an environment? For example, does the Lieb-Robinson bound for informa-

tion propagation speed still hold? Is the Kibble-Zurek mechanism for crossing a quantum

critical point still valid? Is there an equivalent to the area law bounding entanglement for

ground states for steady states of open systems? The Lieb-Robinson bound may be enhanced

through information transport in the reservoir over and above the information transport in

the system itself, if one global reservoir is coupled to the system. In contrast, the decoher-

ence introduced by the environment may slow down the speed of information transport. The

Kibble-Zurek mechanism generates excitations when crossing a quantum critical point in a

dynamical quench and is often characterized by the closing gap between the ground state

and the first excited state in the system. But if the energy spectrum of the system influences

the process of thermalization, a coupling during the quench might affect the physics of the

mechanism. The equivalent of an area law in open systems would be a great benefit for

simulation techniques in one dimension.

Knowing all these limitations of the different approaches to open quantum systems, we

have to keep in mind to study the convergence and outcomes carefully. We recall that

quantum phase transitions happen in the strict definition only in the thermodynamic limit

and at zero temperature, but nonetheless, they have been observed in experiments. Thus, it

is important to think if despite imposed conditions methods are useful close to these limits.

For example, the error induced from approximations might be lower than the experimental

uncertainty and becomes only relevant as experiments can improve the precision.

It is vital that future experiments with quantum simulators, quantum computers, and

quantum encryption algorithms consider all these aspects of open quantum systems. Un-

derstanding such systems as an open quantum system will have the benefit of mitigating

decoherence and improving quantum error correction tools. The various questions, e.g.,

thermalization and transport problems, may be explored best with different formulations of

open quantum systems or different limiting cases. For example, thermalization profits from a
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global picture and the Lindblad equation can be sufficient. In contrast, transport is suitable

for local operators on the boundary. Therefore, we see these approaches not as competing

techniques, but as complementary.
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CHAPTER 3

TENSOR NETWORK METHODS

For our research, we use the approach of tensor networks and the Density Matrix Renor-

malization Group (DMRG) [72–74]. The DMRG algorithm is designed to find the ground

state of either an infinite system or a finite system. The common restriction is to one-

dimensional systems, while higher dimensional systems are subject to research. The tensor

network algorithms using Matrix Product States (MPSs)[75, 76] were always close to the

DMRG algorithms, but recent work has been highlighting the connection or equivalency

between the two formulations [77]. The area law for entanglement [78] plays an important

role for the motivation of MPS algorithms. MPSs, and any other tensor network method,

truncate entanglement in the system. Thus, the scaling of entanglement is of great interest

to tensor networks. The entanglement increases for higher dimensional systems and, thus,

the focus of many tensor networks is towards one-dimensional systems. Other approaches

are Tree Tensor Networks (TTN) [79] and, for open quantum systems and mixed states,

Matrix Product Density Operators (MPDOs) [80, 81] and the Locally Purified Tensor Net-

work (LPTN) [82]. Further approaches are the Multiscale Entanglement Renormalization

Ansatz (MERA) [83], and Projected Entangled Pair States (PEPS) [84]. The latter is the

most common approach to two-dimensional systems. As a large part of this work is about

tensor networks, we take the opportunity to introduce them properly in the following as a

part of the introduction. We start with the basic idea of a tensor network decoupled from

the application in quantum physics. Then, we turn to the usage within quantum physics and

matrix product states and discuss the possibilities of symmetries. We end with a summary

of the requirements underlying our numerical platform, which are reflected in the develop-

ment of the Open Source Matrix Product State package [52]. Throughout this introduction

and the later chapters on tensors network methods, one should keep in mind that we break
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down the problem in terms of different indices. The qubit, or the generalization of the qudit

as a multi-level quantum system is the smallest building block of any quantum many-body

system. One index is referring to the different quantum states in the single qubit or qudit,

which we call the local index. Its dimension is the local dimension and equal to the number

of levels within one site. The next necessary index is an index to address the different qubits

in the many-body systems, for instance indexing the site in a spin chain. The last index ap-

pearing in tensor networks is the least accessible; its physical meaning is associated with the

entanglement, and each index represents one possible superposition of the entangled system,

where each of the superpositions can have a different weight. We dub this the entanglement

index. The concept of local, site, and entanglement indices will appear throughout this

thesis.

Mathematically, a tensor is the generalization of a vector or a matrix to an object with an

arbitrary number of indices. Thus, any vector is a rank-1 tensor, and any matrix is a rank-2

tensor. In physics, the tensor notation is very useful and used in many different contexts

reaching from the Levi-Civitas symbol, a rank-2 or rank-3 tensor, to the stress tensors in

mechanics. The pictorial representation of such tensors is shown in Figure 3.1(a).

(a)

Vector Matrix C

=

A B

(b)

Figure 3.1: Tensors and tensor networks. (a) Representation of a vector and matrix in the
pictorial tensor network notation. Each index, i.e., dimension, is represented as a link in
the tensor. The node itself represents the tensor. (b) The tensor network diagram for the
multiplication of two matrices, e.g., C = AB. The index notation is Cik =

∑
j AijBjk. The

contracted index j is the index connecting the tensors A and B in the diagram notation.

A tensor network describes the relation between the tensors. The matrix-matrix multi-

plication of two matrices A and B to a matrix C is one example:

22



C = AB ⇔ Cik =
∑
j

AijBjk . (3.1)

Here, we can see the difference between the indices. j is part of the summation and the

other two indices, i and k are part of the final matrix C. Figure 3.1(b) is the tensor network

diagram of this matrix-matrix multiplication. We remark that we have a certain degree of

freedom choosing the matrices A and B if only the final matrix C is of interest. We can

introduce a unitary square matrix U . This unitary matrix fulfills by definition U †U = I and

we modify Eq. (3.1) as follows

C = AB = AU †︸︷︷︸
A′

UB︸︷︷︸
B′

= A′B′ . (3.2)

The possibility to exploit such freedoms is an essential part of tensor network methods.

The next step is to translate these concepts of tensors to quantum physics. For simplicity

we restrict ourselves to qubits, i.e., two-level systems, in this part of the discussion; the

generalization to qudits, i.e., d-level system, requires no additional steps. We label the two

quantum states in the qubits with |0〉 and |1〉. The state of a single qubit |ψ〉 is written as

a rank-1 tensor, i.e., vector

|ψ〉 = c0 |0〉+ c1 |1〉 =
∑
j

cj |j〉 =

(
c0

c1

)
. (3.3)

The scalars hold the normalization constraint of the wave function c0c
∗
0 +c1c

∗
1. If we describe

two qubits, the complete Hilbert space H describing both qubits is an outer product of the

local Hilbert spaces H = H1 ⊗H2. The state of two qubits can be represented as a rank-2

tensor. The super-script indices refer to the 1st and 2nd qubit:

|ψ[1,2]〉 = c00 |0[1]〉 |0[2]〉+ c10 |1[1]〉 |0[2]〉+ c01 |0[1]〉 |1[2]〉+ c11 |1[1]〉 |1[2]〉

=
1∑

j1=0

1∑
j2=0

cj1j2 |j[1]
1 〉 |j[2]

2 〉 =


c00

c10

c01

c11

 . (3.4)
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The status of two qubits is stored in a tensor with four, possibly complex, entries. In

contrast, the state of two classical bits can be saved in two booleans storing if the bit is in

the state 0 or 1. While the superposition of states and the entanglement between qubits

is considered a resource for any quantum computation [85], it turns out to be the major

limitation when simulating a quantum system on a classical computer. If we represent L

qubits, the corresponding rank-L tensor has 2L entries. To understand how tensor networks

are able to represent such states, we take a look at the Schmidt decomposition. It decomposes

the state of the two qubits |ψ[1,2]〉 into a sum of local states

|ψ[1,2]〉 =
2∑

µ=1

λµ |ψ[1]
µ 〉 |ψ[2]

µ 〉 . (3.5)

The outer product for the two qubits is implied. The λµ are the weights for each product and

hold
∑

µ λ
2
µ = 1. The entanglement measure defined on the Schmidt decomposition is the

Schmidt number counting the number of non-zero values λµ. The Schmidt number for two

qubits is either 1 or 2, where Schmidt number 1 always signals that there is no entanglement

between the systems decomposed. The local state vectors form a unitary basis; thus, the

decomposition corresponds to a singular value decomposition. The idea of tensor networks

is to keep only a limited amount of singular values, i.e., the biggest singular values and

truncating the smallest singular values. We can immediately calculate the overlap of the

true wave function of the qubits with the truncated wave function | φ[1,2]〉 =| ψ[1]
1 〉 | ψ[2]

1 〉

keeping only λ1 with λ1 ≥ λ2.

〈
ψ[1,2]

∣∣φ[1,2]
〉

=

(
2∑

µ=1

λµ〈ψ[1]
µ | 〈ψ[2]

µ |
)(
|ψ[1]

1 〉 |ψ[2]
1 〉
)

= λ1 . (3.6)

We see that in the limit λ2 → 0, the approximation becomes exact. As the number of qubits

in the Schmidt decomposition increases, the approximation becomes more gradual and does

not switch between no entanglement or entanglement. Independent of the number of singular

values taken in Eq. (3.6), we achieved a representation of our 2-qubit quantum state either
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as one rank-2 tensor or two rank-2 tensors. The singular values can be stored as a diagonal

matrix and can be multiplied into either of the tensors. Figure 3.2(a) follows through these

steps in terms of tensor network diagrams. The Schmidt decomposition for two qubits is

equivalent to two qubits written as an MPS. Section 9 continues with a detailed derivation

of MPS based on this motivation. We remark that the singular value decomposition is not

unique to quantum physics, but is widely used, e.g., for data compression. Figure 3.2(b)

shows the data compression of an image based on the singular values kept.

(a) (b) (c) (d)

Figure 3.2: Compression with singular value decomposition.(a) The tensor network diagrams
for the Schmidt decomposition of two qubits represented as a single tensor. The row and
column indices of the matrix for the SVD are separated by a red dotted line. In the first step
after the SVD M = USV , we obtain the two tensors with the unitary rows and columns and
the diagonal matrix S containing the singular values λµ. The diagonal matrix is represented
by a vertical line. We can choose to contract the singular values to the left tensor over
the index highlighted in red. We obtain the two tensors representing the two local Hilbert
spaces. (b)-(d) The singular values decomposition can be used for data compression, e.g.,
in the case of images. (b) is the image with all 1549 singular values, where (c) and (d) keep
only the biggest 50 and 15 singular values, respectively [86].

The basic motivation for tensor networks as a representation for quantum states has

been presented in the last paragraph with a two-qubit example. We now generalize to more

qubits. The goal is to define one tensor for each qubit, or, in the generalization, for each

local Hilbert space. The global Hilbert space is defined as H =
⊗L

k=1Hk with L being the

number of qubits and k being the site index. Figure 3.3 shows a variety of possible ten-

sor networks. We have (a) a general tensor network, (b) a general loopless tensor network,

(c) the representation of a one-dimensional system with open boundary conditions, (d) the
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one-dimensional tensor network with periodic boundary conditions, (e) a tree tensor net-

work, and (f) the PEPS network. We point out that one-dimensional systems with periodic

boundary conditions can be mapped to a tensor network with open boundary conditions

if the interactions between the sites are limited in the distance. The relevance for peri-

odic boundary conditions to simulate experimental systems with one-dimensional quantum

is small, e.g., consider ions confined in an ion trap or the quasi one-dimensional systems

created in optical lattices. Superconducting qubit architectures have a two-dimensional lay-

out imprinted on the underlying wafer or substrate, but obey open boundaries condition.

The relevance for periodic boundary conditions originates in the simulation of the thermo-

dynamic limit where all sites are now equal, and theoretical approaches which simplify with

periodic boundary conditions, e.g., the energy spectrum of the quantum Ising model can

be calculated analytically with a Jordan-Wigner transformation and Majorana fermions in

such a case. The major distinction between tensor networks with loops and without loops

is that the latter one can install a gauge based on the freedom introduced in Eq. (3.2) [87],

i.e., we can use the knowledge that specific contractions result in identities without actually

calculating them. Our work concentrates on the loopless one-dimensional tensor networks

as in Figure 3.3(c). This restriction is by choice as there are many different applications for

such types of network.

The introduction to tensor networks shows that certain parts are vital to any tensor

network package, including the one underlying our open source simulation platform entitled

Open Source Matrix Product States (OSMPS) [52]. An exhaustive description of the setup

for a tensor network algorithm library is reference [87]. We define the layers in terms of

the modules for OSMPS and suggest: (i) linear algebra routines containing matrix-matrix

contractions, singular value decomposition (SVD), QR decompositions into a unitary matrix

and an upper triangular matrix, and eigendecomposition. (ii) The next layer consists of basic

operations on tensors. (iii) Based on the two precedent modules, tensors with symmetry

can be defined. (iv) By choice, more advanced tensor operations such as contractions and
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Tensor networks. There are a variety of tensor networks which can encode
quantum states representing each local Hilbert space as a tensor. (a) A general network
with loops. (b) A general network without loops. (c) A one-dimensional tensor network
with open boundary conditions, i.e., a Matrix Product State. (d) The Matrix Product
State representation with periodic boundary conditions. (e) A tree tensor network for eight
qubits: the local Hilbert spaces are represented by the tensor in the bottom layer; other layers
represent auxiliary tensors. (f) Projected Entangled Pair States encode a two-dimensional
system as a tensor network.
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Basic definitions

Linear Algebra

Basic tensor operations

Basic symmetric
tensor operations

Advanced tensor operations

Representation of
quantum objects

Measurements and time
evolution

Figure 3.4: OSMPS package structure. The modules of the Open Source Matrix Product
States package reach from basic linear algebra operations to time evolution methods.

decompositions form the next layer; they represent multi-tensor operations. (v) The next

step is the definition of the tensor networks for the different objects such as the quantum

state and the Hamiltonian, represented as a Matrix Product Operator (MPO). (vi) The

top layer is formed by measurement subroutines and different time evolution methods. We

sketch this structure in Figure 3.4.

Overall, the popularity of tensor network methods is clearly visible by the amount of

research groups developing tensor network methods for quantum many-body systems. The

incomplete list of open source codes includes already fifteen packages [88–102], without even

counting software not published under an open source license.
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CHAPTER 4

CRITICAL PHENOMENA AND KIBBLE-ZUREK SCALING IN THE LONG-RANGE

QUANTUM ISING CHAIN

Published previously in New Journal of Physics1

D. Jaschke,2 K. Maeda,3 J. D. Whalen,4 M. L. Wall,5 and L. D. Carr6

Abstract

We investigate an extension of the quantum Ising model in one spatial dimension includ-

ing long-range 1/rα interactions in its statics and dynamics with possible applications from

heteronuclear polar molecules in optical lattices to trapped ions described by two-state spin

systems. We introduce the statics of the system via both numerical techniques with finite

size and infinite size matrix product states and a theoretical approaches using a truncated

Jordan-Wigner transformation for the ferromagnetic and antiferromagnetic case and show

that finite size effects have a crucial role shifting the quantum critical point of the external

field by fifteen percent between thirty-two and around five-hundred spins. We numerically

study the Kibble-Zurek hypothesis in the long-range quantum Ising model with Matrix Prod-

uct States. A linear quench of the external field through the quantum critical point yields a

power-law scaling of the defect density as a function of the total quench time. For example,

1 “Critical Phenomena and Kibble-Zurek Scaling in the Long-Range Quantum Ising Chain”, D. Jaschke,
K. Maeda, J. D. Whalen, M. L. Wall, and L. D. Carr, New J. Phys. 19, 033032 (2017). http://doi.org/

10.1088/1367-2630/aa65bc. Use in agreement with CC-BY license [53].
2primary researcher and author responsible for the manuscript.
3contribution of theoretical approximation including writing of Sec. 4.3; post-doctoral researcher in the group
of L. D. Carr during parts of the paper.

4initial draft during his senior design project at Colorado School of Mines including the draft of phase
diagram with iMPS for ferromagnetic and antiferromagnetic case and the initial study of Kibble-Zurek
scaling for ferromagnet for nearest-neighbor and one long-range case without the Z2 symmetry; currently
graduate student at Rice University.

5advising J. D. Whalen as part of his post-doctoral work within L. D. Carr’s group; the MPS methods used
were developed during his Ph.D. thesis; extensive feedback on the final versions of the draft; currently at
Johns Hopkins University, Applied Physics Laboratory.

6principal investigator and advisor.
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the increase of the defect density is slower for longer-range models and the critical exponent

changes by twenty-five percent. Our study emphasizes the importance of such long-range

interactions in statics and dynamics that could point to similar phenomena in a different

setup of dynamical systems or for other models.

4.1 Introduction

Common quantum many-body models, such as the quantum Ising model or Hubbard

models, include only a nearest-neighbor interaction, while e.g. the Coulomb forces or the

dipole-dipole interactions have power law tails of the form 1/rα. This leads to the core

question: “to what extent does the physics of these models changes when including de-

caying long-range interactions?” Physical models with tunable long-range interactions have

been successfully realized in recent experiments due to advances in atomic and molecular

physics. This especially includes experiments in heteronuclear polar molecules in optical

lattices [20, 103] and trapped ions [104]. Further examples for the realization of a long-range

Ising model are the cold ion experiment in [26] realizing a two dimensional lattice and ul-

tracold molecules with long-range dipole interactions, which have been successfully realized

in recent experiments [105, 106]. Furthermore, realizations in Rydberg atoms through long-

range van der Waals interactions [107, 108] or solid state physics, e.g. based on LiHoF4 [109],

exist and provide a large number of spins, e.g. in comparison to ultracold ion experiments

at the current stage. In addition, magnetic dipoles can lead to the same long-range interac-

tions which have been realized in recent experiments in terms of Chromium [110], Erbium

[111], and Dysprosium [112], and further setups with long-range interactions tuned by op-

tical cavities have been made [113], too. The list of experiments can be further extended

with nitrogen vacancies in diamonds with a ferromagnetic long-range Ising interaction [114].

Recent advances in quantum annealing have fostered the mapping of problems onto a gener-

alized quantum Ising model [115], which is a more general Hamiltonian than the long-range

interaction. This is as well the case for quantum spin glasses [116]. These systems have in

common that they can be described by two-state spin models with 1/rα interactions coupled
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to external transverse fields, including the long-range quantum Ising (LRQI) model. While

the experimental systems range from implementations in one to three dimensions, we study

a one-dimensional system, because our numerical techniques are best suited to this case. The

recent work of several groups discussed new emerging phases due to long-range interactions

[117] and different regimes that hold or violate the Lieb-Robinson bounds, limiting the speed

of transferring information depending on the initial state [118].

For numerical studies of many-body systems, tensor network methods offer a variety

of algorithms which can be tailored to certain problems [75]. The infinite Matrix Product

States (iMPS) [119] on infinite translationally invariant lattices and the Matrix Product

States (MPS) for finite systems are well suited for the ground state calculations of quan-

tum systems. Dynamics can be simulated with the Time-Dependent Variational Principle

(TDVP) [120], where other methods as Krylov or local Runge-Kutta were explored for com-

parison [121, 122]. The quantum Ising model is not only fundamental because of the various

experimental implementations mentioned, but also since it has a similar classical model in

the Ising model, originally introduced in 1925 [123] with analytic solutions in one and two

dimensions. Moreover, the quantum model in d dimensions can be mapped onto the classical

Ising model in d + 1 dimensions; the solution for the classical model in two dimensions is

linked to our one dimensional quantum chain. Therefore, it is an ideal starting ground to

explore long-range interactions before including them into other models and has always been

the toy model to explore a huge variety of methods before using them on other models since

it is the description for a vast majority of physical problems. This includes methods such

as the exact spectrum, perturbation theory, or the mapping of the ferromagnetic case to the

corresponding classical Ising model in higher dimensions without using numerical methods.

It is applicable to many problems that can be mapped into two-level systems and therefore

accessible for researchers from fields as different as solid state physics and atomic, molecular,

optical physics just mentioned before.
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While the experimental systems can be in higher dimension, we consider one dimensional

spin chains with long-range interactions subjected to the external magnetic field in its trans-

verse direction. From there, we lay out the discussions of static and dynamic simulations

via tensor network methods for models with long-range interactions. Numerical algorithms

based on tensor networks perform optimally in one dimension and have limitations in higher

dimension, although they have been proposed for two dimensional systems [84]. However,

the Kibble-Zurek mechanism yields a fascinating topic for the long-range quantum Ising

model in real time evolution; for example, quenching across the critical point could be used

for state preparation whenever it is easier to prepare the ground state in one phase.

As for the usual quantum Ising (QI) chain, that is integrable, both static properties

such as the phase diagram, critical exponents or correlation lengths, and dynamic properties

have been studied at length. The latter includes the Kibble-Zurek mechanism (KZM) being

applied to show that the density of defects in the ferromagnetic chain follows a scaling law

for linear quenches [124–126], i.e. the density of defects increases for faster quenches across

the quantum critical point. Those properties of the Ising model have always paved the road

to study other models. Then, there appears a natural question: how do these long-range

interactions affect the well-known results in the quantum Ising model? These answers are

relevant to ultracold molecules with characteristic long-range dipole-dipole interactions or

Rydberg atoms with long-range interactions. Therefore, we present the reader new results

on the Kibble-Zurek scaling with the comparison of the static results using three different

approaches. Our analytical approach uses an approximation which truncates phase terms of

the Jordan-Wigner transformation and the two numerical algorithms cover infinite and finite

systems. With those comparisons we see finite size effects as the lower critical external fields

for decreasing system sizes; dynamic simulations are based on these results. We introduce

the dynamics with experimentally measurable observables such as the local magnetization

in Figure 4.1 and compare the scaling of defects with the Kibble-Zurek hypothesis. The

Kibble-Zurek mechanism posits that for decreasing quench times, the defect density increases
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less for the ferromagnetic case in regard to the nearest-neighbor quantum Ising model. In

contrast, the number of defects stays at the same rate for the antiferromagnetic model

for faster quenches in comparison to the quantum Ising model. With the exponent of the

Kibble-Zurek mechanism changing about 25% in the ferromagnetic case, this should be an

observable effect. Apart from the prediction of defects when quenching across the quantum

critical point for preparing states it might even allow for characterization of long-range effects

according to the critical exponent.

Throughout the paper we concentrate on both the antiferromagnetic and ferromagnetic

case. Moreover, we address the challenges with those studies, e.g. simulations breaking

down in certain regimes of the long-range quantum Ising. We use the Open Source Matrix

Product States package (OSMPS) [121] freely available from [52]. As a secondary goal, we

provide with those practical calculations and discussions on the numerical results a basis for

future researchers to interpret their results on statics and dynamics gained with OSMPS or

any other tensor network method library. The models suitable for further studies range from

more advanced spin models of XY Z-type to all kind of Hubbard models.

While static aspects such as the phase diagram of the long-range quantum Ising model

have been studied in the past [127], the antiferromagnetic case has been investigated recently

by Koffel [128] and extended in [129] to the correlations. We add to these works the aspects

of infinite size MPS algorithms. A study in the thermodynamic limit with Linked Cluster

Expansions for both the ferromagnetic and antiferromagnetic case has been presented in

[130]. The dynamics of the long-range quantum Ising chain has lately attracted a huge

interest. The entanglement growth of a bipartition during a quench was described in [131].

The speed of information spreading and the building of correlations was studied in [118, 132–

135] and the equilibration time of long-range quantum spin models in [136]. We not only

extend the picture of dynamics in the long-range interaction in the Ising model to the Kibble-

Zurek hypothesis, but provide a detailed path how such aspects can be studied numerically

keeping a side-by-side view of the antiferromagnetic and ferromagnetic cases.

33



QI
α = 4.0
α = 1.0

External Field h(t, α)/hc(α)

S
p

in
s̄ x

32241680
Time t · J

2.0 1.5 1.0 0.5 0.0

1.0

0.8

0.6

0.4

0.2

Figure 4.1: Quench of the Long-Range Quantum Ising Model. The mean local x-
magnetization as average over the sites of the measurement of σxi , i.e., (1/L)

∑L
1 σ

x
i , is a

typical observable for spin models and realizable in cold ion experiments. The measure-
ment during the quench from the paramagnetic phase to the to the ferromagnetic phase for
different interaction strength governed by power law 1/|j − i|α displayed for α in steps of
0.2 is compared to the nearest-neighbor quantum Ising (QI, dashed curve). The triangles
mark spots with first maximum of the gradient disregarding numerical fluctuations. The
magnetization in x-direction is vanishing equally for all α, since the quench is starting at
h(t = 32, α) = 2hc(α) and ending at h(t = τ, α) = 0. hc is the value of the quantum critical
point which differs for each α. We emphasize the unified dynamics of the quench independent
of α for the symmetric setup around the critical point.
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The structure of the paper is as follows: after introducing the Hamiltonian of the long-

range quantum Ising model in Sec. 4.2, Sec. 4.3 presents the theoretical approximation for

the phase boundary. The actual results are then discussed in Sec. 4.4 containing the phase

boundaries for all different methods used, the observables during the dynamics, and the

Kibble-Zurek scaling for the long-range quantum Ising model. We finish with the discussion

of our results in the conclusion. The description of the numerical methods follows in the 4.8

and consists of the numerical algorithms used and the studies on their convergence. Further

aspects on the convergence can be found in 4.9.

4.2 Modeling Long-Range Interactions in the Quantum Ising Model

The system is modeled by the long-range quantum Ising Hamiltonian,

HLRQI = −J
∑
i<j

σzi σ
z
j

|i− j|α − |J |h
∑
i

σxi , (4.1)

where i, j are 1D lattice coordinates, J and the unitless h represent the strengths of the

interaction and transverse field, respectively, and α takes some positive value parameterizing

the long-range interactions. Examples for well-known models are Coulombic interactions

with α = 1, dipole-dipole interactions decreasing with α = 3, and α = 6 for van der

Waals models and the tail of the Lennard-Jones potential. In the following, we investigate

phase diagrams both for the ferromagnetic (J > 0) and antiferromagnetic (J < 0) cases in

Eq. (4.1). The long-range quantum Ising model in Eq. (4.1) reduces to the usual quantum

Ising Hamiltonian in the limit of α→∞,

HQI = −J
∑
i

σzi σ
z
i+1 − |J |h

∑
i

σxi , (4.2)

which exhibits a quantum phase transition at h = 1 both in ferro- and antiferromagnetic

cases. For h > 1 we have in both cases the paramagnetic phase where spins align with the ex-

ternal field in the limit h→∞. The ferromagnetic phase appears for h < 1 where the ground

state is described for h = 0 by a Z2 symmetric ground state (|↑ . . . ↑〉± |↓ . . . ↓〉) /
√

2 subject
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to spontaneous symmetry breaking. The antiferromagnetic ground state has a staggered

order in z-direction (|↑↓↑↓ . . .〉± |↓↑↓↑ . . .〉) /
√

2 referred to as Néel order. The Hamiltonian

of the long-range quantum Ising in Eq. (4.1) builds the foundation of the following work and

the standard quantum Ising from Eq. (4.2) is used frequently to check limits.

A common approach to quantum many-body systems are critical exponents. These uni-

versal scaling laws are independent of the system size and describe quantities as a function

of the distance to the quantum critical point [137]. One typical example for such a quantity

is the correlation length in the system. We relate to the critical exponents in the analysis of

the Kibble-Zurek scaling, where [60] gives a review of the link between the critical exponents

and the crossing of a quantum critical point in a quench. This setup is described by the

critical exponent ν and the dynamical critical exponent z. The more detailed description is

included in 4.8.2.

4.3 Theoretical Boundary via a Truncated Jordan-Wigner Transformation

Having a general overview of the long-range quantum Ising model, we now derive a well-

controlled analytic approximation to rely on. This is important to have a comparison to the

numerical results introduced later. In general, the long-range quantum Ising problem is not

exactly solvable like the nearest-neighbor case, but a truncation of the phase terms in the

Jordan-Wigner transformation regains a long-range fermion model along the Kitaev model,

which allows us to approximate the critical transverse field for quantum phase transitions,

hc. We show the derivation of the critical transverse fields with the use of the Jordan-Wigner

transformation [137, 138] and a truncation approximation. The derivation can be divided

into two steps. First, we use the Jordan-Wigner transformation to map our spin Hamiltonian

onto fermions. The Jordan-Wigner transformation is a non-local mapping from spins onto

fermions, and fermions onto spins, where the non-locality of the transformation is necessary

to obey the corresponding commutation relations. In the case of a nearest-neighbor spin

Hamiltonian, the result of the Jordan-Wigner transformation is a nearest-neighbor fermion

Hamiltonian where the non-local terms of the transformation cancel each other. In contrast,
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long-range spin Hamiltonians are mapped into long-range fermion Hamiltonians with k-body

interactions of arbitrarily large k. After the truncation in the second step, we obtain a Kitaev-

type Hamiltonian with long-range two-body interactions, which has been solved exactly in

[139]. The Kitaev Hamiltonian is itself important as it describes spinless fermions with

p-wave pairing interactions and displays topological states [140]. For a complete picture

we show both steps to derive the theoretical boundary. In the following, we rewrite the

long-range quantum Ising Hamiltonian in one dimension from Eq. (4.1) with a general site

dependent coupling V (i, j):

H =
∑
i<j

V (i, j)σzi σ
z
j − |J |h

∑
i

σxi , (4.3)

and keep a constant in front of the external field in order to have a unitless h. This general

equation describes a variety of different models starting from a quantum spin glass with

random V (i, j) originally proposed as classical model [141], over the completely connected

case with V (i, j) = 1 for all i, j which is equivalent to a special case of the Lipkin-Meshkov-

Glick model [142, 143] ranging to chimera setup in the d-wave quantum annealing computers

[144] with a limited number of interaction to other qubits. This Hamiltonian reduces to our

long-range quantum Ising model with V (i, j) = −J/|i − j|α, while to the usual quantum

Ising model with V (i, j) = −Jδj−i,1. In order to use the Jordan-Wigner transformation, we

have to rotate our coordinate system around the y-axis mapping σx → σz and σz → −σx

following the approach used in [137]. We obtain

Hrot =
∑
i<j

V (i, j)σxi σ
x
i − |J |h

∑
i

σzi , (4.4)

where the minus sign of the transformation cancels out appearing as a pair in the interaction

term. The Jordan-Wigner transformation, which is exact for the usual quantum Ising model,

is given by
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σxi =

{∏
j<i

(1− 2c†jcj)

}
(ci + c†i ) , (4.5)

σyi = −i

{∏
j<i

(1− 2c†jcj)

}
(ci − c†i ) , (4.6)

σzi = 1− 2c†ici , (4.7)

where ci, c
†
i are annihilation and creation operators for spinless fermions satisfying the an-

ticommutation relations. Applying the Jordan-Wigner transformation, we can rewrite the

Hamiltonian Eq. (4.4) with the fermionic operators,

H =
∑
i<j

V (i, j)(c†i − ci)
{ j−1∏
m=i+1

(1− 2c†mcm)

}
(cj + c†j)

−|J |h
∑
i

(1− 2c†ici) . (4.8)

Note that for the nearest-neighbor potentials, like in the usual quantum Ising model, there

are no operator products in terms of the index m, thus the Hamiltonian becomes quadratic

in the fermionic operators, reducing to the well-known Jordan-Wigner transformed quantum

Ising model. The approximation step replaces the operator products
∏

m(1 − 2c†ici) in the

interaction term of the Hamiltonian running over the index m with an identity. This is

equivalent with truncating fermionic operators up to quadratic order to obtain an analytically

solvable form and the reason behind calling it a truncated Jordan-Wigner approach. We

continue with

H ≈
∑
i<j

V (i, j)(c†icj + c†jci + c†ic
†
j + cjci)

−|J |h
∑
i

(1− 2c†ici) . (4.9)

This Hamiltonian corresponds to the long-range Kitaev model exactly solved in [139]. Our

truncation approximation becomes exact only for the nearest-neighbor potentials. In general,
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it becomes better for ferromagnetic states, since they satisfy 〈σzi 〉 = 〈1 − 2c†ici〉 ≈ 1, where

σzi refers to the rotated Hamiltonian in Eq. (4.4).

We perform a standard Fourier transform and Bogoliubov transform [137], which com-

pletes the diagonalization of Eq. (4.9) with the result,

H =
∑
q

εq

(
γ†qγq −

1

2

)
, (4.10)

where the excitation spectrum εq is given by

εq = 2

√
(Sq)2 + (Cq)2 + 2hCq + |J |h2 , (4.11)

with cosine and sine transforms of the potential where we replaced (i, j) with the distance

r = j − i valid for the long-range quantum Ising model

Cq =
∞∑
r=1

V (r) cos(qr) , (4.12)

Sq =
∞∑
r=1

V (r) sin(qr) , (4.13)

respectively. The excitation spectrum Eq. (4.11) could have a gapless Γ-point (q = 0) at the

critical field

hΓ
c = − 1

|J |
∞∑
r=1

V (r) , (4.14)

and a gapless K-point (q = ±π) at

hKc = − 1

|J |
∞∑
r=1

(−1)r V (r) , (4.15)

though it depends on details of the potentials as to whether or not the spectrum exhibits

the gapless points. For ferromagnetic long-range interaction, V (r) = −J/rα with α > 1, we

have a gapless Γ-point at
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hΓ
c =

∞∑
r=1

1

rα
= ζ(α) , (4.16)

where ζ(α) is the Riemann Zeta function. In contrast, for antiferromagnetic long-range

interaction, V (r) = |J |/rα, we have a gapless K-point at

hKc =
∞∑
r=1

(−1)r+1

rα
=

(
1− 1

2α−1

)
ζ(α) . (4.17)

We remark that for the usual quantum Ising model with V (i, j) = −Jδj−i,1, we expect a

gapless Γ-point at hΓ
c = 1 in the ferromagnetic case, and a gapless K-point at hΓ

c = 1 in the

antiferromagnetic case.

4.4 Phase Diagram of the Long-Range Quantum Ising Chain

Our first result for the phase boundary is obtained analytically. In Sec. 4.3 we used

the Jordan-Wigner transformation, which solves the nearest-neighbor quantum Ising chain

exactly, for the long-range quantum Ising leading to an infinite series of fermionic operators.

We truncate such series to obtain analytic estimates for the critical magnetic fields and recall

the results from Eqs. (4.16) and (4.17)

hFM
c (α) = ζ(α) , hAFM

c (α) =

(
1− 1

2α−1

)
ζ(α) , (4.18)

for the ferromagnetic and antiferromagnetic cases, respectively. We compare this to the nu-

merical values of the critical field hc discussed thoroughly in 4.8.1. In Figure 4.2 we show

the phase boundaries for the different methods, where the results of the Kitaev model from

Sec. 4.3 corresponds to the solid blue curves. We observe as a first trend that in the ferromag-

netic long-range quantum Ising chain, as α decreases, that is, as the potential becomes more

strongly long-range, the ferromagnetic phase becomes more favorable: the negative energy

contribution from the ferromagnetic ordering increases in its absolute value. On the other

hand, in the antiferromagnetic long-range quantum Ising chain, the antiferromagnetic phase
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becomes less favorable for smaller values of α because the long-range potential induces more

frustration in the staggered ordering. Next, we perform numerical simulations to estimate

the critical lines more accurately.

During the numerical simulations we follow two different paths. First we use the infinite

Matrix Product State algorithm [119, 121] to search for a translationally invariant ground

state for a unit cell of q sites. We search for this kind of ground state for q = 2, although

the Hamiltonian in Eq. (4.1) fulfills translational invariance in the thermodynamic limit for

any q. The energy is minimized via variational methods and the strong finite size effects at

the boundaries due to the long-range interactions are avoided. Second, we consider finite

size systems with a number of sites L ∈ {32, 64, 128, 256, 512} and approximate the critical

point in the thermodynamic limit L → ∞ via finite size scaling. On the one hand this

is an appropriate check on the results. On the other hand, we use finite size systems for

the dynamics later on and provide a prediction for finite size effects commonly present in

quantum simulators. To identify the critical point we keep α and J fixed and iterate over

the transverse field h. The von Neumann entropy as a function of the external field has

a maximum located at the critical value of the external field hc. For the nearest-neighbor

model the critical point can be found based that the area law for entanglement is violated

for gapless states [78], where the entanglement is measured with the von Neumann entropy.

Although long-range models may in general violate this area law away from the critical point,

we take the same approach knowing that the ground state obeys the area law for the two

limiting cases h → 0 and h → ∞. The Ising model has a closing gap around the critical

point and therefore the von Neumann entropy S can be used as indicator for the quantum

critical point

S(h) = −
χ∑
i=1

λi log (λi) , (4.19)

where λi are the singular values squared of the Schmidt decomposition of the system and

χ is the maximum bond dimension controlling the truncation of the Hilbert space. In the
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finite size systems, the eigenvalues of the reduced density matrices correspond to λi when

splitting into a bipartition. The entropy and the entanglement have a unique extremum at

the phase transition which must coincident with the closing gap and can therefore be used to

identify the critical point. An alternative approach would be to use the correlation length of

the system or the maximal gradient in the magnetization, both with respect to the external

field. We explore the critical behavior of the infinite chain (triangles) and the finite size

scaling results (diamonds) in Figure 4.2.
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Figure 4.2: Phase Boundary. Critical behavior of the long-range quantum Ising model
in the ferromagnetic and antiferromagnetic case as a function of the power law exponent
α. We compare the theoretical approximation (Theo.) based on a truncated Jordan Wigner
transformation, the infinite MPS results (iMPS), and the finite size scaling (FSS) of the MPS
results. The boundary between the gray and white shading is the critical point in the limit
α→∞ corresponding to the nearest-neighbor quantum Ising model. We observe that both
cases react differently when increasing the long-range interactions. In the ferromagnetic case
the paramagnetic phase decreases at cost of the ferromagnet, while the antiferromagnetic
phase becomes smaller in the other case due to the concurrency in the staggered order. All
three different methods show these trends, although they show in the regime α significant
relative differences above 0.1.

In conclusion, the relative difference between the iMPS and the theoretical estimate is

bound by 0.37 (0.17) for the ferromagnetic (antiferromagnetic) model considering α ≥ 2.

The relative difference for two arbitrary values x and x′ is defined as (x− x′)/((x + x′)/2).
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The actual trend with the difference between iMPS and the theory curve vanishing in the

limit α → ∞ reflects the analysis in Sec. 4.3. Further we state that the relative difference

between iMPS and finite size scaling results are below 0.11 (0.04). The details on the finite

size scaling are described in 4.8.1.

4.5 Scaling of Defect Density for the Kibble-Zurek Hypothesis under a Quan-
tum Quench

We now turn our focus to the dynamics of the long-range quantum Ising model. We

analyze the quench through the quantum critical point by means of finite systems. We first

analyze measurable observables during the quench and then determine the Kibble-Zurek

scaling according to the final state, that is a power-law describing the generation of defects

as a function of the quench time and a critical exponent. The linear quench for a time

dependent external field is defined as

h(t) = hi + (hf − hi)
t

τ
, (4.20)

and replaces the coupling h in Eq. (4.1). τ is the total time of the quench. We quench from

hi = h(t = 0) = 2hc to hf = h(t = τ) = 0. When considering our observables during the

quench, we stay close to experimentally realizable measurements. In Figure 4.1 we presented

the average magnetization s̄x

s̄x =
1

L

L∑
k=1

〈σxk〉 . (4.21)

This is e.g. measurable in cold ion experiments [26]. We choose to plot the magnetization

in the x-direction which is measurable in the ferromagnetic and antiferromagnetic case, and

can not average out in the simulations due to superpositions, e.g. the ferromagnetic ground

state α → ∞, and h = 0: (| ↑ . . . ↑〉 ± | ↓ . . . ↓〉)/
√

2 has no net magnetization for a local

measurement of σz. We note in Figure 4.1 for α ≈ 4 the steep gradient around t/τ ≈ 0.5,

which corresponds to the critical value for the transverse field in the ferromagnetic case
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treated here. Therefore, we extract the first maximum of the gradient disregarding all minor

fluctuations and plot them over α in Figure 4.3. We see a similarity to the critical value of the

transverse field from the static calculations for big τ , while for faster quenches the deviation

from the static result increases. We present the analogous analysis for the antiferromagnetic

case as well in Figure 4.3. For faster quenches the maximal gradient is again below the static

result leading to the assumption that this effect is due to a delay during which the system

takes time to react. The antiferromagnetic case shows an additional effect as a function of α:

longer-range interactions exhibit an extra delay in their maximum gradient. If we consider

the antiferromagnetic quench for τ = 128 in Figure 4.3 (a), the maximum of the gradient

moves from h = hc for α = 4 to values of h ≤ 0.75hc for α < 2. One suggestion to explain

this is the concurrent spin configuration in the staggered order in the antiferromagnet which

grows for smaller α and might cause this extra delay to establish an antiferromagnetic state.

The results on this analysis vary if the quench scheme is not symmetric around the critical

point hc.

Next, we present results for a non-global spin measurement. Such a measurement of

a single spin in an optical lattice is technically possible [145] and can be realized in cold

ion experiments, too. In Figure 4.4 we show the nearest-neighbor spin-spin correlation in

the z-direction for the antiferromagnetic case as a function of time and site in the system.

As mentioned above, local measurements of σz average out due to symmetry apart from

numerical fluctuations. Correlations grow during the quench, and finite system boundary

effects are visible at both ends of the chain. The total quench time is τ = 32, the system

size L = 128, and α = 3 in this example, corresponding to dipole-dipole interactions.

Now we turn to the Kibble-Zurek hypothesis in the quenches already discussed above.

The Kibble-Zurek mechanism [60, 124, 146] predicts a scaling of the defects in the quantum

system as a function of the quench time τ . We recall that the scaling for the nearest-neighbor

Ising model is [147]:
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Figure 4.3: Dynamics and Phase Boundaries. Around the critical value of the transverse
field hc, the gradient of the magnetization in the x-direction has its maximum. The system
needs time to react to the change and therefore fast quenches with a low quench time τ reach
the maximum in the gradient at later times. (a) The first maximum during the quench for
the antiferromagnetic model. Instead of the time we show the corresponding transverse
field h(t) divided through the corresponding critical field. The small plateaus arise from
the discretized measurements. (Remark: Small maxima (0.5 times max gradient) in the
gradient are neglected.) (b) Analogous to (a) for the ferromagnetic case (same legend as
(a)). The analysis failed for the data point with τ = 128 and α = 3.6, which was filled with
the unconnected point from the simulation with χ = 95. (Jump for fast quenches and small
α appears for both bond dimensions).

45



Site i

1326496128

Time t · J

0
10

20
30

C
orrelation

〈σ
zi σ

zi+
1 〉

-0.2

-0.6

-1.0

↑
↑

Figure 4.4: Nearest-Neighbor Correlation in Dynamics. Space-time evolution of the z spin-
spin correlation during the quench into the antiferromagnetic phase where the correlation
between sites i and i+ 1 builds up as the external field vanishes. As expected for staggered
order in an antiferromagnetic state the correlation is negative. Further we point out more
strongly negative correlation due to boundary effects at the end of the quench, where the
affected region is indicated with arrows (↑).
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Figure 4.5: Kibble-Zurek Scaling for the Long-Range Quantum Ising Model. The exponent µ
relates the quench time to the defect density ρ for the power law exponent α as in Eq. (4.23).
The ferromagnetic model has smaller µ’s for longer-range interactions. The defect density
grows slower for longer-range interactions for faster quenches regardless of their original
density. Two outliers in the data with large errors bars (α = 3.6 and 3.8) have failed to
converge and are replaced with simulations with lower bond dimension showing that there is
no singularity. In contrast, for the antiferromagnetic model µ stays constant within the error
bars and the defects increase at the same rate independent of long-range interactions, but do
not necessarily have the same number of defects at the beginning. One non-converging point
is not displayed (α = 2.6). The error bars for both cases show the standard deviation from
the fit of the critical exponent for the different quench times and do not contain truncation
errors of the time evolution.
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ρ ∝ |τ |− ν
zν+1 , (4.22)

where we use ρ for the defect density, and ν and z for the critical exponents. We have

already considered a one-dimensional system in Eq. (4.22). Furthermore, Eq. (4.22) and the

following analysis applies only to linear quenches defined over ∂h/∂t = const., but extensions

for the Kibble-Zurek scaling to non-linear quenches are possible [148]. Plugging in the critical

exponents for the nearest-neighbor quantum Ising model with ν = 1 and z = 1 we obtain

ρ ∝ τ−0.5. The exponent 1/2 is a checkpoint for the calculations in the nearest-neighbor

limit α→∞. The match between theory and experiment does depend on the experimental

realization, but yields all over a power law for the defects according to the review in [60].

We are interested in how much the exponent changes when tuning α for the long-range

interactions and how it deviates from the 1/2 in the nearest-neighbor case. We estimate the

exponent µ in the proceeding analysis which is defined as

ρ ∝ τ−µ . (4.23)

Although the scaling can be used in more general cases, we restrict ourselves to the linear

quenches crossing the quantum phase transition located at the critical value hc analyzed

in the previous Section 4.4. This quench scheme starting at twice the critical value was

discussed in Eq. (4.20). The quench starts in the paramagnetic phase and ends in the

ferromagnetic/antiferromagnetic phase. When we are considering the ferromagnetic ground

state, the number of defects corresponds to the number of kinks, respectively domain walls,

and we use the defect density ρ defined as the number of kinks per unit length and introduced

in detail in 4.8, Eq. (4.29). Expressing ρ in terms of the kinks is constrained to the final

point of the quench h = 0 = hf , where the measure is best defined, as the defects are clearly

identifiable in terms of the kinks. The data in Figure 4.5, is obtained from simulations

based on systems with L = 128 and evolution with the time-dependent variational principle
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[120] at χ = 95, 100. We expect that the critical exponent µ approaches 0.5 in the limits

α → ∞ and L → ∞ resulting in the ferromagnetic nearest-neighbor quantum Ising model

in the thermodynamic limit. We provide a brief overview of the finite size effects in nearest-

neighbor model in 4.11 to support this statement. The error bars are the standard deviation

for µ of the fit for the different values of τ . Examples for the fit are shown in Figure 4.9 in

4.8.2. It does not contain the truncation or methodical error of the time evolution method.

From the two curves with the different bond dimensions we deduce that certain simulations

fail, resulting in a large standard deviation in the fitting procedure. We consider those points

with large standard deviation as a failure of convergence since another set of simulations with

a slightly different bond dimension fit into the trend of converged points and have an equally

small standard deviation. The critical exponent grows for increasing values of α, meaning

if we double the quench velocity for two systems with different long-range interactions, the

number of defects increases more slowly in the system governed by longer-range interactions.

But as we show in 4.8.2, longer-range systems have initially a higher defect density as shown

in Figure 4.9.

However, these results just discussed for the ferromagnetic case are not true for the

antiferromagnetic model. The critical exponent stays constant independent of the long-

range interaction. The deviation from the nearest-neighbor case µ = 0.5 should be due to

finite size effects. But we know from Figure 4.9 that the density of defects is again higher

for longer range interactions. The defect density of the antiferromagnetic model is defined

analogously to the ferromagnetic model: a missing kink in the staggered order is one defect.

4.6 Conclusion and Open Questions

In this study we have established that the introduction of long-range interactions changes

the physics of one-dimensional quantum spin systems non-trivially as observed in various

aspects of the statics and the defect density and therefore merits further attention. This

is not limited to the quantum Ising model, e.g. the Bose-Hubbard and many other models

could be discussed under the influence of the long-range interactions such as dipole-dipole
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interactions. First we summarize the results from our study of the long-range quantum Ising

model and then raise open problems associated with long-range quantum physics.

We have presented multiple aspects of long-range quantum Ising model, e.g. the Kibble-

Zurek scaling, which lead to a better understanding of physical systems with long-range in-

teractions, e.g. the scaling of generated defects during the quench through a quantum critical

point. For the ferromagnetic case we find a slower increasing defect density in comparison to

the nearest-neighbor limit when increasing the quench velocity. The defect density is higher

in comparison to the nearest-neighbor model for the same quench time. Our simulations

give a detailed picture of the critical value of the transverse field in the thermodynamic limit

using infinite Matrix Product States along with a practical guidance how to resolve issues

introduced by degeneracy in those systems. We also presented an alternative to the infinite

size algorithm using finite size scaling methods to obtain the value of the critical external

field in the thermodynamic limit. This uncovers the finite-size effects, which will certainly

be present in experiments with small system sizes. The relative difference for the value of

the critical point between L = 32 and L = 512 is approximately 15% for the antiferromag-

netic case for α = 3. The same comparison for the ferromagnetic yields a relative difference

of around 20%. The iMPS and finite size scaling phase boundaries are supported by an

approximate analytical result using a truncated Jordan-Wigner transformation approach in

combination with the Kitaev model. We introduced the dynamics of the long-range quantum

Ising model through local and global observables during a quench from the paramagnetic

phase into the ferromagnetic and antiferromagnetic phases crossing the critical point. We

related those measurements to the actual quantum critical point through the maximum of

the gradient of average global magnetization in the x-direction and analyzed how this is

affected by the total time of the quench. Finally, we evaluated the scaling of defects in the

Kibble-Zurek scenario leading to the result of a slowly increasing (constant) defect density

at the end for increasing quench velocity in comparison to the nearest-neighbor limit of the

ferromagnetic (antiferromagnetic) long-range quantum Ising model. This is reflected in the
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exponent of the Kibble-Zurek scaling, e.g. in the ferromagnetic case we observe exponents

in the range from µ = 0.45 to µ = 0.6 for power law exponents α > 1.5, where µ = 0.5 is

the limit of the nearest-neighbor quantum Ising model in the thermodynamic limit.

Having concluded our study, we point out open problems that can be addressed in fu-

ture research. As indicated by the list of the recent studies concerning the dynamics of the

long-range quantum Ising model [118, 131, 133, 134], static physics has been well explored

[127–129], but near-equilibrium dynamics such as the Kibble-Zurek hypothesis remain largely

unknown, let alone far-from-equilibrium dynamics. One aspect which could be explored in

statics and dynamics is the extension to two or higher dimensional systems which we have

excluded due to the limitation of MPS algorithms to one spatial dimension for studies of this

kind. Two-dimensional setups allow more options for quantum computation to apply gates

[144]. In the case of the antiferromagnetic case triangular lattices can lead to the similar

concurrence of the staggered order than for long-range interactions in the one-dimensional

case. While two-dimensional systems might be accessible through simulations with tensor

network methods such as Projected Entangled Pair States (PEPS) [84], this route seems to

be more accessible for experiments for any of the models mentioned before. Discrete Trun-

cated Wigner methods are another tool to approach two-dimensional systems with numerical

simulations [149]. A further path starting from here is the investigation of dynamical phase

diagrams. Where recent studies treat e.g. binary pulses in regards to interaction and trans-

verse field of the quantum Ising model [150], further possibilities considering time-dependent

periodic long-range interactions arise. One study obtaining a dynamical phase diagram for

the long-range quantum Ising chain in the infinite limit using iMPS is [151]. So called

completely interacting models at α = 0 form another topic for research.

We have shown that the long-range quantum Ising model is a good starting point for

any kind of long-range study. Other models may show new behaviors when including long-

range interactions. We think here of the generalization of the quantum Ising in terms of

the XY -model with a realization in Rydberg systems [152] or the XY Z-model as realized in
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polyatomic molecules [153]. Furthermore, this includes Hubbard models such as the Bose-

Hubbard model, Fermi-Hubbard model as they appear e.g. for molecules. For macroscopic

quantum tunneling in the Bose-Hubbard model [154] results might change if the distance of

the long-range interaction is larger than the width of the barrier. Other problems suitable

for extension to long-range interactions include the quantum rotor model and the bilinear

biquadratic spin-one Hamiltonian [155].
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4.8 Numerical Methods for Long-Range Statics and Dynamics

In this section we describe the numerical algorithms used, which can be skipped by readers

not interested in the computational aspects of this work. The motivation for using tensor

network methods for the simulation of our systems is their versatile applications for finite and

infinite size statics and finite systems dynamics. Since the invention of the finite size version

of MPS [76], various tensor network methods have been proposed. These types of tensor

networks include for pure states Tree Tensor Networks (TTNs) [79], Multiscale Entanglement

Renormalization Ansatz (MERA) [83], and Projected Entangled Pair States (PEPS) [156].

All approaches are based on a parameterization of states in the Hilbert space in order to

capture many-body physics which is well beyond the reach of exact diagonalization. For an

overview we refer to [75]. We divide our description of the specific methods used into three

parts. First, we discuss the convergence of the iMPS algorithm used to determine the phase

boundary in terms of the critical external field hc as a function of the interaction decay α.

This algorithm is based on variational methods to find the ground state of a translationally
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invariant unit cell. Second, we treat the path to finite size simulations via MPS returning

the ground state of a system of size L. Iterating over different system sizes L, we discuss how

to obtain the critical value of the external field hc in the limit L→∞ via finite size scaling.

Third, we complete the section with a discussion of the dynamic results obtained with the

time-dependent variational principle [120] which is able to intrinsically capture long-range

interactions and is therefore preferable over a Suzuki-Trotter decomposition as used in many

implementations of MPS/TEBD libraries.

4.8.1 Static Simulations: Infinite Systems and the Finite Size Scaling Approach

We explain the numerical methods behind the simulation data shown in Figure 4.2. The

iMPS algorithm is designed to find the ground state of an infinite system without boundary

effects, returning the translationally invariant unit cell of size L. New sites are inserted in

the middle of the existing system and variationally optimized in order to converge to the

ground state. The previous iteration is included as the environment, where environment is

understood in the sense that it exchanges quantum numbers with the system, and not in

an system-bath open quantum system context. In the first step of the algorithm, the unit

cell is optimized without any environment; in the second step the solution of the first step is

considered as the environment. From that point on the environment grows subsequently with

each step. The algorithm terminates if the newly introduced sites fulfill the orthogonality

fidelity condition:

F
(
ρn−1, ρ

R
n

)
= Tr

√√
ρRnρn−1

√
ρRn , (4.24)

where n indicates the iteration step and R is the right part of the system excluding the site

introduces in the most recent step. Therefore, the density matrices ρn−1 and ρRn represent the

same part of the system and the latter one has one more update included. When the overlap

is sufficiently big, the update did not change the result any more. We refer to [119, 121] for

a detailed description. The phase boundary for the infinite MPS simulation is obtained for
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each value of α evaluating the maximum of the bond entropy iterating over the external field

h. The bond entropy is defined by the von Neumann entropy introduced in Eq. (4.19). We

obtain the singular values squared λ when splitting the unit cell of the infinite MPS into the

bipartition. The bond entropy is one of a variety of possible entanglement measures [85, 157],

and it is based on the Schmidt decomposition separating a quantum system into bipartitions.

The entanglement can be measured via the number of singular values, the Schmidt number,

or the entropy of the singular values according to Eq. (4.19). For example, a Bell state has

Schmidt number 2 and von Neumann entropy −2 · (1
2

log(1
2
)), while an unentangled product

state has Schmidt number 1 with von Neumann entropy 0. The maximum of the bond

entropy is found using a grid of 21 points ranging from h
[1]
min = 0.9 (h

[1]
min = 0.0) to h

[1]
max = 3.9

(h
[1]
max = 2.0) in the ferromagnetic (antiferromagnetic) long-range Ising model. We run this

evaluation for 51 different values of α ranging from α = 0 to α = 4. The critical value h
[1]
c

is the grid point with the maximal bond entropy. Based on this result, we refine the search

on the next grid defined as

h[i]
c =⇒ h

[i+1]
low = h[i]

c − dh[i] , h[i+1]
up = h[i]

c + dh[i] , (4.25)

where dh[i−1] is the step size on the grid. The results presented in Sec. 4.4 and in the following

convergence studies are for h
[2]
c , that is the external field at the quantum critical point between

the paramagnetic and ferromagnetic, or antiferromagnetic phase. The superscript denotes

the iteration refining the grid for the search and has no physical meaning past an indication

for the precision of hc.

We now discuss convergence of the iMPS results. We take the default convergence

parameters of the OSMPS library [52] with the modification of an iterative bond dimen-

sion of χ = 10, 20, 40. In Figure 4.7 (a) we show the difference in bond entropy |S(χ =

40, hc)−S(χ = 20, hc)|, |S(χ = 40, hc)−S(χ = 10, hc)|, and |S(χ = 20, hc)−S(χ = 10, hc)|.

These results call for a technical discussion of this behavior due to the large difference for

many points with α & 2, here in the antiferromagnetic case. This behavior is related to
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symmetry breaking. The degenerate ground state in the limit h→ 0 is the GHZ state

|ψ0〉 =|ψGHZ〉 =
|↑ · · · ↑〉± |↓ · · · ↓〉√

2
, (4.26)

but without enforcing Z2 any superposition of |↑ · · · ↑〉 and |↓ · · · ↓〉 minimizes the energy

of the system. Therefore, the bond entropy can be between the bond entropy S = 0 of a

product state and S = log(2) ≈ 0.69 of the GHZ ground state. We discuss the origins of

this problem related to the numerical algorithm of iMPS. Tracking the singular values, we

find either a distribution of pairs in the states with high entropy corresponding to the two

different signs as pointed out in the limit h → 0 for the GHZ state in Eq. (4.26). The low

entropy states have decaying non-degenerate singular values. The iMPS algorithm selects

one of the degenerate states at non-predictable points due to the randomized initial state

at the very beginning of the algorithm, as well as the entanglement truncation step, which

can randomly pick a particular parity sector for the environment. This is related to the

dominant eigenvector of the transfer matrix (see [119]). Note that, once one of the broken

symmetry states | ↑ · · · ↑〉 or | ↓ · · · ↓〉 becomes more dominant, this dominance is “stored”

for all subsequent iterations in the environment in the iMPS algorithm. Hence, symmetry

breaking by random random numerical noise cannot be removed by running more iterations.

The higher bond dimension and the number of iterations in the algorithm lead to smaller

differences in the pairs of degenerate singular values until one of the dominant eigenvectors

of the transfer matrix is kept and the other truncated. For χ = 10, the difference in the

leading singular values is ≈ 0.15 decreasing to ≈ 0.05 for χ = 20. Therefore, the singular

values double in magnitude since an equal counterpart was neglected. In summary we can

state the following: (1) For α . 1.3 symmetry breaking is not resolved. The result converges,

as expected, better for faster decaying long-range interaction up to 10−3 between the results

for χ = 20 and χ = 40. (2) For a & 2 we truncate one of the symmetry broken states

for χ = 40 meaning that the difference in entropy is large for any comparison to χ = 40.

The results with bond dimension 20 have an error between 10−1 and 10−2 with regard to
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χ = 10. The singular values for χ = 40 are close enough to be resolved as degeneracy

leading to the conclusion that the state is also well converged. (3) The region in between the

algorithm alternates between resolving the symmetry broken ground state or not, leading to

convergence up to 10−4. The same trend can be stated in the ferromagnetic case shown in

Figure 4.7 (b). A corresponding example for the degeneracy evolving in the singular values

can be seen in Figure 4.6. We emphasize that this analysis is relevant if searching for the

maximal entropy on a very coarse grid or when trying to show convergence across bond

dimensions. For a single bond dimension we may use the final value of the orthogonality

fidelity described in Eq. (4.24). The convergence in terms of the orthogonality fidelity is

discussed in 4.10.
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Figure 4.6: Degenerate Singular Values in iMPS. The key for understanding the convergence
of the bond entropy is Λ, the singular values squared, shown for different bond dimensions
χ. The difference in entropy is here related to the symmetry breaking appearing for χ = 40.
In contrast the singular values for χ = 10 and χ = 20 appear in pairs. Considering the
convergence with regards to χ by means of the bond entropy fails for this reason. This
example represents a simulation for α = 4 and h = 1.14 in the ferromagnetic model.

The finite size simulations have a two-fold purpose. On the one hand, finite size scaling

provides an alternate route to obtain the thermodynamic limit of the system and is therefore

a check against the iMPS results. While iMPS simulations are only limited by the bond
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Figure 4.7: Convergence of iMPS. (a) in the antiferromagnetic model on the left part of the
plot we see the expected behavior that the error is increasing for longer-range interactions.
This is indicated by the shaded green triangle, where values within the triangle have broken
the symmetry or not for both bond dimensions χ = 20 and χ = 40. In contrast on the
right part of the plot we have one simulation with conserved symmetry and one with broken
symmetry for the comparison between χ = 20 and χ = 40. (b) In the range shown in the
plot for the ferromagnetic case, the degeneracy is never kept up to χ = 40 so that the error
|S(χ = 40) − S(χ = 20)| is not a reasonable basis on which to judge convergence. But the
simulations comparing χ = 10 and χ = 20 in the shaded green rectangle are a meaningful
error with regards to the iMPS symmetry breaking issue. Legend applies to both (a) and
(b).
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dimension used, finite size simulations enforce the Z2 symmetry and avoid for this reason

the symmetry-breaking effects discussed in the previous section. On the other hand, we

see the finite size effects affect the system, which is important as the dynamic simulations

are for finite systems. For the finite size scaling we use the same grid method as for iMPS

before with the initial grid boundaries h
[1]
min = 0.8 (h

[1]
min = 0.0) and h

[1]
max = 9.8 (h

[1]
max = 2.0)

with nine (seven) grid points for each α and L in the ferromagnetic (antiferromagnetic)

case. We refine the grid four times after the initial run ending with the bond dimensions

χ = (256, 512) for the iteration over the OSMPS convergence parameters. The final distance

between points is for both cases dh[5] ≈ 0.004. For the refinement we find h
[i]
c (α,L) with the

bond entropy at the middle of the system and construct the next, refined, grid i + 1 in the

interval h
[i]
c (α,L) ± dh[i]. The maximum number of sweeps are (4, 6) for the corresponding

iterations in bond dimension χ = (256, 512). The other convergence parameters, which stay

constant for each set of convergence parameters iterated over, are a variance tolerance of

10−10 and a local tolerance of 10−10. For power law exponents of α > 1.5, we actually reach

a variance superior to 10−7 where simulations converge better away from the critical value

for the ferromagnetic Hamiltonian. In the antiferromagnetic case, longer-range interactions

show worse convergence independent of the critical value of the external field. We discuss

the details in 4.9. The critical values are evaluated for system sizes 32, 64, 128, 256, and

512. By using finite size scaling, we obtain the critical value hc of an infinite system. From

Cardy [158] we know that for a finite system the distance of the critical point hc(L) to the

critical point in the thermodynamic limit hc can be described by

|hc(L)− hc| ∝ L−
1
ν . (4.27)

Knowing that the values of hc are increasing in the ferromagnetic and antiferromagnetic case

according to Figure 4.8, we can use

hc(L) = hc − cL−
1
ν , (4.28)
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and fit the unknown parameters hc, ν, and c via [159]. Due to the logarithmic choice of the

system size, small system sizes are overrepresented in the fit. We account for this by assigning

an uncertainty proportional to 1/L at each data point. The results for different system sizes

and the data from the finite size scaling can be seen in Figure 4.8. In the antiferromagnetic

case (a), the points show the expected behavior with smaller spacing between bigger system

sizes; thus the simulations are converging to the thermodynamic limit. When the interactions

are not decaying for α → 0, the finite size scaling breaks down due to poorly-converging

simulations. The black curve represents the L → ∞ limit achieved through the finite size

scaling fit. Figure 4.8 (b) shows the same behavior for the ferromagnetic case. We point out

that the weights for each data point are necessary in this case to avoid an intersection of the

curve for L→∞ with the finite size solution L = 512 for longer-range interactions.
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Figure 4.8: Finite Size Scaling for the Long-Range Quantum Ising Model. Finite-size effects
lead to a decrease of the critical value of the external field hc for smaller system sizes.
Furthermore we achieve the thermodynamic limit for infinite system size via finite size scaling
(FSS). (a) antiferromagnetic case; (b) ferromagnetic case. Legend applies to (a) and (b) both.
We point out that for the limit α→ 0 and h→ 0 the ground state for the ferromagnetic case
is always the GHZ state, while the antiferromagnetic case has an exponential degeneracy.
The latter might contribute to convergence problems when α is approaching zero. The
limits α → ∞ is equal to the nearest-neighbor case and all limits h → ∞ have a ground
state aligned with the external field.
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4.8.2 Dynamic Simulations with MPS

In this section we analyze the scaling of the numerical simulation with regards to the

Kibble-Zurek hypothesis. The Kibble-Zurek mechanism describes the scaling of the defect

density when driving a quantum system through a quantum phase transition and was orig-

inally formulated in terms of cosmology [160], and later brought to quantum systems such

as helium [161] or the nearest-neighbor quantum Ising model [124]. There, the external field

is changed in order to cross the quantum critical point at hc = 1 in the nearest-neighbor

quantum Ising model. In our analysis the quantum critical point hc depends on the actual

value of the power law exponent α as presented in Sec. 4.2.

In order to analyze the Kibble-Zurek hypothesis in the present of long-range interactions,

we first define the defect density for the ferromagnetic model. The defect density was defined

in [162] using nearest-neighbor correlations, and we divide by (L−1) instead of L to account

for the open boundary condition:

ρ =
1

2(L− 1)

L−1∑
i=1

(
1− 〈σzi σzi+1〉

)
. (4.29)

We now shortly outline why this works in the ferromagnetic case for the nearest-neighbor

model. We recall that at the end of the quench the external field h = 0 and therefore the

ground states |ψF
0 〉 are defined through

|ψF
0 〉 =

1√
2

(|↑ . . . ↑〉± |↓ . . . ↓〉) . (4.30)

This is equivalent to the GHZ state and we recall that this is the ground state before Z2

symmetry breaking. The first excited state has 2(L− 1) degeneracies and is described by a

single kink in the system, e.g. | . . . ↑↑↓↓ . . .〉. The number of kinks is equal to the number

of excitations. If we consider first a state with a product state of only spins up or down,

one is easily convinced that Eq. (4.29) describes the defect density. For every domain wall

the nearest-neighbor correlation inside the sum contributes, while for spin inside the domain
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wall the term is cancelled. Moreover, it is a reasonable measurement even when the spins are

changing slowly. Let us verify this point with an example of three spins changing from up to

down, |φ〉 =|↑〉 |↑〉x |↓〉. The subscript reflects the basis if it differs from z. The measurement

of the correlation yields zero in both cases:

〈↑| 〈↑|x σz1σz2 |↑〉 |↑〉x = 0 〈↑|x 〈↑| σz2σz3 |↑〉x |↑〉 = 0

=⇒ ρ =
1

2L
((1− 0) + (1− 0)) =

1

L
× 1 . (4.31)

The measurement in Eq. (4.29) yields one defect, as expected, with the spins flipping once

over the chain. We emphasize that this cannot be used in any region with h 6= 0, except

as an approximation for h < hc. Let us turn to the defects of the ferromagnetic long-range

quantum Ising model. The defects are local kinks, but the states with one kink are not all

degenerate. In fact, the energy gap to the ground state is smaller for kinks closer to the

boundaries. This is a manifestation of the boundary effects. Counting all kinks equally, we

make an error growing in the limit α→ 0. The defect density of the antiferromagnetic case

in the nearest-neighbor model is defined as

ρAF =
1

2(L− 1)

L−1∑
i=1

(
1 + 〈σzi σzi+1〉

)
. (4.32)

We again point out that the single defects have a different excitation energy depending on

their position in the bulk.

In order to retrieve the critical exponent scaling in the form of Eq. (4.23), we simulate the

quenches for L = 128 for the set of τ ’s containing {4, 8, 16, 32, 64, 128}. For each α we fit the

coefficient c and the critical exponent µ via [159]. In order to estimate if any non-converged

simulations are included in the data, the standard deviation σµ is calculated through the

covariance matrix given by the fitting function. In Figure 4.9 we show one example in the

ferromagnetic model for α = 1, 2, 3, and 4. The error of the fit can be seen as an indicator for

the validity of the dynamic results. Running simulations with different χ helps us to identify
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failing simulations versus singularities. For weaker long-range interactions with big α the

fits reproduce the results while for longer-range interaction the procedure fails (α = 1). The

initial state is based on the same convergence parameters as the statics discussed in 4.8.1,

except for the bond dimension which is lowered to χ = 95 or 100. For the dynamics we

keep the corresponding maximal bond dimension and use the default TDVP convergence

parameters in OSMPS [52] for all other parameters.
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Figure 4.9: Fitting the Exponent for the Defect Density in the Kibble-Zurek Hypothesis. (a)
Examples for the defect density at the end of the quench for the antiferromagnetic long-range
quantum Ising model plotted over the quench time τ for different power law exponents α
shows the decrease in defect density for slower quenches. The power law in the scaling leads
ideally to a line in the log-log plot which is here slightly affected by failing simulations. This
is especially evident for small α, e.g. in the antiferromagnetic case for α = 1.0 and τ = 128.
(b) Corresponding data for the ferromagnetic model.

4.9 Convergence of Finite-Size Statics

In the appendix we briefly address the convergence of the finite size statics. We already

discussed the convergence of iMPS in 4.8 and therefore it is known that the convergence can

be studied in different fashions. In OSMPS, the variance of H is considered for statics of

finite size systems. The user chooses a value, we take 10−10, and OSMPS iterates through

the different bond dimension χ. We consider χ = 256 and χ = 512 of the last grid. This
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fifth grid has a discretization of dh ≈ 0.0044 (ferro) and dh ≈ 0.0042 (antiferro) around the

critical point of the fourth grid. The output contains the flag if the simulation converged

according to the value for each χ; in addition the actual value of the variance is saved as

well.

We start to look if the simulation converged with a variance of L ·10−10. This information

is contained in the left part of Figure 4.10 for the ferromagnetic model. The coloring is as

follows: green for convergence at the first convergence parameter with χ = 256, red for

convergence the second convergence parameter at χ = 512, and blue if not converged at

either of the previous bond dimensions. In order to estimate the variance of the blue region,

we plot the actual value for the critical value hc as a function of α and system size in the

right part of Figure 4.10. For the analysis used in the main part of the paper we achieve a

variance less than 10−7.

We follow the similar scheme to study the convergence in the antiferromagnetic long-

range quantum Ising Hamiltonian, presented in Figure 4.11. The convergence becomes in

general more difficult in the longer-range interacting region with α → 0, still reaching a

variance of 10−6 or better for the shorter-range region with α > 1.5.

4.10 Convergence of Infinite-Size Statics

We discussed at length that it is difficult to study convergence as a function of the bond

dimension in terms of the bond entropy in 4.8.1. But we give in the following a brief overview

of the convergence of the iMPS in terms of the orthogonality fidelity defined in Eq. (4.24).

In order to show convergence it is convenient to switch from the orthogonality fidelity to the

actual error, the infidelity

I = 1−F . (4.33)

Figure 4.12 shows the convergence for the antiferromagnetic and the ferromagnetic model

for the highest bond dimension χ = 40 of our convergence parameters and the second grid.
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Figure 4.10: Convergence of Finite Size MPS Ground States: built-in convergence check of
OSMPS using the variance of H for the last grid and L = 512 in the ferromagnetic case.
(a) The critical region causes most problems to converge up to variance L · 10−10 (green
converged with χ = 256, red converged with χ = 512, blue not converged). (b) The actual
variance of H of the fifth grid for the results used in the main section is at least converged
around 10−6.
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Figure 4.11: Convergence of Finite Size MPS Ground States: built-in convergence check of
OSMPS using the variance of H for the coarse grid and L = 512 in the antiferromagnetic
case. (a) The longer-range interaction region causes most problems to converge up to variance
L · 10−10 (green converged with χ = 256, red converged with χ = 512, blue not converged).
(b) The actual variance of H of the fifth grid is shown on the right. Some antiferromagnetic
simulations did not finish in the allotted time.
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In terms of the orthogonality fidelity the simulations are well converged at an error I of

10−8 or better for α > 1. Convergence close to the critical point is in general worse. For

α < 1 interaction become too long-range to converge at the same level for these convergence

settings. We remind the reader that the search interval for the ferromagnetic case shown in

Figure 4.12 (b) does not contain the critical value for very small α with an upper bound of

hupper = 3.9.
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Figure 4.12: Convergence of the iMPS. We consider the infidelity of the orthogonality fidelity
plotted as logarithm of base 10. Both the ferromagnetic case (a) and the antiferromagnetic
case (b) convergence for α > 1 mostly to an infidelity of 10−8 or better. Non-converging
points are typically around the critical point of the model moving downwards for the anti-
ferromagnetic case and upwards for the ferromagnetic case. The vertical stripes originate in
the fact that each simulation might have a different critical value from the first grid, where
hc is identical within one strip.

4.11 Finite Size Effects in the Kibble-Zurek Scaling

Section 4.8.2 raised the question of how finite size effects influence the value of the

critical exponent µ in the dynamics. We consider the quench times τ = 4, 8, 16, 32, 64, 128

and different system sizes L = 32, 64, 128, 256 to show these finite size effects in the nearest-

neighbor limit. This limit corresponds to α→∞. Table 4.1 presents the data. The error is

solely from the fit and does not contain truncation error or methological errors from the time
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Table 4.1: Finite Size Effects in the Kibble-Zurek Scaling for the Quantum Ising Model.
The finite size effects lead to a growing critical exponent for smaller system sizes. In the
thermodynamic limit the critical exponent of 0.5 is reached.

System size L = 32 L = 64 L = 128 L = 256 L→∞
Anitferro 0.810±0.060 0.614±0.026 0.532±0.016 0.502±0.017 0.48

Ferro 0.810±0.060 0.614±0.026 0.532±0.016 0.500±0.017 0.48

evolution. The thermodynamic limit is obtained via finite size scaling using the following

approach:

|µ∞ − µL| ∝ L−c2 =⇒ µ(L) = µ∞ + c1L
−c2 . (4.34)

The value µ∞ is shown in the last column of Table 4.1. As in the finite size scalings previous

discussed, we weight the data points for large system sizes more since we have less data points

in the corresponding interval. We do not show the error here, because of the limited number

of data points with regards to the degrees of freedom. In conclusion, the data supports

the assumption that the finite size effects are relevant and the thermodynamic limit in the

nearest-neighbor model approaches µ = 0.5 in both the ferromagnetic and antiferromagnetic

case.
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CHAPTER 5

OPEN QUANTUM SYSTEMS PEDAGOGY

The following problem sets aims to introduce advanced undergraduate and graduate

students to open quantum systems. We concentrate on the numerical techniques centered

on the Lindblad master equation. Therefore, we first recap closed quantum systems and

basic methods for density matrices and entanglement. The open quantum system exercises

treat the single-channel Lindblad equation for a two-level system and introduce the Liouville

space. We thank H. North and N. C. Smith for their feedback while solving the problem set.

5.1 Problem set: qubit on the Bloch sphere

A qubit is the quantum analog to a classical bit. The classical bit can have only values of

either 0 or 1, which could be described with a two-component vector where the upper entry

contains the probability for 1 and the lower for 0. One can think of 0 and 1 as a placeholder

for other classical measurement outcomes, e.g., head or tail of a coin flip, drawing a black

or white sphere from a box, or having a spin pointing up or down. Due to the “or” we have

exactly two possible vectors:

State 0 :

(
1
0

)
, State 1 :

(
0
1

)
. (5.1)

In contrast, the state of a qubit − in the bra-ket notation written as | ψ〉 − can have any

combination of probabilities, called superposition of states,

|ψ〉 = c0

(
1
0

)
+ c1

(
0
1

)
=

(
c0

c1

)
. (5.2)

The middle part of the equation expresses the probability for each state 0/1 together with

their basis of the corresponding vector, while the far right part implies that you know which

state, 0 or 1, belongs to the upper and lower entry in the vector. Moreover, the entries have
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to fulfill the normalization condition c0c
∗
0 + c1c

∗
1 = 1. That corresponds to a total probability

of 1. c0 and c1 are complex numbers and c∗ is the complex conjugate of c.

For the visualization of the quantum state for a qubit |ψ〉, we may use the Bloch sphere,

which is a unit sphere. The north and south pole, lying on the z-axis of the unit sphere,

represent the classical state 1 and 0. Any other point on the Bloch sphere is a quantum

mechanical superposition of those two classical states. The other directions are referred to

as x and y. This is shown in Figure 5.1. We emphasize that the vector |ψ〉 has two entries

c0 and c1, but the visualization in the Cartesian coordination system has three basis vectors

in the x, y, and z direction. Therefore, we emphasize that we have the space for the vector

|ψ〉, the Hilbert space, as one description. The Hilbert space is defined over the basis vectors

− in our case the vectors for the state 0 and 1 − and its dimensions d is the number of those

basis vectors, here 2. In contrast, the Bloch sphere and its three dimension are inherited

from a measurement approach, e.g. in the Stern-Gerlach experiment you measure the qubit

in a lab, which is best described in a three dimensional Cartesian coordinate system for the

possibilities to arrange your measurement apparatus.

1. Find the coefficients for the six vectors pointing in and opposite to the axis of the

coordinate system of the Bloch sphere, which are in the ±x-direction, ±y-direction,

and ±z-direction.

2. Describe the part of the Bloch sphere for real valued vectors |ψ〉 and explain why two

entries in the complex valued vector are sufficient to describe measurement outcomes

in the x, y, and z direction.

Below, we suggest two paths to solve these exercises.

Suggested path for numerical solution: Our open source library openMPS for the simu-

lation of many-body quantum systems has an extension to plot the Bloch sphere, which is

located in the module Qubit. In order to use these plots, save the package MPSPyLib and

the modules Qubit.py and blochsphere.py in the same folder. Go to this folder and open the
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Figure 5.1: Bloch sphere: the random state of the qubit with c0 = 0.73 + 0.59i and c1 =
0.11− 0.33i is displayed as unit vector in red. The corresponding points of a classical bit on
the Bloch sphere are on the top, at the point (0, 0, 1), and at the bottom of the sphere with
coordinates (0, 0,−1).

python command line mode (type python on the bash command line). Make sure you have

the necessary libraries by typing

import numpy as np

import scipy as sc

import matplotlib.pyplot as plt

If those libraries are available on your system, then the following two lines plot a vector

on the Bloch sphere.

from Qubit import bloch_sphere

bloch_sphere([c0, c1])

where you replace c0 and c1 with the actual values (or define them before). This can

help you to find the vector in the directions of the coordinate system or the subspace of real

valued vectors.
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Suggested path for analytical solution: Measurements of a qubit, and quantum states in

general, are a vector-matrix-vector multiplication of an operator Ô represented by a matrix:

〈Ô〉 = 〈ψ|Ô|ψ〉 =
(
c∗0 c∗1

)(O11 O12

O21 O22

)(
c0

c1

)
. (5.3)

The vector on the Bloch sphere has three components, where each of them is obtained

through a measurement of one Pauli matrix σα with α ∈ {x, y, z}:

~r =

〈σx〉〈σy〉
〈σz〉

 , σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (5.4)

Thus, the vector on the Bloch sphere corresponds to

~r =

 c∗0c1 + c0c
∗
1

−ic∗0c1 + ic0c
∗
1

c∗0c0 − c1c
∗
1

 . (5.5)

Use equations (5.3) to (5.5) as help to solve the exercise analytically.

5.2 Problem set: qubit on the Bloch sphere II

In the next step, we explore the time evolution of a qubit on the Bloch sphere. The time

evolution of a qubit can be described with a pulse. This pulse can be an external field applied

over a certain time for a magnetic spin. In an atomic two level system, described by a qubit,

the pulse would be applied through a laser field. The state of the qubit describes a path

on the Bloch sphere illustrated with Figure 5.2. Those pulses are essential in experiments

such as the spin echo or quantum computing. The spin echo experiment uses such pulses to

refocus the total spin of multiple qubits after they spread out due to precession at different

frequencies in the x − y plane of the Bloch sphere. For quantum computers, we have to

rebuild the quantum analog of the classical gates, e.g. NOT or AND gates for a single qubit or

two qubits, respectively. These gates are represented by a pulse which can be used to built

circuits for algorithms.
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Figure 5.2: Pulse on the Bloch sphere: We apply a π
2

pulse, e.g via a laser, to the random
quantum state defined over the coefficients c0 = 0.73+0.59i and c1 = 0.11−0.33i in Figure 5.1.
The color of the Bloch vectors is turning into grey over the time evolution.

We now explore some of the possible pulses. From the six states you found in Exercise

1, choose three pairs of initial and final state. Find a corresponding pulse sequence to get

from the initial state to the final state for all of your three pairs. Describe what each of the

pulses is doing.

Suggested path for numerical solution: In the module Qubit, we have as well the capabil-

ity to carry out time evolutions of a qubit according to the Schrödinger equation. Therefore,

you can import the following module and function in the same or a new session of the python

command line

import numpy as np

from Qubit import Qubits

numpy is a powerful numerical library for python. Qubits is the class able to simulate

time evolutions for one to a few qubits with predefined pulses. You can generate a qubit

with a specific initial state with

Q = Qubits(state0=np.array([c0, c1]))
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In contrast to before, the initial vector state0 has now to be a numpy array. You can

add a pulse to the time evolution, e.g. with

Q.add_free()

The following pulses are predefined:

• add free

• add pi2 (Figure 5.2 is an example of this pulse.)

• add pi

• add pi2y

• add piy

After adding one or more terms, the animation of the Bloch sphere is shown with a call

to

Q.animate()

If you want to display the path as in Figure 5.2, you can use the optional argument

path=True, then call the function with Q.animate(path=True).

Suggested path for analytical solution: The evolution of a quantum state according to the

Schrödinger equation is described via a matrix exponential

|ψ(t)〉 = e−
i
~ Ĥt |ψ(t = 0)〉 , (5.6)

where Ĥ is the Hamiltonian of the system defined with operators. ~ is set to one for

numerical simulations. If Ĥ is written in terms of the Pauli matrices σα, there is a solution

to the exponential

eia~n·~σ = I cos(a) + i~n · ~σ sin(a) , ~σ =

σxσy
σz

 , ‖n‖ = 1 . (5.7)
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~n is a unit vector weighting the Pauli matrices accordingly and a is a scalar constant con-

taining an overall weight. I is the identity matrix. We consider the following pulses for a

time unit set to t = 1

• Unperturbed evolution with Ĥ = I:

~n =

1
0
0

 , a = 0 =⇒ e−iHt = I =

(
1 0
0 1

)
. (5.8)

• π
2

pulse with Ĥ = π
4
σx:

~n =

1
0
0

 , a = −π
4

=⇒ e−iHt = I cos(a) + iσx sin(a) =
1√
2

(
1 −i
−i 1

)
. (5.9)

• π pulse with Ĥ = π
2
σx:

~n =

1
0
0

 , a = −π
2

=⇒ e−iHt = iσx sin(a) =

(
0 −i
−i 0

)
. (5.10)

• π
2
y-pulse with Ĥ = π

4
σy:

~n =

0
1
0

 , a = −π
2

=⇒ e−iHt = I cos(a) + iσy sin(a) =
1√
2

(
1 −1
1 1

)
. (5.11)

• π y-pulse with Ĥ = π
2
σy:

~n =

0
1
0

 , a = −π
2

=⇒ e−iHt = iσy sin(a) =

(
0 −1
1 0

)
. (5.12)

Multiplying the resulting matrices with the state vectors |ψ〉 allows you to find a pulse

sequence leading from one state to another.
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5.3 Problem set: Density matrix and partial trace

The third problem set introduces the density matrix to represent mixed states and the

partial trace over subsystems.

5.3.1 Density matrices

The quantum state | ψ〉 is not the only way to represent a quantum system. In fact,

density matrices are a more general description and are extremely useful for open systems.

The partial trace yields a density matrix ρ as result, and therefore we introduce it beforehand

to familiarize you with this approach. To calculate the density matrix ρ of a single qubit

state |ψ〉, the outer product1 is used as defined in the following:

|ψ〉 =

(
c0

c1

)
=⇒ ρ =|ψ〉〈ψ |=

(
c0

c1

)
⊗
(
c∗0 c∗1

)
=

(
c0c
∗
0 c0c

∗
1

c1c
∗
0 c1c

∗
1

)
. (5.13)

Check that the trace of the density matrix fulfills normalization to 1, where the trace of

a matrix is defined as sum over the diagonal entries. Here is an example for a 2× 2 matrix:

Tr [ρ] = Tr

[(
ρ11 ρ12

ρ21 ρ22

)]
= ρ11 + ρ22 . (5.14)

Suggested path for analytical solution: Recall the normalization constraint for a quantum

state defined in Section 5.1 to prove that the trace of a density matrix equals 1.

Suggested path for numerical solution: The openMPS package comes with a class for den-

sity matrices. To initialize an instance of the class from a state vector the following lines

help:

import numpy as np

from MPSPyLib.EDLib import DensityMatrix

Rho = DensityMatrix(np.array([c0, c1]), 2, 1, None)

This class is actually designed for many body systems. Therefore, you pass next to the

state vector, which contains c0 and c1, the local dimension of the state vector − which is 2

1Tensor product or Kronecker product are alternative names for the outer product.
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for qubits − and the number of qubits, i.e. 1. Finally None specifies that we do not have

symmetries in the system. The trace of Rho can be taken as

Rho.trace()

5.3.2 Partial trace for two qubits

We introduce in this exercise the partial trace over one qubit in a pair of qubits. Therefore,

we have to describe the state |ψ〉AB expressing the quantum state of both qubits A and B:

|ψ〉AB = c00


1
0
0
0


︸ ︷︷ ︸

=|0〉A|0〉B

+ c01


0
1
0
0


︸ ︷︷ ︸

=|0〉A|1〉B

+ c10


0
0
1
0


︸ ︷︷ ︸

=|1〉A|0〉B

+ c11


0
0
0
1


︸ ︷︷ ︸

=|1〉A|1〉B

=


c00

c01

c10

c11

 . (5.15)

For simplification the state | i〉A |j〉B can be written as | i〉 |j〉 or | ij〉 when it is known that

the left part refers to qubit A and the right part to qubit B. The bra-states have the same

order 〈i |A 〈j |B. We continue in the following with the notation

|ψ〉AB = c00 |0〉 |0〉+ c01 |0〉 |1〉+ c10 |1〉 |0〉+ c11 |1〉 |1〉 . (5.16)

Assuming we are interested in the first qubit A, we trace out over the second qubit, that is

summing over all the basis states of the second qubit. These basis states are referred to with

the index j in the following. The partial trace acts on the density matrix ρAB =|ψ〉AB〈ψ |AB,

and we obtain the density matrix for the qubit A:

ρA = TrB [ρAB] =
1∑
j=0

〈j |B|ψ〉AB〈ψ |AB|j〉B

=
1∑
j=0

〈j |B (c00 |0〉 |0〉+ c01 |0〉 |1〉+ c10 |1〉 |0〉+ c11 |1〉 |1〉)×

(c∗00〈0 | 〈0 | +c∗01〈0 | 〈1 | +c∗10〈1 | 〈0 | +c∗11〈1 | 〈1 |) |j〉B . (5.17)

The basis states of each qubit form an orthogonal basis, that means 〈i|j〉 = δij, where δij is

the Kronecker delta defined as
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δij =

{
1 if i = j

0 if i 6= j .
(5.18)

1. Use the orthogonality of the basis states to get an expression for ρA after taking the

partial trace and check it with numerical methods. Choose two or more examples of

your choice.

Suggested path for analytical solution: We write the sum in Eq. (5.17) explicitly and move

the term 〈j |B to the corresponding next ket | 〉 of the second qubit B to the right. This leads

to

ρA = (c00 |0〉〈0 |B|0〉+ c01 |0〉����〈0 |B|1〉 + c10 |1〉〈0 |B|0〉+ c11 |1〉����〈0 |B|1〉)×
(c∗00〈0 | 〈0 | +c∗01〈0 | 〈1 | +c∗10〈1 | 〈0 | +c∗11〈1 | 〈1 |) |0〉B
+ (c00 |0〉����〈1 |B|0〉 + c01 |0〉〈1 |B|1〉+ c10 |1〉����〈1 |B|0〉 + c11 |1〉〈1 |B|1〉)×
(c∗00〈0 | 〈0 | +c∗01〈0 | 〈1 | +c∗10〈1 | 〈0 | +c∗11〈1 | 〈1 |) |1〉B

= (c00 |0〉+ c10 |1〉) · (c∗00〈0 | 〈0 | +c∗01〈0 | 〈1 | +c∗10〈1 | 〈0 | +c∗11〈1 | 〈1 |) |0〉B
+ (c01 |0〉+ c11 |1〉) · (c∗00〈0 | 〈0 | +c∗01〈0 | 〈1 | +c∗10〈1 | 〈0 | +c∗11〈1 | 〈1 |) |1〉B .(5.19)

Make the corresponding step for | j〉B, merging it with the next bra-vector 〈 | for the qubit

B and apply the Kronecker deltas. What remains are scalars for the matrix entries | i〉〈j |.

The constants go to the following positions in the density matrix depending on values of the

basis vectors | i〉〈j |:

ρ↔
(
|0〉〈0 | |0〉〈1 |
|1〉〈0 | |1〉〈1 |

)
(5.20)

Suggested path for numerical solution: In the first part of this exercise, you have learned

how to create a density matrix in OpenMPS. There is another class representing quantum

states. You can create a two qubit state with an analogous syntax

import numpy as np

from MPSPyLib.EDLib import PureState

Psi = PureState(np.array([c00, c01, c10, c11]), 2, 2, None)
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You get the reduced density matrix for qubit A and print it with the following calls:

rhoa = Psi.traceout([1])

print(rhoa.rho)

Notice that the function traceout takes a list of site indices to be traced out. The index

in python starts at zero, therefore [1] is tracing out the second site. Moreover, it returns

an instance of the class DensityMatrix, where the actual matrix is saved in the field rho of

the class DensityMatrix.

5.4 Problem set: Bell state via Hadamard and CNOT gates

We generate a maximally entangled state on two qubits, i.e., a Bell state, in the following.

5.4.1 Entanglement of two qubits - Bell states via gates

We discussed before the encryption and secure data transfer. Entanglement is key for

this, and many other, applications. While the superposition of states can be used on a single

qubit, we need at least two qubits to explore entanglement. For secure data transfer with

quantum encryption, Alice and Bob would have each one qubit of the entangled pair of

qubits2. The state, called a Bell state, is defined as

|ψ〉AB =
|00〉+ |11〉√

2
, (5.21)

where commonly there are three other Bell states listed:

|ψ〉AB =
|00〉− |11〉√

2
, |ψ〉AB =

|01〉+ |10〉√
2

, |ψ〉AB =
|01〉− |10〉√

2
. (5.22)

We explore in the following how to create the Bell state in Eq. (5.21) and visualize the

entanglement on the Bloch sphere. Assuming we are able to prepare an initial state |ψ0〉 =|

00〉, we apply the Hadamard gate GH to qubit A and then the CNOT gate GCN on the

qubits A and B:

2These kind of pairs are used in the EPR protocol, see Nielsen & Chuang [85] for a detailed description.
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GH =
1√
2

(
1 1
1 −1

)
, GCN =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (5.23)

1. Verify that the gates applied to the initial state, that is GCN · GH(A)· | 00〉, result in

the Bell state (| 00〉+ | 11〉)/
√

2. GH(A) implies that we apply the Hadamard gate to

qubit A. Therefore, start with a sketch on paper of the initial state, i.e., the north

pole of the Bloch sphere, and the final state.

2. Describe where the name controlled not gate comes from looking at the action of the

gate.

3. Which initial state |ψ0〉 would you choose to arrive at the Bell state

|ψ〉AB =
|01〉+ |10〉√

2
? (5.24)

Or which additional pulse could you apply to |ψ0〉 =|00〉 at the beginning of the pulse

sequence in order to prepare your initial state for this Bell state in Eq. (5.24)?

Suggested path for solution: The answer to the solution is a matrix-matrix multiplication

and small enough for pen and paper. You should first define the single qubit Hadamard gate

on a Hilbert space for two qubits. This is done via the tensor product. If the Hadamard

gate is acting on the first qubit A, we wrote the gate on the complete system as GH(A).

In contrast, the action of the Hadamard gate on qubit B is GH(B). To construct a gate

modifying the complete system while acting only on a single qubit, we use the tensor product

and identities, i.e.,

GH(A) = GH ⊗ I , I =

(
1 0
0 1

)
, (5.25)

where the identity after the tensor product indicates that there is no action on qubit B. The

tensor product in case of two 2× 2 matrices is defined as follows:
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A⊗B =

(
A11 A12

A21 A22

)
⊗
(
B11 B12

B21 B22

)
=

(
A11B A12B
A21B A22B

)

=


A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22

 (5.26)

Double check your solution with python, utilizing import numpy as np and using

numpy’s matrix multiplication np.dot(Gate, StateVector) to multiply the matrix for

the gate with the state vector. The tensor product of two matrices is defined over np.

kron(A, B) .

5.4.2 Bell state - Hamiltonian for Hadamard

In order to create a Bell state via a simulation of the Schrödinger equation, we have to

find the Hamiltonian for the gates that we applied in the previous part of the exercise. And

we only have to find the gate up to a phase φ, that means we can always exclude a complex

number of norm 1, i.e. for the Hadamard gate:

G̃H = eiφGH . (5.27)

The reason for this is that we consider for measurement always the state vector |ψ〉 and its

complex conjugated 〈ψ |. For the Hadamard gate G†H = GH holds.3 If |ψ′〉 is the state vector

after the application of the gate G̃H and we use some arbitrary measurement operator Ô,

we summarize:

〈ψ′ | Ô |ψ′〉 = 〈ψ | G̃†HÔG̃H |ψ〉 = 〈ψ | e−iφG†HÔeiφGH |ψ〉 = 〈ψ | G†HÔ e−iφeiφ︸ ︷︷ ︸
=1

GH |ψ〉 .(5.28)

1. Find the Hamiltonian for the Hadamard gate up to a phase φ, e.g. you can find a

Hamiltonian for φ = π/4.

3The symbol † is the complex conjugate transposed of a matrix; If used on a scalar, it reduces to the complex
conjugate.
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2. Suggest any other pulse you could use to arrive at the same outcome as the Hadamard

gate, knowing that your initial state is |0〉. To do so, first sketch the initial state |0〉

and the final state after the application of the Hadamard gate on the Bloch sphere.

Suggested path for analytical solution: Recall the general solution for the matrix expo-

nential in terms of Pauli operators

eia~n·~σ = I cos(a) + i~n · ~σ sin(a) , (5.29)

which helps you to build a solution.

Suggested path for numerical solution: There is no distinguished path to obtain a numer-

ical solution for this. You can at least check your solution with python:

import numpy as np

import scipy.linalg as sla

H = np.array([[c00, c01], [c10, c11]])#Defines your Hamiltonian

U = sla.expm(-1j * H)#U is the propagator, and in this case gate

Note that functions such as numpy’s np.exp take the element-wise exponential, but not

the matrix exponential.

5.4.3 Bell state - Completing the pulse series

The Hamiltonian for the CNOT gate acts on two gates and is therefore more complicated

to derive. It can be written as

HCN =
π

2


0 0 0 0
0 0 0 0
0 0 −1 1
0 0 1 −1

 , (5.30)

and completes the required terms for creating a Bell state with a pair of qubits.

1. Show that the Hamiltonian for the CNOT gate, HCN actually leads to the CNOT gate.

The time period considered is the t = 1.
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2. Make a sketch on paper of the first qubit in the Bell state and after the application of

each gate. Check your intuition while visualizing the same states − and possibly its

evolution over time − during the application of the two gates via the Bloch sphere.

3. If you (visually) track the evolution of its length of the vector on the Bloch sphere over

time, can you try to describe how the length is linked to entanglement. Note that a

Bell state is a maximally entangled state.

Suggested path for analytical solution: The exponential of the Hamiltonian can be taken

analytical using the block diagonal structure of HCN. Instead of taking the exponential of a

4× 4 matrix, we can solve the following two 2× 2 matrices on the diagonal:

(
0 0
0 0

)
,

(
−1 1
1 −1

)
. (5.31)

In order to visualize the first qubit on the Bloch sphere, you might use the partial trace and

then carry out the measurements4. For different point in times, you would need to solve the

matrix exponential for different times or retain its general dependence on t, which is optional

for the analytic path. Measurements of a single qubit density matrix, e.g. for σx, are defined

via the trace

Tr [σxρA] . (5.32)

Suggested path for numerical solution: Matrix exponentials of this size can be easily checked

with python, in detail with its linear algebra package. Assume you define the Hamiltonian

as H, the following packages and commands help you to calculate any matrix exponentials:

import numpy as np #to define the Hamiltonian

import scipy.linalg as sla

H = ...

U = sla.expm(-1j * H)#U is the propagator, and in this case gate

4The other option is to use the full state and define the local observable as well on the full space. In order
to practice the use of the partial trace, we do not pursue this path.

81



The Qubit module embedded in openMPS helps you to visualize the first qubit on the

Bloch sphere during the whole time evolution. You have learned in the previous exercises

how to define a two qubit state, see Section 5.3.2, and how to visualize a time evolution on

the Bloch sphere, see Section 5.2. By default, always the first qubit is plotted. To solve the

Bell state problem, we introduce another two pulses named after the corresponding gates:

• add hadamard for the Hadamard gate. By default, the pulse is applied to all sites. You

can specify the site, e.g. sites=[0] for the first site.

• add cnot for a controlled not gate. The gate is applied to the first two sites by default.

5.5 Problem set: the interplay of entropy and entanglement

The following two problem consider a pure state and how the entropy of a subsystem is

connected to the entanglement of the subsystem and other parts of the complete state.

5.5.1 Entanglement in terms of entropy from density matrix

We are already able to detect entanglement of a pure state via the plot of a single qubit

on the Bloch sphere. We exploit now a second method, the von Neumann entropy. It is

defined as follows:

S = −
∑
i=1

Λi log (Λi) . (5.33)

Λi are in general probabilities which are normalized to 1. We consider the case of two qubits

and are interested in the entanglement between the first and the second qubit. In Exercise

3.2 we introduced the partial trace. If we trace out over the second site, we get the density

matrix ρ1. The eigenvalues of this density matrix can be analyzed with the von Neumann

entropy from Eq. (5.33).

1. Calculate the von Neumann entropy S for one selected Bell state. Calculate it for ρ1

and ρ2 tracing out over site 2 or respectively 1.
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2. Calculate the von Neumann entropy for product states of the form

|ψ1,2〉 = |ψ1〉⊗ |ψ2〉 =

(
c0

c1

)
⊗
(
c′0
c′1

)
=


c0c
′
0

c0c
′
1

c1c
′
0

c1c
′
1

 . (5.34)

Again, compare the von Neumann entropy for the first site S(ρ1) with S(ρ2).

3. Generate random quantum states for two qubits and calculate the von Neumann en-

tropy for both reduced density matrices ρ1 and ρ2.

4. What is your conclusion with regards to the entropies of the two density matrices

ρ1 and ρ2? What does the von Neumann entropy of two qubits tell you about the

entanglement?

Suggested path for analytical solution: (1) Take one Bell state as an example to trace out

and calculate the eigendecomposition by hand to check your numerical result. (2) You can

either do at least two examples or prove a general equation for arbitrary coefficients c0, c1,

c′0, and c′1. There is no analytical path for questions (3) and (4).

Suggested path for numerical solution: First, you need to create the quantum state and

get the reduced density matrix. We recall that this can be done with

import numpy as np

import numpy.linalg as la

from MPSPyLib.EDLib import PureState

Psi = PureState(np.array([c00, c01, c10, c11], 2, 2, None))

rhoii = Psi.traceout([ii])

The eigenvalue decomposition is implemented in the linear algebra package of numpy:

vals, vecs = la.eigh(rhoii.rho)

It remains to calculate the von Neumann entropy in python.
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5.5.2 Entanglement in terms of Schmidt decomposition

The results of the previous section indicate that there is a connection between the von

Neumann entropy of the first and second qubit. We discover now this connection: the

Schmidt decomposition. The Schmidt decomposition calculates the entanglement between

a bipartition of two subsystems which is in our case the first and second qubit. In order to

understand the Schmidt decomposition, we briefly review the singular value decomposition

(SVD) of a matrix A into

A = UλV † , (5.35)

where U and V are unitary matrices and λ is a diagonal matrix containing the singular

values λi. The orthogonal vectors of U and V are contained in the columns of U and V ,

respectively. Numerical libaries such as numpy return V † and not V ; thus, the orthogonal

vectors are stored along the rows of the matrix returned by numpy. The maximal number

of non-zero singular values is the minimum of the number of rows and columns. In order

to use the singular value decomposition on a quantum state, we have to point out a way to

construct the matrix A. We take the index notation from the state in Eq. (5.34) and reshape

the four entries into a 2× 2 matrix. The indices of the first qubit increase over the rows of

the matrix and the indices of the second qubit increase over the columns:

|ψ1,2〉 =


c0c
′
0

c0c
′
1

c1c
′
0

c1c
′
1

 → (
c0c
′
0 c0c

′
1

c1c
′
0 c1c

′
1

)
. (5.36)

This can be generalized to more qubits, e.g. for three qubits the rows of the matrix may

iterate over the first two qubits, while the columns iterate over the third qubit resulting in

a 4× 2 matrix. The actual representation of the Schmidt decomposition for our two qubits

is then
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|ψ1,2〉 =
2∑
i=1

λi |φ[i]
1 〉 |φ[i]

2 〉 . (5.37)

The ith column of the matrix U contains | φ[i]
1 〉 and the ith row of V represents | φ[i]

2 〉. If

we normalize the singular values λi, we can use them in the von Neumann entropy from

Eq. (5.33).

1. Derive analytically the connection between the singular values λi and the eigenvalues

of the reduced density matrix Λi using the partial trace.

2. Calculate the SVD for one Bell state, one product state, and one random state from

Section 5.5.1. Use the relation between singular values and eigenvalues to determine the

von Neumann entropy. (If you don’t have the relation from (1) yet, you can normalize

the singular values to 1 instead.)

3. The number of non-zero singular values is another entanglement measure, the Schmidt

number. What does the Schmidt number tell you about the entanglement of two

qubits? Would you prefer it over the von Neumann entropy if you wanted to have a

statement about the entanglement of two qubits?

Suggested path for analytical solution of (1.): Start with the pure state in the Schmidt

decomposition in Eq. (5.37) and use this representation to build the density matrix according

to ρ =|ψ〉〈ψ |. Use the partial trace over site 1 to obtain the reduced density matrix for site

2, and then trace out site 2 to obtain the reduced density matrix for site 1. This partial

trace was solved basically in Section 5.3.2 excepting the summation over the singular values

i. In the last step recall the unitary property of the SVD.

Once you have clarified the connection between singular values and eigenvalues, you

can use the result to obtain the Schmidt number and the von Neumann entropy from you

calculations in Section 5.5.1.
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Suggested path for numerical solution (2.): First you define your state vector for the two

qubits as a numpy array:

psi = np.array([c00, c01, c10, c11])

In the next step you reshape it to a matrix.

Apsi = np.reshape(psi, [2, 2])

The second argument is the new dimensions of the array. You could have written the

matrix directly, but reshaping can be generalized easily when dealing with more qubits. The

SVD is defined in the linear algebra package

U, lamb, V = la.svd(Apsi)

From here you can calculate the von Neumann entropy with the singular values in lamb.

(note: lambda is a keyword in python reserved for the definition of lambda functions, thus

we use lamb instead.)

5.6 Problem set: spontaneous emission of a two level system

We introduce in this exercise the Lindblad master equation, which can be applied to

a quantum system coupled to a very large reservoir under certain conditions, such as the

Born-Markov approximation and the secular approximation. Both of the are beyond this

problem set.5 The system we consider is a single two-level system, initially in the excited

state |e〉. It has no Hamiltonian, i.e. H = 0, and therefore we can see that it would stay in

the excited state and not evolve to the ground state |g〉:

i~
∂

∂t
|ψ〉 = H |ψ〉 = 0 |ψ〉 = 0 (5.38)

While this equation is true for the closed system, we couple the two-level system now to

a large vacuum. The excited state can decay to the ground state emitting a photon. It is

unlikely that the same photon would ever excite the system again. Therefore, we model

the system S plus the vacuum |V 〉 =|0〉 with a single process creating an excitation in the

5The derivation of Chapter 7 contains these derivations.
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vacuum when the transition from the excited to the ground state happens:

aSa
†
V |e〉S |0〉V =|g〉S |1〉V . (5.39)

a is the operator annihilating an excitation, and a† is creating an excitation. The subscripts

for the operators refer to the system (S) and the vacuum (V). Our system is a two level

system; thus, the two operations are aS | e〉S =| g〉S and a†S | g〉S =| e〉S. We could act with

multiple creation operators on the vacuum state, i.e.,
(
a†V

)n
|0〉V =|n〉V , but recall we only

have one excitation in our system. Moreover, one of the assumptions during the Lindblad

equation is that the environment stays in its state as the perturbation due to the system

is small. The system always sees the vacuum; in other words, the vacuum has no memory

if it already absorbed an excitation. This assumption is in contradiction to Eq. (5.39), but

a good approximation made for the Lindblad equation for a large reservoir. The Lindblad

master equation models for this example is the following equation where we plug in H = 0

in the second step.

∂

∂t
ρ =

−i

~
[H, ρ] + γaρa† − γ

2

{
a†a, ρ

}
= γaρa† − γ

2

{
a†a, ρ

}
. (5.40)

This equation only considers the density matrix of the qubit, and all operators a and a† act

now on the system S without using the subscript. γ is the coupling between the system and

the vacuum.

Derive the analytical expression for the evolution of the density matrix assuming that

the two level system is in the excited state at time t = 0.

Suggested path for analytical solution: Start with a general density matrix with scalars

a, b, c and d of form

ρ =

(
a b
c d

)
. (5.41)
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Then calculate all the matrix multiplications on the right hand side of Eq. (5.40) leading to

a form similar to

∂ρ

∂t
= γ

(
a′ b′

c′ d′

)
, (5.42)

where a′, b′, c′, and d′ depend on a, b, c, d and γ. This expression can be rewritten as a

system of differential equations and be solved.

Suggested path for numerical solution: Following the suggested path for the numerical

solution will introduce you to some of the syntax within OSMPS. We start by importing the

necessary libraries

Source Code 5.1: Import external modules.

5.1 import MPSPyLib as mps

5.2 import MPSPyLib.EDLib as ed

5.3 import sys

5.4 import numpy as np

5.5 import matplotlib.pyplot as plt

Then we let OSMPS generate a default set of operators. We decide to use the spin

operators in this example:

Source Code 5.2: Operators.

5.20 Ops = mps.BuildSpinOperators (0.5)

With these operators we can build the Lindblad equation from Eq. (5.40).

Source Code 5.3: System definition.

5.23 Liou = mps.MPO(Ops)

5.24 Liou.AddMPOTerm(’lind1’, ’sminus ’, hparam=’gamma’)

We specify the kind of term we add to our system. lind1 is a local Lindblad operator.

The second argument is the string label of the actual Lindblad operator, where
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sminus =

(
0 0
1 0

)
. (5.43)

This operator σ− is a pre-defined operator from OSMPS and represents our annihilation

operator a. Finally, ’gamma’ is the coupling between the two level system and the vacuum

where we define the actual strength later. Next we define the measurements and the corre-

sponding operators, because they are not within the default operators in Ops. Defining new

operators works like a dictionary

Source Code 5.4: Additional operators.

5.27 Ops[’ne’] = np.array ([[1., 0], [0, 0]])

5.28 Ops[’ng’] = ... # Fill

ne measures the population in the excited state and ng should be defined such that it

measures the population in the ground state. The measurements are a class themselves,

which is created as follows. We immediately add the measurements of the populations

Source Code 5.5: Measurements.

5.30 Obs = mps.Observables(Ops)

5.31 Obs.AddObservable(’site’, ’ne’, ’<ne >’)

5.32 Obs.AddObservable (...) # Fill in population of the

ground state

The arguments are the type of the observable (’site’ for measuring on a single site), the

name of the observable (’ne’), and an identifier to address the result in the post processing.

In addition we need a description of how the coupling of our system changes over time. Since

it does not change, we define it with empty lists []:
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Source Code 5.6: Time evolution.

5.35 Quench = mps.QuenchList(Liou)

5.36 T = ... # Fill

5.37 ndt = ... # Fill

5.38 dt = float(T) / ndt

5.39 Quench.AddQuench ([], T, dt , [])

The variables T and ndt have to be set with the total evolution time and the number of

time steps. Together they define the time step dt. We now define a list of simulation. We

start with one simulation, so the list contains one dictionary:

Source Code 5.7: Simulation dictionary.

5.41 params = [{

5.42 ’simtype ’ : ’Finite ’,

5.43 ’job_ID ’ : ’TwoLevel_SpontaneousEmission ’,

5.44 ’Write_Directory ’ : ’TMP/’,

5.45 ’Output_Directory ’ : ’OUTPUTS/’,

5.46 # System size and Hamiltonian parameters

5.47 ’L’ : 1,

5.48 ’gamma ’ : 0.05,

5.49 # Setting time evolution and observables

5.50 ’Quenches ’ : Quench ,

5.51 ’DynamicsObservables ’ : Obs ,

5.52 # Setting that there is an initial state

5.53 ’MPS’ : False ,

5.54 ’timeevo_mps_initial ’ : ’TMP/excited.mps’
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5.55 }]

Source Code 5.7 Continued

We highlight some entries in the dictionary besides the filenames and other settings which

can be neglected at this point. We set the system size ’L’ to one site. Moreover, we can now

pass along the coupling between our two level system and the vacuum with ’gamma’ which

has to be set with a value. The setup for the quenches and observables defined previously

are now used in the dictionary. The initial state specified at the end has to be written out

in the following.

We always call the function WriteFiles, and in case we are actually running the simu-

lation we define the initial state and call the exact diagonalization module.

Source Code 5.8: Runing simulation.

5.58 main_files = mps.WriteFiles(params , Ops , Liou ,

PostProcess=PostProcess)

5.59 if(not PostProcess):

5.60 psi = np.array ([1., 0])

5.61 np.save(’TMP/excited.mps.npy’, psi)

5.62 ed.runED(params , Ops , Liou)

In order to read the data, we call the corresponding function and create an empty numpy

array.

Source Code 5.9: Reading data.

5.67 DynOutputs = mps.ReadDynamicObservables(params)

5.68 neg = np.zeros((ndt , 2))

The outputs are stored in a list, where each entry corresponds to the simulation defined

in params. We address element 0 for the first (and only) simulation. This object is again a
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list, where each entry corresponds to a measurement during the time evolution. We write

the population for the excited state in the first column, and the populations of the ground

state to the second column:

Source Code 5.10: Reading populations.

5.70 for ii in range(ndt):

5.71 neg[ii , 0] = DynOutputs [0][ii][’<ne >’]

5.72 neg[ii , 1] = ... # Fill

We leave the actual plotting to you. There is no need to copy or retype the code snippets.

The corresponding file with those lines of code is available along with the exercises.

5.7 Problem set: The Liouville space applied to a two level system

In this problem set, we introduce the Liouville space, which is a common technique to

simulate the Lindblad master equation numerically.

5.7.1 The Liouville space

We recall the general formulation of the Lindblad master equation

∂

∂t
ρ =

−i

~
[H, ρ] +

N∑
µ=1

γµLµρL
†
µ −

γµ
2

{
L†µLµ, ρ

}
, (5.44)

which is in not very practical to solve numerically. Actually, we would prefer an equation of

the type

∂

∂t
ρ = Aρ . (5.45)

This looks similar to the Schrödinger equation and could be solved for small time steps taking

the matrix exponential of the matrix A. Such a representation exists and can be constructed

in the Liouville space. The transformation is
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AρB = A⊗BT |ρ〉〉 , (5.46)

where the tensor product ⊗ was introduced in the suggestions for Exercise 4.1. The super-

script T indicates that the corresponding matrix is transposed. |ρ〉〉 is the density matrix ρ

rewritten as a vector as follows in the example of a 2× 2 matrix

ρ =

(
c0,0 c0,1

c1,0 c1,1

)
=⇒ |ρ〉〉 =


c0,0

c0,1

c1,0

c1,1

 . (5.47)

It can be described reading the elements row-by-row and putting the corresponding entries

into the vector |ρ〉〉 ∈ CD2
if ρ ∈ CD×D. The corresponding operator has therefore the

dimension A⊗BT ∈ CD2×D2
where each operator holds A,B ∈ CD×D.

Prove analytically that the transformation is correct, yielding the same result for each

entry of ρ in both definitions.

Suggested path for analytical solution: It is useful to rewrite the matrix multiplication in

a summation over an index starting with the left hand side expression of Eq. (5.46). For a

matrix-matrix multiplication that is for a single entry i, j in the final matrix

[A×B]ij =
∑
k

AikBkj . (5.48)

The following transformation holds to obtain a tensor product of matrices:

AijBkl = (A⊗B)(ik),(kl) , (5.49)

where (i, k) can be considered as new index of two combined indices.

5.7.2 Your own two-level system with spontaneous emission

Apply the transformation to the two-level system with spontaneous emission from Sec-

tion 5.6 and simulate the system numerically with your own code. Plot the population of the
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excited and/or ground state. Evaluate if your implementation is correct with the analytic

expression you have obtained in Section 5.6.

Suggested path for numerical solution: Consider the three different terms in Eq. (5.40)

L1 is Liouville transformation of γaρa† , (5.50)

L2 is Liouville transformation of − γ

2
a†aρ , (5.51)

L3 is Liouville transformation of − γ

2
ρa†a , (5.52)

L = L1 + L2 + L3 (5.53)

and calculate the Liouville transformation for L1, L2, and L3 according to Eq. (5.46). You

can bring the second and the third term in the form of Eq. (5.46) by introducing an identity

matrix on the left or right side. Further you choose an initial state for your system and write

down the corresponding density matrix as ρ and |ρ〉〉. Choose a time step dt and you can

propagate your density matrix represented as |ρ〉〉 with

|ρ(t+ dt)〉〉 = eLdt |ρ(t)〉〉 . (5.54)

Recall that numpy has the corresponding function numpy.linalg.expm to calculate the

exponential of a matrix.

5.8 Problem set: Simulating Rabi oscillations in an open quantum system

We combine the Rabi oscillations with the Lindblad equation to study two examples of

coherence measures.

5.8.1 Rabi Hamiltonian, rotating wave approximation, and interaction picture

This exercise introduces the Rabi problem, which is fundamental to any driven two level

system. The two levels are separated by an energy gap ω = ωe − ωg, the Rabi frequency.

We can drive the transition between the two levels with a frequency ν and an amplitude ΩR,

e.g., with a laser at this frequency, which leads us to the detuning defined as ∆ = ω−ν. The
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ω = ωe − ωg

∆

ν

|e〉 =

(
1
0

)

|g〉 =

(
0
1

)
Figure 5.3: Scheme for Energy Levels in the Rabi Problem. The energy difference between
the two states is defined as ω. The detuning ∆ is the difference between the laser frequency
ν and ω.

Rabi oscillation is a fundamental phenomena occuring while driving an atomic or molecular

system between two energy levels with a laser. Figure 5.3 sketches the energy structure. The

Hamiltonian describing the system after the rotating wave approximation is

HR(ΩR,∆) =

(
∆
2

ΩR
2

ΩR
2
−∆

2

)
. (5.55)

This system is the focus of interest. If we drive the system on resonance (∆ = 0), you

observe the Rabi oscillation of a period 2πΩR as shown in Figure 5.4. Derive analytically

the Hamiltonian HR, which is in the interaction picture. The Hamiltonian of the two level

system and the driving in the Schrödinger picture are defined as

H =

(
ωe 0
0 ωg

)
+ ΩR cos(νt)σx . (5.56)

Here, σx is the Pauli operator coupling the ground state and excited state of the system.

The time is denoted with t.

Suggested path for analytical solution: Derive first the Hamiltonian in the interaction pic-

ture by separating the Hamiltonian in the Schrödinger picture into the two parts H0 and

H1. Recall that the transformation into the interaction picture is defined as
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Figure 5.4: Rabi Oscillations without Detuning.

H [I] = eiH0tH1e−iH0t . (5.57)

Once you have the expression in the interaction picture, you can use the rotating wave

approximation. This approximation discards all high frequencies. You can assume ω − ν �

ω+ ν. In the third step you assume that your state in the interaction picture can be written

as

|ψ(t)〉 =

(
ei ∆

2
tca(t)

e−i ∆
2
tcb(t)

)
, (5.58)

This transformation leads to an equation for ca and cb with the Hamiltonian in Eq. (5.55).

5.8.2 Coherence in the closed system Rabi problem

We start with simulations for the closed system for one qubit and advance to two qubits in

an open system with the Lindblad master equation. We expect that the coupling of our Rabi

system, that is our qubit, to the environment will lead to decoherence. Therefore, we use the
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closed single qubit problem to familiarize you with coherence or decoherence measures. We

suggest two coherence measures, one being the l1 norm of coherence as introduced in [163]6:

Cl1(ρ) =
∑
i

∑
j 6=i

|ρi,j| , (5.59)

where ρ is the density matrix of the system. The second coherence measure is defined in the

same work as relative entropy of coherence

SC(ρ) = S(ρdiag)− S(ρ) , (5.60)

and S( · ) is the entropy as previously defined (see Eq. (5.33)). The matrix ρdiag is the original

density matrix ρ with all off-diagonal elements set to zero. The maximally coherent state is

defined in this context for the qubit as

|φ〉 =
1√
2

(
1
1

)
. (5.61)

1. Calculate the coherence (analytically) for the maximally coherent state | φ〉 and the

ground state |ψ〉 =| g〉 for both measures. Are there more maximally coherent states

and can you generalize Eq. (5.61)?

2. Set up numerical simulations with the initial state | ψ(t = 0)〉 =| g〉 for the closed

system Rabi problem and measure population in the ground state and the excited

state as well as the coherence measures Cl1 and SC(ρ). How do positive and negative

detunings ∆ change the frequency of the Rabi oscillations with regards to zero detuning

∆ = 0?

3. Now choose the maximally coherent state as an initial state for the simulation. What do

you observe for different detunings? What do you observe for the coherence measures?

Which initial state and parameters for the Hamiltonian would you choose for an open

6Both measures have in common that they allow one to treat coherence as resource. Separating actions
on the system into coherent and incoherent operations, these two measures guarantee monoticity under
incoherent operations. We do not derive which kind of operations we have for our Rabi system.
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system to study coherence independent of effects from the Hamiltonian of the closed

system?

Suggested path for analytical solution: (1) (No hints).

Suggested path for numerical solution: (2), (3) You already have a basic script for the

simulation of a two level system. We extend this script for the purpose of the adapting it to

the Rabi problem. Write down your Hamiltonian in terms of the spin operators.7 The spin

matrix Sz is pre-built and you should verify it with

import MPSPyLib as mps

Ops = mps.BuildSpinOperators(0.5)

print(Ops[’sz’])

Moreover, the spin raising operator S+ (Ops[’splus’]) and the spin lowering operator

S− (Ops[’sminus’]) are pre-built. With these two operators you can build Sx:

Ops[’sx’] = ...

We have used the local Lindblad operator before, see Section 5.6, and the implementation

of the operator ’sminus’ defined in Eq. (5.43). Now you need another term, a local operator

for the Hamiltonian. You can add such a term as follows:

Ham = mps.MPO(Ops)

Ham.AddMPOTerm(’site’, ’name_of_operator’, hparam=’key_for_coupling’)

You certainly want to loop over different parameters. So instead of creating a list for

params with exactly one element as in the TwoLevel SpontaneousEmission.py, you might

prefer to create an empty list and add the actual entries in a loop. If we take the example

from the purely dissipative two level system and would like to simulate different decay rates,

we would use:

Source Code 5.11: Looping over decay parameters.

5.1 params = []

7The spin operator Sα = 1
2σ

α, where σα are the Pauli matrices we used before.
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5.2

5.3 for jj in range (3):

5.4 params.append ({

5.5 ’simtype ’ : ’Finite ’,

5.6 ’job_ID ’ : ’TwoLevel_SpontaneousEmission ’,

5.7 ’Write_Directory ’ : ’TMP/’,

5.8 ’Output_Directory ’ : ’OUTPUTS/’,

5.9 # System size and Hamiltonian parameters

5.10 ’L’ : 1,

5.11 ’gamma ’ : 0.05 * (jj + 1),

5.12 # Setting time evolution and observables

5.13 ’Quenches ’ : Quench ,

5.14 ’DynamicsObservables ’ : Obs ,

5.15 # Setting that there is an initial state

5.16 ’MPS’ : False ,

5.17 ’timeevo_mps_initial ’ : ’TMP/excited.mps’

5.18 })

Source Code 5.11 Continued

If we would like to print the population for the excited state, we have now an additional

loop over the different simulations:

Source Code 5.12: Reading all decay parameters.

5.21 for jj in range (3):

5.22 print(’Coupling gamma=’ + str (0.05 * (jj + 1)))

5.23 for ii in range(ndt):

5.24 ne = DynOutputs[jj][ii][’<ne >’]

5.25 print(’Time step’, ii , ’Population excited

state’, ne)
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Source Code 5.12 Continued

You can define the single site density matrix as observable adding it two you observable

class

Obs.AddObservable(’DensityMatrix_i’, [])

You cannot define a string key to access them, but all reduced density matrices are stored

under the key [’rho’] as a dictionary. You can access the density matrix of the first site

therefore as [’rho’][’1’].

5.8.3 Coherence in the open system Rabi problem

We now introduce the open system to the qubit having gained a basic understanding

of the closed Rabi system. We consider two scenarios. First, we recall our open two level

system with spontaneous emission. We introduce this approach now in our Rabi system

using the Hamiltonian from Eq. (5.55):

ρ̇ = −i [HR, ρ] + γLρL† − γ

2

{
L†L, ρ

}
, L = σ− . (5.62)

We recall that σ− is the operator for the transition from the excited state to the ground

state, here used to model the spontaneous emission. In contrast to the previous system, we

cannot expect an exponential decay of the excitations anymore, since we drive the transition

(ground state → excited state) at the same time. We refer to this case as spontaneous

emission.

In addition, we take a second approach with the following Lindblad equation:

ρ̇ = −i [HR, ρ] + γLρL† − γ

2

{
L†L, ρ

}
, L = ne . (5.63)

This Lindblad operator, the number operator for the excited state ne, does not change the

state, but adds a phase to the population in the excited state. We call this scenario the

dephasing case. Of course, we can combine both types of interaction in one Lindblad master

equation:
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ρ̇ = −i [HR, ρ] +
2∑

µ=1

γµLµρL
†
µ −

γµ
2

{
L†µLµ, ρ

}
, L1 = ne , L2 = σ− . (5.64)

We have introduced a subscript µ to label the two different Lindblad Lµ operators and their

corresponding coupling γµ. There are two different Lindblad operators ne and σ− included;

thus, the sum over µ runs from 1 to 2.

1. Set up a simulation in the spontaneous emission case according to Eq. (5.62). Choose

an initial state and detuning such that you can track decoherence without an influence

from the closed system. Iterate over different couplings to the environment and fit the

decoherence rate with and appropriate decaying function. We would like to have an

expression for one of the coherence measures (Eqs (5.59) and (5.60)) for the complete

case in Eq. (5.64).

2. Set up a simulation in the dephasing case according to Eq. (5.63). Choose an initial

state and detuning such that you can track decoherence. Iterate over different couplings

to the environment and fit the decoherence rate.

3. Combine both scenarios (Eq. (5.64)) and make a prediction via fitting the combined

rate of decoherence. It is sufficient to choose one of the two coherence measures.

(Document which rates you are using for the fit.)

4. Set up a simulation with the initial state equal to the ground state tracking the Rabi

oscillations for the ground and excited state. How would you measure the decoher-

ence in this scenario? Define the corresponding function for the decoherence rate for

Eq. (5.64).

5.8.4 From the single Rabi system to the two qubit problem

We extend our problem now to two Rabi oscillators coupled to each other. We introduce

an additional index to iterate over the two Rabi oscillators, i.e., i. We write the Hamiltonian
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of our two qubit problem as

H2R =
3∑
i=1

H
[i]
R (Ω

[i]
R ,∆

[i])− J(σ+
1 σ
−
2 + σ−1 σ

+
2 ) , (5.65)

where H
[i]
R (Ω

[i]
R ,∆

[i]) is the Rabi Hamiltonian acting on site i, and it takes as arguments

the Rabi frequency Ω
[i]
R and the detuning ∆[i] on the corresponding site i indicated in the

superscript brackets. This notation allows one to describe non-identical systems on site 1

and 2. The coupling term (coupling J) allows one to exchange an excitation between the

two sites; it creates the excitation with σ+ on one site while destroying it on the other with

σ−. We recall that the subscripts on the operators σ± specify the site where the operators

act on. The Lindblad equation has to be extended for Lindblad operators on each site:

ρ̇ = −i [H2R, ρ] +
2∑

µ=1

2∑
i=1

γµiLµiρL
†
µi −

γµi
2

{
L†µiLµi, ρ

}
, (5.66)

which is a quite general case allowing for site dependent coupling of each Lindblad operator.

The two sums now iterate over the two sites in our system, i.e., index i, and the two different

Lindblad operators, see µ.

1. Calculate the coherence measures for the maximally coherent state.

2. Simulate the closed system to find a case where coherence is conserved during the time

evolution. List cases when coherence is not conserved.

3. Simulate the open system for two qubits and check if the prediction for coherence

still holds. Assume equal coupling for the Lindblad operators in the master equation

modeling the probabilistic jumps with the coupling strengths γµ,1 = γµ,2.

Suggested path for analytical solution: (1) (No hints).

Suggested path for numerical solution: You need to define a bond term for the interaction

σ+
1 σ
−
2 . It can be added via
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Ham.AddMPOTerm(’bond’, [’splus’, ’sminus’], hparam=’J’, weight=-1.0)

The Hermitian conjugate is considered automatically if the operators are not Hermitian.

Site-dependent couplings are defined as an array instead of a scalar.

You can define the two site density matrix as an observable, adding it to your observable

class

Obs.AddObservable(’DensityMatrix_ij’, [])

The results are stored as well under the dictionary accessed with the key [’rho’]. You

can access the density matrix of the first two sites as [’rho’][’1 2’].
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CHAPTER 6

THERMALIZATION IN THE QUANTUM ISING MODEL − APPROXIMATIONS,

LIMITS, AND BEYOND

Submitted to Quantum Science and Technology1

D. Jaschke,2 L. D. Carr,3 and I. de Vega4

Abstract

We simulate the thermalization of qubits forming a quantum Ising spin chain when cou-

pled to a thermal reservoir or environment. We consider different schemes in the system-

reservoir coupling: the system qubits coupled to a common reservoir, and an independent

local reservoir for each qubit, and a single reservoir coupled only to the first site of the sys-

tem. Our simulations show the presence of favorable scenarios for enhancing or preventing

thermalization of the spins. First, all independent local reservoirs enable more rapid ther-

malization in the comparison to a common reservoir. Second, the thermalization timescale

changes depending on the position in the phase diagram of the quantum Ising model, which

stops thermalizing in the paramagnetic limit for our choice of the model. Further, growing

system sizes show a slow down in the thermalization process for a common reservoir. These

results use the Lindblad master equation with multi-channel Lindblad operators. Moreover,

we explore if these Lindblad operators which are non-local can be approximated with Lind-

blad operators acting on a small neighborhood of spins. We find that this approach is most

successful in the extreme ferromagnetic and paramagnetic limits. Throughout our analysis,

we use exact diagonalization methods.

1“Thermalization in the Quantum Ising Model − Approximations, Limits, and Beyond”, D. Jaschke,
L. D. Carr, and I. de Vega (2018). https://arxiv.org/abs/1805.04934. Use in agreement with arXiv
license [55].

2primary researcher and author responsible for the manuscript.
3principal investigator and advisor at Colorado School of Mines.
4outline for theoretical side of work including interpretations within the field of open quantum systems;
detailed feedback and suggestions on the draft; minor editing of passages within the draft; currently post-
doctoral researcher at the Ludwigs-Maximilians-Universität München.
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6.1 Introduction

According to statistical mechanics, a many-body quantum system coupled to a thermal

bath will thermalize independently of the initial state. However, the conditions for ther-

malization need to be questioned for each specific setting. For example, the presence of

gaps in the environment density of states of the environment[164], the existence of system

symmetries [165] or the emergence of dynamical phase transitions in the thermodynamic

limit may affect the thermalization process. Understanding dissipation and thermalization

is fundamental for the development of quantum technologies, including the engineering of

environments for state preparation, and the dynamics associated with decoherence. While

setting up a comprehensive study, multiple aspects and concepts are necessary to understand

the problem, including selecting the model for the system and the environment, choosing the

approximations to describe the dynamics and thus the governing equation, and eventually

proposing experiments to observe these dynamics.

The most convenient simplification to describe the evolution of a quantum system cou-

pled to a thermal reservoir is the Lindblad master equation [46–48, 166], which preserves

mathematical properties of the open system density matrix such as positivity and norm.

With this framework the description of a single-body system is accessible, but many-body

open quantum systems still impose challenges and imply from our perspective an extension

to the standard numerical methods. The main numerical challenge is that the Lindblad

equation contains as many terms or decaying channels as transitions between the system

energy levels. A common simplification is to consider single-channel Lindblad equations,

which depend on Lindblad operators that act locally on each element of the open system.

This approach is accurate for situations where the environment produces a single relevant

transition, for instance in weakly interacting qubits. It has been used to analyze transport

in spin problems, where a one-dimensional many-body open system couples to reservoirs via

both the first and last site [167, 168] or to study decoherence in strongly correlated systems

[61, 169–171]. However, as shown in [172–175] for single open systems, the single-channel
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approach may not be sufficiently accurate to describe thermalization. A qualitative reason is

that a many-body, or even a multi-level, open system only relaxes to its thermal equilibrium

state when the environment can redistribute the occupation probabilities of all its energy

levels according to a Gibbs distribution. Naturally, this process can only occur when the

Lindblad equation produces transitions among all system energy levels.

In this work, we consider an environment composed of a continuous set of independent

harmonic oscillators that are weakly coupled to our system. To justify our use of the Lind-

blad equation, a Born-Markov approximation is considered, in which we take the relaxation

timescale of the environment to be very short in comparison to the relaxation timescale of the

system. This approximation implies that the reservoir state only suffers small fluctuations

around its thermal initial state, such that only short-time system-environment correlations

are considered. Moreover, to derive the Lindblad equation it is necessary to consider the

secular approximation, which truncates fast frequencies, i.e., large differences between en-

ergy transitions, and which is based on a similar argument as used for the rotating wave

approximation.

We further consider the quantum Ising model [123] as our system in the system-reservoir

setting. From a theoretical perspective, the quantum Ising model is appealing due to the

broad toolset available to treat its static solutions. For instance, the Jordan-Wigner transfor-

mation allows us to solve an infinite one-dimensional chain analytically and provides many

insights for other questions such as the energy spectrum. The equilibrium and dynamics

of a closed system have been analyzed to a great extent including generalizations of the

quantum Ising model with, e.g., long-range interactions [127–129, 176]. On the one hand,

equilibrium properties of the thermal many-body state can be analyzed via imaginary time

evolution of matrix product density operators [80, 81] or locally purified tensor networks [82]

and minimally entangled typical thermal states [177]. On the other hand, the dynamics of

the closed system produced when quenching a part of it gives rise to the convergence to a

local equilibrium as described by the eigenstate thermalization hypothesis [58]. However, a
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complete framework to analyze the Ising model as an open many-body system coupled to

a thermal environment has not been explored to our knowledge. Although we could have

considered other Hamiltonians such as the Bose-Hubbard model, we choose the quantum

Ising model due to the overlap most researchers have with this model in at least one aspect

of their work. In addition, the quantum Ising model can also be motivated with regards to

experiments; it is one option to describe quantum simulator experiments among other spin

systems such as the XY Z model, as well as Bose- and Fermi-Hubbard models.

Quantum simulator platforms mimicking the quantum Ising model include ultracold

atoms and molecules [20], trapped ions [26], and Rydberg systems [108]. The choice of

environments coupled to these architectures is subtle, especially if the corresponding inter-

action is to be described with a Lindblad master equation. For simplicity, we consider an

environment consisting of a three-dimensional electromagnetic field present in AMO-based

(atomic molecular optical) quantum simulator platforms, which couples to the spins of our

system via dipole interactions. The black-body radiation of the surrounding experiment can

serve as motivation to choose such a field. In addition, trapped ions [178], Rydberg atoms

[179] and ultracold atoms [180] can be confined in an optical cavity considered in the bad

cavity limit, where the electromagnetic field has a broad-band density of states and therefore

produces the desired Markovian interaction [181]. Although we use the electromagnetic field

as a basis throughout the paper, a set of interacting spins coupled to a continuous bosonic en-

vironment can be mimicked via other models. One possibility is to consider ultracold atoms

coupled to the bosonic field formed by the excitations of a Bose-Einstein condensate (BEC)

as proposed in [182] and extended in [183] for the Ising model. A very close alternative is to

consider atoms with two internal levels, a first one that is trapped by an optical lattice and

that implements the open system dynamics and a second one that is untrapped and plays the

role of an environment [184, 185]. Similarly, recent progress enabled the coupling of qubits

to acoustic phonons in superconducting qubits [186], although the long coherence times be-

tween qubit and phonon modes cannot be accurately described with our approach based on
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(a) (b)

(c)
External field
↑→xz

Figure 6.1: Spins in the quantum Ising model coupled to a reservoir. The thermalization
of the quantum Ising model when coupled to a thermal reservoir raises many intriguing
questions: Will the systems thermalize for the ferromagnetic and paramagnetic regime? If
so, at what rate? Are there any suitable approximations to model the process in the many-
body limit? The system Hamiltonian consists of an external field in the x-direction indicated
by the big blue arrow trying to align the spin 1/2 (blue spheres with arrow) in the x-direction
in the ground state. The nearest-neighbor interaction in the z-direction, highlighted only for
the first two sites in (a), competes with the external field in the ground state trying to align
neighboring spins. The reservoirs correspond to a three-dimensional electromagnetic field
represented by grey ovals with a dense and wide mode spectrum. The grey arrows indicate
the interaction with each of the system spins. We consider: (a) a common reservoir coupled
to all sites, (b) independent local reservoirs for each site, and (c) a single site coupled to
a local reservoir. Multi-channel Lindblad operators can simulate all of the three scenarios;
neighborhood single-channel Lindblad operators are enabled for scenarios (b) and (c).

the Born-Markov approximations. However, both BEC excitations at low momenta [187]

and acoustic phonons have a linear dispersion, analogous to photons in the electromagnetic

field. This analogy draws the similarity to the model here studied and further underlines

the experimental applicability of our work.

The dynamics of an open Ising model has been studied by considering independent baths

coupled to both ends of the chain with mathematically constructed Lindblad operators [167]

and by considering a thermal reservoir coupled to just two spins together with periodic

boundary conditions [188]. However, a general description of an Ising chain coupled to a

thermal bath in different configurations and without periodic conditions has not been done

up to now to our knowledge. In this work, we build such a description and extend previous

studies in two ways. (i) We analyze three distinct scenarios of coupling a reservoir to our

system as presented in Figure 6.1 and analyze its decay with a multi-channel approach. In

detail, we consider three basic scenarios, namely the case of (a) a common reservoir coupled
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to all sites, thus producing atom-atom interactions, (b) independent local reservoirs coupled

to each site, and (c) a single reservoir coupled only to the first site in the spin chain. We

analyze the resulting timescale for thermalization and discuss how to resolve the symmetry

present in the quantum Ising model, which might prevent thermalization. (ii) We raise

the question of whether neighborhood single-channel Lindblad operators are sufficient to

describe thermalization due to the aforementioned limitations of single-site single-channel

Lindblad operators. In contrast, the neighborhood single-channel operators act on up to

three sites and allow us to control the interaction better and generate long-range order. In

detail, one qubit will be changed while the other two nearest-neighbor qubits act as a control

leading to the full three-site neighborhood; a two-site neighborhood is sufficient for the

boundaries in this scenario with open boundary conditions. The single site operator captures

the paramagnetic limit where the energy contribution is defined by the local magnetization

and not the interaction between nearest-neighbor spins. Such control scenarios can also be

explored explicitly and quantitatively in the future in universal quantum computers utilizing

appropriate quantum gates; the CNOT (controlled-not) gate is an example of an analogous

idea in a closed system with unitary time evolution, where an operation on one qubit is

based on the state of another qubit.

We obtain our results with an exact diagonalization implementation [189] from the

OSMPS package [52]. The choice of exact diagonalization limits us to a few qubits, and

the multi-channel method is also bounded to few qubits since the number of transitions to

be considered grows exponentially with system size. This limit is because the number of

transitions or channels and the dimension of the density matrix grow exponentially in the

number of spins, N , i.e., as 2N without considering symmetries. Moreover, we analyze the

spectrum of the Liouville propagator and study steady states and timescales characterized by

the gap in the Liouville propagator. In detail, the gap between the first and the second eigen-

value of the Liouville operator determines the slowest possible timescale in the system, while

the time evolution of different initial states may be governed by decaying timescales from
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larger eigenvalues. Such spectrum analysis requires diagonalizing a matrix of dimension 22N ,

which is even more limiting. Hence, calculations beyond six qubits are unfeasible without

parallelization, and each additional qubit in the open systems increases the computational

resources used by a factor of 64 due to the cubically scaling eigenvalue decomposition. Our

results from these simulations show the following:

(i) The multi-channel Lindblad operators cannot be replaced with our suggested simpler

approach apart from the extreme limits of the phase diagram.

(ii) Moreover, the multi-channel Lindblad operators show significant differences if used

with configurations (a), (b), or (c). These configurations give rise to completely different

thermalization rates, which are faster for the system coupled to independent reservoirs,

(b) and (c), in comparison to the coupling to a common environment (a). Within the

independent-local reservoirs, all sites coupled to their own reservoir thermalizes faster than

coupling just the first site to its reservoir. We disregard the neighborhood single-channel

approach for this analysis.

(iii) The thermalization rate also depends on the Ising phase. In general, the closer to

the ferromagnetic phase the faster the thermalization, while in the paramagnetic limit the

system does not thermalize at all.

(iv) Finally, we have seen that the larger the number of spins in the Ising chain, the

slower the thermalization.

The outline of our work is as follows. We introduce the closed and the open quantum

system in the next two Secs. 6.2 and 6.3. We continue with a detailed look at our approach

of neighborhood single-channel Lindblad operators in Sec. 6.4. Then, we evaluate the ther-

malization timescales for different scenarios in Sec. 6.5. Finally, we conclude our results in

Sec. 6.6. The appendices add further aspects of this study, i.e., the odd symmetry sector in

App. 6.7, the choice of a different operator in the interaction Hamiltonian in App. 6.8, and

details on the standard derivation of the multi-channel operators including their coupling,

see App. 6.9.
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6.2 Transverse quantum Ising model in a closed system

We focus on the transverse quantum Ising model in one dimension with a Hamiltonian

given as

HQI = −
N−1∑
k=1

cos(φ)σzkσ
z
k+1 −

N∑
k=1

sin(φ)σxk , (6.1)

where the formulation of the coupling in terms of sine and cosine simplifies addressing the

ferromagnetic (φ = 0) and paramagnetic (φ = π/2) limit. The system size or the number of

qubits in the quantum Ising chain is N . The Pauli spin operators σxk and σzk are acting on

site k, cos(φ) ≡ J/
√
J2 + g2 > 0 is the unitless interaction energy, and sin(φ) ≡ g/

√
J2 + g2

is the unitless coupling to the external field. The critical point of the quantum Ising model

is at φc = π/4 for the thermodynamic limit N →∞, i.e., Jc = gc = 1/
√

2. We treat systems

below ten qubits and the position of the minimum of the gap φc, i.e., an indicator of the

quantum critical points, shifts to values φc < π/4 due to finite-size effects. Note that in this

formulation the Hamiltonian HQI is expressed in terms of the
√
J2 + g2, and all quantities

are therefore unitless.

The quantum Ising model has a Z2 symmetry, which is very useful when treating the

closed quantum system. The two sectors of the symmetry, e.g., manifesting in the block-

diagonal structure of the Hamiltonian, are the even and odd sector of the Z2 symmetry.

This symmetry can be used for the open system if the full Hamiltonian of the system and

the bath commutes with the generator of the symmetry
(
⊕Nk=1n

x
k

)
mod 2. Here, nxk = σ−x σ

+
x .

The open system evolution as described with the Lindblad master equation does not break

the symmetry. Thus, any state |φ〉 = Sk |ψ〉 with Sk = σxk is in the same symmetry sector,

and the remaining steps of the derivation of the Lindblad master equation are carried out

solely in that symmetry sector. We remark that the choice Sk = σzk does not conserve the

symmetry. Reference [190] presents a more detailed discussion of symmetries in the Lindblad

master equation.
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6.3 System-reservoir couplings and Lindblad equation for our system

In this section, we introduce the different system-environment configurations as well

as the models of Lindblad master equation we will consider. Section 6.3.1 discusses the

configurations (a), (b), and (c) from Figure 6.1 to the corresponding Hamiltonians. Then,

we explain the two different formulations of the Lindblad operators in the master equation in

Sec. 6.3.2. Section 6.3.3 reminds the reader of properties of the Lindblad master equations,

which we use later on for our analysis.

6.3.1 System-reservoir configurations

We now explore the quantum Ising system coupled to a dissipative environment for the

following three different configurations.

6.3.1.1 Global environment

First, we consider the case in which all spins are coupled to a common bath of harmonic

oscillators, as described in Figure 6.1(a), such that the total Hamiltonian of the system (S)

and the reservoir (R) can be written as

H
(a)
S+R = HQI +

N∑
k=1

∑
q

Sk(gkqbq + g∗kqb
†
q) +

∑
q

ωqnq , (6.2)

where b†q (bq) is the creation (annihilation) operator of the environment with a frequency ωq,

and nq = b†qbq is the number operator. The sums over q are not specified as the set of harmonic

oscillators is large, and the exact number of them does not have any significance. The

second term of Eq. (6.2) describes the interaction between the system and the bath, which

is modulated by the coupling strength gkq. In this work, we consider that the environment

is a three-dimensional electromagnetic field, such that the coupling strengths correspond to

a dipole coupling of the type presented in [191], i.e.,

gkq ∼ −i
√
~ωq/(νε0) (~rk · ~ddip)/rk exp(−i~rk · ~q) (6.3)
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where ν is the quantization volume. We consider the Planck constant ~ and the electric

permitivity ε0 as unit constants. Thus, the coupling gkq contains the dipole interaction via

(~rk ~ddip)/rk and the phase relation inside the reservoir for each frequency as exp(−i~rk~q). The

position of the kth spin in the quantum Ising chain is ~rk and ~ddip the dipole moment of

the spin coupling to the electromagnetic field; we assume that all spins have equal dipole

moments and ~ddip is independent of k. The interaction Hamiltonian also depends on the

system coupling operators Sk, which we choose as Sk = σxk . We point out that the limit

φ = π/2 corresponds to a non-interacting model coupled via a common reservoir. This case

has been discussed in a generalized fashion in [192].

6.3.1.2 Local environments

As a second configuration, we consider that each spin is coupled to its independent local

reservoir, as described in Figure 6.1(b). The total Hamiltonian is

H
(b)
S+R = HQI +

N∑
k=1

∑
q

Sk(gkqbkq + g∗kqb
†
kq) +

N∑
k=1

∑
q

ωqnkq ,

(6.4)

where now there is a set of harmonic oscillators b†kq corresponding to the bath attached to

each spin k. We note that the same physics described with Eq. (6.4) can be obtained with

the Hamiltonian in Eq. (6.2), i.e., with a single environment, under particular conditions.

In detail, one should consider the spins separated at a minimal spatial distance L such that

q0alatN � 1, where q0 is the largest resonant wave vector of the field and alat is the distance

between the spins in the chain. Such resonant wave vectors correspond to those bath modes

that interact resonantly with the system frequencies, ω, i.e., such that ω(q0) = ω. If this

condition is fulfilled, we can assure that there are no bath-mediated dipole-dipole interactions

between the spins, and therefore these spins evolve as though each of them was coupled to

their independent reservoir. This limit is essential as one can hardly imagine implementing

independent reservoirs in experiments for very close quantum spins.
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6.3.1.3 Coupling to a single site

Finally, the configuration in Figure 6.1(c) corresponds to the case described in Eq. (6.2)

with gkq = 0 for every k 6= 1. The Hamiltonian of system and reservoir on the first site (R1)

is then reduced to

H
(c)
S+R1 = HQI +

∑
q

S1(g1qb1q + g∗1qb
†
1q) +

∑
q

ωqn1q . (6.5)

6.3.2 Choice of Lindblad operators

Apart from the scenarios detailing how the quantum Ising chain can be coupled to the

reservoir, we briefly point out the difference between the global multi-channel approach and

neighborhood single-channel approach. We use the same Lindblad master equation for both

approaches, which we define as

ρ̇ = − i

~
[H, ρ] +

∑
abcd

Cabcd
(
LabρL

†
cd −

1

2

{
L†cdLab, ρ

})
⇐⇒ ∂

∂t
|ρ〉〉 = L |ρ〉〉 , (6.6)

where the formulation with the density matrix ρ (left hand side) or with the super-ket |ρ〉〉 in

Liouville space (right hand side) are equivalent. Equation (6.6) evolves the density matrix

ρ of a shape D × D, where D is the dimension of the Hilbert space of the quantum Ising

chain. In contrast, the vector representation |ρ〉〉 of the density matrix has D2 entries while

the matrix L acting on |ρ〉〉 from the left-hand side is of dimension D2×D2 due to the outer

product or Kronecker product, e.g., H ⊗ I and I an identity matrix of size D × D. The

Liouville operator is defined as

L = − i

~
(
H ⊗ I− I⊗HT

)
+
∑
abcd

Cabcd
2

(
2Lab ⊗ L∗cd − L†cdLab ⊗ I− I⊗ LTabL∗cd

)
,(6.7)

In the Lindblad equation, the Hamiltonian H corresponds to the Hamiltonian of the system

and possible corrections from the system-reservoir interaction. Lab are the Lindblad operators

encoding the dissipative part of the dynamics via a transition from state | b〉 to | a〉 with a
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coupling Cabcd. Thus, the sum over a, b, c, and d iterates over a set of states. The superscripts

T and ∗ are the transposed and complex conjugate of an operator, respectively. Throughout

the work, we choose our units such that ddip = 1, the lattice spacing alat = 1 between

sites, the speed of light C = 1, the Boltzmann constant kB = 1, and no chemical potential,

µ = 0, for the Bose-Einstein statistics. Moreover, we set ~ = 1. Thus, the temperature T is

implicitly in units of
√
J2 + g2 and times are given implicitly in units of 1/

√
J2 + g2. The

choice of the Lindblad operators and decay rates depend on the particular case considered.

We shall consider two different cases, a multi-channel Lindblad equation as derived from

Markov and secular approximations [49], and a single-channel equation with neighborhood

single-channel Lindblad operators. These are detailed in the following.

6.3.2.1 Multi-channel Lindblad equation

For the first approach, i.e., the multi-channel Lindblad operators via the energy eigen-

states, we follow the steps of the Born-Markov approximation [49] and resolve the secular

approximation in the interaction picture via introducing the energy eigenstates of the Hamil-

tonian

HS =
∑
a

Ea |a〉〈a | . (6.8)

The sum over a contains dNloc eigenstates without Z2 symmetry, and dN−1
loc eigenstates within

a symmetry sector. This step of formulating the problem in its eigenstates leads finally to

the Lindblad operators defined in terms of the eigenstates. According to this derivation, the

Lindblad operators are defined as

Lab = |a〉〈b | , (6.9)

that is, induce a transition from energy eigenstate | b〉 to |a〉. These energy eigenstates can

be entangled in the computational basis, i.e., the Fock basis corresponding to the qubits;

thus, the state of any spin k′ can have different values in the eigenstates | a〉 and | b〉 and
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change during the action of Lab, although the operator in the interaction Hamiltonian acts

on site k via Sk, k 6= k′. This property contributes to their being named as global Lindblad

operators. Therefore, the number of Lindblad operators is d2N
loc where the local dimension is

dloc = 2 in our case.5

The decay rates Cabcd describe the dissipative action of the reservoir, i.e., the electromag-

netic field, on our system. These coupling strengths fulfill the detailed balance condition

for the Lindblad operators Lab and Lba via the underlying Bose-Einstein statistics. Further

explanations for the detailed balance can be found in Eqs. (6.29) and (6.30) in the appendix.

Moreover, Cabcd contains the overlap of the eigenstates with the operator from the interaction

Hamiltonian of the type 〈a | Sk |b〉. In our case, the system Hamiltonian H = HQI presented

in Eq. (6.1); we do not use the principle value part which occurs due to a pole in the in-

tegration over the spatial and time integral to reach the coupling constant. The principal

value part is a imaginary contribution and adds a correction to the Hamiltonian part of the

Lindblad equation, but does not alter the Lindblad operators in the dissipative part of the

Eq. (6.6). A detailed explanation of these steps and the rates used for the simulations follows

in App. 6.9.

6.3.2.2 Neighborhood single-channel Lindblad equation

The neighborhood single-channel Lindblad operators allow us to express the action of

the environment in terms of the number of decaying channels which grows with the number

of qubits only. This advantage, together with the fact that they act only on a neighborhood,

make them computationally more feasible. Our design of the neighborhood single-channel

Lindblad operators is inspired by the spectral decomposition described in Sec. 6.3.2.1, but

does not strictly follow the spectral decomposition. In detail, we can write the eigenstate |a〉

as a tensor product between the state |a〉k on site k and the state |a〉k̄, where k̄ is the set of

all other sites k′ with k′ 6= k. This formulation allows us to execute the following reduction:

5This upper bound could, in theory, be reduced to d2Nloc−1, but is not of interest for numerical implementation.
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|a〉〈a | Sk |b〉〈b | = |a〉k〈a |k Sk |b〉k〈b |k ⊗Ik̄ , (6.10)

where Ik̄ is the identity operator acting on the specified Hilbert spaces. Thus, these local

operators induce the transition between the eigenstates | a〉 of the Hamiltonian HS in the

paramagnetic limit. We resolve the ferromagnetic limit with neighborhood operators acting

on up to three sites, where the neighborhood operator is in our eyes the price to pay to

resolve the energy contributions from the interaction Hamiltonian depending on the state

of two neighboring spins in the system. This approach reduces the number of decaying

channels to one, i.e., a pair of Hermitian conjugate operators with the corresponding rates,

in the paramagnetic limit. We obtain two decaying channels, i.e., two pairs of Hermitian

conjugate Lindblad operators, in the ferromagnetic limit.

More details about the neighborhood single-channel Lindblad operators are given in

Sec. 6.4. We note that to observe thermalization in the paramagnetic limit, we have to

choose a coupling operator which is not diagonal to the paramagnetic Hamiltonian, for

instance, Sk = σzk. A complete numerical analysis of the system dynamics for such a case is

presented in App. 6.8.

6.3.3 Properties of the Lindblad equation

It can be analytically shown that when the dissipative rates and Lindblad operators of

the Lindblad equations obey the detailed balance conditions, as happens in the derivation

of Sec. 6.3.2.1, its steady state or fixed point is a thermal state of the system [49]. We define

the thermal state of the quantum system for the temperature T as

ρth = exp (−βHS) /Z , (6.11)

with β = 1/(kBT ) and the partition function Z = Tr [exp (−βHS)], where HS is the Ising

model in our case. However, even if the multi-channel Lindblad equation of Sec. 6.3.2.1

governs the evolution, the system may not relax to the thermal state. To analyze this

117



as well as the decay rates of the system, it is convenient to consider the formulation of

the Lindblad equation in its vector form Eq. (6.6), with the Liouville operator defined in

Eq. (6.7). Since the Liouville operator is not Hermitian, its diagonalization gives rise to left

and right eigenvectors. The right eigenvectors, denoted as |vj〉〉, fulfill the condition L |vj〉〉 =

Λj |vj〉〉, where Λj are the corresponding eigenvalues of the Liouville operator L. Thus, the

eigenvectors |vj〉〉 form a complete basis and we can express any initial density matrix as a

linear combination of the basis vectors with some complex weight cj, i.e., |ρ(0)〉〉 =
∑

j cj |vj〉〉.

The time-evolved state can then be written as

|ρ(t)〉〉 =
∑
j

cje
Λjt |vj〉〉 , (6.12)

where cj = 〈〈vj|ρ(0)〉〉. Hence, the weights of the eigenvectors with eigenvalues Λj having

zero real part do not change over time and, therefore, they correspond to steady states.

However, the eigenvectors with a negative real part will decay to a steady state, with a

decaying time scale given by |<(Λj)|, where < refers to the real part. Eigenvalues with a

positive real part cannot exist for physically meaningful states as the norm would grow over

time. If the steady state is unique, there is a single eigenstate with zero real part eigenvalue.

If we sort the eigenvalues as |<(Λj)| ≤ |<(Λj+1)|, the first one denoted as Λ0 corresponds

to the zero real part, while the second eigenvalue |<(Λ1)| defines the gap of the Liouville

operator and defines the longest possible timescale for decaying to the steady state. Further

details have been discussed in literature [190, 193, 194].

Therefore, the eigenvalues Λj with zero real part do not change over time, and their eigen-

vectors are steady states, given they have the characteristics of a density matrix. Eigenvectors

of L with negative real part eigenvalues will decay to a steady state, where the timescale of

the decay depends on |<(Λj)|. Eigenvalues with a positive real-part cannot exist for phys-

ically meaningful states as the norm would grow over time. If the steady state is unique,

the thermal state is the steady state and, thus, |<(Λj)| characterizes the timescale for the

thermalization. The second eigenvalue |<(Λ1)| of L is dubbed the gap of the Liouville op-
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erator as it defines the longest possible timescale for decaying to the steady state; the first

eigenvalue is Λ0. Detailed aspects can be found in [190, 193–195].

6.3.4 Symmetries

As mentioned in Sec. 6.2 the Ising model has a Z2 symmetry that is preserved by the

dissipation, i.e., the Hilbert space is divided into two symmetry sectors. For simplicity our

analysis of thermalization will be within the even sector. Thus, instead of analyzing ther-

malization to the total state defined in Eq. (6.11), we will analyze the system thermalization

to

ρe
th =

exp (−βHe
S)

Z
, (6.13)

with He
S the Ising Hamiltonian in the even sector. We briefly visit the odd symmetry section

in App. 6.8. The use of the symmetry has three advantages:

Firstly, if we do not use the symmetry and do not break it with an additional symmetry

breaking field, we have at minimum two steady states, i.e., one for each symmetry sector.

Eigenvectors of degenerate eigenvalues can be rotated in the degenerate subspace, which

makes it difficult to identify the steady state for each symmetry sector. If we obtain for

instance a third degenerate state, we have to identify which sector has actually two steady

states, while the remaining eigenvector must be the unique steady state of the other sector.

In our study, for instance, we find up to four degenerate states within a single symmetry

sector for just two qubits. Resolving and separating the symmetry sectors from the beginning

simplifies the analysis.

Secondly, the symmetry improves the computational scaling. For our spin system, the

size of the Liouville operator decreases from 22N × 22N to 22(N−1) × 22(N−1) which simplifies

computational operations such as the eigenvalue decomposition. Therefore, we also have

only two sets of 22(N−1) eigenvalues and eigenstates instead of 22N .
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Finally, since the Lindblad operator also conserves the symmetry, the probability be-

tween the two symmetry sectors does not change during a time evolution. However, to

thermalize to the global thermal state defined in Eq. (6.11) the probability of each sector

should also change as a function of the temperature. Thus, if we start in the ground state

being one hundred percent in one symmetry sector, we cannot thermalize to Eq. (6.11) as we

cannot dynamically move some probability into the other sector. However, the system will

thermalize to Eq. (6.13). Thus, the inclusion of symmetries has benefits regarding multiple

aspects.

6.4 Thermalization in the paramagnetic and ferromagnetic limits

We introduce in this section the neighborhood single-channel Lindblad operators. For this

approach, we take the lessons learned from the spectral decomposition of the multi-channel

approach. The idea is to mimic the spectral decomposition obtained for independent local

reservoirs by introducing simpler local or neighborhood single-channel Lindblad operators,

corresponding to the paramagnetic and ferromagnetic limits, respectively. With a simpler

structure, they serve as an approximation for multi-channel Lindblad operators. Therefore,

the neighborhood single-channel Lindblad operators are very useful to describe dissipation

in many-body systems without considering the complete energy spectrum, but while still

transitioning between energy eigenstates.

6.4.1 Neighborhood single-channel operators in the paramagnetic limit

To derive simpler Lindblad operators which in the paramagnetic limit give rise to ther-

malization, we consider solely for this subsection to Sk = σzk. We concentrate on the action

of the operator Sk in |a〉〈a | Sk |b〉〈b | on site k, and aim to isolate the site k when accounting

for this step. The Schmidt decomposition [85] allows us to rewrite the eigenstates | a〉 and

|b〉 in terms of a bipartition between the site k and all others sites k̄, i.e., all k′ with k′ 6= k.

This decomposition depends on the site k and is written as
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|a〉 =
∑
i

λika |aik〉 |ak̄i〉 , |b〉 =
∑
j

λ′jkb |bjk〉 |bk̄j〉 . (6.14)

The Schmidt decomposition characterizes the entanglement between two subsystems of a

pure quantum state and generates two orthonormal sets of basis states for each of the bipar-

tition. The Schmidt decomposition uses a singular values decomposition, i.e., a generalized

eigenvalue decomposition applicable to rectangular matrices; therefore, the basis depends

on the actual state. The weight of each basis state within the decomposition is set via the

singular values λika, which are larger than or equal to zero by definition. So far, the new

formulation is generally applicable, and we obtain

|a〉〈a | Sk |b〉〈b | =
∑
ij′

ij′C[k]
ab |aik〉〈bj

′

k | ⊗ |aik̄〉〈b
j′

k̄
| ,

ij′C[k]
ab = λikaλ

′
j′kb

(∑
i′j

λi′kaλ
′
jkb〈ai

′

k | Sk |bjk〉 ·
〈
ai
′

k̄

∣∣∣bjk̄〉
)
. (6.15)

The coupling ij′C[k]
ab is defined with a similar notation as used for the rates of the multi-channel

case in Eq. (6.26); a and b are eigenstates of the system Hamiltonian HQI. Subscripts (super-

scripts) for the eigenstate label the subsystem (basis state) for the Schmidt decomposition.

To distinguish the basis state of the Schmidt decomposition in the weight C, the orthonormal

basis states of the Schmidt decomposition are a superscript in front of the symbol. The upper

and lower limit for the indices running over the basis states of the Schmidt decomposition

depends on the system size and amount of entanglement and is therefore not specified.

We know that the eigenstates are product states of local eigenstates of the Pauli matrices

for the paramagnetic limit, i.e., product states of spins aligned and anti-aligned with the

external field. The Schmidt decomposition of a product state has exactly one non-zero

singular value, e.g., λ1ka = 1. Thus, Eq. (6.15) reduces drastically, and we obtain

ij′C[k]
ab = 〈ai′=1

k | Sk |bj=1
k 〉︸ ︷︷ ︸

(I)

〈
ai
′=1
k̄

∣∣∣bj=1

k̄

〉
︸ ︷︷ ︸

(II)

, λ1 = λ′1 = 1 , (6.16)
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while all other Schmidt values being zero. We interpret the two terms (I) and (II) in

Eq. (6.16) as conditions when there are non-zero contribution to the coupling ij′C[k]
ab ; we

use an orthogonal set of basis vectors for k and k̄ and thus each of the terms is either 0

or 1. These equations can be used directly to construct the Lindblad operators for the

paramagnetic limit considering the conditions (I) and (II). The condition (I) marked in

Eq. (6.16) is fulfilled if 〈ai′=1
k | and |bj=1

k 〉 are anti-aligned as Sk flips the spin. Condition (II)

from Eq. (6.16) is equal to one if the sites k′ 6= k do not change their state. Thus, we obtain

that the Lindblad operator for each site, producing cooling of the system is

L[k] = |↑x〉k〈↓x|k , (6.17)

while (L[k])† produces cooling respectively. The state on site k aligned with the external

field in the x-direction is |↑x〉k, while the state anti-aligned is |↓x〉k. Therefore, the Lindblad

operator in Eq. (6.17) aligns the spin k with the external field and brings this spin to the

ground state of the paramagnetic limit. Further details are presented in App. 6.8.

6.4.2 Neighborhood single-channel operators in the ferromagnetic limit

For the ferromagnetic limit, we return to Sk = σxk and start over at Eq. (6.15). For

simplicity in the derivation, we do not consider the Z2 symmetry here. Therefore, we have

two degenerated ground states, |↑ · · · ↑〉 and |↓ · · · ↓〉. Arrows without a subscript indicate

implicitly basis states in the z-direction. Considering a similar argument as in the para-

magnetic limit we could be tempted to chose the Lindblad operators acting solely on each

site k as |↑〉k〈↓|k and its conjugate |↓〉k〈↑|k. However, due to the energy contribution from

the nearest-neighbor interactions, it is not clear whether these operators increase the system

energy, leave it equal, or decrease it, which is essential for them to fulfill the detailed balance

condition and thus produce thermalization.

To solve this problem, we propose Lindblad operators defined on a neighborhood of up

to three sites. The operators acting on the additional spins help to identify how the energy
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changes depending on the state of the nearest-neighbors. Thus, we call them control-spins

that decide upon the flip of the middle spin during the process.

We associate the complete three-site operators with heating (cooling) depending on

whether they increase (decrease) the energy when driving the system toward a thermal

equilibrium as they fulfill the detailed balance between different energy levels of the system

Hamiltonian HQI. Operators which do not change the energy are not taken into account. In

this way, we can distinguish between a thermalization and randomization of the system. In

detail, we define the states |m〉k =|↑↑↑〉k, |o〉k =|↑↓↑〉k, |r〉k =|↓↑↓〉k, and | t〉k =|↓↓↓〉k on the

three neighboring sites k− 1, k, k + 1. In addition, we define the two site states |u〉k =|↑↑〉k,

| v〉k =|↓↑〉k, | w〉k =|↑↓〉k, and | x〉 =|↓↓〉k for the sites k and k + 1. We can now define a

generic Lindblad operator L
[k]
ab =| a〉k〈b |k acting on the bulk of the system on a three-site

neighborhood. Then, the heating operators have the form

L
[k]
rt = |r〉k〈t |k , L[k]

om =|o〉k〈m |k , k = 2, . . . , N − 1 ,

(6.18)

and give rise to an increase in energy. Further, we define the Lindblad operators L
[1]
wx,

L
[1]
vu, L

[N−1]
vx , and L

[N−1]
wu for the boundary sites. Each of these Lindblad operators can be

interpreted as a spin flip with one or two control-spins. Similarly, we define the operators

for cooling the bulk of the system as their Hermitian conjugates, i.e.,

L
[k]
tr = | t〉k〈r |k , L[k]

mo =|m〉k〈o |k , k = 2, . . . , N − 1 ,

(6.19)

and L
[1]
xw, L

[1]
uv, L

[N−1]
xv , and L

[N−1]
uw for the boundary sites. Each of these processes in the

bulk of the system introduces an energy difference of ∆ = ±4J . The boundaries Lindblad

operators have an energy difference of ∆ = ±2J .
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6.4.3 Neighborhood single-channel operators in between the limits

We explored as well the possibility of using the neighborhood single-channel Lindblad

operators from both limits to capture the region between the limits with 0 < φ < π/2,

where the neighborhood single-channel operators for the paramagnetic limit are explained in

Appendix 6.8. An optimization over the ratio of the two coupling strengths, i.e., the coupling

strength for the neighborhood single-channel Lindblad operators from the ferromagnetic limit

and the local single-channel Lindblad operators for the paramagnetic limit, did not lead to

trace distances close to the steady state. For example, the trace distances for values of

φ ≈ π/4 do not drop below 0.1. This result indicates that the multi-channel approach

is required to picture thermalization in interacting many-body systems unless non-trivial

approximations can simplify dynamics to neighborhood single-channel Lindblad operators.

6.5 Thermalization timescales

We have introduced three different possibilities for coupling the spins of the quantum

Ising model to reservoirs, as described in Sec. 6.3.1 and Figure 6.1. In the following, we

analyze both time evolution of the system and the spectrum of the Liouville operators L. We

execute this analysis for the different scenarios of a system-environment coupling sketched

in Figure 6.1 and presented in Eqs. (6.2) to (6.5). Firstly, we find the timescale for the

thermalization of the system for the multi-channel Lindblad operators.

We compare data from the Liouville operator L and the time evolution in selected figures

throughout the paper. We explore two different conditions for the thermalization time, Tth

based on the macroscopic observable of the averaged magnetization σ̄x in the x-direction,

and TthD based on the trace distance D:

Tth = min
t

(
|σ̄x(t)− σ̄xth| < 10−10

)
, (6.20)

TthD = min
t

(
D(ρ(t), ρth) < 10−10

)
, (6.21)

σ̄x =
1

N

N∑
k=1

〈σxk〉 , D(ρ, ρ′) =
1

2
‖ρ− ρ′‖ . (6.22)
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The density matrix of the thermal state is ρth, and the corresponding expectation value of

the average magnetization is σ̄xth. We use these measures for both initial states, i.e., the

ground state and a random state, throughout our analysis.

We may use a quick analogy system to motivate our choice to extract the timescale.

Assume we have a three-level V -system and we want to extract the timescale for the spon-

taneous emission into the ground state when there is no driving of the transitions. (i) We

can fit a double-exponential, e.g., A1 exp(λ1t) + A2 exp(λ2t), to capture both timescales at

once, which is preferable if we know the number of timescales involved and there is no decay

possible between the two excited states in the V -system. (ii) We can fit one exponential

knowing that it is not the ideal fit. (iii) We can wait until the ground state has a certain

probability close to one and this time is dominated by the longest timescale. When this

probability is reached, we can extract the timescale without being biased by the multiple

timescales of the dynamics on a short timescale.

However, the number of timescales in the Liouville operator grows with the number of

sites in our many-body system and, their contribution will depend on the initial state. The

timescales involved in the decay can be far more complicated than a V -system in our case.

Thus, we will use option (i) for the two-qubit system knowing the number of timescales

is 2 and switch to option (iii) for the remaining analysis avoiding the problems identified

with (i) and (ii). We point out that even in the two-qubit case in Figure 6.2, the double-

exponential fit cannot resolve the two timescales over the full range of φ failing for small φ.

Choosing a relatively tight threshold of 10−10 ensures capturing the longest timescales while

being definitely above the machine precision of 10−14. Based on these considerations, we can

extract the slowest rate from the expected exponential decay as

<(Λj) =
− log (D(ρ(dt), ρth)/D(ρ(TthD), ρth))

TthD − dt
, (6.23)

where we would replace the distance with the difference to the steady state values for macro-

scopic observables as the magnetization. The first measurement is after one time step, i.e.,
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Figure 6.2: Thermalization timescales for the multi-channel Lindblad operators with a com-
mon reservoir. We consider two different criteria for the thermalization timescale for N = 2
qubits in the even sector of the Z2 symmetry and the operator σx in the interaction Hamil-
tonian starting from a random pure state. We use the scenario (a) with a common reservoir,
i.e., the multi-channel Lindblad equation. (a) The thermalization time necessary to approach
the steady state value of the magnetization up to a tolerance. We observe thermalization
times for this macroscopic measure larger than our evolution time τ = 10 and indicate the
corresponding region in white color. These long timescales appear towards the paramagnetic
limit. (b) The local magnetization plotted over time describes the transient behavior to the
steady state value, which slows down towards the paramagnetic limit φ = π/2, see red col-
ored curves. Circles indicate the time where the magnetization is first within tolerance to
the steady state value.

dt, and the value of j depends on the initial state and which timescales it follows. The equa-

tion can be derived taking the logarithm of the ratio at two points in time while assuming

and exponential decay, i.e., D((ρ(dt), ρth)/D(ρ(TthD), ρth) = exp(<(Λj)(dt− t)). We choose

the thermalization time TthD and the first measurement after one time step in the evolution

dt to cover a long interval. Later on, we observe in our examples that different initial states

pick up either the first non-zero eigenvalues of the Liouville operator L with j = 1 or the

second, that is j = 2.

6.5.0.1 Two site systems

Figure 6.2(a) shows an increasing thermalization time before the thermalization time is

beyond the total time of the evolution τ = 10 for φ & 0.9π
2
, where φ can tune between the
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ferromagnetic and paramagnetic phase of the quantum Ising model, as previously defined in

Eq. (6.1). These simulations are for a random, pure initial state. We point out that both

measures yield different thermalization times Tth and TthD. The maximal difference between

the two definitions for all data points with a thermalization time smaller than τ is 3.75. While

the magnetization, e.g., σ̄x in the x-direction from Eq. (6.22), is more useful with regards

to experiments, we use for further calculations the trace distance D. Orthogonal states can

yield the same magnetization or energy. This problem becomes more exposed as we are

dealing with an ensemble of pure states. The actual convergence of the x-magnetization at

a temperature T = 0.11 over time shows the same trend in Figure 6.2(b).

We now analyze in Figure 6.3 the Liouville spectrum corresponding to the Lindblad

master equation Eq. (6.6). The figure shows that the Liouville operator has a unique steady

state apart from the limit φ = π/2. There is another unique steady state for the odd sector

of the Z2 symmetry. The gap, i.e., |<(Λ1)|, defines the timescale for thermalization. We

recall that this gap is in the Liouville operator and not to be mistaken for an energy gap

in the Hamiltonian. Larger eigenvalues |<(Λ1)| corresponding to a larger gap decay faster.

Thus, a particular decay scale Λj shall only be relevant if there is no projection of the initial

state on the eigenstates |vj′〉〉 with 0 < j′ < j. Treating a first order differential equation, we

expect the solution to be an exponential. Thus, we calculate an exponential decay λ for the

trace distance between the time-evolved state ρ(t) and the thermal state ρth:

Dfit = D(ρ(t = 0), ρth) exp(−λt) . (6.24)

This decay parameter λ, extracted from Eq. (6.23), captures the importance of the gap in

the Liouville spectrum as it matches the value of the gap, see Figure 6.3. To point out the

important role of the initial state we compare a system initialized in the ground state |ψ0〉

with a random pure state |ψR〉, and find out that the ground state thermalizes much faster

since it does not depend on the slower timescale present in the spectrum of L. In contrast,

the random initial state follows the long timescale.
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Figure 6.3: Spectrum of the Liouville operator for the global multi-channel Lindblad operators
with a common reservoir. The spectrum of the Liouville operator, here of case (a), defines
the thermalization timescale and we show the four eigenvalues of the two-spin problem in the
even sector as curves. Λ0 is the steady-state which has to have an eigenvalue with zero real
part. The rates emerge from the eigenvalues Λj, j > 0 of the Liouville operator and diminish
towards the paramagnetic limit, which leads to increasing thermalization timescales. The
empty circles show the results from fitting two exponentials A1 exp(λ1t) + A2 exp(λ2t) for
a random initial state | ψR〉 in the time evolution. The filled circles (squares) show the
timescale extracted from the trace distance dropping below 10−10 for the initial state |ψR〉
(|ψ0〉, i.e., the ground state). The four times degenerate eigenvalues Λ0 in the paramagnetic
limit lead to an infinite timescale for φ = π/2 and is not an artifact. We point out the
different timescales for the different initial states |ψ0〉 and |ψR〉.

Finally, Figure 6.3 also shows the failure of thermalization far in the paramagnetic regime.

The gap in the Liouville operator closes towards the paramagnetic limit φ → π/2 and

reaches degeneracy with four real parts of the overall four eigenvalues being zero within

machine precision for φ = π/2 preventing any thermalization. This property originates in

the fact that the eigenstates of the Hamiltonian are also eigenstates of the operator σx in

the interaction Hamiltonian building the full spectrum. Thus, they induce no transition but

represent a dephasing with respect to the two states of each site k.

6.5.0.2 Beyond two site systems

We now go beyond the two-site system and consider system sizes up to five sites in

the even symmetry sector. We investigate how the system size affects the thermalization

timescale, how does the coupling scheme affect the thermalization, and question the accuracy
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of considering neighborhood single-channels Lindblad operators. Along with this analysis,

we consider the multi-channel approach.

Figure 6.4(a) shows the spectra of the common reservoir for different system size N ∈

{2, 3, 4, 5} for the multi-channel approach. We observe that the gap of the Liouville operator

is decreasing for increasing system size leading to slower thermalization timescales. Interest-

ingly, although this observation is not shown here, this trend also occurs when considering

other decay rates different than the ones given by Eq. (6.29) which are here considered.

The different system-environment coupling schemes are analyzed in Figure 6.4(b). The

three thermalization timescales grow for the three cases as one gets closer to the paramagnetic

limit, where the thermalization time goes to infinity. Towards the ferromagnetic limit, the

thermalization time gets in general shorter. Moreover, the two configurations corresponding

to independent local reservoirs thermalizes faster than the one corresponding to a single

common reservoir. Indeed, the single common reservoir introduces spin-spin interactions

mediated by the field which apparently hinder the thermalization process. Moreover, the

configuration corresponding to all spins coupled to their independent reservoirs thermalizes

faster than the one where a single spin is coupled. The fact that the gap corresponding

to (a) is in general much smaller than in (b) can be exploited in two possible directions.

On the one hand, a common environment (a) will slow down dissipation and decoherence

processes when they are not desired, like in certain quantum information schemes. On

the other hand, independent local reservoirs can be used in situations where a thermal

state should be reached as fast as possible. Figure 6.4(c) and (d) corresponding to the

common and the independent local reservoirs respectively, show that the qualitative behavior

of the thermalization rate with φ is the same for all temperatures T . In both cases, we

observe a faster thermalization towards the ferromagnetic limit, but the common reservoir

case shows additionally the presence of a second gap minimum around φ = 0.3(π/2) for high

temperatures starting around T ≥ 0.51.
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We follow the finite-size scaling approach to extrapolate the value of the gap <(Λ1) from

the spectrum of the Liouville operator L for the thermodynamic limit N → ∞. We choose

the function

|<(Λ1∞)−<(Λ1N)| = α1N
α2 ⇐⇒ <(Λ1N) = <(Λ1∞)− α1N

α2 , (6.25)

where the system size N is the function argument, the absolute value is resolved by the

trend observed in Figure 6.4, and we fit the values <(Λ1∞), α1, and α2. We consider all

three scenarios (a), (b), and (c) for the finite-size scaling and do not obtain consistent values

throughout our analysis, i.e., some rates for N = ∞ become positive including the effects

from the errors bar indicated by the fit. Thus, the question of the thermalization rate for

larger systems and the thermodynamic limit remains an intriguing question for quantum

simulator experiments.

To analyze the feasibility of using neighborhood single-channels to simulate thermaliza-

tion, we focus on the independent-local reservoir configuration (b). Figure 6.5 considers the

neighborhood single-channel Lindblad operators mimicking the transition between the eigen-

states presented in Sec. 6.4; strictly, these Lindblad operators represent the energy transition

between eigenstates only in the ferromagnetic and paramagnetic limits, respectively. As pre-

viously discussed, these Lindblad operators produce spin flips. In the paramagnetic limit flips

spins locally independent of the state on neighboring sites and are described by Eq. (6.17).

In contrast, the spin flip is controlled by the nearest-neighbor sites in the ferromagnetic limit,

as described by Eqs. (6.18) and (6.19).

We consider the ferromagnetic single-channel Lindblad operators in our simulations to

evolve a random initial state until a time τ = 10 and plot its trace distance to the thermal

state in Figure 6.5(a). The system size for the data is N = 4. We set the minimal trace

distance to 10−3 for a meaningful coloring away from the ferromagnetic limit φ = 0. As

expected, the simple single-channel approach makes the system converge to the thermal state

in the ferromagnetic limit, and it does so down to a trace distance of 10−14. We observe that
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we reach relatively small trace distances to the thermal state of 10−2 for small perturbations

of φ . 0.032π
2

around the ferromagnetic limit. However, the neighborhood single-channel

approach will not be valid away from the limiting case. Moreover, we observe that apparently,

at temperatures T ≤ 0.8 the system has not thermalized even in the ferromagnetic limit.

The reason for this is that the trace distance has been calculated at a time τ = 10 in

which the system might not have thermalized yet. Indeed, as observed in Figure 6.5(b) the

gap of the corresponding Liouville operator <(Λ1) is decreasing for smaller temperatures,

which confirms that a time τ = 10 is not enough to reach the thermal state in (a) for low

temperatures. However, we should stress that the same argument does imply that, away from

the small region around φ = 0, the system would thermalizing when considering longer times.

Indeed, the rate <(Λ1) indicates a fast convergence to a steady state, but nevertheless this

state does not correspond to the thermal one, which marks the failure of the neighborhood

single-channel Lindblad operators beyond the extreme ferromagnetic limit. We discuss the

neighborhood single-channel Lindblad operators for the paramagnetic limit in App. 6.8.

6.6 Conclusions

We studied thermalization of the quantum Ising model, concentrating on two different

approaches: (i) We consider a multi-channel approach, which considers Lindblad operators

producing transitions between the system eigenstates and is valid in any region of the phase

diagram. However, it is a problematic approach for larger systems as the number of en-

ergy eigenstates increases exponentially with system size. The numerical challenge becomes

visible when trying to simulate an open system composed of six qubits, which corresponds

to twelve qubits in a closed system from the perspective of taking a matrix exponential or

diagonalizing the operator. The careful construction for six qubits has to iterate over 4096

possible Lindblad operators and possibly construct their representation in Liouville space,

i.e., a matrix of size 4096 × 4096. (ii) We introduce neighborhood single-channel operators

mimicking the transitions between energy eigenstates in the ferromagnetic and paramag-

netic limits. This approach can be generalized to many-body quantum systems but, on the
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Figure 6.4: Thermalization rates for different systems with multi-channel Lindblad operators.
We use independent local reservoirs according to scenarios (b) and (c) with a multi-channel
Lindblad equation. (a) The rates for (a) extracted from the eigenvalue of the Liouville
operator Λ1 show that the thermalization slows down for an increasing number of qubits,
here shown as curves for N = 2 to N = 5. Circles (squares) represent the rate extracted
from the trace distance to the thermal state starting from a random state (the ground state)
in a time evolution. (b) The rate for different system-reservoir coupling schemes (a), (b),
and (c) from Figure 6.1 for N = 4. Curves, circles, and squares as in (a). Independent-
local reservoirs have faster thermalization rates; fastest in the case of all sites coupled to
their independent-local reservoir. (c) The rates for thermalization for N = 4 across different
temperatures T and values for φ for the common reservoir remain qualitatively the same
for temperatures T different to the one chosen in (a). (d) The rates for thermalization for
N = 4 across different temperatures T and values for φ are qualitatively similar for all T for
scenario (b).
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Figure 6.5: Neighborhood single-channel Lindblad operators. Three-site Lindblad operators
designed for the ferromagnetic limit thermalize in scenario (b) only in a very small region
around the ferromagnetic limit, and the multi-channel Lindblad operators are the only way
to thermalize the system in the complete range of the phase diagram. (a) The trace distance
between the time-evolved quantum state and the thermal state at the end of the time evo-
lution with τ = 10 shows thermalization around the limit φ = 0. (b) The rate given by the
eigenvalues of the Liouville operator answers the question if the time-evolved state in (a)
does not approach the thermal state at τ = 10 due to long timescales or due to the failure
of the neighborhood single-channel approach.

downside, it is only exact in these two limits.

We have studied the thermalization timescales as a function of the type of system reser-

voir configuration, the number of qubits in our system, and the effectiveness of neighborhood

single-channel Lindblad operators. The knowledge of regions with fast or slow timescale al-

lows one to enhance thermalization or to protect at least certain states from decoherence.

One could even design protocols to quench the system into a region protected from decoher-

ence and reverse the quench to regain the state when needed. The errors introduced due to

non-adiabatic quenches might be less critical than the errors from decoherence while storing

the state for a long time. In detail, we found the following.
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The timescale for thermalization increases toward the paramagnetic limit for all three

of our system-reservoir coupling scenarios and the multi-channel Lindblad operators,

i.e., the common reservoir, independent local reservoirs for each site, and one local

reservoir for the first site. This trend is related to the choice of σx in the interaction

Hamiltonian between system and reservoir. The common reservoir has the slowest

thermalization time among these three cases. Independent local reservoirs thermalize

faster if all sites are coupled to a reservoir instead of only one site. This result is

supported by data from the spectrum of the Liouville operator and the time evolution

of the Lindblad equation. Thus, we suggest the independent-local reservoir scenario to

enhance thermalization or the common reservoir to suppress it and extend coherence

times.

a)

The thermalization time slows down for the common reservoir with increasing system

size between two and five qubits. A further aspect is a second local minimum for

the gap in the Liouville operator spectrum for five qubits and temperatures above

T ≥ 0.51. Although the minimum is not very distinguished, it might be used as a

“sweet spot” with the slowest thermalization timescale around 0.3(π/2) if the region

with φ > 0.7(π/2) and an equivalent timescale is not an option.

b)

Our approximation using neighborhood single-channel Lindblad operators, designed

for the ferromagnetic and paramagnetic limits, mimic thermalization only in a very

narrow region around the extreme limits.

c)

The approach presented leaves open a variety of parameters to be studied in more detail.

One may explore all possible angles between the direction of the dipoles and the spin chain,

or even think about different dipole directions for each spin. The distance between the spins

could also be changed to a non-equidistant spacing to reproduces what happens, for example,

in one-dimensional ion traps. There are other questions which can be addressed within this

framework, such as the coupling to reservoirs at different temperatures and the resulting
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equilibrium temperature and possible temperature gradients. Another possible extension to

this research is the increase of precision. If we have such a well-defined description of the

system-reservoir interaction being able to express interactions of distant spins mediated by

the reservoir, we may include the long-range interactions intrinsic to the system’s Hamilto-

nian in a next step. These long-range interactions occur in various experimental platforms

and change the statics and dynamics of a closed system [176].

We also suggest revisiting the secular approximation towards many-body systems; the

large number of possible transitions will increase the possibility of smaller differences between

two transition frequencies for an increasing number of spins. Moreover, it remains an open

question if the conclusions are altered when going beyond the Markov and weak coupling

approximations. This question evolves toward the thermalization of non-Markovian open

quantum systems [65, 196, 197].

Relaxing these approximations can open the way to consider further experimental se-

tups which are not covered by the approximations of the Lindblad equation. An example

is a sympathetic cooling in ultracold atomic and molecular experiments [198]. Ultracold

molecules have been considered in the context of collisions leading to decoherence of the

system [199, 200], which can be described with the Lindblad master equation. However,

considering the environment as a quantum gas may allow one to explore Fermi vs. Bose

statistics, by selecting the corresponding isotopes, or choosing a coupling which ranges from

weakly to strongly interacting. Further, some open systems cannot be described with a

Markov approximation such as ladder-type structures where the system is of the same size

as the reservoir [201]; one rail represents the system, the other the environment. Another ex-

ample is the few nuclear spins of 13C atoms surrounding a color center [202]. Future research

may focus on local or neighborhood single-channel operators leading to the thermalization

of the system, for and beyond the quantum Ising model. Such a step would help to move

beyond five spins and towards the thermodynamic limit.
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6.7 Thermalization for odd symmetry sector and Sk = σzk
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Figure 6.6: Summary for the odd symmetry sector. (a) Thermalization timescale for the odd
symmetry sector via the trace distance. We observe the same trend as in the even sector,
i.e., the timescale becomes longer toward the paramagnetic limit. Time evolution for τ = 10;
white regions do not meet criterion within this time. (b) Rate and timescales for different
system sizes for the global multi-channel approach and initial states. The curves represent
the closing rate toward the paramagnetic limit and for growing system size. A random initial
state (circles) matches this rate of the Liouville operator L; the ground state (squares) as
initial state thermalizes faster.

The article picked so far the choice of the even symmetry sector of the Z2 symmetry.

We summarize the odd sector in this brief appendix. We expect similar behavior. The

thermalization time TthD is slowing down toward the paramagnetic limit, see Figure 6.6(a)
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for multi-channel Lindblad operators in scenario (a). If we consider increasing system size

N within the same setup, we note that the gap is closing for an increasing number of qubits.

The initial state has an equal effect on the timescale as in the even sector: the ground state

(squares) has a shorter thermalization time than the random initial state (circles); the latter

match the gap <(Λ1) in the spectrum of the Liouville operator L. We conclude from these

two examples, that the feature presented in our work are not unique to the choice of the

symmetry sector.

6.8 Thermalization for Sk = σzk

Up to now, all the numerical calculations in the paper have considered the system coupling

operator as Sk = σxk . However, in this appendix, we analyze the case Sk = σzk. We have

some obvious changes associated with this choice. (i) The paramagnetic limit can now

thermalize as the eigenstates of the paramagnetic limit do not correspond to the eigenstates

of Sk. In contrast, thermalization in the ferromagnetic limit suffers from this effect where

the Lindblad operators induce a dephasing, but no transitions. (ii) The Z2 symmetry is

broken by the Lindblad operator, and there is no distinction between the odd and the even

sector for this choice Sk = σzk. Figure 6.7(a) shows the thermalization timescale TthD for the

multi-channel approach, as defined in Eq. (6.22). We observe the opposite behavior than

before, as expected: the ferromagnetic limit now has a slow timescale indicated by the white

regions where the criterion is not met within τ = 10. We study the gap as a function of

the system size in Figure 6.7(b), where the gap of the Liouville operator decreases for larger

system sizes comparing N = 2, 3 and 4. Analogously to Figure 6.4(a), the data represents

scenario (a) with the multi-channel Lindblad operators. Thus, the thermalization timescale

also gets slower for larger systems in this case.

We now consider the single channel Lindblad operators derived in Sec. 6.4 for the para-

magnetic limit, which are given by Eq. (6.17) for cooling the system, while its Hermitian

conjugate heats it. To rephrase the operators in terms of the transition between states ac-

cording to Eq. (6.6), we would define the states |y〉 =|↑〉k and |z〉 =|↓〉k and the corresponding
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Figure 6.7: Summary for operator Sk = σzk in the interaction Hamiltonian. (a) The ther-
malization time TthD determined via the trace distance show longer timescales towards the
ferromagnetic limit. White areas indicate thermalization times beyond τ = 10. (b) The
rate of the Liouville operator for the multi-channel approach with a common reservoir with
growing system size. The rate decreases toward the ferromagnetic limit and decreases for
increasing system sizes. (c) We choose the neighborhood single-channel Lindblad operators
designed for the paramagnetic limit on a system of L = 4. We observe that the system only
thermalizes in the limit φ = π/2 and these operators cannot be used apart from φ = π/2.
Here, we consider the final state of the time evolution with τ = 10 starting from a random
initial state. The rate has non-zero values around φ ≈ π/2 and does not prevent thermal-
ization.

Lindblad operators L
[k]
yz and L

[k]
zy . The corresponding energy difference used to calculate the

rates is ∆ = ±2g. These Lindblad operators correspond to spin raising and lowering op-

erators in the x-direction, and therefore they are similar to the single-channel approaches

usually considered in the literature [61, 169–171]. Figure 6.7(c) shows that indeed the chosen

single-channel operators thermalize the system in the paramagnetic limit. The distance to

the thermal state in the limit φ = π/2 is below 10−12, but we set the minimal trace distance

artificially to 10−3 for better visualization of the gradient around the limit.

6.9 Full Spectrum with local and global reservoirs

We turn to a more detailed description of the full spectrum approach. We consider the

spins of the quantum Ising model coupled to an electromagnetic field in three dimensions,

based on references [191]. The electromagnetic fields serve as an example to settle relations

such as the dispersion relation. We provide the major steps to allow readers to follow
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the approach. The derivation includes the introduction of the energy eigenstates in the

interaction picture to resolve the secular approximation correctly. We obtain the Lindblad

equation presented in Eq. (6.6), where we specify the coupling as

C[jk]
abcd = δb−a,d−cγ

[jk]
abcd , Cabcd =

N∑
j=1

N∑
k=1

C[jk]
abcd . (6.26)

The secular approximation introduces the Kronecker delta and forces both Lindblad op-

erators to correspond to the same transition frequency. The coupling γ
[jk]
b−a encodes the

dependence on the reservoir and the spatial distance between the sites j and k. To simplify

the indices for the coupling C, we put indices running over the complete set of eigenvectors

of the system Hamiltonian HQI in the subscript, i.e., a, b, c, and d. The superscript contains

in brackets the corresponding sites where the operators Sk from the interaction Hamiltonian

is acting on. This operator, in our examples chosen as Sk = σxk , enters as the overlap of the

eigenstates with σxk acting on the eigenstate:

γ
[jk]
abcd = 〈a | Sj |b〉〈d | Sk |c〉γ(b− a, |j − k|) . (6.27)

The remaining function γ(b − a, |j − k|) calculates the coupling for the given reservoir for

a specific energy transition and spatial distance. The dependence on the temperature T

is implicit. We consider an electromagnetic field in three dimensions in the following as

our reservoir for the quantum Ising model. The interaction between the spins in our chain

and the reservoir is governed by the dipole interaction with the field. We assume that the

dipoles are aligned with the spin chain leading to ξ ≡ (~ddip · ~rjk)/(ddiprjk) = 0. The last

step assumes that the spin chain is orthogonal to the dipole moments of the spins, i.e., the

distance ~rjk = ~rj −~rk is orthogonal to the dipole moment of the spins, which are all in equal

as previously assumed. The transition frequency is ω = b − a. We use for the zero spatial

distance case j = k
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γ(ω, 0) = ñ(ω)
4ω3d2

dip

3C3︸ ︷︷ ︸
=Γ0

= ñ(ω)Γ0 . (6.28)

Here, C is the speed of light and ñ(ω) is the Bose-Einstein statistic. The coupling γ for the

non-zero spatial distance is

γ(ω, rjk) = ñ(ω)Γ0

(
(1− ξ2)

−ieiωrjk

ωrjk
+ (1− 3ξ2)

(
eiωrjk

(ωrjk)2
+

ieiωrjk

(ωrjk)3

))
. (6.29)

We point out the role of the angle between the direction of the spin chain and the dipoles of

the spins, where the dipole of each spin is pointing in the same direction. If the are parallel

and ξ = 1, the first term in Eq. (6.29) is canceling and the second and third order term in

1/rjk survive. In contrast, for ξ = 1/
√

3, the second and third order terms in 1/rjk is set

to zero, while the first order term remains with a pre-factor of 2/3. This case is apart from

the pre-factors such as Γ0 the case of the spins coupled to BEC and shows the versatility

at which this system can be tuned. We ran simulations similar to Figure 6.4(a) for selected

values of ξ and observe the same behavior, i.e., the thermalization timescale slows down for

more qubits.

The last missing piece is the Bose-Einstein statistics ñ(ω) carrying the dependency on

the temperature of the environment. The Bose-Einstein statistics are encoded as

ñ(ω) =

{
n(ω) , ∀ω > 0 ,

1 + n(−ω) , ∀ω < 0 .
(6.30)

This approach leads to an enormous number of multi-channel Lindblad operators. The

number of energy levels is dNloc with a local dimension of dloc = 2 in the quantum Ising model.

The possible transitions are then d2N
loc . We finally have d2N

locN(N + 1)/2 possible couplings

iterating over the N sites in the system where the environment could interact. We suggest

a reduction of the number of terms in three steps to decrease the number of multi-channel

Lindblad operators for future studies. (1) Truncate high energy levels in the quantum system
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according to the temperature of the environment. Thus, we assume that the system will

thermalize at the same temperature. This approach is restricted to simulations starting in the

ground state. If the initial state has a projection onto an excited state which was truncated,

there is no possibility to decay to an energetically lower state. Therefore, we do not employ

this truncation. (2) Truncate transitions between the energy levels based on the weight

〈a | Sk | b〉. For zero overlap, the operator in the interaction Hamiltonian Sk cannot induce

the transition between the eigenstates | a〉 and | b〉 and, therefore, the Lindblad operator

Lab does not contribute. For small overlaps in comparison to other Lindblad operators,

the operator Lab has only an insignificant contribution. (3) Truncate transitions based on

the probability of the transition induced by the bath. Overall, these truncations will allow

one in future to reduce the number of multi-channel Lindblad operators significantly for a

multi-channel approach.
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CHAPTER 7

DERIVATION OF THE LINDBLAD EQUATION FOR THE QUANTUM ISING CHAIN

In this chapter, we present a complete derivation of the Lindblad master equation in

the case of the quantum Ising chain. Similar derivations can be found in textbooks, e.g.,

reference [49], but details of the many-body scenario are worth being explicitly discussed.

This derivation is used for Chapter 6 and many ideas to elegantly solve the many-body

derivation go back to Inés de Vega and various discussions. We start with the definition

of the reservoir in Section 7.1 to have this Chapter accessible independent of the other

chapters. Then, we move to the interaction picture for the given Hamiltonian. The last pre-

calculating discusses the thermal state and its partial trace in Section 7.5. The next steps

are dedicated to deriving the Lindblad form in the interaction picture starting with the

Born-Markov approximation, the partial trace over the reservoir, the secular approximation,

and the conversion to Lindblad form from Sections 7.5 to 7.7. The last two chapters discuss

the transformation back to the Schrödinger picture in Section 7.8, and additional aspects on

the coupling between system and reservoir.

7.1 Hamiltonian for system and reservoir

We use for our derivation the following Hamiltonians of the system (S) and the reservoir

(R), which are

HS = −J
L−1∑
k=1

σzkσ
z
k+1 − g

L∑
k=1

σxk , (7.1)

HR =
∑
q

ωqnq . (7.2)

Thus, the system is the standard quantum Ising chain for L sites with open boundary

conditions, where the Pauli operators σxk and σzk acting on site k. The interaction strength

is J , and the coupling to the external field is g. For instance, we represent the reservoir as
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a large set of harmonic oscillators with different frequencies, where the summation over q is

not specified due to the large number. The number operator nq measures the occupation of a

specific mode q. The complete Hamiltonian (S+R) also includes the interaction Hamiltonian

HI between the two systems

HI =
L∑

k′=1

∑
q′

gk′q′σ
x
k′bq′ + g∗k′q′σ

x
k′b
†
q′ , (7.3)

HS+R = HS +HR +HI . (7.4)

The operator bq (b†q) is the annihilation (creation) operator for the mode q within the har-

monic oscillators in the reservoir. We use primed indices to distinguish them from the indices

use in Eqs (7.1) and (7.2), but the iterate over the same sites and set of harmonic oscillators.

The choice of the system operator σxk can be easily replaced with other types of interaction.

The coupling constant gk′q′ is kept general and depends on the site and frequency of the

harmonic oscillator; it fulfills Hermiticity via its complex conjugate g∗k′q′ ; we dedicate one

section at the end to explain the coupling and how to handle it, i.e., Section 7.9. We remark

that the following commutation relation holds

[HS, HR] = 0 , (7.5)

which becomes important in a few steps.

7.2 Interaction picture for system-reservoir scenario

We move to the interaction picture for the derivation of the Lindblad master equation,

which we define and derive here. The interaction Hamiltonian is evidently the perturbation

H1 = HI from Eq. (7.3); the Hamiltonians of the system HS and reservoir HR, i.e., H0 =

HS + HR. The Hamiltonian in the interaction picture is indicated with a superscript I in

brackets

H [I] = eiH0tH1e−iH0t , (7.6)
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where the time is t. We set ~ = 1 to avoid a too convoluted notation. We plug in the actual

terms for H0 and H1 and obtain while using the commutator from Eq. (7.5) to separate the

two Hamiltonians in the exponential

H [I] = ei(HS+HR)t

(
L∑

k′=1

∑
q′

gk′q′σ
x
k′bq′ + g∗k′q′σ

x
k′b
†
q′

)
e−i(HS+HR)t

=
L∑

k′=1

∑
q′

(
gk′q′e

iHStσxk′e
−iHSteiHRtbq′e

−iHRt + g∗k′q′e
iHStσxk′e

−iHSteiHRtb†q′e
−iHRt

)
=

L∑
k′=1

∑
q

(
gk′qe

iHStσxk′e
−iHStbqe

−i−ωqt + g∗k′qe
iHStσxk′e

−iHStb†qe
iωqt
)
. (7.7)

In the last step, we used the relations eiωqnqtbqe
−iωqnqt = bqe

−iωqt and eiωqnqtb†qe
−iωqnqt =

b†qe
iωqt. These relations also lead to q = q′ as number, creation, and annihilation operator

acting on different harmonic oscillators q 6= q′ commute. These relations are yielded from

the Baker-Campell-Hausdorff equation exp(X)Y exp(−X) = Y + [X, Y ] + 1
2!

[X, [X, Y ]] +

1
3!

[X, [X, [X, Y ]]] + . . . with X and Y matrices and the commutation relations
[
b†qbq, bq

]
=

b†qbqbq − bqb†qbq =
[
b†q, bq

]
bq = −bq as well as

[
b†qbq, b

†
q

]
= b†qbqb

†
q − b†qb†qbq = b†q

[
bq, b

†
q

]
= b†q in

the following equation. We recall that nq = b†qbq.

eiωnqtbqe
−iωnqt = bq + (iωt)

[
b†qbq, bq

]
+

(iωt)2

2!

[
b†qbq,

[
b†qbq, bq

]]
+ . . .

= bq + (iωt)(−bq) +
(iωt)2

2!

[
b†qbq,−bq

]
+

(iωt)3

3!

[
b†qbq,

[
b†qbq,−bq

]]
+ . . .

= bq

(
1 + (−iωt) +

(−iωt)2

2!
+

(−iωt)3

3!
+ . . .

)
= bqe

−iωt

(7.8)

The steps for the relation for b†q are similar, and we leave them to the reader. If we look

back at Eq. (7.7), we have successfully resolved the interaction picture for the reservoir, but

the exponential of the system Hamiltonian is still present. We use the eigendecomposition

of the Hamiltonian to resolve this piece, where the eigendecomposition of HS is
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HS =
∑
a

a |a〉〈a | , (7.9)

where a is looping over all eigenenergies a and their corresponding eigenvectors |a〉. Shortly,

we use the letters b, c, and d to iterate over the same set of eigenstates. The summation

limits are not specified to avoid convoluted notations, but the number of eigenstates in

the quantum Ising models scales with the system size L as 2L. The eigenstates form an

orthonormal basis, and the identity matrix can be written as

I =
∑
a

|a〉〈a | . (7.10)

To resolve the exponentials of the system Hamiltonian in the interaction picture, we concen-

trate on one term

eiHStσxk′e
−iHSt = eiHSt

∑
a

|a〉〈a | σxk′
∑
b

|b〉〈b | e−iHSt

=
∑
a

eiat |a〉〈ε | σxk′
∑
b

|b〉〈b | e−ibt

=
∑
ab

ei(a−b)t〈a | σxk′ |b〉 |a〉〈b |

=
∑
ab

eiωabtSk′(ωab) , (7.11)

where we introduce the shortcut for the difference of two eigenenergies ωab ≡ a−b and define

the operator Sk′(ωab) ≡ 〈a | σxk′ |b〉 ×|a〉〈b |. Thus, we obtain the interaction Hamiltonian

H [I] =
L∑

k′=1

∑
abq

(
gk′qe

i(ωab−ωq)tSk′(ωab)bq + g∗k′qe
i(ωab+ωq)tSk′(ωab)b

†
q

)
. (7.12)

We remind the reader that we loop over four indices, i.e., the site index k′ addressing each

spin in the chain, a and b loop over the eigenstates of the system Hamiltonian HS, and

the index q refers to the different harmonic oscillators in the reservoir. Furthermore, the

following relation holds for the new operator Sk′(ωab)
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S†k′(ωab) = (〈a | σxk′ |b〉 |a〉〈b |)† = 〈b | σxk′ |a〉 |b〉〈a |= Sk′(ωba) = Sk′(−ωab) . (7.13)

7.3 Implications of tracing thermal states

We study the thermalization and assume that our reservoir is in a thermal state at a

temperature T to be specified. This state is defined as

ρRth =
e−βHR

Z
, (7.14)

where β = 1/(kBT ), Z = Tr [exp(−βHR)] is the partition function, and Tr takes the trace

of a matrix. Our reservoir is a set of harmonic oscillators and, thus, diagonal in terms of

the harmonic oscillator states. This property leads to the fact that traces over the complete

reservoir under the action of annihilation and creation operators never contribute for an odd

number of operators; here, the first orders

Tr [ρR] = 1 , (7.15)

Tr [bqρR] = 0 , Tr
[
b†qρR

]
= 0 , (7.16)

Tr
[
b†qbq′ρR

]
= δqq′nq , Tr

[
b†qb
†
q′ρR

]
= 0 , Tr [bqbq′ρR] = 0 , (7.17)

Tr [OqOq′Oq′′ρR] = 0 , Oq ∈ {bq, b†q} . (7.18)

These relations become relevant when taking the partial trace over the reservoir under the

action of operators bq and b†q.

7.4 Dyson series to Born-Markov approximation

So far, we have collected a lot of mathematical relations; we can now start with the actual

derivation of the Lindblad equation. We write down the Dyson series for the density matrix

of system and reservoir for all even orders up to the second order

ρS+R(t) = ρS+R(t0)−
∫ t

t0

dt1

∫ t1

t0

dt2
[
H [I](t1),

[
H [I](t2), ρS+R(t2)

]]
. (7.19)
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We emphasize that this density matrix ρ is in the interaction picture. The argument to

exclude the odd orders of the expansion is based on the thermal state and Eqs. (7.16) and

(7.18). Later, we take the partial trace over the reservoir being in the thermal state. The

interaction Hamiltonian contains only first-order terms acting on the reservoir. Thus, odd

orders in the Dyson expansion have odd orders of operators acting on the reservoir and vanish

when taking the partial trace under the condition that the reservoir is in the thermal state.

Fourth-order and even-order higher terms of the Dyson expansion have contributions, which

are truncated. To obtain a differential equation, we take d/dt of Eq. (7.19). We continue

with

ρ̇S+R(t) = −
∫ t

0

dt2
[
H [I](t),

[
H [I](t2), ρS+R(t2)

]]
. (7.20)

The folded commutator is not very convenient for proceeding the calculation. We know

the fact that the Hamiltonian and the density matrix are Hermitian and use [H1, [H2, ρ]] =

H1H2ρ−H1ρH2 −H2ρH1 + ρH2H1 = H1H2ρ−H2ρH1 + h.c. = [H1, H2ρ] + h.c. to simplify

Eq. (7.20) as follows

ρ̇S+R(t) = −
∫ t

0

dt2
[
H [I](t), H [I](t2)ρS+R(t2)

]
. (7.21)

The next step consists of taking the partial trace over the reservoir. The left-hand side of

Eq. (7.21) is equal to the density matrix of the system ρ ≡ ρS; we discard to subscript S

indicating the system. On the right-hand side, we keep the partial trace as TrR and look

how to approximate it next.

ρ̇S+R(t) = −
∫ t

0

dt2TrR
[[
H [I](t), H [I](t2)ρS+R(t2)

]]
. (7.22)

The following assumptions allow one to obtain the Lindblad master equation. First, we

assume that system and reservoir are in a product state at all times
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ρS+R(t2) ≈ ρ(t2)⊗ ρR(t2) , (7.23)

This step is a good approximation if the correlations are small and can be written as

ρS+R(t2) = (1 − ε)ρ(t2) ⊗ ρR(t2) + ερ′(t2) ⊗ ρ′R(t2) in the next order and ε � 1. The

interpretation is that the correlations decay due to the large reservoir much faster than the

system can react. One example would be the spontaneous emission of a two-level system cou-

pled to the vacuum; it is unlikely that the emitted photon returns to the two-level system.

The picture changes completely when we would consider a two-level system in an optical

cavity, and above assumption breaks down. The second step is to approximate the state of

ρR(t2). The assumption is that the reservoir is large in comparison to our system and the

perturbation due to the interaction are minimal. Thus, the reservoir stays in its thermal

state

ρR(t2) ≈ ρRth . (7.24)

These two approximations in Eqs. (7.23) and (7.23) are the Born approximation for the

Lindblad equation. These approximations help us indeed to advance with Eq. (7.22):

ρ̇S+R(t) = −
∫ t

0

dt2TrR
[[
H [I](t), H [I](t2)ρ(t2)⊗ ρRth

]]
. (7.25)

The Markov approximation is more subtle than the Born approximation. We resolve the two

different time dependencies of the density matrix for the system, i.e., ρ(t) on the left-hand

side and ρ(t2) on the right-hand side, with the approximation

ρ(t2) ≈ ρ(t) . (7.26)

The justification is that the time scale of the system’s evolution is much longer than the

integration time considered. In other words, the system does not adapt fast enough that

the density matrix changes in between t and t2. Systems which would reach their thermal
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or equilibrium state very fast would break this assumption. We end up with the following

equation after the Born-Markov approximation

ρ̇S+R(t) = −
∫ t

0

dt2TrR
[[
H [I](t), H [I](t2)ρ(t)⊗ ρRth

]]
. (7.27)

The summary of the timescales requires that the correlation time in the reservoir is much

shorter than the integration time, and the integration time itself is much shorter than the

timescale of the system.

7.5 Partial trace over the reservoir

The main goal of the Lindblad equation is to trace over the reservoir degrees of freedom

to simplify the time evolution of our system. After the Born-Markov approximation, we

can now calculate the partial trace starting from Eq. (7.27). The interaction Hamiltonian

and its corresponding indices will inflate notations quickly and we consider the partial trace

term by term. We recall the relations for a contribution when tracing over the thermal state

presented in Eq. (7.17); furthermore, we know bqb
†
q = b†qbq + 1 = nq + 1. The first term is

simplified to

TrR
[
H [I](t)H [I](t2) (ρ(t)⊗ ρRth)

]
= TrR

[(
L∑

k′=1

∑
abq

(
gk′qe

i(ωab−ωq)tSk′(ωab)bq + g∗k′qe
i(ωab+ωq)tSk′(ωab)b

†
q

))

×
(

L∑
k′′=1

∑
cdq′′

(
gk′′q′′e

i(ωcd−ωq′′ )t2Sk′′(ωcd)bq′′ + g∗k′′q′′e
i(ωcd+ωq′′ )t2Sk′′(ωcd)b

†
q′′

))

× (ρ(t)⊗ ρRth)

]

=
L∑

k′k′′=1

∑
abcdqq′′

(
ei(ωabt+ωcdt2)Sk′(ωab)Sk′′(ωcd)ρ(t)gk′qg

∗
k′′q′′e

−i(ωqt−ωq′′ t2)Tr
[
bqb
†
q′′ρRth

]
+ei(ωabt+ωcdt2)Sk′(ωab)Sk′′(ωcd)ρ(t)g∗k′qgk′′q′′e

i(ωqt−ωq′′ t2)Tr
[
b†q′′bqρRth

])
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=
L∑

k′k′′=1

∑
abcdq

(
ei(ωabt+ωcdt2)Sk′(ωab)Sk′′(ωcd)ρ(t)

×
(
gk′qg

∗
k′′qe

−iωq(t−t2) 〈nq〉R + g∗k′qgk′′qe
i(ωq(t−t2)

(
〈nq〉R + 1

)) )
(7.28)

Several changes happened in the last three steps. Each Hamiltonian H [I](t) and H [I](t2)

needs its own set of indices. The Hamiltonian H [I](t) keeps the indices from Eq. (7.12). We

do the following replacements for H [I](t2) with regards to Eq. (7.12): site index k′ → k′′,

the index for the harmonic oscillator q → q′′, and indices for the eigenstates of the system

Hamiltonian a→ c and b→ d. We separate the terms acting on the system and the reservoir,

which allows us to transfer the partial trace into a trace over the degrees of freedom of the

reservoir. We obtain a Kronecker delta δq,q′′ while tracing out and denote the expectation

value of the number operator as 〈nq〉R and drop the subscript and brackets in the following,

i.e., nq. We need to simplify this notation an introduce the coupling

Ck′k′′(q, t− t2) = gk′qg
∗
k′′qe

−iωq(t−t2)nq + g∗k′qgk′′qe
i(ωq(t−t2) (nq + 1) . (7.29)

The detailed derivation of the second term is left to the reader as the necessary steps are

already presented; we obtain

TrR
[
H [I](t2) (ρ(t)⊗ ρRth)H [I](t)

]
= Ck′k′′(q, t− t2)ei(ωabt+ωcdt2)

×Sk′(ωab)Sk′′(ωcd)ρ(t) . (7.30)

Overall, we have now the following differential equation, which only contains the density

matrix of the system

ρ̇(t) = −
∫ t

0

dt2

L∑
k′k′′=1

∑
abcdq

Ck′k′′(q, t− t2)ei(ωabt+ωcdt2)

× [Sk′(ωab), Sk′′(ωcd)ρ(t)] + h.c. (7.31)
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7.6 The secular approximation

We need a few more steps starting at Eq. (7.31) to reach the secular approximation. We

start with a change of variables introducing τ = t− t2 leading to

ρ̇(t) = −
∫ t

0

dτ
L∑

k′k′′=1

∑
abcdq

Ck′k′′(q, τ)ei(ωabt+ωcd(t−τ))

× [Sk′(ωab), Sk′′(ωcd)ρ(t)] + h.c. (7.32)

In addition, we transform ωab → −ωab and at the same time Sk′(ωab) → S†k′(ωab), which is

justified because we are summing over all transitions a→ b and the corresponding transition

b→ a must also be in the summation. Thus, we have

ρ̇(t) = −
∫ t

0

dτ
L∑

k′k′′=1

∑
abcdq

Ck′k′′(q, τ)ei(ωcd−ωab)te−iωcdτ

×
[
S†k′(ωab), Sk′′(ωcd)ρ(t)

]
+ h.c. (7.33)

Moreover, we switch the terms in the commutator in exchange for the minus sign in front of

the integral

ρ̇(t) =

∫ t

0

dτ
L∑

k′k′′=1

∑
abcdq

Ck′k′′(q, τ)ei(ωcd−ωab)te−iωcdτ

×
[
Sk′′(ωcd)ρ(t), S†k′(ωab)

]
+ h.c. (7.34)

The interesting term is exp(i(ωcd−ωab)t). For large difference ωcd−ωab, the term underlying

sine and cosine term oscillate within a very short period. Similar, fast rotating terms are

truncated in the rotating wave approximation. The secular approximation approximates this

difference by accounting only terms which have zero difference

ei(ωcd−ωab)t) ≈ δ(ωcd − ωab) . (7.35)
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This approximation implies that t is huge in comparison to justify this assumption; To

ensure this condition, we send the integration boundary t→∞ and obtain after the secular

approximation the following equation describing the dynamics of the density matrix

ρ̇(t) =

∫ ∞
0

dτ
L∑

k′k′′=1

∑
abcdq

Ck′k′′(q, τ)δ(ωcd − ωab)e−iωcdτ

×
[
Sk′′(ωcd)ρ(t), S†k′(ωab)

]
+ h.c. (7.36)

The secular approximation is violated for almost degenerate transition frequencies with a

vanishing ωcd−ωab → 0. This situation occurs for almost degenerate energy levels, but is not

restricted to such a case. An ideal Hamiltonian for fulfilling the secular approximation is a

harmonic oscillator as the system with equal level spacing and, thus, no almost degeneracies.

We remark that the terms in the commutator do not depend on τ . Therefore, we can define

a new variable, which contains the dependency on the integral over τ

Γ = Γabcdqk′k′′ =

∫ ∞
0

dτCk′k′′(q, τ)δ(ωcd − ωab)e−iωcdτ , (7.37)

The resulting equation is almost in Lindblad form

ρ̇(t) =
L∑

k′k′′=1

∑
abcdq

Γabcdqk′k′′
[
Sk′′(ωcd)ρ(t), S†k′(ωab)

]
+ h.c. (7.38)

7.7 The Lindblad form in the interaction picture

The coupling Γ is complex so far. To transform Eq. (7.38) into Lindblad form, we separate

the real and complex part as follows

γ = <(Γ) , η = =(Γ) , (7.39)

where the following relations hold for switching the indices of the sites k′ and k′′

γabcdqk′k′′ = γabcdqk′′k′ , ηabcdqk′k′′ = −ηabcdqk′′k′ . (7.40)
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Using this definition in terms of the real and imaginary part, we obtain in a first step

ρ̇(t) =
L∑

k′k′′=1

∑
abcdq

(γabcdqk′k′′ + iηabcdqk′k′′)
[
Sk′′(ωcd)ρ(t), S†k′(ωab)

]
+ h.c. (7.41)

Now, we consider the real part of this equation. We have the following terms

<(ρ̇(t)) =
L∑

k′k′′=1

∑
abcdq

γabcdqk′k′′
(
Sk′′(ωcd)ρ(t)S†k′(ωab) + Sk′(ωab)ρ(t)S†k′′(ωcd)

−S†k′(ωab)Sk′′(ωcd)ρ(t)− ρ(t)S†k′′(ωcd)Sk′(ωab)
)
. (7.42)

We use Eq. (7.40) to switch the site indices of the second and fourth term; we change

ωab ↔ ωcd which is possible due to the fact that the summation over ab and cd loop over the

same set of eigenvectors. These two steps turn the real part into Lindblad form

<(ρ̇(t)) =
L∑

k′k′′=1

∑
abcdq

γabcdqk′k′′
(
Sk′′(ωcd)ρ(t)S†k′(ωab) + Sk′′(ωab)ρ(t)S†k′(ωcd)

−S†k′(ωab)Sk′′(ωcd)ρ(t)− ρ(t)S†k′(ωcd)Sk′′(ωab)
)

=
L∑

k′k′′=1

∑
abcdq

γabcdqk′k′′
(
Sk′′(ωcd)ρ(t)S†k′(ωab) + Sk′′(ωcd)ρ(t)S†k′(ωab)

−S†k′(ωab)Sk′′(ωcd)ρ(t)− ρ(t)S†k′(ωab)Sk′′(ωcd)
)

=
L∑

k′k′′=1

∑
abcdq

γabcdqk′k′′
(

2Sk′′(ωcd)ρ(t)S†k′(ωab)−
{
S†k′(ωab)Sk′′(ωcd), ρ(t)

})
,

(7.43)

which is the Lindblad form for the dissipative part of the evolution. We still have to consider

the imaginary part with the couplings η. The same approach leads to
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=(ρ̇(t)) =
L∑

k′k′′=1

∑
abcdq

iηabcdqk′k′′
(
Sk′′(ωcd)ρ(t)S†k′(ωab) + Sk′(ωab)ρ(t)S†k′′(ωcd)

−S†k′(ωab)Sk′′(ωcd)ρ(t)− ρ(t)S†k′′(ωcd)Sk′(ωab)
)

=
L∑

k′k′′=1

∑
abcdq

iηabcdqk′k′′
(
Sk′′(ωcd)ρ(t)S†k′(ωab)− Sk′′(ωab)ρ(t)S†k′(ωcd)

−S†k′(ωab)Sk′′(ωcd)ρ(t) + ρ(t)S†k′(ωcd)Sk′′(ωab)
)

=
L∑

k′k′′=1

∑
abcdq

iηabcdqk′k′′
(
Sk′′(ωcd)ρ(t)S†k′(ωab)− Sk′′(ωcd)ρ(t)S†k′(ωab)

−S†k′(ωab)Sk′′(ωcd)ρ(t) + ρ(t)S†k′(ωab)Sk′′(ωcd)
)

=
L∑

k′k′′=1

∑
abcdq

−iηabcdqk′k′′
[
S†k′(ωab)Sk′′(ωcd), ρ(t)

]
. (7.44)

Thus, the imaginary part is not contributing to the dissipative part of the dynamics, but

represents a correction term to the Hamiltonian reflected in the von-Neumann equation for

the time evolution of density matrix, i.e., ρ̇ = −i [H, ρ]. The complete Lindblad equation in

the interaction picture with real and complex contributions from the coupling Γ is

ρ̇(t) =
L∑

k′k′′=1

∑
abcdq

−iηabcdqk′k′′
[
S†k′(ωab)Sk′′(ωcd), ρ(t)

]
(7.45)

+
L∑

k′k′′=1

∑
abcdq

γabcdqk′k′′
(

2Sk′′(ωcd)ρ(t)S†k′(ωab)−
{
S†k′(ωab)Sk′′(ωcd), ρ(t)

})
.

7.8 The Lindblad form in the Schrödinger picture

The last major step is a representation of the Lindblad master equation in the Schrödinger

picture. The transformation of the left-hand side of Eq. (7.45) with ρ(t) = eiHS(t−t0)ρ[S](t)

e−iHS(t−t0) yields

ρ̇(t) = eiHS(t−t0)
(
ρ̇[S](t) + i

[
HS, ρ

[S](t)
])

e−iHS(t−t0) , (7.46)

154



where the superscript S in brackets indicates that the density matrix is in the Schrödinger

picture. Thus, we have to multiply our terms on the right-hand side in Eq. (7.45) with

e−iHS(t−t0) from the left and eiHS(t−t0) from the right. We proceed term by term while trans-

forming the density in these terms from the interaction picture to the Schrödinger picture.

Moreover, we insert identities when convenient.

e−iHS(t−t0)S†k′(ωab)Sk′′(ωcd)
(
eiHS(t−t0)ρ[S](t)e−iHS(t−t0)

)
eiHS(t−t0)

= e−iHS(t−t0)S†k′(ωab)e
iHS(t−t0)e−iHS(t−t0)Sk′′(ωcd)e

iHS(t−t0)ρ[S](t) (7.47)

We now act with the eigenstates used in the definition of the operators S†k′(ωab) and Sk′′(ωcd)

on the corresponding exponentials turning the Hamiltonian into a phase

. . . = e−ib(t−t0)S†k′(ωab)e
ia(t−t0)e−ic(t−t0)Sk′′(ωcd)e

id(t−t0)ρ[S](t)

= e((a−b)−(c−d))(t−t0)S†k′(ωab)Sk′′(ωcd)ρ
[S](t) = S†k′(ωab)Sk′′(ωcd)ρ

[S](t) . (7.48)

The phase term vanishes due to the delta function δ(ωab − ωcd). The second term can be

simplified with an analog approach

e−iHS(t−t0)
(
eiHS(t−t0)ρ[S](t)e−iHS(t−t0)

)
S†k′(ωab)Sk′′(ωcd)e

iHS(t−t0)

= ρ[S](t)e−iHS(t−t0)S†k′(ωab)e
iHS(t−t0)e−iHS(t−t0)Sk′′(ωcd)e

iHS(t−t0)

= ρ[S](t)e−ib(t−t0)S†k′(ωab)e
ia(t−t0)e−ic(t−t0)Sk′′(ωcd)e

id(t−t0)

= ρ[S](t)ei((a−b)−(c−d))(t−t0)S†k′(ωab)Sk′′(ωcd) = S†k′(ωab)Sk′′(ωcd) , (7.49)

and the last term is

e−iHS(t−t0)S†k′(ωab)
(
eiHS(t−t0)ρ[S](t)e−iHS(t−t0)

)
Sk′′(ωcd)e

iHS(t−t0)

= e−ib(t−t0)S†k′(ωab)e
ia(t−t0)ρ[S](t)e−ic(t−t0)Sk′′(ωcd)e

id(t−t0)

= ei((a−b)−(c−d))(t−t0)S†k′(ωab)ρ
[S](t)e−ic(t−t0)Sk′′(ωcd) = S†k′(ωab)ρ

[S](t)e−ic(t−t0)Sk′′(ωcd) .(7.50)

The Lindblad equation in the Schrödinger picture is then defined as
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ρ̇[S](t) = −i

[
HS +

L∑
k′k′′=1

∑
abcdq

ηabcdqk′k′′S
†
k′(ωab)Sk′′(ωcd), ρ

[S](t)

]
(7.51)

+
L∑

k′k′′=1

∑
abcdq

γabcdqk′k′′
(

2Sk′′(ωcd)ρ
[S](t)S†k′(ωab)−

{
S†k′(ωab)Sk′′(ωcd), ρ(t)

})
.

7.9 Notes on the coupling of the Lindblad operators

We have excluded the coupling constant Γ and variables hidden within so far from the

discussion. We catch up with this discussion now. The coupling contains the integration

over the time and the frequencies q of the harmonic oscillator. The most common approach

is the replace the sum over q with and integration, i.e.,
∑

q →
∫

dq. This step is justified as

the reservoir must be large to fulfill the Born-Markov approximation and a sufficient number

of modes is present. Depending on the geometry of the environment, the integration over

dq can be in one, two, or three dimensions. Moreover, the different types of reservoir enter

over the dispersion relation, which is defined via gk′k′′ . The dependence on temperature also

enters via Γ, as the coupling depends on 〈nq〉R varying with the temperature of the reservoir.

We do not go into details as various configurations can be explored from the outline we have

given.
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CHAPTER 8

EXACT DIAGONALIZATION AND OTHER ENTANGLEMENT-ACCURATE

METHODS REVISITED IN QUANTUM SYSTEMS

Submitted to Journal of Physics A: Mathematical and Theoretical1

D. Jaschke2 and L. D. Carr3

Abstract

Tensor network methods as presented in our open source Matrix Product States library

have opened up the possibility to study many-body quantum physics in one and quasi-one-

dimensional systems in an easily accessible package similar to density functional theory codes

but for strongly correlated dynamics. Here, we address methods which allow one to capture

the full entanglement without truncation of the Hilbert space. Such methods are suitable for

validation of and comparisons to tensor network algorithms, but especially useful in the case

of new kinds of quantum states with high entanglement violating the truncation in tensor

networks. Quantum cellular automata are one example for such a system, characterized

by tunable complexity, entanglement, and a large spread over the Hilbert space. Beyond

the evolution of pure states as a closed system, we adapt the techniques for open quantum

systems simulated via the Lindblad master equation. We present three algorithms for solving

closed-system many-body time evolution without truncation of the Hilbert space. Exact

diagonalization methods have the advantage that they not only keep the full entanglement

but also require no approximations to the propagator. Seeking the limits of a maximal

number of qubits on a single core, we use Trotter decompositions or Krylov approximation to

the exponential of the Hamiltonian. All three methods are also implemented for open systems

1“Open source Matrix Product States: Exact diagonalization and other entanglement-accurate methods
revisited in quantum systems”, D. Jaschke and L. D. Carr (2018). http://arxiv.org/abs/1802.10052.
Use in agreement with arXiv license [55].

2primary researcher and author responsible for the manuscript.
3principal investigator and advisor at Colorado School of Mines.
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represented via the Lindblad master equation built from local channels. We show their

convergence parameters and focus on efficient schemes for their implementations including

Abelian symmetries, e.g., U(1) symmetry used for number conservation in the Bose-Hubbard

model or discrete Z2 symmetries in the quantum Ising model.

8.1 Introduction

Recently, exact diagonalization (ED) methods have seemed less important due to many

available simulation methods for many-body quantum systems including the Density Matrix

Renormalization Group (DMRG) [72], Quantum Monte Carlo methods [203, 204], dynamical

mean field theory [205], and the truncated Wigner approach [149, 206]. The tensor network

methods themselves contain a variety of tailored approaches such as Matrix Product States

(MPS) [75, 76], Multi-scale Entanglement Renormalization Ansatz (MERA) [83], Tree Tensor

Networks (TTN) [79], and Projected Entangled Pair States (PEPS) [84]. But with growing

computing resources today, quantum states of larger and larger systems can be simulated

without entanglement truncation. The first limitation of the simulation is the calculation

of the propagator in the full Hilbert space. This propagator can be approximated. The

second limitation is the initial state, which cannot be chosen as the ground state when

systems are too large for exact diagonalization methods. Quantum computing and quantum

information theory provide us with well-characterized states beyond the class of product or

Fock states. With these techniques, system sizes can be pushed to 27 qubits with easily

available computational resources, i.e., a single core on a computer. The boundaries of such

simulations have recently been pushed to 45 qubits in the context of quantum supremacy

[51]. Simulations, using also quantum circuits, have achieved simulations for 49 and 56

qubits [207] shortly after, then 64 qubits [208]. On the other hand, such methods become

a valuable comparison for benchmarking tensor network methods when exploring highly

entangled states as recently studied with Quantum Elementary Cellular Automata (QECA)

[209] based on the original proposition in [210], the Quantum Game of Life [211, 212], and for

open quantum systems [49] among other physically important contexts. We foresee fruitful
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applications to the developing field of quantum simulators. These systems exist on a variety

of platforms and form one significant part in the development of quantum technologies as

proposed in the quantum manifesto in Europe [1, 213]. With exact diagonalization methods,

quantum simulators with large entanglement have the possibility at hand to simulate systems

up to a modest many-body system equivalent to 27 qubits. Furthermore, the area law

for entanglement [78] can be violated for long-range interactions [129], and tensor network

methods are likely to lose accuracy when the area law does not bound entanglement. Other

possible applications are the emerging field of synthetic quantum matter.

The inclusion of open system methods allows us to approach thermalization of few-body

quantum systems from different aspects, e.g., exploring whether or not a subsystem follows

a thermal state after taking the partial trace of a pure state. A recent study considers the

case of six 87Rb atoms [201] and is well within the scope of exact diagonalization. Research

on quantum computing and quantum information can profit from such simulations provided

through our library, too. For example, one can study mutual information matrices as done

in a similar study with the MPS library [214]. Moreover, exact diagonalization methods

are more accessible to new researchers in the field as they require less knowledge of the

methods and how to tune them with the set of convergence parameters, e.g., associated

with our MPS methods [121, 215]. Returning to exact diagonalization methods with the

background of the many-body simulations in tensor networks advances them with regards

to various aspects. For example, the usage of predefined rules to represent the Hamiltonian

not only simplifies the problem but allows one to multiply the Hamiltonian with a state

vector when the matrix of the Hamiltonian itself cannot be represented due to memory

limitations. The Krylov method employs precisely this feature and overcomes limitations

which are present in the Trotter decomposition with the primary purpose of evolving models

with nearest-neighbor interactions. Starting with a certain number of predefined rules for

the Hamiltonian, sophisticated models can be represented as well as with hand-built ED

codes, but at a much lower cost, avoiding development overhead. A preliminary version of
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this library was used for the momentum-space study of the Bose-Hubbard model in [216].

We envision that open systems will profit from this approach enormously in the future to

provide a variety of different Lindblad channels.

With these motivations in mind, we present three kinds of algorithms retaining the com-

plete Hilbert space and their efficient implementations for closed systems. The first approach

calculates the exponential for the propagator exactly. Second, we choose the Trotter de-

composition for nearest-neighbor Hamiltonians allowing for larger systems due to the local

propagators. In the third algorithm, we approximate the propagated state in the Krylov

subspace allowing for the inclusion of long-range terms in the Hamiltonian. The interfaces

work seamlessly with our package Open Source Matrix Product States (OSMPS) [52, 215]

and therefore support both U(1) and Z2 symmetries in the system. The measurements are

adapted from tensor network methods and have a many-body focus: For example, we in-

clude the bond entropy, a value typically calculated for tensor networks obtained from the

Schmidt decomposition for two bipartitions of the system. Local observables and two-site cor-

relators are measured via the reduced density matrices, which are a more efficient approach

in comparison to representing the observables on the complete Hilbert space. Beyond closed

systems, we include methods for the Lindblad master equation [47, 49], which describes the

dynamics of an open quantum system weakly coupled to its environment. Methods such as

the matrix exponential, Trotter decomposition, or Krylov approximation can be adapted to

density matrices. Quantum trajectories (QT) [217, 218] are another approach to simulate

the Lindblad master equation. Quantum trajectories sample over a variety of pure state

systems and therefore all of our three time evolution methods can be used for this approach.

In this Article, we discuss our versatile implementation of methods without entanglement

truncation and show their convergence. The scaling of computational resources is compared

for all three time evolution methods, where each method has its advantage: matrix exponen-

tials avoid errors in the propagator; Trotter decompositions are ideal for nearest-neighbor

interactions; and Krylov overcomes the limitation of the matrix exponential on the complete
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space without being limited to nearest-neighbor Hamiltonians. These approaches are appli-

cable to various systems. Exact diagonalization can simulate a significant fraction of the

number of ions of recent cold ions quantum simulator experiments, i.e., around one-tenth

of [26]. This fraction is much closer than, e.g., in systems with ultracold atoms in optical

lattices, where thousands to millions of atoms [112] are used in quantum simulators; the

gap between ED methods and the experimental number of particles is then much larger.

Looking at individual control of trapped ions, the state-of-the-art experiments are simu-

lating 53 ions [25] and ED methods are even more relevant. Moreover, the development

of new platforms for a universal quantum computer is likely to be tested on small scales

first, and the corresponding numerical methods can contribute to a better understanding of

those platforms. Thus, we envision multiple applications of our exact diagonalization codes

beyond pure quantum computation and quantum information research. We introduce the

construction of the system Hamiltonian in Sec. 8.2. In Sec. 8.3, we discuss the three different

time evolution schemes before turning to the implementation of measurements in Sec. 8.4.

We give an overview of the convergence of these methods in Sec. 8.5 and discuss the neces-

sary modification with regards to open quantum system according to the Lindblad master

equation in Sec. 8.6. After a benchmarking study in Sec. 8.7 of our package versus another

standard package, i.e., QuTip, we conclude in Sec. 8.8.

8.2 Construction of Hamiltonians and Statics

We first introduce the definition of systems in OSMPS and explain the exact diagonal-

ization statics. The focus in this section is on closed quantum systems governed by the

Schrödinger equation

∂

∂t
|ψ(t)〉 = − i

~
H |ψ(t)〉 , (8.1)

where |ψ〉 is the wave function depending on the time t. H represents the Hamiltonian of

the system. We consider in the following a generic Hamiltonian with different terms defined
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as

H =

nS∑
ζ=1

L∑
k=1

ckO
[ζ]
k︸ ︷︷ ︸

Local term

+

nB∑
ζ=1

L−1∑
k=1

c′kO
[B,ζ]
k O

′[B,ζ]
k+1︸ ︷︷ ︸

Nearest−neighbor term

+

ni∑
ζ=1

L−1∑
k=1

L∑
k′=k+1

ck′,kO
[I,ζ]
k O

′[I,ζ]
k′︸ ︷︷ ︸

Long−range term

, (8.2)

where L is the size of the one-dimensional system. We take a look at the different terms

one-by-one. The first term represents a local Hamiltonian term acting on a single particle or

site in a system. The first sum over ζ allows us to have nS different local terms. The second

sum runs over the different sites in the system, and each local term might have a spatially

dependent coupling with the constants ck. O
[ζ]
k is the corresponding operator acting on site

k; actually, identities are padded on the sites k′ 6= k via the outer product, or Kronecker

product, to represent the operator acting on the full Hilbert space. This term is necessary for

many different systems. It represents the interaction with an external field in the quantum

Ising model, and encodes the on-site interaction and chemical potential in the Bose-Hubbard

model, just to name two examples. In detail, we take a look at the Bose-Hubbard model

with the Hamiltonian

HBH = −J
L−1∑
k=1

(
bkb
†
k+1 + h.c.

)
+
U

2

L∑
k=1

nk(nk − I)− µ
L∑
k=1

nk , (8.3)

where b and b† are the bosonic annihilation and creation operators and the number operator n

is defined as n = b†b. J is the tunneling energy, and U > 0 is the repulsive interaction energy

on each site. Thus, the sum over the local terms runs over ζ ∈ {1, 2}. The first operators

O
[ζ=1]
k = nk(nk−I) is a compound operator combining the number operators and the identity,

all acting on site k. The chemical potential is the second local term, i.e., O
[ζ=2]
k = nk. The

next term is nearest-neighbor interactions, where the operator O
[B,ζ]
k acting on site k and

O
′[B,ζ]
k+1 on site k + 1 can be different operators; hermiticity has to be fulfilled for all terms

together. Looking at the example of the Bose-Hubbard in Eq. (8.3), the tunneling term is a

nearest-neighbor term. Specifically, we have ζ ∈ {1, 2} for the bond term with O
[B,ζ=1]
k = bk,
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O
[B,ζ=1]
k+1 = b†k+1, O

[B,ζ=2]
k = b†k, and O

[B,ζ=2]
k+1 = bk+1. The last term is a two-site interaction at

arbitrary distance governed by a coupling ck′,k = c(k′ − k) depending only on the distance

between the sites. This term extends many models where the nearest-neighbor interaction is

an approximation, and a more accurate Hamiltonian includes further terms. The extended

Bose-Hubbard model with long-range tunneling is one example. In the following, we refer

to the three terms as site rules, bond rules, and infinite function rules. Appendix 8.10

contains a complete description of more possible terms in a Hamiltonian. We need to build

the Hamiltonian on the complete Hilbert space to determine the statics. The same applies

to the dynamics if using the complete matrix for taking the exponential or for the Krylov

method. For systems without symmetry, this construction can be done purely using the

Kronecker product. Using Python for our implementation, this Kronecker product is either

done with numpy.kron when building a dense Hamiltonian or with scipy.sparse.kron

aiming for a sparse Hamiltonian. Dense methods allow one to calculate the complete set of

eigenvalues and vectors while sparse methods calculate only the eigenvalues and eigenvectors

close to the ground state for the static case. Considering the entries in the final matrix in

case of a site rule presented in Eq. (8.2), the computational scaling F is then

Fsite,dense = O(d2L) , Fsite,sparse = O(dL+1) , (8.4)

where F is the number of floating point operations. We introduced d as the local dimension

of the Hilbert space of a single site, e.g., for the Ising model d = 2. The scaling in Eq. (8.4)

includes the number of multiplications, but not any overhead keeping track of the sparse

matrices. Similar calculations hold for the remaining rules defined in Eq. (8.2).

The picture gets more complicated when introducing symmetries. We support U(1) and

Z2 symmetries defined by their diagonal generator defined on the local Hilbert space. For

example, the Bose-Hubbard model conserves the number of particles − a U(1) symmetry −

and the simulation can be executed in the symmetry sector with N bosons. The eigenstates

of the basis in the symmetry sector can either be passed as an argument, or the algorithm
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iterates once over all D = dL states checking if the state obeys the symmetry, which is

possibly slow. Either way, we have a reduced basis of DS basis states

|i〉 = |i1, i2, . . . , iL〉 , i ∈ {1, . . . , Ds} , (8.5)

where ik are the corresponding indices in the local Hilbert space. The complete wave function

is written as | ψ〉 =
∑

iCi | i〉 with coefficients Ci fulfilling the normalization constraint of

the wave function. Neither can the local basis |ik〉 be deduced easily from |i〉 nor |i〉 from a

set of |ik〉, because the complete Hilbert space is not a tensor product of the local Hilbert

spaces. Therefore, a Python class SymmetrySector provides two key functions:

• A dictionary returns the index |i〉 providing the tuple of all local dimensions as key.

Since dictionaries in Python have an underlying hash table, the lookup is fast. Hence-

forward we use the class method getitem for getting dictionary entries in Python,

e.g., SymmSec[(0, 0, 1)].

• SymmetrySector provides the local indices for the state |i〉. This implementation is

achieved with a simple matrix B. The ith row contains the local indices for state |i〉.

The vector of indices is obtained via the call attribute as SymmSec(i).

Knowing the basic structure for the symmetries, we continue with the construction of

the Hamiltonian in the example of a site rule. To set the matrix elements for the local

operator O on site k, we iterate over the DS basis states in the Hamiltonian. We choose

to iterate over the rows |i〉 and obtain the corresponding local basis states |i1, i2, . . . , iL〉 via

the dictionary. We need the index for the columns identified via |i′〉 and the local indices

|i′1, i′2, . . . , i′L〉. Considering the structure I⊗ Ok ⊗ I, we know that all indices except k stay

equal: i′k′ = ik′ , ∀k′ 6= k. The index i′k can be determined by finding the columns with

non-zero entries of row ik of Ok. Therefore, we loop next over the local dimension i′k of site k

where |i1, i2, . . . , i′k, . . . , iL〉 corresponds to the entry in the column. We depict this procedure

in Figure 8.1. The computational time for building a site rule in the complete Hamiltonian
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(a) (b) (c)

H :

Olocal :

Figure 8.1: Building the Hamiltonian with Symmetries. The process of obtaining the Hamil-
tonian H with symmetry for a site rule can be split into three steps. (a) To build the
Hamiltonian, we loop over the rows of H. (b) For each row, we find the corresponding row
in the local matrix Olocal defining the term in the rule set. We mark the non-zero entries in
this row. (c) Starting from the non-zero entries marked in step (b), we find the corresponding
columns in H and update the matrix element.

H then scales as

FBuild H,site = O(LDSd) . (8.6)

This scaling can be further improved when iterating only over non-zero elements in the

columns of the local operator Ok instead of all the local dimension d. The fact of building

a sparse or a dense Hamiltonian does not influence the algorithm apart from setting the

matrix elements in a sparse or dense matrix. The interface for addressing a matrix entry in

Python is equivalent for both approaches.

The ground and low-lying excited states can now be calculated via the corresponding

numpy and scipy functions. For dense matrices, we obtain the full spectrum via numpy.lin-

alg.eigh containing all eigenvalues, while in the sparse case only the lowest-lying eigenvalues

and corresponding eigenvectors are calculated in scipy.sparse.linalg.eigsh. The ground

state serves as the default initial state for the dynamics if no other state is specified. At
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present, the ground state is calculated from the complete Hamiltonian and therefore large

systems are limited through the memory when representing the corresponding matrix.

8.3 Methods for Time Evolution of Closed Systems

Having explained the general setup of the system and how to obtain the ground state,

we consider the more important question of time evolution. The first approach for the time

evolution of a quantum state is (1) to calculate the propagator as a matrix exponential of the

Hamiltonian on the complete Hilbert space. This method requires few modifications with re-

gards to the ground state where we already have functions to construct the Hamiltonian. For

time-dependent Hamiltonians, the procedure is especially expensive since the Hamiltonian

and its propagator have to be calculated for every time step. Also, the Hilbert space grows

exponentially for increasing system size L. Therefore, we consider two additional approxima-

tions: (2) the Suzuki-Trotter decomposition applies local propagators to the quantum state,

and (3) the Krylov subspace approximates the state directly after applying the propagator.

After a brief overview of two test models and their computational scaling in Sec. 8.3.1, we

proceed to describe the three time evolution methods in Sec. 8.3.2 to 8.3.4.

8.3.1 Computational Scaling in the Quantum Ising and Bose-Hubbard Model

We introduce the first two models which we use to study the scaling of CPU time TCPU

for the different time evolution methods. First, we consider the 1D quantum Ising model

[123, 137] defined as

HQI = −
L−1∑
k=1

σzkσ
z
k+1 − h

L∑
k=1

σxk , (8.7)

which obeys Z2 symmetry. The operators σxk and σzk are the Pauli matrices acting on site

k. The interaction energy is normalized to 1, and the value of the external field is h. L

is the number of sites in the system. Second, we study the Bose-Hubbard Hamiltonian

introduced in Eq. (8.3), where the chemical potential µ can be disregarded when we use the
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U(1) symmetry leading to a fixed number of bosons N =
∑L

k=1 nk.

We present the scaling of the CPU time with increasing system size L for the quantum

Ising model in Figure 8.2 (a). We see that the matrix exponential (ME) is limited first, where

we simulated up to twelve qubits. Within the different algorithms using the matrix exponen-

tial on the complete Hilbert space, the choice of using dense matrices and Z2 symmetry is

optimal. Sparse methods are labeled with sp. The symmetry reduces the size of the matrix

to be exponentiated in the case of the quantum Ising model by a factor of 2 and therefore

reduces the time significantly. The different memory requirements themselves are not the

restricting limit. Other simulations have higher memory needs. For the Suzuki-Trotter or

Krylov subspace method the use of symmetries is slower in case of the Ising model due to

matrix-vector operations, which are needed to decode the basis. In the Krylov method with

Z2 symmetry, we observe the step when switching to a memory-optimized but slower Krylov

method for the 10th qubit. This memory-optimized method is necessary for larger systems

as the set of Krylov vectors has to be stored, where each Krylov vector is of the same size as

the state vector. The slow down for the memory-optimized version originates in reading and

writing vectors to and from the hard disk. The Bose-Hubbard model with a local dimension

of d = 5, corresponding to maximally four bosons per site, is shown in Figure 8.2 (b). Simu-

lations with U(1) are at unit filling. Due to the large local dimension simulations are limited

to smaller system sizes. The benefits of using the symmetry become relevant for the Krylov

and Trotter method when going to large system sizes. The details on the implementation

leading to those results for each method are described in the following three subsections.

8.3.2 Time Evolution Method 1: The Propagator as a Matrix Exponential

The approach for the time evolution without making any approximations apart from the

time-dependence of the Hamiltonian H(t) and the base numerical resolution inherent in any

floating point computational scheme is to calculate the propagator as

U(t→ t+ dt) = exp (−iH (t+ dt/2) dt) . (8.8)
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Figure 8.2: Scaling for Time Evolution Methods. We profile five time steps for different
system sizes L comparing the matrix exponential (ME) with sparse matrices (sp) and with
dense matrices to the Trotter decomposition and to the default Krylov method. The com-
putation time in seconds is plotted on a lin-log-scale and all times are taken on a 2x(Intel
e5-2680 V4) 28 Cores 2.40 GHz . (a) The nearest neighbor quantum Ising model has a Z2

symmetry, which we use in comparison to the methods without symmetry. The main conclu-
sion is that the Z2 does not accelerate simulations except for the matrix exponential where
the size of the Hamiltonian to be exponentiated is crucial, which is reduced by a factor of 2.
For the Krylov or Trotter method, it is faster to use no symmetries. (b) The Bose-Hubbard
model is considered with a local dimension of d = 5, and the U(1) symmetry is used with
unit filling in the simulations marked with U1. In contrast to the quantum Ising model, use
of the U(1) symmetry leads to a much smaller fraction of the total Hilbert space and can
accelerate simulations and allow for larger system sizes.

We take the corresponding functions scipy.sparse.linalg.expm in the sparse case and

scipy.linalg.expm in the dense case. The construction of H is identical to the static

case except that time-dependent coupling may be introduced via the OSMPS interfaces.

We point out that the coupling constants are estimated for all methods at mid-time step

t+ dt
2

, which corresponds to a time-ordering of O(dt2). Finally, the state is propagated with

a matrix-vector multiplication. The main problem is that taking the matrix exponential

on the complete Hilbert space is expensive in memory and time. The scaling in memory

is quadratic in D; the calculation time of the matrix exponential scales cubically with D.

Therefore, computation time limits the system size before memory problems. We recall the

dimension of the full Hilbert space D scales exponentially with the number of sites L. In the
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following two subsections we explain how to simplify this exhaustive computational problem

with approximate methods.

8.3.3 Time Evolution Method 2: Trotter Decomposition for Nearest-Neighbor
Models

The main bottleneck so far is taking the exponential of a matrix due to CPU time, which

grows exponentially with system size. In its original version, the Trotter decomposition

allows us to approximate the exponential of the Hamiltonian on the complete Hilbert space

with local exponentials on two sites. We present in the following an efficient scheme for

applying these two-site propagators to the state, starting without symmetry. We point out

that the method in this form is only applicable to Hamiltonians built of site and bond rules

[121]. The Suzuki-Trotter decomposition [85] in the first order separates the Hamiltonian

into

exp(−iHdt) ≈ exp

(
−idt

∑
k

H2k−1,2k

)
exp

(
−idt

∑
k

H2k,2k+1

)
= exp(−idtHo) exp(−idtHe) . (8.9)

Ho contains terms acting on odd sites and their right nearest neighbors, and likewise in He,

except for even sites, with H = Ho + He. We leave the upper limit for the summation

intentionally open since it depends on open versus closed boundary conditions and even

vs. odd system sizes L. This decomposition in Eq. (8.9) neglects the second order terms

of O(dt2) according to the Baker-Campbell-Hausdorff equation [85]. We use higher-order

Trotter approximations, see [75], in the implementations defined as

exp(−idtH) ≈ exp

(
−i
dt

2
He

)
exp(−idtHo) exp

(
−i
dt

2
He

)
, (8.10)

for the second order, and
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(a) |ψ〉 (b) (P1,2 ⊗ I) |ψ〉 (c) tensordot(Op, Psi) (d) |ψ(t+ dt)〉

Figure 8.3: Tensor Operations on a State Vector without Symmetries. (a) The Hilbert space
is a tensor product of local Hilbert spaces, and therefore we can transform our state vector |ψ〉
into a rank-L tensor. (b) The application of a two-site propagator is reduced to a contraction
with the two corresponding indices at a cost of F = O(dL+2). (c) The implementation of
the tensordot in numpy permutes the indices which we have to take into account in the
algorithm. (d) One step of the second order Trotter decomposition for four sites contains
the contraction of the propagators, depicted as rectangles.

exp(−idtH) ≈ exp(−iτ3dtHe) exp(−iτ4dtHo) exp(−iτ4dtHe) exp(−iτ4dtHo)

× exp(−iτ2dtHe) exp(−iτ1dtHo) exp(−iτ2dtHe)

× exp(−iτ4dtHo) exp(−iτ4dtHe) exp(−iτ4dtHo) exp(−iτ3dtHe) (8.11)

τ3 =
1

2(4− 4
1
3 )
, τ1 = 1− 8τ3 , τ2 =

1

2
(1− 6τ3) , τ4 = 2τ3 , (8.12)

for the fourth order, respectively. Other formulations of the fourth order approximation exist.

We remark that the two-site terms either in He or Ho act on different sites and therefore

commute. Their exponentials can thus be taken separately. Building the local exponentials,

we then distribute the site rules into Ho and He, where we choose to weight them with 1/2

in each layer. This weighting applies to periodic boundary conditions, while in systems with

open boundary conditions the first and last site receive a weight of 1.

Now we search for an efficient application scheme of these local propagators for systems

without symmetries. A transformation of the state vector into a rank-L tensor allows one

to contract the rank-4 tensor of the local propagator with the corresponding sites. This

approach avoids building up the propagator on the complete Hilbert space. The function

numpy.tensordot, depicted in Figure 8.3 (b) and (c), has a computational scaling
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x	  =	   x	  =	   x	  =	  

(a) (b) (c)

Oglobal× |ψ〉

Olocal

|ψ′〉 =

Figure 8.4: Multiplying the Wave Function by a Local Matrix. The multiplication | ψ′〉 =
Oglobal |ψ〉 is carried out in multiple steps, where Oglobal is defined on local Hilbert spaces as
operator Olocal and padded with identities on all other sites. (a) We loop over the rows of the
matrix Oglobal and final state |ψ′〉 and select the corresponding row marking the selected row
in blue. (b) In the next step, we find the corresponding row in the matrix Olocal defined on
the local Hilbert space and mark the non-zero elements (red, green) in this row. (c) In the
final, third step we find the corresponding column index for each non-zero element in Oglobal,
which is identical to the row-index of the wave function |ψ〉 to be multiplied. Therefore, we
can update the blue entry in the new vector |ψ′〉.

Fcontract 2−site operator = O(dL+2) . (8.13)

In addition, we have to permute the indices of the state vector back into their original

position, which is done once in case of the pure state at the end of one layer. The sketch

for the second order decomposition can be found in Figure 8.3 (d), where the different steps

described previously are shown. Considering the second order decomposition, the number

of terms can be approximated by 3L/2 leading to an overall scaling of the method for one

time step as

FTrotter−2 step =
3L

2
O(dL+2) , FTrotter−4 step =

11L

2
O(dL+2) . (8.14)

A similar result counting the number of layers is shown for the 4th order. Equation (8.11)

shows that we have eleven layers in comparison to three layers in the second order represented
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in Eq. (8.10). In comparison, systems with symmetries scale as

Fcontract 2−site operator symm = O(DSd
2) , FTrotter−2 step symm =

3L

2
O(DSd

2) . (8.15)

The trick of rewriting the wave function as a rank-L tensor does not work with symmetries

since the basis is not a tensor product of local Hilbert spaces. Here, we take the same

approach as when building the Hamiltonian and show a visualization of the algorithm in

Figure 8.4. First, we obtain the two-site Hamiltonian and build the subblocks, which conserve

the symmetry. This reduction to subblocks is a minor improvement on the performance,

taking exponentials on a smaller space and searching for non-zero elements only for the

subblocks forming the propagator. In the matrix-vector multiplication, we loop first over

the rows of the matrix consisting of the DS basis states. The local propagator Uk,k+1 is

padded with identity matrices to the left and right, which do not modify the local basis in

|i′〉 = |i′1, i′2, . . . , i′L〉 on any site k′ /∈ {k, k + 1}. Looping over the non-zero entries in the

columns of the propagator Uk,k+1 yields the corresponding local indices for ik, ik+1. Then

the basis state |i〉 corresponding to the column in the full propagator can be easily obtained.

The value is multiplied by the coefficient of Ci of |ψ(t)〉 and added to Ci′ of the new wave

function |ψ′〉 =|ψ(t+ dt)〉. Therefore, we have two copies of a wave function |ψ〉 in memory

at the same time.

8.3.4 Time Evolution Method 3: Krylov Approximation

The approach via the Trotter decomposition in Sec. 8.3.3 allows one to avoid the matrix

exponential of the complete Hilbert space as long as there are no long-range interactions. As

mentioned before in the introduction in Sec. 8.1, this is not the case for the exponential rule,

infinite function rule, and the MBString rule. An alternative is to approximate the exponen-

tial of the complete Hilbert space on a subspace, where the Krylov subspace approach [219]

seems to be convenient for this purpose. In detail, it does not approximate the exponential,

but instead directly the propagated state

172



|ψ(t+ dt)〉 ≈ exp(−iHdt)|ψ(t)〉 . (8.16)

The new state is written in terms of the basis vectors vi of the Krylov subspace

|ψ(t+ dt)〉 ≈
m∑
i=1

ξivi , (8.17)

where vi is H i−1vi orthogonalized against all previous eigenvectors vj, j < i, and ξi is the

matrix entry U
[Krylov]
i,1 in the exponential transformed to the Krylov basis. This approach

only saves computational effort when the number of Krylov vectors m is much smaller than

the dimension of the Hilbert space. The algorithm can be controlled through convergence

parameters. We provide four different modes: (0) the built-in scipy method based on the

complete Hamiltonian is used for edlibmode=0. (1-3) These modes use the Krylov method

of OSMPS, which can be tuned by the following convergence parameters. On the one hand,

we can set a maximal number of Krylov vectors m building the basis. On the other hand,

the algorithm can check a tolerance lanczos tol, which stops the iterations before reaching

m. The modes are distinguished as follows:

(0) Built-in scipy method based on the complete Hamiltonian. The complete Hamiltonian

is built from the rule sets.

(1) The Hamiltonian is built as a matrix and multiplied with the state vector to construct

the Krylov method. Being similar to the scipy method, it cannot achieve the same

performance as the scipy implementation in (0).

(2) The Krylov vectors are constructed from a multiplication of the rule set with the state

vector and therefore does not need to allocate the memory to represent the matrix H.

(3) The Krylov vectors are constructed from a multiplication of the rule set with the state

vector. Instead of keeping all Krylov vectors in memory, this mode saves them tem-

porarily on the hard disk to save memory and reads them on demand.
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Figure 8.5: Scaling of the different Krylov Modes. (a) The Ising model without using its
Z2 symmetry shows that the built-in scipy method with edlibmode=0 and Tmode=0 is fastest
except for small systems. Large systems are only considered for mode edlibmode=3 and we
show the corresponding scaling of the floating point operations for this mode in comparison.
Times are determined on a 2x(Intel Xeon E5-2680 Dodeca-core) 24 Cores 2.50GHz . (b) The
Bose-Hubbard model for the double-well problem employs the U(1) symmetry, and we choose
a local dimension d = 5 and a filling of N = (L− 1)/2 bosons. The implementations using
the rule set for the matrix-vector multiplication (modes 2 and 3) are slower than building
the Hamiltonian and calculating the matrix-vector multiplication (modes 0 and 1). Times
are determined on a 2x(Intel e5-2680 V4) 28 Cores 2.40 GHz .

Figure 8.5 shows the CPU times for the different modes for five time-steps, where we

introduce the double-well problem based on the Bose-Hubbard Hamiltonian introduced in

Eq. (8.3). The potential at the center site splits the system into the two wells,

HDW = HBH + V · n(L−1)/2 , (8.18)

which is always considered at a filling with N = (L − 1)/2 particles, L odd. The fraction

of Hilbert space needed in comparison to unit filling is smaller and allows us to simulate

more sites than with unit filling. Mode 2 is preferable over 0, 1 and 3 for small systems

from the viewpoint of CPU times in the case of the quantum Ising Hamiltonian HQI from

Eq. (8.7) shown in Figure 8.5(a). For larger systems, the single matrix-vector multiplication

in mode 0 may have a favorable scaling over the multiple contractions involved for the rule
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set in mode 2. For the Bose-Hubbard double-well problem shown in (b), mode 0 is always

preferable. Mode 3 is intended for large systems and can be scaled up to 27 qubits without

encountering memory limitations, derived below in Eq. (8.19).

Apart from the implementation of the Krylov algorithm, we need an efficient multipli-

cation H|ψ〉. Seeking limits beyond twenty qubits, building the Hamiltonian in the Hilbert

space is not appropriate. Therefore, we implement directly the matrix-vector product of a

rule set with a vector. In the case without symmetries, we transform |ψ〉 into a rank-L tensor

and then use np.tensordot in addition to a permutation to obtain the results similar to

the procedure in the Trotter decomposition, which requires nested loops over every rule and

site. The same applies to the case with symmetries: instead of multiplying the propagator

with the state, we apply the multiplication with the matrices of the Hamiltonian rule sets

looping over all rules sets and sites. Considering the case with ns site rules and nb bond

rules without using symmetries, the scaling for H |ψ〉 is equal to

FRule set×|ψ〉 = LnsO(dL+1) + 2(L− 1)nbO(dL+1) ≈ L(2nb + ns)O(dL+1) . (8.19)

For one time step, we have to build m Krylov vectors. The leading term in the computational

scaling should be the matrix-vector multiplication; therefore, we have

FKrylov step = mL(2nb + ns)O(dL+1) . (8.20)

We introduce the number of infinite function rules as ni. Replacing the (L− 1) interactions

of a bond rule with the L(L − 1)/2 interactions of an infinite function rule (ni = nb), the

scaling for one time steps turns into

F ′Krylov step = mL [ns + (L− 1)ni]O(dL+1) , (8.21)

assuming the phase term is the identity and not contracted as done in the implementation.

For fermionic systems with phase operators, the number of floating point operations would
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further increase.

If we compare the Krylov method to the 4th order Trotter decomposition for the nearest

neighbor case of the quantum Ising model, we estimate that the Krylov takes longer than

the Trotter decomposition by a factor of

FKrylov

FTrotter

=
2d

11
m (2nb + ns)O(mnb) . (8.22)

Plugging in the actual numbers with nb = ns = 1 and d = 2, we obtain finally a factor of

3m/11. We can take the calculation times of Figure 8.2 without Z2 symmetry and obtain

a factor of approximately 30 between the two methods for large systems. That would yield

m ≈ 110, which is above the maximal number specified in the convergence parameters as

100.

In conclusion, these scaling considerations can only serve as estimates. But we point

out why long-range simulations are so expensive, according to Eq. (8.22). If we assume

that we replace the nearest-neighbor interactions in the quantum Ising model with long-

range interactions, i.e., we replace the bond rule by one infinite function rule without phase

operators, the resulting long-range model has the following factor in comparison to the

nearest-neighbor Trotter decomposition:

F exp
Krylov

FNN
Trotter−4

=
2m

11d
[ns + (L− 1)ni] ≈

2m

11d
(L− 1)ni , (8.23)

where the approximation in the last steps assumes that the site rule does not contribute the

major part to the total computation. The quantum Ising model has one non-local rule ni = 1

and a local dimension d = 2, which leads to m(L− 1)/11. Taking, for example, L = 18 and

m = 50 for the long-range Ising model, one could calculate in the same compute time the

nearest-neighbor Ising model with a Trotter decomposition for L = 24, since m(L− 1)/11 ≈

77.3 ≈ 26.
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8.4 Efficient Measurements of Pure States

As our focus is on many-body systems, we draw our attention to the corresponding

measurement procedures. In addition to local observables and correlation measurements,

we are especially interested in the entanglement between two subsystems known in MPS

methods as bond entropy. For the local measurement, we use the reduced density matrix

ρk for site k, tracing out all other sites. This operation scales as O(dL+1). The actual

measurement Tr(Okρk) is negligible with O(d3). The first alternative method is to use the

approach of the Trotter decomposition, i.e., contracting a local operator with the state vector

leading to |ψ′〉 = (Ok, |ψ〉). Then, we calculate the measurement outcome 〈ψ|ψ′〉 at a cost of

O(dL+1) = O(dL). Using the observable Ok padded with identities in the complete Hilbert

space has a leading scaling of O(d2L) for the measurement 〈ψ|Ok|ψ〉, let alone the tensor

products to obtain Ok. These considerations are valid for non-symmetry conserving systems.

To summarize, local and two-site density matrices are an efficient approach to measurements.

In addition, we need the bond entropies. The scaling with system size L for the complete

sets of single-site, two-site density matrices, the energy, and bond entropies are shown in

Figure 8.6. The CPU times show that the symmetry-adapted algorithms are slower for all

four different measurements in the case of the quantum Ising model and its Z2 symmetry.

The Bose-Hubbard model shows a more diverse picture. In the following, we explain the

details of the algorithms.

The simplest way to build the single-site density matrix is to use the function np.tensor-

dot to contract |ψ〉 and 〈ψ | over all indices not appearing in the reduced density matrix after

transforming the vectors into rank-L tensors. This function is helpful for systems without

symmetries, but we lay out another path to lead to the calculation of reduced density matrices

for systems with conserved quantities. Assuming we calculate the density matrix of the first

site in Python starting from a state vector |ψ〉, we have the following order in the row-major
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Figure 8.6: Scaling for Measurements. We show CPU times for the construction of local and
two-site density matrices ρk and ρk,j, the bond entropy S, and the energy measurement E.
All times are determined on a 2x(Intel Xeon E5-2680 Dodeca-core) 24 Cores 2.50GHz . (a)
We observe from the scaling for the quantum Ising model with and without Z2 symmetry
that the measurements with symmetry are slowed down. The jagged behavior for every
second data point in the bond entropy originates in the fact that every even system size
and the next bigger odd system size have their eigenvalue decomposition on a matrix of the
same dimension, although the odd system size has two of them. But the dimension increases
again for the next even system size. (b) For the Bose-Hubbard model, we show the scaling
without symmetry and with U(1) symmetry at unit filling. Due to the local dimension of
d = 5, system sizes are especially limited if the U(1) symmetry is not used.

memory4

|ψ〉 = [|0〉1 ⊗ | . . .〉2,...,L][|1〉1 ⊗ | . . .〉2,...,L] = [A][B] , (8.24)

where we focus on qubits in this example and refer to the blocks as [A][B]. The reduced

density matrix of the first site is then

ρ1 =

(∑
AA∗

∑
AB∗∑

BA∗
∑
BB∗

)
. (8.25)

4 The memory in a computer is linear, but matrices have two dimensions. Row-major memory stores matrices
row-by-row. Column-major memory stores matrices column-by-column. Each memory order is generalized
to higher rank tensors. Python uses row-major memory order; therefore, we use this order for our example.
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The ∗ takes the complex conjugate of the elements. Each of the entries in ρ1 can be calculated

efficiently using the numpy.sum and the element-wise multiplication. In fact, it is sufficient

to calculate the upper (lower) triangular part of ρ and use the property ρ = ρ† to fill the

lower (upper) triangular part of ρ. Reusing the previous method for k with k 6= 1 we choose

the following path to avoid writing specific summations for different sites k:

1. Reshape the vector |ψ〉 into a rank-L tensor with the local dimension (numpy.reshape).

2. Permute the index or indices, which are not traced out, to the front (numpy.transpose).

3. The reduced density matrix can now be calculated as explained for the first site. We

point out that BLAS subroutines scipy.blas.dsyrk and scipy.blas.zherk allow us

to calculate symmetric matrices as well. These functions only build the upper or lower

triangular matrix; they are not used right now, but may enhance the computation time

for systems without symmetry.

The previous method does not work directly for the reduced density matrices of states in

a specific symmetry sector. The first possibility is to map the state vector from the Hilbert

space with symmetries back to the complete Hilbert space without symmetries. This method

has the disadvantage that the memory needs might increase drastically in addition to the

fact of multiplying a lot of zeros. For systems where only a small fraction of the complete

Hilbert space is needed, this increase in memory imposes a problem. For example, the Bose-

Hubbard model at unit filling for a local dimension of d = 5 and fourteen sites corresponds

to approximately 23.67 qubits. The complete Hilbert space has a dimension of 514, which

corresponds to approximately 32.51 qubits. We can overcome this problem in two ways.

We may use booleans to index the complete Hilbert space into indices being part of the

symmetric Hilbert space (True) and not belonging to the symmetry sector specified (False).

Thus, we use less memory: a factor of 16 (8) in comparison to complex-valued (real-valued)

states knowing that numpy stores each boolean in a byte, not a bit. Assuming this approach

is not always enough gain, we use a sparse structure. There are no sparse structures for
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tensors or vectors in scipy, so we save the state vector in a sparse matrix. Therefore, the

permutation has to be accounted for while writing the sparse structure. We propose, again

in the simple example of qubits and a single-site density matrix for site k, the following steps

focusing solely on the method with the sparse matrix:

1. For each basis state | i〉 we need the index in the Hilbert space only considering the

traced out or retained sites. For the new Hilbert space of the retained sites, we create

the vector

vretain = (0, . . . , 20, . . . , 0) , (8.26)

where the entry 20 is at the position k. Retaining more than one index, the entries

for the l retained sites would be 2l−1, . . . , 20. In contrast, the vector for the traced out

part of the Hilbert space is

vtrace = (2L−2, 2L−3, . . . , 2L−k, 0, 2L−k−1, . . . , 20) , (8.27)

where the entry 0 is at the position k. The indices in the corresponding complete

subspace disregarding the symmetry can be obtained with the matrix B, which contains

the basis, via a matrix-vector multiplication:

i1 = B · vretain , i2 = B · vtrace . (8.28)

i1 and i2 are vectors. Building the vectors is cheap and scales linearly with the number

of sites. The expensive part is the two matrix-vector multiplications at O(DSL).

2. Looping over all basis states i in the reduced density matrix, we create for each state i

a sparse vector. The indices in the present (symmetry-adapted) Hilbert space imatch are

identified via the comparison i1 = i. The sparse vector contains the entries of ψimatch

at the corresponding indices in the traced out Hilbert space i2(imatch). If we retain l
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sites, they approximately have a scaling of O(dlDS), where dl is due to the loop over

the basis states and DS corresponds to the comparisons i1 = k.

3. Looping over all upper triangular entries ρi,i′ of the density matrix, each entry is

calculated via the dot product of the sparse vectors with indices i and i′, where we

have to take the complex conjugated vector for i′. Although we loop only over the

upper triangular part, the leading scaling for the loops is still O(d2l). For the vector-

vector multiplication, we can only give an upper limit of O(DS) valid for the limit

l = 0 leading overall to O(d2lDS).

So the overall scaling is O(DSL) + O(d2lDS). The sparse structure in scipy is limited

to a dimension of 231 − 1, which becomes an issue if the complete Hilbert space of the sites

traced over exceeds this value. The example above with fourteen sites with a local dimension

of d = 5 exceeds this limit. Instead of using the indices of the complete Hilbert space, we

build a symmetry-adapted basis for the reduced density matrix and use its indices, which can

never exceed the number of basis states of the original quantum state. A similar algorithm

can be formulated if the resulting density matrix should keep the symmetry-adapted space

to the extent possible.

For the calculation of the bond entropy we employ the following algorithm; we do not use

the characteristic ρ = ρ† so far. Starting in the middle of the system we create the density

matrix for the left bipartition 1, . . . , l as matrix-matrix multiplication

ρl = MM † , (8.29)

where M is the vector |ψ〉 reshaped into the dimension dl, dL−l. In the case of symmetries

present, we create M as a sparse matrix. An eigenvalue decomposition yields the bond

entropy. The next reduced density matrix is obtained via a partial trace

Trl+1ρl+1 = ρl . (8.30)

181



This approach should have a favorable scaling with d2l+1 additions in addition to a per-

mutation to form blocks of the memory along np.transpose((0, 2, 1, 3))) in regard to

calculating the reduced density matrix for every site with a matrix multiplication scaling

with dL+l. The summation for each of the d2l entries runs only over the d diagonal entries

of the memory block. In the case with symmetries, the scaling for the matrix multiplication

does not hold. The second step takes care of the right half of the system building an initial,

reduced density matrix for l + 2, . . . , L, that is,

ρl′ = M †M . (8.31)

In the following we trace out the first site in the reduced density matrix instead of the last.

The permutation with np.transpose((1, 3, 0, 2)) delivers the entries to be summed over

in blocks of the memory, although we recall that only the diagonal elements are summed

over. Overall the bond entropy can be obtained equally well with singular value decompo-

sition of the matrix M build for each splitting. In the tensor network section of OSMPS,

eigendecompositions are preferred over SVD, so we use them in this case as well.

8.5 Convergence of Time Evolution Methods

Finally, we are interested in the convergence of those methods, especially in the error of

the Trotter decomposition and Krylov evolution in comparison to the matrix exponential on

the complete Hilbert space (ME). For the convergence studies we consider the following four

kinds of errors taking into account local measurement, correlation measurements between

operators on two sites, the energy E and the entanglement specified through the bond entropy

or Schmidt entropy S. These error measurements are defined as:

εlocal = max
k
D(ρk, ρ

ME
k ), k = 1, . . . L (8.32)

εcorr = max
(k,j)
D(ρk,j, ρ

ME
k,j ), k, j = 1, . . . L, k < j (8.33)

εE = |E − EME| (8.34)

εS = |S(L/2)− SME(L/2)| , (8.35)
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where the superscript ME specifies that the matrix exponential was used as reference method.

The trace distance D and the bond entropy S are defined as

D =
1

2
|ρ− ρ′|, |A| =

√
A†A (8.36)

S(l) = −
∑
j

Λj(l) log(Λj(l)) . (8.37)

A is a matrix used to define the norm and is replaced in this case with the difference of the

two density matrices ρ − ρ′. Λj(l) are the eigenvalues of the reduced density matrix of the

subsystem reaching from site 1 to l. An alternative distance measure would be the infidelity

I = 1−Tr
√√

ρAρB
√
ρA, but seems to introduce an additional instability taking the square

root of a matrix twice. For the convergence rates, we use

r =
1

ln(α)
ln

(
ε(αdt)

ε(dt)

)
, (8.38)

where α is the proportion between the size of the time steps for the two evolutions carried

out with time steps dt and α · dt. ε is the error, e.g., one of the measures introduced in

Eqs. (8.32) to (8.35). We consider the error with regards to the simulations with the matrix

exponential and the smallest time step. We consider two different models and two scenarios

for the dynamics. We recall that we introduced the definitions of the Ising Hamiltonian

HQI in Eq. (8.7) and the Bose-Hubbard model with HBH in Eq. (8.3). The two scenarios

considered are as follows.

1. A linear quench in the paramagnetic (Mott insulator) phase for the Ising (Bose-

Hubbard) model starting at h = 5.0 (U = 10) and reaching after 0.5 time units

h = 4.5 (U = 8). The time is in units of the interaction σzσz (tunneling strength J).

2. A sudden quench in the paramagnetic (Mott insulator) phase evolving the ground state

of the Ising (Bose-Hubbard) model h = 5.0 (U = 10) with a value of h = 4.5 (U = 8)

for 0.5 time units.
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The results for the scenario (1) in case of the Bose-Hubbard model can be found in

Figure 8.7. We point out that the Krylov method has a similar error to taking the complete

matrix exponential. Greater errors in the Trotter decomposition are due to non-commutating

terms in the decomposition originating from Eq. (8.10). For the example in Figure 8.7, we

obtain a convergence rate of dt2 for the second order Trotter decomposition (2.15, 2.0), the

fourth order Trotter decomposition (4.21, 2.05), and the Krylov methods (2.73, 2.0), where

we consider the pairs (dt = 0.01, dt′ = 0.1) and (dt = 0.001, dt′ = 0.01) to evaluate the rate

of convergence according the distance of the single site density matrices. The limitation to

the second order convergence rate for all methods can be explained since the time-ordering is

correct up to second order for the time-dependent Hamiltonian. Figure 8.11 in the appendix

shows that the convergence rates differ for a time-independent Hamiltonian. The Krylov

method is then exact independent of the time step, and the fourth-order Trotter convergence

rate is 4.59 for (dt = 0.01, dt′ = 0.1) before reaching machine precision. Additional plots for

the Ising model and other scenarios can be found in App. 8.14.

8.6 Open Systems in Untruncated Space

The methods so far described are applicable for closed systems described by pure states.

These methods ignore the fact that any quantum system is coupled to some extent to its

environment. The Lindblad master equation is one way to describe an open quantum sys-

tem through the evolution of its density matrix ρ. The assumptions are that the system is

never entangled with its environment, the correlation time of the environment is small in

comparison to the evolution time, and the evolution time itself is small in comparison to the

equilibration time of the system. These approximations apply if the environment is large and

has no memory. They are referred to as Born-Markov approximation and secular approxi-

mation. In addition to Hamiltonian dynamics described via the von Neumann equation, the

evolution is described via η Lindblad channels acting on different sites k:
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Figure 8.7: Convergence of Methods for the Bose-Hubbard Model. We compare the 2nd and 4th

order Trotter time evolution and the Krylov method with mode 1 against the reference (ref)
takes as the matrix exponential (ME) with dt = 0.0001 for various measures. We consider the
Bose-Hubbard model in a linear quench from on-site interaction strength U(t = 0) = 10.0 to
U(t = 0.5) = 8.0 for a system size of L = 6 and unit filling. The minimal error is set to 10−18

indicating machine precision. The measures are (a) the minimal distance over all single-site
reduced density matrices, (b) the minimal distance over all two-site density matrices, (c) the
error in energy, and (d) the error in the bond entropy for the splitting in the middle of the
system.

185



ρ̇ = − i

~
[H, ρ] +

∑
η,k

Lη,kρL
†
η,k −

1

2

{
L†η,kLη,k, ρ

}
= − i

~
[H, ρ] +

∑
ν

LνρL
†
ν −

1

2

{
L†νLν , ρ

}
,

(8.39)

where the indices η and k can be combined in another index ν = (η, k). One of our additional

rule sets for the open system is a local Lindblad operator

Lind1 rule :
L∑
k=1

w · ci · Li , (8.40)

which would correspond to one channel η. We can always choose zero Lindblad channels and

have an evolution of a possibly initially mixed system under the von Neumann equation

ρ̇ = − i

~
[H, ρ] . (8.41)

In the following, we describe two approaches to simulate the Lindblad master equation. On

the one hand, we can simulate the whole density matrix ρ as represented in Eq. (8.39). There-

fore, ρ is represented as superket vector |ρ〉〉 in the Liouville space obtaining a Schrödinger-like

equation. The superket vector is the density matrix written as a vector. A D ×D density

matrix turns into a vector with D2 entries. But first, we lay out the quantum trajectories,

which average over many simulations. Each simulation describes a single realization of what

possibly could happen in an experiment.

8.6.1 Quantum Trajectories

The method of quantum trajectories has been proposed to avoid simulation of the com-

plete density matrix at the cost of sampling over many realizations of a simulation with pure

states. The algorithm used can be described by the following steps [61, 217, 218]:

1. Throw a random number r and evolve under the effective Hamiltonian Heff until the

norm drops below r,
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Heff = H − 1

2

∑
ν

L†νLν . (8.42)

2. Throw another random number rκ and calculate the probabilities pν to apply any

possible Lindblad operator and the cumulative probability Pν ,

pν = 〈ψ | L†νLν |ψ〉 , Pν =

∑ν
j=1 pj∑νmax

j=1 pj
. (8.43)

3. Apply Lindblad operator κ with Pκ−1 < rκ ≤ Pκ and renormalize | ψ′〉 = Lκ | ψ〉.

Restart with step (1).

This approach can be used with the matrix exponential on the complete Hilbert space,

the Trotter and Krylov evolution.

8.6.2 Liouville Space

The Liouville space is a mapping from the Hilbert space defined over

O′ρ O → O′ ⊗OT |ρ〉〉 , (8.44)

where the original density matrix ρ is now represented as a vector, the super-ket |ρ〉〉. The

superscript T is the transpose of the matrix. A quick derivation of the transformation is given

in App. 8.15. The corresponding equation governing the evolution of the density matrix is

Schrödinger-like,

∂

∂t
|ρ〉〉 =

[
− i

~
(
H ⊗ I− 1⊗HT

)
+
∑

Lk ⊗ L∗k −
1

2

(
LkL

†
k ⊗ I + I⊗ L∗kLTk

)]
|ρ〉〉 .(8.45)

The short-hand notation is ∂/∂t |ρ〉〉 = L |ρ〉〉, where L represents Hamiltonian part and

dissipative part of the time evolution in Liouville space. Thanks to the structure we can

reuse two of the previous methods with small modifications. In the first method presented,

we obtain the propagator via the matrix exponential. Calling appropriate methods for non-
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(a) ρ and |ρ〉〉 (b) (P1,2 ⊗ I) |ρ〉〉

⇒

Figure 8.8: Tensor Operations for the Density Matrix without Symmetries. (a) The density
matrix is rewritten as a rank-(2L) tensor where the first L indices represent the rows of the
density matrix (black lines) and the second L indices run over the columns of the density
matrix (red) for both ρ and |ρ〉〉. (b) The application of a two-site operator to the density
matrix corresponds to the contraction over the four indices of the two sites k and k+1. This
operation comes at a cost of O(d2L+4).

hermitian matrices − the matrix in Eq. (8.45) is not necessarily hermitian due to the term

Lν ⊗ L∗ν − we can reuse the method. For the Trotter decomposition, the same strategy

is necessary for the local two-site propagators. The matrix exponential for the two site

propagator is now of dimension d4× d4 instead of d2× d2 for state vectors. Figure 8.8 shows

how to apply the two-site operators acting on the density matrix formatted as a rank-(2L)

tensor. Based on the contraction over four indices for two sites, the application scheme for

the Trotter decomposition can be adapted. In contrast to the pure system, we permute the

tensor after every contraction back to its original order. The Krylov method used previously

has to be modified for non-hermitian matrices since the exponential of the matrix in the

Krylov subspace is no longer tridiagonal, but of upper Hessenberg form.

8.6.3 Error Analysis in Case Study 1: Coupled Cavities

To check the convergence of the code, we analyze two coupled cavities, or photon Joseph-

son junctions (PJJ), described through the Jaynes-Cummings model with loss [220]. The

Hamiltonian of the system without a loss is defined as

HPJJ = (ωqn1 + ωcn2 + ωcn3 + ωqn4) + g
(
σ+

1 a2 + σ−1 a
†
2 + a†3σ

−
4 + a3σ

+
4

)
−J
(
a†2a3 + a2a

†
3

)
, (8.46)
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where ωq = 1.0 (ωc = 1.0) is the frequency of the qubit (cavity) and nk are the number

operators for the excitations on the corresponding site k. g = 0.48 is the coupling constant

between cavity and qubit; the cavities are coupled to each other at a strength J representing

the tunneling of photons. The transition from the ground (excited) state to the excited

(ground) state for the qubits is described with the operator σ+ (σ−). The creation (anni-

hilation) operator for the photons in the cavity is a† (a). We recall that n1,4 ∈ R2×2 while

the dimension of n2,3 varies with the number of photons allowed in the cavity. We add a

spontaneous emission from the excited state to the ground state for the qubits. The second

type of system-environment interaction is the loss of photons. Both processes assume that

the environment is the vacuum and only absorbs excitations, but cannot provide them to

the system. We can describe this system with the following Lindblad master equation:

ρ̇ = −i [HPJJ, ρ] +
∑

k∈{1,4}

γkσ
−
k ρ σ

+
k −

γk
2

{
σ+
k σ
−
k , ρ
}

+
∑

k∈{2,3}

γkak ρ a
†
k −

γk
2

{
a†kak, ρ

}
.

(8.47)

Defining the total number of excitations as N(t) =
∑4

k=1 nk and choosing a constant γ = γk

for the coupling of the system to the environment via the Lindblad operator, one can show

that the following relation holds:

N(t) = N(t = 0) exp(−γt) . (8.48)

We turn to the error analysis. First, we choose to simulate the case γ = 0 with the open

system code, which is, in fact, the evolution according to the von Neumann equation for

density matrices defined in Eq. (8.41). This simulation should reproduce the results for pure

state |ψ〉 and corresponding code. We characterize the error again in terms of the maximal

distance between all single site density matrices and two site density matrices, the energy,

and bond entropy as defined in Eqs. (8.32) to (8.35). Table 8.1 lists the corresponding errors

for our default settings with a total time T = 10 with a time step of dt = 0.01. The errors
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are for the final measurement at T = 10. We start with one photon in the right cavity and

all other sites in the ground state. Therefore, we can cut off the Hilbert space to a local

dimension d = 2. We remark that the evolution of the density matrix does not provide the

bond entropy and therefore cannot be compared to the result of the pure state. Furthermore,

zero error is to be interpreted as numerical zero. Table 8.2 shows the errors for the evolution

of the open system with γ = 0.05, where we introduce also the error in the total number of

excitations following Eq. (8.48) as

εN(t) = |NEDLib(T )−N(t = 0) exp(−γT )| . (8.49)

We recognize the larger error for quantum trajectories in Table 8.2. This error is due to

the finite number of different trajectories. The standard deviation scales with 1/
√
NQT

according to the law of large numbers. Errors related to the algorithm are at a much lower

magnitude for proper parameters and would only become visible for very large NQT. We may

illustrate this behavior with the following example: We assume there is one particle and we

pick the point in time where this particle decayed with probability 0.5 leading to a coin-toss

scenario. The normalized standard deviation for the binomial distribution is then (
√

4N)−1.

For 500 trajectories, we have 0.022. The standard deviation in Table 8.2 is within this order

of magnitude. Errors here are for T = 10; therefore, the statistics are slightly different.

8.6.4 Error Analysis in Case Study 2: Double-Well

In the second case study, we check the error for simulations with symmetries, where

we choose a Bose-Hubbard model with U(1) symmetry for the number conservation. We

introduced the double-well problem before in Eq. (8.18) with its Hamiltonian HDW. For

the comparison of the evolution of the von Neumann equation of the density matrix, see

Eq. (8.41), to the pure state evolution we choose a system size of L = 7 with three bosons

over a time of T = 20 and a time step of dt = 0.01. The height of the potential is V = 1.

The initial state for the time evolution is the ground state when applying a potential to the
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Table 8.1: Error Analysis for the Density Matrix in the von Neumann Equation. We sim-
ulate the closed system with the open system code of the library using the von Neumann
equation in the Liouville space (Liou). As a reference, we use the closed system evolved
with the matrix exponential (ME) to obtain errors for the maximal distances of one and two
site density matrices, energy, and bond entropy. Zeros in the errors are to be interpreted as
numerical zeros. Bond entropies are not calculated for density matrices. All of the methods
listed demonstrate the correctness of the code, where, e.g., the error of the Trotter decom-
position originates in the Trotter error and is decreased for the fourth order method. The
Krylov method runs with the first mode, and the quantum trajectories (QT) have a single
trajectory sufficient for a closed system. Additional data for further methods is presented in
the Appendix in Table 8.4.

Model Error Liou (ME) Liou (Trotter-2) Liou (Krylov-1) QT1 (ME)

HPJJ εlocal 0.0 1.54 · 10−10 2.74 · 10−13 0.0
εcorr 0.0 1.83 · 10−10 7.37 · 10−13 0.0
εE 6.28 · 10−14 6.71 · 10−07 5.58 · 10−13 5.55 · 10−15

εS − − − 1.78 · 10−15

HDW εlocal 0.0 5.34 · 10−10 8.54 · 10−14 9.03 · 10−14

εcorr 0.0 7.67 · 10−10 8.8 · 10−14 2.7 · 10−13

εE 1.82 · 10−12 7.16 · 10−06 8.07 · 10−13 7.51 · 10−13

εS − − − 4.35 · 10−14

right well of amplitude 1 in addition to the potential of the barrier localizing the particles

in the left well. Upon releasing the barrier for the right well at t = 0, the particles start to

oscillate between the two wells, i.e., the system is in the Josephson regime. The errors are

shown in Table 8.1. The open system is introduced as in [221]

ρ̇ = −i [H, ρ] +
L∑
k=1

γknkρ nk −
γk
2

{
n2
k, ρ
}
, (8.50)

and we choose a space-independent coupling γ = γk = 0.05 in the following. Table 8.2 con-

tains then the open system case and compares the matrix exponential to the other methods.

The setup of this model is discussed in detail as an example in the Appendix A.1.
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Table 8.2: Error Analysis for the Lindblad Master Equation. We simulate the Lindblad mas-
ter equation for different time evolution methods and take as reference the implementation
using the matrix exponential. In addition, the simulations with HPJJ are compared to the
exponential decay of the number of excitations. Quantum trajectories run with 500 different
trajectories. Zeros in the errors are to be interpreted as numerical zeros. Bond entropies
are not calculated for density matrices and excluded for this reason from the table of errors.
Data for additional methods can be found in the Appendix in Table 8.5.

Model Error Liou (ME) Liou (Trotter-2) Liou (Krylov-1) QT500 (ME)

HPJJ εN(t) 8.88 · 10−16 3.22 · 10−07 3.7 · 10−13 1.15 · 10−02

εlocal − 7.5 · 10−11 2.27 · 10−13 1.49 · 10−05

εcorr − 8.13 · 10−11 1.25 · 10−13 4.48 · 10−05

εE − 1.32 · 10−07 3.71 · 10−13 1.15 · 10−02

HDW εlocal − 1.32 · 10−11 0.0 2.04 · 10−03

εcorr − 2.52 · 10−11 0.0 6.44 · 10−03

εE − 2.53 · 10−06 1.16 · 10−12 3.75 · 10−02

8.7 Comparison to QuTip Package for Benchmarking

We compare single features of the ED package of OSMPS with comparable features of the

QuTip library [222, 223] under version 4.0.2. The QuTip library provides a far more general

framework to simulate closed and open quantum systems. We focus on the benchmark of

the following tasks:

• Task (1): Partial trace over a pure state |ψ〉 retaining the reduced density matrix for

the first site ρ1. We point out that this case does not need a permutation in OSMPS.

With regards to the implementation in QuTip, the many-body case does not seem to

be the focus, and the density matrix of the complete pure state is built first and then

traced out over ρ, which leads to some overhead.

• Task (2): Partial trace over a density matrix ρ retaining the reduced density matrix

for the first site ρ1. Since both libraries start from the density matrix, this comparison

is more valuable than tracing over pure states in (1).
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• Task (3): Time evolution of the quantum Ising model with a time-independent Hamil-

tonian. The QuTip library uses an ODE solver to evolve a given initial state in time,

which we compare to the Krylov and fourth-order Trotter method from OSMPS. For

QuTip we set up a single measurement of the identity matrix. OSMPS takes the de-

fault measurements including the measurement of the energy (Hamiltonian) and the

overlap to the initial state, where the first one contains the major part of the measure-

ment time in OSMPS. For OSMPS we consider the two approximate methods with the

fourth order Trotter (3a) and the Krylov (3b). We do not use the Z2 symmetry of the

system here.

We run the benchmark simulations on an Intel(R) Core(TM) i7-3610QM CPU @ 2.30GHz,

8 GB RAM and present the CPU times measured with Python’s time.clock package in Ta-

ble 8.3. The run times of the trace over a density matrix are comparable and show that our

implementation scales as well as QuTip. The time evolutions are more difficult to compare

with regards to the order of the method etc., but the time of the Trotter decomposition for

large systems shows that we can offer a valid alternative. The Krylov evolution, as expected

from the previous scaling analysis, e.g., in Figure 8.2, takes longer.

8.8 Conclusions

In this paper, we have shown the approaches for exact diagonalization methods including

the use of symmetries and other evolution techniques without truncating entanglement,

including the Trotter decomposition and the Krylov subspace method. The methods can be

extended from closed to open systems.

We have described efficient methods for time evolutions and measurements without sym-

metries when the Hilbert space is built from a tensor product of local Hilbert spaces. There-

fore, the state vector representing the wave function can be rewritten as a rank-L tensor. The

methods include especially approaches for the Trotter time evolution, matrix-vector multi-

plication necessary for the Krylov time evolution, and measurements via reduced density
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Table 8.3: Benchmarking QuTip and OSMPS. The comparison of run times includes (1) the
partial trace of a pure state and (2) a density matrix, both tracing over the sites 2 to L
where L is the system size. Furthermore, (3) contains the time evolution for the quantum
Ising model for a time-independent Hamiltonian. For OSMPS we distinguish between the
4th Trotter decomposition, i.e., (3a), and the Krylov method labeled as (3b). QuTip uses
the default ODE solver. All CPU times TCPU(L) are given in seconds as a function of the
system size L. The times are calculated cumulatively for 100 iterations of the corresponding
task.

Task TCPU(4) TCPU(6) TCPU(8) TCPU(10) TCPU(12) TCPU(14) TCPU(26)

(1), QuTip 0.15 0.16 0.20 0.42 2.76 − −
(1), OSMPS 0.01 0.01 0.01 0.01 0.01 0.01 22.00

(2), QuTip 0.12 0.14 0.18 0.39 2.71 − −
(2), OSMPS 0.01 0.01 0.02 0.16 2.61 − −
(3), QuTip 3.19 4.50 7.16 17.00 57.05 248.60 −

(3a), OSMPS 9.72 14.71 20.86 33.20 72.54 232.75 −
(3b), OSMPS 16.84 20.20 25.60 132.69 314.91 973.38 −

matrices. For symmetry-adapted methods, the key is the mapping into the basis. However,

methods for Trotter decomposition or matrix-vector multiplication cannot avoid looping

over entries and cannot use faster matrix algebra. Reduced density matrices, in particu-

lar, suffer from this limitation and we have presented a feasible approach here, scaling with

O(DSL) +O(d2lDS).

Open system methods according to the Lindblad master equation follow two known ap-

proaches via the quantum trajectories and the Liouville space mapping the density matrix to

a vector. The evolution of the vector representing the density matrix follows a Schrödinger-

like equation. While quantum trajectories can use system sizes and methods equivalent to

pure states sampling over many realizations, the methods for Liouville space have to be

adapted slightly for the use with density matrices. This adaption refers to the matrix expo-

nential or its approximation. While the Hamiltonian was hermitian, the Liouville operator

is not necessarily hermitian. For any propagation of the whole density matrix, we can use

the rule of thumb that about half the number of sites of the pure system can be simulated.

The disadvantage of quantum trajectories is the error, which was of the order 10−2 for the
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total number of excitations in the photon Josephson junctions for 500 trajectories. We point

out that the number of trajectories needed might differ for various Hamiltonians.

The exact diagonalization methods presented help to develop new methods and can serve

as a convergence test and benchmark. One application is the exploration of highly entan-

gled states, which cannot be simulated with tensor network methods. Other Hamiltonians

exploring only a small part of the Hilbert space might be scalable in size to more than the

25 qubits of the Ising model, where we show the scaling of Trotter decomposition up to 27

qubits. Models like the Bose-Hubbard model in k-space have long-range interactions and

a large bond dimension in the Matrix Product Operators of the Hamiltonian when using

tensor network methods such as MPS, and thus find in exact diagonalization methods an

attractive alternative. The rule sets allow for the flexible construction of the Hamiltonians

without the restriction of the MPO representation with tensor network methods, e.g., any

infinite function does not have to be fitted to exponential rules. This argument might apply

as well to systems with randomized interactions such as spin glasses [116, 141]. Finally, open

quantum systems are another attractive field for exact diagonalization libraries despite the

limitations to fewer sites due to the Liouville space. Any formulation of a master equation for

ρ could be explored with the easy to program tools within our exact diagonalization codes,

e.g., if Lindblad operators are non-local and/or long-range including a coupling through the

environment. Especially if the full spectrum of the Hamiltonian is necessary for the Lindblad

master equation, exact diagonalization is an ideal test case for any approximation truncating

the number of states in the spectrum.

Therefore, these methods are not only useful as problems set in classes, but are worth

being improved and optimized for exploring new frontiers in research.
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8.10 Rule sets for exact diagonalization

As OSMPS is a many-body library, Hamiltonians are not built by the user, but through

rule sets. The following rule sets are currently enabled in our open source diagonalization

libraries:

Site rule :
L∑
k=1

w · ck ·Ok (8.51)

Bond rule :
L−1∑
k=1

w · ck ·Ok ⊗O′k+1 (8.52)

Exp rule :
L∑
k<j

w · ck
d

(j−k−1)
p

Ok ⊗
(

j−1⊗
q=k+1

Qq

)
⊗O′j (8.53)

InfiniteFunc :
L∑
k<j

w · ck · f(|j − k|)Ok ⊗
(

j−1⊗
q=k+1

Qq

)
⊗O′j (8.54)

MBString :

L−j∑
k=1

w · ck
WMB⊗
j=1

O
[k+j−1]
j , (8.55)

where L is the number of sites in the one-dimensional chain, w is a general coupling, and

ck is a possibly space-dependent coupling. Ok, O
′
k, and Qk are operators acting on the

local Hilbert space. Qk targets fermionic systems, which have a phase operator due to the

Jordan-Wigner transformation [137, 138] mapping fermions onto the lattice. The Jordan-

Wigner transformation is a mapping between spins and fermions where the transformation

ensures that the corresponding commutation relations hold. The exponential rule includes

a decay parameter dp ≤ 1. The function f(·) describes the coupling of the two operators

at an arbitrary distance for the InfiniteFunc rule. The Many-Body String (MBString) term

has a width of WMB sites and uses the tensor product ⊗ to indicate the construction on the

composite Hilbert space. Synonyms for the tensor product are “outer product” or “Kronecker

product”.

196



8.11 Scaling of memory resources

We have discussed in Figure 8.2 the scaling of the computation time for the different time

evolution methods. In this appendix, we discuss the corresponding scaling of the memory

resources, shown in Figure 8.9. We use the python package resource to track the maximal

memory usage over the complete calculation.

The matrix exponential has the highest demands on memory as the complete Hamiltonian

has to be stored, see Figure 8.9(a). The two different set of curves distinguish the matrix

exponential with and without Z2 symmetry. The symmetry has a smaller Hilbert space by

a factor of 2 and thus lower memory requirements. The difference between dense and sparse

methods is minimal within the quantum Ising model.

In contrast, both the Krylov and the Trotter method show higher memory requirements

for the symmetry-conserving. We explain this trend with the fact that the mapping for the

symmetry must be stored, overcoming the trend that the state vector itself is smaller for

systems with Z2 symmetry. The lower memory for the Trotter without symmetry is due to

the Krylov methods storing a set of the Krylov vectors. Figure 8.9(b) shows the same trend

for the Bose-Hubbard model, where we recall that the U(1) symmetry takes a much smaller

fraction of the Hilbert space in comparison to the quantum Ising model with and without

symmetry.

We have the memory-optimized algorithms for the Krylov algorithm in our library re-

placing the scipy implementation. Therefore, we take a look at the memory consumption of

the different Krylov modes; Figure 8.9(c) considers the quantum Ising model without using

the Z2 symmetry. For example, the memory requirements for 24 qubits with mode 3 are

below the memory used for 20 qubits in the other modes. This increased number of qubits is

a clear improvement. The Bose-Hubbard double-well problem, see Figure 8.9(d), is the only

simulation pushing the limits past laptop and desktop computers. Peaking at around 91GB,

such simulations are limited to HPC environments. This high memory demand is related to

the measurements. Therefore, we concentrate on simulations without the measurement of
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the site and bond entropy to distinguish the different Krylov modes. We conclude that the

third mode a priori saves memory for systems without symmetry.

0 5 10 15 20 25
System size L

105

106

107

108

M
em

or
y
S

R
A

M
/k

ilo
by

te ME
ME(sp)
ME(Z2)
ME(Z2,sp)

Krylov
Krylov(Z2)
Trotter
Trotter(Z2)

(a)

5 10 15 20
System size L

10−2

10−1

100

101

102

103

104

105

M
em

or
y
S

R
A

M
/k

ilo
by

te

ME
ME(sp)
ME(U1)
ME(U1,sp)
Krylov
Krylov(U1)
Trotter
Trotter(U1)

(b)

0 5 10 15 20 25 30
System size L

105

106

107

M
em

or
y
S

R
A

M
/k

ilo
by

te

Tmode=0

Tmode=1

Tmode=2

Tmode=3

(c)

2 4 6 8 10 12 14 16 18
System size L

105

106

107

108

M
em

or
y
S

R
A

M
/k

ilo
by

te

Tmode=0

Tmode=1

Tmode=2

Tmode=3

Tmeas,mode=3

(d)

Figure 8.9: Scaling of the Memory for Time Evolution Methods. We profile five time steps for
different system sizes L comparing the matrix exponential (ME) with sparse matrices (sp)
and with dense matrices to the Trotter decomposition and to the default Krylov method.
The maximal memory of the process in kilobytes is plotted on a lin-log-scale. (a) The
nearest neighbor quantum Ising model has a Z2 symmetry, which we use in comparison to
the methods without symmetry. (b) The Bose-Hubbard model is considered with a local
dimension of d = 5, and the U(1) symmetry is used with unit filling in the simulations
marked with U1. (c) The scaling of the RAM for the different Krylov modes in the quantum
Ising model without using its Z2 symmetry. The memory-optimized mode 3 clearly saves
resources for large systems. (d) The memory requirements for the Bose-Hubbard model in
a double-well at filling N = (L − 1)/2 with N odd are dominated by the measurement of
the site and bond entropy. Without measurements, the Krylov modes show different RAM
requirements.

8.12 Quantum Cellular Automata and Quantum Gates

The algorithms described so far evolve the quantum state or density matrix according to

the differential equation presented in Eqs. (8.1), (8.39), or (8.41). The methods using the full

matrix exponential and the Trotter decomposition calculate the propagator, which we apply
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to the quantum state. But some problems in quantum physics are directly formulated in

terms of propagators, i.e., quantum cellular automata [209, 210] and quantum gates. Quan-

tum gates are especially common in quantum information theory: most researchers know

the quantum Fourier transformation defined by their gates [85], but not the corresponding

Hamiltonian.

As the major steps are already implemented with the application of the propagator to

a state, we also provide the tools to formulate dynamics solely in terms of quantum gates

defined on quasi-local gates. The time evolution is then formulated as one quantum circuit

consisting of multiple sub-circuits. We measure after each sub-circuit, which can be different.

Each sub-circuit is a series of gates G1 to GK :

|ψ′〉 = GKGK−1 · · ·G2G1 |ψ〉 , (8.56)

where | ψ′〉 is the wave-function after the sub-circuit. We set up a QECA rule, i.e., the

SWP-rule 6 for L = 21 sites [209]. The initial state is a single spin down in the middle of

the system. Figure 8.10 describes the evolution according to the rule. We waive a detailed

study of the scaling for the quantum circuits or gates. On the one hand, such an evolution

without symmetries can be easily estimated by the contraction of the gates to the state. On

the other hand, even gates obeying a symmetry and acting on two sites have an upper bound

of the Trotter time evolution up to some factor for the number of applications.

In conclusion, this evolution tool comes at almost no additional cost for the implemen-

tation. Although we have at present only gates in the OSMPS library, it can be generalized

to Kraus operators [85] as the next step, and QECA evolutions with Kraus operators have

already been suggested in [224].

8.13 Lindblad Master Equation and the Full Spectrum

The derivation of the Lindblad master equation for a given Hamiltonian is subtle in the

many-body scenario. One possibility is the inclusion of the energy eigenstates of the system.

199



0 5 10 15 20
Site k

0

20

40

60

80
T

im
e
t

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

M
ag

ne
ti

za
ti

on
〈σ

z k
(t

)〉

Figure 8.10: Quantum Cellular Automata example for Quantum Circuits. Asymmetric SWP
Quantum Cellular Automata rule for L = 21 sites is one example for the application of
quantum circuits.

This approach elegantly handles the secular approximation, but is obviously restricted to

many-body systems with approximately six or fewer qubits, or the size of the Hilbert space

equal to six qubits. The restriction to six qubits stems from the exponential taken in Liouville

space for the Lindblad master equation, defined in Eq. (8.39). Krylov methods or the Trotter

approximation are not suitable for this huge number of non-local Lindblad operators. Despite

these strict limitations, the full spectrum is worth being included in a library as it allows for

the study of thermalization via a reservoir.

In addition to the problem of using the full set of eigenstates, the couplings for the

system-reservoir interaction have to be derived or integrated numerically. Both paths are a

challenging question. We provide the structure to simulate Lindblad master equations for a

system-reservoir Hamiltonian

HS+R = HS +
∑
k,q

Sk

(
bR,q + b†R,q

)
+
∑
q

ωqnR,q (8.57)

according to
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ρ̇ = − i

~
[H ′S, ρ] +

∑
abcd

Cabcd
(
LabρL

†
cd −

1

2

{
L†cdLab, ρ

})
.

(8.58)

The Lindblad operators Lab =| a〉〈b | are transitions between eigenstates | a〉 and | b〉. The

coupling Cabcd carries the dependence on the type of reservoir, the interaction strength be-

tween system and reservoir, the operator S in terms of the overlap 〈a | S |b〉, the temperature

of the reservoir, and possible long-range couplings induced by a common reservoir shared by

multiple sites. The Hamiltonian H ′S can have corrections with regards to the system Hamil-

tonian HS. The reservoir is modeled via a set of harmonic oscillators with frequencies q. We

have used this approach to study the thermalization of the quantum Ising model coupled to

an electromagnetic field [225].

8.14 Details of Convergence Studies

In this appendix, we extend the convergence studies of the main body of this article,

i.e., Sec. 8.5. We showed the dependence of the error on the method and the time step

in Figure 8.7 for a time-dependent Hamiltonian in the Bose-Hubbard model. Figure 8.11

shows the same kind of study for the time-independent Hamiltonian corresponding to a

sudden quench within the Mott insulator as described in the second scenario in Sec. 8.5.

The error from the second order time ordering vanishes and only the Trotter decompositions

remain with an error depending on the time step dt. In addition, we present the first

scenario with a time-dependent Ising Hamiltonian in Figure 8.12. We calculate again the

rate of convergence according to Eq. (8.38) and the maximal distance between the single site

density matrices. Those rates are 2.07, 2.0 for the second order Trotter decomposition, 2.93,

1.97 for the fourth order Trotter decomposition, 2.08, 2.0 for the Krylov in mode 1, and the

matrix exponential has rates of convergence of 2.08, 2.02. The first value corresponds to the

pair (dt = 0.01, dt′ = 0.1) and the second value (dt = 0.001, dt′ = 0.01). We confirm that the

convergence rate of dt2 is reproduced in the Ising model due to the error in time-ordering.
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Figure 8.11: Convergence of Methods for the time-independent Bose-Hubbard Model. We
compare the 2nd and 4th order Trotter time evolution and the Krylov method with mode
1 against the reference (ref) takes as the matrix exponential (ME) with dt = 0.0001 for
various measures. We consider the Bose-Hubbard model in a linear quench from on-site
interaction strength U(t = 0) = 10.0 to U(t = 0.5) = 8.0 for a system size of L = 6 and unit
filling. The reference value is the matrix exponential for the smallest time step dt = 0.0001.
The minimal error is set to 10−18 indicating machine precision. The measures are (a) the
minimal distance over all single-site reduced density matrices, (b) the minimal distance over
all two-site density matrices, (c) the error in energy, and (d) the error in the bond entropy
for the splitting in the middle of the system.
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Figure 8.12: Convergence of Methods for the Quantum Ising Model. We compare the 2nd

and 4th order Trotter time evolution and the Krylov method in mode 1 and the matrix
exponential (ME). The reference (ref) is the matrix exponential with dt = 0.001 for all four
measures. We consider the quantum Ising model using its Z2 symmetry in a linear quench
from external field h(t = 0) = 5.0 to h(t = 0.5) = 4.5 for a system size of L = 10. The
measures are (a) the minimal distance over all single-site reduced density matrices, (b) the
minimal distance over all two-site density matrices, (c) the error in energy, and (d) the error
in the bond entropy for the splitting in the middle of the system.

203



For the open system analysis, we studied the error of the evolution of the von Neumann

equation for the density matrix in a closed system and the Lindblad master equation for

selected time evolution schemes in Table 8.1 and Table 8.2. Table 8.4 and Table 8.5 show

the errors of different settings. We conclude that the 4th order Trotter evolution reduces the

error to almost machine precision. The built-in scipy Krylov method delivers a better slightly

better result than the Krylov methods from the EDLib of OSMPS, e.g., the error in energy

is about two orders (one order) of magnitude smaller for the photon Josephson junctions in

the von Neumann (Lindblad master) equation, defined in Eq. (8.47). In Table 8.5 we point

out that the errors for the quantum trajectories do not depend on the method. We explain

this by the fact that the seed of the pseudo-random number generator is fed with the ID of

the trajectory and therefore the trajectories for each method are equal. Also, the error from

the quantum trajectory approach is bigger than the error from the time evolution method

and, therefore, the latter error is not visible in the table.

8.15 Add-ons for Open Quantum Systems

In the following, we derive the transformation into the Liouville space given via the

equation and already introduced in Eq. (8.44)

O′ρO → O′ ⊗OT |ρ〉〉 , (8.59)

which we used to build the Liouville operator L for the time evolution of an open system.

First, we rewrite the equation in terms of indices5 where the elements can be permuted:

O′ρO = O′ijρjkOkl = O′ijOklρjk = O′ijO
T
lkρjk . (8.60)

ρ can be transformed into a vector with a combined index (jk). From the two matrices the

combination of indices can be achieved using the tensor product:

O′ρO = O′ijO
T
lk |ρ〉〉(jk) = (O′ ⊗OT )(il),(jk) |ρ〉〉(jk) . (8.61)

5The indices are not related to the same symbols introduced previously.
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Table 8.4: Additional Error Analysis for the Density Matrix in the von Neumann Equation.
We show additional methods extending Table 8.1 for simulations of the closed system with
the open system code of the library and the reference result is the closed system solving the
Schrödinger equation.

Model: HPJJ

Error εlocal εcorr εE εS

Liou (Trotter-4) 0.0 0.0 2.71 · 10−13 −
Liou (Krylov-0) 0.0 0.0 7.33 · 10−15 −
Liou (Krylov-2) 2.71 · 10−13 7.34 · 10−13 5.52 · 10−13 −
Liou (Krylov-3) 2.71 · 10−13 7.34 · 10−13 5.52 · 10−13 −
QT1 (Trotter-4) 0.0 0.0 1.16 · 10−13 2.45 · 10−12

QT1 (Krylov-0) 0.0 0.0 4.0 · 10−15 8.88 · 10−16

Model: HDW

Error εlocal εcorr εE εS

Liou (Trotter-4) 6.34 · 10−13 0.0 3.53 · 10−11 −
Liou (Krylov-0) 8.87 · 10−14 2.21 · 10−13 7.81 · 10−13 −
Liou (Krylov-2) 8.56 · 10−14 7.95 · 10−14 8.04 · 10−13 −
Liou (Krylov-3) 8.54 · 10−14 1.11 · 10−13 8.13 · 10−13 −
QT1 (Trotter-4) 9.0 · 10−14 9.46 · 10−14 3.48 · 10−11 2.12 · 10−10

QT1 (Krylov-0) 8.99 · 10−14 3.91 · 10−13 7.74 · 10−13 2.38 · 10−14
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Table 8.5: Additional Error Analysis for the Density Matrix in the Lindblad Master Equation.
We show additional methods extending Table 8.2 for simulations of the open quantum system
and the reference result is the open system using the matrix exponential.

Model: HPJJ

Error εN(t) εlocal εcorr εE

Liou (Trotter-4) 1.32 · 10−13 4.88 · 10−15 8.99 · 10−15 2.09 · 10−14

Liou (Krylov-0) 1.78 · 10−14 0.0 · 10+00 0.0 · 10+00 1.71 · 10−14

Liou (Krylov-2) 3.76 · 10−13 2.31 · 10−13 5.21 · 10−13 3.77 · 10−13

Liou (Krylov-3) 3.76 · 10−13 2.31 · 10−13 5.21 · 10−13 3.77 · 10−13

QT500 (Trotter-4) 1.15 · 10−02 1.49 · 10−05 4.48 · 10−05 1.15 · 10−02

QT500 (Krylov-0) 1.15 · 10−02 1.49 · 10−05 4.48 · 10−05 1.15 · 10−02

Model: HBH

Error εlocal εcorr εE

Liou (Trotter-4) 4.85 · 10−14 4.87 · 10−14 1.15 · 10−10

Liou (Krylov-0) 0.0 0.0 4.09 · 10−13

Liou (Krylov-2) 0.0 0.0 1.17 · 10−12

Liou (Krylov-3) 0.0 0.0 1.16 · 10−12

QT500 (Trotter-4) 2.04 · 10−03 6.44 · 10−03 3.75 · 10−02

QT500 (Krylov-0) 2.04 · 10−03 6.44 · 10−03 3.75 · 10−02
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To have the index k of O in the columns of the result of the tensor product, we had transposed

O before. We point out that this definition works independently of row- or column-major

order of the memory.

207



CHAPTER 9

OPENING WAYS TO SIMULATE ENTANGLED MANY-BODY QUANTUM SYSTEMS

IN ONE DIMENSION

Published previously in Computer Physics Communications1

D. Jaschke,2 M. L. Wall,3 and L. D. Carr4

Abstract

Numerical simulations are a powerful tool to study quantum systems beyond exactly

solvable systems lacking an analytic expression. For one-dimensional entangled quantum

systems, tensor network methods, amongst them Matrix Product States (MPSs), have at-

tracted interest from different fields of quantum physics ranging from solid state systems

to quantum simulators and quantum computing. Our open source MPS code provides the

community with a toolset to analyze the statics and dynamics of one-dimensional quantum

systems. Here, we present our open source library, Open Source Matrix Product States

(OSMPS), of MPS methods implemented in Python and Fortran2003. The library includes

tools for ground state calculation and excited states via the variational ansatz. We also

support ground states for infinite systems with translational invariance. Dynamics are sim-

ulated with different algorithms, including three algorithms with support for long-range

interactions. Convenient features include built-in support for fermionic systems and number

conservation with rotational U(1) and discrete Z2 symmetries for finite systems, as well as

data parallelism with MPI. We explain the principles and techniques used in this library

1 “Open source Matrix Product States: Opening ways to simulate entangled many-body quantum systems
in one dimension”, D. Jaschke, M. L. Wall, and L. D. Carr, CPC 225, 59 (2018). https://doi.org/10.

1016/j.cpc.2017.12.015. Use in agreement with CC-BY-NC-ND license [56].
2primary researcher and author responsible for the manuscript.
3author of first release of OSMPS underlying the second release discussed in this publication; contribution
of the fortran modules for the time evolution methods to the code base for the second release; detailed
feedback and suggestions on the draft; currently at Johns Hopkins University, Applied Physics Laboratory.

4principal investigator and advisor.
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along with examples of how to efficiently use the general interfaces to analyze the Ising and

Bose-Hubbard models. This description includes the preparation of simulations as well as

dispatching and post-processing of them.

PROGRAM SUMMARY

Program title: Open Source Matrix Product States (OSMPS), v2.0

Licensing provisions: GNU GPL v3

Programming language: Python, Fortran2003, MPI for parallel computing

Compilers (Fortran): gfortran, ifort, g95

Dependencies: The minimal requirements in addition to the Fortran compiler are BLAS, LAPACK,

ARPACK, python, numpy, scipy. Additional packages for plotting include matplotlib, dvipng, and

LATEX packages. The Expokit package, available at the homepage http://www.maths.uq.edu.au/

expokit/, is required to use the Local Runge-Kutta time evolution.

Operating system: Linux, Mac OS X, Windows

Supplementary material: We provide programs to reproduce selected figures in the Appendices.

Nature of the problem: Solving the ground state and dynamics of a many-body entangled quantum

system is a challenging problem; the Hilbert space grows exponentially with system size. Complete

diagonalization of the Hilbert space to floating point precision is limited to less than forty qubits.

Solution method: Matrix Product States in one spatial dimension overcome the exponentially grow-

ing Hilbert space by truncating the least important parts of it. The error can be well controlled.

Local neighboring sites are variationally optimized in order to minimize the energy of the complete

system. We can target the ground state and low lying excited states. Moreover, we offer various

methods to solve the time evolution following the many-body Schrödinger equation. These methods

include e.g. the Suzuki-Trotter decompositions using local propagators or the Krylov method, both

approximating the propagator on the complete Hilbert space.
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9.1 Introduction

Numerical methods have been widely used to study physical systems in quantum mechan-

ics that are not exactly solvable. In many-body systems we encounter with the exponentially

growing Hilbert space a challenge to develop methods which can still simulate quantum sys-

tems on a classical computer. Starting with the Density Matrix Renormalization Group

(DMRG) [72, 73], a wide range of tensor network methods have been developed. Especially

in one dimension, where numerical scaling and conditioning are best, such methods offer

strong alternatives to other methods such as Quantum Monte Carlo [203, 204] and the Trun-

cated Wigner approximation [149, 206]. Applications include solid state systems, ultracold

atoms and molecules, Rydberg atoms, quantum information and quantum computing, and

Josephson junction-based superconducting electro-mechanical nano devices. Matrix Prod-

uct States (MPSs) [75–77, 226] define the tensor network at the foundation of the DMRG

method. MPSs themselves represent a pure quantum state constructed on local Hilbert

spaces of lattice sites or discretized systems. They handle the exponentially growing Hilbert

space by limiting the entanglement between any two parts of the system. Numerical meth-

ods using MPSs support static results such as ground states and time evolution of pure

states. In principle, highly entangled states can be represented as MPSs, but due to the

upper bound of entanglement set as a parameter, they are only accurate as long as the en-

tanglement does not exceed this bound guaranteeing feasible computation times. This point

is addressed in the main part of this paper in detail. Moreover, MPSs can exploit intrinsic

characteristics of the systems such as symmetries [227, 228]. Beyond MPSs, tensor network

methods are extended for multiple purposes such as 2D systems via Projected Entangled

Pair States (PEPS) [84], tree tensor networks (TTNs) [79], open systems with quantum tra-

jectories (QT) [217, 218] or Matrix Product Density Operators (MPDOs) [80, 81]. Although

there have been many developments in many-body quantum simulation over the last ten

to twenty years [50], from multi-scale entanglement renormalization ansatz (MERA) [83] to

minimally entangled typical thermal states (METTS) [177] to dynamical mean-field theory
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[205] to time-dependent density functional theory (TDDFT) [229, 230], MPS methods are

the most often used and well-established for strongly correlated quantum systems and appro-

priate for large-scale open source development. The impact of these methods is represented

by the large number of open source packages for MPS and DMRG [88–102], not counting

proprietary efforts of multiple other groups.

We present in this paper our open source Matrix Product State (OSMPS) library, which

is available on SourceForge [52]. We have over 2300 downloads since its initial release in

January 2014. The library or a derivative of the library has been used in various publications

[44, 121, 176, 214, 231–242]. Our implementations cover features such as variational ground

and excited state searches and real time evolution for finite systems as well as ground states

of infinite systems [119]. We provide built-in features such as support for symmetries, e.g.

rotational U(1) symmetry used for number conservation in the Bose-Hubbard model and

discrete Z2 symmetry occurring in the quantum Ising model, and present them in the case

studies of this article. These symmetries lead to a speedup in terms of computation time

and allow us to address specific states. Our libraries also support data parallel execution via

Message Passing Interface (MPI) to utilize modern high performance computing resources

efficiently. We illustrate the algorithms in our library together with examples of models.

One motivation for the development of OSMPS is our focus on ultracold molecules and

other quantum simulator architectures incorporating long-range interacting synthetic quan-

tum matter. Where some MPS-based algorithms are limited to nearest neighbor terms in

one-dimensional systems, molecules and many other systems have long-range interactions,

e.g. due to dipolar effects. In order to treat such systems, many of the algorithms in OSMPS,

including dynamics algorithms, feature support for long-range interactions.

This paper is intended for two audiences: First, tensor network methods and our inter-

faces are introduced for researchers not familiar with such methods, but in need of numeri-

cal simulations of correlations, entanglement, and dynamics in many-body systems. On the

other hand, experienced researchers within the tensor networks community should have a
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clear way to understand the concrete and useful details of our implementations. The pa-

per is organized as follows. In Sec. 9.2, we introduce the general idea of tensor networks,

and provide in addition appropriate references for further reading. We continue with the

example of the Ising model in Sec. 9.3 to demonstrate the variational ground state search

including the general setup of systems and then highlight the other algorithms in the follow-

ing sections. Section 9.4 describes the variational search for excited states and the infinite

MPS (iMPS) for the thermodynamic limit. The time evolution methods including Krylov,

Time-Evolving Block Decimation (TEBD), Time-Dependent Variational Principle (TDVP),

and local Runge-Kutta follow in Sec. 9.5. We describe future developments ahead of the

conclusion in Sec. 9.7. The appendices cover topics such as convenient features in App. 9.9,

convergence studies in App. 9.10, and scaling of resources in App. 9.11. Appendix 9.12 pro-

vides a detailed derivation of error bounds for the static simulations. Details on the bound

of measurements with the trace distance in App. 9.13, an explanation for Krylov method

in App. 9.14, and further auxiliary calculations in App. 9.15 complete the content of the

appendices. Appendix B.1 explains the supplemental material.

9.2 Basic concepts in tensor network techniques

In this section, we briefly review the concepts of tensor network techniques. Readers

familiar with MPS algorithms can continue on to Sec. 9.3 discussing the design of simulations

specifically for OSMPS. The MPS algorithms rely heavily on the Schmidt decomposition of

a quantum system, which can be explained best in the case of two subsystems 1 and 2

and their wave function | ψ1,2〉. Each subsystem is defined on a local Hilbert space Hk of

dimension dk, and is spanned by an orthonormal basis of states {|ik〉}. The joint Hilbert

space of subsystems 1 and 2 is formed via the tensor product H = H1,2 = H1 ⊗ H2 and

has a dimension d1 × d2. The Schmidt decomposition is then based on a set of local wave

functions |ψ[1]
α 〉 and |ψ[2]

α 〉
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|ψ1,2〉 =

χmax∑
α=1

λα|ψ[1]
α 〉|ψ[2]

α 〉 . (9.1)

The Schmidt decomposition corresponds to a singular value decomposition (SVD) where

the singular values are the λα. The number of non-zero singular values serves as a coarse

measure of entanglement between the systems 1 and 2, known as the Schmidt number or

Schmidt rank. We dub the maximal number of singular values as χmax. Tracing out over

either of the subsystems, we obtain the reduced density matrix of the other subsystem. This

demonstrates that the eigenvalues of the reduced density matrices ρ1 = Tr2|ψ1,2〉〈ψ1,2| and

ρ2 = Tr1|ψ1,2〉〈ψ1,2| are {λ2
α} [85].

The Schmidt decomposition is unique up to rotations within subspaces of degenerate

singular values for a chosen basis. Local unitary transformations such as basis transforma-

tions affecting each half of the bipartition separately are possible in general, because they do

not change the entanglement, i.e., the number and value of non-zero singular values. MPSs

generalize the Schmidt decomposition by allowing for rotations within the Schmidt bases

|ψ[k]
α 〉 that keep the amount of bipartite entanglement between the two subsystems fixed:

|ψ1,2〉 =

χmax∑
α=1

d1∑
i1=1

d2∑
i2=1

A[1]i1
α A[2]i2

α | i1〉 | i2〉 . (9.2)

In addition, while the Schmidt decomposition is only defined for a bipartite system, the MPS

form can be extended to any number of degrees of freedom.

We take the example of a two-site system to illustrate the connection between the Schmidt

and MPS decompositions. Subsystem 1 is the site with k = 1 and subsystem two corresponds

to the site with k = 2. The MPS decomposition of such a system is described in Eq. (9.2). We

rewrite any state |ψα〉 in Eq. (9.1) as a matrix of complex numbers ci1i2 and its corresponding

basis states, that is
∑

i1i2
ci1i2|i1〉|i2〉. In Eq. (9.1), each dimension k is spanned by χmax

orthonormal vectors. We can rewrite the sets of these vectors as matrices (rank-two tensors),

where each column of the matrix represents a vector in the case of site 1, and each row is
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A
[1]i1
α1
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[2]i2
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A
[3]i3
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A
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A
[5]i5
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α1

α2
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α4

Figure 9.1: Tensor network representation of an MPS of five sites for open boundary condi-
tions. The state is decomposed into local tensors representing each site. These tensors are
connected to their nearest neighbors via the Schmidt decomposition where singular values
are truncated to maintain feasible run times for larger systems. The indices for the local
Hilbert space ik are connected for measurements, e.g. for the norm 〈ψ|ψ〉, with their complex
conjugated counterpart.

filled with one vector for site 2. Then, the matrix A[k] in Eq. (9.2) represents a rank-2 tensor

for site k and the singular values are contained in either A[k]. A single element of the matrix

A[k] can be written as A
[k]jk
α =

〈
jk

∣∣∣ψ[k]
α

〉
in the two-site case above. Thus, the indices of the

tensors A[k] correspond to the local Hilbert space ik and the singular values of the Schmidt

decomposition α. Throughout the paper we note the site index of a tensor in brackets, i.e.,

the k in A[k].

In order to generalize this decomposition for a system with L sites, successive SVDs lead

to one tensor per site where the tensors are now rank-2 at the boundaries and rank-3 in the

bulk of the system, as shown in the representation as a tensor network in Figure 9.1:

|ψ1,...,L〉 =
∑

α1···αL−1

∑
i1···iL

A[1]i1
α1

A[2]i2
α1,α2

· · ·A[L−1]iL−1
αL−2,αL−1

A[L]iL
αL−1

| i1〉 · · · | iL〉 . (9.3)

If we allow the indices αj to run over exponentially large values ∼ dL/2 (d = dk the local

dimension, assumed uniform for simplicity), such a representation is exact, but manipulating

this exact representation also scales exponentially with the system size and we do not gain

anything over exact diagonalization methods.
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We now introduce the key approximation in the MPS algorithm, that is the truncation

of the Hilbert space according to the singular values from the Schmidt decomposition. The

essential idea here is to replace the number of singular values χmax with a reduced number

χ: for instance, if there are singular values less than 10−16 there is no reason to count them

towards the amount of entanglement between the two subsystems. Thus χ becomes the

reduced Schmidt rank, the major convergence parameter of the whole MPS algorithm, as we

will show. We obtain these singular values for any splitting in two connected subsystems,

and the truncation is encoded in the maximum range of the auxiliary indices αi. Considering

an approximated state |ψ′〉 truncated to the first χ singular values at some particular bond

of the normalized state |ψ〉 with χmax singular values at that bond, the overlap between the

two states is

〈ψ′|ψ〉 =

∑χ
i=1 λ

2
i√∑χ

i=1 λ
2
i

=

√√√√ χ∑
i=1

λ2
i . (9.4)

We prefer the overlap instead of the 2-norm of the overlap since it allows us to relate our

result to the quantum fidelity in our case of pure states with real overlaps as F = 〈ψ |ψ′〉.

We define the truncation error made in this step as εlocal = 1− 〈ψ |ψ′〉 and obtain

εlocal = 1−

√√√√ χ∑
i=1

λ2
i ≤

χmax∑
i=χ+1

λ2
i . (9.5)

This upper bound is useful since it relates directly to the truncated singular values. Such a

truncation corresponds to a truncation of entanglement through two entanglement measures:

the Schmidt rank χ and the von Neumann entropy S. The former is simply the number of

non-zero singular values, and is an entanglement monotone. The von Neumann entropy, or

bond entropy, S is given as

S = −
χ∑
i=1

λ2
i log(λ2

i ) . (9.6)
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Figure 9.2: The compression of the quantum state in the MPS acts on the singular values of
the Schmidt decomposition in Eq. (9.1). The bond entropy or von Neumann entropy at the
center bond for the nearest-neighbor quantum Ising model H = −J∑σzkσ

z
k+1 − Jg

∑
σxk ,

defined later in Eq. (9.15), peaks around the critical point for increasing system sizes.

In Figure 9.2 we show the bond entropy for the bipartition at the center bond for the

quantum Ising model with transverse field as a function of the system size and external

field. Errors in the MPS approach originate in high entanglement; therefore, simulations for

increasing system sizes and around the quantum critical point are more vulnerable to smaller

cutoffs χ. The quantum critical point for the Ising model is hc = 1.0 and becomes visible

as a red ridge in Figure 9.2 for large system sizes. The ground state of the ferromagnetic

phase in the limit of zero external field, also called the Greenberger-Horne-Zeilinger (GHZ)

state, is the superposition of all spins up and all spins down, i.e. (| ↑ · · · ↑〉+ | ↓ · · · ↓〉) /
√

2.

We expect an entropy of S = − log(0.5) ≈ 0.69, which agrees well with the results in the

Figure 9.2. For gapped 1D systems with short-range interactions, the so-called area law

for entanglement [78] states that the entanglement at any bipartition is independent of the

length of the subsystems (and hence of the system size L). Since the bond entropy is an

entanglement measure, this upper bound can be used as the gap opens away from the critical

point. At the critical point, the entanglement grows logarithmically with the subsystem size.
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We introduce a list of basic operations that can be performed on tensor networks, and

explain the orthogonality center, an isometrization or gauge, used in the OSMPS algorithms.

For these linear algebra operations on tensors, we suppress the basis kets of the quantum

states for simplicity throughout the paper. One key feature of every MPS with open bound-

ary conditions is that introducing an orthogonality center leads to faster local measurements

and error reduction in the truncation [243]. We introduce the left and right canonical form

of tensors according to

A[k]ik
αk−1,αk

= L[k]ik
αk−1,αk

if

{
A[j] = L[j] ∀ j < k

and
∑

αk−1,ik
A

[k]ik
αk−1,αk(A

[k]ik
αk−1,α

′
k
)∗ = Iαk,α′k ,

A[k]ik
αk−1,αk

= R[k]ik
αk−1,αk

if

{
A[j] = R[j] ∀ j > k

and
∑

αk,ik
A

[k]ik
αk−1,αk(A

[k]ik
α′k−1,αk

)∗ = Iαk−1,α
′
k−1

.
(9.7)

The left (right) canonical forms L[k]
(
R[k]
)

are unitary matrices, e.g. from the SVD obtained

from the Schmidt decomposition in Eq. (9.1). These conditions apply if the singular values

have not been multiplied into the tensor. We define the orthogonality center as the site which

has only left orthogonal tensors on the left side and right orthogonal tensor on the right side.

This feature becomes beneficial for measurements as the contractions in the condition of

Eq. (9.7) do not have to be calculated knowing that the result is the identity I. Stated

equivalently, the tensor of the orthogonality center A
[k]ik
αβ consists of the coefficients of the

wave function in the orthonormal basis spanned by the local states |ik〉 and the left and right

Schmidt vectors given by products of the other MPS tensors. With these definitions, we can

derive the overlap from Eq. (9.4). We assume that we truncate singular values at the bond

of the sites k and k+1 and the sites up to and including site k are of the form L[j≤k] and the

tensors beginning on site k + 1 are of type R[j≥k+1]. The truncation does not affect any of

the tensors L[j≤k] or R[j≥k+1]. Contracting these tensors for the overlap with their complex

conjugated counterparts, we obtain identities on all sites and 〈ψ′′|ψ〉 simplifies to

〈ψ′|ψ〉 =
∑

αk−1,αk

λαk−1,αkλ
′
αk−1,αk

, (9.8)
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where | ψ′′〉 is the unnormalized truncated state and | ψ′〉 the truncated normalized state.

The diagonal structure of the matrices λ containing the singular values leads to 〈ψ′|ψ〉 =∑
α λαλ

′
α. Since the smallest singular values in λ′ are set to zero, the result is the sum

of the squared singular values in λ′. The additional term in the denominator in Eq. (9.4)

originates in the normalization of |ψ′′〉. We emphasize that this procedure only works if the

sites are completely in the form of L[j≤k] and R[j≥k+1] since otherwise, the contraction with

the complex conjugated tensor does not lead to an identity.

Moreover, we introduce the following actions on tensors in our MPS library:

• Contractions over two tensors are defined as the summation over one (or more) com-

mon indices, and hence generalize matrix-matrix multiplication to higher-rank tensors.

A commonly used example would be to contract two neighboring tensors of an MPS,

A
[k]ik
αk−1,αk and A

[k+1]ik+1
αk,αk+1 , to one tensor representing the sites k and k+1. The summation

is in this case over the index αk and we obtain a tensor Θ
[k,k+1]ik,ik+1
αk−1,αk+1 .

• Splitting of a tensor is the reverse action of a contraction. The indices of the tensor

form two subgroups where the splitting is enacted between those two groups. Tak-

ing the two site tensor Θ
[k,k+1]ik,ik+1
αk−1,αk+1 as an example, we group αk−1, ik together and

ik+1, αk+1 in order to obtain two single site tensors, up to a possible truncation. The

splitting can be achieved via three possibilities:

◦ An SVD splits the tensor directly into two unitary tensors and the singular values,

described by

Θ[k,k+1]ik,ik+1
αk−1,αk+1

= L[k]ik
αk−1,αk

λαkR
[k+1]ik+1
αk,αk+1

, (9.9)

where the singular values λαk allow us to truncate the state to a certain χ. The

maximal bond dimension is defined as min (χk−1dk, dk+1χk+1).

◦ The eigenvalue decomposition is related to the singular value decomposition,

which is the reason the eigenvalue decomposition can replace the SVD. If the
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SVD decomposes A into UλV , the eigendecomposition E( · ) is set up as follows:

E(AA†) = E
(
UλV V †λU †

)
= E

(
Uλ2U †

)
= Uλ2U † . (9.10)

The eigendecomposition of AA†, which is built from a matrix-matrix multiplica-

tion, returns a unitary matrix and the singular values squared. To obtain the

right matrix, we multiply U † with the original matrix A leading to

U †A = U †UλV = λV , (9.11)

which already contains the singular values. After completing the series of steps,

we obtain

Θ[k,k+1]ik,ik+1
αk−1,αk+1

= L[k]ik
αk−1,αk

A[k+1]ik+1
αk,αk+1

, (9.12)

where the truncation is possible due to the knowledge of λ2 in the intermediate

step of Eq. (9.10), although the singular values do not appear in the previous

equation (9.12). As in the case of the SVD, the maximal bond dimension is

min(χk−1dk, dk+1χk+1). The unitary matrix can be obtained for the right side

starting with A†A. This procedure is generally faster than the SVD.

◦ The QR decomposition decomposes a matrix into a unitary matrix and an upper

triangular matrix T . If the unitary matrix is on the right side, it may be referred

to as RQ decomposition. It does not allow for truncation as the singular values

are not calculated. The example for the QR is

Θ[k,k+1]ik,ik+1
αk−1,αk+1

= L[k]ik
αk−1,αk

T [k+1]ik+1
αk,αk+1

. (9.13)

Therefore, the new bond dimension is the maximal one, χ = χmax = min(χk−1dk,

dk+1χk+1). The fact that the QR scenario is not rank revealing is the reason for

not using it in the splitting of two sites in the library, but it is used for shifting
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as explained in the following.

The different options for splitting a tensor are summarized in Figure 9.3. We choose the

SVD to obtain the singular values and two unitary matrices. In contrast, the eigenvalue

decomposition yields a unitary matrix and the singular values. The QR decomposition

differs from the first two methods as it does not reveal the singular values and returns

only one unitary matrix. Therefore, the QR is computationally less expensive than

the approach with the eigenvalue decomposition. The SVD is computationally more

costly than both other algorithms.

L[k]
λ

χ ≤ χmax

R[k+1]

SVD

L[k]

χ ≤ χmax

A[k+1]

E

L[k]

χmax

A[k+1]

QR

αk−1

ik

Θ[k,k+1]

ik+1

αk+1

(a) (b) (c)

Figure 9.3: Methods for splitting a two site tensor into two one site tensors include
(a) an SVD decomposition, (b) an eigenvalue decomposition E in combination with
matrix multiplications, and (c) a QR decomposition.

• Shifting the orthogonality center can be done with local operations, meaning that the

operations act only at one site at a time and do not use any two site tensors. Running

an SVD or QR (RQ) decomposition for site k on a single rank-3 tensor with dimensions

χk−1, d, and χk, we reshape the tensor as a χld × χr (χl × dχr) matrix and obtain a

left-canonical (right-canonical) unitary tensor for site k and an additional matrix. The

additional matrix consists of the singular values contracted into a unitary matrix when

choosing an SVD. For the QR (RQ) decomposition we obtain a left (right) canonical

unitary and an additional upper triangular matrix. This additional matrix can be
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contracted to the corresponding neighboring site k± 1, resulting in that site becoming

the new orthogonality center. We note in this case that the QR and RQ decomposition

does not change the ranks of the matrices, and is roughly a factor of two faster than

the SVD.

With the knowledge of the basic features of an MPS, we introduce in the next chapter

how a model is defined in the OSMPS library and how we obtain results as in Figure 9.2.

9.3 Defining systems and variational ground state search

We now outline the definition of systems in OSMPS. As an example we consider finding

the ground state of the finite size quantum Ising model. The 1D long-range transverse field

Ising Hamiltonian is [123, 127]

H = −J
∑
i<j≤L

σzi σ
z
j

(j − i)α − Jg
L∑
i=1

σxi , (9.14)

where the operators are defined over the Pauli matrices {σxi , σyi , σzi } acting on a site i in the

system. The interactions between the spins at different sites decay following a power-law

introduced in the first term of the Hamiltonian governed by α, the distance |j − i|, and the

overall energy scale J . The external field is governed by the dimensionless g appearing in the

second term of the Hamiltonian. The number of sites is L. We focus in this section on the

nearest neighbor case HNN obtained for the limit α → ∞, commonly called the transverse

quantum Ising model,

HNN = −J
L−1∑
i=1

σzi σ
z
i+1 − Jg

L∑
i=1

σxi . (9.15)

The overall approach to OSMPS is a user-friendly Python environment calling a Fortran core

for the actual calculations. This scheme is depicted in Figure 9.4. Thus, we guide the reader

through the simulation with a corresponding summary of the Python files; the complete files

are contained in supplemental material, see Appendix B.1.
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H.AddMPOTerm(
    ‘site’, ‘sx’, hparam=‘g’)
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Figure 9.4: OSMPS flow chart for a simulation. The OSMPS library combines a user-
friendly interface in Python with a computationally powerful core written in Fortran. (a)
The simulation setup is done in Python. (b) A write function provides the files for Fortran
and a corresponding read function imports the results from Fortran to Python (blue arrows).
(c) The Python front end then takes care of the evaluation of the data. The plot in the flow
charts shows the critical value of the external field in the Ising model as a function of the
system size L evaluated via the maximum of the bond entropy. Finite size scaling (FSS)
delivers the critical field in the thermodynamic limit for L→∞.

From a quantum mechanical point of view the following steps are necessary to describe

a system. First, we have to generate the operators which are acting on the local Hilbert

space, described in Sec. 9.3.1. Once we have the operators, we build the Hamiltonian out

of rule sets in Sec. 9.3.2. Then, we set up the measurements to be carried out in Sec. 9.3.3.

This procedure completes the definition of the quantum system, but we have two more tasks

with regards to the numerics. In the fourth step we define the convergence parameters of

the algorithm, where Sec. 9.3.4 describes this step for the variational ground state search.

Finally, the simulation is set up and executed in Sec. 9.3.5.

One general comment remains before starting with a detailed description of the simulation

setup. Every simulation in OSMPS is represented by a Python dictionary, which contains

observables and convergence parameters as well as general parameters such as the system

size.
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9.3.1 Operators

OSMPS comes with predefined sets of operators for three different physical systems to

facilitate the setup of simulations. These predefined sets of operators are returned by the

corresponding functions for bosonic systems such as the Bose-Hubbard model, fermionic

systems including their phase operators originating from the Jordan-Wigner transformation,

or spin operators. We use the last set in the example for the quantum Ising model. The

corresponding function BuildSpinOperators returns the set of operators {σ+, σ−, Sz, I}. In

order to obtain the Pauli operators σx and σz from the spin lowering and raising operators

σ± and the spin operator Sz, we suggest following the prescription in Source Code 9.1.

Source Code 9.1: Defining the operators of the quantum Ising model overwriting SZ

with σZ .

9.38 # These are rotated Pauli operators to obtain a

9.39 # diagonal generator for Z2

9.40 Operators = mps.BuildSpinOperators(spin =0.5)

9.41 Operators[’sx’] = 2 * Operators[’sz’]

9.42 Operators[’sz’] = - (Operators[’splus ’]

9.43 + Operators[’sminus ’])

9.44 Operators[’gen’] = np.array ([[0, 0], [0, 1.]])

9.3.2 Hamiltonians

Through these operators, stored in a dictionary-like Python class, we define the Hamil-

tonian and later on the observables. The Hamiltonian is described as a matrix product

operator (MPO), which is effectively an MPS with rank-four tensors instead of rank-three

tensors:
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H =
∑
i1,...,iL

∑
i′1,...,i

′
L

∑
α1,...,αL−1

M [1]i′1,i1
α1

M [2]i′2,i2
α1,α2

· · ·M [L]i′L,iL
αL−1 | i′1〉〈i1 | · · · | i′L〉〈iL | . (9.16)

A key property is that an MPO acting on an MPS can be written as another MPS, generally

with a larger bond dimension. The physical indices ik act on the physical indices of an MPS

and take them to new physical indices i′k. The auxiliary indices α of the MPO are fused with

the corresponding auxiliary indices in the MPS. For most physical operators, this structure

of rank-4 tensors is sparse and therefore we rather seek for an efficient implementation in

terms of MPO-matrices M [k] than in rank-4 tensors. The MPO matrix M [k] including the

iteration over all indices for one site representing the rule sets [121, 244] for local terms,

bond terms for the interaction of nearest neighbors, and exponential rules for long-range

interactions between two sites takes the form

M [k] =


A

[k]
αk−1=1,αk=1 0 0 0

A
[k]
αk−1=2,αk=1 A

[k]
αk−1=2,αk=2 0 0

A
[k]
αk−1=3,αk=1 0 A

[k]
αk−1=3,αk=3 0

A
[k]
αk−1=4,αk=1 A

[k]
αk−1=4,αk=2 A

[k]
αk−1=4,αk=3 A

[k]
αk−1=4,αk=4

 , (9.17)

where k = 2, 3, . . . , L − 1. The matrix structure in Eq. (9.17) corresponds to the auxiliary

indices. Each element within this structure Aαk−1,αk is a matrix acting on the local Hilbert

space of site k, e.g. the Pauli matrix σzk. Thus the auxiliary indices α of the rank-4 tensor

encode the row and column of M [k], while the indices ik and i′k are related to the local

Hilbert space located in the rows and columns of the matrices Aαk−1,αk . We now illustrate

the meaning of the matrices depending on their position in M [k]. In order to build the MPO

for the Hamiltonian for the long-range Ising model, we only need the first column, last row,

and the diagonal of M [k] and store it as a sparse structure. Matrices in the first column

(last row) of M [k] are multiplied with identity operators on the right (left) side of site k, i.e.,

they do not interact with any sites right (left) of themselves. Diagonal elements propagate

operators through the system and are completed by other operators to the left and right of
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(a) (b) (c)

(d) (e)
f(|i− j|, O1, O2)

f(|i− j|, O1, O2)

O1 O2 O3

Figure 9.5: Rules for building a Hamiltonian. (a) Local terms; (b) bond terms acting on two
neighboring sites; (c) finite range terms of two operators O1, O2 and a coupling depending on
the distance. The coupling function f(x) is a finite sum of a limited number of neighboring
sites. (d) String of arbitrary operators, e.g., a three-body term built from O1, O2, and O3 and
(e) infinite terms of two operators O1 and O2 with a distance depending on decaying coupling
either as a general function f(|j − i|) (InfiniteFunction) or as an exponential (Exponential).
Any infinite function is expressed as a sum of exponentials within OSMPS. The coupling
function f(x) is extended to all sites.

site k, and hence represent long-range interactions. For the first and last site we define the

MPO-matrix as vectors

M [1] =
(
A

[1]
1,1 A

[1]
1,2 A

[1]
1,3 A

[1]
1,4

)
, M [L] =


A

[L]
1,1

A
[L]
2,1

A
[L]
3,1

A
[L]
4,1

 , (9.18)

corresponding to the auxiliary rank-one structure for the MPO matrices at the boundary in

Eq. (9.16). Note that the first MPO matrix is a row vector and the last is a column vector,

resulting in the contracted MPO object Eq. (9.16) being a 1 × 1 matrix in the auxiliary

indices.

We now build the nearest neighbor Hamiltonian HNN from Eq. (9.15) for the quantum

Ising model to continue with our example. Figure 9.5 shows the possible rule sets provided

through OSMPS. We need the local site term depicted in Figure 9.5(a) and the bond term

from Figure 9.5(b). In general these operators are filled with identities on all other sites and
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act on each possible site. The corresponding MPO-matrices depending on the site index k

are then

M [1] =
(
−Jgσx1 −Jσz1 I

)
, M [k] =

 I 0 0
σzk 0 0
−Jgσxk −Jσzk I

 ,

M [L] =

 I
σzL
−JgσxL

 , (9.19)

where k = 2, 3, . . . , L− 1. To see how this MPO structure results in the proper many-body

operator, we will explicitly build the Hamiltonian for three sites, i.e., H = M [1]×M [2]×M [3],

where × is understood to be ordinary matrix multiplication in the auxiliary indices together

with tensor products on the physical indices. We start by multiplying the row vector for the

first site with the matrix for the second site leading to the first line of the following equation.

The multiplication of this result with the column vector for the last and the third site results

then in the Hamiltonian

M [1] ×M [2] ×M [3] =
(
(−Jgσx1 − Jσz1σz2 − Jgσx2 ) −Jσz2 I

)
×

 I
σz3
−Jgσx3


= −Jgσx1 − Jσz1σz2 − Jgσx2 − Jσz2σz3 − Jgσx3 . (9.20)

The MPO matrices have more entries for models beyond nearest neighbor interactions. The

local terms remain in the last row of the first column as the identities stay in their places.

The diagonal is set in the case of long-range interactions with an identity times a decay

factor. The larger the distance between two sites becomes, the higher the contribution of

the decay multiplied at each site in between. Elements in the lower triangular part of the

matrix besides the first column and last row are used e.g. in the FiniteTerm rule set.

Independent of the system, we first initialize an instance of the MPO class. The different

types of terms are specified via a string argument in the class function AddObservable.

Keyword arguments to any MPO terms are the weight and Hamiltonian parameters hparam.
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(e) (f) (g)

Figure 9.6: OSMPS measurements can be selected from the following options: (a) Local
terms. (b) Two-site correlators including correlations for fermionic systems. (c) String
operators of type 〈OAOBOB . . . OBOBOC〉. (d) MPO as used in the default measurement of
the energy (Hamiltonian). (e) Single site density matrices tracing over the remaining system.
(f) Two-site density matrices tracing out everything but two sites as defined in Eq. (9.21).
(g) Singular values between left and right part of the MPS.

Further arguments specific for the rule can be found in the documentation, e.g. the infinite

function can take the function as an additional keyword argument.

Source Code 9.2: Defining the Hamiltonian of the quantum Ising model.

9.49 H = mps.MPO(Operators)

9.50 H.AddMPOTerm(’bond’, [’sz’,’sz’], hparam=’J’,

9.51 weight =-1.0)

9.52 H.AddMPOTerm(’site’, ’sx’, hparam=’g’,

9.53 weight =-1.0)

In the code we have given a string variable name for the coupling of the bond and site

terms. The energy scale (J=1) and the different values for h are specified later in the Python

setup script inside the dictionary representing the simulation allowing for flexibility.
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9.3.3 Observables

In order to evaluate the behavior of the system, we have to define the observables. Fig-

ure 9.6 shows the possible measurements: local site terms including site and bond entropy,

correlations, MPOs, string operators and one or two-site reduced density matrices where the

reduced density matrices ρi and ρi,j are defined as

ρi = Trk 6=i (ρ) , ρi,j = Trk 6=i,j (ρ) , (9.21)

where the density matrix on the complete system is defined as ρ =|ψ〉〈ψ |. The energy as an

MPO measurement of the Hamiltonian, the bond dimension, the variance within variational

algorithms, or the overlap between the initial state and the time evolved state (Loschmidt

echo) are measured by default. For the Ising example, we measure 〈σzi 〉 and 〈σzi σzj 〉. Due to

the local observable we gain as well the bond entropy shown in Figure 9.2. Source Code 9.3

shows the necessary code for measuring these observables.

Source Code 9.3: Defining the observables of the quantum Ising model.

9.71 # Initialize instance of observable class and

9.72 # add local observable

9.73 myObservables = mps.Observables(Operators)

9.74 myObservables.AddObservable(’site’, ’sz’, ’z’)

9.75

9.76 # add correlation functions

9.77 myObservables.AddObservable(’corr’, [’sz’,’sz’],

9.78 ’zz’)

9.3.4 Fundamentals of the library: Variational ground state search

The previous steps completed the setup of the physical system, and we continue with the

specification of the convergence parameters. Therefore, we explain the variational algorithm
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used to find the ground state which serves as input for the algorithms for excited state search

and real time evolution.

From exact diagonalization, we know how to find the ground state via solving the

eigenequation, which is optimally done with sparse methods such as the Lanczos algo-

rithm [245]. The same procedure cannot be used in the same way beyond a few tens of

particles due to the exponentially growing Hilbert space in the many-body system, but the

variational ground state search adapts the eigenvalue problem to an effective eigenvalue

problem for a few neighboring sites. In principle, the eigenequation H|ψ〉 = E|ψ〉 can be

solved for the ground state on the complete Hilbert space using imaginary time evolution,

e.g. with the Krylov method presented for the dynamics later, using the equation e−βH with

β →∞. The thermodynamic beta approaches infinity as the system approaches the ground

state at zero temperature. Instead of searching for the global minimum, we seek for local

minima transferring the problem to an effective eigenequation for n neighboring sites in the

OSMPS algorithm. The other L − n sites are kept fixed while finding the effective ground

state of the n sites. This effective eigenproblem does not grow exponentially with the system

size, but depends on the local dimension and the bond dimension of the constant parts of

the system, i.e. dnχ2. The number of these effective eigenvalue problems grows linearly with

the system size. In the following for simplicity we set n = 2, which corresponds to the value

used in OSMPS:

ε[|ψ〉] = 〈ψ|H|ψ〉 − E〈ψ|ψ〉 local



global
HeffA

[k,k+1] = EA[k,k+1] . (9.22)

The local minimization over n neighboring sites is done iteratively moving through the

neighboring pairs of sites until convergence is reached (see details in Appendix 9.10). We

point out the role of the effective Hamiltonian in more detail with regards to the Lanczos

algorithm. The Lanczos algorithm finds the eigenvalues and vector of a problem using only

matrix vector multiplications, in our case H | v〉 for some vector | v〉. Because we restrict

ourselves to the sites k, k + 1, the tensors of the other sites remain constant and we can
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Figure 9.7: Effective Hamiltonian for the Lanczos algorithm is built via the contractions of
all MPO matrices with tensors for the sites k′ 6= k, k + 1.

contract them with their MPO matrices. These fixed sites form an environment which acts

as part of the total matrix vector multiplication. The contraction can be continued until

we only have one tensor L to the left and one tensor R to the right representing those

contractions.5 Together with the MPO matrices M [k] and M [k+1], the tensors L and R build

the effective Hamiltonian. We now find the minimum in energy for this effective Hamiltonian

with regards to sites k and k + 1. This effective Hamiltonian is resumed in Figure 9.7. In

the case of matrices, the Lanczos algorithm is ideal for sparse problems and calculating only

a few eigenvectors. In the tensor network scenario it provides a considerable speedup in

contrast to dense methods due to the tensor network structure: contracting the tensors L,

R, and the MPO matrices M [k], and M [k+1], step-by-step to |v〉 is more efficient than building

Heff of dimension χ2d2×χ2d2 and multiplying it with |v〉 or solving the eigenvalue problem,

i.e. O(χ3) versus O(χ6) [121]. The two-site eigenvalue problem corresponds to finding the

stationary point of the energy functional through the equation

∂

∂ (A[k,k+1])
(〈ψ|H|ψ〉 − E〈ψ|ψ〉) = 0 . (9.23)

where E, the energy eigenvalue, is a Lagrange multiplier enforcing normalization, and the

derivative with respect to a tensor is defined to be a tensor of the same shape whose elements

5In this context the symbol L represents the left tensor and not the system size.
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are the derivatives with respect to the individual tensor elements.

Source Code 9.4: Defining the two sets of convergence parameters for the quantum

Ising simulation.

9.84 conv = mps.MPSConvParam(max_bond_dimension =40,

9.85 variance_tol =1e-10,

9.86 local_tol =1e-10,

9.87 max_num_sweeps =4)

9.88 modparam = [’max_bond_dimension ’, ’max_num_sweeps ’]

9.89 conv.AddModifiedConvergenceParameters (0, modparam ,

9.90 [80, 4])

The key to obtaining meaningful results are the convergence parameters of the variational

algorithm. The convergence parameters are stored in a corresponding Python object which

is shown in Source Code 9.4 and the different parameters are defined in the following. For

example, the variance Vψ = 〈H2−〈H〉2〉 indicates the distance from an eigenstate. Table 9.1

presents out of the analysis in Appendix 9.10 the parameters to obtain ground states with

a variance tolerance εV = 10−12, effectively L × 10−12 for the whole system, for different

models. Here, we concentrate on the values of the Lanczos tolerance εl and bond dimension

where other parameters are kept constant. Those are especially interesting because the bond

dimension defines the fraction of the Hilbert space which can be captured. On the other

hand, the Lanczos tolerance determines the accuracy of the eigenvector solved in Eq. (9.23).

The parameters kept constant are the number of Lanczos iterations. If the number of Lanczos

iterations is sufficiently high the accuracy of the Lanczos tolerance is met, otherwise not. The

local tolerance εlocal, defining the cutoff of the singular values in the Schmidt decomposition

of Eq. (9.1), guarantees that we do not use the full bond dimension if the sum of the singular

values squared are below the local tolerance. It relates to the variance tolerance and defaults
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to

εlocal =
εV

4L
. (9.24)

The motivation to choose this value is that the local error made during one sweep consists

of the approximately 2L splittings, where the additional factor of two is a safety factor

to ensure good convergence. The number of sweeps through the system, optimizing each

pair of two sites twice, is specified with the number of inner sweeps Ni, which is bounded

between min num sweeps and max num sweeps, and No, the parameter for the outer sweeps

max outer sweeps. The maximal number of overall sweeps Nsweep is then

Nsweep = Ni ·No . (9.25)

Convergence is checked after every inner sweep. One outer sweep is completed after the set

of Ni inner sweeps followed by an adjustment of the local tolerances. The new local tolerance

ε′local is decreased according to

ε′local = εlocal
εV

Vψ
, (9.26)

where Vψ is the actual variance on the current MPS. Equation (9.26) assumes a linear con-

nection between the local tolerance and the variance fulfilled for small local tolerances [246].

Moreover, we have two more parameters to grow the system up to L sites with the same algo-

rithm later explained in Sec. 9.4.2 for the infinite system. The local tolerance (warmup tol)

and the maximal bond dimension (warmup bond dimension) during that warmup phase can

be tuned individually. These values provided in Table 9.1 provide a first overview of how

models behave within OSMPS. We choose points with high entanglement within each model.

The parameters are either close to a critical point or in a phase which has high entanglement

such as the superfluid phase of the Bose-Hubbard model.
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Table 9.1: Empirically Determined Convergence Parameters. The convergence parameters
for the bond dimension χ and Lanczos tolerance εl for four different models achieve a variance
tolerance 10−12 using a state with high entropy. The quantum Ising model (QI) and quantum
long-range Ising model (LRQI) are evolved close to the critical point. The Bose-Hubbard
model (Bose) is considered in the superfluid phase and a spinless Fermi model (Fermi) with
nearest neighbor repulsive interaction W and nearest neighbor tunneling J is again in a
region with high entanglement with J = 1.04. Details on the study are in Appendix 9.10.

Parameter QI LRQI Bose Fermi

χ 46 100 261 177
εl 2.6 · 10−9 2.15 · 10−8 1.1 · 10−10 5.1 · 10−7

Number of inner sweeps 2 2 2 4
Number of outer sweeps 1 1 1 1

System size L 128 128 32 65
Lanczos iterations 500 500 500 500

Finally, we present arguments as to why the variance tolerance is a convenient convergence

criterion. In Appendix 9.12 we derive the bounds of multiple variables, we provide a short

summary of those bounds here. The variance of the ground state Vψ determines a bound on

ε, where ε is the contribution for |ψ⊥〉 of all states orthogonal to the true ground state |ψ0〉

in the result |ψ〉 returned from OSMPS:

|ψ〉 = f |ψ0〉+ ε |ψ⊥〉 , |ε| ≤
√
Vψ

∆0,1

. (9.27)

The value of ∆0,1 is the energy gap between the ground state and the first excited state.

Starting from there, we derive in Appendix 9.12 bound on an observable O acting on |ψ〉 as

well as the bond entropy S:

|〈ψ0 | O |ψ0〉 − 〈ψ | O |ψ〉| ≤ 3εM , M = max
|φ〉,|φ′〉

|〈φ | O |φ′〉 , (9.28)

εS = |S(ρ0)− S(ρ)| ≤
√

2Vψ

∆0,1

log(D)−
√

2Vψ

∆0,1

log

(√
2Vψ

∆0,1

)
. (9.29)

In Eq. (9.29) the dimension of the density matrix, D, appears in addition to the variance

and the gap. We pick as an example for the error bounds the nearest neighbor quantum
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Figure 9.8: Error bounds applied to the quantum Ising model. We consider the Ising model
with Z2 symmetry for the demonstration of error bounds. (a) The energy gap ∆E0,2 between
the ground state and the second excited is shown, as the error depends on the inverse of the
gap. The gap decreases towards the critical points and in the thermodynamic limit L→∞.
The first excited state is located in the odd symmetry sector and therefore not relevant for
this calculation. (b) The error bound for ε, where ε is the contribution orthogonal to the
ground state. Observables such as the spin measurements, e.g. σx with a maximum of 1, are
bounded by 3ε. (c) The bound for the error in the bond entropy εS depends furthermore on
the dimension of bipartition, which increases the bound especially for larger systems.

Ising model with Z2 symmetry. Due to the symmetry, the first excited states lies, in contrast

to the ground state, in the odd sector. Therefore, the relevant gap is the energy difference

between the ground state and second excited state. The value of the gap for different systems

sizes and the upper error bound for ε and εS are shown in Figure 9.8.

9.3.5 Running the simulations

Finally, we discuss how to set up simulations and execute them on the computer. Each

simulation is contained in a dictionary and we can create a list of dictionaries to run multiple

simulations at the same time. While certain parameters such as the measurement setup stay

the same for a set of simulations, other parameters may be varied. In this example we create

an empty list params and add the dictionaries to the list looping over the system size L and

the external field h. The dictionary is shown in Source Code 9.5.

234



Source Code 9.5: Appending different simulations looping over L and g.

9.102 params.append ({

9.103 ’simtype ’ : ’Finite ’,

9.104 # Filenames and directories

9.105 ’job_ID ’ : ’sim_01_ising_z2_ ’,

9.106 ’unique_ID ’ : ’_L%04d’%ll \

9.107 + ’_g%3.6F’%gg,

9.108 ’Write_Directory ’ : ’TMP_01_ISING/’,

9.109 ’Output_Directory ’ : ’

OUTPUTS_01_ISING/’,

9.110 # System size and Hamiltonian

9.111 # parameters

9.112 ’L’ : ll,

9.113 ’J’ : J,

9.114 ’g’ : gg,

9.115 # Other parameters

9.116 ’MPSConvergenceParameters ’ : conv ,

9.117 ’MPSObservables ’ : myObservables ,

9.118 # For error calculation (gap)

9.119 ’n_excited_states ’ : 1,

9.120 ’eMPSConvergenceParameters ’ : conv ,

9.121 ’logfile ’ : True ,

9.122 ’verbose ’ : 1,

9.123 # Z2 symmetry

9.124 ’Discrete_generators ’ : [’gen’],

9.125 ’Discrete_quantum_numbers ’ : [0]

9.126 })
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In the following we generate a submit script for our simulations by writing the files for

Fortran with a call to

MainFiles = mps.WriteMPSParallelFiles(params, Operators, H, hpcsetting,

PostProcess=False)

and the simulations are executed when submitted to the computing cluster. The fourth

argument hpcsetting is a dictionary with various settings such as the number of nodes

requested on the cluster. As an alternative, the user may call the parallel executable on a

local machine and can find the corresponding call inside the submit script. We do not cover

the post-processing itself here, but the sample scripts presented in the supplemental materials

in Appendix B.1 provide guidance on how to read the results with the corresponding OSMPS

functions and access the measurements inside the dictionaries.

9.4 Highlights of static algorithms

In the previous section we presented static simulations for the ground state, which builds

a basis for other algorithms within OSMPS. The next algorithm searches for the excited

state obtained through variational means. It can find sequentially ascending excited states

above the ground state. In addition, we highlight our infinite size statics as a method to

calculate properties for the ground state in the thermodynamic limit with an example.

9.4.1 Excited state search

The search for excited states, eMPS, is implemented in a successive fashion after the

ground state has been obtained. The algorithm is based on the variational procedure now

introducing additional Lagrange multipliers to Eq. (9.23) to enforce orthogonality with pre-

viously obtained eigenstates. If the ground state is now labeled as |ψ0〉 and the ith excited

state as |ψi〉, we then need i additional Lagrange multipliers µi corresponding to the number

of states with lower energy. These Lagrange multipliers enforce orthogonality between the

eigenstates, 〈ψi|ψj〉 = δi,j :
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ε[|ψi〉] = 〈ψi|H|ψi〉 − E〈ψi|ψi〉 −
i−1∑
j=0

µj〈ψi|ψj〉 . (9.30)

We base our example for the excited state search on the previous study of the quantum Ising

model. We introduce long-range interactions following a power law decay in this example.

The corresponding Hamiltonian of the long-range Ising model was presented in Eq. (9.14),

and we recall that it was defined as

H = −J
∑
i<j≤L

σzi σ
z
j

(j − i)α − Jg
L∑
i=1

σxi .

The update to the Hamiltonian due to the long-range interaction is reflected in Source

Code 9.6. Since we loop over different α, we generate the Hamiltonian as well inside the loop

over the different parameters and generate a list of them; in the previous example we could

use a single MPO because only the couplings changed, but not the function describing the

coupling. For the complete file see the supplemental material, Appendix B.1.

Source Code 9.6: Adapting the MPO for the long-range Ising model.

9.94 H = mps.MPO(Operators , PostProcess=PostProcess)

9.95 invalpha = lambda x: 1/(x**alpha)

9.96 H.AddMPOTerm(’InfiniteFunction ’, [’sz’,’sz’],

9.97 hparam=’J’, weight =-1.0,

9.98 func=invalpha , L=ll , tol=1e-10)

9.99 H.AddMPOTerm(’site’, ’sx’, hparam=’g’,

9.100 weight =-1.0)

In order to calculate the excited states, we add the information showed in Source Code 9.7

to the simulation dictionary. In general it is possible to define different observables or

convergence parameters for the ground state and the excited state, although it is not possible
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Figure 9.9: Energy gap for the long-range quantum Ising model as a function of the interac-
tion strength α and the external field g. (a) The energy gap between the ground state and
the first excited state is close to degeneracy in the ferromagnetic phase of the long-range
quantum Ising model. The gap between ground and second excited states closes toward the
quantum critical point, e.g. for α = 4 around g ≈ 1. The eigenenergies for the second
excited state are compared to the eigenenergies of the ground state and the second excited
state of the combined odd and even symmetry sector in (b) to estimate the error. (Same
labels apply to color bar and z-axis.)

to have different settings for each excited state. We present the results of the excited states of

the long-range Ising model in Figure 9.9. The excited states can reveal physical phenomena

or support theory, e.g. we deduct from Figure 9.9 the close to degenerate ground and first

excited state in the ferromagnetic phase. Both the ground and second excited state in the

ferromagnetic phase belong to the even sector of the Z2 symmetry, and their closing gap

indicates the position of the quantum critical point. This closing gap can be seen as valley

starting around α = 4 and g = 1.0. We use the symmetry conserving simulation to calculate

the ground state and first excited state and show the errors in energy in Figure 9.9(b) and

(c). In the latter one we see as well the growing error around the critical point. Because the

variational state can only guarantee to find an eigenstate, but might end up in a minimum

corresponding to a higher excited state, it is useful to resort the energies and converge results
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with more excited states than actually desired.

Source Code 9.7: Specify the number of excited states to be calculated and the

settings for convergence and measurements.

9.124 # eMPS

9.125 ’n_excited_states ’ : ne ,

9.126 ’eMPSConvergenceParameters ’ : conv ,

9.127 ’eMPSObservables ’ : myObservables

9.4.2 Infinite systems in the thermodynamic limit

The OSMPS library possesses another tool to obtain information about the ground state

of a quantum system, which is applicable in the thermodynamic limit. The iMPS algorithm

searches for the ground state of a translationally invariant Hamiltonian [119]. The core

idea of the algorithm is based on a unit cell of L sites. The Hamiltonian is translationally

invariant in the sense that we consider an infinite sequence of these unit cells with the

same Hamiltonian. Within the L sites, the Hamiltonian can depend on the site, creating a

sublattice or similar features.

The final state is obtained when the state of the unit cell is converged by parameters

discussed in the following. Starting with the first unit cell the ground state of the system

is obtained. The system size is increased by inserting another unit cell in the middle of the

system and summarizing the previous result in an environment. The new ground state of the

unit cell is computed under the action of the environment. Subsequent steps of inserting cells

while growing the environment lead to the result. The class iMPSConvParam comes with the

convergence parameters for the bond dimension χ, and the local tolerance and the settings

for the Lanczos algorithm keep their meaning in regard to previous algorithms. We introduce

the maximal number of iMPS iterations determining how often a new unit cell is introduced

into the iMPS state before stopping the algorithm. To break out of the algorithm before

reaching the maximal number of iMPS iterations we consider the orthogonality fidelity F
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(variance tol). In order to define this orthogonality fidelity F , we introduce the density

matrices ρn−1, i.e., the density matrix of the previous step, and ρRn as the density matrix

of the present step without the new unit cell introduced in step n. The overlap or fidelity

serves then as a convergence criterion:

F(ρn−1, ρ
R
n ) =

√√
ρRnρn−1

√
ρRn . (9.31)

We can use the algorithm to compare the results of the first study of the nearest neighbor

limit with those of iMPS. In Figure 9.10 we show the bond entropy of the iMPS which peaks

at the critical point. We point out that of all simulations, three fail being the second, fifth

data point and the bond entropy at the critical point. In comparison we show the largest

finite size system with L = 2000 with and without using the Z2 symmetry. Both lines

show good agreement. Possible disagreement in the bond entropy may arise from the actual

ground state, i.e. (| ↑ · · · ↑〉+ | ↓ · · · ↓〉) /
√

2. But any other superposition of all spins up

plus all spins down fulfills the minimization of the energy as well. Furthermore, the output

of the infinite system is partly different from the finite size algorithm, e.g. the maximal

distance for the correlation is specified. More of those differences are described in detail in

the manual.

9.5 Time evolution methods

The only missing piece to complete the library at this point is the time evolution of

quantum states. In total we provide four different algorithms: Krylov time evolution

[247] by default, the Time-Dependent Variational Principle algorithm (TDVP) [120], a local

Runge-Kutta method (LRK) [122], and a Sornborger-Stewart decomposition [85, 248]. The

Sornborger-Stewart decomposition is an alternate decomposition to the Trotter decomposi-

tion and is used to implement the Time-Evolving Block Decimation (TEBD) [76]. The first

three methods support long-range interactions, and align with our motivation to support

such systems.
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Figure 9.10: The quantum Ising model in the infinite MPS simulations. (a) The bond entropy
of the iMPS peaks at the critical point gc = 1.0 which reproduces the results of the finite
size MPS simulation for L = 2000 without Z2 symmetry. In general, the bond entropy of
the iMPS in the ferromagnetic phase can lie in between the results with and without the Z2

symmetry. (b) The magnetization based on the correlation 〈σzi σzi+499〉 dies away at g = 1.0.
(c) The compute times of the iMPS simulations in comparison with the finite size algorithm
at L = 2000. iMPS can give a quick estimate of the behavior in the thermodynamic limit.

9.5.1 Computational error and convergence

We first provide an overview of each method’s behavior in terms of convergence in Fig-

ure 9.11. The figure compares the OSMPS algorithms to analogous exact diagonalization

time propagation schemes, focusing on four key measures:

1. The maximum trace distance of all local reduced density matrices,

εlocal = max
i∈{1,...L}

D(ρi, ρ
ED
i ), D(ρA, ρB) ≡ 1

2
|ρA − ρB| ,

|A| ≡
√
A†A . (9.32)

The superscript ED refers to the results of exact diagonalization methods. Equa-

tion (9.32) can be used to bound any local observable, as explained in Appendix 9.13.

2. The error of correlation measurements. We consider the maximal trace distance εcorr,

here on all two-site density matrices, to bound the error for the correlation measure-

ments:
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εcorr = max
(i,j)
D(ρi,j, ρ

ED
i,j ), i, j ∈ {1, . . . L | |i < j} . (9.33)

3. The energy of the system:

εE = |E − EED| . (9.34)

4. As the maximal bond dimension is one of the key parameters in MPS algorithms, we

finally compare the bond entropy defined over the von Neumann entropy S of singular

values squared obtained by cutting the system in half:

εS = |S(L/2)− SED(L/2)| . (9.35)

The maximal bond dimension necessary in small systems which can still be studied in

exact diagonalization is unfortunately limited. Therefore, we cannot study the effects

of truncation in comparison to exact diagonalization.

We compare the OSMPS results with the data from exact diagonalization. Therefore, we

take the simulation with the smallest time step corresponding to the most accurate result. In

addition, we display the error from the static simulation as a lower bound for the error. The

static simulation serves as an input state for the dynamics and sets the lower bound for the

error. Figure 9.11 shows the error at the end of the time evolution for a quench in the Ising

model. The quench starts at g(t = 0) = 5.0 and ends at g(t = 0.5) = 4.5 for a system size of

L = 10. The time is in units of ~/J . The exact diagonalization method, which is always at

time-ordering O(dt2), takes the whole Hamiltonian to the exponent evaluating the coupling

at t + 0.5dt resulting in | ψ(T )〉 = exp(−iH(0.5dt)dt) exp(−iH(1.5dt)dt) · · · exp(−iH(T −

0.5dt)dt) | ψ(0)〉. In contrast, the MPS time evolution methods support higher order time

ordering, which is not used for the studies within this work. We briefly point out the trends

within this Figure 9.11. We defined the first error as the maximal trace distance over all
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single site density matrices εlocal, which is shown in Figure 9.11(a). We see two major trends

for εlocal. First, there is a clear difference between the second and fourth order methods in

the case of TEBD and LRK algorithms, labeled as TEBD2 and TEBD4 as well as LRK2

and LRK4, respectively. The fourth order algorithms and the TDVP and Krylov algorithms

nearly match the result of exact diagonalization for dt ≥ 10−3 in comparison to the ED result

with dt = 10−4. Figure 9.11(b) analyzes the second error, i.e., the error in the reduced two

site density matrices εcorr. This error is much larger, which is already present in the ground

and therefore initial state with an order of magnitude of 10−7. The third kind of error, the

error in energy εE, is shown in Figure 9.11(c). εE decreases for all the methods with the

same overall trend. We recall that the Hamiltonian in this case contains single site terms

and nearest neighbor terms, so large errors in two site reduced density matrices with sites

far apart would not contribute to the error in the energy. The error in the bond entropy εS,

the fourth value considered for the estimate of the error, follows the behavior of the previous

measures, see Figure 9.11(d). All methods except TEBD2 and LRK2 do not improve from

dt = 10−3 to dt = 10−4 as the entropy is already close to the static result. In general, we

seek for the method which consumes the least resources to achieve a certain error for a given

problem. Figure 9.11(e) answers this question. We take the error εlocal as example and plot

it as a function of the CPU time. This allows us for example to compare the second order

methods versus their fourth order algorithm. Both the TEBD and LRK fourth order methods

use less resources at a bigger dt to achieve the same error in comparison to their second order

equivalent. The error reported back from OSMPS is analyzed in Figure 9.11(f). We consider

the Krylov method first: the reported error is bigger for a smaller time step despite the

results clearly getting better in the previous plots. The reported Krylov error contains

errors from state fitting and cutting the bond dimension. Although it is not necessary to

cut the bond dimension, there still remains the possibility for truncation due to the local

tolerance criteria. Since the reported error is accumulated during the evolution, the small

contributions add up due to the multiple time steps. Considering the error for dt = 0.0001 of
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the order 10−9 with 5000 time steps, each time step adds about 10−13 to the total error. The

other time evolutions report purely the error from truncation of singular values restricted to

the local tolerance in this evolution. Increasing errors for decreasing time steps follow the

same arguments as for the Krylov time evolution. In Appendix 9.10 we discuss in detail the

sudden quench and the following evolution under a time-independent Hamiltonian.

The conclusion drawn from this first study is that the total error is bounded by

ε ≤ εdt + εmethod + εχ , (9.36)

where εdt is due to evaluating a time-dependent Hamiltonian at discrete points in time. The

second error originates from the specific method used to evolve the quantum system in time;

an example for εmethod would be the approximation in the Sornborger-Stewart decomposition.

Finally, all methods have in common that they truncate singular values to remain with a

certain χ leading to εχ. This source of error will dominate the error even for well-chosen

settings, since the entanglement grows over time and therefore saturates the bond dimension

for long enough evolution time. Figure 9.17 in the appendix is one example for this behavior.

Equation (9.36) is an upper bound for the error. A detailed analysis of the error goes beyond

the scope of this work. We emphasize that all three kind of error sources manifest in the four

different error measures defined in Eqs. (9.32) to (9.35). The scaling of the first error source

εdt can be obtained through exact diagonalization since there is neither an error depending

on the method nor a truncation of the Hilbert space. εdt appears in the same way for all

MPS methods using the same time-ordering as done in this error study. We remain with the

estimate of the errors due to the method εmethod and the truncation in the bond dimension

εχ. The Hilbert space for the MPS simulations with L = 10 is small enough to capture

all singular values and εχ is not present. Therefore, εmethod can be seen in Figure 9.11 if

at the same order of magnitude as εdt. For example, the TEBD2 method has an additional

error introduced through the Sornborger-Stewart decomposition making it less accurate than

the exact diagonalization result with the same time step. We discuss a time-independent
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Figure 9.11: Scaling of the error in time evolution methods decreases as expected with the
size of the time step. This example shows a quench of the Ising model in the paramagnetic
phase. The error decreases as O(dt2), the leading order of the error due to time-slicing the
time-dependent Hamiltonian H(t) with a CFME. The error for the exact diagonalization
method is not plotted for dt = 10−4, because this is the result used as a reference and
naturally leads to zero error. The time step dt is in units of ~/J . Curves are a guide to the
eye; points represent actual data.
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Hamiltonian in Appendix 9.10 with εdt = 0. Therefore, εmethod can be estimated independent

of the other errors in this case.

Before we discuss particular time-propagation methods, we first discuss how OSMPS ac-

counts for time-ordering of propagators for time-dependent Hamiltonians. When considering

time-ordering in MPS algorithms, we want to apply as few operators as possible to avoid

increasing the bond dimension, and would like all operators to be easily and efficiently con-

structed from the MPO form of the Hamiltonian. Therefore, OSMPS uses Commutator-free

Magnus expansions (CFMEs) [121, 249]. CFMEs are advantageous over other expressions

such as the Dyson series or the original formulation of the Magnus series due to explicit

unitarity and the avoidance of nested integrals and/or commutators. OSMPS implements a

few different CFMEs with orders of error N , defined such that the propagator is accurate to

O
(
δtN+1

)
, and numbers of exponentials s. The default settings are N = 2 and s = 1, where

the CFME amounts to evaluating the Hamiltonian in [t, t + δt] using the midpoint rule for

integration. Having introduced the general convergence of the methods, we now look at each

method individually and discuss their principles.

9.5.2 Krylov time evolution

The Krylov method [121, 250, 251] is the default option for real time evolution in the

OSMPS code. The main point of using this technique is the support of long-range interac-

tions. The Krylov method applies the exponential of an operator expressed as an MPO to

an MPS

|ψ(t+ dt)〉 ≈ exp(−iHdt) |ψ(t)〉 , (9.37)

using the method of Krylov subspace approximations [247, 252]. In the time-independent

case H is the Hamiltonian, while in the time-dependent case it is an operator constructed

by the particular CFME used.
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The Krylov algorithm is not limited to the MPS algorithm, but it is commonly used to

obtain the new vector of a matrix exponential acting on a vector. The idea [219] is to change

into a truncated basis (the Krylov subspace) V ′ = [v1, v
′
2, . . . , v

′
n] in order to calculate the

propagated state |ψ(t+dt)〉 = exp(−iAdt) |ψ(t)〉. The vectors v′j are chosen as Aj−1 |ψ〉 and

are orthonormalized to the basis V = [v1, v2, . . . , vn]. In particular, the first Krylov vector is

v1 =|ψ〉 = V | e1〉 with | e1〉 = (1, 0, 0, 0, . . . , 0)T . Approximating the dot product between

the exponential and the state vector leads to

exp(−iAdt) |v1〉 ≈ V V † exp(−iAdt) |v1〉 = V V † exp(−iAdt)V |e1〉
= V exp(−iV †AV dt) |e1〉 . (9.38)

Calculating the exponential M of the matrix V †AV ∈ Rn×n is a numerically feasible task as

long as the number of basis vectors n is much smaller than the dimension of the Hilbert space

D. Furthermore, the relation simplifies to a real tridiagonal matrix for Hermitian matrices,

which is satisfied by the Hamiltonian. This leads to

exp(−iAdt) |v1〉 ≈ VM |e1〉 =
n∑
i=1

M1,i |vi〉 . (9.39)

While in many applications where the state is represented as a vector this is enough to

obtain the approximation of | ψ(t + dt)〉, the problem in the case of the MPS is that the

summation over | vi〉 cannot be exactly carried out, as the set of MPSs with fixed bond

dimension do not form a vector space. Based on the previous approaches using variational

algorithms, we instead find |ψ(t+ dt)〉 by variationally optimizing the overlap

|ψ(t+ dt)〉 =
n∑
i=1

m1,i |vi〉 ⇔ 1 = 〈ψ(t+ dt) |
(

n∑
i=1

m1,i |vi〉
)
. (9.40)

This procedure is done optimizing local tensors as in the ground state search. However,

instead of solving an eigenvalue problem at each iteration, this optimization takes the form

of a linear system of equations as shown on the left part of Eq. (9.40). By exploiting
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the isometrization of MPSs (see Eq. (9.7)), this linear system of equations is transformed

into an inequality keeping the distance between the new state | ψ(t + dt)〉 and its Krylov

representation
∑
m1,i |vi〉 below a specified tolerance. The interested reader can find further

details on this algorithm in Refs. [75, 121].

9.5.3 Sornborger-Stewart decomposition

This implementation inside the OSMPS library is suitable for nearest-neighbor Hamilto-

nians. The Sornborger-Stewart decomposition [248] used in the OSMPS algorithms sweeps

through the system acting on every site, instead of every second pair of sites as in a more

common alternative Suzuki-Trotter decomposition [85]. The second order expansion takes

the form

exp

(
−idt

L−1∑
i=1

Hi,i+1

)
=

L−1∏
i=1

exp

(
−i

dt

2
Hi,i+1

) L−1∏
i=1

exp

(
−i

dt

2
HL−i,L−i+1

)
.

(9.41)

We again follow the Krylov approach to propagate the quantum state under the given MPO

taking the exponential in the Krylov subspace. The essential difference is the local character-

istics of the Hamiltonian in the Sornborger-Stewart decomposition. With the orthogonality

center at one of the sites i and j = i+ 1 being acted on, the overlap from the left and right

is the identity operator. If we denote the two sites acted on with |C〉 and the parts to the

left of i and right of j with |Li〉 and |Rj〉, the actual state vector |ψ〉 can be derived from

Eq. (9.39),

|ψ〉 =
∑
i,j

|Li〉 |Ci,j〉 |Rj〉 . (9.42)

Within the construction of the Krylov basis [v1, . . . , vn] the states | Li〉 and | Rj〉 remain

unchanged as shown in Appendix 9.14. The same applies to the sum of the propagated state
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|ψ(t+ dt)〉 =
∑
k

ckvk , (9.43)

leading to the following construction of the state in the MPS picture:

|ψ(t+ dt)〉 =
∑
i,j

|Ai〉
(∑

k

ck |Ci,j(vk)〉
)
|Bj〉 . (9.44)

That means that we can sum locally over the two site tensors, as they form a vector space,

in contrast to the long-range case where we had to variationally find the MPS closest to the

summation.

In order to specify the error due to the method, we have to consider the decomposition

of the exponential. By separating non-commuting terms in matrix exponential, we get an

error of order dt2 in the first order approximation for a single time step:

exp [(A+B)dt] = exp(Adt) exp(Bdt) +O(dt2) . (9.45)

Having implemented the second and fourth order approximations we obtain methodical errors

εmethod for the whole time evolution as follows. εmethod is defined as part of the total error in

Eq. (9.36).

εTEBD2 = O(dt2) , εTEBD4 = O(dt4) . (9.46)

In addition to the error of the Sornborger-Stewart decomposition, we have as well an error

from the Krylov subspace approximation to the exponential for the local two-site propaga-

tors. The error bound for a single step is derived in [252].

The convergence parameters necessary to set up time evolution with TEBD methods

reflect the simplicity of the approach. The parameter psi local tol determines the local

truncation on the singular values, while the pair (lanczos tol, max num lanczos iter)

provides the tolerance for the Krylov approximation and the maximal number of Krylov

249



vectors. In addition, the maximum bond dimension χ can be defined.

With regards to the convergence study for the quench in the Ising model in Figure 9.11

we make two observations. The fourth order Sornborger-Stewart method is better than

second order implementation of Sornborger-Stewart, as expected due to the smaller error

at each time step. The rate of convergence as a function of the time step dt, that is, the

slope of the line, is equal for both implementations. The error εdt from the time-ordering of

the time-dependent Hamiltonian governs both implementations with O(dt2) and the better

convergence of the fourth order Sornborger-Stewart cannot be observed. In contrast, if the

Hamiltonian is time-independent, there is no error from the time-ordering. Figure 9.16 in

Appendix 9.10 indicates that TEBD4 has a higher rate of convergence in this case. The

total error has to be considered in comparison to the Krylov time evolution in Sec. 9.5.2

or the TDVP discussed in Sec. 9.5.4. We remark that the fourth order TEBD method

has a comparable error to the Krylov and TDVP method within one order of magnitude

for the smallest time step dt = 10−4. Larger time steps and the second order method

TEBD2 introduce errors which are sometimes two orders of magnitude larger than the errors

introduced through Krylov or TDVP, especially for large time steps.

9.5.4 Time-dependent variational principle

As a third option for the time evolution of a quantum system, we provide the time-

dependent variational principle (TDVP) [120]. This is another method supporting long-

range interactions. In brief, all other previous methods apply the propagator, which is an

entangling many-body operator, to a state represented as an MPS, and produces a new

state obtained as an MPS. The updated MPS has a larger bond dimension in general,

so then we must variationally project this new MPS onto the set of states with reduced

computational resources. The approach of the TDVP method is instead to project the time-

dependent Schrödinger equation onto the manifold of MPSs with fixed bond dimension, and

then integrate this equation directly within this manifold. OSMPS has implemented the two-

site version of this algorithm [120], in which the bond dimension is still allowed to grow over
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the course of time evolution, but the propagator is determined from a projection of the full

many-body operator onto a more local subspace. We remark that TDVP performs well on

the convergence study against exact diagonalization methods in the example of Figure 9.11.

All four estimates for the error defined in Eqs. (9.32) to (9.35) and shown in the four upper

panels of Figure 9.11 are close to exact diagonalization result with the same time step used

as reference. The maximal distance of all reduced two-site density matrices does not reach

the reference due to initial errors in the static results for the ground state.

9.5.5 Local Runge-Kutta propagation

Another option for time evolution with long-range interactions available in OSMPS is

the local Runge-Kutta method proposed in [122]. The basic idea can be summarized as

using the Runge-Kutta method on the local MPO matrices instead of the whole propagator.

The new MPO representing the propagator ULRK has a compact representation, i.e., it does

not increase in bond dimension beyond that of the Hamiltonian MPO. Since the method is

defined on the MPO, it is the third method supporting long-range interactions.

A detailed overview on how to build the MPO for the propagator, ULRK, as a second order

approximation is beyond the scope of this description; we suggest [122] to the interested

reader. But we do provide here a short description of how the application of the MPO to

the MPS is implemented in OSMPS. We fit the product of the MPO and the MPS to a new

MPS, where the new MPS represents the propagated state,

min
|ψ(t+dt)〉

‖ |ψ(t+ dt)〉 − ULRK |ψ(t)〉‖. . (9.47)

This fit employs the same method used to fit the next Krylov vector |vi+1〉 = H |vi〉 in the

Krylov method. The four upper panels of Figure 9.11 show a similar behavior with regards

to the convergence of the LRK method as for the TEBD method. The higher order variant

of the LRK method reduces the error, but the rate of convergence is not better due to the

time-dependent Hamiltonian and the particular choice of CFME. Within the implementation
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of this time evolution method we use the EXPOKIT package [253, 254] to calculate matrix

exponentials.

9.5.6 Time evolution case study: Bose-Hubbard model in a rotating saddle
point potential

We consider bosons in an optical lattice confined in a rotating potential as an example of

the setup of a time evolution in OSMPS. We consider the potential Vxy with a saddle point

at x = y = 0 and a weight c,

Vxy = c
(
x2 − y2

)
. (9.48)

Figure 9.12(a) shows this potential for a two dimensional lattice. We consider a one-

dimensional optical lattice in this potential marked by the red sites and start to rotate

Vxy; the one-dimensional system sees the following potential VS depending on the angle of

rotation φ and the distance r from the center of the potential and integrate it into the

Bose-Hubbard Hamiltonian:

VS = c (r cos(φ(t)))2 − c (r sin(φ(t)))2 , (9.49)

H = −J
L−1∑
i=1

bibi+1 + h.c.+
U

2

L∑
i=1

ni(ni − I) +
L∑
i=1

VS(t, i)ni . (9.50)

We slowly ramp up the frequency of the rotations with an acceleration α starting with a flat

potential

φ(t) =
π

4
+

1

2
αt2 . (9.51)

In order to estimate the stability of the system, we first calculate the standard deviation of

the number operator with regards to spatial dimension x for every measurement in time,

denoted by σx(n) 6. We calculate σt(σx(n, τ = 5)), that is the standard deviation of σx(n) for

time intervals t− τ to t for τ = 5, in a second step. For fast enough frequencies the rotating

6We emphasize that this is not the Pauli operator, but the standard derivation using in contrast to the Pauli
operators the subscript
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Figure 9.12: Bose-Hubbard model in a rotating saddle-point potential. The system shows an
increasing stability for faster frequencies. (a) In order to simulate a one dimensional system
from the two dimensional optical lattice, we consider one slice of sites marked in red with
its coordinate system r. The saddle point potential in green and yellow rotates under the
system characterized by the coordinates x(t), y(t). (b) The standard deviation over time
intervals of τ = 5 is measured for the spreading in x, i.e. the standard deviation of the
number operator. This observable can be expressed as σt(σx(n), τ = 5). The time t is in
units of ~/U and the tunneling J is in units of the on-site interaction U .

potential stabilizes the system, which can be seen in Figure 9.12(b). The other trend is that

towards the superfluid regime, with higher tunneling, the stability decreases. The first peak

shows this trend.

The setup of the dynamics has many common steps with the statics. The definition

of the operators, the MPO representing the Hamiltonian, and the observable class do not

change. In regard to the time-dependent potential VS in Eq. (9.49), we define the weight c,

the acceleration α (alpha), the system size L, and the function returning the corresponding

potential at a point in time t. The latter step is shown in Source Code 9.8.

Source Code 9.8: Define a time-dependent function for the rotating saddle potential.

9.76 def Vt(t, c=c, alpha=alpha , L=L):

9.77 # Grid with particles symmetric around 0
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9.78 # at unit distance

9.79 grid = np.linspace(-L / 2 + 0.5,

9.80 L / 2 - 0.5, L)

9.81

9.82 phit = np.pi / 4 + 0.5 * alpha * t**2

9.83

9.84 return c * ((grid * np.cos(phit))**2

9.85 - (grid * np.sin(phit))**2)

Source Code 9.8 Continued

Next, we build the time evolution. As before with MPOs, observables, and convergence

parameters, the dynamics are contained in an instance of a Python class: QuenchList. Once

created, we can add multiple quenches which are executed sequentially. We only add one

quench in our example in Source Code 9.9. Different convergence parameters are supported

for each quench you add.

Source Code 9.9: Creating the class object containing one or more quenches.

9.87 tconv = mps.TEBDConvParam(max_bond_dimension =60)

9.88 Quench = mps.QuenchList(H)

9.89 Quench.AddQuench ([’Vt’], 100.0, 0.01, [Vt],

9.90 stepsforoutput =10,

9.91 ConvergenceParameters=tconv)

As a last step we have to specify the dynamics in the dictionary for the simulation,

including the quenches and the observables to be measured during the dynamics. The

additional lines are shown in Source Code 9.10. The initial state of the time evolution is the

ground state if not specified otherwise.
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Source Code 9.10: Additional dictionary entries for the time evolution.

9.114 ’Quenches ’ : Quench ,

9.115 ’DynamicsObservables ’ : myObs ,

The post processing works similar to the statics. A listed list contains the dictionaries

with the results of the simulation. The outer list contains the different simulations, and

the inner list contains the measurements for each time. The complete Python code may be

found in the supplemental material described in Appendix B.1.

9.6 Future developments

The present OSMPS library has a wide field of possible applications including two-

component mixtures [232], topological phases [237], and complexity in the quantum mutual

information [214]. Still, we are planing to enhance the code to solve other sets of prob-

lems. The need for enhancements is driven by our research in atomic, molecular, and optical

physics, macroscopic quantum phenomena, and complexity, but we are open to suggestions

from the community for extensions to the OSMPS library. For instance, the feature to pro-

vide the singular values of a bipartition in addition to its bond entropy began as suggestions

made on our developer’s site [255]. We already have a broad suite of tools for the current

MPS algorithms for finite systems; therefore, we are focusing on implementing additional

measurements or new MPO rule sets to target Hamiltonians which are impossible or difficult

to build with present rule sets. For the measurements, observables such as unequal time

correlations are a possible add-on. A user-friendly support for ladder systems or rectangular

systems with Lx � Ly could be one focus for new types of Hamiltonians, either as new rule

sets or with convenient interfaces in Python. In contrast, other tensor network structures

such as PEPS are not being considered as an extension to the library at this point. Periodic

boundary conditions are on the agenda for selected MPO rule sets.
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On the other hand, we intend to extend OSMPS for a new set of problems in the future,

namely open quantum systems. We anticipate them to be key component to establish a

more realistic picture of simulations with regards to experiments, for example, future quan-

tum computers will suffer effects such as decoherence from the coupling to the environment;

including those effects in simulations fosters the understanding and addresses problems in-

duced by open systems. The standard approach is the Lindblad master equation describing

a system coupled weakly to a Markovian environment. Several approaches have been pro-

posed to implement the Lindblad master equation, i.e. quantum trajectories, MPDOs, and

Locally Purified Tensor Networks (LPTNs) [82]. We are developing as well techniques to

evolve open quantum systems with a non-Markovian environment within the tensor network

algorithms.

Finally, small features are on the list of future developments, e.g. providing optional

support for results in HDF5 file format for more convenient data post processing, improving

the speedup when using shared-memory parallelization with openMP, and a TEBD algorithm

which is not based on the Krylov approximation.

9.7 Conclusions

In this paper we have presented a description of the MPS library OSMPS containing a

set of powerful tools to study static and dynamic properties of entangled one-dimensional

many body quantum systems, where the initial focus is on a broad set of methods for

quantum simulators based on atomic, molecular and optical physics architectures. These

algorithms and interfaces are widely generalizable to other fields of quantum physics, e.g.

condensed matter and materials modeling. The usefulness of our methods is underscored

by the rapid community adaption and subsequent publications in various areas of quantum

physics making use of the OSMPS library or a derivative based on OSMPS [44, 121, 176,

214, 231–242]. OSMPS has been downloaded more than 2300 times from over 55 countries

since its initial release on SourceForge in January 2014.
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We combine a Fortran core with an easy to use Python front end. By introducing the

Python interface we hide the complex structures of the core algorithms from the end user.

Moreover, Python is a simpler programming language lowering the barrier to start simula-

tions for non-specialists and students. OSMPS provides fast and easy-to-access numerical

predictions for 1D quantum many-body systems. We facilitate this learning process by the

recent integration of a small exact diagonalization package inside OSMPS written purely in

Python [189]. On the other hand, we also support sophisticated enough features to provide

helpful tools for quantum many-body theorists and specialists in quantum computational

physics. We presented these tools throughout the paper describing the features of the li-

brary, which include ground states of infinite systems and ground states plus low lying

excited states in finite size systems. For the dynamics of finite size systems, we provided

four different tools starting from a nearest-neighbor Sornborger-Stewart decomposition, a

modified Trotter approach, to methods supporting long-range interactions such as Krylov

subspaces, local Runge-Kutta, and the time dependent variational principle. We gave a

detailed description of the nuanced convergence properties of these methods.

We anticipate that many unexplored problems in quantum simulators, materials model-

ing, and other areas are suitable for OSMPS, starting with long-range quantum physics and

its still unexplored corners reaching to less studied models, e.g. facets of the XYZ model,

and the vast variety of untouched far from equilibrium dynamics. The development of new

features in OSMPS, as described in Sec. 9.6, follows new emerging fields in quantum physics

which come naturally with explorations and requests by the community of both end users

and developers.

Providing the library as an open source package including a dedicated forum fosters

continued community development and research in many-body entangled quantum physics

with a transparent tool, much as density function theory (DFT) was instrumental to the

materials genome initiative. Especially the aspect of modifying the core code to integrate

tailored tools on top or integrate modules into other open source packages strengthens the
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idea of cooperative research. The version 2.0 of our library described in this paper and

updates to it are available under the GNU General Public License (GPL3) [256] and the

Expokit license on our homepage http://sourceforge.net/projects/openmps/.
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9.9 Convenient features

OSMPS contains several features which exploit physical considerations to increase the

power and reach of the algorithms or are not intrinsically based on physics but simplify the

handling of simulations for the user. These convenient features are covered in this part of

the appendix.

• Symmetry conservation: OSMPS supports an arbitrary number of U(1) symme-

tries. In order to employ symmetries, the user has to provide the symmetry generator

for each U(1) symmetry in a diagonal form. For the convergence study on the Bose-

Hubbard model in Appendix 9.10, the symmetry generator is the number operator n

(which is diagonal). Therefore, simulations can be easily adapted to number conser-

vation if possible. The advantage of the U(1) symmetries is the ensuing numerical

speedup. It is comparable to the use of block-diagonal matrices versus the full matrix

with the block diagonal structure. Decompositions are carried out on smaller sub-
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spaces. Taking advantage of the block diagonal structure leads to a speedup of more

than an order of magnitude for the example simulation treated in Table 9.2.

Consider the one-dimensional Bose Hubbard model

H = −J
L−1∑
i=1

bib
†
i+1 + h.c.+

1

2
U

L∑
i=1

ni(ni − I)− µ
L∑
i=1

ni , (9.52)

where the chemical potential µ regulates the average number of particles n̄ = 1
L

∑L
i=1〈ni〉

in the non-number conserving case. We scan for unit filling with n̄(µ = −0.22) ≈ 1 and

use this chemical potential for the comparison together with U = 1.0 and J = 0.5. The

compute times are determined from a 2x(Intel Xeon E5-2680 Dodeca-core) 24 Cores

2.50GHz node. The Fortran library is compiled with ifort and optimization flag O3

and using mkl. We see that the unit filling case can improve the simulation by an order

of magnitude or more.

Table 9.2: Comparison of the CPU time TCPU in seconds for number conserving and
non-number conserving MPS algorithm in the case of the Bose Hubbard model with
local dimension d = 6 and L = 32 for different convergence parameters.

Settings TCPU/s (no U(1)) TCPU/s with U(1)

χ = 10, εV = 10−4, εl = 10−4 42 22
χ = 60, εV = 10−7, εl = 10−6 654 21
χ = 320, εV = 10−12, εl = 10−10 19838 150

In addition, we study the Ising model defined in Eq. (9.15) where we can make use

of the Z2 symmetry, which reduces the dimension of the Hilbert space by half. In

the block diagonal structure, we never have more than two blocks and we expect that

using a symmetry-conserving MPS does not lead to the same speedup as in the Bose-

Hubbard model. In Table 9.3 we find that for small bond dimension the overhead due

to symmetry conservation is larger than the actual gain. This is in agreement with

previous results in [228]. Starting with χ = 320 in this table, the simulation with Z2
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is faster than the one without symmetry. The simulations were run with the same

setting as the Bose-Hubbard model simulations on a 2x(Intel Xeon E5-2680 Dodeca-

core) 24 Cores 2.50GHz node. The times include the ground state calculation, one

local measurement, and one correlation measurement where the value of the external

field g = 0.98 is close to the critical point.

Table 9.3: Comparison of the CPU time TCPU in seconds for MPS ground states
with and without conservation of Z2 symmetry in the quantum Ising model. The
system size is L = 128, the interaction J = 1, the external field g = 0.98, and default
convergence parameters are used if not specified in the table.

Settings TCPU/s (no Z2) TCPU/s with Z2

χ = 10, εV = 10−4, εl = 10−4 0.15 0.79
χ = 60, εV = 10−7, εl = 10−6 0.57 1.94
χ = 320, εV = 10−12, εl = 10−10 6.31 5.81

• Support for fermionic systems: Fermionic systems obey nonlocal anticommutation

relations different from the local commutation relations of bosons. In order to repre-

sent fermionic operators in OSMPS, we use a Jordan-Wigner transformation [137, 138]

which uses locally anticommuting operators together with strings of phase operators

(−1)n, with n the number operator. The routines within MPS, for example, the mea-

surement of correlation functions and construction of Hamiltonian terms, have a flag

Phase for whether a string of phase operators is needed to enforce proper fermionic

anticommutation relations.

Such fermions can be described via the Fermi-Hubbard model [258]. We consider in

the following an example of spinless fermions using the Hamiltonian from [259] in a

one-dimensional system

HF = W

L−1∑
i=1

(
ni −

1

2

)(
ni+1 −

1

2

)
− J

L−1∑
i=1

(
c†ici+1 + h.c.

)
. (9.53)
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We briefly introduce the phase terms for fermionic systems and show that it affects the

system. Instead of comparing a single correlation measurement or the single particle

density matrix built from the correlations 〈c†icj〉, we use the quantum depletion ξ

from the eigenvalues Ξi of the single particle density matrix, yielding a single value.

Furthermore, the quantum depletion ξ is constant for spinless fermions and errors can

be detected more easily. If Ξi are the eigenvalues of the single particle density matrix,

the depletion is defined as

ξ = 1− maxi Ξi∑
i Ξi

. (9.54)

Figure 9.13 shows multiple aspects of the model with a system size of L = 65 and

approximately half-filling with 33 fermions in the system. The deviation from the

average filling at each site

δ =
1

65

65∑
i=1

∣∣∣∣ni − 33

65

∣∣∣∣ , (9.55)

and the bond entropy indicate the phase transition from a charge density wave to a

superfluid phase dominated by the tunneling term in the Hamiltonian. Those values

are plotted in Figure 9.13(a). In Figure 9.13(b) we show the quantum depletion in

three different scenarios including calculating it correctly from the correlation with the

phase terms, and incorrectly from the correlation without phase terms and the reduced

density matrices. We emphasize that the reduced density matrices never contain phase

terms and cannot be used to calculate correlation in fermionic systems which need a

phase term.

• MPI: Message Passing Interface (MPI) is the standard for distributed memory parallel

high performance computing. OSMPS supports the setup of data parallelism via MPI.

Although data parallelism is the most basic implementation of a parallel algorithm,
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Figure 9.13: Spinless Fermions at half-filling. (a) The deviation from the mean-filling δ (blue
x’s) shows the two different phases. For small tunneling J < 1 there is an alternating order
of empty-occupied sites dominating. In contrast, the tunneling term with J > 1 leads to
a superfluid-like phase. The bond entropy S shows the same phase transition with a peak
around J = 1.0. We point out that the simulation for J = 0 fails because there are no
fluctuations to feed the variational minimization in the ground state search. The tunneling
parameter J is in units of the nearest-neighbor interaction W . The first point uses a small
perturbation of J = 10−4. (b) The quantum depletion ξ is calculated from the correlation
matrix 〈c†icj〉. The result from the boson-type correlation without a phase term and the
reduced density matrices are identical, corresponding to the lower curve. Both results do
not match the correct curve when accounting for the phase terms of the Jordan-Wigner
transformation.

it represents the most efficient approach when iterating over a set of parameters. For

a large fraction of problems, we can assume that iterations over a set of parameters

are necessary as in the case of phase diagrams, finite-size scalings, to analyze Kibble-

Zurek scalings, or to scan over a variety of initial conditions. We provide a Fortran

implementation with one master and (p − 1) workers where p is the total number of

cores. Furthermore, a Python implementation is available with p workers where one of

them is distributing jobs.

As an example for the scaling of the MPI implementation, we take a look at the Fortran

implementation and the simulations necessary to generate the data for Figure 9.2. We

run the simulation on one or two nodes of the type 2x(Intel Xeon E5-2680 Dodeca-core)
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24 Cores 2.50GHz with 12, 24, 36, and 48 cores. The duration of the jobs can be found

in Table 9.4. We recall that the set of simulations iterates over 30 data points for the

system size L and 51 data points for the external field g, i.e., 1530 data points in total.

In the case of 48 cores, the average workload is approximately 32 data points. Since

the master distributes the jobs to the workers one by one, each worker might handle

less (more) jobs if their jobs take more (less) than the average time of one data point.

In the setup of the simulation, we avoid getting stuck in long simulations at the end

having other cores running idle, because we address the large system sizes first. The

longest single data point takes about 4.5 hours. This setup leads to a good scaling of

the simulation time when increasing the number of cores. In fact, when increasing the

number of cores from 12 by a factor of n, the speedup is greater than n. This is related

to the fact that the master distributing the jobs has less weight for more cores. The

parallel efficiency EP is calculated with the cumulative CPU time of all simulations

TΣ and the actual run time of the job TN on N cores. We assume that the cumulative

CPU time corresponds to the time of the serial job:

EP =
TΣ

N · TN
. (9.56)

The initial increase of EP seen in Table 9.4 is again explained with the master running

almost idle.

Table 9.4: MPI scaling for OSMPS. As example for the MPI scaling of the duration
time TJob in hours and minutes of all simulations, we execute the simulations for
Figure 9.2 on different numbers of cores. In order to evaluate the scaling the number
of workers excluding the master job distributing the jobs has to be considered.

Cores (Workers) 12 (11) 24 (23) 36 (35) 48 (47) 72 (71) 96 (95)

TJob (hh:mm) 68:03 32:47 21:17 15:52 10:40 7:50
Efficiency EP 91.7% 95.9% 97.3% 97.9% 97.1% 97.5%
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• Templates: The OSMPS library supports calculations with real and complex numbers

as well as standard MPS or symmetry conserving MPS algorithms inside the Fortran

modules. The different data types lead to many redundant subroutines which we

overcome by using templates. Subroutines are written for a generic type, e.g. MPS TYPE.

When generating the module the necessary types are plugged in, e.g. MPS, MPSc, qMPS,

and qMPSc. The corresponding call to such a subroutine is covered under an interface

(containing all the subroutines for the different types). These templates reduce errors

copying from type to type and keep modules shorter.

9.10 Convergence studies

OSMPS can be tuned via multiple parameters modifying simulations with regards to the

convergence. Therefore, we provide some guidelines for the convergence parameters along

with examples. We divide this appendix in one part looking at the details of the finite size

statics followed by additional studies of the time evolution methods.

9.10.1 Finite size variational algorithms

Due to the variational search we have several convergence parameters. We can divide

them into three categories:

• Lanczos : Lanczos tolerance, maximal number of Lanczos iterations

• Chi/bond dimension: maximal bond dimension, local tolerance, variance tolerance

• Iteration: min/max num sweeps, max outer sweeps

Due to the number of convergence parameters, we present a simplified picture of conver-

gence issues with a single set of convergence parameters. We support multiple subsequently

executed sets of convergence parameters, which allow users to refine their target state in mul-

tiple steps when increasing the bond dimension, Lanczos iterations and number of sweeps

while decreasing the Lanczos tolerance, local tolerance, and variance tolerance. In general,
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the control of convergence over the soft cutoffs defined via tolerances should be preferred

over the hard cutoff specified as the bond dimension or number of Lanczos iterations.

For the convergence study presented in Table 9.1 we concentrate on the Lanczos tolerance

εl, the variance tolerance εV and the bond dimension χ. The maximal number of Lanczos

iterations is set to a sufficiently high value to ensure convergence (500, default is 100). The

number of inner sweeps is set to exactly 2, i.e. a minimum and maximum of 2, except for the

spinless fermions with 4. We consider exactly one outer sweep. Since every additional outer

sweep lowers the local tolerance εlocal for the cut-off of singular values, we prevent different

εlocal depending on the number of outer sweeps carried out. The warmup phase to grow the

system up to L sites has a warmup tolerance 100 times bigger than the variance tolerance

and the warmup bond dimension is half of the bond dimension. The local tolerance is then

connected with the variance tolerance as specified in the default settings:

εlocal =
εV

4L
. (9.57)

For the remaining three parameters εl, εV and χ the variance tolerance determines if a

simulation is converged according to the criterion

〈H2 − 〈H〉2〉 < εVL . (9.58)

The actual behavior may vary for different models. We study the convergence behavior

of the Ising model, the Bose Hubbard model, and a spinless Fermi-Hubbard model. Future

possibilities for similar studies include spinful Fermi-Hubbard or Bose-Hubbard models, XYZ

models, quantum rotors, and disordered systems. Starting with the Ising model, we show

in Figure 9.14 (a) the boundary between converging and non-converging simulations over a

grid of εl and χ. In Figure 9.14 (b) the energy difference to the smallest value can be found.

The point is close to the quantum critical point (g = 0.98 with gc = 1.0) so the settings also

serve as an upper bound for points further away from the critical point.
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Figure 9.14: Convergence study for the quantum Ising model. (a) The boundary between
converged and non-converged simulations as a function of the bond dimension and Lanczos
tolerance. The surface shows the first converged simulations fulfilling the variance tolerance
criteria. Smaller variance tolerances will lead to non-convergence for fixed parameters. With
this plot, we can estimate the maximal variance tolerance that can be achieved using a given
bond dimension and Lanczos tolerance. (b) The energy difference as a function of bond
dimension and Lanczos tolerance for the first converged simulation in regard to the variance
tolerance (see (a)) reproduces the expectation that the energy difference decreases as the
convergence criteria defined over the variance decreasing tolerance is met. Same labels apply
to color bar and z-axis.

In the next example we turn to the long-range quantum Ising model with the Hamiltonian

presented in Eq. (9.14). We evaluate the convergence behavior again close to the critical

point. For a power-law decay with α = 3.0 and a system size of L = 128 we have a critical

field of gc ≈ 1.35 [176]. We leave the remaining parameter fixed in comparison to the

nearest neighbor quantum Ising model. Figure 9.15 (a) shows again the boundary between

converging and non-converging simulations based on the variance tolerance εV iterating over

the bond dimension χ and the Lanczos tolerance εl. We see that we need a much higher

bond dimension in comparison to the nearest-neighbor Ising model.

For the Bose Hubbard model introduced in Eq. (9.52) the same type of plot is shown in

Figure 9.15(b). The algorithm includes number conservation at unit filling and the system

size is L = 32. We choose the point with U = 0.5, t = 0.5 and µ = 0 in the superfluid regime
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Figure 9.15: Convergence study. We study the variance tolerance achieved as a function of
the bond dimension and the Lanczos tolerance for (a) the long-range Ising model, (b) the
Bose-Hubbard model, and (c) a spinless Fermi-Hubbard model. (Same labels apply to color
bar and z-axis.)

exhibiting long-range correlations. In contrast, the Mott insulator has less entanglement

and therefore the superfluid parameters can serve as upper bound. In the Figure 9.14 and

Figure 9.15 we observe that the Bose-Hubbard model needs, in comparison to the Ising

model, stricter convergence parameters to arrive at an equal variance tolerance.

Finally, we consider the spinless fermions introduced in Eq. (9.53) and present the result

on the convergence in Figure 9.15 (c). As with the Ising model, we choose a point in the

region with high entanglement judged by the bond entropy evaluated in Figure 9.13, that is

a tunneling energy of J = 1.04. Furthermore, we take L = 65, and the system is filled with

33 fermions. In contrast to the other simulations we increase the minimum and maximum

number of inner sweeps to 4. Comparing the Fermi-Hubbard model to the quantum Ising

model since both have a local dimension of d = 2 and are nearest-neighbor, we see that the

fermionic system needs a larger bond dimension χ in comparison.

9.10.2 Time evolution methods for finite size systems

In this part of the appendix we expand the convergence study of the time evolution

methods with additional examples to demonstrate some key points. Figure 9.11 in Sec. 9.5.1
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shows aspects of a quench in the paramagnetic phase of the Ising model for L = 10. Due to

the time-dependence of the Hamiltonian, we already make an error due to the evaluation of

the Hamiltonian at discrete points in time. Now, we study the convergence of the different

algorithms under the evolution of a time-independent Hamiltonian. Therefore, we use the

same ground state of the Ising model at an external field g = 5.0 and evolve it under the

Hamiltonian with an external field of g = 4.5, which corresponds to a sudden quench. The

results are shown in Figure 9.16.

We start the discussion with the maximal distance of the single site reduced density

matrices. For the Krylov and TDVP algorithms, the decrease of the time step dt does not

improve the result, but seems to make it worse. Since there is no error in the method or

from the time slicing of the Hamiltonian depending on dt, the number of applications is the

critical variable to estimate the error. In contrast, TEBD and LRK have an error depending

on dt in εmethod. Therefore the second order methods are worse than the fourth order and

smaller time steps improve the result if it did not yet reach the lower bound. We recall that

the lower bound is considered to be error between the ground state results of MPS and exact

diagonalization. The two-site reduced density matrices, the energy, and the bond entropy

support this trend. Further the errors in energy give an indication to judge on the rate of

convergence for LRK and TEBD. If we consider the data points for dt = 0.1 and dt = 0.01,

the slope for the TEBD4 curve is bigger than the one for TEBD2 indicating a better rate of

convergence. Then TEBD4 reaches the lower bound induced by the error of the initial state

or is at the level of the error of the TDVP and Krylov method. The LRK methods have the

same rate of convergence following this argumentation. The look at the CPU times yields

then a counterintuitive result. The most precise simulation with TDVP has the biggest

time step and one of the shortest run times. The reported error from OSMPS follows the

arguments from the time-dependent Hamiltonian. Without any truncation besides the local

tolerance, more time steps add up to more error contributions.
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Figure 9.16: Scaling of the error in time evolution methods decreases as expected with the
size of the time step for methods where the error depends on the time step. This is the
example of a sudden quench of the Ising model in the paramagnetic phase evolving the
ground state of an external field g = 5.0 at constant g = 4.5 for L = 10. The time step dt is
in units of ~/J . Curves are a guide to the eye; points represent actual data.

A second approach to estimate the error for time evolution is the forth-back scheme [260].

The unitary time evolution under the Hamiltonian H for a time τ followed by the evolution
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Figure 9.17: Error with forth-back time evolution. Unitary time evolution is reversible and
can help to estimate the error of time evolution schemes. We quench for times τ with the
Hamiltonian H followed by the inverse direction, i.e., −H, again for τ . H is the Hamiltonian
of the nearest neighbor Ising model. (a) The error defined over the Loschmidt echo shows
that the precision of the final state declines for longer evolution times τ . τ is in units of the
interaction ~/J . (b) The reason for this trend is the entanglement generated, which cannot
be captured with χmax = 200, and thus the cumulative error ε grows. ε includes truncation
errors and, in the case of the Krylov method, errors from fitting states and H |ψ〉. (Legend
for TEBD2 and KRYLOV from (a) applies for the errors ε.)

under −H for another τ should return to the initial state. We analyze this error for the

nearest neighbor Ising model with L = 30 and quench times from τ = 3 to τ = 15 in units

of ~/J . We choose the default settings for the time evolution, except χmax = 200. The

initial state is a product state with all spins pointing in x-direction, except the spin on site

16 pointing opposite to the x-direction: | ψ(0)〉 =|→1 · · · →15←16→17 · · · →30〉. The time

step is dt = 0.01. We observe the error grows with the quench time τ in Figure 9.17 (a),

which is an effect of the growing entanglement during the time evolution. One minus the

absolute value of the Loschmidt echo corresponds to the infidelity and is therefore a good

error measure. This reasoning is supported by part (b) of Figure 9.17: the maximal bond

dimension is exhausted for the larger τ and the cumulative error grows. The error includes

the truncation for the TEBD, and additional contribution from the fitting of wave function

in the Krylov method. Obviously, one can generalize this approach to any model and study
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this error previous to simulating new or different Hamiltonians and initial conditions.

9.11 Scaling of computational resources

We consider the scaling of computational resources, especially computation time and

memory, as a function of common parameters of simulations. These include the system size

L and the maximal bond dimension χ. While the default parallelization is data parallelism

using the MPI interface to OSMPS with a straightforward scaling explained in Appendix 9.9,

we consider as well the openMP (Open Multi Processing) algorithms used by the underlying

libraries, namely LAPACK and BLAS.

First, we consider the scaling with the maximal bond dimension χ. We consider in this

scenario the quantum Ising model for a system size of L = 1063, which corresponds to

one data point from Figure 9.2. The value of the external field is the critical value for the

thermodynamic limit, i.e., g = 1.0. The simulations were run on a 2x(Intel Xeon E5-2680

Dodeca-core) 24 Cores 2.50GHz node and the corresponding data is shown in Figure 9.18.

In order to have a better understanding of the data we plot in each case the bond dimension.

For the memory in Figure 9.18(a) we see that the file size saturates once the bond dimension

saturates. The file contains the complete information about the state in binary format and

gives a good estimate of the memory needs for each simulation. For linear algebra operations

within LAPACK, the additional memory allocated as workspace is on the order of the matrix

size. The size of the matrices handled is bounded by the local dimension and the maximal

bond dimension leading to a maximum size of dχmax × dχmax. Figure 9.18(b) shows the

CPU time for each simulation. It naturally saturates with the bond dimension. Before the

saturation point it grows linearly with the bond dimension actually used.

For the scaling of the resources with the system size L we consider the set of simulations

generating Figure 9.2 and pick the external field g = 1.0. The data is for Penguin Relion

2x(Intel X5675) 12 cores 3.06GHz nodes. As previously, we show the bond dimension utilized

in addition to the file size or computation time. If the bond dimension saturates starting at

L > 500, the file size grows linearly with the system size L as shown in Figure 9.18(c). In
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Figure 9.18: Scaling of computational resources. We consider the Ising model and vary the
bond dimension and the system size. (a) The file size of the ground state indicates the
memory resources necessary for the simulation. The parameters are L = 1063 and g = 1.0
for different maximal bond dimensions χmax. (b) The scaling of the CPU time as a function
of χmax. Parameters equal to (a). (c) The file size of the ground state for χmax = 80 at
g = 1.0 for a set of different system sizes from the data of Figure 9.2. (d) The scaling of the
CPU time for different system sizes. Parameters equal to (c).

contrast, in the growth for L < 500 the file size increases faster than linear. In addition to

the growing system size, the fact that a larger system can have more entanglement leads to

the increase in file size. Figure 9.18(d) shows the CPU times for the equivalent setup with a

similar result as for the file size. The scaling is linear as soon as the bond dimension actually

used saturates. Before the growth appears nonlinear with a jump.
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We examine the use of openMP as the last part of the analysis of resources. OpenMP

allows for parallel computing with shared memory on one compute node. In contrast, the

tasks of MPI jobs never have access to the same memory and have to send any data. In

our type of implementation data is sent between the master node and the workers. On

current clusters this allows one to use parallelization with up to 24 cores. We study the effi-

ciency of openMP and what speedup can be gained. OSMPS does not have implementations

for openMP itself, but the LAPACK and BLAS or respectively mkl libraries can support

openMP on the level of the linear algebra operations within OSMPS. We find that openMP,

implemented in this form, does not increase the speed of the simulation, as described in

Table 9.5. The simulation time shown is the duration of the job and not the CPU time on

a 2x(Intel Xeon E5-2680 Dodeca-core) 24 Cores 2.50GHz node.

Table 9.5: OpenMP scaling for OSMPS. As an example for the scaling we simulate the
ground state of the Ising model for L = 1063 at an external field of g = 1.0 for different
numbers of threads and different bond dimensions and list the duration of the simulation
TJob in seconds. This case corresponds to a data point of Figure 9.2. We see that openMP
does not come with any real speedup. The maximal bond dimension used is 124, which
affects the last two rows.

Cores 1 2 4 8 16 24

TJob(χmax = 20)/s 150 154 154 155 154 168
TJob(χmax = 40)/s 270 273 271 274 275 302
TJob(χmax = 80)/s 699 780 789 734 749 739
TJob(χmax = 160)/s 1293 1273 1232 1188 1161 1396
TJob(χmax = 3200)/s 1368 1372 1259 1241 1237 1278

9.12 Error bounds for static simulations

Ideally, numerical simulations yield a corresponding bound for the error of their results.

For DMRG there are calculations available discussing the behavior of the error. Local

observables in a two-dimensional Heisenberg models are discussed in terms of the truncation

error in [74, 75, 261]. The error in variational MPS methods is mentioned in [246, 262]

and relates the variance to the squared norm of the difference between the exact and the
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approximate quantum state. We present an alternate approach using the variance as well to

derive error expressions for multiple observables.

In static MPS simulations the variance of the Hamiltonian, which bounds the error of

the energy, is returned as an error estimate for the result. Therefore, it remains for us to

show how other observables or measures are bounded by the variance of the state, where we

take the ground state as an example. The basic idea is to assume we have a final state |ψ〉

as an MPS

|ψ〉 = f |ψ0〉+ ε|ψ⊥〉 , (9.59)

with f = 〈ψ|ψ0〉, |ε|2 = 1− |f |2, and |ψ0〉 the true ground state, while |ψ⊥〉 is orthogonal to

the ground state and contains all errors. In this appendix we keep the notation that |ψ〉 is

the state from the OSMPS simulation with a variance Vψ, |ψ0〉 is the true ground state and

|ψ⊥〉 contains all contributions orthogonal to the true ground state.

9.12.1 Bounding ε with the variance delivered by open source Matrix Product
States

The first step is to bound ε from the information gathered in OSMPS, that is the variance

of H. Furthermore, in addition to the above orthogonality relation 〈ψ⊥|ψ0〉, any power Hn

is subject to the relation 〈ψ⊥|Hn |ψ0〉 = 0, since |ψ0〉 is an eigenstate of H. We recall that

the Hamiltonian is represented without errors except if an InfiniteFunction rule is fitted

through a series of Exponential rules. The error due to the fitting procedure is not covered

in this Appendix. Writing the variance in terms of this decomposition we obtain

Vψ = 〈ψ|H2 |ψ〉 − (〈ψ|H |ψ〉)2

= |f |2 〈ψ0|H2 |ψ0〉+f ∗ε 〈ψ0|H2 |ψ⊥〉+fε∗ 〈ψ⊥|H2 |ψ0〉+|ε|2 〈ψ⊥|H2 |ψ⊥〉
−
(
|f |2 〈ψ0|H |ψ0〉+f ∗ε 〈ψ0|H |ψ⊥〉+fε∗ 〈ψ⊥|H |ψ0〉+|ε|2 〈ψ⊥|H |ψ⊥〉

)2

= |f |2 〈ψ0|H2 |ψ0〉+ |ε|2 〈ψ⊥|H2 |ψ⊥〉 − |f |4 〈ψ0|H |ψ0〉2

−2|f |2|ε|2 〈ψ0|H |ψ0〉 〈ψ⊥|H |ψ⊥〉−|ε|4 〈ψ⊥|H |ψ⊥〉2 . (9.60)
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We introduce the eigenenergy E0 = 〈ψ0|H |ψ0〉 of our true ground state and the energy

E⊥ = 〈ψ⊥|H |ψ⊥〉, which is not an eigenenergy of the system because |ψ⊥〉 can be a linear

combination of eigenstates. Next, we use the relation |f |2 = 1 − |ε|2 and we add a zero in

terms of ±(|ε|2 − |ε|4)E2
⊥ to simplify the expression:

Vψ = (1− |ε|2) 〈ψ0|H2 |ψ0〉+ |ε|2 〈ψ⊥|H2 |ψ⊥〉
−(1− 2|ε|2 + |ε|4)E2

0 − 2(|ε|2 − |ε|4)E0E⊥ − |ε|4E2
⊥

+(|ε|2 − |ε|4)E2
⊥ − (|ε|2 − |ε|4)E2

⊥

= (1− |ε|2)V0 + |ε|2V⊥ + (|ε|2 − |ε|4)(E⊥ − E0)2 . (9.61)

We abbreviate the energy difference as ∆ = E⊥ − E0, define the variance of | ψ⊥〉 as V⊥,

and the variance of |ψ0〉 as V0 = 0. We introduce ε̃ = |ε|2 leading to the following quadratic

equation:

∆2ε̃2 − (V⊥ + ∆2)ε̃+ Vψ = 0 . (9.62)

We remark that the variance of an eigenstate of H is zero, applied to V0 = 0. The equation

has two solutions returning the values for |ε|2:

|ε1|2 =
1

2

1 +
V⊥
∆2
−
√(

1 +
V⊥
∆2

)2

− 4
Vψ
∆2

 (9.63)

|ε2|2 =
1

2

1 +
V⊥
∆2

+

√(
1 +

V⊥
∆2

)2

− 4
Vψ
∆2

 . (9.64)

Plugging |ε|2 = 1−|f |2 into Eq. (9.62), we get another quadratic equation and two solutions

for |f |2:
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∆2|f |4 − (∆2 − V⊥)|f |2 + (Vψ − V⊥) = 0 , (9.65)

|f1|2 =
1

2

1− V⊥
∆2

+

√(
1 +

V⊥
∆2

)2

− 4Vψ
∆2

 , (9.66)

|f2|2 =
1

2

1− V⊥
∆2
−
√(

1 +
V⊥
∆2

)2

− 4Vψ
∆2

 . (9.67)

According to the normalization condition we recognize that f1 and ε1 build one solution, as

well as f2 and ε2:

|fi|2 + |εi|2 = 1 , i ∈ {1, 2} . (9.68)

Under the assumption that the major part of our state is in the ground state, we choose the

smaller ε1. This is the first assumption in the calculation and we proceed to bound ε2 using

the fact that 0 ≤ V⊥ ≤ Vψ and then implementing a Taylor expansion in Vψ/∆, which is

small if the variance of the ground state has sufficiently converged targeting in the default

setup a value of L× 10−10 and we have an energy gap in the system. We point out the role

of the gap ∆ in the following steps in detail:

|ε|2 ≤ 1

2

(
1 +

Vψ
∆2
−
√

1− 4
Vψ
∆2

)

≈ 1

2

(
1 +

Vψ
∆2
−
(

1− 2
Vψ
∆2
−O

(
V 2
ψ

∆4

)))
=

1

2

(
3Vψ
2∆2

+O
(
V 2
ψ

∆4

))
. (9.69)

Finally, we use the minimal gap between the ground state and the first excited state ∆0,1 =

E1 − E0 to approximate ∆. The inverse energy difference between the ground state and a

superposition of all excited states can be bound with the smallest gap:

|ε|2 ≤ 3Vψ
4∆2

0,1

+O
(
V 2
ψ

∆4
0,1

)
=⇒ |ε| ≤

√
Vψ

∆0,1

+O
(
Vψ

∆2
0,1

)
. (9.70)
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This bound shows that the variance can be a good approximation for the error as long as

the gap to the next eigenstate is finite. This gap refers to the next accessible eigenstate in

case symmetries are used. For simulations around the critical point with a closing gap the

bound becomes less precise due to the closing gap. But for finite systems considered in this

calculation, the gap remains.

In addition, we list the implicit and explicit assumptions during the derivation of the

bound

• We converged mainly to the ground state. The solutions in Eqs. (9.63) and (9.65) and

in Eqs. (9.64) and (9.67) are in general true for any eigenstate of H.

• By taking the solution represented by the pair of Eqs. (9.63) and (9.65) we assume

that the main part of the solution is in the eigenstate.

• The energy gap to the first state above the ground state used in the Taylor expansion is

assumed not to be small. This approximation may fail around quantum critical points

with a closing energy gap.

• V⊥ ≤ Vψ: the variance of the subset of states is smaller if the minimal energy is canceled

from the set of states. This is true because one end of the distribution is cut.

9.12.2 Bounding observables

The ε derived above is only useful if bounds for other measures can be obtained. For a

local Hermitian observable O with a maximal absolute value M defined as

M = max
|φ〉,|φ′〉

|〈φ | O |φ′〉| (9.71)

we obtain the following bound between the measurement on the true ground state |ψ0〉 and

the state |ψ〉 resulting from the OSMPS simulation:
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|〈ψ0 | O |ψ0〉 − 〈ψ | O |ψ〉|
=
∣∣(1− |f |2)〈ψ0 | O |ψ0〉 − εf ∗〈ψ0 | O |ψ⊥〉 − ε∗f〈ψ⊥ | O |ψ0〉

−|ε|2〈ψ⊥ | O |ψ⊥〉
∣∣

≤ (1− |f |2) |〈ψ0 | O |ψ0〉|+ 2|εf | |〈ψ0 | O |ψ⊥〉|+ |ε|2 |〈ψ⊥ | O |ψ⊥〉|
≤ 2|ε|(|f |+ |ε|)M≤ 2

√
2|ε|M ≤ 3|ε|M . (9.72)

Here in, |f |+ |ε| is always smaller than
√

2, which originates in the normalization of the state

and can be derived from maximizing the constraint problem L(f, ε, γ) = |f |+ |ε|+ γ(|f |2 +

|ε|2 − 1), where γ is a Lagrange multiplier for the normalization constraint. So in general it

is possible to bound values of an observable.

9.12.3 Density matrices and their bounds

In the following, we derive an expression for the complete density matrix, any reduced

density matrix of the system, and a bound for the trace distance between the MPS result

and the (reduced) density matrix of the ground state. We start by expressing the mixed

contribution of the form |ψ0〉〈ψ⊥ | in a more convenient way.

Lemma 1 (Mixed contributions |ψ0〉〈ψ⊥ |) A mixed contribution of the form e−iφ |ψ0〉〈ψ⊥ |

+eiφ |ψ⊥〉〈ψ0 | with an arbitrary phase φ can be decomposed into positive matrices σ± with

one non-zero eigenvalue of value 1 as

|ψ0〉〈ψ⊥ | + |ψ⊥〉〈ψ0 |= σ+ − σ− , (9.73)

where σ± fulfill all characteristics of a density matrix (and are not the spin lowering/raising

operators).

Proof. We take the pure states |ψ±〉 = (|ψ0〉 ± eiφ |ψ⊥〉)/
√

2, where φ is an arbitrary phase.

These pure states define the density matrices σ±:

σ±= |ψ±〉〈ψ± |
=

1

2
|ψ0〉〈ψ0 |+

1

2
|ψ⊥〉〈ψ⊥ |±

1

2

(
e−iφ |ψ0〉〈ψ⊥ |+eiφ |ψ⊥〉〈ψ0 |

)
. (9.74)
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Therefore, the difference σ+ − σ− leads to the term we need while canceling out the contri-

butions from |ψ⊥〉〈ψ⊥ | and |ψ0〉〈ψ0 |:

σ+ − σ− = e−iφ |ψ0〉〈ψ⊥ | +eiφ |ψ⊥〉〈ψ0 | . (9.75)

Lemma 2 (Error bound on density matrix) Knowing ε in |ψ〉 = f |ψ0〉 + ε |ψ⊥〉, we

can express the (reduced) density matrix ρ representing the OSMPS result as

ρ = |f |2ρ0 + ε̃+ρ+ − ε̃−ρ− , ε̃± < 2|ε| , (9.76)

where ρ0 is the density matrix of the exact ground state and ρ± are density matrices con-

taining the error.

Proof. We build the density matrix ρ on the complete Hilbert space as

ρ = |ψ〉〈ψ |= |f |2 |ψ0〉〈ψ0 | +fε∗ |ψ0〉〈ψ⊥ | +f ∗ε |ψ⊥〉〈ψ0 | +|ε|2 |ψ⊥〉〈ψ⊥ |
= |f |2 |ψ0〉〈ψ0 | +|fε|

(
e−iφ |ψ0〉〈ψ⊥ | +eiφ |ψ⊥〉〈ψ0 |

)
+ |ε|2 |ψ⊥〉〈ψ⊥ | ,

(9.77)

where we have chosen the phase φ such that fε∗ = |fε|e−iφ. From Lemma 1 we obtain

ρ = |f |2ρ0 + |εf |(σ+ − σ−) + |ε|2ρ⊥ = |f |2ρ0 + |ε| ((|f |σ+ + |ε|ρ⊥)− |f |σ−)

= |f |2ρ0 + |ε|
(

(|f |+ |ε|) |f |σ+ + |ε|ρ⊥
|f |+ |ε| − |f |σ−

)
. (9.78)

Defining the density matrices with positive and negative signs, we obtain

ρ = |f |2ρ0 + ε̃+ρ+ − ε̃−ρ− , ε̃+ = |ε|(|f |+ |ε|) ≤ 2|ε| , ε̃− = |εf | ≤ |ε| ,

ρ+ =
|f |σ+ + |ε|ρ⊥
|f |+ |ε| , ρ− = σ− , (9.79)

where all matrices ρ0,± are density matrices with trace 1 and fulfilling positivity.

Lemma 3 (Bound on reduced density matrices) The bound on the reduced density ma-

trices ρA of the OSMPS result is equal to the bound on the complete density matrix, which
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is

ρA = TrBρ = |f |2ρ0,A + ε̃+ρ+,A − ε̃−ρ−,A , (9.80)

where we consider an arbitrary bipartition of our system in parts A and B, tracing out over

the bipartition B.

Proof. In order to obtain a reduced density matrix, we define subsystem A and B and take

the partial trace over subsystem B:

ρA = TrBρ = TrB

(
|f |2ρ0 + ε̃+ρ+ − ε̃−ρ−

)
. (9.81)

As a linear operation the previous expression can be rewritten as

ρA = |f |2TrBρ0 + ε̃+TrBρ+ − ε̃−TrBρ−

= |f |2ρ0,A + ε̃+ρ+,A − ε̃−ρ−,A . (9.82)

9.12.4 Bound for the trace distance

Now that we are able to bound the density matrices with regards to the density matrix

of the exact ground state, we can continue to prove a bound expressed in the trace distance

D.

Lemma 4 (Bound on the trace distance) The trace distance between the density ma-

trix ρ from OSMPS and the density matrix of the true ground state ρ0 can be bounded with

D(ρ, ρ0) ≤
√

2Vψ

∆0,1

. (9.83)

Proof. We continue with a bound on the trace distance defined as

D(ρ, ρ0) =
1

2
Tr
√

(ρ− ρ0)†(ρ− ρ0) =
1

2
|ρ− ρ0| , (9.84)
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where the simplification can be made due to the Hermitian property of the density matrices.

We first concentrate on expressing the difference between the density matrices in a convenient

way using the expressions for ε̃± in Eq. (9.79):

ρ− ρ0 = |f |2ρ0 + ε̃+ρ+ − ε̃−ρ− − ρ0 = ε̃+ρ+ − ε̃−ρ− − |ε|2ρ0

= ε̃+ρ+ − |ε| (|f |ρ− + |ε|ρ0) = ε̃+(P −M) ,

P ≡ ρ+ , M ≡ |f |ρ− + |ε|ρ0

|f |+ |ε| . (9.85)

The new matrices P and M are again defined so that they fulfill the requirements for a

density matrix (Hermitian, positive, trace equal to 1). In the next step we make use of the

triangular inequality of the trace norm:

D(ρ, ρ0) =
1

2
Tr |ρ− ρ0| =

|ε|(|f |+ |ε|)
2

Tr |P −M |

≤ |ε|(|f |+ |ε|)
2

(Tr|P |+ Tr|M |) = |ε|(|f |+ |ε|)

≤
√

2|ε| ≤
√

2Vψ

∆0,1

. (9.86)

9.12.5 Bound on the bond entropy

In order to get the bound on the bond entropy, we use Fannes’ inequality [85] stating

that the difference of the entropy S of two density matrices of dimension D×D is bounded

by the trace distance D between those two density matrices:

|S(ρ)− S(σ)| ≤ D loga(D)−D loga(D) , ∀D ≤ 1

e
≈ 0.36 , (9.87)

with the logarithm for the von Neumann entropy base a and D the dimension of the Hilbert

space for the density matrices ρ and σ. The inequality was derived for logarithm base two,

a = 2, but holds for any basis. Therefore, the bound for the bond entropy is

εS ≡ |S(ρ0)− S(ρ)| ≤
√

2Vψ

∆0,1

log(D)−
√

2Vψ

∆0,1

log

(√
2Vψ

∆0,1

)
. (9.88)
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9.13 Bounding measurement with the trace distance

We have used the trace distance of reduced density matrices to judge the convergence of

our results. We now show that the trace distance bounds from above any observable defined

on the reduced density matrix. As a preliminary result we need that the absolute value of the

eigenvalues of a Hermitian matrix correspond to the singular values of the matrix. Therefore,

we use the fact that the matrix can be decomposed via an eigenvalue decomposition A =

UΛU † and a singular value decomposition A = ŨλṼ †. Both decompositions are unique up to

a permutation of the orthonormal basis vectors and basis transformations within degenerate

sets of eigenvalues and singular values, respectively. Calculating AA†, which is by definition

positive semi-definite even for a general A, with both expressions leads to

AA† = UΛ2U † = Ũλ2Ũ † , (9.89)

which shows that the absolute values of the eigenvalues Λ are equal to the singular values

λ. In the case where the observable is positive semi-definite and the ordering of the eigen-

values and singular values is equal, e.g. descending, the decompositions are equal, except

for rotations within degenerate subsets. In contrast, for observables with at least one neg-

ative eigenvalue and sorting in descending order by the absolute value, the decompositions

are not equal as negative signs are contained in the unitary matrices of the singular value

decomposition. We use the fact that the absolute values of the eigenvalues of a Hermitian

matrix are the singular values in the following when estimating the difference between the

measurement of an observable Q for two different density matrices ρ and σ defined as

ε(ρ, σ,Q) = |Tr(Qρ)− Tr(Qσ)| = |Tr (Q(ρ− σ))| . (9.90)

In order to bound this with the trace distance of ρ and σ we use the von Neumann trace

inequality [263] on the matrices Q and (ρ− σ) leading to
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ε(ρ, σ,Q) ≤
D∑
i

κi|Λi| , (9.91)

where κi are the singular values of Q sorted in descending order with κi > κi+1. The Λi are

the eigenvalues of (ρ−σ) sorted in descending order with |Λi| > |Λi+1|. D is the dimension of

the density matrix and the corresponding Hilbert space. We derived the relation Eq. (9.89)

for this purpose. We approximate Eq. (9.91) by choosing the maximal singular values κmax

from all κi:

ε(ρ, σ,Q) ≤ κmax

∑
i

|Λi| = κmaxTr |Λi| = κmax2D(ρ, σ) . (9.92)

For further convenience we estimate κmax as a function of the observable Q. In the case of a

Hermitian observable Q = Q† we use again the connection between eigenvalues and singular

values from Eq. (9.89). The eigenvalues of a square matrix can be estimated with Geršgorin

circles [245, 264, 265]. Each Geršgorin circle has its origin in the diagonal element of the

matrix; the radius is the sum of the absolute values of the non-diagonal of the corresponding

row (or column). In this case we are only interested in the absolute values and the expression

for κmax in terms of the Geršgorin circles simplifies to

κmax ≤ max
i

(∑
j

|Qi,j|
)
. (9.93)

In the case of a non-Hermitian Q, i.e., the correlation measurement 〈bib†j〉, we can obtain an

estimate using the fact that the singular values are connected to the eigenvalues of QQ†. If Q

has the singular value decomposition Q = USV †, then QQ† has the eigenvalue decomposition

QQ† = US2U †. Therefore, the square root of the non-negative eigenvalues of QQ† are the

singular values of Q. For the non-Hermitian Q we can estimate κmax with the Geršgorin

circles over QQ† as

283



κmax ≤ max
i

√√√√(∑
j

∣∣∣[QQ†]i,j∣∣∣
)
. (9.94)

In conclusion, these bounds show that the trace distance is a meaningful quantity to bound

the error on any other observable.

9.14 Details of the Krylov method

For the real-time TEBD algorithm we used the Krylov approximation to the propagated

state for a local propagator on two sites. In this appendix, we clarify why sums throughout

the algorithm can be done locally without involving the other parts of the subsystem. As

an example we take the first step of the Gram-Schmidt orthogonalization procedure which

can be generalized to sums. We denote the two local sites i and j = i + 1 acted on with

| C〉 and the other parts of the system to left and right with | Li〉 and | Rj〉. Moreover,

the orthogonality center is in | C〉 which could be either site i or j. Using the Schmidt

decomposition within the MPS, |ψ〉 can be written as

|v1〉 = |ψ〉 =
∑
i,j

|Li〉 |Ci,j〉 |Rj〉 (9.95)

where the indices i and j run to the corresponding bond dimension at the splitting. In order

to find the second basis vector |v2〉 we calculate

|v2〉 ∝ HC |v1〉 − 〈v1 | H†C |v1〉 |v1〉 , (9.96)

with HC the local Hamiltonian acting on the two sites of |C〉. Using Eq. (9.95) to expand

the second basis vector, we obtain the local summation:
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|v2〉 ∝ HC

∑
i,j

|Li〉 |Ci,j〉 |Rj〉

−
[ ∑
i,i′,j,j′

〈Li′ | 〈Ci′,j′ | 〈Rj′ | H†C |Li〉 |Ci,j〉 |Rj〉
]∑

i,j

(|Li〉 |Ci,j〉 |Rj〉) .

(9.97)

The expression in brackets in Eq. (9.97) is simplified due to the canonical form of the MPS.

We obtain Kronecker deltas for 〈Li′ |Li〉 = δi,i′ and 〈Rj′ |Rj〉 = δj,j′ . We point out that the

expression HC |Li〉 |Ci,j〉 |Rj〉 is a short hand notation for (IL ⊗HC ⊗ IR) |Li〉⊗ |Ci,j〉⊗ |

Rj〉 = IL |Li〉 ⊗HC |Ci,j〉 ⊗ IR |Rj〉. These steps lead us to:

|v2〉 =
∑
i,j

|Li〉 (HC |Ci,j〉) |Rj〉 −
∑
i,j

(|Li〉 |Ci,j〉 |Rj〉)
∑
i,j

〈Ci,j | HC |Ci,j〉

=
∑
i,j

|Li〉 (HC |Ci,j〉) |Rj〉 −
∑
i,j

h1,1 |Li〉 |Ci,j〉 |Rj〉 , (9.98)

where we introduced the overlap h1,1 ≡
∑

i,j〈Ci,j | HC | Ci,j〉 representing a scaling of the

MPS. For readers familiar with the Krylov method, we point out that h1,1 is the corre-

sponding entry in the upper Hessenberg matrix used to build the exponential in the Krylov

subspace. In order to scale the MPS with a scalar the orthogonality center is modified.

The identity operator is acting |Li〉 and |Rj〉 leaving them unchanged. Knowing that the

orthogonalization procedure does not change any |Li〉 and |Rj〉, similar arguments apply to

show that we can sum locally over the scaled Krylov basis |vk〉.

We consider now the scaling of TEBD-Krylov in comparison to a usual TEBD taking the

matrix exponential. In the usual TEBD implementation we can consider four steps: 1) Build

two-site tensor, 2) calculate local propagator with Hamiltonian, 3) contract propagator to

two site tensor, and 4) split two site tensor. Without considering speedup due to symmetries,

a basic computational complexity analysis yields

OTEBD = O(χ3d2) +O(d6) +O(χ2d4) +O(χ3d3) , (9.99)
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where we assume cubic scaling for the matrix exponential and the splitting. In case of the

Krylov-TEBD (KTEBD) we have the following steps: 1) contract the single site tensors to a

two site tensor, 2) build n Krylov vectors, 3) m′ calculations of overlap to previous vectors

and m′′ subtraction for orthogonalization (m = m′ +m′′), 4) taking the matrix exponential

in the Krylov basis, 5) adding the weighted Krylov vectors to the solution, and 6) finally

splitting the two site tensor. All the scalings are chronological, resulting in

OKTEBD = O(χ3d2) +O(nχ2d4) +O(mχ2d2)

+O(n3) +O(nχ2d2) +O(χ3d3) . (9.100)

We again assumed cubic scaling for matrix exponential and splitting, which is an upper

bound in the case of the matrix exponential being tridiagonal and symmetric. The overall

scaling seems to be dominated by the splitting with O(χ3d3), but we calculate the difference

to see which algorithm is favorable in which cases:

OKTEBD −OTEBD = O(n3)−O(d6) +O((n− 1)χ2d4)

+O((m+ n)χ2d2) , (9.101)

where TEBD is faster when the expression is greater than zero. If we assume in favor of

KTEBD d = χ and n = 2, the second and the third term cancel each other. Thus, the

remaining terms show that TEBD is always faster than KTEBD according to this scaling.

These equations do not include quantum numbers. A careful study is contemplated to prove

or disprove the scaling equations once both methods are implemented as pointed out in the

future developments in Sec. 9.6.

9.15 Auxiliary calculations

The overlap between the truncated state |ψ′〉 and the untruncated normalized state |ψ〉

is defined over the singular values λ′i of the truncated state and the singular values λi of the

untruncated state. In the following χ is the number of singular values in |ψ′〉 and χmax is

the untruncated number of singular values. The singular values for the truncated state are

286



calculated via a normalization

λ′i =
λi√∑χ
j=1 λ

2
j

. (9.102)

This expression leads us directly to the overlap between the two states

〈ψ′|ψ〉 =

χmax∑
i=1

λ′iλi =

χ∑
i=1

λ′iλi =
1√∑χ
i=1 λ

2
i

χ∑
i=1

λ2
i =

√√√√ χ∑
i=1

λ2
i . (9.103)

For the error we calculate 1− 〈ψ′|ψ〉 and abbreviate with x ≡ 〈ψ′|ψ〉:

1− 〈ψ′|ψ〉 = 1− x
=

1

2

(
1− 2x+ x2

)
+

1

2

(
1− x2

)
=

1

2
(1− x)2 +

1

2

(
1− x2

)
≤ (1− x2) (9.104)

where the inequality is based on x ≤ 1. By definition via Eq. (9.103), x is real and bounded

as 0 ≤ x ≤ 1. This is based on the normalization constraint and knowing that the singular

values λi are positive. The following inequality is only valid for x ≤ 1: Equation (9.104)

is further simplified to the sum over the truncated singular values using the fact that the

original state with χmax singular values was normalized:

1− 〈ψ′|ψ〉 ≤ 1−
χ∑
i=1

λ2
i = 1−

(
1−

χmax∑
i=χ+1

λ2
i

)
=

χmax∑
i=χ+1

λ2
i . (9.105)
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CHAPTER 10

OPEN SOURCE MATRIX PRODUCT STATES: MANY-BODY ENTANGLED OPEN

QUANTUM SYSTEMS

Submitted to Quantum Science and Technology1

D. Jaschke,2 S. Montangero,3 and L. D. Carr4

Abstract

We present an open source code to simulate entangled dynamics of open quantum systems

governed by the Lindblad master equation with tensor network methods. Tensor network

methods using matrix product states have been proven very useful to simulate many-body

quantum systems and have driven many innovations in research. Since the matrix product

state design is tailored for closed one-dimensional systems governed by the Schrödinger equa-

tion, the next step for many-body quantum dynamics is the simulation of one-dimensional

open quantum systems. We review the three dominant approaches to the simulation of open

quantum systems via the Lindblad master equation: quantum trajectories, matrix product

density operators, and locally purified tensor networks. The package Open Source Matrix

Product States combines these three major methods to simulate one-dimensional open quan-

tum systems with the Lindblad master equation. We access the same underlying tensor

network algorithms for all techniques, e.g., the tensor contractions optimized in the same

way, allowing us to have a meaningful comparison between the different approaches based

on selected examples. These examples include the finite temperature states of the transverse

quantum Ising model, the dynamics of an exciton traveling under the influence of sponta-

neous emission and dephasing, and a double-well potential simulated with the Bose-Hubbard

1“OSMPS: Many-body entangled open quantum systems”, D. Jaschke, S. Montangero, and L. D. Carr (2018).
https://arxiv.org/abs/1804.09796. Use in agreement with arXiv license [55].

2primary researcher and author responsible for the manuscript.
3feedback on the final versions of the draft with his expertise in tensor network methods; currently professor
at Università degli Studi di Padova.

4principal investigator and advisor at Colorado School of Mines.
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model including dephasing. We analyze which approach is favorable leading to the conclu-

sion that a complete set of all three methods is most beneficial, pushing the limits of different

scenarios. The convergence studies using analytical results for macroscopic variables and ex-

act diagonalization methods as comparison, show, for example, that matrix product density

operators are favorable for the exciton problem in our study.

10.1 Introduction

The study of the combination of many-body quantum systems and open systems is one of

the critical pieces needed to develop powerful quantum simulators and quantum computers.

While the many-body part is strictly necessary to scale these systems to sizes useful for

applications, open quantum systems help one to understand the effects of decoherence and,

therefore, the lifetime of the actual system. Further questions are the analysis of steady

states and the transient dynamics approaching them. Reservoir engineering has the purpose

of preparing the system in a defined state; this state is equal to the steady state and,

therefore, protected from decoherence. The process of thermalization is another example

for open quantum system research. The open system implementations in our Open Source

Matrix Product States (OSMPS) package combine two popular approaches: tensor networks

for many-body simulations and the Lindblad master equation as a default approach for

Markovian open quantum systems.

The Lindblad master equation [46–48] is one common approach to open quantum systems,

although its limitations are well-known. The benefit of this approach is the conservation of

the properties of the density matrix, i.e., norm and positivity. The assumptions during the

derivation, e.g., the Born-Markov and secular approximation, limit the use of the Lindblad

master equation to quantum systems weakly coupled to large reservoirs. Other approaches to

open quantum systems are for example hierarchical equations of motions [266, 267] or various

techniques for non-Markovian open quantum systems [65], but a versatile implementation of

the Lindblad equation is the first step towards the implementation of a tensor network suite

to study open quantum systems.
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The history of tensor networks for quantum mechanics reaches back to the density ma-

trix renormalization group (DMRG) [72], then recasted into thematrix product state (MPS)

language [75, 76]; recent papers highlight the equivalence between the two approaches [77].

Based on the original MPS idea, many different tensor networks have been derived rang-

ing from tree-tensor networks (TTN) [79] over the multi-scale entanglement renormalization

ansatz (MERA) [83] to projected entangled pair states [84], where the latter is designed

for two-dimesional systems; TTN and MERA can solve both one-dimensional systems and

generalizations to higher dimension. We focus in this work on one-dimensional systems in

an MPS-like chain structure. Tensor networks are very-well suited for this kind of low-

dimensional many-body system, where the area law describing the scaling of the entangle-

ment is the most favorable [78]. We concentrate on tensor networks for open systems and

a background in MPS techniques is assumed. The point of this paper is the side-by-side

discussion of three different approaches relating the technical implementation and their im-

plications for the convergence of actual simulations. The first of the three approaches are

quantum trajectories (QT) [217, 218] providing a statistical approach to the Lindblad mas-

ter equation. In contrast, both matrix product density operators (MPDOs) [80, 81] and

locally purified tensor networks (LPTNs) [82] simulate the complete density matrix. The

latter two approaches can also simulate thermal states, which are otherwise only accessible

through METTS [177] or after building a sufficient number of eigenstates. Both MPDO

and LPTN representations have their limitations as discussed in References [268–270]. Very

briefly, the arguments against each approach are that MPDOs do not conserve positivity and

the corresponding check is an NP-hard problem. In contrast, there are states which have

a representation in terms of MPDOs and maintain translational invariance, while LPTNs

leak a similar representation for this set of states. We point out that there are previous

comparisons between two of the methods [221].

The outline of the paper is as follows. Section 10.2 is a very brief review of methods used

to simulate open quantum systems with tensor network methods. We present an overview of

290



possible applications of the methods in the quickly developing fields of quantum simulators

in Sec. 10.3. Section 10.4 provides the actual details of the implementation in the OSMPS

package. We follow the structure of earlier work [215] connecting the different time evolution

methods to the open system. The setup of the simulations and their convergence is discussed

in Sec. 10.5. We conclude our results in Sec. 10.6.

10.2 Theoretical Approaches to the Simulation of Open Quantum Systems

Before going into details of the numerical setup for the simulation of the Lindblad master

equation, it is worthwhile to keep in mind the existing alternative approaches for the simula-

tion of open quantum systems. Amongst all the different techniques which have been outlined

for open quantum systems are stochastic methods [271], Redfield master equations [49], or

solving the full system. Some of these methods are within the reach of tensor network meth-

ods, e.g., the Redfield master equation. Others, i.e., the simulation of the full system, can

already be achieved with MPS methods as long as system plus environment together are not

too big. The Lindblad master equation is the first choice among above list as it conserves

norm, Hermiticity, and positivity of the state. OSMPS uses the Lindblad equation

ρ̇ =
ı

~
[ρ,H] +

∑
ν

LνρL
†
ν −

1

2
{L†νLν , ρ} , (10.1)

which describes the evolution of the density matrix ρ under the Hamiltonian H and a set of

Lindblad operators Lν . Thereafter, ~ is set to one. As we are treating many-body systems,

the index ν can be a combined index running itself over the different Lindblad operators

µ and different sites k in the system, i.e., ν = (µ, k). The Lindblad equation includes the

approximations explained as follows. Ideally, given unlimited resources, we would simulate

the Schrödinger equation for the system S of interest and its environment E

∂

∂t
|ψS+E〉 = − ı

~
HS+E(t) |ψS+E〉 . (10.2)
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Considering that the environment can be enormous and the Hilbert space grows exponentially

with system size, we apply the following three approximations to Eq. (10.2) to obtain the

Lindblad equation. (i) System and environment are in a product state at t = 0 and stay in

a product state over the time evolution, i.e., ρS+R(t) = ρS(t) ⊗ ρE. Correlations decay fast

if the reservoir is large and the reservoir remains unperturbed by the interaction with the

system. This assumption settles the timescales between the environment τE and the system

τS: τE � τS. (ii) Furthermore, the timescale of the system holds τS � τS,eq; the equilibration

time of the system τS,eq is longer than the time step. (iii) We truncate fast oscillating

terms similar to the rotating wave approximation when considering transitions of different

frequencies in the system, where their difference sets the timescale. These approximations

are formally described in terms of the Born-Markov approximation, i.e., (i) and (ii), and the

secular approximation, see (iii).

In order to simulate a system according to the Lindblad master equation, we distinguish

two paths. QTs evolve pure states sampling over a variety of trajectories. This approach is

motivated by the fact that in an experimental setup every measurement projects the density

matrix into a pure state; we assume that the measurement outcomes are non-degenerate

for each state for simplicity. The QT approach models the probability for the projection

into a specific state. Therefore, a single simulation only reflects one possible outcome of

an experiment. To obtain the outcome for Eq. (10.1), sampling over different trajectories is

necessary. One advantage of this method is that we use pure states and there is no significant

increase in the computational scaling with respect to an MPS simulation for each trajectory.

The local dimension of the MPS used in each QT is the same as for the MPS in a closed

system. Furthermore, any MPS can be used as initial state without increasing the bond

dimension prior to the time evolution. During the time evolution, we rely on the capabilities

of the MPS compression scheme to reduce entanglement, which is obsolete after a quantum

jump. The additional steps for choosing the Lindblad operator to be applied to the MPS are

not significant. The computational scaling of the open quantum system is reflected in the
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number of trajectories. The different trajectories can be easily parallelized across different

cores with MPI (Message Passing Interface).

On the other hand, ρ can be directly simulated, e.g, mapping the density matrix ρ to

a superket vector |ρ〉〉 [80, 81] resulting in a Schrödinger-like equation. The superket |ρ〉〉 is

constructed by building a vector out of all entries in the density matrix ρ. The governing

equation is then

∂

∂t
|ρ〉〉 = L(t) |ρ〉〉 , (10.3)

where the non-Hermitian Liouville operator L(t) corresponds to the Hamiltonian and is

defined as:

L(t) = − ı

~
H(t)⊗ I +

ı

~
I⊗HT (t) (10.4)

+
∑
ν

Lν ⊗ (L†ν)
T − 1

2

(
L†νLν ⊗ I + I⊗

(
L†νLν

)T)
.

Overall, this approach allows us to simulate systems replacing the Hamiltonian with L at

the cost of increased local dimension. If the total dimension of the closed system is D, the

dimension of the problem in Liouville space is D2.

Finally, we can evolve the purification of ρ denoted with X [82]. Since the density matrix

is by definition positive, we can decompose it into

ρ = XX† . (10.5)

For example, a pure state |ψ〉 is equal to its purification X =|ψ〉. To preserve the structure

of the complex conjugate pair, we use instead of Eq. (10.1) the more general Kraus operators

representing a completely positive trace preserving map (CPT map):

ρ(t+ dt) =
∑
ν′

Kν′ρ(t)K†ν′ (10.6)
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Kν′ are called Kraus operators. There is a connection to derive the Kraus operators via Choi’s

theorem from the Lindblad equation [272], or we approximate the Kraus operators in first

order in dt and truncating higher order terms of dt when expanding ρ(t+ dt) ≈ ρ(t) + dtρ̇(t)

with ρ̇(t) as defined in the Lindblad master equation (10.1) [273].

The MPS algorithms profit from considerable speed-ups when symmetries are present in

the system and encoded to the tensor network. We distinguish between Abelian symmetries,

considered in the following, and non-Abelian symmetries. Abelian groups are preferable from

the perspective of an implementation as operations commute and keeping track of quantum

numbers reduces to a simple group operations; in contrast, non-Abelian groups have to

use the Clebsch-Gordan coefficients. We can use symmetries in the Schrödinger equation

when the commutation of some operator G commutes with the Hamiltonian, [H,G] = 0,

and has a definition in terms of the local Hilbert spaces. For example, the Bose-Hubbard

model conserves the number of particles and N =
∑

k nk commutes with the Bose-Hubbard

Hamiltonian, see later on in Eq. (10.35). We can also use the Abelian symmetry in the

Liouville equation if the Lindblad operators do not violate the symmetry,

[
L, G⊗ I + I⊗GT

]
= 0 . (10.7)

Thus, we cannot add loss of particles with an annihilation operator as a Lindblad operator

in a number-conserving simulations: the Lindblad operator violates the symmetry.

This brief overview enables us to take a closer look at the different evolution methods in

Sec. 10.4.

10.3 Quantum simulators and open quantum systems

Quantum simulators are a primary focus of current research for multiple intriguing rea-

sons, amongst them their possibility to explore fundamental physical phenomena, mimic

new materials, and the development of new quantum technology, e.g., towards quantum

computers. The quantum simulators are also in the focus of a recent research program, i.e.,
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the European quantum technologies flagship program [1–3], the Chinese effort aiming for

the same goals, and the proposed US national quantum initiative. It is worthwhile to take

a closer look at the different architectures and their connection to open quantum systems.

Quantum simulators represent an important fraction of possible applications of any tensor

network algorithm simulating Lindblad master equations and, in future, beyond.

Rydberg systems are one promising platform for quantum simulators, and reference [274]

outlines their possible applications within the framework of the Lindblad master equation.

The Lindblad operators described therein are quasi-local, meaning acting on a neighborhood

of sites.

The treatment of superconducting qubits coupled to phonon modes is another architec-

ture [186], allowing one to couple the superconducting qubit to other degrees of freedom in

the systems. The Lindblad equation was used in this context to simulate the lifetime of the

phonon modes [275].

Trapped ions system are considered to be quantum simulators for open systems them-

selves as pointed out in references [276, 277]. Although the primary focus is on simulating

open quantum systems according to Kraus operators, the application of numerical simula-

tions to this scenario seems very fruitful to us. We mentioned the close connection between

the Lindblad master equation in Eq. (10.1) and the Kraus maps in Eq. (10.6). The review

in [278] highlights the quantum simulator applications of Rydberg systems and trapped

ions. Moreover, it lists examples for ultracold atoms systems in an open system context.

The atomic, molecular, and optical (AMO) platforms provide another set of problems to be

studied. Atomic bosons can heat due to the interaction with the optical lattice [279], and

molecules have even more degrees of freedom [20] to be used within open quantum systems.

The different internal degrees of freedom, i.e., rovibrational and motional degrees of freedom,

can be used for encoding individual reservoirs for each molecule; one degree of freedom acts

as a system, while another degree of freedom acts as a reservoir for the first [280].
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In summary, this incomplete list shows the possible application of open quantum systems

in the quantum simulator context. We argue that the consideration of system-environment

effects will be an even more intensive focus of future research as decoherence times of ex-

periments increase and errors decrease. We have picked four examples toward this goal of

describing quantum simulators. We look at finite temperature states in Sec. 10.5.1, where

the quantum Ising model is one possibility to describe many two-level quantum systems.

Section 10.5.2 turns to the transport of an exciton, which travels under the influence of the

interaction with an environment. The last two examples are dedicated to the Bose-Hubbard

model, which is key to many bosonic atomic and molecular systems. We consider the double-

well potential with a wave function initially trapped in one well in Sec. 10.5.3, where the

oscillations between left and right well are damped out in the open quantum system. Then,

we move to the dissipative state preparation in Appendix 10.8.

10.4 Tensor Networks Simulations of the Lindblad Master Equation

This section covers the technical aspects of all three approaches to open quantum systems.

We start with the simulation of the Lindblad master equation in terms of MPDOs[80, 81]

and describe in detail the issues raised by a non-Hermitian operator. The quantum trajecto-

ries [217, 218] share the non-Hermitian operator with the MPDOs, and we explain quantum

trajectories in the following section. Finally, we discuss the third approach using LPTNs [82].

Once we have covered these aspects, we turn to the convergence of the different approaches.

Readers aware of the technical details or solely interested in the practical application of the

methods may, therefore, skip this section and to straight to Sec. 10.5.

10.4.1 Matrix Product Density Operators

The formulation of MPDOs heavily relies on the Liouville operator and superket notation

in Eq. (10.4) and the similarity to the Schrödinger equation. The first steps into the MP-

DOs implementation inside OSMPS describe the notations of the superket |ρ〉〉 and we first

introduce the static aspect of MPDOs, i.e., their ability to calculate thermal states. Then,
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we move toward matrix product operators (MPOs) [121] of the Liouville operator. Know-

ing these two principal objects, i.e., the superket and the MPO, we move forward to the

time-evolution methods using the MPO, i.e., Krylov, local Runge-Kutta (LRK) [122], and

the time-dependent variational principle (TDVP) [120]. Finally, we fill in the description of

the Krylov time-evolving block decimation (KTEBD) and the well-established time-evolving

block decimation (TEBD) [76] algorithm and its modifications for the evolution of the Lind-

blad master equation. In fact, the time evolution methods for the quantum trajectories revisit

many issues already discussed here as both methods deal with a non-Hermitian propagator.

10.4.1.1 Construction of Matrix Product Density Operator states

We limit ourselves to the construction of two classes of initial states for the time evo-

lution. On the one hand, we convert MPS states to MPDOs. Suitable MPS states include

product states, ground states, low-lying excited states, and pure states obtained via unitary

time evolution. On the other hand, we would like to have finite temperature states via an

imaginary time evolution of MPDOs. Therefore, the infinite temperature state has to be

given as an initial state for the imaginary time evolution as it serves as a starting point for

cooling. This procedure is explained in Sec. 10.4.1.2. With the knowledge of the infinite

temperature state which is a mixed product state, the construction for product states of any

other type can be derived.

Figure 10.1 describes the transformation of an MPS into an MPDO. If the tensor A
[k]
α,i,β

represents the site k in the MPS, we add an auxiliary link of dimension one and obtain A
[k]
α,i,κ,β.

We contract this tensor with its complex conjugate tensor
(
A

[k]
α′,i′,κ,β′

)∗
over κ leading to the

MPDO representation B(α,α′),(i,i′),(β,β′). The contraction over the auxiliary index corresponds

to the outer product |ψ〉〈ψ |, taken locally on site k. Thus, the usage of an outer product

is an alternative to the auxiliary index. The indices in parentheses represent fused indices;

therefore, the new tensor is again of rank 3. The fusion of two indices produces a new index

using a Cartesian product to map the elements, e.g., α, α′ → (α, α′) = α′′. The dimension

of the new index α′′ is the product of the dimension of the two original indices α and α′. We
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notice the increase in the dimension of links: for a tensor with bond dimensions (χ, d, χ) in

the MPS, the new bond dimensions in the MPDO are (χ2, d2, χ2). The number of sub-tensors

for a symmetric tensor network also increases. If we have n sub-tensors in an MPS site, the

MPDO representation of the site has n2 sub-tensors.

(a) (b)

〈ψ |

|ψ〉

|ρ〉〉

q′2
q′1 q′3

q3q1

q2

0

0

(q1, q
′
1)

(q2, q
′
2)

(q3, q
′
3)

Figure 10.1: MPDO from MPS state. (a) In an MPS without symmetries, each site tensor
is contracted over a one-dimensional auxiliary link with its complex conjugated counterpart.
The corresponding links are fused. (b) The auxiliary tensor contracted over in an MPS
with symmetries is labeled with a dummy quantum number 0. We get all combination of
sub-tensors. In addition to merging the links of the sub-tensors, the quantum numbers are
combined.

The infinite temperature state ρ∞ is straightforward to implement in an MPDO without

symmetries but has some subtleties when symmetries are used. The density matrix ρ∞ is the

identity matrix normalized to trace one. If we do not have symmetries, the global identity

is a product of local identities ρ∞ ∝
⊗L

k=1 1k. Thus, the bond dimension between sites in

the MPDO is χ = 1, and the tensors are Bα,(i,i′),β = δii′ . In contrast, the product of local

identity for a symmetric MPDO contains states in all possible symmetry sectors and does
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not lead to ρ∞ for a specific sector. Instead, we construct the state ρ∞ representing the

Gibbs distribution at infinite temperature from symmetric sub-tensors on each site k filled

with

B
[k]
α,(i,i′),β((q1, q

′
1), (q2, q

′
2), (q3, q

′
3)) = δii′δq1q′1δq2q′2 .

(10.8)

The incoming quantum number from the left must be chosen in such a way that is possible to

obtain it with the local Hilbert spaces on the left. The outgoing quantum number q3 = q1+q2

must allow us to have the sector specified: q
[k=L]
3 on the last site must match the global sector

exactly. We illustrate these choices with the Bose-Hubbard model with a maximum filling

of 3, i.e., local dimension d = 4. Further, we specify the system size L = 5 and unit filling.

q
[k=2]
1 ∈ {0, 1, 2, 3} for the second site k = 2, q

[l=2]
1 = 4 cannot be achieved from a single site

on the left. Similar, for the fourth site k = 4, q
[k=4]
3 ∈ {2, 3, 4, 5}. Any lower filling cannot

reach unit filling with a single site on the right. Higher q
[k=4]
3 are already above unit filling

and do not match the symmetry sector. In conclusion, the symmetric ρ∞ has already a bond

dimension χ > 1 from the beginning and can contain a large number of sub-tensors. For

example, the bond dimension of the Bose-Hubbard model on L sites with maximal filling

d− 1 for each site has an upper bound for the bond dimension of d(N − d + 2) distributed

on the block-diagonal structure. We present a detailed calculation in Appendix 10.9. A

generalization to more complicated symmetries is possible, but a generalized equation for

the maximal bond dimension of any model and symmetry is difficult to obtain.

10.4.1.2 Imaginary time evolution for finite-T states

The finite temperature (finite-T) states are based on the Gibbs distribution defined as

ρ(T ) = exp(−H/(kBT ))/N with N = Tr [exp(−H/(kBT ))] and kB = 1 the Boltzmann

constant and have been pointed out as a feature of MPDOs from their definition on [80, 81].

From the Gibbs distribution, we rewrite the unnormalized state as
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e−H/(kBT ) = e−H/(2kBT )Ie−H/(2kBT )

∝ e−H/(2kBT )ρ∞e−H/(2kBT )

= e
1

2kBT
(−H⊗I−I⊗HT ) |ρ∞〉〉 , (10.9)

which corresponds to an imaginary time evolution similar to the ground state algorithm of an

MPS. The operator in Liouville space is Hermitian. In detail, we enable the TEBD algorithms

for imaginary time evolution. The definition of the initial state |ρ∞〉〉 was discussed in the

previous Sec. 10.4.1.1 as an example of how to construct initial states represented as an

MPDO.

10.4.1.3 Matrix Product Operators in Liouville space

For the simulation of the Lindblad master equation with matrix MPO techniques, we

transform Eq. (10.1) into the Liouville space. This transformation allows us to represent

the density matrix as vector |ρ〉〉 and use MPS techniques developed for pure states on

an enlarged local space. The local dimension d for pure states | ψ〉 translates into a local

dimension dL = d2 for the simulation of |ρ〉〉. In recent work [215], we presented the evolution

techniques in the OSMPS package for pure states based on formulating the Hamiltonian H

of the system as an MPO. We can reuse all evolution techniques for MPDOs once we can

formulate L as an MPO. We restrict the Hamiltonian to local terms and bond terms, i.e.,

nearest neighbor interactions, to explain the procedure. But the methods are generalized to

any rule set present in OSMPS for the Liouville space. For the MPS evolution, we know

that the bond dimension of the MPO for nsite local terms and nbond nearest neighbor terms

is χMPO = 2 + nbond. We explain how to build the MPO matrices along the quantum Ising

model with the Hamiltonian

HQI = −J
L−1∑
j=1

σzjσ
z
j+1 − g

L∑
j=1

σxj , (10.10)
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where σxj and σzj are the Pauli matrices acting on site j. The interaction strength between

neighboring spins is J , the coupling to the external field is g, and the system size is L. The

MPO operator-valued matrix in the bulk of the system for the Hamiltonian HQI is

MH =

 I 0 0
σz 0 0
−gσx −Jσz I

 , (10.11)

where the two of the four dimensions of the rank 4 MPO tensor are encoded into the row

and columns of this matrix. These two indices are contracted with left and right neighboring

MPO-matrices and the number of rows/columns is the bond dimension of the MPO. The first

(last) MPO is an operator-valued row (column) vector. The remaining two dimensions are

the dimensions of the matrix for each entry. In this notation, 0 is to be understood as a d×d

matrix of zeros. A convenient implementation uses operator-valued sparse matrices instead

of building the full rank 4 tensor with a large fraction of zeros [121]. We transform this MPO

to the Liouville space according to Eq. (10.3); the relevant terms are the Hamiltonian terms

H ⊗ I − I ⊗ HT . We reorder the subspaces such that the terms for each site are collected.

The two links for the Hilbert space of each site have been fused previously. Thus, the new

operator-valued entries have a dimension of d2×d2. This transformation increases the MPO

bond dimension to χMPO,L = 2 + 2nbond:

ML =


I 0 0 0

σz ⊗ I 0 0 0
I⊗ (σz)T 0 0 0

−gσx ⊗ I− I⊗−g(σx)T −Jσz ⊗ 1 −(I⊗−J(σz)T ) I

 .

(10.12)

Here in the construction of ML, we assume that the L is multiplied with the usual (−ıdt)

in the evolution. The different signs in front of H ⊗ I and I ⊗ HT are considered together

with the coupling constant of the Hamiltonian term and are not double-counted. So far, this

step allows us to evolve a closed initially pure or mixed system. To include local Lindblad

operators Lµ acting on each site as part of the dissipative part of the evolution, we add the
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following matrix based on Eq. (10.3) to the previous result in Eq. (10.12), which contains

the Hamiltonian part of the evolution in Liouville space:

ML =


0 0 0 0
0 0 0 0
0 0 0 0

ıγ
(
Lµ ⊗ L∗µ − 1

2
L†µLµ ⊗ I− 1

2
I⊗ LTµL∗µ

)
0 0 0

 .

(10.13)

The imaginary unit takes into account the multiplication of (−ıdt) leaving only dt after the

construction of the argument for the exponential. Thus, the local Lindblad operators do not

increase the bond dimension of the MPO. We implement another type of Lindblad opera-

tor similar to a Hamiltonian many-body string term, i.e., the many-body string Lindblad

operator

Lk(r) = Lk ⊗ Lk+1 ⊗ · · · ⊗ Lk+r−1 . (10.14)

The MPO bond dimension for a many-body string Hamiltonian term is r− 1 for the Hamil-

tonian, and 2(r − 1) for the Liouville operator. The many-body string Lindblad term has

a bond dimension of 3(r − 1). In detail, we implement three terms with bond dimension

(r − 1), which are the three different terms in the dissipative part

Lk ⊗ · · · ⊗ Lk+r−1 ρL
†
k ⊗ · · · ⊗ L†k+r−1 , (10.15a)

−1

2
L†kLk ⊗ · · · ⊗ L†k+r−1Lk+r−1 ρ , (10.15b)

−1

2
ρL†kLk ⊗ · · · ⊗ L†k+r−1Lk+r−1 . (10.15c)

The tripling of the bond dimension for a multi-site Lindblad rule equivalent to a Hamiltonian

rule holds in general. Equation (10.15a) represents LρL† in the Lindblad equation, see

Eq. (10.1). The other two terms, i.e., Eqs. (10.15b) and (10.15c), build the anti-commutator.

The setup of L as an MPO is the primary step to use the evolution methods. Nonetheless,

the MPS methods cannot be used blindly since L does not necessarily maintain Hermiticity
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in contrast to the Hamiltonian, i.e., L† 6= L. The Hamiltonian contributions in Eq. (10.3)

are still Hermitian, factoring out the imaginary unit ı. L†νLν ⊗ I and I ⊗ (L†νLν)
T are

Hermitian themselves, but not with the additional −ı factored out from the Hamiltonian.

Lv ⊗ (L†ν)
T is not necessarily Hermitian in itself or with an additional −ı. In the following,

we briefly discuss the adaptions for each method with regards to the closed system MPS

implementation.

10.4.1.4 Krylov-Arnoldi subspace method

The Krylov approximation [121, 219] directly builds the new state after the time step dt

evaluating the product exp(Ldt) | ψ〉. The exponential taken within the Krylov subspace

is much smaller than the dimension of the Hilbert space or Liouville space scaling with dL

and d2L, respectively. The exponential in the Krylov subspace is used to approximate the

new state after the time step; thus, the exponential does not represent a propagator. We

recall that in case of a Hamiltonian, which is by definition Hermitian, the matrix to be

exponentiated in Krylov subspace is tridiagonal. We label it Krylov-Lanczos in analogy to

the Lanczos eigenvalue algorithm for Hermitian matrices. In contrast, the Liouville operator

may violate Hermiticity, and we use the Krylov-Arnoldi algorithm. We use the name Krylov-

Arnoldi due to the similarity with the Arnoldi algorithm solving for eigenvalues of a non-

Hermitian matrix. The Krylov-Arnoldi algorithm results in an upper Hessenberg matrix

within the Krylov subspace. In theory, we can use the Krylov-Lanczos algorithm as a fallback

for Hamiltonian mixed state evolutions.

This change from Krylov-Lanczos to Krylov-Arnoldi is the major change from Hamil-

tonian dynamics to Lindblad master equation. The Krylov-Lanczos algorithm, in detail

described in [121], relies furthermore on fitting MPO to states, orthogonalizing states, and

fitting a state to a sum of states. As our state is formulated as a superket and the MPO rep-

resented in Liouville space, these methods can be used without further modification, keeping

an implementation cheap.
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10.4.1.5 Local Runge-Kutta

The local Runge-Kutta (LRK) method is another method allowing us to evolve Hamil-

tonians with long-range interactions [122]. The version for the Schrödinger equation takes

the MPO of the Hamiltonian and calculates an MPO representation of the propagator for

the corresponding time step. The propagator MPO has a smaller bond dimension, by one,

and is an efficient representation. It can either be contracted to obtain the new state or

fitted. The steps to obtain the MPO of the propagator involve an intermediate mapping to

hard-core bosons. A generalization to the non-Hermitian Liouville operator including non-

local Lindblad operators is beyond this work here. But we can use the specific structure of

the MPO for the propagator to generalize it at least to local Lindblad operators and their

representation in Liouville space.

Therefore, we look at the operator-valued MPO matrix of the propagator W II consisting

of operator-valued four sub-matrices with subscript A, B, C, and D:

W II =

(
W II
D W II

C

W II
B W II

A

)
, (10.16)

Every term expect W II
D involves the mapping to hard-core bosons; therefore, we do not de-

scribe W II
A , W II

B , and W II
C as their definition does not change for local Lindblads and details

can be found in [122]. W II
D contains all local site terms and is simply the exponential of these

local terms, i.e., the propagator of a system truncating all interactions. For example, this

local site term is the coupling to the transverse field in the quantum Ising model with a Pauli

matrix or the number operator nk acting on site k and the on-site interaction nk(nk − 1)

for the Bose-Hubbard model with appropriate weight for both cases. In the implementation

of the Schrödinger equation, D is the sum over all site rules for site k and therefore Her-

mitian. The corresponding exponential uses this fact. If the Lindblad operators are local,

the Lindblad operators can be included entirely in this term D in the MPDO approach.

The exponential has then to be calculated for a general matrix because the Lindblad terms
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Lν⊗L∗ν do not necessarily enforce Hermiticity. Since the other terms are not affected by the

local terms, they can stay in place as they are.

Evidently, this approach only works for local Lindblad operators. To what extent non-

local Lindblad operators are covered by the method remains a subject of future research.

Moreover, the current implementation makes the symmetric tensor to the full space and back

to calculate the representation for the LRK-propagators. For that reason, the symmetry

implementation only needs to consider a correct mapping.

10.4.1.6 Time-Dependent Variational Principle

The TDVP [120] is the third evolution method based on the MPO. The propagation is

based on one or two MPO sites including overlap of the MPO with the other sites in the

MPS. To calculate the propagator in the closed system case, the Krylov-Lanczos method

with the tridiagonal matrix is used. In the Liouville case, the algorithm is again adapted

for the Hessenberg matrix yielded by the Krylov-Arnoldi algorithm, and it is implemented

in OSMPS.

10.4.1.7 Time-Evolving Block Decimation

The first and second release of OSMPS use a Krylov subspace method for TEBD [76],

which was argued to be slow [215] in comparison to the direct matrix exponential of the

Hamiltonian in closed systems. We now have both methods implemented, with KTEBD

and TEBD taking the matrix exponential of the Hamiltonian or Liouville operator, respec-

tively. KTEBD follows closely the restriction of the Krylov method. Moving from Hermitian

operators to non-Hermitian operators, the matrix in the Krylov subspace turns from sym-

metric tridiagonal to an upper Hessenberg form. We have to adapt the matrix exponential.

Evidently, for taking the exponential of the Liouville operator, we also have to choose a ma-

trix exponential for non-Hermitian matrices; we rely on LAPACK’s ZGEEV. The symmetric

MPDO profits from taking the exponentials of the block-diagonal structure. When building

the block-diagonal structure, we ensure that every possible block is present by adding a 0 · I,
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Figure 10.2: Left transfer tensor for an MPDO. The left transfer tensor for the kth site is
built by taking a partial trace of the sites 1, . . . , k−1. (a) We first split and then contract the
local Hilbert spaces on the sites 1 and 2 corresponding to a partial trace, see black curves.
The results left transfer tensor of rank 1 is also shown in black on the right. the first site
is built with the following steps. (b) Contract incoming link to the left by splitting the link
into its original underlying links. Then, (c) Contract the local Hilbert space after splitting
it. The transfer tensors for sites k ≥ 2 can be built with subsequent steps (c) Contract the
transfer tensor from the site k − 1 and (d) again.

where I is the identity operator of the corresponding subspace. An identity scaled with zeros

adds the information about all present diagonal blocks without altering the matrix itself.

10.4.1.8 Measurements with overlaps

Measurements of the MPS representation profit immensely from the gauge installed,

which reduces local measurements to operations on a single tensor. Similarly, correlations

are only affected by the sites measured and all sites in between [75]. Unfortunately, MPDOs

do not have such a benefit, and the complete tensor network has to be contracted to find

the measurement outcome. Therefore, we define a few operations to allow us to obtain
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those measures. These operations are similar to the left-right overlaps and transfer matrices

between two states in our MPS algorithms. In detail, we build the tensors L
[k−1]
α and R

[k+1]
β

such that the local measurements on site k of the operator O[k] reduce to the contraction

Tr
(
ρO[k]

)
=

∑
α,i,i′,β

L[k−1]
α B

[k]
α,(i,i′),βO

[k]
(i,i′)R

[k+1]
β . (10.17)

The critical step is the initialization on the left and right end, respectively. We implement

the concept which allows us to use general states, e.g., partially traced out MPS.5 The three

major steps are sketched in Figure 10.2 for the left side of the tensor network. Figure 10.2 is

an overview of the objective tracing out over site one and two and obtain a rank 1 tensor to

be contracted with the rest of the system. First, we split the link to the left of the MPDO.

This step is defined under the assumption that the link was created as a combined link. The

correct decomposition can be stored; this link cannot change during any MPDO algorithm.

If quantum numbers are present as in Figure 10.2(b), we store the conserved quantities in

the first half and fill the second half with zeros. This trick is necessary since the number of

conserved quantities is an attribute of the tensor, not to a specific link. We contract over

the local Hilbert space of the site in the next step, i.e., Figure 10.2(c). The dimensions and

quantum numbers of the original Hilbert space can be obtained from the identity operator.

Transfer tensors for matrices in the bulk of the system are obtained via a contraction of the

transfer tensor on the left, see Figure 10.2(d), followed by the contraction of the local Hilbert

space. We build the right overlap in an analog approach from the other side. This scheme

corresponds in other words to the partial trace of selected sites in the density matrix.

10.4.2 Quantum Trajectories

Quantum trajectories follow the idea that any mixed quantum state can be sampled and

written via an ensemble of pure states

5Such an approach is beneficial for the following example: (i) Obtain MPS via ground state or time evolution.
(ii) Trace out over a subsystem followed by (iii) a conversion to an MPDO.
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ρ =
∑
i

|φi〉〈φi | . (10.18)

The essential points of the implementation are the effective, non-Hermitian Hamiltonian

and the sampling over the different trajectories. The latter are well covered with the data

parallelism via MPI present in the package; from the point where the number of trajectories is

specified, they are spread across all possible cores as any other set of simulations in OSMPS,

e.g., ground state searches for different system sizes. The non-Hermiticity of the effective

Hamiltonian can be addressed analogously to the MPDO cases but on the level of the Hilbert

space and pure quantum states. The effective Hamiltonian Heff derived from Eq. (10.1) is

Heff = H − ı~
2

∑
ν

L†νLν . (10.19)

This effective Hamiltonian Heff violates Hermiticity and conservation of norm when used

in the Schrödinger equation. The latter has its use on the decision on when to apply the

Lindblad operators to the system. The non-Hermiticity leads to changes in the time evolution

methods as discussed in the previous section for the MPDO. The Krylov method, TDVP,

and KTEBD switch from Krylov-Lanczos to Krylov-Arnoldi approximation of the new state.

TEBD uses a function for non-Hermitian matrices to exponentiate Heff . The LRK method

has to use a non-Hermitian matrix exponential for the local terms but has one additional

problem. LRK itself does not conserve norm which enhances or prevents the loss of norm

due to Heff .

It remains to present the actual algorithm for the trajectories, which is described in many

places [221], but reviewed here briefly for completeness. While looping over the time steps

of the evolution, we execute the following steps: (i) Draw a random number rN ∈ U(0, 1)

and ensure the state | ψ(t = 0)〉 is normalized at the beginning. The uniform distribution

between 0 and 1 is written as U(0, 1). This normalization is necessary as the decreasing

norm of |ψ(t)〉 is used in the following steps. (ii) Calculate time steps under Heff without
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Figure 10.3: Contraction for unweighted probabilities in quantum trajectories. (a) Local
Lindblad operators obtain their weight by a measurement of norm after contracting it to the
current quantum state. This step can be reduced to a single site operation. (b) The many-
body string Lindblad terms, here shown for three sites, need to contract the local operators
with the state for each site before measuring the norm, i.e., the unweighted probability.

renormalizing the state. (iii) Measure the norm N of the state. If N < rN , then we

apply a quantum jump according to the steps (a) through (c) described below. Otherwise,

we continue to the next step in the time evolution, i.e. (i). The steps to select a random

quantum jump are the following. (a) Calculate unweighted probabilities for each Lindblad

operator Lν as pν = 〈ψ | L†νLν | ψ〉. Figure 10.3 shows the contractions to obtain the pν ’s

for the two types of Lindblad operators implemented in the package. (b) We normalize pν

to Pν = pν/
∑

ν pν . (c) We draw a random number rκ ∈ U(0, 1). We apply to the state

the Lindblad operator Lκ such that Pκ−1 < rκ ≤ Pκ holds. The state is renormalized after

application of the Lindblad operator Lκ and we continue the time evolution with step (i).

It is worthwhile to take a look at the measurement procedure for QTs. Local measure-

ments or correlations can be averaged over all trajectories with equal weight. For example,

a local observable 〈Ok〉 is calculated for QTs as

〈Ok〉 =
1

NQT

NQT∑
j=1

〈Ok〉j , (10.20)

where NQT is the number of trajectories and 〈Ok〉j is the observable of the jth trajectory.

Here, we use the concept that the density matrix is a statistic ensemble of pure states

ρ =
∑

j pj |ψj〉〈ψj | with equal probabilities pj = 1/NQT. Obviously, this approach does not
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work for all observables; the purity P of each | ψj〉 is equal to one, but the purity of the

density matrix is not necessary the average, i.e., one. We can calculate the purity as

P = Tr
[
ρ2
]

=

NQT∑
j,j′=1

1

N2
QT

Tr [|ψj〉〈ψj ||ψj′〉〈ψj′ |] , (10.21)

where each of the N2
QT traces can be represented as contraction across a tensor network.

But this measurement goes beyond simple MPI parallelization as the measurement needs

all states at the time of the measurement and a posteriori averaging is not possible. We

can extend this argument to any term with power differing from first order in ρ. Therefore,

non-linear measures need all trajectories for measuring, which can either be achieved with

saving each state or while waiting until all trajectories have reached the measurement.

10.4.3 Locally Purified Tensor Networks

LPTN time evolution relies on the Trotter decomposition and Kraus operators applied

to the purification of the density, as previously outlined in Reference [82]. Therefore, we

restrict the description to the technical implementations used within OSMPS. We start with

a brief description of the construction and continue with open system decomposition. We

conclude with the setup for finite temperature. The current implementation is restricted to

nearest-neighbor interaction in the Hamiltonian and local Lindblad operators. Furthermore,

no symmetries are present.

10.4.3.1 Construction of Locally Purified Tensor Networks

We focus on the conversion of MPS to LPTN and the definition of the infinite temperature

density matrix ρ∞. The conversion from an MPS tensor A
[k]
α,i,β representing site k to an

LPTN tensor is as simple as inserting an additional link of dimension 1, i.e., B
[k]
α,i,κ,β. The

local tensors for the definition of ρ∞ have the link dimension (1, d, d, 1) and are diagonal in

the entries
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B
[k]
α,i,κ,β = δi,κ . (10.22)

10.4.3.2 Trotter decomposition for open systems

The evolution of an LTPN separates the Hamiltonian part of the Liouville operator L from

the dissipative part D =
∑

ν LνρL
†
ν − 1

2
{L†νLν , ρ} in a second order Trotter decomposition.

The exponential of the time evolution is approximated with

eLdt ≈ e−
ı
~ [H,ρ] dt

2 eDdte−
ı
~ [H,ρ] dt

2 . (10.23)

The Hamiltonian contribution evolves each part of the purification ρ = XX†, where it is

sufficient to propagate X. The Hamiltonian itself is approximated with two-site propagators

in a Sornborger decomposition [248]. We remain with the dissipative part, which we express

as Kraus operators:

eDdt |ρ〉〉 =
∑
ν′

Kν′XX
†K†ν′ =

∑
ν′

(Kν′X)(Kν′X)† .

(10.24)

We recall that the local Kraus operators keep the locally purified tensor network in its form.

We generate the Kraus operators from the first order approximation [273]

eDdt |ρ〉〉 =
N∑
ν′=0

Kν′ρK
†
ν′ +O(dt) , (10.25)

Kν′=0 = I− dt

2

N∑
ν=1

L†νLν , (10.26)

Kν =
√
dtLν , ν = 1, . . . , N . (10.27)

Alternatively, we can decompose the exponential of the Liouville operator into Kraus opera-

tors. The contraction of the Kraus operators increases the auxiliary dimension κ to a larger

κ′ = κ(N + 1). The dimension is reduced in a truncation similar to the truncation when
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splitting nearest neighbor sites.

10.4.3.3 Imaginary time evolution for finite-T states

The finite temperature states according to the Gibbs distribution are generated in an

imaginary time evolution starting from the infinite temperature state ρ∞ as explained in

Sec. 10.4.1.2. As evolution is purely Hamiltonian and does not contain any dissipative part

D, we can reuse the decompositions for MPS/MPDO methods. Both second and fourth

order Sornborger approximations are available.

10.5 Simulation Setup and Convergence

We describe the convergence of the different scenarios in the next three subsections. We

start with the analysis of the finite-T states in Sec. 10.5.1; we use the quantum Ising model as

example. Then, we move to the Lindblad master equation and consider simulations without

and with symmetry. Section 10.5.2 considers the dissipative dynamics of an exciton for the

convergence study of a system without conserved symmetry. The transient dynamics of the

Bose-Hubbard model with number conservation are described in Sec. 10.5.3.

10.5.1 Finite-T states in the Ising model (MPDO and LPTN)

We now turn to finite temperature states according to the Gibbs distribution and their

convergence. We compare LPTNs and MPDOs; quantum trajectories cannot simulate finite

temperature states. We take the quantum Ising model defined in Eq. (10.10) as an example.

The comparison is restricted to the TEBD2 time evolution methods and the overall Hilbert

space without addressing a specific sector in the Z2 symmetry.

Figure 10.4 answers two important questions: which method needs less CPU time to run

the simulations and which network type uses its bond dimension more efficiently? The first

answer is important to use computational resources in the best possible way whenever both

tensor networks can be applied to the problem. The second question can deliver a partial

answer as to which is the most favorable network to store entanglement for any state similar
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Figure 10.4: Performance of finite-T simulations. We consider the quantum Ising model
without Z2 symmetry to study basic convergence of the finite-T states represented by LPTNs
and MPDOs. The system size for the simulations is L = 100. (a) The CPU times TCPU for
different measuremts indicate that LPTNs are favorable for this model. The bond dimension
is χ = 512. The measurements are not the major cost and all three curves for “None”,
“Local”, and “Corr” overlap. (b) We compare the error of the zz-correlation measurement
between the first and last site to the most accurate result with χ = 512. We conclude from
the lower errors for the same bond dimension that LPTNs use their bond dimension more
efficiently in this example.

to those finite-T states. We consider the finite-T evolution with the first measurements at

T = 1.05 and the last measurement at T = 0.05 in steps of ∆T = 0.1. We use a time step

dt = 0.01, and additional steps dt′ < dt to reach the measurements at the corresponding

temperatures. The temperatures are in units of the interaction J , and we have a unitless

kB = 1.

We first discuss Figure 10.4(a) and the computational effort for the imaginary evolution

and the measurements. We choose a system size of L = 100, a maximal bond dimension

χ = 512, and three type of measurements: (i) only default measurements as the energy; and

(ii) default measurements and two local observables, i.e., σxj and σzj . (iii) The last type of sim-

ulations computes the default measurements, the local measurements presented previously,

and the correlations of the Pauli matrices in the x- and z-direction. All simulations are carried

out on a Penguin Relion 1752DDR/QSFP 2x(Intel X5675) 12 cores 3.06 GHz . The peak of
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the CPU time TCPU is located around the critical point; the entanglement is maximal at the

critical point of the Ising model, i.e., g = 1.0. We see a clear difference between the LPTN

and MPDO times for no measurements, which is related in aspects to the computational

scaling of the underlying operations. LPTNs build the two-site Hamiltonian on a d2 × d2

matrix, where the local dimension d is equal to two in the qubit example. In contrast, the

Hamiltonian represented in Liouville space is of dimension d4×d4. The contraction of a single

two-site propagator with a two-site tensor then scales as χ2d6 for the LPTN and χ2d8 for the

MPDO. We remark that our MPDO implementation could be further optimized using the

fact that the commutator
[
H ⊗ I, I⊗HT

]
= 0. Thus, we can simplify the action of the two

site propagator in Liouville space to exp
(
H ⊗ I + I⊗HT

)
= (exp(H)⊗ I)

(
I⊗ exp

(
HT
))

.

Each exponential can be applied separately in two steps with a scaling of χ2d6 for each con-

traction. However, this approach would in our eyes defeat the purpose of an MPDO, which

is representing the density matrix as an MPS; but here, the link of the local dimension has

to remain split throughout the complete evolution. Synergy effects between the MPDO and

MPS implementation would be decreasing. The measurements, executed in addition to the

imaginary time evolution, increase computation time where they are beyond fluctuations.

LPTNs tend to have less cost for measurements as local and quasi-local measurements do

not have to contract the complete tensor network. But overall, the selected measurements

are not the significant costs in these simulations.

Figure 10.4(b) describes the error for different bond dimensions in comparison to the most

accurate bond dimension. We choose this most accurate bond dimension as χmax = 512. The

system size is L = 100, and we set the transverse field to g = 1.0 maximizing the possible

entanglement in the quantum Ising model. The correlation is among the observables most

affected by a limited bond dimension; therefore we consider

εzz = |〈σz1σzL〉χmax − 〈σz1σzL〉χ| , (10.28)
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where χ < χmax. We see a decreasing error εzz as the bond dimension χ approaches χmax

for both LPTN and MPDO. This behavior is expected. But we also observe that each

curve representing the LPTN has a smaller error than the corresponding MPDO curve.

Assuming that the simulations with the highest bond dimension are both converged and

yield the correct results, LPTNs use the bond dimension more efficiently than MPDOs.

This statement is supported by the error in the energies for the the final temperature. The

LPTN has a maximal absolute error of 2.09 · 10−5 for L = 100, χ = 512, g = 1.0, while

the error for the MPDO yields 6.21 · 10−4. Thermal energies for low enough temperatures

can be calculated via the eigenvalues of Majorana Hamiltonian after the Jordan-Wigner

transformation; energies of excited states E ′ are truncated if exp(−(E ′ − E0)/T ) < 10−16

and avoids iterating over all 2L eigenenergies. This effect might also contribute to the CPU

times observed. Lower bond dimension leads to the use of less computational resources.

Unlike a variational or imaginary time ground state search, we cannot stop the algorithm at

a defined precision and compare the CPU times.

One may ask where the speed-up of the LPTN in comparison to the MPDO occurs

and how it scales with system size. This question is in relation with the known growth

of entanglement associated with quantum critical phenomena [281, 282]. We consider the

system sizes L ∈ {100, 150, 200} at the critical point g = 1.0 for the scenario with local

measurements at bond dimension χ = 512. We compare the the ratio r of MPDO over

LTPN from measurement 1 to 10 and 10 to 11 according to the time stamp of the results

files. We obtain the ratios r(L) = {4.17, 4.38, 4.36} for ascending system sizes, and r(L) =

{5.52, 6.00, 6.13} are the ratios between the measurements 10 and 11. We observe the trend

that the speed-up has a larger contribution at the end of the time-evolution and increases

with system size. We point out that the major part of the time evolution takes place for the

last data points due to the inverse relation of temperature to evolution time. In conclusion

for the finite-T simulations, LPTNs scale better in the scenario of the quantum Ising model.

The maximal difference in CPU time is around the critical point and suggests that LPTNs
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support entanglement better for imaginary time evolutions.

10.5.2 Local Lindblad operators without symmetry (QT, MPDO, and LTPN)

Lindblad equations without conserved quantities and local channels have a variety of

applications reaching from the quantum Ising model with local spin flips over XXZ model

transport problems using local channels at both end of the chains [168] to lossy photon

cavities. We choose to simulate the transport of an exciton with the initial condition and

Hamiltonian based on reference [283, 284]. Examples of the Lindblad operators for transport

problems can be motivated from [285], which describes energy loss and dephasing noise in

molecular structures. We consider the Hamiltonian

H = J
L−1∑
k=1

bkb
†
k+1 + h.c.+ ∆

L∑
k=1

nk − µ
(
b†k + bk

)
, (10.29)

and J is the tunneling strength, ∆ an on-site potential, and µ the driving due to the elec-

tromagnetic field. The latter is turned off on all sites for all simulations, i.e., µ = 0. The

corresponding Lindblad master equation with loss of a strength γ and dephasing, coupled

with γd, is defined as

∂

∂t
ρ = − ı

~
[H, ρ] +

∑
k=1

γ

(
bkρb

†
k −

1

2

{
b†kbk, ρ

})
+
∑
k=1

γd

(
nkρnk −

1

2
{nknk, ρ}

)
.(10.30)

We define the initial state | ψ(t = 0)〉 as a product state on three subsystems A, B, and

C, i.e., | ψ(t = 0)〉 =| ψ(t = 0)〉A⊗ | ψ(t = 0)〉B⊗ | ψ(t = 0)〉C . The subsystems A and C

are in the vacuum state | ψ(t = 0)〉A =| 0 · · · 0〉 and | ψ(t = 0)〉C =| 0 · · · 0〉, respectively.

Subsystem A contains LA sites; subsystem C spans LC sites. The initial exciton is defined

via the relation from [284] on the subsystem B with a size of LB sites:

|ψ(t = 0)〉B ∝
LA+LB∑
k=LA+1

eık0kae−a
2(k−k0)2/(2σ2)b†k |0 · · · 0〉 .

(10.31)

316



20 30 40 50 60 70 80
Site index k

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

N
um

be
r

op
er

at
or
〈n

k
(t

)〉

0

15

30

45

60

T
im

e
t

(a)

0 10 20 30 40 50 60
Time t

10−15
10−14
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

∑
k
(n

k
(L

i)
−
n
k
(L

=
10

0)
)2

Li = 50

Li = 60

Li = 70

Li = 80

Li = 90

(b)

Figure 10.5: Exciton dynamics with open boundary conditions. (a) The dynamics of the
largest system with L = 100. The initial wave package loses height while spreading out.
(b) We consider different system sizes L to estimate when the reflection of the exciton
returns from the boundary at site k = L. The exciton is initially in the sites k = 11, . . . , 40
and moving right. System sizes of L = 60 (L = 90) are sufficient to simulate the closed
system for a time of t = 30 (t = 60). Times are in the unit of the local term ∆.

Thus, the total system has a system size of L = LA + LB + LC sites. The exciton on

subsystem B is not a product state and has entanglement. It can be constructed on the

completed Hilbert space and decomposed via SVDs to an MPS. This approach is limited to

about 24 sites and supported by the OSMPS Python interface. On the other hand, we can

write the state as a sum of MPSs, where each state in the sum of Eq. (10.31) has a bond

dimension of 1. We compress this MPS yielded by the summation, which scales better with

larger LB. Figure 10.5(a) pictures the exciton at different points in time and we observe a

loss of height while spreading out in the closed system. We are well aware that this setup

of the problem has problems from the back reflection of the exciton at the boundary k = L.

Therefore, Figure 10.5(b) shows the deviation of the exciton’s mean position for different

system sizes for the closed system over time in comparison to L = 100. We see small errors at

the order of 10−12 and do not concentrate on these errors as 10−12 is at the order of truncated

singular values. We conclude that a system size of L = 90 is sufficient for an evolution time
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τ = 60 without considering reflections from the boundary. To estimate the error, we look at

the number operator N(t) = sumL
k=1nk(t) as

εN(t) = |N(t)−N(0) exp(−γt)| , (10.32)

where the relation dN(t)/dt = −γN(t) can be easily derived when considering the commuta-

tion relation between bk, b
†
k′ and nk′′ as well as d/dtN(t) = d/dtTr [Nρ(t)] = d/dtTr [Nd/dtρ(t)].

This property is one result which can be checked besides convergence regarding the bond

dimension or other convergence parameters. We start with an analysis of the momentum of

the exciton; the position of the maximum of the exciton, the mean, the standard deviation,

and the skewness give a good impression of the dynamics, see Figure 10.6(a). We observe

that for a coupling λ = λd = 0.05 the position of the maximum remains almost equal to

the closed system case. The mean, i.e., ”center of mass”, propagates at a slower speed in

the open system in comparison to the closed system. This trend is reflected in the increased

standard deviation and skewness of the exciton. These measures can be used for a more

detailed analysis of the open system dynamics of the exciton, but we turn to the evaluation

of the different tensor networks and algorithms.

Figure 10.6(b) shows the error in the number of excitations, which decays exponentially

according to Eq. (10.32). TDVP has the lowest error; TEBD has a local minimum of the

error around t ≈ 10 switching between under- and overestimating the number of excitations

in the system and recovers the envelope otherwise in our understanding. The LRK has an

error similar to TEBD. In the long time limit, all of these three algorithms using MPDOs

have a similar error. The Krylov method has an error about an order of magnitude bigger

at the beginning and recovers the error of the other algorithms in the long-time limit; it is

not considered an option in our opinion. If we consider the second tensor network, LTPN,

the error is the largest in the long-time limit. If we consider in addition the CPU times in

Figure 10.6(d) for each simulation as a function of the maximal bond dimension, we can get

a much better picture as to what method is best suited to the problem. Two things become
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evident. (i) The Krylov method for MPDOs is two orders of magnitude slower than the

next slowest algorithm for MPDOs. The other algorithms reach a saturation of the CPU

time, and we conclude that they do not exceed the maximal bond dimension. Otherwise,

TEBD is preferable when applicable. For long-range interactions in the Hamiltonian, LRK

is preferable over TDVP from a resource viewpoint. (ii) The LPTN algorithm requires much

higher resources in comparison to MPDO methods. We remind the reader that a maximal

bond dimension χmax = κ = 32 leads to a bond dimension of 322 in many tensor operations

due to the auxiliary link in the local tensors of the same dimension. This approach is fair

when comparing the splitting of a two-site tensor when χmax,MPS = χmax,MPDOκmax; in both

cases, we split a matrix of χmax,MPSd × χmax,MPSd. Thus, we can compare the LPTN data

for χ = 16 with the MPDOs of χ = 256. The error does not outweigh the higher CPU time.

It remains the question if novel methods for LPTNs can overcome the problem [286], which

also consider the optimal ratio between χ and κ for LPTNs.

Finally, Figure 10.6(c) answers in parts how efficiently the different algorithms use their

bond dimension. We compare the values of the number operator for MPDOs with χmax =

1024 and LTPNs with χmax = κ = 32 to simulation with lower bond dimension and get a

more detailed picture of convergence. MPDOs profit from using a very low bond dimension

for TDVP and TEBD. We remark that this model including this initial condition has very

low requirements with regards to the bond dimension with MPS and MPDO methods. In

fact, simulations with χmax/64 = 16 are already not distinguishable from simulations with

χmax. In contrast, the LRK method shows, despite the same error in the total number of

excitations, an error between bond dimensions 512 and 1024, i.e., they must exceed bond

dimensions up to and beyond 512. The Krylov method does not use the full bond dimension

according to this data, but is less efficient in using the bond dimension in comparison to

TEBD and TDVP. The LTPN algorithm has the highest error for this comparison, although

the bond dimension for both links is with 32 much lower. Saturating both links leads to the

larger CPU times and the higher error if values are truncated throughout the simulation. The
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Figure 10.6: Convergence of open quantum system exciton dynamics. (a) The different
momenta of the exciton capture best the effects of the dephasing. Although the maximum
(max) of the exciton almost stays constant, the mean (mean), standard deviation (std),
and skewness (skew) capture the dynamics of the Lindblad equation (LE) with coupling
λ = λd = 0.05 very well, shown side-by-side with the Schrödinger equation (SE). (b) The
coupling to the decay Lindblad operator induces an exponential decay of the total number of
particles in the excited state. All time evolution methods reproduce this exponential decay
(green); thus, we show the corresponding error (red). The TDVP for MPDO works best.
(Linestyles in the legend are used for green and red curves.) (c) We show how efficiently
the bond dimension is used by comparing the convergence of N(t) for the different bond
dimension to the maximal bond dimension, i.e., χMPDO

max = 1024 and χLPTN
max = κmax = 32.

MPDO simulations with TEBD and TDVP use the bond dimension very efficiently for this
problem and already show no error for χ = 16 in comparison to χmax. (d) From a pure
resource perspective, TEBD is favorable over LRK over TDVP and over Krylov when using
MPDOs. LPTN-TEBD also scales unfavorable, but the additional link for each site with
χ = κ induces matrices with dimension χ2 rather than χ affecting the scaling of operations.
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inefficient use of the bond dimension in the LPTN is related to the loopy network structure

when looking at a the complete network representing ρ instead of its purification. Recent

efforts to overcome this problem via intermediate steps have not been considered for this

implementation [286].

The quantum trajectories run with NQT = 500 and yield an error above the MPDO and

LTPN result, see again Figure 10.6(b). While the error in MPDO and LTPN is solely due

to truncation and the error induced by the Trotter decomposition, the QTs could further

improve by taking more trajectories. The error follows the law of large numbers. If we

consider the CPU times for each method obtained on a 2x(Intel Xeon E5-2680 Dodeca-

core) 24 Cores 2.50GHz node compiled with ifort, the QTs exceed with NQT = 500 already

the resources for the MPDO. Here, QTs run with TEBD and, thus, the fastest method.

Therefore, more trajectories are not considered as they would increase the difference in

CPU time further. This CPU time is the cumulative time for all simulations, and large-

scale parallelization can make them favorable for getting a quick picture of the physics.

We point out once again the very low bond dimension used in the MPDOs, which makes

them favorable, and models with higher entanglement might profit more from QTs. This

statement is supported by the next example, i.e., Sec. 10.5.3. We recall that converting an

MPS to an MPDO increases the bond dimension from χ to χ2 and any decomposition, such

as an SVD, scales cubically with the matrix dimension.

10.5.3 Local Lindblad operators with symmetry (QT and MPDO)

The last convergence study treats a Lindblad master equation with a conserved quantity.

This symmetry restricts us to the usage of QTs and MPDOs. We choose as our Hamiltonian

the Bose-Hubbard model

H = −J
L−1∑
k=1

(
b†kbk+1 + h.c.

)
+
U

2

L∑
k=1

nk(nk − 1) +
L∑
k=1

V (k)nk . (10.33)
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J sets the tunneling strength and the repulsive on-site interaction is U . bk (b†k) is the bosonic

annihilation (creation) operator acting on site k. The Hamiltonian conserves the number of

bosons, i.e., the commutator [H,N ] = 0 with N =
∑L

k=1 nk. The chemical potential, i.e.,

µ
∑L

k=1 nk can be discarded in simulations with number conservation; it represents an energy

shift without influence on the simulation. But we include a potential V (x) to capture the

potential of the double well. We choose a dephasing operator as the Lindblad operator, i.e.,

Lk = nk acting on each site k.

We consider a double-well scenario with two wells of LW sites, separated by a one-site

barrier with V (LW + 1) 6= 0. The total size of the system is L = 2LW + 1 and we choose a

filling of N = LW . The initial state for the time evolution is the ground state of the particles

trapped in the left well with V (x) = 1 (V (x) = 0.5) for L = 5 (L = 21) for all x > LW .

At t = 0, the wave function starts to oscillate between the two wells in a Josephson-like

regime. The coupling to the open system damps out the oscillations; we show this effect in

Figure 10.7(a) with the center of mass, or mean, as a function of time, i.e.,

xmean(t) =
1

N

L∑
k=1

knk(t) . (10.34)

Two of the curves show the simulation for closed system time evolution with MPS and

MPDO and validate that the MPDO tensor network can simulate the closed system correctly

until entanglement generation introduces significant errors to the MPDO. The effects of the

dephasing lead to a damping of the oscillation as shown in the two additional curves with

γ = 0.05 and γ = 0.1. The system size is L = 21, and we choose an initial bond dimension

of the ground state of χ = 5. We assume that the ground state has initial errors, but as

we compare time evolution methods, all time evolution methods start with the same ground

state. As the initial bond dimension of the MPDO is χ2 = 25, that allows us to run with

medium bond dimensions and judge on the error due to truncation. The data shown in

Figure 10.7(a) is for bond dimension χ = 256 for the MPS and MPDO during the time

evolution.
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Figure 10.7: Convergence of open quantum system Bose-Hubbard dynamics. (a) The center of
mass starts oscillating after we release the potential on the right well at time t = 0 and keep
only a one-site potential in the middle to separate wells. We observe that the simulations
for MPS and MPDO of a closed system mismatch after about ten time units. The coupling
of the system to a dephasing damps the oscillations. (b) We compare the error of tensor
network (TN) methods against exact diagonalization for a small system of L = 5. (c) We
compare the errors of QTs with TEBD and NQT = 500 and simulations with MPDOs and
TEBD to the TEBD simulations with the highest bond dimension, i.e., χ = 256. Errors
grow fast and show the numerical challenges associated with this problem setup. (d) We
compare the computational resources for MPDO and QT algorithms. The coupling to the
environment is γ = 0.05. TEBD and LRK use the least resources, then comes TDVP. The
quantum trajectories with NQT and TEBD are located above MPDOs with TEBD. Due to
the limitation in bond dimension in this example and the possibility of parallelizing, they
are an attractive option.
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We presented the error for the exciton dynamics based on the exponential decay; we are

not aware that we have an equally suited result to compare the dynamics of the double well

and Bose-Hubbard model. Thus, we start with a comparison between the tensor network

algorithms and exact diagonalization. The OSMPS package includes exact diagonalization

methods implemented in Python [189], and one of their purposes is exactly the accessibility

for validating other techniques with an independent method. We simulate with L = 5 sites

and set the local dimension to d = 3, i.e., states with more than two bosons per site are

truncated. The error of the center of mass for the simulation with TDVP is minimal through

most of the simulation and bounded by 10−5 according to Figure 10.7. The next best methods

are LRK and TEBD, while Krylov has the largest error bounded by 10−3. The choice of

the position of the center of mass a as macroscopic observable comes with a couple of local

minima of the error; the position of the center of mass can align in two states, although the

states are different and the envelope is more meaningful and conclusive.

We now analyze how the convergence scales with bond dimension. The trends are similar

for the different time evolution methods, where the reason is the exhausted bond dimension

and truncation of singular values. Figure 10.7(c) shows the error in the center of mass of

TEBD simulations with bond dimension χ = 32, 64, 128 to the most accurate simulation with

χ = 256. The significant difference between the simulations reveals the need for high bond

dimensions in this problem and we cut the error plots at ten time units. We conclude that

the bond dimension is used completely after very short times for MPDOs; only simulations

with χ = 128 can keep the error below 10−5 for the first couple of time steps. The QTs

averaged over 500 runs are compared to the most accurate MPDO simulation, both run with

TEBD. We have three regimes. (i) The MPDO simulations are more accurate at the very

beginning of the time evolution as the QTs suffer from statistical averaging. This regime

ends at t ≈ 2 (ii) The error of the QTs drops below the MPDO simulations with small

bond dimension. The error due to truncation in the MPDO is worse than the error from

the average of the trajectories. (iii) For times t > 5, the difference between the QTs and the
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MPDO with χ = 256 grows. Without involving more details, the difference can be due to

either method.

Finally, we turn to the actual resources used in Figure 10.7(d). We observe that both

TEBD and LRK use the same amount of resources. TDVP is less than an order of magnitude

above these two methods. The Krylov method takes much longer than TDVP, which is in the

end about an order of magnitude difference to the fastest method, i.e., LRK. We run the QTs

with a much lower bond dimension; the actual bond dimensions 8 (16) are comparable after

squaring it in the transformation from MPS to an MPDO of bond dimension 64 (256). The

resources are more than a magnitude higher; we recall that they can be easily parallelized in

contrast to an MPDO simulation. The large error at low bond dimension for MPDOs makes

QTs much more attractive than in the previous case of the exciton transport.

10.6 Conclusions

In this work, we have presented three different evolution techniques for one-dimensional

quantum systems under the Lindblad master equation with tensor network methods. There-

fore, the Open Source Matrix Product States (OSMPS) package allows the quantum com-

munity to explore the advantages of each method. Open quantum system dynamics provide

access to more advanced simulations of quantum simulators including the effects of the in-

teraction with the environment as simulated with the Lindblad master equation throughout

this work.

We described the bond dimension of the Liouville operator represented as a matrix prod-

uct operator (MPO); this MPO is used to evolve matrix product density operators beyond

nearest-neighbor interactions and the time-evolving block decimation (TEBD), i.e., the time-

dependent variational principle, the local Runge-Kutta time evolution, and the Krylov time

evolution. Section 10.4.1 provides insights into the scaling of methods due to the bond

dimension of the MPO. For example, non-local rules with a bond dimension χH−MPO to

represent the Hamiltonian H have a bond dimension of χL−MPO = 2χH−MPO to depict the

Liouville operator. If we define Lindblad terms analog to Hamiltonian terms, e.g., we replace

325



a nearest-neighbor interaction of a Hamiltonian with a Lindblad operator acting on nearest-

neighbor sites, they have a bond dimension three times as big as χH−MPO. We found that

different approaches are favorable in different situations. Locally purified tensor networks

(LPTNs) had the best scaling in the example of the finite temperature states of the quantum

Ising model. For the dissipative dynamics of an exciton, we found MPDOs as the optimal

solution due to the low entanglement throughout the simulation. When the entanglement

generated during the time evolution exhausts the maximal bond dimension as observed in

the Bose-Hubbard double well, quantum trajectories (QTs) became a good alternative to

MPDOs.

The examples also show the problem sizes one can treat with the OSMPS package. The

finite temperature states via imaginary time evolution and TEBD can treat almost as many

sites as imaginary time evolution with MPS can, i.e., finding the ground state. In detail, we

compared the thermal states for L = 100 sites. Changing the local dimension or the final

temperature can increase the computational scaling away from the MPS case; the number

of time steps necessary scales inversely with the final temperature at a fixed time step in the

evolution. CPU times on the order of 1000 seconds on a cluster did not reach the limits of

the method.

The exciton dynamics represents an example which does not generate much entanglement

during the evolution, and the simulation stays below 100 seconds on an HPC cluster, given

the best choice of the method being TEBD with MPDOs. This system is evolved for 30

time units of the local potential with 600 time steps and 80 sites. Bond dimension is not

exhausted in the example, where the maximum is set to 512. Admittedly, this system can

be scaled up more for research, which was prevented in our case due to the exploration of

the methods not scaling favorably.

In contrast, the double well simulation shows the effect of entanglement generated during

the time evolution and preventing more precise simulations of larger systems. We have 21

sites with 10 bosons and a local dimension of 4. The MPDO simulations produce visible
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errors beginning at time 10 in the units of the tunneling at a bond dimension of χ = 256.

The dissipative Bose-Hubbard model with two-site Lindblad operators using TEBD-MPDO

follows the same direction with limited system sizes and further restriction with regards to

quantum trajectories and the construction of MPOs.

However, we strongly emphasize that each of the examples presented handles system sizes

which are well beyond the means of exact diagonalization and, therefore, tensor networks

are a very fruitful possibility to numerically explore these systems in the open quantum

dynamics context.

These studies underline the necessity to explore different methods for the simulation of

density matrices with tensor networks and choose the most suitable method for pushing the

limits in each case. We have presented useful case studies with the quantum Ising model

at finite temperature, dissipative exciton dynamics, and the open quantum system Bose-

Hubbard modeling a double well with dephasing. Each of them could be a starting point for

more extensive studies or serve as a blueprint to study other models, e.g., finite temperature

diagrams of other spin models of the XYZ class.

Evidently, tensor network methods have to evolve past the Markovian case of the Lindblad

master equation. The development of methods within the tensor network algorithms to

capture such non-Markovian effects is one future direction in the design of new methods.
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10.8 Non-Local Lindblad operators with symmetry (MPDO)

We discuss the case of a non-local Lindblad operator acting on two neighboring sites and

explain the challenges such equations face. The Lindblad operators conserve the number of

bosons. We choose as a Hamiltonian the Bose-Hubbard model, but in contrast to Eq. (10.35)

we do not have an on-site potential,

H = −J
L−1∑
k=1

(
b†kbk+1 + h.c.

)
+
U

2

L∑
k=1

nk(nk − 1) . (10.35)

J sets the tunneling strength and the repulsive on-site interaction is U . bk (b†k) is the bosonic

annihilation (creation) operator acting on site k. The Hamiltonian conserves the number of

bosons, i.e., the commutator [H,N ] = 0 with N =
∑L

k=1 nk. The chemical potential, i.e.,

µ
∑L

k=1 nk can be discarded in simulations with number conservation; it represents an energy

shift without influence on the simulation. The dissipative state preparation for the Bose-

Hubbard model is the focus of the references [287, 288] and further discussed in [278, 289].

We use the Lindblad operators from these approaches, i.e.,

Lk =
(
b†k + b†k+1

)
(bk − bk+1) , k ∈ {1, . . . , (L− 1)} . (10.36)

This formulation is not directly suitable for any of our Lindblad rule sets. In fact, the two-

site operator is not a product term and is therefore challenging. We recall that a Lindblad

operator of the type L = A + B cannot be split into two Lindblad operators LA = A and

LB = B; a look at the corresponding terms of LρL† reveals the missing cross-terms. Thus,

we create a new type of rule set which is similar to the many-body string Lindblad operators,

but allows us to define different operators for the operators on the left and right:
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LA,k···k′ρL
†
B,k···k′ −

1

2

{
L†B,k···k′LA,k···k′ , ρ

}
, (10.37)

LA,k···k′ = LA,k ⊗ LA,k+1 ⊗ · · · ⊗ LA,k′ , (10.38)

LB,k···k′ = LB,k ⊗ LB,k+1 ⊗ · · · ⊗ LB,k′ . (10.39)

Now, we can define the following set of Lindblad operators Lµ

Lµ=1,k = nk ; Lµ=2,A,k = nk , Lµ=2,B,k = −b†kbk+1 ;

Lµ=3,A,k = nk , Lµ=3,B,k = bkb
†
k+1 ; Lµ=4,A,k = nk , Lµ=4,B,k = −nk+1 ;

Lµ=5,A,k = −b†kbk+1 , Lµ=5,B,k = nk ; Lµ=6,A,k = −b†kbk+1 , Lµ=6,B,k = −b†kbk+1 ;

Lµ=7,A,k = −b†kbk+1 , Lµ=7,B,k = bkb
†
k+1 ; Lµ=8,A,k = −b†kbk+1 , Lµ=8,B,k = −nk+1 ;

Lµ=9,A,k = bkb
†
k+1 , Lµ=9,B,k = nk ; Lµ=10,A,k = bkb

†
k+1 , Lµ=10,B,k = −b†kbk+1 ;

Lµ=11,A,k = bkb
†
k+1 , Lµ=11,B,k = bkb

†
k+1 ; Lµ=12,A,k = bkb

†
k+1 , Lµ=12,B,k = −nk+1 ;

Lµ=13,A,k = nk+1 , Lµ=13,B,k = nk ; Lµ=14,A,k = nk+1 , Lµ=14,B,k = −b†kbk+1 ;

Lµ=15,A,k = nk+1 , Lµ=15,B,k = bkb
†
k+1 ; Lµ=16,k = nk+1 . (10.40)

The representation of this set of Lindblad operators together with the Hamiltonian in an

MPO is not recommended. We have a bond dimension of 48 (2 for local terms, 4 for tunneling

in the Hamiltonian, 3×14 for the nearest-neighbor Lindblad terms). From the perspective of

this bond dimension, only TEBD remains as a valid option for time evolution with MPDOs.

QTs have problems due to the different terms LA,k···k′ and LB,k···k′ . Therefore, extension of

the QTs to Lindblad operators with no convenient representation in terms of rule sets, such

as the example in Eq. (10.36), are convenient and considered for the future.

The coupling of the single-site Lindblad operator nk is a function of the lattice site; the

two boundary sites have only half the coupling of the bulk. We point out that each of

the terms conserves the number of bosons in the system and thus the Liouville operator

commutes with the global number operator N , i.e.,
[
L, N ⊗ I + 1⊗NT

]
= 0. We defined

this condition in Eq. (10.7).

For the simulation, we start in the ground state of the Bose-Hubbard model in the Mott

insulating phase at unit filling. The BKT transition is around J/U ≈ 0.305 [290] in the
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thermodynamic limit. We choose J = 0.1 and U = 1.0 is the energy scale. At t = 0, we

couple the system to the reservoir with the Lindblad operators defined in Eq. (10.37). We

define the depletion as ξ = 1−maxi (Ξi) /
∑

i Ξi with Ξi being the eigenvalues of the single-

particle density matrix 〈b†kbk′〉. The depletion decreases for the superfluid as compared to

the Mott insulator when dealing with ground states.

Figure 10.8(a) describes the evolution of the depletion towards the steady state. We

choose a system size of L = 20 and consider states up to two bosons; we have a local

dimension of d = 3. The data is for a bond dimension of χ = 256. The steady state differs

for the coupling strengths γ = 0.01, 0.05, 0.1 and has a lower depletion for stronger coupling

to the reservoir. We now look at the convergence of the different methods; unfortunately,

we are not aware of a good observable to check as we had with the exponential decay in the

exciton example. Thus, we compare between the exact diagonalization implementation and

the tensor network algorithms in Figure 10.8(b). We consider a system size of L = 5 due to

the restriction of simulation a system in Liouville space with exact diagonalization methods.

We obtain that the value of the depletion is converged at the order of 10−3 where the value

of the depletion is on the order of one. The bond dimension for the MPDO simulation is

χ = 100.

We conclude that the simulation of Lindblad operators acting on multiple sites is possible.

For such operators which cannot be represented as product term, the simulation can get

expensive to infeasible when MPOs and the corresponding time evolution method are used.

The TEBD algorithm, as shown in this example, is the most convenenient alternative for such

system dealing only with nearest-neighbor interactions. We recall that TEBD is restricted

to nearest-neighbor terms in OSMPS.

10.9 Bond dimension infinite-T Bose-Hubbard state

We derive an upper bound for the bond dimension of the Bose-Hubbard model in an

MPDO for the infinite temperature states. We assume that we have a local dimension d and

a filling of N particles. We pick L sufficiently large such that d� L and N ≈ L. We pick a

330



0 5 10 15 20 25 30
Time t

0.86

0.87

0.88

0.89

0.90

0.91

0.92

D
ep

le
ti

on
ξ

γ = 0.01

γ = 0.05

γ = 0.1

(a)

0 5 10 15 20 25 30
Time t

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

E
rr

or
D

ep
le

ti
on

γ = 0.01

γ = 0.05

γ = 0.1

(b)

Figure 10.8: Non-local Lindblads with the Bose-Hubbard model. (a) The dynamics of the
depletion converging to the steady-state value with a two-site nearest-neighbor Lindblad
operator. (b) We calculate the dynamics for a small system L = 5 with exact diagonalization
and TEBD and show the error of the TEBD as compared to exact diagonalization for the
depletion with three different coupling strenghts γ.

site in the middle of the system and obtain N+1 blocks in the block-diagonal structure. The

first d blocks have bond dimensions 1, 2, . . . , d and the last d blocks have bond dimensions

d, d− 1, . . . , 2, 1. The remaining fillings have a bond dimension of d. Thus, we have a total

number of subtensors

n = d(N − 2d+ 1) + d(d+ 1) = d(N − d+ 2) , (10.41)

where the number of subtensors can serve as an upper bound to estimate the bond dimension

χ, i.e., χ ≤ n.
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CHAPTER 11

SOFTWARE CONSIDERATIONS

This chapter highlights the changes in the second and third release of the Open Source

Matrix Product States simulation package and explain how they support physics and good

coding practice. Moreover, we point out future directions for the package through a science

gateway, which will be especially amenable to the large community of quantum simulation

experimentalists as well as students, and other newcomers to the field. Projects as described

in [291] show that such projects can be made accessible to cititize scientists.

The first release of OSMPS was developed by Michael L. Wall during his Ph.D. thesis and

development continued thereafter [292], see also reference [121]. Several methods included

in the second release are also based on his efforts and therefore not included in the list of

the developments in the next Section 11.1. These developments include the time evolution

methods with the time-dependent variational principle, the Krylov time-evolving block dec-

imation, and the local Runge-Kutta time evolution method for closed systems, which were

added in the second release. The implementations described in the following sections are

based on the first release.

11.1 Second release of openMPS

The checkpoints added in the second release provide an essential feature for the time-

evolution of quantum systems. The length of jobs on many computer clusters is limited. To

converge simulations in system size or bond dimension, it is very useful to run simulations

beyond this time limit. The checkpoints in the second release save the state of the MPS

at every measurement during the time evolution. They also write the last measurement

reached to a file. This information can be used to pick up simulations at the same point

later. Except from setting a flag in python to allow OSMPS to use this feature, checkpoints
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are completely handled in Fortran. Therefore, we have to iterate through all couplings of

the MPO before picking up the time evolution at the last measurement.

The first release had the possibility to use the U(1) symmetry, which is present in many

models, e.g., in the Bose-Hubbard model or the bilinear biquadratic spin-one model. Models

such as the quantum Ising model profit from a Z2 symmetry, which we added in the second

release. As both symmetries are Abelian, the Z2 can reuse some subroutines from the U(1)

symmetry. The actual group operations are changed. Although the computational benefit is

much smaller as the number of symmetry sectors is only two, this symmetry helps to capture

physics better. The best example is the quantum Ising model where the ground state is now

well defined in the ferromagnetic phase and is not a linear combination of the two almost

degenerate states. The access to excited states is improved as well, as we can distinguish

the excited states according to their symmetry sector. For example, the characterization of

the gap in the quantum Ising model without symmetry needs to calculate the ground state

and two excited states. With symmetry, the ground state and the first excited state are

sufficient.

Furthermore, the second release has access to complex operators in the Hamiltonian.

The implementation of complex operators is mainly a question of providing the additional

interfaces and taking daggered operators instead of transposed operators whenever necessary.

Complex operators are of interest in Bose-Hubbard type models with a phase in the hopping

term or spin models with an external field coupling in the y-direction. As a side note,

interaction terms of the type σykσ
y
k+1 can be mapped to real operators and do not necessarily

require complex operators.

The calling structure to contractions and decompositions was improved from the first

to the second release. Although matrix-matrix multiplication and matrix decompositions

are defined on matrices, the underlying LAPACK libraries do require one to pass a rank-2

object. Such subroutines operate purely based on the knowledge of the leading dimension,

the number of rows, and the number of columns. The first release did not profit from
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this freedom in many cases and copied rank-3 or rank-4 tensors to matrices before calling

LAPACK routines. Avoiding these steps of reshaping tensors and copying them helps to

optimize run times.

We take a look at the run times of the second release of OSMPS in comparison to the

first release to underline the effect of some of the improvements. The results are shown in

Table 11.1. We limit ourselves to the time for the ground state, the correlations, and one

time evolution. For the ground state search we state an approximate speedup of 1.15 in v2.

The measurement C has as well improved, which becomes especially visible for larger system

sizes, e.g. with a speedup of 3.84 for L = 40 and χ = 30 due to small improvements in the

algorithm. The Krylov time propagation seems to get slower, but for largest systems and

bond dimension considered, we have a speedup in comparison to v1 of OSMPS. We remark

that some bugs from v1 have been fixed by us in order to be able to run these comparison.1

Table 11.1: Comparison between OSMPS v1 and v2 for the statics, measurements, and
dynamics of the Bose-Hubbard model with number conservation. Three different system
sizes and two bond dimensions show the trends that v2 improved. v1 was developed in the
Ph.D. thesis of Michael. L. Wall [121, 292]. The improvements for v2 discussed in this table
are based on work for this thesis.

Version / Size ψ0(χ30) C(χ30) ψ(T )(χ30) ψ0(χ60) C(χ60) ψ(T )(χ60)

v1, L = 10 4.3 1.1 · 10−2 3535 4.0 1.1 · 10−2 7301
v2, L = 10 3.8 1.0 · 10−2 4429 3.5 1.0 · 10−2 8491
v1, L = 20 14 6.8 · 10−2 11926 13 7.6 · 10−2 37770
v2, L = 20 12 3.5 · 10−2 19186 11 3.8 · 10−2 49510
v1, L = 40 34 0.5 27385 30 0.58 145036
v2, L = 40 29 0.13 57413 25 0.15 125710

11.2 Third release of openMPS

The third release comes with a re-design of the structure of OSMPS. These improve-

ments allow us to develop new functionality faster and implement extensions easier. In the

1MPOOps include.f90, line 74, initialize H%ti = .true., qTensors include.f90, line 184,
tmphash(1:V%N)=V%hash(:V%n), and TimeEvolutionOps include.f90, line 255, if(j > nkrylov) j

= nkrylov
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following, we describe the different features improved for the third release, i.e., templating,

error tracking, tensor handling, and documentation from source code.

The templates have been a very convenient feature from the first release on. They allow

developers to generate functions for different data types at a low cost. For example, the

multiplication of a real scalar with a real or complex matrix is basically the same. One

template takes care of both implementations. The corresponding interfaces in fortran are

used to call the subroutine independent of the actual data type; fortran will select the right

implementation for the corresponding data type. The major issue with the approach taken

for release one is that the rules for replacing the data type were applied to complete files;

replacements for construction interfaces are constructed for a complete module. We have

often been confronted with the implementation of such subroutines just to comply with the

replacement defined in a global rule. Thus, the approach in the third release is the definition

of the replacement rules ahead of each function. The interfaces can be defined immediately

after the function. This step allows us to have direct access to change the function in one

file without modifying global rules. All implementations of subroutines and functions can

now go into one file; previously, we had one file for contractions of ordinary tensors and one

file for contractions of tensors with symmetries.

This approach reduces the templates files to MODULE templates.f90, MODULE types tem-

plates.f90, and MODULE include.f90. The first contains the general structure of any

Fortran module, the second the definition of types, the last all functions and subroutines.

We profit from this simplified structure to add more functionality to the templating in the

forms of MODULE tests.f90, MODULE mpi.f90, and MODULE omp.f90. These additions are

not required to run OSMPS, but contain additional features such as MPI implementation

of functions, openMP implementations, or tests for subroutines. The final goal is to switch

these options on and off depending on the compiler flags passed to OSMPS. The current

MPI data parallelism implementation can be seen as a prototype toward parallelization of

single simulations in the future development of OSMPS as a release v4.
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Another issue with fortran in general, and amplified due to the template structure in

OSMPS, is error tracking. (a) It is difficult to raise errors and propagate errors in Fortran.

(b) If we get the line number of an error during compiling or run-time, the line number

refers to the module built from the template, and not the template itself. We suggest the

use of an optional argument errstat containing the current error status of the program.

Using the new functions raise error and propagate error, we can track errors up to main

function during execution of the program. Using above templates with the functionality to

replace keys, both functions accept the key LINE ID, which will be replaced with the name

of the template file and the line number. Thus, errors can be directly tracked back to the

template file. This approach cannot be used for line numbers generated for errors raised by

the compiler. For such errors, we use python dictionaries to find the corresponding line in the

template file. This replacement is done automatically when calling python BuildOSMPS.py.

The error tracking can be turned off if performance is considered an issue.

The definitions of tensors in the first and second release depends on the rank of the tensor,

and is limited to rank four. This approach is halfway efficient thanks to the templates, but

the third release takes a new approach to have a more versatile toolbox for tensor network

algorithms in the future: we define an arbitrary rank tensor. Some experience for this

approach is based on previous work [87]. The price for this step is the mapping from the

linear memory, before the dimensions could be addressed directly, back and forth. Thus,

we mainly updated permutation of indices, reading, writing, and specific contractions. The

contractions follow this new approach. We can replace endless specific cases of contractions

with basically one subroutine handling the contraction, which is much easier to optimize.

The prefered scheme is now a possible permutation to arange indices followed by a call

to LAPACK for the actual contraction. Contractions which still have an overhead can be

optimized in addition, as the contraction of a small rank-2 tensor to an interior index of

a large tensor. Similarly, decompositions are now defined for an arbitrary tensor and a

bipartition of the links.
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The contractions for tensors with symmetries also have a slightly modified implemen-

tation. Up through the second release, the matching sub-tensors were contracted once a

matching hash from the symmetries appears. We have replaced this approach with a two-

step process. First, we find all matching sub-tensors. Then, we contract them. The second

step can now be done in parallel with openMP or MPI, although not currently used.

Moreover, we have continued an effort to generate the documentation for subroutines and

functions in Fortran and Python from source code wherever possible. The corresponding

result compiled into an html page can be found for the second release on [293].

Some features found their way into the new release such as the imaginary time evolution

for an MPS, which comes almost for free once the MPDO can be evolved in imaginary time

evolution. At present, the implementation for excited states is untested. The infinite Matrix

Product States (iMPS) are not available due to multiple issues with the modified interfaces.

The full transition of lost features from v2 such as the excited state search and iMPS presents

a subject toward a release v4 in the future.

11.3 Building a sustainable science gateway for openMPS

The effort of building a science gateway, i.e., a web interface to the Open Source Matrix

Product States, is the next step to provide a convenient set of numerical tools for the

community of quantum simulator experiments and theorists. Science gateways help as a

cloud resource to move software packages away from the aura of computational experts to

tools accessible and usable for everyone. Specific features can foster the sharing of research

data among a research group and the whole community. Imagine you have a “dropbox”

to share your complete quantum simulations, including the data, online. In the following

paragraphs, we describe basic business considerations for a sustainable science gateway to

the OSMPS simulation software as released in v3; these considerations help to estimate how

such a science gateway can eventually continue to operate independent of NSF funding. The

selection of topics and the majority of ideas go back to the Incubator Bootcamp organized

by the Science Gateways Community Institute.
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11.3.1 Sustainabilty is entangled with relevance

The projects in the Carr Theoretical Physics Research Group have received multiple

grants to develop the numerical software from the openTEBD project over the openMPS

project to the new science gateway encapsulating the openMPS package in a more accessible

way. In an evolving science landscape, it is in the interest of the NSF to fund novel research

and help existing projects to get independent financial resources as well as in the interest

of each project to acquire additional financial sources to diversify their funding. In order to

make these steps to alternative funding sources requires even more than an NSF proposal

to carve out the relevance for the user and other stakeholders to make the project essential

and valuable those groups. Sustainability will target all stakeholders to secure the resources

necessary for maintaining or moving forward the project. Within the next chapters, we

highlight multiple aspects of achieving sustainability with basic business techniques. These

discussions include the identification of the user base and stakeholders and continue with

developing the market landscape of existing and possible future competitors. We evaluate

different revenues models in the following, relating them to successful models used in the

past for science gateways. Based on the revenue models, we can develop a budget targeting

our openMPS gateway. Finally, we visit important issues such as usability, the technology

landscape, and marketing.

11.3.2 User base

Knowing the potential user base for our science gateway lays the foundation for most of

the subsequent steps in our analysis. We split the users into two main groups. First, we

identify users targeted in the near future. Then, we outline a future user base. For each of

these users, we develop a value proposition, which we use later on as reminder to develop

the other topics. Furthermore, we outline here key attributes of these user groups such as

their size, possible ways of addressing them.
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“The openMPS science gateway will help experimental quantum physicists to simulate

their quantum simulator numerically by accessing a tunable web application with platform

specific pre-settings.”

Our first user group is the actual physicists running the quantum simulator experiments.

A very conservative lower bound on the number of experiments is about 200 based on the

Toronto list [294] of quantum simulator experiments across a variety of AMO (atomic molec-

ular optical) platforms. This list does not include other types of architectures such as super-

conducting qubits, and we estime that 300 research groups working on all different platforms

is a reaonable guess. With the current programs launched for quantum technologies in Eu-

rore, China, and the US, this number is expected to grow further. Assuming approximately

five researchers per experiment, we have a potential number of 1,500 customers. We expect

these users to be staff researchers, post-doctoral researchers, graduate students, and possibly

undergraduate students. The best way to reach them are tutorials at large conferences.

“The openMPS science gateway will help PIs of quantum simulator experiments to provide

their groups a transparent, state-of-the-art tool via a web application actively supporting

sharing results within collaborations.”

The group of PIs is closely linked to the previous group. As a group PI, this group is

unlikely to use the actual software to simulate many-body quantum systems. For us they

serve as excellent multipliers to spread the word around their research groups, as well as

potential sources of funding, see Section 11.3.5 below. Due to their small number, i.e.,

approximately 300, personal contact or email would be a manageable effort.

“The openMPS science gateway will help theoretical quantum physicists to verify their

analytical or numerical results by providing an open source numerical simulation package

plus an accessible web interface, both closely linked.”

The group of theoretical physicists is partly already covered with the actual open source

package. If they want a validation of analytical results or a benchmarking of their own

numerical results, the openMPS science gateway can comply with this goal. The close
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connection to the underlying openMPS simulation package encourages and allows users to

learn, verify, and adapt the underlying algorithms. Therefore, they represent for us not

only potential users, but also potential contributors to the code base. We can target these

researchers with actual publications on the algorithms or our simulation package or more

technical talks at conferences.

“The openMPS science gateway will help students to learn and simulate many-body quan-

tum systems present in recent research by providing an online platform supplementary to their

quantum mechanics course and at a user-selected speed.”

The group of students is huge in comparison to the previous user groups. According

to data from the American Physical Society (APS), there are around 8,000 undergraduate

students in their last year in 2015 in the US alone [295]. Assuming that the material is

accessible for undergraduate students in the last two years of their degree, we have 16,000

US undergraduate students. Assuming, that 25% continue as graduate students in physics

and look in their first year into our science gateway, we have an additional 2,000 potential

users. In the US, the undergraduate and graduate students add up to 20,000. As an educated

guess, we assume that the US has around one third of the physics students; world-wide 60,000

potential students could use our science gateway. The best way to address them seems to be

online tutorials and course-like online material. Our benefit is that they represent potential

future users doing theory or experiments and are then already familiarized with our fashion

of approaching many-body quantum systems.

“The openMPS science gateway will help physics faculty to integrate many-body quantum

physics into their coursework by providing resources and material independent from the HPC

resources available at their campus and without the requirement to set up these systems.”

The faculty teaching quantum mechanics at a university is the counterpart of the previous

group. The faculty acts another time as a multiplier: if they are using our science gateway

for course work, their students are already familiar with our approach and more likely to

reuse it in case they continue to do research. According to the APS [296], there are about 760
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institutions in the US granting any kind of physics degree. Assuming at least one course of

quantum mechanics is offered and the US amounts to one third of the institutions worldwide,

we have approximately 2,000 faculty each year. The challenge for this group is to provide

material through the science gateway which can be integrated seamlessly into their course

work.

So far, we have outlined the users involved with quantum physics. Looking further into

the future, we can list more groups: (i) Closely related to the question of open quantum

systems, electronic transport problems could build another user group labeled by nano-

electronic applications. (ii) Bio-physics is another possible long-term goal for our science

gateway. Biological, and within here mostly molecular, processes which take place at very

small length scale might be affected by quantum mechanical effects, e.g., as pointed out for

photosynthesis. Including explicit features to address these problems can broaden the user

base of the openMPS gateway.

11.3.3 Stakeholders

Another important aspect of any science gateway is to emphasize the value of the project

to any stakeholder. In the following, we provide a list of stakeholders involved in our projects.

(i) The National Science Foundation (NSF) is providing the initial funding to develop the

science gateway and might be a partial funding source to add new features after this. (ii)

The Science Gateway Community Institute supports the project through their services of-

fered. (iii) The Colorado School of Mines (CSM), and especially the physics department,

offer their administrative infrastructure and financial support. In return, they expect the

project to impact the perception of the school and department in a positive way. (iv) The

high-performance computing (HPC) group and Computing, Communications, and Informa-

tion Technologies (CCIT) department at CSM are two additional stakeholders within the

institution. The interaction with the stakeholders could be intensified by initiating an advi-

sory board representing each group and involving them actively into major decisions for the

gateway.
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11.3.4 Market landscape

The evaluation of the market landscape has a two-fold purpose. On the one hand, we

identify all possible solutions, which can replace our science gateway. On the other hand,

we take the same perspective for the underlying numerical algorithms. Then, we continue

to list the market drivers important to the potential users. This step finally leads to the

market landscape and the identification of our position within it.

11.3.5 Revenue models

We collect different revenue models and outline their basic idea in the context of the

openMPS science gateway. We choose a set of the most promising approaches and plug in

numbers in order to estimate their actual revenue. Throughout the process, we can generate

ideas from sustainability models successfully followed by other science gateways, identified

by the Science Gateways Community Institute.

(1) The first group of possible income is to charge the user directly. This model can

be implemented either through a subscription for all features or a free account with basic

features, where more advanced features are only available to subscribed users. Many users

might consider the subscription model in contrast to the open source model we run for

the underlying model. The acceptance for a complete subscription might therefore be low.

A basic and premium account imposes the question, which additional services are worth

a subscription fee. We consider here additional CPU time to run larger simulations or

collaboration features to share simulations across users.

(2) Another approach is to target universities or research groups for the charge. For

example, a university cluster could be added to the possible list of clusters for a list of users.

This approach would allow these users to run on their resources independent from CPU

time limits given in our gateway. As this approach requires some initial setup, a one-time

installation fee and a yearly subscription fee are justified. In case the subscription is not

renewed, the clusters can be removed from the list for these users. Also, model (1) could
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be designed towards research groups where additional resources can be bought for a set of

users instead of single users. The two approaches cover together users with their own HPC

infrastructure and users who do not have access to their own HPC facilities.

(3) Licensing fees are another possible source of income. As the underlying openMPS

package is released as open source, the licensing is restricted to the actual science gateway.

A license would allow a university or research group to install the gateway on their own

infrastructure with their own computational resources. While the maintenance of the com-

plete server infrastructure might be an obstacle for many possible customers, tracking the

licenses and ensuring that they are not used after the licensing period ended are a major

headache to us. From this perspective, the previous solution to add private resources seems

preferable.

(4) We can offer consulting services, i.e., workshops running over a few days to introduce

to the gateway, its methods, and the underlying features to simulate many-body quantum

systems. This would be an event specific fee excluding travel cost.

(5) A donation model is not very likely to work in a market environment with a rather

small user base. The endowment model, as practiced for Stanford Encyclopedia of Philoso-

phy, requires some large set of stakeholders benefitting from the investment in one fashion

or another. Replacing the many donors by a few or single donors to build up the endow-

ment is difficult to plan, but would most likely rely on private industry having an interest in

the further development of our platform. As quantum simulators and quantum computing

spreads from academia into industry with major companies such as Google, Microsoft, and

IBM investing in these technologies, we consider this option as possible in the near-term

future.

(6) The advertisement based income streams have a limited potential. The number of site

visitors is negligible for the integration of GoogleAds or similar services. A cooperation with

an industry partner could be more valuable, although the investment might depend more on

the interest of the partner in the project than on the value of generating new customers.
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At present, we consider models (2) and (4) as the most promising approaches, with

(5) as another promising option to diversify our income model depending on the upcoming

development in the quantum industry. For the access to a personal cluster we estimate a one-

time charge of $1K for the initial setup and a subscription fee of $100 per year. Assuming that

we have generated already a sufficiently large user base out of the 170 quantum experiment

groups during the first three years supported by NSF, we estimate that four groups will add

one of their clusters each year as an additional resource. Then, this model generates $4.4K

income in the first year. If we offer in addition packages of additional node hours for research

groups, we have to consider these, too. One node costs approximately $10K and can be used

8.700h per year. If we want to get back the investment within a year at 100% usage, we

have to charge around $1.15/node-hour. This very coarse estimate does not include power

consumption, which is $0.05 for one node hour according to our HPC group, and not a

major factor. Comparing it to commercial offers at $0.08/CPU-hour (penguincomputing),

this estimate is in a good range, where new nodes have 28 CPU cores or more. If we offer

packages of 500 node hours at $575 and sell four of them during the first year, we generate

another $2.3K income. If we look at approach (4), we have to estimate on the one hand

how many days per year we offer training. Five days per year seems to be a conservative

estimate, e.g., one two-day and one three-day workshop. On the other hand, we need the

charge per seminar-day. We assume $1.1K is a reasonable amount. To simplify the approach,

that does not include potential travel or housing costs, which have to be covered in addition

to the $1.1K per day. Therefore, the consulting adds up to $5.5K per year. In summary, we

generate $12.3K income from three different models.

11.3.6 Budgeting

The question of budgeting is an essential question for the sustainability. The overall

focus should be what is necessary to keep the gateway running, known as an action-based

budget. We first outline the action necessary for the gateway, followed by putting together

the actual items.

344



The minimum effort for the quantum simulator should keep the gateway up and running

without any additional effort to implement new features and extend the user base. These

minimal efforts can be considered as (i) one month of the PI to work on the administration

and advertisement of the gateway. We can extract the approximate cost for this item from

the current NSF proposal for the initial setup of the gateway. This estimate is about $20K.

(ii) 0.5 FTE of a graduate student, where the other half of the funding for the student could

be from another funding source or as teaching assistant. We take the same approach and

the cost is around $25K based on the recent NSF proposal, including stipend, tuition, and

fees. This item takes care of the maintenance of the gateway dealing with user requests,

fixing bugs, and installing additional resources for the gateway as needed. The interaction

with potential developers volunteering is included here. (iii) The third part is the technical

equipment to host the gateway, which we include with $2K. All three costs do not include

the university overhead, which is approximately 50% for grants and 10% for other income.

(iv) Support from the HPC department at Mines can be estimated with 100h/per year, which

comes at present as service from the university. If we calculate 40$/h, this support adds up

to $4K per year. (v) We want to foster the development effort in the community to integrate

new features. Obtaining 100h of volunteer developing each year results in another $4K of

indirect support. Thus, the bare minimum is $47K per year, where we profit according to

the items above from services not charged of about $8K.

Based on this minimal budget, we extend it with further issues allowing us extending the

gateway. (vi) 0.5FTE of a graduate student to develop new features for the gateway. These

features can be new models for novel experimental platforms or extending new aspects to

the existing models. (vii) Costs for traveling to conferences such as national meetings on

supercomputing taken from the NSF proposal to be $4K. The ideal budget to maintain,

improve, and grow our science gateway is $76K per year and additional services not charged

of the value of $8K. We perceive the challenge associated with a sustainable model and take

this conclusion as a motivation to investigate further sources of income in the future.
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11.3.7 Usability

Studies of the usability are difficult at the current stage of the project. Therefore, we

describe how to provide the best possible experience to users. Partially, we profit from our

interactions with users of the OSMPS package. Reviewing their requests over the past years

might give some guidance to common misconceptions we have when trying to understand

our users. On the other hand, the pool of undergraduate and graduate students in the group

not involved in the development of OSMPS or the science gateway can serve as advanced

testers for an alpha version; they are all experienced with numerical tools. But the usability

studies should be emphasized once the alpha version is available.

11.3.8 Technology landscape and security

The technology landscape is at present the vision of what we intend to implement. Major

building blocks are the cluster we are using in addition to choosing the underlying software

platforms. We recall that the initial cluster for our science gateway is Mio, which is main-

tained and managed by the HPC group of the Colorado School of Mines. This choice is due

to the strong support from Mines to get dedicated nodes for the gateway on Mio. The access

to this cluster is restricted to users on campus; in contrast, the science gateway must be

accessible for all users on and off campus. Thus, we have one first characteristic of the land-

scape, which is the server hosting the gateway outside the Mines firewall, and on the other

side of the firewall to Mio. The necessary libraries, programming languages, and compilers

to run the simulations are available on this cluster, i.e., Python, Fortran, and LAPACK. The

interface to our gateway is the only piece to be added.

We plan to use a combination of the Apache Airavata together with the airavata-django

portal for the server side. The front end emphasizes the browser applications and we do not

anticipate a desktop application in the near future. The advantage of this choice is from our

perspective that django and OSMPS both are based on Python and interfaces between the

science gateway and the underlying library might simplify. Moreover, large result files could
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be stored in HDF5 file format in the future and Python provides support to access this file

format.

The cybersecurity aspects can then be summarized so far. (i) We have to process user

input, e.g., for user-defined functions for potentials or system size. Such functions have to

be called in the following. This user input could be used for buffer overflow attacks or using

function calls for the attack. (ii) Sensitive information on the server are access information

to the computer clusters used for computation, such as Mio. This sensitive information also

includes the user IDs including email addresses and hashed passwords. (iii) Less sensitive

data are the code base of the science gateway itself and possible statistics generated while

running the gateway. The same sensitivity includes results from simulations stored on the

server or the associated files for generating the simulations.

11.3.9 Marketing

The marketing will be the final step after finishing the development of the gateway. We

will focus on scientific users for the initial version of the gateway. Here, we can build on

the strong background with two open source packages maintained in the Carr Theoretical

Physics Research Group, i.e., openTEBD [97] and OSMPS [52] and various publications

on numerical methods for these simulation packages and associated libraries [121, 189, 215]

not including research using these methods. This reputation will allow the group to offer

introductory courses at the APS March Meeting or the APS DAMOP Meeting, amongst

other venues; each of them are attended by thousands of physicists. The other opportunity

where we plan to offer an introduction to our science gateway is the workshop Open Quantum

System Dynamics: Quantum Simulators and Simulations Far From Equilibrium organized

by the Kavli Institute for Theoretical Physics and hosted in Spring 2019. These events are

the opportunity to have direct interactions with users and improve future marketing based

on this experience and the needs we learn about during these events.
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11.3.10 Conclusions on the science gateway plan

We conclude this section on the science gateway with a short analysis of the strengths

and weaknesses of the our science gateways as far as we can judge them at this preliminary

stage. Weaknesses might be getting adequte growing resources in terms of CPU capacity

on the local cluster. Therefore, we have to possibly plan to include further clusters into our

gateway. Furthermore, the hosting of a server structure is not a key competence of a physics

department and finding new physics students covering the range of skills from research to

web development can be challenging.

Advantages of this layout of the science gateway are that the core functionality running

the simulations has been available as a stand-alone package for the past nine years in one

form or another. The strong ties and support from the host institution, i.e., the Colorado

School of Mines, in terms of the dedicated nodes for the science gateway and the support

from the HPC group at Mines is another key strength.

348



CHAPTER 12

CONCLUSIONS AND DISCUSSIONS

Finally, we conclude on the results of this thesis in Sec. 12.1 and summarize open research

questions in Sec. 12.2. The first put the results of this work in context; the latter is a list of

open questions.

12.1 Conclusions

This work contains state-of-the-art methods for numerical simulations of closed and open

entangled quantum systems on a classical computer. These algorithms using tensor network

methods are integrated into the existing simulation platform Open Source Matrix Product

States, which represents a long-term effort to provide open source software to the commu-

nity for the simulation of entangled many-body quantum systems. This package had over

2,000 downloads during the period of this thesis. The inclusion of the exact diagonalization

methods as a playground for testing new methods and enabling advanced simulations not

yet covered by tensor network methods was one milestone in the development cycle. The

second milestone is the set of the three major tensor network algorithms to simulate the

Lindblad master equation in one-dimensional systems and now available via our simulation

platform.

Beyond multiple case-studies, e.g., exciton transport and the Bose-Hubbard double well,

in the context of the numerical work, we exploit our software to analysis the Kibble-Zurek

hypothesis in a quantum Ising chain with long-range interactions. The generation of de-

fects during such a quench is closely related to adiabatic quantum computing quenching

from a known initial state to the solution of an optimization problem. Systems with strong

long-range interactions have an increased defect density in comparison to weaker long-range

interactions in the case of the ferromagnetic quantum Ising model. The study of thermal-

ization of a quantum system in contact with a thermal reservoir governed by the Lindblad
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equation reveals thermalization timescales. These results can be used to protect from de-

coherence or enforce thermalization of the quantum Ising chain. The analysis emphasizes

the need to explore scenarios beyond the single-site single-channel Lindblad operators, i.e.,

neighborhood single-channel and global multi-channel Lindblad operators. The concrete

results of each chapter are listed in the following.

In detail, we showed in a thorough analysis the effects from long-range interactions in

the static phase diagram as well as in the quenches through the quantum critical points,

for both the ferromagnetic model and the antiferromagnetic model. The ferromagnetic and

antiferromagnetic model show distinguishing features in the static phase diagram. Stronger

long-range interactions support the ferromagnetic order and the necessary external field to

break this order and transition to the paramagnetic phase becomes larger. In fact, the phase

diagram predicts that there is no external field large enough to break the ferromagnetic

order when the interactions reach α = 1 or 1/rα = 1/r in the thermodynamic limit. The

antiferromagnetic model is vastly different. The system is frustrated for the completely

interacting limit α = 0 as all spins try to anti-align with all other spins − an impossible task.

Thus, very small external fields bring the system into a paramagnetic order. Then, we turn

to the simulation of the dynamics of the finite size system quenching from the paramagnetic

phase to the ferromagnetic and antiferromagnetic limit, respectively. The quenches evaluate

the generation of defects and depend on the velocity of the quench. From there, we calculate

the power-law exponents describing the density of defects. We observe a decreasing exponent

for the ferromagnetic model with stronger long-range interactions. This trend means that

more defects are generated for stronger long-range interactions. If we consider this finding

with regards to adiabatic quantum computing, we suggest that experiments should stay close

to the nearest-neighbor limit in the case of a choice. In contrast, the antiferromagnetic model

shows a constant power law exponent for all α within the error bars. Overall, we observe the

finite-size effects which lead to a deviation from the value predicted in the thermodynamic

limit. For example, the power-law exponent describing the generation of defects for the
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ferromagnetic model differs by ten percent from 1/2 for a system size L = 128.

The open system problem set in Chapter 5 gives first insights to open quantum systems

and the necessary methods to understand them. The form of a problem set is an ideal

choice and this chapter also represents the pedagogical part of this thesis. The study of

the thermalization of a quantum Ising chain with a few qubits explores several aspects

of thermalization and their description within open quantum systems, in detail with the

Lindblad master equation. The understanding of the Lindblad equations and conditions

for thermalization of a single multi-level system are feasible, but the transfer to many-body

systems beyond the scope of calculating all eigenstates is non-trivial and an open research

question. One question is therefore if we can find a consistent technique using, as we call

them, neighborhood single-channel Lindblad operators. The answer to that question is that

we thermalize the system with such operators in the two limits. The paramagnetic limit

corresponds to a non-interacting model of isolated qubits and, thus, the question is reduced

to thermalization of a single qubit. The neighborhood single-channel Lindblad operators

spanning three sites are sufficient to thermalize the system in the ferromagnetic limit. Even

a linear combination of these two solutions does not lead to thermalization between the

two limits in the phase diagram. Nonetheless, or now even more, such neighborhood single-

channel Lindblad operators remain a tempting goal. This fact becomes apparent when

looking at the global multi-channel approach using all eigenstates of the system Hamiltonian,

where the number of eigenstates grows exponentially with the number of particles in many-

body systems. But the global multi-channel approach allows us to explore the process of

thermalization within the Lindblad master equation. We observe different phenomena when

choosing the operator in the interaction Hamiltonian such as a spin-flip. The thermalization

becomes very slow towards the paramagnetic limit; in fact, the eigenstates and the spin-flip

operator share a common basis of eigenstates, and the spin-flip operator cannot induce any

change to the system. Apart from the paramagnetic limit, we find favorable system-reservoir

configurations in the ferromagnetic regime of the quantum Ising model. The configuration
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of a common reservoir shared by all spins and allowing for reservoir-mediated long-range

interactions has infinitely long timescales for system size L = 5 due to a closing gap of

the Liouville operator. This feature tells us that at least certain states are protected from

decoherence. In contrast, spins each coupled to their independent local reservoir thermalize

faster and keep the gap of the Liouville operator open. Thus, this configuration is favorable

for preparing a state in the thermal state. Chapter 7 contains the details on the derivation

of the Lindblad master equation used in Chapter 6. Although the derivation is a textbook

example, its specific use adapted to the quantum Ising chain is important to present a

complete picture with multi-channel Lindblad operators.

The different techniques presented in the exact diagonalization methods show how to

push limits on a single core to a maximal number of qubits. The methods provide algorithms

between a simple exact diagonalization code without any advanced features and the most

recent highly specialized codes running for quantum circuits on distributed machines. One

feature for Hamiltonian dynamics governed by the Schrödinger equation is the use of rule

sets inspired by our many-body methods. These rule sets are the next level beyond sparse

matrices for these problems. For a small system, we may store the complete Hamiltonian with

all zeros; we can save a significant amount of memory when storing only non-zero elements

and their indices for growing system size. Finally, we use just the rule for how to build

the Hamiltonian on demand instead of ever building the actual matrix. For example, this

information is sufficient to multiply the Hamiltonian with the state vector and use Krylov

subspace methods. Such methods allow us to use Hamiltonians with long-range interactions.

Each of the methods for the Schrödinger equation is translated into the case for the Lindblad

master equation. The upper limit of particles which we can simulate with the Lindblad

equation is half of the maximal number of particles of the Schrödinger equation. This part

of the OSMPS simulation platform has served its purposes very well. These motivations

are as follows. (i) The implementation of novel approaches served us to simulate quantum

systems, e.g., the global multi-channel Lindblad operators in the thermalization study of
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the quantum Ising spin chain. This possibility is very useful to explore new methods before

moving them to the many-body scenario. (ii) We have an easy accessible verification for

tensor network methods as both parts of the package are based on the same syntax to set

up the system. We used the ED part of our package to evaluate the errors of open system

evolution of MPDOs in the corresponding 10. (iii) The ED algorithms can serve as a learning

platform for advanced undergraduate and graduate students familiarizing with the field. This

approach is reflected in the usage of the package in the open quantum system problem set

or during senior design projects to simulate transport in a quantum wire with the Lindblad

master equation.

The principal novel results from the paper on the second release of the open source

Matrix Product States are the error bounds obtained for the ground states of any system.

These error bounds allow us to have a much better understanding of the accuracy of the

algorithms for various observables knowing a few key values, i.e., the energy gap to the first

excited state, the variance of the energy, and the system size. The error of the bond entropy,

an entanglement measure, for the quantum Ising model is below 10−2 for 256 sites and clearly

below 10−3 for 64 sites. These numbers show the influence of the system size and the closing

energy gap for a larger system. Otherwise, the paper is directed at users searching for a

description between the manual and more technical papers discussing the different tensor

network methods. Thus, we show the parallel efficiency using the Message Passing Interface

of above 91% for twelve or more cores while scanning a phase diagram and different system

sizes, i.e., 1530 data points in total.

The tensor network algorithms for many-body open quantum systems yield different

types of results. The tensor network theory gains additional insight into the advantage

of different options to simulate mixed states via density matrices. Matrix product density

operators, locally purified tensor networks, and quantum trajectories are for the first time

united in one software package to our knowledge. A comparison is not biased because

all methods rely on the same underlying modules for tensor operations. Although each
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model and Hamiltonian might have different preferences, we can state the following trends.

Locally purified tensor networks are preferable to generate thermal states via imaginary time

evolution. Our example considered the quantum Ising model. Systems with low generation of

entanglement during time evolution are very suitable for matrix product density operators;

locally purified tensor networks are not preferable due to their loopy network structure.

Quantum trajectories are an option if a large number of cores is available to distribute the

trajectories. An example of such a system is the transport of excitons. Quantum trajectories

are favorable for systems such as the Bose-Hubbard model when generating a high level of

entanglement during the time evolution, where matrix product density operators suffer from

a squared bond dimension when generating them from a matrix product state. Researchers

interested in the simulation of many-body open quantum systems have a cookbook with

three examples including the scaling for such simulations. We recall the case of the Lindblad

operator L = (b†k + b†k+1)(bk − bk+1) which has an enormous bond dimension of 48 when

representing the Liouville operator in comparison with a bond dimension of less than ten in

the other examples. Such explanations help to develop an understanding of the numerical

aspects for users without deep numerical expertise. The additional considerations with

regards to our simulation platform in Chapter 11 complete the numerical aspects of this

thesis. In detail, we discuss good coding practices and the efforts to build a science gateway

for entangled quantum many-body systems.

In conclusion, this thesis provides an overview of a variety of methods to simulate quan-

tum systems, which is essential for quantum simulators architectures. On the one hand, the

numerical simulation on a classical computer may help to test different models, e.g., Hamil-

tonians and models for open quantum systems, and help with the optimization of these tools.

On the other hand, there has been a huge effort to prove or disprove quantum advantage

simulating systems of more than fifty qubits with quantum circuits. Although our tools are

not equivalent to this intriguing question, they provide useful methods to compare with.

Thus, we provide with our open source software relevant algorithms and simulations for to-
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day’s research questions and point out future directions in Sec. 12.2. We have investigated

questions such as the Kibble-Zurek hypothesis under the influence of long-range interactions

or the thermalization of a quantum system in various extensions of the standard Lindblad

picture with these tools ourselves.

12.2 Outlook

The research discussed in this thesis raises many questions in physics which are beyond

the scope of this work. Nonetheless, they are worthy of being pointed out and we motivate

their investigation with a brief discussion.

Within closed quantum systems, many other models could be considered with long-range

interaction as we did for the quantum Ising model. The nearest-neighbor interaction was a

necessary approximation to use many-body simulations with time-evolving block decimation

in the past, but adding effects from long range interaction might be necessary to keep up with

experiments as they become more precise. The necessary time evolution methods for long-

range interactions in tensor networks are well-established by now. The large community of

researchers working on long-range physics, e.g., as present in ultracold molecules, appreciates

such methods. The possible models to be studied include the extended Bose-Hubbard model,

other spin-1
2

models of the XY Z family, and higher spin models such as the spin-one bilinear

biquadratic model. Moreover, one may extend our studies to Fermi-Hubbard models.

There are multiple research questions accessible due to the extension of tensor networks to

density matrices and open systems. We have briefly introduced the transport of excitons as

an example to test the many-body open quantum system. This topic is an exciting question

which could be explored further, either in more advanced Hamiltonians representing the

exciton or looking at specific physical problems such as the interference of excitons or the

loss of information in an exciton after traveling through a region with decoherence.

The quenches through the quantum critical studies in the long-range Ising chain can be

repeated for an open system. The closed system is perfectly adiabatic for infinite quench

times; thus, the final state of the quench is the ground state. If we couple the system to a
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reservoir, infinitely slow quenches suffer from decoherence. Therefore, the investigation of

the quench time minimizing the total number of defects from decoherence and non-adiabatic

quenches is a necessary next step. The relevance of this research can be seen directly in

context with adiabatic quantum computing. The finite temperature states via imaginary

time evolution can be used to derive experimentally relevant phase diagrams, e.g., for the

Bose-Hubbard model. These phase diagrams, although they cannot have a quantum phase

transition in the strict T = 0 definition, may help to understand when a phase transition can

be observed at finite temperature in an experiment. Furthermore, these finite-temperature

states can be used as the initial state to study dynamics, e.g., the BKT transition of the

Bose-Hubbard model. In addition, the understanding of the Kibble-Zurek hypothesis in

a finite-temperature setting has unanswered questions itself. The dilemma in the finite

temperature can be seen in the different energy spectrum at both sides of the quantum

critical point; thus, an infinitely slow adiabatic quench will not produce the thermal state on

the other side of the quantum critical point. On the other hand, quenching in a “forth-back”

scheme allows us to recover the thermal state for a perfect adiabatic quench, but the forth

quench introduces defects which affect the back quench.

The few qubit Ising chain has demonstrated how to thermalize a quantum system coupled

to a reservoir in the limit of the Lindblad master equation. We may take this consideration

as a starting point for many more research questions to be explored. These problems include

the thermalization with other types of reservoirs than a three-dimensional electromagnetic

field, and methods to include non-Markovian effects truncated in the Lindblad master equa-

tion. To extend these few qubit problems to many-body systems, we are still in search of

local or quasi-local Lindblad operators leading to a thermalization of a general Hamilto-

nian. Such operators are more accessible to be used in matrix product operators than the

current eigenstates of the Hamiltonian. Once these questions concerning the thermalization

of a quantum system are resolved, research can move to systems with multiple degrees of

freedom; each degree of freedom might be coupled to a reservoir at a different tempera-
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ture. Examples for such systems are trapped ions including the motional and spin degrees

of freedom and ultracold molecules with a huge set of rovibrational states. The latter can

be cooled conveniently, but translational degrees of freedom of the molecules in the optical

lattice remain at higher temperatures and cannot yet be cooled to the temperature of the

rovibrational states.

If we consider the purely technical aspects of our work, further investigations on the

optimal compression of a density matrix can be pursued in our current simulation software.

There is an open question if matrix product density operators or locally purified tensor

networks are the advantageous approach to represent density matrices of a quantum system.

We have shown examples where either approach is favorable, so a further understanding, if

there is an underlying theory, would be appreciated.

The development side of the OSMPS package contains many optional extensions which

improve specific aspects of the code. These changes may target storage of results with the

HDF5 file system and further parallelization schemes. With the new features implemented

in the third release, we can work on openMP solutions, MPI parallelization for a single

simulation instead of data parallelism, and an MPI/openMP hybrid solution. OpenMP is

especially beneficial for simulations with symmetries as the block diagonal structure can

be easily spread across cores. The possibility to accelerate tensor network simulations with

GPUs is another option to be explored, for instance using openACC. While the parallelization

of exact diagonalization can rely on standard implementations such as ScaLAPACK and we

can profit from constructing all Lindblad operators in the multi-channel approach in parallel,

tensor network methods have a higher barrier to overcome. We think here of the gauge

essential to one-dimensional tensor networks such as matrix product states. Reinstalling

this gauge requires a serial step iterating along the chain, which limits the serial efficiency

in the limit of many cores. In the best scenario, we can use two cores for this procedure

approaching the center site from the two ends. Parallel schemes are nonetheless available

for time-evolving block decimation, which we have also explored for locally purified tensor
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networks in a side project and the variational ground state search [297].

The inclusion of many default models for the science gateway is necessary to keep the

online platform up to date with the most recent research. We suggest adding default models

for modeling the most important types of quantum simulators, i.e., ultracold atoms, ultracold

molecules, trapped ions, color vacancy centers, superconducting qubits, Rydberg systems,

and integrated quantum optics.
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[231] E. Anisimovas, M. Račiūnas, C. Sträter, A. Eckardt, I. B. Spielman, and G. Juzeliūnas.
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APPENDIX A

BEST PRACTICE: APPENDIX PUBLISHED WITH “EXACT DIAGONALIZATION

AND OTHER ENTANGLEMENT-ACCURATE METHODS REVISITED IN QUANTUM

SYSTEMS”

A.1 Best-Practice Example

In this appendix, we concentrate on the setup of an actual simulation for the exact

diagonalization library within OSMPS. We choose the double-well problem using the Bose-

Hubbard model with the Hamiltonian introduced in Eq. (8.18) and compare the behavior of

the closed system versus the open system. Figure A.1 represents a sketch of the problem.

The first step of any Python program is importing the necessary packages. We need the

Python packages for MPS, the EDLib, numpy, a function for copying classes, the interface

to the system parameters, and the plotting library. We show the corresponding code snippet

always in the following Source Code. Source Code A.1 shows the importing of the packages.

(a) t = 0 (b) t > 0

Figure A.1: Bose-Hubbard Double-Well Problem. Two bosons occupy five sites. The first
two sites represent the left well, the center site represents the barrier, and the two last sites
are the right well. (a) The initial state at time t = 0 is the ground state of the system with
a potential on the middle site (3rd site, dark blue) and the right well (4th and 5th site,
light blue). (b) For times t > 0, we switch of the potential on the right well and the bosons
oscillate between the left and right well.

Source Code A.1: Import the packages.

A.1 import MPSPyLib as mps

A.2 import MPSPyLib.EDLib as ed
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A.3 import numpy as np

A.4 from copy import deepcopy

A.5 import sys

A.6 import matplotlib.pyplot as plt

Source Code A.1 Continued

The next parts of the code are in the main function. First, we generate the operators for

the Bose-Hubbard model. In addition to the set of bosonic operators, OSMPS can provide

fermionic operators and spin operators. We choose a maximum of four bosons per site leading

to a local dimension of d = 5. Furthermore, we have to construct the interaction operator

n(n − I). Matrices within Operators are accessed via string keys following the dictionary

structure of Python. Similar new operators are defined as a new entry in the dictionary.

Source Code A.2: Generate the operators for the Bose-Hubbard model.

A.18 # Generate bosonic operators

A.19 Operators = mps.BuildBoseOperators (4)

A.20 Operators[’interaction ’] = 0.5 * (np.dot(Operators[’

nbtotal ’],

A.21 Operators[’

nbtotal ’])

A.22 - Operators[’nbtotal

’])

In the next step, we build the Hamiltonian consisting of the tunneling term bkb
†
k+1 +h.c.,

the interaction n(n − I), and a site-dependent potential to model the double-well and its

action through the number operator n. The argument hparam is the coupling for each

term in the Hamiltonian defined as a string. The actual value is specified later on for each

simulation allowing for flexibility, which is then shown in Source Code A.6. We define all

values, which are constant for all simulations directly as variables. We make a copy of the
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MPO for the open system and add the Lindblad term.

Source Code A.3: Create the Hamiltonian via rule sets.

A.24 # Define Hamiltonian MPO for closed systems (Hc) and

open system (Ho)

A.25 Hc = mps.MPO(Operators)

A.26 Hc.AddMPOTerm(’bond’, [’bdagger ’, ’b’], hparam=’J’,

weight =-1.0)

A.27 Hc.AddMPOTerm(’site’, ’interaction ’, hparam=’U’,

weight =1.0)

A.28 Hc.AddMPOTerm(’site’, ’nbtotal ’, hparam=’Vx’, weight

=1.0)

A.29

A.30 Ho = deepcopy(Hc)

A.31 Ho.AddMPOTerm(’lind1’, ’nbtotal ’, hparam=’gamma’,

weight =1.0)

A.32

A.33 L = 5

A.34 J = 1.0

A.35 U = 1.0

A.36 fill = 2

A.37 Vx0 = np.array ([0.0 , 0.0, 1.0, 1.0, 1.0])

As a next step, the measurements are defined. We restrict ourselves to the local number

operator, which allows us to show the oscillations between the two wells. The arguments in

AddObservable specify the type of measurement, if applicable, the operators used, and a

string identifier to access the results in a dictionary later on.
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Source Code A.4: Define the observables.

A.39 # Default measures

A.40 Obs = mps.Observables(Operators)

A.41 Obs.AddObservable(’site’, ’nbtotal ’, ’<n>’)

We define the dynamics as objects of the QuenchList class, one for the closed and one

for the open system. We start with the potential with the barrier in the middle of the system

and define a function, which returns the time-independent potential. For the time evolution,

we use the Krylov method. The time-dependency timedep must be set by hand in this case.

Source Code A.5: Define the dynamics via the QuenchList class.

A.43 # Define the dynamics

A.44 Vt = np.array ([0.0, 0.0, 1.0, 0.0, 0.0])

A.45 def quenchfunc(t, Vt=Vt):

A.46 return Vt

A.47

A.48 T = 100.0

A.49 dt = 0.01

A.50 tConv = mps.KrylovConvParam ()

A.51

A.52 CQuenches = mps.QuenchList(Hc)

A.53 CQuenches.AddQuench ([’Vx’], T, dt, [quenchfunc],

A.54 ConvergenceParameters=tConv ,

A.55 stepsforoutput =10, timedep=False)

A.56

A.57 OQuenches = mps.QuenchList(Ho)
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A.58 OQuenches.AddQuench ([’Vx’], T, dt, [quenchfunc],

A.59 ConvergenceParameters=tConv ,

A.60 stepsforoutput =10, timedep=False)

Source Code A.5 Continued

The simulations to be carried out are specified in a list of dictionaries. We start with the

dictionary for the closed system. The necessary keys can be found in the documentation,

but we point out that we now specify the hparam used in the definition of the rule sets for

the Hamiltonian.

Source Code A.6: Add the closed system to the list of simulations.

A.62 # Define the closed system simulation as a dictionary

inside a list

A.63 params = [{

A.64 ’simtype ’ : ’Finite ’,

A.65 ’job_ID ’ : ’DoubleWell ’,

A.66 ’unique_ID ’ : ’_SE’,

A.67 ’Write_Directory ’ : ’TMP/’,

A.68 ’Output_Directory ’ : ’OUTPUTS/’,

A.69 # System settings

A.70 ’L’ : L,

A.71 ’J’ : J,

A.72 ’U’ : U,

A.73 ’Vx’ : Vx0 ,

A.74 ’Abelian_generators ’ : [’nbtotal ’],

A.75 ’Abelian_quantum_numbers ’ : [fill],

A.76 ’Quenches ’ : CQuenches ,

A.77 ’DynamicsObservables ’ : Obs ,

A.78 ’MPSObservables ’ : Obs
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A.79 }]

Source Code A.6 Continued

Since we do not iterate over different system sizes, we can construct the basis states for

the U(1) symmetry once prior to running the simulations. Although EDLib would build the

symmetry sector for each simulation automatically, it would use a general method, which is

not necessary in this case. The class containing the basis is constructed via the following

Source Code A.7.

Source Code A.7: Construct the basis states for a single U(1) symmetry.

A.81 # Construct symmetry sector

A.82 SymmSec = ed.SingleU1Symmetry(Operators , params [0])

A.83 params [0][’SymmSec ’] = SymmSec

In the next step, we iterate two different coupling for the Lindblad operators. We can

append the additional dictionaries to the list.

Source Code A.8: Add open system simulations with two different couplings to the

list of simulations.

A.85 # Add two different coupling strengths for the open

system

A.86 for gamma in [0.025 , 0.05]:

A.87 params.append ({

A.88 ’simtype ’ : ’Finite ’,

A.89 ’job_ID ’ : ’DoubleWell ’,

A.90 ’unique_ID ’ : ’_ME_gamma %3.6f’%( gamma),

A.91 ’Write_Directory ’ : ’TMP/’,

A.92 ’Output_Directory ’ : ’OUTPUTS/’,

A.93 # System settings
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A.94 ’L’ : L,

A.95 ’J’ : J,

A.96 ’U’ : U,

A.97 ’Vx’ : Vx0 ,

A.98 ’gamma ’ : gamma ,

A.99 ’Abelian_generators ’ : [’nbtotal ’],

A.100 ’Abelian_quantum_numbers ’ : [fill],

A.101 ’Quenches ’ : CQuenches ,

A.102 ’DynamicsObservables ’ : Obs ,

A.103 ’StaticObservables ’ : Obs ,

A.104 ’SymmSec ’ : SymmSec

A.105 })

Source Code A.8 Continued

Since we use different rule sets for the MPO in the simulations, we need a list of MPOs

with the same length as the simulation list. Afterwards, we can execute the simulations.

Source Code A.9: Build a list of Hamiltonians and run simulations.

A.107 # Different MPO for simulations --> list of MPOs as

used in params

A.108 Hlist = [Hc , Ho , Ho]

A.109

A.110 if(not PostProcess):

A.111 MainFile = mps.WriteFiles(params , Operators , Hlist

, PostProcess)

A.112 ed.runED(params , Operators , Hlist)

A.113 return
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The post-processing imports the results as dictionaries. For the statics, the list contains

the dictionaries directly, for dynamics the first list iterates over the different simulations and

the inner list iterates over the dictionaries for each time step.

Source Code A.10: Reading the results and plotting them.

A.115 # PostProcess

A.116 # -----------

A.117

A.118 MainFile = mps.WriteFiles(params , Operators , Hlist ,

PostProcess)

A.119

A.120 StatOut = mps.ReadStaticObservables(params)

A.121 DynaOut = mps.ReadDynamicObservables(params)

A.122

A.123 fig = plt.figure ()

A.124 plt.rc(’text’, usetex=True)

A.125 plt.rc(’font’, family=’serif’, size =22)

A.126 ax1 = fig.add_subplot (121)

A.127

A.128 # Plot populations ground state (equal for all systems

)

A.129 ax1.plot(range(1, L + 1), StatOut [0][’<n>’], ’bo:’)

A.130 ax1.set_xlabel(r’Site index $i$’)

A.131 ax1.set_ylabel(r’Population $\langle n_i \rangle$ ’)

A.132 plt.xticks(list(range(1, L + 1)))

A.133

A.134 # Plot dynamics population left well

A.135 ax2 = fig.add_subplot (122)
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A.136 label = [r’$\gamma = 0.0$’, r’$\gamma = 0.025$’, r’$\

gamma = 0.05$’]

A.137 ii = -1

A.138

A.139 for DynaOutii in DynaOut:

A.140 ii += 1

A.141 tlist = np.linspace(DynaOutii [0][’time’],

DynaOutii [-1][’time’],

A.142 len(DynaOutii))

A.143 Nleft = np.zeros((len(DynaOutii)))

A.144

A.145 # jj is running over the different time steps

A.146 for jj in range(len(DynaOutii)):

A.147 Nleft[jj] = np.sum(DynaOutii[jj][’<n>’][:2])

A.148

A.149 ax2.plot(tlist , Nleft , label=label[ii])

A.150

A.151 ax2.set_xlabel(r’Time $t$’)

A.152 ax2.set_ylabel(r’Population left well $N_{\ mathrm{left

}}$’)

A.153 ax2.legend(loc=’upper right’)

A.154

A.155 plt.show()

A.156 return

Source Code A.10 Continued

The plot obtained from this simulation is presented in Figure A.2 and shows that the

coupling considered in the Lindblad master equation leads to a damping of the oscillations

between the left and right well. The last lines of the code call the main function in case the

script is called, which allows us in addition to import the function from another module.
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Figure A.2: Closed and Open System Double-Well Problem. (a) The initial state is charac-
terized by the population per site on the left. We obtain it via an eigendecomposition of the
Hamiltonian, where only the left well has a zero chemical potential. (b) The oscillations be-
tween the two wells damp faster for larger coupling γ to the reservoir of the Lindblad master
equation. The limit γ = 0 is the closed system. The time t is in units of the tunneling J .

Source Code A.11: Calling the main function.

A.159 if(__name__ == ’__main__ ’):

A.160 PostProcess = False

A.161

A.162 for keyval in sys.argv [1:]:

A.163 key , val = keyval.split(’=’)

A.164 if(key == ’--PostProcess ’): PostProcess = (val ==

’True’) or (val == ’T’)

A.165

A.166 main(PostProcess)
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APPENDIX B

OPEN SOURCE MATRIX PRODUCT STATES: SUPPLEMENTAL MATERIAL

PUBLISHED WITH “OPENING WAYS TO SIMULATE ENTANGLED MANY-BODY

QUANTUM SYSTEMS IN ONE DIMENSION”

B.1 Supplemental Material

We provide further, supplemental, material in our forum [298] and our package with

version 2.1. This material includes:

• Building and installing the open source Matrix Product States library: instructions for

minimalists who do not want to read the full manual.

• User support and contributions to the code.

• Code for selected examples to reproduce plots in this paper, i.e., the nearest-neighbor

Ising model, the long-range Ising model, and the dynamics of the Bose-Hubbard model.

B.2 Building and installing the open source Matrix Product States library

In order to install OSMPS, one needs to provide at a minimum the following packages

covering the Fortran and Python installation and linear algebra tools:

• Python (at least 2.6 or 2.7 recommended, 3.x tested successfully)

• numpy and scipy

• Fortran2003 compiler, e.g. gfortran for Linux.

• BLAS and LAPACK

• ARPACK
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More packages might be convenient e.g. for plotting with Python, but are not mandatory.

The remaining part of the installation is covered by Python. We distinguish between a global

and a local installation where the local installation can only be accessed in the same directory

or through providing the path. For global installation only one must execute on the command

line

sudo python setup.py install

The Fortran library is compiled then with the command

python BuildOSMPS.py --os=unixmpi

with prefix sudo for the global installation in order to provide the admin privileges. Some

default settings are available via command line options as shown for compiling with unix and

MPI. Similarly, a local installation can be specified with the option --local=’./’. More

specific settings can be made inside the Python script, which builds the makefile for the

Fortran libraries.

B.3 User support and contributing to the code

Being an open source project we welcome anyone willing to help improve OSMPS or

share her knowledge with the library. On the project website http://sourceforge.net/

projects/openmps/ on SourceForge we maintain a forum for discussions about OSMPS.

These discussions include questions about the installation and use of the algorithms for

new users, suggestions for future implementations, and help requests for implementing new

features on your own.

The current version of OSMPS is organized via the svn version control system via Source-

Forge. It is possible without a user account to fetch the newest version of the library via

svn. In order to contribute to OSMPS, a user account on SourceForge is necessary so that

we can add you to the developers team.
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B.4 Files to reproduce plots in this work

We provide the files for the quantum Ising model, the long-range quantum Ising model

and the dynamics of the Bose-Hubbard model as examples how Python scripts for OSMPS

are designed from the definition of the model to post-processing.

Source Code B.1: Example of nearest neighbor Ising model.

B.1 import MPSPyLib as mps

B.2 import numpy as np

B.3 import sys

B.4 import os

B.5 import matplotlib.pyplot as plt

B.6 from mpl_toolkits.mplot3d.axes3d import Axes3D

B.7 from matplotlib import cm

B.8 from scipy.optimize import curve_fit

B.9 from copy import deepcopy

B.10

B.11

B.12 def main(PostProcess):

B.13 """

B.14 Main method running simulation for the following

B.15 plots in the OSMPS paper:

B.16

B.17 1) Bond entropy of the Ising model as function of

B.18 the external field and the system size (see

B.19 Figure 2).

B.20

B.21 2) Finite size scaling to find the critical value

B.22 in the thermodynamic limit (see Figure 4).
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B.23 3) The scaling of resources in Figures 16(c) and

B.24 (d).

B.25

B.26 ** Arguments **

B.27

B.28 PostProcess : Boolean (here)

B.29 When PostProcess is ‘‘True ‘‘, then data for

B.30 the level is evaluated. Otherwise simulation

B.31 is executed (with MPI). In order to pass

B.32 arguments on the command line use ‘‘T‘‘ for

B.33 ‘‘True ‘‘ and ‘‘F‘‘ for ‘‘False ‘‘.

B.34 """

B.35 # Build spin operators

B.36 # --------------------

B.37

B.38 # These are rotated Pauli operators to obtain a

B.39 # diagonal generator for Z2

B.40 Operators = mps.BuildSpinOperators(spin =0.5)

B.41 Operators[’sx’] = 2 * Operators[’sz’]

B.42 Operators[’sz’] = - (Operators[’splus ’]

B.43 + Operators[’sminus ’])

B.44 Operators[’gen’] = np.array ([[0, 0], [0, 1.]])

B.45

B.46 # Define Hamiltonian / system settings

B.47 # ------------------------------------

B.48

B.49 H = mps.MPO(Operators)

B.50 H.AddMPOTerm(’bond’, [’sz’,’sz’], hparam=’J’,

Source Code B.1 Continued
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B.51 weight =-1.0)

B.52 H.AddMPOTerm(’site’, ’sx’, hparam=’g’,

B.53 weight =-1.0)

B.54

B.55 # overall energy

B.56 J = 1.0

B.57

B.58 # Choose length of the systems for equal spacing

B.59 # in log -plot (reverse order to submit long

B.60 # simulations first)

B.61 nl = 30

B.62 Llist = list(map(int , 10**( np.linspace (0.65 , 3.30103 ,

nl))))[:: -1]

B.63

B.64 # Grid of the external field

B.65 ng = 51

B.66 glist = np.linspace (0.5, 1.5, ng)

B.67

B.68 # Define Observables

B.69 # ------------------

B.70

B.71 # Initialize instance of observable class and

B.72 # add local observable

B.73 myObservables = mps.Observables(Operators)

B.74 myObservables.AddObservable(’site’, ’sz’, ’z’)

B.75

B.76 # add correlation functions

B.77 myObservables.AddObservable(’corr’, [’sz’,’sz’],

Source Code B.1 Continued
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B.78 ’zz’)

B.79

B.80 # Specify convergence parameters

B.81 # ------------------------------

B.82

B.83 nc = 2

B.84 conv = mps.MPSConvParam(max_bond_dimension =40,

B.85 variance_tol =1e-10,

B.86 local_tol =1e-10,

B.87 max_num_sweeps =4)

B.88 modparam = [’max_bond_dimension ’, ’max_num_sweeps ’]

B.89 conv.AddModifiedConvergenceParameters (0, modparam ,

B.90 [80, 4])

B.91

B.92 # Create list of simulations

B.93 # --------------------------

B.94

B.95 params = []

B.96

B.97 for jj in range(nl):

B.98 ll = Llist[jj]

B.99

B.100 for gg in glist:

B.101

B.102 params.append ({

B.103 ’simtype ’ : ’Finite ’,

B.104 # Filenames and directories

B.105 ’job_ID ’ : ’sim_01_ising_z2_ ’,

Source Code B.1 Continued
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B.106 ’unique_ID ’ : ’_L%04d’%ll \

B.107 + ’_g%3.6F’%gg ,

B.108 ’Write_Directory ’ : ’TMP_01_ISING/’,

B.109 ’Output_Directory ’ : ’OUTPUTS_01_ISING

/’,

B.110 # System size and Hamiltonian

B.111 # parameters

B.112 ’L’ : ll ,

B.113 ’J’ : J,

B.114 ’g’ : gg ,

B.115 # Other parameters

B.116 ’MPSConvergenceParameters ’ : conv ,

B.117 ’MPSObservables ’ : myObservables ,

B.118 # For error calculation (gap)

B.119 ’n_excited_states ’ : 1,

B.120 ’eMPSConvergenceParameters ’ : conv ,

B.121 ’logfile ’ : True ,

B.122 ’verbose ’ : 1,

B.123 # Z2 symmetry

B.124 ’Discrete_generators ’ : [’gen’],

B.125 ’Discrete_quantum_numbers ’ : [0]

B.126 })

B.127

B.128 if(not PostProcess):

B.129 # Run simulations

B.130 # ---------------

B.131

B.132 hpcdic = {’queueing ’ : ’slurm ’,

Source Code B.1 Continued
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B.133 ’partition ’ : ’lcarr’,

B.134 ’time’ : ’143:59:59 ’,

B.135 ’nodes’ : [’062’, ’063’, ’064’],

B.136 ’ThisFileName ’ : ’01 _Ising.py’,

B.137 ’mpi’ : ’srun’}

B.138

B.139 # Generate sbatch script for CSM cluster

B.140 MainFiles = mps.WriteMPSParallelFiles(

B.141 params , Operators , H, hpcdic ,

B.142 PostProcess=PostProcess)

B.143

B.144 return

B.145

B.146 # Evaluation of the simulations

B.147 # =============================

B.148

B.149 base = ’OUTPUTS_01_ISING/’

B.150

B.151 if(os.path.isfile(base + "01 _Ising_BondEntropy.npy")):

B.152 # Read from previous PostProcess

B.153 bond_entropy = np.load(base + "01

_Ising_BondEntropy.npy")

B.154 err_bentropy = np.load(base + "01

_Ising_BondEntropyError.npy")

B.155 converged = np.load(base + "01 _Ising_converged.npy

")

B.156 variance = np.load(base + "01 _Ising_variance.npy")

B.157 runtimes = np.load(base + "01 _Ising_runtimes.npy")
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B.158 filesize = np.load(base + "01 _Ising_filesize.npy")

B.159 bonddim2 = np.load(base + "01 _Ising_bonddim2.npy")

B.160 else:

B.161 # Read from Fortran output

B.162 MainFiles = mps.WriteFiles(params , Operators , H,

B.163 PostProcess=True)

B.164 Outputs = mps.ReadStaticObservables(params)

B.165

B.166 # Create array for values of bond entropy

B.167 bond_entropy = np.zeros((nl , ng , nc), dtype=float)

B.168 err_bentropy = np.zeros((nl , ng , nc), dtype=float)

B.169 converged = np.zeros ((nl, ng, nc))

B.170 variance = np.zeros ((nl, ng, nc))

B.171 runtimes = np.zeros ((nl, ng, nc))

B.172 filesize = np.zeros ((nl, ng))

B.173 bonddim2 = np.zeros ((nl, ng))

B.174

B.175 # Get mapping from simulation to hashes

B.176 hdic = read_hashes(params [0])

B.177

B.178 # index for Outputs -list

B.179 idx = 0

B.180

B.181 # Looping over the results

B.182 for ii in range(nl):

B.183 for jj in range(ng):

B.184 # idx : ground state , convergence

parameters 0
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B.185 # idx + 1 : ground state , convergence

parameters 1

B.186 # idx + 2 : excited state , convergence

parameters 0

B.187 # idx + 3 : excited state , convergence

parameters 1

B.188

B.189 for kk in range(nc):

B.190 Output = Outputs[idx + kk]

B.191 eOutput = Outputs[idx + kk + 2]

B.192

B.193 bond_entropy[ii , jj , kk] = Output[’

BondEntropy ’][Llist[ii] // 2]

B.194 err_bentropy[ii , jj , kk] =

error_entropy(Output , eOutput)

B.195 converged[ii , jj , kk] = int(Output["

converged"] == "T")

B.196 variance[ii, jj, kk] = Output["

variance"]

B.197 runtimes[ii, jj, kk] = mps.get_runtime

(Output)

B.198

B.199 out = Outputs[idx][’Output_Directory ’]

B.200 key = out + Outputs[idx][’job_ID ’] +

Outputs[idx][’unique_ID ’]

B.201 thishash = hdic[key]

B.202
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B.203 filesize[ii, jj] = os.path.getsize(out +

thishash + ’_002.bin’) / 1024.**2

B.204 bonddim2[ii, jj] = Outputs[idx + 1][’

bond_dimension ’]

B.205

B.206 idx += 4

B.207

B.208 np.save(base + "01 _Ising_BondEntropy.npy",

bond_entropy)

B.209 np.save(base + "01 _Ising_BondEntropyError.npy",

err_bentropy)

B.210 np.save(base + "01 _Ising_converged.npy", converged

)

B.211 np.save(base + "01 _Ising_variance.npy", variance)

B.212 np.save(base + "01 _Ising_runtimes.npy", runtimes)

B.213 np.save(base + "01 _Ising_filesize.npy", filesize)

B.214 np.save(base + "01 _Ising_bonddim2.npy", bonddim2)

B.215

B.216 # Use tex fonts throughout

B.217 plt.rc(’text’, usetex=True)

B.218 plt.rc(’font’, family=’serif’, size =22)

B.219

B.220 # Surface plot for bond entropy

B.221 # -----------------------------

B.222

B.223 # specify which convergence parameter

B.224 ncp = 1

Source Code B.1 Continued
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B.225 surface_plot_bond_entropy(np.array(Llist), glist ,

bond_entropy [:, :, ncp])

B.226

B.227 # Set upper and lower bound for plotting manually

B.228 err_bentropy[np.isnan(err_bentropy)] = 1.0

B.229 err_bentropy[err_bentropy < 1e-7] = 1e-7

B.230 err_bentropy[err_bentropy > 1.0] = 1.0

B.231 #surface_errplot_bond_entropy(np.array(Llist), glist ,

err_bentropy [:, :, ncp])

B.232

B.233 # Plot scaling resources

B.234 # ----------------------

B.235

B.236 plot_scaling_filesize(np.array(Llist), filesize[:,

25], bonddim2[:, 25])

B.237 plot_scaling_runtimes(np.array(Llist), runtimes[:, 25,

0], bonddim2[:, 25])

B.238

B.239 # Finite size scaling for bond entropy (exclude very

small systems)

B.240 # ------------------------------------

B.241

B.242 # Find the maximum for each systems size

B.243 gc = np.zeros ((nl), dtype=float)

B.244

B.245 for ii in range(nl):

B.246 pos = np.argmax(bond_entropy[ii , :, ncp])

B.247 gc[ii] = glist[pos]
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B.248

B.249 p0 = [1.0, 1.0]

B.250 [gci , nu], covar = curve_fit(fit_func , Llist [:20] , gc

[:20], p0=p0)

B.251

B.252 fig = plt.figure ()

B.253 ax = fig.add_subplot (111)

B.254 ax.plot(Llist [:20], gc[:20], ’go -’, label=r’$g_c(L)$’)

B.255 ax.plot(Llist [:20], [gci] * len(gc [:20]) , ’b-’, label=

r’$g_c = %3.4f$ (FSS)’%(gci))

B.256 ax.plot(Llist [:20], [gci - covar [0,0]] * len(gc [:20]) ,

’b--’)

B.257 ax.plot(Llist [:20], [gci + covar [0,0]] * len(gc [:20]) ,

’b--’)

B.258 ax.set_xlabel(r’\textbf{System size} $L$’)

B.259 ax.set_ylabel(r’\textbf{Critical field} $g_c$’)

B.260 ax.set_xscale(’log’)

B.261

B.262 plt.legend(loc=’lower right’)

B.263 plt.savefig("01 _Ising_FSS.pdf")

B.264

B.265 return

B.266

B.267

B.268 def fit_func(ll , gc , nu):

B.269 """

B.270 Fitting functions for the finite size scaling.

B.271
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B.272 ** Arguments **

B.273

B.274 ll : int

B.275 System size.

B.276

B.277 gc : float

B.278 Value for the critical point to be fitted.

B.279

B.280 nu : float

B.281 Value of the critical exponent to be fitted.

B.282 """

B.283 return gc - ll**(-1 / nu)

B.284

B.285

B.286 def error_entropy(Out0 , Out1):

B.287 """

B.288 Calculate the error of the bond entropy of the ground

state with the

B.289 results of the ground state and first excited state.

B.290

B.291 ** Arguments **

B.292

B.293 Out0 : dictionary

B.294 containing the results of the ground state as

dictionary.

B.295

B.296 Out1 : dictionary
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B.297 containing the results of the first excited state

as dictionary.

B.298 """

B.299 gap = Out1[’energy ’] - Out0[’energy ’]

B.300 coeff = np.sqrt(2 * Out0[’variance ’]) / gap

B.301 dim = Out0[’L’] // 2

B.302

B.303 if(coeff > 1 / np.exp (1)): return np.nan

B.304

B.305 return coeff * (dim * np.log (2) - np.log(coeff))

B.306

B.307

B.308 def surface_plot_bond_entropy(xgrid , ygrid , data):

B.309 """

B.310 A general 3d plot used to plot the bond entropy.

B.311

B.312 ** Arguments **

B.313

B.314 xgrid : numpy array (1D)

B.315 Contains the data points for the first axis.

B.316 Log10 is applied to this axis.

B.317

B.318 ygrid : numpy array (1D)

B.319 Contains the data points for the second axis.

B.320

B.321 data : numpy 2d array

B.322 Contains the values of the z-axis.

B.323 """
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B.324 # Meshgrid (logrithmic over system size)

B.325 xm , ym = np.meshgrid(np.log10(xgrid), ygrid)

B.326

B.327 fig = plt.figure ()

B.328 ax = fig.add_subplot (111, projection=’3d’)

B.329 surf = ax.plot_surface(xm, ym, np.transpose(data),

B.330 rstride=1, cstride=1,

B.331 cmap=cm.jet ,

B.332 linewidth=0, antialiased=False)

B.333

B.334 ax.set_xlabel(r’\textbf{Size} $\log_ {10}(L)$’,

labelpad =20.0)

B.335 ax.set_ylabel(r’\textbf{External field} $g$’, labelpad

=15.0)

B.336 ax.set_zlabel(r’\textbf{Bond entropy} $S$’, labelpad

=10.0)

B.337 ax.view_init(elev=35, azim =-160)

B.338

B.339 cbar = plt.colorbar(surf , shrink =0.8)

B.340 cbar.set_label(r’\textbf{Bond entropy} $S$’)

B.341

B.342 plt.tight_layout(pad =1.5)

B.343 plt.savefig(’01 _Ising_BondEntropy.pdf’)

B.344

B.345 return

B.346

B.347

B.348 def surface_errplot_bond_entropy(xgrid , ygrid , data):
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B.349 """

B.350 A general 3d plot used to plot the error of the bond

entropy.

B.351

B.352 ** Arguments **

B.353

B.354 xgrid : numpy array (1D)

B.355 Contains the data points for the first axis.

B.356 Log10 is applied to this axis.

B.357

B.358 ygrid : numpy array (1D)

B.359 Contains the data points for the second axis.

B.360

B.361 data : numpy 2d array

B.362 Contains the values of the z-axis. Log10 is

applied

B.363 to these values.

B.364 """

B.365 # Meshgrid (logrithmic over system size)

B.366 xm , ym = np.meshgrid(np.log10(xgrid), ygrid)

B.367

B.368 fig = plt.figure ()

B.369 ax = fig.add_subplot (111, projection=’3d’)

B.370 surf = ax.plot_surface(xm , ym , np.transpose(np.log10(

data)),

B.371 rstride=1, cstride=1,

B.372 cmap=cm.jet ,

B.373 linewidth=0, antialiased=False)
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B.374

B.375 ax.set_xlabel(r’\textbf{System size} $\log_ {10}(L)$’,

labelpad =20.0)

B.376 ax.set_ylabel(r’\textbf{External field} $g$’, labelpad

=15.0)

B.377 ax.set_zlabel(r’\textbf{Error bound bond entropy} $\

log_ {10}(\ epsilon_{S})$’, labelpad =10.0)

B.378

B.379 cbar = plt.colorbar(surf)

B.380 cbar.set_label(r’\textbf{Error bound bond entropy} $\

log_ {10}(\ epsilon_{S})$’)

B.381

B.382 plt.savefig("01 _Ising_ErrBondEntropy.pdf",

bbobx_inches="tight")

B.383

B.384 return

B.385

B.386

B.387 def plot_scaling_filesize(Ls , filesize , bonddims):

B.388 """

B.389 Plot the filesize of a ground state as a function of

the

B.390 system size.

B.391

B.392 ** Arguments **

B.393

B.394 Ls : list

B.395 Contains the list of different system sizes.
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B.396

B.397 filesize : list

B.398 Contains the corresponding filesize at each

B.399 system size.

B.400

B.401 bonddims : list

B.402 Contains the information about the maximal

B.403 bond dimension used for a simulation.

B.404 """

B.405

B.406 fig = plt.figure ()

B.407 ax = fig.add_subplot (111)

B.408 ax.plot(Ls, filesize , ’bo -’)

B.409 for elem in ax.get_yticklabels ():

B.410 elem.set_color(’b’)

B.411

B.412 axo = ax.twinx()

B.413 axo.plot(Ls , bonddims , ’ro --’)

B.414 for elem in axo.get_yticklabels ():

B.415 elem.set_color(’r’)

B.416 axo.set_ylim ([0, 82])

B.417

B.418 ax.set_xlabel(r’\textbf{System size} $L$’)

B.419 ax.tick_params(direction=’out’, pad =2)

B.420

B.421 ax.set_ylabel(r’\textbf{File size} $S_{\ mathrm{MB}}$’,

color=’b’)
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B.422 axo.set_ylabel(r’\textbf{Bond dimension} $\chi$’,

color=’r’)

B.423

B.424 plt.tight_layout(pad =0.2)

B.425 plt.savefig(’C2_ScalingFile.pdf’)

B.426

B.427 return

B.428

B.429

B.430 def plot_scaling_runtimes(Ls , runtimes , bonddims):

B.431 """

B.432 Plot the runtimes as a function of the system size.

B.433

B.434 ** Arguments **

B.435

B.436 Ls : list

B.437 Contains the list of different system sizes.

B.438

B.439 runtimes : list

B.440 Contains the corresponding runtimes at each

B.441 system size.

B.442

B.443 bonddims : list

B.444 Contains the information about the maximal

B.445 bond dimension used for a simulation.

B.446 """

B.447 fig = plt.figure ()

B.448 ax = fig.add_subplot (111)
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B.449 ax.plot(Ls , runtimes , ’bo -’)

B.450 for elem in ax.get_yticklabels ():

B.451 elem.set_color(’b’)

B.452

B.453 axo = ax.twinx()

B.454 axo.plot(Ls , bonddims , ’ro --’)

B.455 for elem in axo.get_yticklabels ():

B.456 elem.set_color(’r’)

B.457 axo.set_ylim ([0, 82])

B.458

B.459 ax.set_xlabel(r’\textbf{System size} $L$’)

B.460 ax.tick_params(direction=’out’, pad =2)

B.461

B.462 ax.set_ylabel(r’\textbf{CPU time} $T_{\ mathrm{CPU}} /

\mathrm{s}$’, color=’b’)

B.463 axo.set_ylabel(r’\textbf{Bond dimension} $\chi$’,

color=’r’)

B.464

B.465 plt.tight_layout(pad =0.2)

B.466 plt.savefig(’C2_ScalingTime.pdf’)

B.467

B.468 return

B.469

B.470

B.471 def read_hashes(param):

B.472 """

B.473 Return mapping from names to hash to read file size.

B.474
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B.475 ** Arguments **

B.476

B.477 param : dict

B.478 example dictionary to get name of output folder

etc.

B.479 """

B.480 out = param[’Output_Directory ’]

B.481 jobid = param[’job_ID ’]

B.482

B.483 fh = open(out + jobid + ’_static_mapping.dat’, ’r’)

B.484 dic = {}

B.485

B.486 for line in fh:

B.487 key , val = line.replace(’\n’, ’’).split()

B.488 dic[key] = val

B.489

B.490 return dic

B.491

B.492

B.493 if(__name__ == "__main__"):

B.494 args = {"PostProcess" : "F"}

B.495

B.496 for elem in sys.argv [1:]:

B.497 try:

B.498 key , val = elem.replace("--", "").split("=")

B.499 args[key] = val

B.500 except:

B.501 pass
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B.502

B.503 args["PostProcess"] = ((args["PostProcess"] == "T") or

B.504 (args["PostProcess"] == "True")

)

B.505 main(args["PostProcess"])
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Source Code B.2: Example of the long-range Ising model.

B.1 import MPSPyLib as mps

B.2 import numpy as np

B.3 import sys

B.4 import os

B.5 import matplotlib.pyplot as plt

B.6 from mpl_toolkits.mplot3d.axes3d import Axes3D

B.7 from matplotlib import cm

B.8 from copy import deepcopy

B.9

B.10

B.11 def main(PostProcess):

B.12 """

B.13 Main method running simulation to find excited

B.14 states for the long range quantum Ising model.

B.15 Either running simulations with MPI or doing

B.16 evaluation on a single core. It produces the

B.17 following plot , but does not contain the

B.18 plots for the error analysis agains the

B.19 simulations with Z2 symmetry.

B.20
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B.21 1) Energy gap for the long -range Ising model , see

B.22 Figure 8(a).

B.23

B.24 ** Arguments **

B.25

B.26 PostProcess : Boolean (here)

B.27 When PostProcess is ‘‘True ‘‘, then data for

B.28 the level is evaluated. Otherwise simulation

B.29 is executed (with MPI). In order to pass

B.30 arguments on the command line use ‘‘T‘‘ for

B.31 ‘‘True ‘‘ and ‘‘F‘‘ for ‘‘False ‘‘.

B.32 """

B.33 # overall energy

B.34 J = 1.0

B.35

B.36 # Length of the systems / number of excited states

B.37 ll = 128

B.38 nl = 1

B.39 ne = 4

B.40

B.41 # Grid external field , interaction strength/decay

B.42 ng = 25

B.43 glist = np.linspace (0.7, 1.7, ng)

B.44

B.45 nalpha = 25

B.46 alphalist = np.linspace (2.0, 4.0, nalpha)

B.47

B.48 # Build operators (start with spin operators ,
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B.49 # get sigma_{x,z})

B.50 # ---------------

B.51

B.52 Operators = mps.BuildSpinOperators(spin =0.5)

B.53 Operators[’sx’] = Operators[’splus ’] \

B.54 + Operators[’sminus ’]

B.55 Operators[’sz’] *= 2

B.56

B.57 # Define Observables

B.58 # ------------------

B.59

B.60 myObservables = mps.Observables(Operators)

B.61

B.62 # Site terms

B.63 myObservables.AddObservable(’site’, ’sz’, ’z’)

B.64

B.65 # correlation functions

B.66 myObservables.AddObservable(’corr’, [’sz’, ’sz’],

B.67 ’zz’)

B.68 myObservables.SpecifyCorrelationRange (1000)

B.69

B.70 # Specify convergence parameters

B.71 # ------------------------------

B.72

B.73 nc = 2

B.74 conv = mps.MPSConvParam(max_bond_dimension =40,

B.75 variance_tol =1e-10,

B.76 local_tol =1e-10,
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B.77 max_num_sweeps =4)

B.78 modparam = [’max_bond_dimension ’, ’max_num_sweeps ’]

B.79 conv.AddModifiedConvergenceParameters (0, modparam ,

B.80 [80, 4])

B.81

B.82 # Create list of simulations and Hamitlonians

B.83 # -------------------------------------------

B.84

B.85 params = []

B.86 Hlist = []

B.87

B.88 for jj in range(nalpha):

B.89 alpha = alphalist[jj]

B.90

B.91 # Define the Hamitlonian

B.92 # ----------------------

B.93

B.94 H = mps.MPO(Operators , PostProcess=PostProcess)

B.95 invalpha = lambda x: 1/(x**alpha)

B.96 H.AddMPOTerm(’InfiniteFunction ’, [’sz’,’sz’],

B.97 hparam=’J’, weight =-1.0,

B.98 func=invalpha , L=ll , tol=1e-10)

B.99 H.AddMPOTerm(’site’, ’sx’, hparam=’g’,

B.100 weight =-1.0)

B.101

B.102 for gg in glist:

B.103

B.104 Hlist.append(deepcopy(H))
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B.105

B.106 params.append ({

B.107 ’simtype ’ : ’Finite ’,

B.108 # Filenames and directories

B.109 ’job_ID ’ : ’sim_02_lrising_L %04d’%ll ,

B.110 ’unique_ID ’ : ’_alpha %3.6F’%alpha \

B.111 + ’_g%3.6F’%gg ,

B.112

B.113 ’Write_Directory ’ : ’TMP_02_LRISING/’,

B.114 ’Output_Directory ’ : ’

OUTPUTS_02_LRISING/’,

B.115 # System size and Hamiltonian

B.116 # parameters

B.117 ’L’ : ll ,

B.118 ’J’ : J,

B.119 ’g’ : gg ,

B.120 ’alpha’ : alpha ,

B.121 # Other parameters

B.122 ’MPSConvergenceParameters ’ : conv ,

B.123 ’MPSObservables ’ : myObservables ,

B.124 # eMPS

B.125 ’n_excited_states ’ : ne ,

B.126 ’eMPSConvergenceParameters ’ : conv ,

B.127 ’eMPSObservables ’ : myObservables

B.128 })

B.129

B.130 if(not PostProcess):

B.131 # Generate sbatch script for CSM cluster
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B.132 # --------------------------------------

B.133

B.134 hpcdic = {’queueing ’ : ’slurm’,

B.135 ’partition ’ : ’lcarr’,

B.136 ’time’ : ’143:59:59 ’,

B.137 ’nodes’ : [’084’, ’085’, ’086’],

B.138 ’ThisFileName ’ : ’02 _LRIsing.py’,

B.139 ’mpi’ : ’srun’},

B.140

B.141 MainFiles = mps.WriteMPSParallelFiles(

B.142 params , Operators , Hlist , hpcdic

B.143 PostProcess=PostProcess)

B.144

B.145 return

B.146

B.147 # Evaluation of the simulations

B.148 # =============================

B.149

B.150 base = ’OUTPUTS_02_LRISING/’

B.151

B.152 if(os.path.isfile(base + "02 _LRIsing_Energies.npy")):

B.153 energies = np.load(base + "02 _LRIsing_Energies.npy

")

B.154 else:

B.155 MainFiles = mps.WriteFiles(params , Operators ,

Hlist ,

B.156 PostProcess=True)

B.157 Outputs = mps.ReadStaticObservables(params)
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B.158

B.159 # Create array for values of bond entropy

B.160 energies = np.zeros ((nl, ng, nalpha , ne + 1, nc),

dtype=float)

B.161

B.162 def unravel_idx(nl , ng , nalpha , ne , nc):

B.163 idx = -1

B.164 for ii in range(nl):

B.165 for jj in range(ng):

B.166 for kk in range(nalpha):

B.167 for ee in range(ne + 1):

B.168 for cc in range(nc):

B.169 idx += 1

B.170 yield idx , ii, jj, \

B.171 kk, ee, cc

B.172

B.173 for idx , ii , jj , kk , ee , cc in unravel_idx(nl , ng ,

nalpha , ne , nc):

B.174 Output = Outputs[idx]

B.175 if(cc == 0):

B.176 print(Output[’energy ’], ee,

B.177 Output[’state’],

B.178 Output[’convergence_parameter ’])

B.179 energies[ii, jj, kk, ee, cc] = Output[’energy ’

]

B.180

B.181 np.save(base + "02 _LRIsing_Energies.npy", energies

)
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B.182

B.183 # Sort energies if flag

B.184 sort = True

B.185 if(sort):

B.186 for ii in range(nl):

B.187 for jj in range(ng):

B.188 for kk in range(nalpha):

B.189 for cc in range(nc):

B.190 idx = energies[ii , jj , kk , :, cc].

argsort ()

B.191 energies[ii, jj, kk, :, cc] =

energies[ii, jj, kk, idx , cc]

B.192

B.193 # Specify plotted convergence parameters

B.194 pnc = nc - 1

B.195

B.196 diff01 = energies[0, :, :, 1, pnc] - energies[0, :, :,

0, pnc]

B.197 diff02 = energies[0, :, :, 2, pnc] - energies[0, :, :,

0, pnc]

B.198 diff12 = energies[0, :, :, 2, pnc] - energies[0, :, :,

1, pnc]

B.199

B.200 # Surface plot for bond entropy

B.201 # -----------------------------

B.202

B.203 # Meshgrid (logrithmic over system size)

B.204 xm , ym = np.meshgrid(glist , alphalist)
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B.205

B.206 # Use tex fonts

B.207 plt.rc(’text’, usetex=True)

B.208 plt.rc(’font’, family=’serif’, size =22)

B.209

B.210 plot_gaps_surface(xm, ym, diff01 , diff02)

B.211

B.212 return

B.213

B.214

B.215 def plot_gaps_surface(xm , ym , diff01 , diff02):

B.216 fig = plt.figure ()

B.217 ax = fig.add_subplot (111, projection=’3d’)

B.218

B.219 vmin = min(np.min(diff01), np.min(diff02))

B.220 vmax = max(np.max(diff01), np.max(diff02))

B.221

B.222 surf01 = ax.plot_surface(xm , ym , np.transpose(diff01),

B.223 rstride=1, cstride=1, vmin=

vmin , vmax=vmax ,

B.224 cmap=cm.jet ,#coolwarm ,

B.225 linewidth =0, antialiased=

False)

B.226 surf02 = ax.plot_surface(xm , ym , np.transpose(diff02),

B.227 rstride=1, cstride=1, vmin=

vmin , vmax=vmax ,

B.228 cmap=cm.jet ,#coolwarm ,
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B.229 linewidth =0, antialiased=

False)

B.230

B.231 ax.set_xlabel(r’\textbf{External field} $g$’, labelpad

=15.0)

B.232 ax.set_ylabel(r’\textbf{Power law decay} $\alpha$ ’,

labelpad =15.0)

B.233 ax.set_zlabel(r’\textbf{Energy gap} $\Delta E$’,

labelpad =10.0)

B.234

B.235 cbar = plt.colorbar(surf01 , shrink =0.8, pad =0.07)

B.236

B.237 plt.tight_layout(pad =2.5)

B.238 plt.savefig(’02 _LRIsing_Gaps.pdf’)

B.239

B.240 return

B.241

B.242

B.243 if(__name__ == "__main__"):

B.244 args = {"PostProcess" : "F"}

B.245

B.246 for elem in sys.argv [1:]:

B.247 try:

B.248 key , val = elem.replace("--", "").split("=")

B.249 args[key] = val

B.250 except:

B.251 pass

B.252
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B.253 args["PostProcess"] = ((args["PostProcess"] == "T") or

B.254 (args["PostProcess"] == "True")

)

B.255 main(args["PostProcess"])
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Source Code B.3: Example of dynamics in the Bose-Hubbard model.

B.1 import MPSPyLib as mps

B.2 import numpy as np

B.3 import sys

B.4 import os.path

B.5 import matplotlib.pyplot as plt

B.6 from matplotlib import cm

B.7

B.8

B.9 def main(PostProcess):

B.10 """

B.11 Main method to simulate the Bose -Hubbard model in

B.12 a rotating saddle point potential. The script

B.13 reproduces Figure 11(b).

B.14

B.15 ** Arguments **

B.16

B.17 PostProcess : Boolean (here)

B.18 When PostProcess is ‘‘True ‘‘, then data for

B.19 the level is evaluated. Otherwise simulation

B.20 is executed (with MPI). In order to pass

B.21 arguments on the command line use ‘‘T‘‘ for
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B.22 ‘‘True ‘‘ and ‘‘F‘‘ for ‘‘False ‘‘.

B.23 """

B.24 # Build operators

B.25 # ---------------

B.26

B.27 Operators = mps.BuildBoseOperators (6)

B.28 Operators[’interaction ’] = \

B.29 0.5 * (np.dot(Operators[’nbtotal ’],

B.30 Operators[’nbtotal ’])

B.31 - Operators[’nbtotal ’])

B.32

B.33 # Define Hamiltonian / system settings

B.34 # ------------------------------------

B.35

B.36 # system size and filling

B.37 L = 30

B.38 fill = 20

B.39

B.40 H = mps.MPO(Operators)

B.41 H.AddMPOTerm(’bond’, [’bdagger ’, ’b’],

B.42 hparam=’t’, weight =-1.0)

B.43 H.AddMPOTerm(’site’, ’interaction ’,

B.44 hparam=’U’, weight =1.0)

B.45 H.AddMPOTerm(’site’, ’nbtotal ’,

B.46 hparam=’Vt’, weight =1.0)

B.47

B.48 # accelaration of rotating potential

B.49 # (t=100 39.8 rotations , t=101: 40.6 rotations)
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B.50 alpha = 0.05

B.51

B.52 # and scaling prefactor c * (x**2 - y**2)

B.53 c = 0.01

B.54

B.55 # overall energy scale

B.56 U = 1.0

B.57

B.58 # choose different tunneling strengths

B.59 nt = 11

B.60 ts = np.linspace (0.0, 0.5, nt)

B.61

B.62 # Define observables

B.63 # ------------------

B.64

B.65 myObs = mps.Observables(Operators)

B.66 myObs.AddObservable(’site’, ’nbtotal ’, ’n’)

B.67 myObs.AddObservable(’corr’, [’b’, ’bdagger ’],

B.68 ’spdm’)

B.69

B.70 # Specify convergence parameters

B.71 # ------------------------------

B.72

B.73 conv = mps.MPSConvParam(max_bond_dimension =60)

B.74

B.75 # Define quench function

B.76 def Vt(t, c=c, alpha=alpha , L=L):

B.77 # Grid with particles symmetric around 0
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B.78 # at unit distance

B.79 grid = np.linspace(-L / 2 + 0.5,

B.80 L / 2 - 0.5, L)

B.81

B.82 phit = np.pi / 4 + 0.5 * alpha * t**2

B.83

B.84 return c * ((grid * np.cos(phit))**2

B.85 - (grid * np.sin(phit))**2)

B.86

B.87 tconv = mps.TEBDConvParam(max_bond_dimension =60)

B.88 Quench = mps.QuenchList(H)

B.89 Quench.AddQuench ([’Vt’], 100.0, 0.01, [Vt],

B.90 stepsforoutput =10,

B.91 ConvergenceParameters=tconv)

B.92

B.93 params = []

B.94 for ii in range(nt):

B.95 # Get tunneling parameters

B.96 tt = ts[ii]

B.97

B.98 params.append ({

B.99 ’simtype ’ : ’Finite ’,

B.100 # Directories

B.101 ’job_ID ’ : ’BoseHubbard_RotSaddle ’,

B.102 ’unique_ID ’ : ’_tau %3.6f’%(tt),

B.103 ’Write_Directory ’ : ’TMP_03_Hubbard/’,

B.104 ’Output_Directory ’ : ’OUTPUTS_03_Hubbard/’,

B.105 # System parameters
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B.106 ’L’ : L,

B.107 ’U’ : U,

B.108 ’t’ : tt,

B.109 ’Vt’ : np.zeros ((L)),

B.110 ’MPSConvergenceParameters ’ : conv ,

B.111 ’Abelian_generators ’ : [’nbtotal ’],

B.112 ’Abelian_quantum_numbers ’ : [fill],

B.113 ’MPSObservables ’ : myObs ,

B.114 ’Quenches ’ : Quench ,

B.115 ’DynamicsObservables ’ : myObs ,

B.116 # Other settings

B.117 ’logfile ’ : True

B.118 })

B.119

B.120 if(not PostProcess):

B.121 # Run simulations

B.122 # ---------------

B.123

B.124 hpcdic = {’queueing ’ : ’slurm’,

B.125 ’partition ’ : ’lcarr’,

B.126 ’time’ : ’143:59:59 ’,

B.127 ’nodes’ : [’026’, ’027’],

B.128 ’ThisFileName ’ : ’05 _RotSaddle.py’,

B.129 ’mpi’ : ’srun’}

B.130

B.131 MainFiles = mps.WriteMPSParallelFiles(

B.132 params , Operators , H, hpcdic ,

B.133 PostProcess=PostProcess)
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B.134

B.135 return

B.136

B.137 # Post Process

B.138 # ------------

B.139

B.140 # Number of measurements in time evolution

B.141 nm = 1000

B.142

B.143 if(os.path.isfile("OUTPUTS_03_Hubbard/nstdxt.npy")):

B.144 # Data has been saved in a previous post -

processing

B.145 nstdxt = np.load("OUTPUTS_03_Hubbard/nstdxt.npy")

B.146 else:

B.147 # Read data from Fortran output

B.148 MainFiles = mps.WriteFiles(params , Operators , H,

B.149 PostProcess=PostProcess

)

B.150 Outputs = mps.ReadDynamicObservables(params)

B.151

B.152 # Array to save standard deviation on particle

number over space for each t

B.153 nstdx = np.zeros((nt , nm))

B.154

B.155 for ii in range(nt):

B.156 for tt in range(nm):

B.157 nstdx[ii, tt] = np.std(Outputs[ii][tt][’n’

])
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B.158

B.159 # Get a std deviation in time for 50 subsequent

measurements

B.160 nstdxt = np.zeros((nt , nm - 50))

B.161

B.162 for ii in range(nt):

B.163 for jj in range(50, nm):

B.164 nstdxt[ii, jj - 50] = np.std(nstdx[ii , jj

- 50:jj])

B.165

B.166 np.save("OUTPUTS_03_Hubbard/nstdxt.npy", nstdxt)

B.167

B.168 # Plotting

B.169 # --------

B.170

B.171 plt.rc(’text’, usetex=True)

B.172 plt.rc(’font’, family=’serif’, size =22)

B.173

B.174 color = cm.rainbow(np.linspace(0, 1, ts.shape [0]))

B.175 mi = np.min(np.array(ts))

B.176 ma = np.max(np.array(ts))

B.177 clabel = r’\textbf{Tunneling} $J$’

B.178 cticks = np.linspace(mi , ma , 6)

B.179 cbarinfo = plt.contourf ([[0, 0], [0, 0]],

B.180 np.linspace(mi , ma , 101), cmap

=cm.rainbow)

B.181 plt.clf()

B.182
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B.183 fig = plt.figure ()

B.184 ax = fig.add_subplot (111)

B.185

B.186 for ii in range(nt):

B.187 ax.plot(np.linspace (0.5, 100.0, nm - 50), nstdxt[

ii], c=color[ii])

B.188

B.189 cbar = plt.colorbar(cbarinfo)

B.190 cbar.set_ticks(cticks)

B.191 cbar.set_label(clabel)

B.192

B.193 ax.set_xlabel(r’\textbf{Time} $t$’)

B.194 ax.set_ylabel(r’\textbf{Standard deviation} $\sigma_{t

}$’)

B.195

B.196 plt.tight_layout(pad =0.2)

B.197 plt.savefig(’05 _RotSaddle_std_txn.pdf’)

B.198

B.199 return

B.200

B.201

B.202 if(__name__ == "__main__"):

B.203 args = {"PostProcess" : "F"}

B.204

B.205 for elem in sys.argv [1:]:

B.206 try:

B.207 key , val = elem.replace("--", "").split("=")

B.208 args[key] = val

Source Code B.3 Continued

440



B.209 except:

B.210 pass

B.211

B.212 args["PostProcess"] = ((args["PostProcess"] == "T") or

B.213 (args["PostProcess"] == "True")

)

B.214 main(args["PostProcess"])
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