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ABSTRACT

We consider the scattering of a Bose-Einstein condensate on a finite rectangular

potential barrier. The nonlinear Schrödinger equation models the mean-field inter-

actions of a Bose-Einstein condensate. The nonlinearity in this problem gives rise

to several interesting physical and mathematical features which are not present in

the well-known linear problem. In some strongly nonlinear systems, we observe the

appearance of localized solitons in the condensate. Such solitons do not appear in the

linear scattering case. Also, for given input parameters, the behavior of the conden-

sate transmission across the barrier is split into two different regimes. Bifurcations

in the transmission resonances occur in the transition region between these regimes.

In this work, we rigorously develop a completely general set of stationary-state so-

lutions to the nonlinear Schrödinger equation. These solutions are used to numerically

and analytically model the scattering of the Bose-Einstein condensate. In particu-

lar, we consider the transmission of the condensate across the potential barrier, with

special focus on the resonances, where transmission is equal to unity. The nonlinear-

ity requires that we use a different definition for transmission than the conventional

definition of the linear scattering problem. As a result, the physical interpretation

of the transmission changes and different behavior is observed. The character of the

transmission plot depends on the size of the potential barrier and the strength of the

nonlinearity.

We present density, transmission, and resonance plots for several physical cases.
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We consider the new features and interpretations arising from nonlinearity and ana-

lyze the dependence of transmission and resonances on input parameters. Such new

features provide many exciting possibilities for additional research. In addition, we

discuss the connection between our methods and recent experiments. We conclude

by noting future possibilities for extension and generalization of this project.
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Chapter 1

INTRODUCTION

The nonlinear Schrödinger equation (NLS), also known as the Gross-Pitaevskii

equation, models the mean-field interactions of a Bose-Einstein condensate (BEC) at

low temperatures [1, 2, 3, 4] in the presence of an external potential. The Gross-

Pitaevskii equation may also be used to model ultracold mixtures of gaseous bosons

and fermions [5, 6, 7], as well as superfluids more generally [8, 9].

1.1 Bose-Einstein Condensation

The condensation of a monatomic bosonic gas at ultracold temperatures, known

today as the BEC, was predicted theoretically in 1925 by Einstein [10] and Bose

[11]. However, BECs were not realized experimentally until 1995 [1]. BECs are

formed experimentally by first cooling atoms in a magnetic trap produced by laser

beams, then allowing the trapped atoms to cool further by evaporative methods

[12, 13]. The hotter atoms escape the system, and at the end of the cooling process,

a dilute, and therefore weakly-interacting, gas of ultracold atoms remains [1]. When

the temperature of the atoms drops below the critical temperature obtained from the

DeBroglie wavelength, they condense into the lowest-energy quantum state, resulting

in a macroscopically observable occupation of this state [1]. Alkali metal atoms, such

as rubidium, lithium, and sodium, are particularly useful for BEC experiments due

to their internal energy-level structure, which enables the atoms to be manipulated

with readily available lasers and cooled to very low temperatures [14, 12]. BECs may
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also be observed in hydrogen [15]; however, the condensation process in this case is

limited due to the recombination of atoms into H2 molecules [12]. A variety of other

elements have been Bose-condensed, including potassium [16], ytterbium [17], and

metastable helium [18].

1.2 NLS Solution and Applications

In this work, we consider the steady-state transmission behavior of nonlinear

waves of a BEC incident on a potential barrier. We assume that the BEC is confined

in the transverse directions by a harmonic oscillator trap of frequency ω, and that its

behavior is quasi-one-dimensional; that is, the longitudinal direction of the BEC is

much larger than the transverse directions and the healing length ξ, and the chemical

potential is much larger than the transverse excitation energy. The healing length ξ

is given by

ξ2 =
1

8πn̄as
, (1.1)

where as is the s-wave scattering length of atoms in the BEC, and n̄ is the average

linear number density. For 87Rb, as = 4.76 nm [19].

Further, we assume that the width of the potential barrier is much less than the

longitudinal dimension of the BEC, so that the system is effectively longitudinally

infinite and far-field effects may be neglected. This physical situation can be exper-

imentally produced; see, for example, Engels & Atherton [20]. In this experiment,

a potential barrier was produced by an elliptical laser beam. The beam was then

dragged through a quasi-one-dimensional 87Rb BEC at various speeds. For inter-

mediate drag speeds, Engels & Atherton observed the formation of dark solitons in

the condensate. In the stationary frame of the laser, we can search for steady-state
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solitons by our methods. Our study may also be applied to atom lasers [21, 22, 23, 24].

The one-dimensional NLS is

[
− ~2

2m

∂2

∂x2
+ g |Ψ(x, t)|2 + V (x)

]
Ψ(x, t) = i~

∂

∂t
Ψ(x, t), (1.2)

where ~ is the reduced Planck’s constant, m is the atomic mass, and Ψ(x, t) is the

wave function. Also, g is the interaction strength or nonlinearity, and V (x) is the

potential. The nonlinearity is given by

g =
4π~2as
m

, (1.3)

where as is the s-wave scattering length for binary elastic collisions. This parameter

may be negative or positive, corresponding to attractive or repulsive atomic interac-

tions respectively. Our formal mathematics are applicable to both cases; however, in

our numerical studies, we consider only repulsive interactions. Repulsive interactions

are more common in experimental condensates, including the 87Rb BEC used in the

Engels & Atherton experiment [19, 20].

Nondimensionalizing (1.2) by scaling everything to harmonic oscillator units

leads to the dimensionless or scaled NLS,

[
−1

2

∂2

∂x̃2
+ g̃

∣∣∣Ψ̃(x̃, t̃)
∣∣∣2 + Ṽ (x̃)

]
Ψ̃(x̃, t̃) = i

∂

∂t̃
Ψ̃(x̃, t̃), (1.4)

where a tilde denotes a dimensionless quantity. In further discussion, we omit the

tildes in the use of Eq. (1.4) except when we need to distinguish between dimension-
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less quantities and quantities with units. The relationships between the dimensional

quantities in Eq. (1.2) and the dimensionless quantities in Eq. (1.4) are given in

Chapter 2.

In [25], the stationary-state solution to Eq. (1.4) is given for constant potential

V (x) = V0. The constant-potential solution is then applied to a potential step at the

origin,

V (x) = V0Θ(x), (1.5)

where Θ(x) is the Heaviside step function. The solution is also applied to a delta-

function potential at the origin. Results are given for the density and phase of the

BEC, and we discuss the relationship between phase and velocity.

In this work, we fully develop the stationary-state solutions, first for constant

potentials, and then for piecewise-constant potentials. The derivations presented here

are much more general and mathematically rigorous than those given in previous stud-

ies. We develop the stationary-state solutions as generally as possible, considering

the possible domain of each parameter appearing in the final solution. In addition,

we maintain mathematical rigor, making as few assumptions as are reasonable. In

this way, we are able to state the most general set of stationary-state solutions.

As an application of our general solution, we treat a piecewise-constant potential

barrier of the form

V (x) =


0, x < x1,

V0, x1 < x < x2,

0, x2 < x,

(1.6)
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where V0 ∈ R. The barrier can have any width and height, with the boundaries x1

and x2 located at any positions along the x-axis. We apply this fully general solution

to a numerical study of the transmission of the BEC across the barrier. The solution

and code are easily generalized to arbitrary piecewise-constant potentials with a finite

number of jump discontinuities. We consider only the barrier (1.6) in this work.

In cases when the potential V (x) is constant or piecewise-constant, Eq. (1.4)

can be solved analytically for stationary states of the form [25]

Ψ(x, t) =
√
ρ(x) ei[φ(x)−µt], (1.7)

where ρ is the linear number density of particles in the BEC, φ is the phase, and µ

is the eigenvalue or chemical potential. In Eq. (1.7), we have written the complex

wave function Ψ in polar form. Thus ρ(x) and φ(x) may be taken to be real, with

ρ(x) ≥ 0, without loss of generality; see Section 2.2.1 for formal discussion. In this

interpretation, ρ ≥ 0 is also a physical necessity, since ρ represents the particle den-

sity. We will show in Section 2.2.3 that µ must also be a real number.

We consider a rectangular potential barrier of height V0 ≥ 0, with boundaries

at x1 and x2, as shown in Fig. 1.1. Our methods are also applicable to a potential

well, V0 < 0; however, we restrict ourselves to the study of scattering from a positive

barrier in this work.
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Figure 1.1: Potential barrier.

In each region, the potential V (x) is constant, and we can show that the density

has the form

ρ(x) = A sn2(bx+ δ0|m) +B, (1.8)

where A is the density scaling, b is the translational scaling, m is the elliptic parame-

ter, and δ0 and B are offsets [25, 26]. The function sn is one of twelve Jacobi elliptic

functions, which are discussed further in Appendix A. By making certain constraints

on A, B, and δ0, we can restrict ourselves to physically relevant solutions, as we dis-

cuss in Section 2.3.2.

When the parameter m is between 0 and 1, the Jacobi elliptic functions can

be interpreted geometrically as the elliptical analog of the trigonometric functions

[27]. In this interpretation, the square root of the elliptic parameter m represents

the eccentricity of an ellipse. In the limit that m → 0, the Jacobi elliptic functions

become the trigonometric functions; in the limit m→ 1, they become the hyperbolic

functions. For m /∈ [0, 1], transformations exist which can be used to write the Jacobi
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elliptic functions in terms of functions whose parameter lies in [0, 1]. Therefore, we

need not consider parameter values outside [0, 1]. These transformations are given in

Appendix A. We will also show in Section 2.3.1 that m ∈ R.

If a subset of parameter values is known for the potential-barrier solution, then

boundary conditions can be used to find the values of all other parameters. Therefore,

we can obtain a complete analytical solution for the particle density over the entire

domain. For instance, if we completely characterize an atom laser on such a barrier,

the steady-state physical solution is uniquely determined.

In particular, by fixing the parameters in one region of Fig. 1.1, we may find the

values of all parameters in the other two regions [25]. Here, we take all parameters in

Region I as known values and use these to find values in regions II and III. An atom

laser beam originates on one side of the barrier, and impinges on the barrier from this

same side. In this sense, the left-hand side of the barrier can be considered as the

“incident” side; however, see the discussions of superposition below and in Section

3.1. By fixing the input parameters on one side of the barrier, we break the right-left

symmetry of the problem.

Due to the nonlinear nature of Eq. (1.4), the superposition principle does not

apply. The wave function cannot be expressed as separate left-traveling and right-

traveling waves. We cannot define an “incident” side of the barrier, and we cannot

distinguish between “incident” and “reflected” waves. Therefore, the transmission

coefficient must be defined differently than the usual convention taken in the case of

the linear Schrödinger equation, when g = 0 in (1.4). This leads to a different physi-
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cal interpretation of the transmission coefficient, and also very different behavior as

compared to the linear case. These considerations are discussed in more detail in

Chapter 3.

We also consider the transmission resonances; that is, parameter values for which

T = 1. We find that the resonances exhibit several different regimes of interesting

behavior, depending on the width of the potential barrier and the magnitude of the

chemical potential of the condensate.

1.3 Previous Work

The solution to the one-dimensional NLS, Eq. (1.4), with constant potential and

repulsive interactions has been explored numerically [28] and analytically [28, 29, 30]

by Carr et al. Attractive interactions, corresponding to negative nonlinearity g, have

also been analytically treated by Carr et al. [31].

A later paper by Seaman et al. [25] extends the constant-potential solution to

a discontinuous potential step at the origin, V = V0Θ(x), and to a delta-function

potential, V = V0δ(x). The delta-function case is found to be similar to the step

case, except that there is a discontinuity in dρ/dx of 4V0ρ(0) at the origin. The delta-

function potential has also been studied by Witthaut et al., along with the delta shell

potential

V (x) =


+∞, x < 0,

λδ(x− a), x ≥ 0,

(1.9)

where a > 0 [26]. The delta potential is useful for the study of bound and scattering

states, while the delta shell is popular for decay studies.
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The potential well, i.e. V0 < 0, has been studied analytically by Carr et al. [32],

for bound states only. Such states take the form of Jacobi elliptic functions, as in the

scattering case; however, the bound states are localized or partially localized. In this

case, experimental parameters may be tuned to achieve different regimes of tunneling.

Ishkhanyan & Krainov have analytically considered reflection from a rectangular

barrier in the limit of very small nonlinearity, g � µ [33]. In this limit, perturbation

theory is used to expand the NLS, and a multi-scale method is applied to find the

solutions. The reflection coefficient R can then be determined by the usual methods

of linear quantum mechanics, decomposing the wave functions in each region into left-

and right-traveling waves via the superposition principle. By extension, the transmis-

sion coefficient T may also be determined via T = 1−R, though this is not considered

in [33].

Engels & Atherton experimentally studied the behavior of a BEC in the presence

of a barrier [20]. In this experiment, the barrier was produced by an elliptical laser

beam, then dragged through the BEC. For intermediate drag speeds, a train of dark

solitons was observed in the presence of the barrier. Such solitons have been produced

by other experimental methods, for example, by merging two coherent BECs [34]. An

experiment by Weller et al. at Heidelberg studied the dynamical behavior and in-

teractions of such solitons [35]. Solitons are localized, persistent, robust nonlinear

structures which appear often in BEC experiments [36, 37]. A key feature of solitons

is that they interact elastically and do not dissipate. In the absence of external effects,

solitons may collide with or pass through one another without changing their shape
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or amplitude [38, 39]. Such behavior was observed in the Heidelberg experiment, and

was found to agree with numerical simulations of NLS solution dynamics [35].

In this work, we generalize and extend the NLS solution for the potential barrier.

We rigorously develop the full set of stationary-state solutions of the form (1.7), with

no assumptions on the relative magnitudes of physical parameters. In particular, we

do not assume g to be small. Therefore, the superposition principle is not valid, or

even approximately valid, except in the linear limit g = 0. We do not use perturbation

theory; rather, we solve the NLS analytically through very general methods. There-

fore our solution set represents the most general set of physically valid stationary-state

solutions, and is applicable to arbitrary piecewise-constant potentials. We determine

the necessary conditions on all parameters in Eqs. (1.4) and (1.8) to yield physically

relevant solutions, though we note that other, mathematically valid solutions exist

outside this parameter space. In our numerical results, we do not consider the subset

of solutions which are mathematically valid, but not relevant to real physical systems.

We determine the transmission coefficient T by numerical integration of the densities

on either side of the barrier, and we analyze the behavior of T and its resonances for

several physical cases. We also present soliton results such as those seen in the Weller

[35] and Engels [20] experiments.
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Chapter 2

FORMAL DERIVATIONS

We begin with the canonical NLS, including units:

[
− ~2

2m

∂2

∂x2
+ g |Ψ(x, t)|2 + V (x)

]
Ψ(x, t) = i~

∂

∂t
Ψ(x, t). (2.1)

Assuming that the BEC is confined by a harmonic oscillator trap of frequency ω in

the transverse directions [20, 25], we rescale Eq. (2.1) according to the harmonic

oscillator length

` =

√
~
mω

. (2.2)

Make the following definitions of unitless quantities:

x̃ =
x

`
, (2.3)

t̃ = ωt, (2.4)

g̃ =
g

~ω`
, (2.5)

Ṽ =
V

~ω,
(2.6)

Ψ̃ = Ψ`1/2. (2.7)
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Multiplying Eq. (2.1) by 1
~ω and replacing partial derivative operators by their equiv-

alents in terms of the dimensionless quantities defined in Eqs. (2.3)–(2.7), we obtain

[
−1

2

∂2

∂x̃2
+

g

~ω
|Ψ|2 + Ṽ

]
Ψ = i

∂

∂t̃
Ψ. (2.8)

Multiply Eq. (2.8) by judicious forms of 1 where units remain:

[
−1

2

∂2

∂x̃2
+

g

~ω
`

`
|Ψ|2 + Ṽ

]
Ψ
`1/2

`1/2
= i

∂

∂t̃
Ψ
`1/2

`1/2
(2.9)

⇒
[
−1

2

∂2

∂x̃2
+ g̃

∣∣∣Ψ̃∣∣∣2 + Ṽ

]
Ψ̃ = i

∂

∂t̃
Ψ̃. (2.10)

Equation (2.10) is the scaled form of the one-dimensional nonlinear Schrödinger equa-

tion.

2.1 Solution of NLS for Constant Potential

In Eq. (1.4), assume that the potential is constant; that is, V = V0. We seek

stationary state solutions of the form (1.7). In the analysis that follows, we assume

that µ ∈ R, g ∈ R, and φ ∈ R. The possibility of complex values will be discussed in

Section 2.2.

Let R(x) :=
√
ρ(x) and substitute this into Eq. (1.4):

−1

2

d2R

dx2
+

1

2

(
dφ

dx

)2

R− 1

2
i

[
2

(
dR

dx

)(
dφ

dx

)
+R

d2φ

dx2

]
+ gR3 + V0R = µR. (2.11)

In Eq. (2.11), we must have R ∈ R and R ≥ 0, since ρ(x) is real and non-negative.

Sign changes are absorbed into the phase, φ(x), in the solution given by Eq. (1.7).
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Equate real and imaginary parts of Eq. (2.11). The real part is

−1

2

d2R

dx2
+

1

2

(
dφ

dx

)2

R + gR3 + V0R = µR, (2.12)

and the imaginary part is

2

(
dR

dx

)(
dφ

dx

)
+R

d2φ

dx2
= 0. (2.13)

Rearranging and integrating Eq. (2.13) yields

dφ

dx
= αR−2 (2.14)

=
α

ρ(x)
, (2.15)

provided that dφ/dx does not vanish, where α is a constant of integration.

Substitute (2.14) into (2.12) and rearrange. This yields

−1

2

(
dR

dx

)(
d2R

dx2

)
=

[
−1

2
α2R−3 − gR3 + (µ− V0)R

]
dR

dx
. (2.16)

We observe that the left-hand side of Eq. (2.16) can be written as an exact derivative:

−1

4

d

dx

[(
dR

dx

)2
]

=

(
−1

2
α2R−3 − gR3 + (µ− V0)R

)
dR

dx
. (2.17)

Integrating Eq. (2.17), rearranging, and substituting for R, we obtain

dρ

dx
= ±2

√
gρ3 − 2(µ− V0)ρ2 + Cρ− α2 , (2.18)

where C is another constant of integration and we have the constraint that the radi-
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cand must be non-negative, since ρ ∈ R⇒ dρ/dx ∈ R.

Rearrange and integrate Eq. (2.18). We obtain

2x+ δ0 = ±
∫

dρ√
gρ3 − 2(µ− V0)ρ2 + Cρ− α2

, (2.19)

where δ0 is a constant of integration. The right-hand side of Eq. (2.19) is a Jacobi

elliptic integral of the first kind [40, 25], which can be inverted to obtain expressions

for ρ in terms of the Jacobi elliptic functions. There are twelve such functions.

However, since the square of one Jacobi elliptic function may be related linearly to

the square of any other Jacobi elliptic function, among other identities [40], we need

only consider solutions of the form

ρ(x) = A sn2(bx+ δ0|m) +B, (2.20)

where we have absorbed the sign ambiguity into the parameters, keeping in mind

that physical reality requires ρ(x) ≥ 0, ∀x ∈ R. However, this is also mathematically

general, since the sign can be incorporated into the phase φ(x).

Differentiating Eq. (2.20), we find that

dρ

dx
= 2Ab sn(bx+ δ0|m) cn(bx+ δ0|m) dn(bx+ δ0|m). (2.21)

Let u := bx + δ0. Substitute Eqs. (2.20) and (2.21) into Eq. (2.18) and square



15

both sides. This yields

Ab sn2(u|m) cn2(u|m) dn2(u|m) =

g[A3 sn6(u|m) + 3AB2 sn4(u|m) + 3AB2 sn2(u|m) +B3]

− 2(µ− V0)[A2 sn4(u|m) + 2AB sn2(u|m) +B2]

+ C[A sn2(u|m) +B]− α2. (2.22)

When using Eq. (2.22), we must keep in mind that the act of squaring both sides has

introduced extraneous results. These are filtered out by the code.

Using the identities

sn2(u|m) = 1− cn2(u|m), (2.23)

dn2(u|m) = 1−m sn2(u|m), (2.24)

we can rewrite the left-hand side of Eq. (2.22) as

Ab sn2(u|m) · [1−m sn2(u|m)] · [1− sn2(u|m)]. (2.25)

Equate (2.25) with the right-hand side of Eq. (2.22) and rearrange. This leads to a

sixth-order equation in sn(u|m). Since distinct powers of sn are linearly independent,

as shown in Appendix B, we may equate coefficients of like powers of sn(u|m) when

A 6= 0. We obtain four relationships. From sn6(u|m), we get

m =
A

b2
g, (2.26)
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from sn4(u|m) and Eq. (2.26), we obtain

µ =
1

2
[b2 + (A+ 3B)g] + V0, (2.27)

from sn2(u|m)2 we find that

C = −3B2g + 4(µ− V0)B + Ab2, (2.28)

and from sn0(u|m) with Eqs. (2.26)–(2.28),

α2 = B(A+B)(b2 +Bg). (2.29)

Since α appears only as α2, and ρ(x) does not depend on α, all solutions with α 6= 0

are doubly degenerate. That is, ±α result in solutions with the same density ρ(x)

and eigenvalue µ, but opposite phases. The solution with α = 0 corresponds to the

linear limit.

The degeneracy of solutions is very interesting physically. Phase is related to the

BEC flow by

v(x) =
~
m

dφ

dx
, (2.30)

where v is the velocity of the BEC; we term this the supercurrent. Thus, for a given

|α|, we see two solutions which are identical in every respect except for the sign of

the phase. There are two relevant flows in this system: the background flow of the

aggregate BEC, i.e., the supercurrent, and the flow of solitons on that background.

One solution corresponds to soliton flow toward the barrier with supercurrent flow

away from the barrier, and the corresponding solution with α → −α corresponds to
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the opposite flow situation, where the solitons stream towards the barrier and the

supercurrent flows away from it.

Equations (2.26), (2.27), and (2.29) will be useful in calculations for determining

parameter values.

2.2 Complex Physical Parameters in NLS

In the NLS, Eq. (1.4), some or all of the parameters may be complex. We

develop here the physical and mathematical conditions for the domains of all NLS

parameters.

2.2.1 Complex phase

Suppose the wave function Ψ(x, t) in the NLS (1.4) is complex. We can write

the wave function as

Ψ(x, t) = f(x, t) + ig(x, t), (2.31)

where f and g are real-valued functions. Alternatively, we can write Ψ(x, t) in polar

form as

Ψ(x, t) = h(x, t)e iθ(x,t), (2.32)

where h and θ are real-valued functions.

Using Euler’s formula to rewrite Eq. (2.32), we obtain

Ψ(x, t) = h(x, t){cos[θ(x, t)] + i sin[θ(x, t)]}. (2.33)

The signs of the real and imaginary parts of Ψ may be absorbed into the trigonomet-

ric functions. Therefore, we may assume without loss of generality that h(x, t) ≥ 0.
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By writing Ψ(x, t) in the form of Eq. (1.7), we have expressed it in polar form as

in Eq. (2.32). Therefore, the phase φ(x) in Eq. (1.7) may be taken to be a real-valued

function without loss of generality. Since φ(x) ∈ R, we must also have ∂φ/∂x ∈ R,

and therefore Eq. (2.15) implies that α ∈ R.

2.2.2 Complex nonlinearity

In interacting physical systems, the nonlinearity g may be a complex number.

The imaginary part corresponds to a 2-body loss of energy, this energy being carried

away by loss processes having a variety of physical origins. In the case of BECs, we

have a dilute system of alkali atoms interacting via s-wave processes [12]. These alkali

atoms have no accessible internal degrees of freedom, and thus energy cannot be lost

in this manner. Therefore, for our physical system, the nonlinearity g is purely real.

In addition, it must be noted that the BEC system is dilute enough that only

two-body interactions are relevant. Thus, three-body losses in the BEC, which lead

to higher-order nonlinearity in the governing equation, may be neglected.

2.2.3 Complex eigenvalue

Consider again Eq. (1.4), with constant potential V = V0. We again seek

solutions of the form (1.7), but this time we allow µ ∈ C. Let

µ = µr + iµi, (2.34)
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where µr, µi ∈ R. Substitute (2.34) in (1.7) and the result into Eq. (1.4). This yields

1

8
ρ−3/2

(
dρ

dx

)2

− 1

4
ρ−1/2

(
d2ρ

dx2

)
+

1

2
ρ1/2

(
dφ

dx

)2

− 1

2
i

[
ρ−1/2

(
dρ

dx

)(
dφ

dx

)
+ ρ1/2

(
d2φ

dx2

)]
+ gρe2µit + V0ρ

1/2 = ρ1/2(µr + iµi).

(2.35)

Equate real and imaginary parts of Eq. (2.35). We find that the real parts yield

1

8
ρ−3/2

(
dρ

dx

)2

− 1

4
ρ−1/2

(
d2ρ

dx2

)
+

1

2
ρ1/2

(
dφ

dx

)2

+ gρe2µit +V0ρ
1/2 = ρ1/2µr, (2.36)

and the imaginary parts yield

−1

2

[
ρ−1/2

(
dρ

dx

)(
dφ

dx

)
+ ρ1/2

(
d2φ

dx2

)]
= ρ1/2µi. (2.37)

Multiply Eq. (2.37) by 4ρ3/2 and rearrange:

ρ

(
d2φ

dx2

)
+

(
dρ

dx

)(
dφ

dx

)
= −2ρµi. (2.38)

The left-hand side of Eq. (2.38) is an exact derivative. Integrating, we find that

dφ

dx
=

α

ρ(x)
− 2µi
ρ(x)

∫ x

ρ(x′) dx′, (2.39)

where α is a constant of integration. Note that when µ ∈ R; that is, when µi = 0,

Eq. (2.39) reduces to the previously obtained result, Eq. (2.15).
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Substitute (2.39) into Eq. (2.36) to obtain

1

8
ρ−3/2

(
dρ

dx

)2

− 1

4
ρ−1/2

(
d2ρ

dx2

)
+

1

2
ρ1/2

{
α2ρ−2 + 4µ2

i ρ
−2

[∫ x

ρ(x′) dx′
]2

−4µiρ
−1

∫ x

ρ(x′) dx′
}

+ V0ρ
1/2 + gρe2µit = ρ1/2µr. (2.40)

Equation (2.40) is an ordinary differential equation for ρ = ρ(x). However, the

last term on the left-hand side, gρe2µit, is time-dependent. Since ρ is assumed to

be independent of time, and the parameters g, V, µ, and α are constant, this is a

contradiction. That is, there are no solutions of Eq. (2.40). We conclude that the

ansatz (1.7) is not a valid solution for this problem when Im(µ) 6= 0.

2.3 Complex Parameters in Density

In the density (2.20), some of the parameters may be complex. We can use

the requirement that ρ(x) ∈ R, ∀x ∈ R, to determine which parameters may take

complex values.

2.3.1 Complex m

We will show that when the elliptic parameter m has nonzero imaginary part,

sn2(u|m) is a complex-valued function for all u. In this case, the density (2.20) cannot

be made to be a real-valued function for any values of the other parameters. There-

fore, m must be real.

Theorem 1. sn(u|m) is a complex-valued function for Im(m) 6= 0.

Proof. Since sn(u|m) is an odd function of u [40], it has a Maclaurin expansion of
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the form [41]

sn(u|m) =
∞∑
n=0

snu
2n+1

= u

∞∑
n=0

snu
2n. (2.41)

In Eq. (2.41), the coefficient sn is in general dependent on m, and may be complex.

We show that Im(sn) 6= 0 when Im(m) 6= 0.

The first several terms of the series (2.41) are given in several reference books,

including [40] and [42]. To find the general term, we turn to the differential equation

[43, 44]: [
d

du
sn(u|m)

]2

= [1− sn2(u|m)][1−m sn2(u|m)]. (2.42)

Substituting Eq. (2.41) into Eq. (2.42) gives

[
∞∑
n=0

(2n+ 1)snu
2n

]2

=

1− u2

[
∞∑
n=0

snu
2n

]2
 ·

1−mu2

[
∞∑
n=0

snu
2n

]2
 . (2.43)

Rearrange Eq. (2.43), using the property that

[
∞∑
n=0

fnu
2n

]2

=
∞∑
n=0

gnu
2n, (2.44)

where

gn =
n∑
`=0

f`fn−`. (2.45)

We obtain
∞∑
n=0

knu
2n = 1− (m+ 1)u2

∞∑
n=0

pnu
2n + u4

∞∑
n=0

hnu
2n, (2.46)
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where

kn =
n∑
`=0

(2`+ 1)s`(2n− 2`+ 1)sn−`, (2.47)

pn =
n∑
`=0

s`sn−`, (2.48)

hn =
n∑
q=0

pqpn−q. (2.49)

Since distinct powers of u are linearly independent, we can equate coefficients of like

powers of u. We find

k0 = 1 = s2
0, (2.50)

p0 = s2
0 = 1, (2.51)

k1 = −(1 +m)p0, (2.52)

h0 = p2
0 = 1. (2.53)

Substituting Eq. (2.52) into the definition of the kn, (2.47), we find that

s1 = −1 +m

6
. (2.54)

From Eqs. (2.48) and (2.54),

p1 = 2s1 = −1 +m

3
, (2.55)

and from (2.49),

h1 =
−2(1 +m)

3
. (2.56)
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We can continue to apply these formulas recursively. For the `th coefficient, we find

−(1 +m)p`−1 + h`−2 = 2(2`+ 1)s` +
`−1∑
q=1

(2q + 1)sq(2`− 2q − 1)s`−q. (2.57)

Equation (2.57) may be solved for any given s` once s`−1 has been found using the

methods above. From the 0th and 1st terms found above, and the recursive nature

of the algorithm, it is clear that all coefficients s` will be polynomials in m.

Let m = a+ b i. Then each coefficient s` has the form

s` = (a+ b i)n, (2.58)

for some integer n, which will, in general, be different for each `. Expand Eq. (2.58)

using the binomial theorem:

s` =
n∑
k=0

(
n

k

)
ak( ib)n−k. (2.59)

We require sn(u|m) ∈ R ∀u; thus the imaginary part of the Maclaurin series must

vanish. The only way that this can occur for all u is that the imaginary parts of all

of the coefficients s` must vanish. For ` = 1,

Im(s1) = b = 0. (2.60)

That is, b = 0 is the only solution to Im(s1) = 0. It remains to prove that b = 0

is a solution to Im(s`) = 0, ∀` ∈ Z. If this is not the case, then it follows that

Im[ sn(u|m)] 6= 0 ∀u; that is, sn(u|m) is complex for all parameters m, including real
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values, and Eq. (1.8) is not a valid solution of the NLS.

With Eq. (2.59), we find

Im(s`) =
∑

{k:n−k odd}

(
n

k

)
ak( ib)n−k = 0, (2.61)

and b = 0 is indeed a solution for all `. In fact, b = 0 is the only solution that

satisfies Eq. (2.61) for all integers `, as shown by Eq. (2.60). That is, we may have

sn(u|m) ∈ R,∀u, if and only if m ∈ R.

Therefore, we have proven that Im(m) 6= 0⇒ Im[ sn(u|m)] 6= 0. QED.

2.3.2 Other complex density parameters

We begin by assuming that all other parameters in (2.20) may be complex. Write

real and imaginary parts as follows:

A = Ar + iAi, (2.62)

B = Br + iBi, (2.63)

b = br + ibi, (2.64)

δ0 = δ0r + iδ0i. (2.65)

The argument of the Jacobi function in (2.20) is bx + δ0. Substituting Eqs.
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(2.62)–(2.65) and writing real and imaginary parts, we find that

a := Re(bx+ δ0) = brx+ δ0r, (2.66)

y := Im(bx+ δ0) = bix+ δ0i. (2.67)

Using complex-argument transformations [40], we find that

sn(a+ iy|m) =
1

cn2(y|1−m) +m sn2(a|m) sn2(y|1−m)
[ sn(a|m) dn(y|1−m)

+ i cn(a|m) dn(a|m) sn(y|1−m) cn(y|1−m)] . (2.68)

For convenience, define

ζ :=
1

cn2(y|1−m) +m sn2(a|m) sn2(y|1−m)
. (2.69)

Note that ζ ∈ R. Substitute Eqs. (2.69) and (2.68) into (2.20). We find

Re[ρ(x)] = ζ2
{
Ar
[

sn2(a|m) dn2(y|1−m)

− cn2(a|m) dn2(a|m) sn2(y|1−m) cn2(y|1−m)
]

−2Ai sn(a|m) cn(a|m) dn(a|m) sn(y|1−m) cn(y|1−m) dn(y|1−m)}

+Br, (2.70)
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Im[ρ(x)] = ζ2
{
Ai
[

sn2(a|m) dn2(y|1−m)

− cn2(a|m) dn2(a|m) sn2(y|1−m) cn2(y|1−m)
]

+2Ar sn(a|m) cn(a|m) dn(a|m) sn(y|1−m) cn(y|1−m) dn(y|1−m)}

+Bi. (2.71)

We must have ρ(x) ∈ R; thus (2.71) must vanish for all x. Therefore

Ai
[

sn2(a|m) dn2(y|1−m)− cn2(a|m) dn2(a|m) sn2(y|1−m) cn2(y|1−m)
]

+ 2Ar sn(a|m) cn(a|m) dn(a|m) sn(y|1−m) cn(y|1−m) dn(y|1−m)

= −Bi[ cn2(y|1−m) +m sn2(a|m) sn2(y|1−m)]2. (2.72)

Rearrange, and use Eqs. (2.23) and (2.24):

Ai
{

sn2(a|m)
[
1− (1−m) sn2(y|1−m)

]
−
[
1− sn2(a|m)

]
·
[
1−m sn2(a|m)

]
sn2(y|1−m)

[
1− sn2(y|1−m)

]}
+Bi

[
1− sn2(y|1−m) +m sn2(a|m) sn2(y|1−m)

]2
= 2Ar sn(a|m) cn(a|m) dn(a|m) sn(y|1−m) cn(y|1−m) dn(y|1−m). (2.73)

Now, square both sides of Eq. (2.73) and use the identities (2.23) and (2.24) on the

right-hand side. For convenience, define

X := sn(a|m) (2.74)

and

Y := sn(y|1−m). (2.75)
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Rearranging, simplifying, and collecting terms in Eq. (2.73), we are left with

B2
i + (−2AiBi − 4B2

i )Y
2 + (A2

i + 6AiBi + 6B2
i )Y

4 − (2A2
i + 6AiBi + 4B2

i )Y
6

+ (A2
i + 2AiBi +B2

i )Y
8 +X2[2AiBi + (−2A2

i − 4AiBi + 4AiBim+ 4B2
im)Y 2

+(2A2
i−4A2

im−14AiBim−12B2
im)Y 4+(2A2

i +4AiBi+6A2
im+16AiBim+12B2

im)Y 6

− (2A2
i + 2AiBi + 2A2

im+ 6AiBim+ 4B2
im)Y 8] +X4[A2

i + (4A2
im+ 2AiBim)Y 2

+ (−2A2
i + 2AiBim+ 4A2

im
2 + 8AiBim

2 + 6B2
im

2)Y 4 − (8A2
im+ 10AiBim+ 4A2

im
2

+ 14AiBim
2 + 12B2

im
2)Y 6 + (A2

i + 4A2
im+ 6AiBim+A2

im
2 + 6AiBim

2 + 6B2
im

2)Y 8]

+X6[−2A2
imY

2 + (2A2
im− 4A2

im
2 − 2AiBim

2)Y 4 + (2A2
im+ 6A2

im
2 + 8AiBim

2

+ 4AiBim
3 + 4B2

im
3)Y 6 − (2A2

im+ 2A2
im

2 + 6AiBim
2 + 2AiBim

3 + 4B2
im

3)Y 8]

+X8[A2
im

2Y 4 − (2A2
im

2 + 2AiBim
3)Y 6 + (A2

im
2 + 2AiBim

3 +B2
im

4)Y 8]

= X2[4A2
rY

2 + 4A2
r(m− 2)Y 4 + 4A2

r(1−m)Y 6] +X6[4A2
rmY

2 + 4A2
rm(−2 +m)Y 4

+ 4A2
rm(1−m)Y 6] +X4[−4A2

r(1 +m)Y 2 + 4A2
r(2 +m−m2)Y 4 + 4A2

r(m
2− 1)Y 6].

(2.76)

It can be shown that products of the form XpY q = snp(a|m) snq(y|1 − m) and

XrY s = snr(a|m) sns(y|1 − m) are linearly independent when p = r and q = s

are not simultaneously true. The proof is given in Appendix B. If neither sn(a|m)

nor sn(y|1−m) is everywhere constant, we can equate coefficients of such products

on either side of Eq. (2.76). This process leads to 22 equations, which are not all

independent. From the constants, we find

Bi = 0, (2.77)
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from coefficients of sn4(y|1−m) and Eq. (2.77),

Ai = 0, (2.78)

and from coefficients of sn2(a|m) sn2(y|1−m) and Eqs. (2.78), (2.77), we obtain

Ar = 0. (2.79)

Substituting Eqs. (2.77)–(2.79) into the remaining 19 coefficient equations does not

yield any new information. Therefore in this case we have

ρ(x) = Br = constant. (2.80)

Equating coefficients in Eq. (2.76) as above will not yield correct results if a or y are

such that one of the Jacobi functions is constant for all x.

We have shown that g, m ∈ R. From Eq. (2.26), it follows that either A = b2

or A ∈ R and b2 ∈ R. By (2.27), b2 6= A in general. Therefore, we must have Ai = 0

and either br = 0 or bi = 0; that is, b may be pure real or pure imaginary, but not

complex. These cases correspond to one of sn(a|m) or sn2(y|1−m) being constant.

If br = 0 and bi 6= 0, then a = δ0r and sn(a|m) is constant ∀x, but sn(y|1−m)

varies. In this case, Eq. (2.77) still holds, and so Bi = 0.

If bi = 0 and br 6= 0, then y = δ0i and sn(y|1−m) is constant ∀x, but sn(a|m)

varies. In this case, we may equate coefficients of like powers of sn(a|m) in Eq. (2.76).
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Equating coefficients of sn0(a|m), that is, constants, we find

B2
i + Y 2(−2AiBi − 4B2

i ) + Y 4(A2
i + 6AiBi + 6B2

i )

+ Y 6(2A2
i + 6AiBi + 4B2

i ) + Y 8(Ai +Bi)
2 = 0, (2.81)

where Y := sn(y|1 − m), as before. We have Ai = 0 from the requirement that

m ∈ R, above. Putting Ai = 0 in Eq. (2.81), we find that either Bi = 0 or else

Y 8 + 4Y 6 + 6Y 4 − 4Y 2 + 1 = 0. (2.82)

However, we note that since sn(a|m) varies with x, so does A sn2(bx+ δ0), and there-

fore any imaginary part resulting from this term will also be dependent on x. Since

Ai = 0, the imaginary part would have to come from the Jacobi function. Since it de-

pends on x, there is no possible way for an imaginary term resulting from A sn2(bx+δ0)

to cancel Bi, which is constant. Therefore, in order to have ρ(x) ∈ R,∀x, we must

have Bi = 0.

If bi = br = 0, so that both sn(a|m) and sn(y|1 − m) are constant, then the

density ρ(x) is also constant. In this case ρ = A ∈ R, and we need not consider

dependence on other parameters.

Thus, we have determined the constraints on imaginary parts of all parameters

for all cases. A summary of the parameter conditions is given in Table 2.1.
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Table 2.1: Conditions on physical & mathematical parameters.

Parameter Condition

A Real

B Real

b Either Re(b) = 0 or Im(b) = 0

δ0 No constraints

m Real

g Real

µ Real

α Real

For a given physically determined nonlinear parameter g, our choice of A, B, δ0,

and µ determines the complete solution.

2.4 Potential Barrier – Boundary Conditions

For the nonlinear scattering problem, we have a piecewise-constant potential

barrier as in Fig. 1.1. The constant-potential density solution (2.20) may be applied

in each region of constant potential. We need boundary conditions in order to match

the densities on either side of the boundaries x1 and x2.

Consider the stationary-state solution of the NLS, Eq. (1.7). Let x = a be a

boundary of the potential barrier. The wave function Ψ(x, t) must be continuous

for all x. If Ψ(x, t) is discontinuous, then in the NLS, Eq. (1.4), ∇2Ψ → ∞ at the

discontinuity. This is non-physical. In particular, Ψ(x, t) must be continuous at the
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boundary x = a. Thus (1.7) yields

√
ρ+(a)e i[φ

+(a)−µ+t] =
√
ρ−(a)e i[φ

−(a)−µ−t], (2.83)

where superscripts + and − denote the value of a quantity on the right or left-hand

side of x = a, respectively. Replace exponentials in Eq. (2.83) using Euler’s formula,

and equate real and imaginary parts. The real parts yield

√
ρ+(a) cos[φ+(a)− µ+t] =

√
ρ−(a) cos[φ−(a)− µ−t], (2.84)

and the imaginary parts yield

√
ρ+(a) sin[φ+(a)− µ+t] =

√
ρ−(a) sin[φ−(a)− µ−t]. (2.85)

Equations (2.84) and (2.85) must be satisfied for all time t. Choose t = 0. This yields

√
ρ+(a) cos[φ+(a)] =

√
ρ−(a) cos[φ−(a)], (2.86)√

ρ+(a) sin[φ+(a)] =
√
ρ−(a) sin[φ−(a)]. (2.87)

It can be shown that the first spatial derivative of the wave function must also

be continuous for all x. The proof is given in Appendix B. Differentiating (1.7) with

respect to x, and enforcing continuity at x = a, yields

{
1

2
[ρ+(a)]−1/2dρ

+

dx

∣∣∣∣
a

+ i
√
ρ+(a)

dφ+

dx

∣∣∣∣
a

}
e iφ

+(a)

=

{
1

2
[ρ−(a)]−1/2dρ

−

dx

∣∣∣∣
a

+ i
√
ρ−(a)

dφ−

dx

∣∣∣∣
a

}
e iφ

−(a). (2.88)
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Substitute (2.15) in Eq. (2.88), replace exponentials by Euler’s formula, and equate

real and imaginary parts. The real parts yield

[ρ+(a)]−1/2

{
1

2

dρ+

dx

∣∣∣∣
a

cos[φ+(a)− µ+t]− α+ sin[φ+(a)− µ+t]

}
= [ρ−(a)]−1/2

{
1

2

dρ−

dx

∣∣∣∣
a

cos[φ−(a)− µ−t]− α− sin[φ−(a)− µ−t]
}
,

(2.89)

and the imaginary parts yield

[ρ+(a)]−1/2

{
α+ cos[φ+(a)− µ+t] +

1

2

dρ+

dx

∣∣∣∣
a

sin[φ+(a)− µ+t]

}
= [ρ−(a)]−1/2

{
α− cos[φ−(a)− µ−t] +

1

2

dρ−

dx

∣∣∣∣
a

sin[φ−(a)− µ−t]
}
.

(2.90)

Equations (2.89) and (2.90) must be satisfied for all time. Choose t = 0. This yields

[ρ+(a)]−1/2

{
1

2

dρ+

dx

∣∣∣∣
a

cos[φ+(a)]− α+ sin[φ+(a)]

}
= [ρ−(a)]−1/2

{
1

2

dρ−

dx

∣∣∣∣
a

cos[φ−(a)]− α− sin[φ−(a)]

}
,

(2.91)

[ρ+(a)]−1/2

{
α+ cos[φ+(a)] +

1

2

dρ+

dx

∣∣∣∣
a

sin[φ+(a)]

}
= [ρ−(a)]−1/2

{
α− cos[φ−(a)] +

1

2

dρ−

dx

∣∣∣∣
a

sin[φ−(a)]

}
.

(2.92)

Multiply Eq. (2.91) by Eq. (2.86) to obtain

1

2

dρ+

dx

∣∣∣∣
a

cos2[φ+(a)]− α+ sin[φ+(a)] cos[φ+(a)]

=
1

2

dρ−

dx

∣∣∣∣
a

cos2[φ−(a)]− α− sin[φ−(a)] cos[φ−(a)]. (2.93)
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Multiply Eq. (2.92) by Eq. (2.87) to get

α+ sin[φ+(a)] cos[φ+(a)] +
1

2

dρ+

dx

∣∣∣∣
a

sin2[φ+(a)]

= α− sin[φ−(a)] cos[φ−(a)] +
1

2

dρ−

dx

∣∣∣∣
a

sin2[φ−(a)]. (2.94)

Now add (2.93) to (2.94). After simplification, we find that

dρ+

dx

∣∣∣∣
a

=
dρ−

dx

∣∣∣∣
a

, (2.95)

that is, the first derivative of the density must be continuous at the boundary.

Multiply Eq. (2.91) by Eq. (2.87), which yields

1

2

dρ+

dx

∣∣∣∣
a

sin[φ+(a)] cos[φ+(a)]− α+ sin2[φ+(a)]

=
1

2

dρ−

dx

∣∣∣∣
a

sin[φ−(a)] cos[φ−(a)]− α− sin2[φ−(a)]. (2.96)

Multiply Eq. (2.92) by Eq. (2.86). We find

α+ cos2[φ+(a)] +
1

2

dρ+

dx

∣∣∣∣
a

sin[φ+(a)] cos[φ+(a)]

= α− cos2[φ−(a)] +
1

2

dρ−

dx

∣∣∣∣
a

sin[φ−(a)] cos[φ−(a)]. (2.97)

Now subtract (2.96) from (2.97). Simplifying, we obtain

α+ = α−. (2.98)
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The phase parameter α must also be continuous across the boundary. Thus, α has a

constant value for all x, since it is constant in each region as found in the process of

solving Eq. (1.4) for constant potential.

We now return to the original wave function continuity equation, (2.83). Take

the modulus of both sides of (2.83):

√
ρ+(a) =

√
ρ−(a) (2.99)

⇒ ρ+(a) = ρ−(a), (2.100)

since ρ ≥ 0. Thus, the linear particle density of the BEC must be continuous at the

boundary.

Substitute Eq. (2.100) into Eqs. (2.86) and (2.87) to obtain

√
ρ(a){cos[φ+(a)]− cos[φ−(a)]} = 0, (2.101)√
ρ(a){sin[φ+(a)]− sin[φ−(a)]} = 0, (2.102)

where we now use ρ(a) to replace ρ±(a) for the density at the boundary, since it is

continuous. By Eqs. (2.101) and (2.102), it follows that either the density vanishes

at the boundary, or else we have the system

cos[φ+(a)] = cos[φ−(a)], (2.103)

sin[φ+(a)] = sin[φ−(a)]. (2.104)
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Equations (2.103) and (2.104) can be satisfied simultaneously only when

φ+(a) = φ−(a) + 2nπ, n ∈ Z. (2.105)

From Eq. (2.105), it follows that the full wave function solutions (1.7) have denumer-

ably infinite degeneracy.

Substitute Eqs. (2.100) and (2.105) into (2.83):

√
ρ(a)e i[φ

−(a)+2nπ]e− iµ
+t =

√
ρ(a)e iφ

−(a)e− iµ
−t. (2.106)

If ρ(a) 6= 0, Eq. (2.106) can be simplified to

e− iµ
+t = e− iµ

−t. (2.107)

Equation (2.107) must be satisfied for all time, and so we conclude that

µ+ = µ−, (2.108)

except possibly when ρ(x) vanishes at the boundary. If Eq. (2.108) is not satisfied in

this case, then we have a jump discontinuity in µ at the boundary. It can be shown

that this case is not physically relevant via a perturbation argument.

The density ρ is nonvanishing for all x, except when B = 0. Therefore, ρ may

vanish at the boundary only when B = 0 and the boundary is at the location of a root

of sn(bx + δ0|m). A slight boost of the BEC velocity leads to a slight perturbation

of B off of zero, and in this case µ must be continuous across the boundary. That is,
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a small perturbation of a solution with a jump discontinuity in µ leads to a violation

of the boundary conditions. Therefore, Eq. (2.108) must be satisfied in all cases,

including the case in which ρ(x) vanishes at the boundary.

The methods described above can be used at any boundary; that is, at any

location of a jump discontinuity in V (x). Thus, if we know the values of all parameters

in one region of constant potential, we can apply the boundary conditions derived

in this section at every boundary, thereby determining the parameters in all other

regions.

2.5 Determination of Parameters in Regions II and III

Assume that A, b, δ0, and B are known in Region I of Fig. 1.1. These parameters

are denoted with an “I” subscript in the analysis that follows. Also assume that the

physical parameters g, µ, and V0 are known. From these, we may determine bI , αI ,

and mI from Eqs. (2.27), (2.29), and (2.26), respectively. Therefore, the solution is

completely known in Region I. Note that g is a physical characteristic of the conden-

sate, and is therefore constant for all x [25, 19].

We use the known values in Region I to determine values in Region II, which are

denoted with a “II” subscript. The boundary, a, is x1 in this case.
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Substitute Eq. (2.100) into the density, (2.20), to obtain

ρI(x1) = AII sn2(bIIx1 + δ0,II |mII) +BII (2.109)

⇒ sn2(bIIx1 + δ0,II |mII) =
ρI(x1)−BII

AII
(2.110)

⇒ δ0,II = sn−1

±√ρI(x1)−BII

AII

∣∣∣∣∣ AII(bII)2
g

− bIIx1, (2.111)

where we have used Eq. (2.26) to replace mII in the inverse sn.

Using Eqs. (2.27) and (2.108), we can obtain the scaling:

(bII)
2 = 2(µ− VII)− (AII + 3BII)g. (2.112)

From Eqs. (2.111) and (2.112) we can determine the horizontal scaling and offset

if we know AII and BII .

Substitute Eqs. (2.98) and (2.112) into Eq. (2.29) to get

α2
I = BII(AII +BII)[2(µ− VII)− (AII + 3BII)g +BIIg]. (2.113)

From Eqs. (2.22), (2.23), and (2.24), we find

(
dρ

dx

)2

= 4A2b2 sn2(bx+ δ0|m)[1− sn2(bx+ δ0|m)][1−m sn2(bx+ δ0|m)]. (2.114)
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Substitute Eqs. (2.95) and (2.110) into (2.114). We obtain

(
dρI
dx

∣∣∣∣
x1

)2

= 4A2
IIb

2
II

(
ρI(x1)−BII

AII

)(
AII − ρI(x1) +BII

AII

)
×(

AII −mIIρI(x1) +mIIBII

AII

)
. (2.115)

Substitute Eqs. (2.26) and (2.112) into Eq. (2.115) and simplify, which yields

(
dρI
dx

∣∣∣∣
x1

)2

= −4[BII−ρI(x1)]·[AII+BII−ρI(x1)]·{2(µ−VII)−[AII+2BII+ρI(x1)]g}.

(2.116)

In deriving Eq. (2.116) we assumed that AII 6= 0; that is, the density in Region II is

not constant. If the density in Region I is also non-constant, this is a valid assumption.

Equations (2.113) and (2.116) are quadratic in AII and cubic in BII . These equa-

tions can be solved for AII and BII , and the solution can be substituted into Eqs.

(2.112) and (2.111) to find the remaining parameter values in Region II. Therefore,

given all values in Region I as described above, we can obtain the complete solution

for Region II.

To find the density on the right-hand side of the barrier, Region III, we apply

the above process at x2, this time taking Region II parameters as those on the left,

i. e. values with a “-” subscript in the boundary conditions. The process may be

extended to an arbitrary number of boundaries in a similar manner.
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2.6 Linear Limit

When g → 0 in Eq. (1.4), our solution reduces to the well-known barrier scat-

tering solution of linear quantum mechanics (see, for example, [45, 46]). In this case,

we find that B must be zero.

Proof. In the linear case, g → 0, the Schrödinger equation is

[
−1

2

∂2

∂x2
+ V (x)

]
Ψ(x, t) = i

∂

∂t
Ψ(x, t). (2.117)

Taking V (x) = V0 constant, and a stationary-state solution of the form (1.7), the

density (2.20) becomes

ρ(x) = A sin2(bx+ δ0) +B. (2.118)

Substituting the stationary-state solution (1.7) into Eq. (2.117), we find

1

8
ρ−3/2

(
dρ

dx

)2

− 1

4
ρ−1/2 d

2ρ

dx2
− 3

4
iρ−1/2

(
dρ

dx

)(
dφ

dx

)
− 1

2
iρ1/2d

2φ

dx2
+

1

2
ρ1/2

(
dφ

dx

)2

+ V0ρ
1/2 = µρ1/2. (2.119)

Equate real and imaginary parts. The real part is

1

8
ρ−3/2

(
dρ

dx

)2

− 1

4
ρ−1/2 d

2ρ

dx2
+

1

2
ρ1/2

(
dφ

dx

)2

+ V0ρ
1/2 = µρ1/2, (2.120)

and the imaginary part is

−3

4

(
dρ

dx

)(
dφ

dx

)
− 1

2
ρ1/2d

2φ

dx2
= 0. (2.121)
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Integrating Eq. (2.121) yields

dφ

dx
=

α

ρ(x)
, (2.122)

where α is a constant of integration, provided that ρ(x) is not everywhere zero.

Substitute (2.122) into Eq. (2.120) and rearrange to obtain

−1

4

(
dρ

dx

)2

+
1

2
ρ
d2ρ

dx2
− α2 = −2(µ− V0)ρ2. (2.123)

Finally, substitute the density (2.118) into Eq. (2.123). Using the trigonometric

identity sin2(θ) + cos2(θ) = 1, we find

− A2b2 sin4(bx+ δ0) + ABb2[1− 2 sin2(bx+ δ0)]

= −2(µ− V0)[A2 sin4(bx+ δ0) + 2AB sin2(bx+ δ0) +B2]. (2.124)

Equation (2.124) must be true for all x. Therefore, if b 6= 0, the coefficients of like

powers of sin(bx+ δ0) on either side of Eq. (2.124) must be equal. We find

− A2b2 = −2(µ− V0)A2, (2.125)

− 2ABb2 = −4AB(µ− v0), (2.126)

ABb2 = −2(µ− V0)B2. (2.127)

From Eq. (2.125), we must have either A = 0 or

b2 = 2(µ− V0). (2.128)
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From Eq. (2.126), we must have either A = 0 or B = 0 or

b2 = 2(µ− V0). (2.129)

Finally, Eq. (2.127) implies that either B = 0 or

b2 = −2(µ− V0)
A

B
. (2.130)

If A 6= 0, then Eq. (2.128) must hold. Therefore, we must have either B = 0 or

B = −A, by (2.127) and (2.130). Substituting B = −A into the density (2.118), we

find

ρ(x) = A[sin2(bx+ δ0)− 1] (2.131)

= −A cos2(bx+ δ0) (2.132)

= −A sin2(π/2− bx− δ0) (2.133)

= A′ sin2(b′x+ δ′0) +B′, (2.134)

where, in relation to (2.118),

A′ := −A, (2.135)

b′ := −b, (2.136)

δ′0 := −δ0 + π/2, (2.137)

B′ = 0. (2.138)

Therefore this case is equivalent to B = 0. We have thus shown that in the linear

limit, B is always equal to 0. QED.



42

Chapter 3

NONLINEAR SCATTERING

We consider a BEC in the presence of a potential barrier as in Fig. 1.1. The

effective potential experienced by the BEC is

Veff := V0 + gρ(x). (3.1)

In the regime µ > max(Veff), transmission over the barrier is classically allowed. For

µ < max(Veff), transmission is classically forbidden. In both regimes, our scattering

displays quantum or wave-like effects, modified by the nonlinearity.

3.1 Calculation of Transmission

In the linear case, the wave function in each region can be split into a sum of

two terms representing left- and right-traveling waves, using superposition [46]. We

assume that the direction of travel is from left to right, so that the left-hand side

of the barrier is the incident side. On this side, the solution contains both right-

and left-traveling waves, i.e., incident & reflected waves. We choose only the right-

traveling waves on the transmission side of the barrier. In this case, we may define

the transmission coefficient as

T =
〈|Ψtrans|2〉
〈|Ψinc|2〉

, (3.2)
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where Ψtrans is the transmitted wave function and Ψinc is the incident wave function

[45]. The angle brackets, 〈 · 〉, denote an average value over one period of the func-

tion. The definition given by Eq. (3.2) is standard in linear quantum mechanics. In

this interpretation, T ≤ 1 over the entire domain of the system, and T represents the

probability that a given particle will be transmitted across the barrier.

However, in the nonlinear case superposition does not apply. We cannot de-

fine separate left- and right-traveling waves in this case, and thus the transmission

coefficient is defined simply as

T =
〈|ΨIII |2〉
〈|ΨI |2〉

, (3.3)

where ΨI and ΨIII are the total wave functions in regions I and III, as defined in

Fig. 1.1, respectively. Note that since neither region can be said to be the incident

side of the barrier in this case, we could just as easily have defined the transmission

coefficient inversely. We use the definition in Eq. (3.3) for consistency with the phys-

ical case of an atom laser. In the atom laser, particles are emitted from the laser and

impinge on the barrier from one side, which we take to be the left-hand side. In this

sense, we can think of the left-hand side of the barrier as the “incident” side for our

problem, even though there is no superposition principle.

Thus, in the nonlinear case, we find that T may exceed unity. Physically, out-

put cannot exceed input, and we conclude that the “transmission” coefficient as we

define it contains information for atom lasers incident on either side of the barrier.

Since we cannot choose only right- or left-traveling waves in the solution, due to the

nonlinearity, we cannot define T to restrict incidence to only one side of the barrier,

and must consider both circumstances in the same solution set.
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Since |Ψ|2 = ρ in this case, we have

T =
〈ρIII〉
〈ρI〉

. (3.4)

The period of sn2(bx+δ0|m) is 2K(m)/b, where K(m) is the complete elliptic integral

of the first kind [40]. Thus we obtain the average density by

〈ρ〉 =
b

2K(m)

∫
ρ(x) dx, (3.5)

where the integral is taken over one period of ρ(x).

Using the properties of Jacobi functions and elliptic integrals, we can show that

if 0 ≤ m ≤ 1,

〈ρ〉 = B + A

[
1

m
− E(m)

mK(m)

]
, (3.6)

where E(m) is the complete elliptic integral of the second kind, as follows. The

average density is given by Eq. (3.5), with ρ(x) as in Eq. (1.8). The period of the

density is 2K(m)/b. We can show that integrating from 0 to 2K(m)/b is equivalent to

integrating over a general integral of length 2K(m)/b. We first consider the integral

of the Jacobi elliptic function,

∫ 2K(m)/b

0

sn2(bx+ δ0|m) dx =
1

b

∫ 2K(m)+δ0

δ0

sn2(u|m) du, (3.7)

where we have used the substitution u = bx+ δ0. Using the relationships [40]

∫ w

0

sn2(u|m) du =
w − E(w|m)

m
, 0 ≤ m ≤ 1, (3.8)
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where E(u|m) is the incomplete elliptic integral of the second kind, and

E[w + 2K(m)|m] = E(w|m) + 2E(m), 0 ≤ m ≤ 1, (3.9)

we may simplify Eq. (3.7). Write

1

b

∫ 2K(m)+δ0

δ0

sn2(u|m) du

=
1

b

[∫ 2K(m)+δ0

0

sn2(u|m) du−
∫ δ0

0

sn2(u|m) du

]
(3.10)

=
1

b

[
2K(m) + δ0 − E[2K(m) + δ0|m]

m
− δ0 − E(δ0|m)

m

]
(3.11)

=
1

b

[
2K(m) + δ0 − E(δ0|m)− 2E(m)

m
− δ0 − E(δ0|m)

m

]
(3.12)

=
2K(m)− 2E(m)

bm
. (3.13)

Substituting this result into Eq. (3.5), using Eq. (1.8), leads to

〈ρ〉 = A

[
1

m
− E(m)

mK(m)

]
+B. (3.14)

If m /∈ [0, 1], we must first apply a transformation to write the density in terms

of Jacobi elliptic functions which depend on a parameter m′ ∈ [0, 1], then use the

methods above to simplify the integral. The relevant transformations are given in

Appendix A.

3.2 Results

The density and transmission of the BEC are considered for several regimes.



46

3.2.1 Wide barrier

We consider a barrier whose width is much larger than its height. In this case,

we have a barrier of width 20 and height 1. Density and phase plots for this barrier

are given in Figs. 3.1 and 3.2. The corresponding transmission plots are shown in

Figs. 3.3–3.5.

−10 −5 0 5 10 15

0.5
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ρ(x)

x

Figure 3.1: Density plot for wide barrier.

The potential barrier is shown as a dashed line in Figs. 3.1 and 3.2 for reference.

The nonlinearity for these plots is g = 0.1. We note that the phase in each region is

determined up to an arbitrary offset and that the phase parameter α may take either

sign. We have chosen the positive sign for α, with an offset of zero.

The phase consists of small oscillations on a linear background. The background
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Figure 3.2: Phase plot for wide barrier.

slopes are the same on either side of the barrier. This means that the velocity profile

of the BEC remains the same on either side of the barrier. This need not be true in

general, as we will see in Section 3.2.6. The velocity profile is given by Eq. (2.30).

In Fig. 3.3, five transmission plots are shown on the same set of horizontal axes.

The dashed line denotes T = 1, and the solid curve is the transmission coefficient.

The nonlinearity g increases in steps of 0.01 as we move upward on the plot. Each

transmission plot is at a convenient vertical offset for illustration, but the plots are not

otherwise scaled or shifted. The nonlinearity is shown next to each curve for reference.

Note that the transmission coefficient may be greater than 1. This is not a novel

physical feature; it arises due to the redefinition of transmission as in Eq. (3.3) and the

invalidity of superposition in this problem, as discussed in Section 3.1. However, the
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Figure 3.3: Transmission for wide barrier with small nonlinearity.

physical interpretation is different: since we cannot separate right- and left-traveling

waves, the transmission coefficient no longer represents a probability for some particle

to be transmitted through the barrier.

Comparing the linear, i.e g = 0, transmission curve in Fig. 3.3 with the other

transmission plots in the same figure, we see that there is a significant change in

transmission behavior when we enter the nonlinear regime, even for small [O(10−2)]

nonlinearity. The most significant change occurs when µ is small, meaning that the

potential barrier has a greater overall effect on the condensate. In the linear case,

T oscillates on either side of 1, and the amplitude of oscillations is similar in either

direction. In the nonlinear case, we see that while transmission can still be less than

1, it does not drop as far below 1 as in the linear case. This suggests that in the

case of repulsive nonlinearity, g > 0, atomic interactions tend to cause more parti-
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cles to be transmitted through the barrier than for the case of noninteracting particles.
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Figure 3.4: Transmission for wide barrier with medium nonlinearity I.

In Figs. 3.4 and 3.5, several transmission plots are shown on the same set of

horizontal axes. The dashed lines correspond to T = 1. Individual transmission

curves have been shifted by convenient vertical offsets for illustration, but the plots

are not otherwise scaled or shifted. The nonlinearity g, shown next to each curve for

reference, increases in steps of 0.1 as we move upward on the plot.

As g increases, new peaks appear in the small-µ regime, and the behavior of T

changes significantly for smaller µ. This regime does not appear for g ≥ 0.2. The

reason is that g and µ are not completely independent. For a given chemical potential

µ, when the nonlinearity g becomes larger than a certain cut-off value, solutions are

generated that have ρ(x) ∈ C. This is invalid because, when we solved the NLS, we
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Figure 3.5: Transmission for wide barrier with medium nonlinearity II.

assumed ρ(x) ∈ R. We may take ρ(x) ∈ R without loss of generality, as discussed in

Section 2.2.1.

The appearance of complex ρ(x) means that one or more of our assumptions are

breaking down in this regime. A complete analysis of this situation is a matter for

future study. We hypothesize that this regime occurs because the chemical potential

µ is becoming complex. This case is not allowed, as we showed in Section 2.2.3. Thus,

in this regime, the solution to the NLS, Eq. (1.4), has a different form than the one

we postulated in (1.7). We do not consider such alternate solutions in this work. The

cut-off for valid solutions is discussed further in Section 3.3.

For larger values of µ, the overall behavior of the transmission does not change

significantly between each plot. However, we do see a shift in the transmission curve.



51

For higher µ, the transmission plot retains its shape and shifts to the right as g in-

creases. This feature is especially apparent when a computer is used to animate the

transmission plots for increasing g. In Figs. 3.4–3.5, this regime occurs when µ & 6.

Another feature of note is that with the definition (3.3) of transmission, the

amplitude of oscillations in T does not decrease monotonically as in the usual linear

interpretation. In all of the transmission plots of Figs. 3.3–3.5, we see significant

oscillations on either side of a transition region between µ = 20 and µ = 26. In this

region, we have almost perfect resonance, i.e. T = 1. For a discussion of transmission

resonances, see Section 3.2.4.

3.2.2 Narrow barrier

We consider a barrier with width a factor of 10 smaller than its height. In this

case, we expect the barrier to have less of an effect on the behavior of the BEC. Den-

sity and phase plots are given in Figs. 3.6 and 3.7. The corresponding transmission

plots are given in Figs. 3.9–3.13.

We use a potential barrier of height 1 and width 0.1. The barrier is shown as a

dashed line in Figs. 3.6 and 3.7 for reference. The nonlinearity for this solution is

g = 1.99. Since the barrier is small relative to the healing length of the BEC, the

change in amplitude of the density across the barrier is not as significant as for the

wide-barrier case.

We have again chosen the positive sign for α, with a phase offset of zero in each

region. We observe that in this case, the phase is not linear. The velocity profile of
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Figure 3.6: Density plot for narrow barrier.
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Figure 3.7: Phase plot for narrow barrier.
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the BEC, i.e., the slope of the phase, changes smoothly as we move from one side of

the barrier to the other.

The phase consists of small oscillations on a linear background. A zoomed-in

view of the phase is given in Fig. 3.8. This plot clearly shows the oscillation over

the barrier. For illustrative purposes, the height of the potential barrier in Fig. 3.8

is scaled to 21% of its true size. The barrier width is not scaled.
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0.05

0.10

0.15

0.20

φ(x)
2π

x

Figure 3.8: Phase oscillations over narrow barrier, zoom view.

Again, the background slopes are the same on either side of the barrier. The

slope over the barrier, however, is smaller by a factor of 0.2. This shows that the

barrier is not completely invisible to the BEC.

In Fig. 3.9, five transmission plots are shown on the same set of horizontal axes,
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Figure 3.9: Transmission for narrow barrier with small nonlinearity.

with vertical offsets in T for illustration. The plots are not otherwise shifted or scaled.

The dashed line denotes T = 1, and the solid curve is the transmission coefficient.

The nonlinearity g increases in steps of 0.01 as we move upward on the plot. The

nonlinearity is shown next to each curve for reference.

Comparing the linear, i.e. g = 0, transmission curve in Fig. 3.9 with the other

transmission plots in the same figure, we again see a significant drop in the amplitude

of oscillations as we go from the linear to the nonlinear regime. Again, the nonlinear

transmission tends to stay further above 1 than below 1, although the difference in

amplitudes above and below 1 is smaller than in the wide-barrier case.

In each of Figs. 3.10–3.13, five transmission plots are shown on the same set of

horizontal axes. The transmission curves are offset vertically for illustration, but are
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Figure 3.10: Transmission for narrow barrier with medium nonlinearity I.
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Figure 3.11: Transmission for narrow barrier with medium nonlinearity II.

not otherwise shifted or scaled. The dashed line denotes T = 1, and g increases in

steps of 0.1 as we move upward on the plot. The nonlinearity is shown next to each
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Figure 3.12: Transmission for narrow barrier with medium nonlinearity III.
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Figure 3.13: Transmission for narrow barrier with medium nonlinearity IV.

curve for reference.
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The amplitude of oscillations decreases smoothly in this case. We also see that

there is no region of near-perfect resonance as in the wide-barrier case: T oscillates

quasi-periodically about T = 1. Again, the transmission curve shifts to the right

as the nonlinearity g increases. The narrowness of the barrier also has the effect of

smoothing the oscillations as compared to the wide-barrier case.

3.2.3 Strong nonlinearity

We consider a barrier of width 5 and height 1. Density and phase plots are given

in Figs. 3.14 and 3.15. The corresponding transmission plots are given in Figs. 3.16

and 3.17.
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Figure 3.14: Density plot with strong nonlinearity.

The potential barrier is shown as a dashed line in Figs. 3.14 and 3.15 for refer-

ence. The nonlinearity is g = 9.9 for these plots. We have again chosen the positive
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Figure 3.15: Phase plot with strong nonlinearity.

sign for α, with no phase offset.

The phase is nearly linear in this case, though slight variations are clearly visible.

Again, the velocity profile of the BEC changes smoothly across the barrier, and the

background slopes are the same on either side.

In Figs. 3.16 and 3.17, several transmission plots are shown on the same hori-

zontal axes. The transmission curves are offset for illustrative purposes, but are not

otherwise shifted or scaled. The nonlinearity is shown next to each curve for reference.

In this case we see two oscillations – the transmission coefficient itself oscillates

up and down within an envelope of oscillations above and below 1. Again there is no
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Figure 3.16: Transmission for medium-width barrier with strong nonlinearity I.
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Figure 3.17: Transmission for medium-width barrier with strong nonlinearity II.

region of near-constant resonance.
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3.2.4 Transmission resonances

We consider the behavior of the transmission resonances; that is, the points at

which T = 1. Resonance plots are given in Figs. 3.18, 3.19, and 3.20. The resonance

plots are “cut off” at low g-values for small values of µ; this is due to the relationship

between g and µ discussed in Section 3.2.1. The cut-off is explored further in Section

3.3.
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Figure 3.18: Transmission resonances for narrow barrier.

Figure 3.18 corresponds to the transmission plots in Section 3.2.2. The barrier

is narrow compared to its height. A barrier of width 0.1 and height 1 was used.

The sampling sizes used for g and µ are consistent throughout the entire plot. The

resonances shift slightly to the right as g increases, as observed in the transmission

plots. We see lines of resonance whose slope ∆g/∆µ are all the same. The spacing

between these lines increases as µ increases.
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Figure 3.19: Transmission resonances for wide barrier, displaying bifurcations.

Figure 3.19 corresponds to the transmission plots in Section 3.2.1. The barrier

is wide compared to its height. A barrier of width 20 and height 1 was used. The

sampling sizes used for g and µ are consistent throughout the entire plot. Here, the

resonances are sparse for lower values of µ and more uniform for higher values of µ.

For mid-range µ, we see very different behavior. There are three regions between

µ = 20 and µ = 26 where the resonances are extremely dense. These correspond to

the region of near-constant resonance seen in the transmission plots. It shifts to the

right as g increases, as observed in the transmission plots. Also, three bifurcations

are present in this region. This is a novel feature arising from the strongly nonlinear

character of the system, and presents exciting possibilities for future research.

In the regions where lines of resonance appear, the spacing between these lines
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is smaller than in Fig. 3.18. The spacing increases as µ increases, though not as fast

as in the narrow-barrier case.

Thus, we can see that this case corresponds to a very different physical regime

than that of Fig. 3.18.
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Figure 3.20: Transmission resonances for barrier with strong nonlinearity; discrete

sampling.

Figure 3.20 corresponds to the transmission plots in Section 3.2.3, with a barrier

of width 5 and height 1. In Fig. 3.20, the sampling increments for g and µ are larger

than those used in Figs. 3.18 and 3.19. This accounts for the more sparse appear-

ance of the plot. In this case, we again see constant-slope lines of resonance for low

and high values of µ. In the region 54 ≤ µ ≤ 64, the resonances are more sparsely

distributed. Also, clusters of two or more resonance lines are apparent. The spacing
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between lines does not change monotonically in this case.

We conclude that the behavior of transmission resonances is strongly dependent

on the width of the barrier and the strength of the nonlinearity, with all other param-

eters held constant. Wider barriers are more “visible” to the condensate, so the most

novel behavior appears for wider barriers. For large values of the chemical potential

µ, the effective potential of the barrier has less of an effect on the condensate.

3.2.5 Resonance slopes

The resonances in Fig. 3.19 lie along parallel straight lines. We consider the

slope of these resonance lines as a function of the input parameters AI and BI . Slope

plots are shown in Fig. 3.21.

In Fig. 3.21, several slope plots are shown on the same set of horizontal axes.

The slope curves are vertically offset for illustration, but are not otherwise scaled or

shifted. In these plots, we used a potential barrier of width 0.1 and height 1, as in

Fig. 3.19.

For a given AI , we observe identical slopes for each value of BI . Therefore we

conclude that the density offset BI and the transmission coefficient T are not related

over the range of parameters we considered. The density offset is primarily related to

the barrier height; that is, B adjusts the height of the density relative to the poten-

tial barrier, but not its amplitude or wavelength. We note that the elliptic parameter

m, which is strongly governed by the nonlinearity of the system, depends on both

amplitude A and wavelength 1/b, but does not depend on the offset B, as shown in
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Figure 3.21: Slope of resonance lines as a function of input parameters. Curves are a

guide to the eye.

Eq. (2.26). As we will see in Section 3.2.6, the strength of nonlinearity governs the

character of the density profile, i.e., the broadening of the peaks in the Jacobi elliptic

function. This affects the average density, and thus the transmission coefficient.

Thus we conclude that the slopes of the resonance lines are governed primarily by

the amplitude and wavelength of the input BEC density, and that a constant density

offset B does not have a significant effect on the transmission coefficient.

3.2.6 Localized solutions

A density plot showing a highly nonlinear system is shown in Fig. 3.22. A well-

localized solution can be seen above the potential barrier. The corresponding phase

plot is given in Fig. 3.23.
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Figure 3.22: Localized density over wide barrier.

In Figs. 3.22 and 3.23, the potential barrier is shown as a dashed line, for refer-

ence. The barrier has height V0 = 1 and width 20. The nonlinearity is g = 2.02. Over

the barrier, the peaks of the sn2 function broaden significantly. This is indicative of

elliptic parameter m near 1. The local minimum of the density over the barrier is

a dark soliton, a very well-localized solution. It has been generally shown that dark

solitons appear in the limit that the elliptic parameter m, which is proportional to the

strength of the nonlinearity, approaches unity from below [28]. This is a fascinating

effect. Unlike the density plots seen previously, in this nonlinear system, the wave

function transitions from a wave with small parameter m, which is nearly linear and

similar to a sine wave, in Region I, to a well-localized dark soliton in Region II, and

back to a nearly linear wave in Region III. The localization is a result of the strongly

nonlinear character of this system. Such systems are experimentally accessible [28].
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Figure 3.23: Phase plot for localized solution.

The oscillatory waves on either side of the barrier are slightly deformed standing

waves which are close to the linear solution.

The phase has an overall linear envelope on either side of the barrier, with clearly

visible oscillations on this background. The sudden increase in phase seen near x = 10

corresponds to the position of the soliton. Thus, the BEC flows more quickly at this

position than elsewhere.

In this case, the background slopes differ slightly on either side, and the slope

over the barrier is smaller by a factor of 3. This shows that the velocity profile of the

BEC need not be the same on either side of the barrier.
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Soliton trains may also be observed in some highly nonlinear systems [47, 20].

An example is shown in Fig. 3.24. The corresponding phase plot is shown in Fig. 3.25.
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Figure 3.24: Density showing train of localized dark solitons.

The potential barrier is shown as a dashed line in Figs. 3.24 and 3.25 for ref-

erence. The barrier has height V0 = 1 and width 90. The nonlinearity is g = 2.02.

The density notches above the potential barrier are dark solitons. Since the ampli-

tude of the wave function Ψ(x, t) in (1.7) is independent of time, the density does

not dissipate. If no barriers are present, these solitons will travel through time while

maintaining their shape. In the Engels experiment [20], the BEC is viewed in the

frame of a moving potential barrier.

Again, the phase profile shows oscillations on a linear background. On either

side of the barrier, the background slope is different. The velocity profile of the BEC
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Figure 3.25: Phase plot for soliton train.

is thus different in each region. There is a steep increase in phase at the location of

each soliton, just as we observed in Fig. 3.23.

3.3 Valid-Solution Nonlinearity Cut-Off

For a given chemical potential µ, the density ρ(x) becomes complex when the

nonlinearity g increases above a cut-off value. This cut-off is seen at small values of µ

in the transmission plots. The reasons for the occurrence of the cut-off were discussed

in Section 3.2.1.

A plot of the cut-off for the wide-barrier case is shown in Fig. 3.26. The plot

shows, for a given value of µ, the lowest g-value at which non-real density is first

encountered, to two decimal places.
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Figure 3.26: Real density cut-off gc as a function of µ.

We observe that in general, the cut-off nonlinearity gc increases as µ increases.

However, there are jump discontinuities at which the cut-off value decreases slightly.

The graph becomes more nearly linear for larger values of µ. We postulate that the

graph will become completely linear at very large chemical potential µ, except for

isolated jump discontinuities like those seen in Fig. 3.26.

Thus we see that certain combinations of nonlinearity g and chemical potential

µ, i.e., those which lie above the cut-off curve in Fig. 3.26, are not allowed. These

parameter combinations correspond to regimes in which our assumptions break down.

In these regimes, Eq. (1.7) is not a solution to the NLS, and we must seek solutions

of a different form.
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3.4 Numerical Verifications

We compute the transmission coefficient of the BEC numerically via Eqs. (3.4)

and (3.5). Numerical integration of the density is performed using Simpson’s 3/8

Rule, which can be found in many reference texts, including [48]. Our algorithm is as

follows. Divide the region of integration into N equally-spaced subregions [xi, xi+1].

Then divide each subregion into 4 smaller, equally-spaced regions of width h = xi+1−xi

4
.

For each of the N subregions, the integral of the density is approximated numerically

by

∫ xi+1

xi

ρ(x) dx =
3

8
h[ρ(xi) + 3ρ(xi + h) + 3ρ(xi + 2h) + ρ(xi+1)] +O

(
h5
)
. (3.15)

The Mathematica code for the transmission computation is given in Appendix C.

3.4.1 Convergence

We divide the integration region into 25 subregions for application of Simpson’s

Rule. Convergence was analyzed by performing the same calculation with 50 and 100

integration subregions and computing the errors

εn1,n2 = ln

(
|Tn2 − Tn1 |

Tavg

)
, (3.16)

where Tni
denotes the transmission computed with ni integration subregions, with

n1, n2 ∈ {25, 50, 100}. In Eq. (3.16), Tavg denotes the average value of transmission

over the plot interval. These errors are O(10−76) or smaller, so we conclude that the

method is well-converged. Log plots of the errors are given in Figs. 3.27, 3.28, and

3.29.
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Figure 3.27: Error for numerical integration, 25 and 50 subregions.
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Figure 3.28: Error for numerical integration, 50 and 100 subregions.
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Figure 3.29: Error for numerical integration, 25 and 100 subregions.

3.4.2 Translational invariance

If we shift the potential barrier, keeping the width fixed, so that

x1 → x1 + ∆x,

x2 → x2 + ∆x,

we expect no change in the solution. This provides another check on the validity of

the code. We shift the barrier by ∆x and introduce a coordinate transformation in

the input density, so that the density in region I becomes

ρI(x) = AI sn2[bI(x+ ∆x)|mI ] +BI . (3.17)
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We keep all input parameters the same and compute the error

ε = ln

(
|T − Ts|
Tavg

)
, (3.18)

where Ts is the transmission obtained for the shifted barrier and Tavg denotes the

average value of transmission over the plot interval. A log plot of the error is given

in Fig. 3.30. The maximum error is O(10−5), which is within the chosen numerical

tolerance for the code.
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Figure 3.30: Error in transmission due to translational barrier shift.

3.4.3 Limits

Linear limit: We consider the NLS, Eq. (1.4), in the limit that g → 0. In this

limit, the solution should reduce to the well-known linear scattering solution, which
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is analyzed in many quantum mechanics texts, including [45]. In the linear limit, by

Eq. (2.26), we find that m→ 0, so that the linear density is

ρ(x) = A sin2(bx+ δ0), (3.19)

since B = 0 in the linear case, as found in Section 2.6. For comparison with the

nonlinear case, we define transmission as 〈ρIII〉/〈ρI〉. The integral for 〈ρ〉 can be

evaluated exactly in this case:

〈ρ〉 =

∫ 2π/b

0

A sin2(bx+ δ0) dx (3.20)

= 1
2
A. (3.21)

Therefore, the transmission is

T` =
AIII
AI

. (3.22)

We can compare the value given by Eq. (3.22) to the value T obtained numerically

by the code. Transmission plots are shown in Figs. 3.31 and 3.32. A log plot of the

error,

ε =
|T − T`|
Tavg

, (3.23)

is given in Fig. 3.33. The maximum value of the error is O(10−7), which is within

the numerical tolerance of the code.
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Figure 3.31: Numerically computed transmission for linear limit.
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Figure 3.32: Exact linear value of transmission.
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Figure 3.33: Error in transmission for linear limit.

Constant potential limit: Consider the NLS, Eq. (1.4), with potential barrier

(1.6), in the limit that V0 → 0. In this case, boundary conditions are redundant and

we expect all parameters to be constant ∀x. By setting a “barrier” of V0 = 0 in the

code, we can verify that the code gives the correct solution; namely, the amplitude,

period, and shifts in the density should not change at the “boundary” locations. In-

deed this is the case, providing an additional verification of correctness for the code.

A density plot for this case, with a “barrier” of width 5 and height 1, is shown in Fig.

3.34.

Since the density parameters do not change over space, we expect to find a trans-

mission coefficient of 1. We compute and plot the error

ε = ln

(
|T − 1|
Tavg

)
, (3.24)
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Figure 3.34: Density plot for zero barrier.

where Tavg denotes the average value of transmission over the plot interval. A log

plot of the error is given in Fig. 3.35.

Alternatively, we can consider a constant nonzero potential: V (x) = Vc, ∀x in

Eq. (1.4). Again we expect all parameters to be constant ∀x. We set a “barrier” of

VI = VII = VIII = 2 and width 5 in the code and plot the density. The plot is shown

in Fig. 3.36.

Again, since the density parameters do not change over space, we expect to find a

transmission coefficient of 1. We compute and plot the error

ε = ln

(
|T − 1|
Tavg

)
, (3.25)

where Tavg denotes the average value of transmission over the plot interval. A log
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Figure 3.35: Error in transmission for zero barrier.
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Figure 3.36: Density plot for nonzero flat barrier.
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plot of the error is given in Fig. 3.37.
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Figure 3.37: Error in transmission for nonzero flat barrier.

Therefore the code gives the expected results for density and transmission in the

constant-potential limits.

Thomas-Fermi limit: We consider the limit that ~∂2Ψ/∂x2 → 0 in the unscaled

NLS, Eq. (2.1). In this limit, the unscaled NLS becomes

[
g |Ψ(x, t)|2 + V (x)

]
Ψ(x, t) = i~

∂

∂t
Ψ(x, t). (3.26)

Substituting Eq. (1.7) for the wave function Ψ in (3.26) and rearranging, we obtain

gρ3/2 + [V (x)− ~µ]ρ1/2 = 0, (3.27)
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so that either ρ(x) ≡ 0, the trivial case, or else

ρ(x) =
~µ− V (x)

g
, (3.28)

when g 6= 0. Note that Eq. (3.28) works for any spatially-dependent potential V (x).

Equation (3.28) is the well-known Thomas-Fermi limit [12]. It is relevant when

the curvature of Ψ is nearly zero. This can be accomplished either by taking the

limit A/B → 0, so that the amplitude of oscillations is small, or by taking the limit

1/b→∞, so that the wavelength of oscillations is large.
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Chapter 4

CONCLUSION

We have developed, in full mathematical generality, the complete stationary-

state solution set for the nonlinear Schrödinger equation (1.4) when the potential

V (x) is piecewise-constant. These solutions were used to numerically compute the

transmission coefficient of the BEC. The behavior of the transmission, as well as the

transmission resonances, were analyzed in Section 3.2. We found that the nonlinear-

ity inherent in this problem introduces many new features, which are not present in

the well-understood linear case. Due to nonlinearity, we cannot break the solution

into right- and left-traveling waves and incident and reflected parts, and we cannot

say which side of the barrier is the “incident” side. The physical interpretation must

therefore be changed for the nonlinear case, and we find that transmission may be

greater than unity. Under the new definition, Eq. (3.3), the transmission coefficient

no longer represents a probability for some particle to be transmitted through the

barrier. Nevertheless, the behavior of this transmission coefficient still presents in-

teresting physics. We defined transmission in Eq. (3.3) to be consistent with an

atom laser which impinges on the left side of the barrier. Due to the nonlinearity,

we cannot distinguish between input and output parts of the wave function; that is,

right- vs. left-traveling waves, and thus the transmission coefficient incorporates both.

We have considered three kinds of plots in our results: density/phase, transmis-

sion/resonance, and the slope behavior of the transmission resonances. We found that
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in some highly nonlinear cases, localized dark soliton solutions are observed above the

potential barrier. We also found that the density solutions are doubly degenerate:

there are pairs of solutions which are identical in every respect except for the sign of

the phase. The two signs of phase correspond to two different flows in the BEC. We

found that the velocity profile of the BEC, which is proportional to dφ/dx, exhibits

different behavior for localized and non-localized solutions.

We analyzed the transmission and resonances in detail for several physical regimes.

We found that the behavior of transmission for g 6= 0 is very different than that ob-

served in the linear case. Also, the behavior of the transmission curve is strongly

dependent on the barrier width and the strength of the nonlinearity. A wider barrier

is more visible to the BEC, and this leads to very different transmission properties

than those observed for narrower barriers. The barrier height V0 mainly offsets the

value of µ for a given g at which the strongly oscillatory behavior of T , seen in the

left side of the transmission plots of Section 3.2.1, switches over to the smoother

behavior seen in the right-hand regions of the transmission plots. The oscillatory

region changes shape as g changes, while the smoother region shifts to the right as g

increases. The barrier height determines where this transition occurs.

Bifurcations appear in a transition region in the resonance plot for the wide bar-

rier. The resonances are also more densely packed in this region, which corresponds

to a region of near-perfect resonance in the transmission plot. In this region, T is

nearly flat at unity, which indicates that the barrier is almost perfectly invisible to

the BEC.
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A complete characterization of these bifurcations is a problem open for further

study. We hypothesize that the three bifurcation points seen in Fig. 3.19 may be

used to predict the locations of additional bifurcation points which lie outside the

regime displayed in our results.

Numerical analysis was performed to verify the correctness of our code. Con-

vergence was verified for the numerical integration. Several well-known limits were

checked, and in all cases, the code yielded the theoretically expected results. There-

fore, we can be confident that the code given in Appendix C produces physically and

mathematically valid results.

Finally, the theoretical data obtained from our code was connected to the exper-

iment of Engels & Atherton [20]. For certain physical parameters, the BEC exhibits

well-localized soliton solutions over the potential barrier. Comparison of the theory

with experiment, using the physical parameter values relevant to the experiment, is

a matter for future study.

This work represents one step on the long journey toward a completely general

theory of nonlinear scattering. The methods discussed in this thesis may be extended

to more general piecewise-constant potentials. In addition, the constant-potential

solution may possibly, by way of some sophisticated mathematics, be extended to

spatially dependent potentials. The BEC scattering problem is a treasure trove of

new physical insights waiting to be mined, and many more research opportunities

have yet to be explored.



84

REFERENCES

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A.
Cornell. Observation of Bose-Einstein condensation in a dilute atomic vapor.
Science, 269:198–201, 1995.

[2] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee,
D. M. Kurn, and W. Ketterle. Bose-Einstein condensation in a gas of sodium
atoms. Phys. Rev. Lett., 75(22):3969–3973, Nov 1995.

[3] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet. Evidence of Bose-
Einstein condensation in an atomic gas with attractive interactions. Phys. Rev.
Lett., 75(9):1687–1690, Aug 1995.

[4] C. C. Bradley, C. A. Sackett, and R. G. Hulet. Analysis of in situ images of Bose-
Einstein condensates of lithium. Phys. Rev. A, 55(5):3951–3953, May 1997.

[5] T. Maruyama and H. Yabu. Quadrupole oscillations in Bose-Fermi mixtures of
ultracold atomic gases made of Yb atoms in the time-dependent Gross-Pitaevskii
and Vlasov equations. Phys. Rev. A, 80(4):043615, Oct 2009.

[6] F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles,
and C. Salomon. Quasipure Bose-Einstein condensate immersed in a Fermi sea.
Phys. Rev. Lett., 87:080403–1–4, 2001.

[7] A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. Partridge, and R. G.
Hulet. Observation of Fermi pressure in a gas of trapped atoms. Science,
291:2570, 2001.

[8] R. J. Donnelly. Quantized Vortices in Helium II. Cambridge University Press,
New York, 1991.

[9] M. A. Hoefer and B. Ilan. Theory of two-dimensional oblique dispersive shock
waves in supersonic flow of a superfluid. Phys. Rev. A, 80(6):061601, Dec 2009.

[10] A. Einstein. Quantentheorie des einatomigen idealen gases. Sitzungsberichte der
Preussischen Akademie der Wissenschaften, 1:3, 1925.

[11] S. N. Bose. Plancks gesetz und lichtquantenhypothese. Z. Phys., 26:178–181,
1924.



85

[12] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari. Theory of Bose-Einstein
condensation in trapped gases. Rev. Mod. Phys., 71:463–512, 1999.

[13] W. Ketterle and N. J. van Druten. Bose-Einstein condensation of a finite number
of particles trapped in one or three dimensions. Physical Review A, 54:656–659,
1996.

[14] A. J. Leggett. Bose-Einstein condensation in the alkali gases: Some fundamental
concepts. Rev. Mod. Phys., 73:307–356, 2001.

[15] D. G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner,
and T. J. Greytak. Bose-Einstein condensation of atomic hydrogen. Phys. Rev.
Lett., 81(18):3811–3814, Nov 1998.

[16] G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, and M. Inguscio.
Bose-Einstein condensation of potassium atoms by sympathetic cooling. Science,
294(5545):1320–1322, 2001.

[17] Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura,
T. Yabuzaki, and Y. Takahashi. Spin-singlet Bose-Einstein condensation of two-
electron atoms. Phys. Rev. Lett., 91:040404, 2003.

[18] A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Boiron, C. I.
Westbrook, and A. Aspect. A Bose-Einstein condensate of metastable atoms.
Science, 292(5516):461–464, 2001.

[19] E. G. M. van Kempen, S. J. J. M. F. Kokkelmans, D. J. Heinzen, and B. J. Ver-
haar. Interisotope determination of ultracold rubidium interactions from three
high-precision experiments. Phys. Rev. Lett., 88(9):093201, Feb. 2002.

[20] P. Engels and C. Atherton. Stationary and nonstationary fluid flow of a Bose-
Einstein condensate through a penetrable barrier. Phys. Rev. Lett., 99:160405,
2007.

[21] K. Helmerson, D. Hutchinson, K. Burnett, and W. D. Phillips. Atom lasers.
Phys. World, 12:31–35, 1999.
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APPENDIX A

JACOBI ELLIPTIC FUNCTIONS

There are twelve Jacobi elliptic functions in all: sn, cn, dn, sc, nc, dc, cs, ds, ns

[40]. Not all of these are independent. The Jacobi functions are doubly-periodic in

the complex plane and they depend on two parameters: an independent variable u

and the elliptic parameter m. For real parameter m, we may assume 0 ≤ m ≤ 1. If

m is outside of this range, transformations can be made to write the Jacobi function

in terms of functions whose parameter is between 0 and 1 [40]. For sn(u|m), which

appears in the density ρ(x) of the BEC, these transformations are: for m < 0,

sn(u|m) =

(
1

1−m

)1/2

sd

[
(1−m)1/2u

∣∣∣∣ ( −m1−m

)]
, (A.1)

and for m > 1,

sn(u|m) = m−1/2 sn(um1/2|m−1). (A.2)

When m lies between zero and unity, the Jacobi functions can be interpreted

geometrically as the analog of the hyperbolic and trigonometric functions [27]. In

this interpretation, the parameter m corresponds to the eccentricity of the ellipse.

For m = 0, the Jacobi functions reduce to the trigonometric functions; for m = 1, to

the hyperbolic functions.

The Jacobi functions are defined as inverse integrals [42], and by the locations

of zeros and poles in the complex plane [40]. They may be related to one another by
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various identities [49, 50, 51].
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APPENDIX B

SUPPLEMENTAL RESULTS

B.1 Linear Independence of Powers of sn(u|m)

Theorem 2. The functions snp(u|m) and snq(u|m), p, q ∈ Z, are linearly indepen-

dent for p 6= q.

Proof. Compute the Wronskian of the two functions:

W [ snp(u|m), snq(u|m)] =

∣∣∣∣∣∣ snp(u|m) snq(u|m)

d
du

[ snp(u|m)] d
du

[ snq(u|m)]

∣∣∣∣∣∣ (B.1)

= q snp(u|m) snq−1(u|m) cn(u|m) dn(u|m)

− p snp−1(u|m) snq(u|m) cn(u|m) dn(u|m) (B.2)

= (q − p) cn(u|m) dn(u|m) snp+q−1(u|m). (B.3)

The product of Jacobi elliptic functions is nonvanishing except on a set of measure

zero; therefore, for p 6= q the functions are linearly independent. QED.

B.2 Linear Independence of Products of Powers of sn

Let

f1(x) = snp(a|m) snq(u|m), (B.4)

f2(x) = snr(a|m) sns(u|m), (B.5)
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where p, q, r, s are integers, and assume without loss of generality that a = u. The

case a = u is analyzed in Section B.1. Computing the Wronskian of f1, f2, we find

W (f1, f2) = (r − p) cn(a|m) dn(a|m) snr+p−1(a|m) sns+q(u|m)+

(q − s) cn(u|m) dn(u|m) sns+q−1(u|m) snr+p(a|m). (B.6)

The Wronskian vanishes ∀a, u only when r = p and q = s; that is, when f1 and f2

are not distinct functions. In all other cases, f1 and f2 are linearly independent.

B.3 Continuity of ∂x Ψ(x, t) at Boundary

Let ε > 0. Integrate ∂
∂x

Ψ(x, t) over a small interval on either side of the boundary

a: ∫ a+ε

a−ε

∂

∂x
Ψ dx. (B.7)

If Ψ(x, t) is discontinuous at x = a, then this integral will be nonvanishing.

By the Fundamental Theorem of Calculus, we have

∫ a+ε

a−ε

∂

∂x
Ψ dx = Ψ(a+ ε, t)−Ψ(a− ε, t). (B.8)

If we take ε small enough such that the region [a− ε, a+ ε] does not include another

boundary, then the right-hand side of Eq. (B.8) is 0, by continuity of the wave func-

tion; see Sec. 2.4. Since the potential V (x) is piecewise-constant, and discontinuous

at a finite number of boundaries, it is possible to choose such an ε. Therefore the

first spatial derivative of Ψ(x, t) must be continuous at the boundary.
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APPENDIX C

MATHEMATICA CODE

The code used for computation of the transmission coefficient and resonances is

given below. All comments are in italic.

Preliminary Setup

In order for parameter substitutions to work correctly, we must define things in terms

of pure functions. Thus, convention: #1=A, #2=b, #3=x, #4=δ0, #5=m, #6=B,

#7=V(LHS or current region), #8=V(RHS), #9=g, #10=µ, #11=b2

Clear everything. If the code has been run previously, then “i” is protected (see below);

we need to “un-protect” it before we can clear its value.

Unprotect[i];

Clear["Global‘*"];

Since “i” is used to represent the square root of -1, we need to protect it, to prevent

it from taking on a numerical value later in the code.

Protect[i];

Miscellaneous Mathematica commands:

Off[General::spell, General::spell1];

Define which OS we’re working on, because Windows and Linux have very different

directory structures!
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os = "LinuxA";

Define a subdirectory of the main transmission plots directory. This subdirectory is

where the data output will be stored.

subDir = "set36/set36a";

Define operating systems. (Don’t change these.) “LinuxF” and “WindowsF” refer

to machines on Faraday; “LinuxL” and “WindowsL” refer to laptop; “LinuxA” is

Alamode, and “WindowsA” is ADIT.

os1 = "LinuxF";

os2 = "WindowsF";

os3 = "LinuxL";

os4 = "WindowsL";

os5 = "LinuxA";

os6 = "WindowsA";

Define the main directory with the appropriate slash at the end

dir1main = "/home/ramiller/MastersWork/BarrierScattering/

TransmissionPlots/";

dir2main = "Y:\PH\Users\ramiller\MastersWork\BarrierScattering

\TransmissionPlots\";

dir3main = "/home/ramiller/AlamodeBackup/MastersWorkBackup/

BarrierScattering/transmissionplots/";

dir4main = "C:\MastersWork\BarrierScattering

TransmissionPlots";

dir5main = "/home/ramiller/Masters/BarrierScattering/

transmissionplots/";

dir6main = "Y:\MA\Users\ramiller\physics stuff\MastersWorkBackup\
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BarrierScattering\transmissionplots\";

Define full directory paths

dir1 = StringJoin[dir1main, subDir];

dir2 = StringJoin[dir2main, subDir];

dir3 = StringJoin[dir3main, subDir];

dir4 = StringJoin[dir4main, subDir];

dir5 = StringJoin[dir5main, subDir];

dir6 = StringJoin[dir6main, subDir];

Set local working directory

If[os == os6, SetDirectory[dir6], If[os == os5, SetDirectory[dir5],

If[os == os4, SetDirectory[dir4], If[os == os3, SetDirectory[dir3],

If[os == os2, SetDirectory[dir2], SetDirectory[dir1]]]]]];

Notebook Parameter Definitions

Precision and tolerance:

prec = 100;

tol = 10−5;

disctol = 10−5;

Linear cutoff value. If m or g is smaller than this value, we consider the linear lim-

iting case.

linearCutoff = SetPrecision[10−5, prec];

Bounds on µ for the transmission calculation loop.

µinit = SetPrecision[5, prec];

µfinal = SetPrecision[25, prec];
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µstep = SetPrecision[1/100, prec];

Starting and ending file suffix for transmission and resonance data sets:

fileN = 1;

fileNfinal = 100;

General Definitions

Most of the functions with “Lin” appended to the name are used only to compute the

exact linear case, when g ≡ 0. However, in some cases, such as the boundary condi-

tion equations, we run into problems with infinities if we use the nonlinear version of

the expressions. Thus, in these cases we use the exact linear expression in the limit,

when g is smaller than the value “linearCutoff” set above.

Replacement rules for
√
−1:

imRepRules = {i2→-1, i3→-i, i4→1}

Define variables:

Eigenvalue (where V0 is the potential in the region of interest).

µfNonLin = Chop[1/2 (#11 + (#1 + 3 #6) #9) + #7, tol] &;

µfLin = Chop[1/2 #11 + #7, tol] &;

µf = µfNonLin[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] &;

One-boundary potential (step) function. The potentials V in each region and the

boundary x1 will be defined later.

V = If[x < x1, VI, VII];

Two-boundary potential (barrier) function:

Vb = If[x < x1, VI, If[x < x2, VII, VIII]]
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Horizontal Scaling, squared:

bsqNonLin = Chop[2*(#10 - #7) - (#1 + 3*#6)*#9, tol] &;

bsqLin = Chop[2*(#10 - #7), tol] &;

bsq = bsqNonLin[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] &;

Define real and imaginary parts of b:

Reb = If[bsq[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] > 0,
√

#11,

SetPrecision[0, prec]] &;

Imb = If[bsq[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] > 0,

SetPrecision[0, prec],
√
−#11]] &;

bf = Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] + i Imb[#1, #2,

#3, #4, #5, #6, #7, #8, #9, #10, #11] &;

Phase constant (squared); note that it is real for b pure real or pure imaginary.

αsqNonLin = Chop[#6 (#1 + #6) (#11 + #6 #9), tol] &;

αsqLin = Chop[#11 (#62 + #1 #6), tol] &;

αsq = αsqNonLin[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] &;

Elliptic parameter. Note that m ∈ R, by assumption.

* Irrelevant for linear case. However, since m is used as a parameter everywhere,

we simply set it to 0 in the linear case (as it must be anyway). Note that for g = 0,

mfNonLin = 0, but for g very small, mfNonLin will also be very small but nonzero.

mfNonLin = Chop[(#1*#9)/#11, tol] &;

mfLin = SetPrecision[0, prec] &;

mf = mfNonLin[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] &;

Note that when b is pure real or pure imaginary, then m is real. Specifically, for

A,B ∈ R, m is real. The Jacobi functions are always complex when m is complex, so

we must have m real.
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Density shift. (Used only when B is allowed to vary.) Since the expression for B

blows up as g → 0, we use the exact linear value in the limiting case.

BfNonLin = Chop[(2 (#10 - #7) - #11)/(3 #9) - #1/3, tol] &;

BfLin = SetPrecision[0, prec] &;

Bf = If[#5 < linearCutoff, BfLin[#1, #2, #3, #4, #5, #6, #7, #8, #9,

#10, #11] , BfNonLin[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] ]

&;

Jacobi Function Definitions & Identities

For convenience, define Jacobi function shorthand

sn[y , p ] := JacobiSN[y, p];

cn[y , p ] := JacobiCN[y, p];

dn[y , p ] := JacobiDN[y, p];

Pythagorean-type identities: (note that this will not work alone for powers other than

2, e.g., functions4.)

pythIdentityRepRules = {JacobiCN[a , b ]2 → 1 - JacobiSN[a, b]2,

JacobiDN[a , b ]2 → 1 - b JacobiSN[a, b]2,

JacobiND[a , b ]2 → -b JacobiSD[a, b]2 + 1,

JacobiCD[a , b ]2 → (b - 1) JacobiSD[a, b]2 + 1};

We need to take account of the case where m > 1 (using reciprocal-parameter trans-

formations) and where m < 0 (using negative-parameter transformations). Note that

for A,B ∈ R, m is pure real.

repRulesM = {JacobiSN[q , m ] → If[m > 1, 1/m1/2 sn[q*m1/2, 1/m], If[m

< 0, (-m/(1 - m))1/2 JacobiSD[q (1 - m)1/2, -m/(1 - m)], JacobiSN[q,
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m]]], JacobiCN[q , m ] → If[m > 1, dn[q*m1/2, 1/m], If[m < 0,

JacobiCD[q (1 - m)1/2, -m/(1 - m)], JacobiCN[q, m]]], JacobiDN[q ,

m ] → If[m > 1, JacobiCN[q*m1/2, 1/m], If[m < 0, JacobiND[q (1 - m)1/2,

-m/(1 - m)], JacobiDN[q, m]]]};

Put all the rules together into one big replacement table:

jacobiRepRules = Flatten[Append[repRulesM, pythIdentityRepRules]]

Re and Im parts of Jacobi functions, used for computing derivatives:

Resn = (1/((cn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 +

Im[#4], 1 - #5] /. jacobiRepRules)2 + #5 (sn[ Reb[#1, #2, #3, #4, #5,

#6, #7, #8, #9, #10, #11] #3 +

Re[#4], #5] /. jacobiRepRules)2 (sn[ Imb[#1, #2, #3, #4, #5, #6, #7,

#8, #9, #10, #11] #3 +

Im[#4], 1 - #5] /. jacobiRepRules)2 /. jacobiRepRules)2 sn[ Reb[#1,

#2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 +

Re[#4], #5] dn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 +

Im[#4], 1 - #5] /. jacobiRepRules) &;

Imsn = (1/((cn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 +

Im[#4], 1 - #5] /. jacobiRepRules)2 + #5 (sn[ Reb[#1, #2, #3, #4, #5,

#6, #7, #8, #9, #10, #11] #3 +

Re[#4], #5] /. jacobiRepRules)2 (sn[ Imb[#1, #2, #3, #4, #5, #6, #7,

#8, #9, #10, #11] #3 +

Im[#4], 1 - #5] /. jacobiRepRules)2 /. jacobiRepRules)2 cn[ Reb[#1,

#2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 +

Re[#4], #5] dn[ Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 +

Re[#4], #5] sn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 +
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Im[#4], 1 - #5] cn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11]

#3 + Im[#4], 1 - #5] /. jacobiRepRules) &;

Recn = (1/((cn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 +

Im[#4], 1 - #5] /. jacobiRepRules)2 + #5 (sn[ Reb[#1, #2, #3, #4, #5,

#6, #7, #8, #9, #10, #11] #3 +

Re[#4], #5] /. jacobiRepRules)2 (sn[ Imb[#1, #2, #3, #4, #5, #6, #7,

#8, #9, #10, #11] #3 +

Im[#4], 1 - #5] /. jacobiRepRules)2 /. jacobiRepRules)2 cn[ Reb[#1,

#2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 +

Re[#4], #5] cn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 +

Im[#4], 1 - #5] /. jacobiRepRules) &;

Imcn = (-1/((cn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3

+

Im[#4], 1 - #5] /. jacobiRepRules)2 + #5 (sn[ Reb[#1, #2, #3, #4, #5,

#6, #7, #8, #9, #10, #11] #3 +

Re[#4], #5] /. jacobiRepRules)2 (sn[ Imb[#1, #2, #3, #4, #5, #6, #7,

#8, #9, #10, #11] #3 +

Im[#4], 1 - #5] /. jacobiRepRules)2 /. jacobiRepRules)2 sn[ Reb[#1,

#2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 +

Re[#4], #5] dn[ Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 +

Re[#4], #5] sn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 +

Im[#4], 1 - #5] dn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11]

#3 + Im[#4], 1 - #5] /. jacobiRepRules) &;

Redn = (1/((cn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 +

Im[#4], 1 - #5] /. jacobiRepRules)2 + #5 (sn[ Reb[#1, #2, #3, #4, #5,
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#6, #7, #8, #9, #10, #11] #3 +

Re[#4], #5] /. jacobiRepRules)2 (sn[ Imb[#1, #2, #3, #4, #5, #6, #7,

#8, #9, #10, #11] #3 +

Im[#4], 1 - #5] /. jacobiRepRules)2 /. jacobiRepRules)2 dn[ Reb[#1,

#2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 +

Re[#4], #5] cn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 +

Im[#4], 1 - #5] dn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11]

#3 + Im[#4], 1 - #5] /. jacobiRepRules) &;

Imdn = (-1/((cn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3

+

Im[#4], 1 - #5] /. jacobiRepRules)2 + #5 (sn[ Reb[#1, #2, #3, #4, #5,

#6, #7, #8, #9, #10, #11] #3 +

Re[#4], #5] /. jacobiRepRules)2 (sn[ Imb[#1, #2, #3, #4, #5, #6, #7,

#8, #9, #10, #11] #3 +

Im[#4], 1 - #5] /. jacobiRepRules)2 /. jacobiRepRules)2 #5 sn[

Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 +

Re[#4], #5] cn[ Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 +

Re[#4], #5] sn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 +

Im[#4], 1 - #5] /. jacobiRepRules) &;

Horizontal offset, where ρ0 is the value of ρ at the boundary to the left of the region

of interest. NOTE: to avoid defining another pure function (#) variable to be added

everywhere , ρ0 must be substituted using the /. operator. Write one with positive

square root and one with negative square root, and take the correct one when specific

values are defined. The correct sign of the radical is determined by which one causes ρ

to satisfy continuity conditions. The value of x, “#3”, should be taken as the boundary
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to the left of the region of interest. The argument of the square root is the same for

linear and nonlinear cases. There are 2 relevant possibilities.

δ0f1NonLin = Chop[InverseJacobiSN[ Chop[Sqrt[(ρ0 - #6)/#1],

tol], #5] - #2*#3, tol] &;

δ0f2NonLin = Chop[InverseJacobiSN[ Chop[-Sqrt[((ρ0 - #6)/#1)],

tol], #5] - #2*#3, tol] &;

δ0f1Lin = Chop[ArcSin[Chop[Sqrt[(ρ0 - #6)/#1],

tol]] - #2*#3, tol] &;

δ0f2Lin = Chop[ArcSin[Chop[-Sqrt[((ρ0 - #6)/#1)],

tol]] - #2*#3, tol] &;

δ0f1 = If[#5 <= linearCutoff, δ0f1Lin[#1, #2, #3, #4, #5, #6,

#7, #8, #9, #10, #11] , δ0f1NonLin[#1, #2, #3, #4, #5, #6,

#7, #8, #9, #10, #11]] &;

δ0f2 = If[#5 <= linearCutoff, δ0f2Lin[#1, #2, #3, #4, #5, #6,

#7, #8, #9, #10, #11] , δ0f2NonLin[#1, #2, #3, #4, #5, #6,

#7, #8, #9, #10, #11]] &;

Density and its first spatial derivative (using complex-argument transformation, and

simplifying for real A,B as found in analytical work)

Reρ = Chop[((#1/((cn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9,

#10, #11] #3 + Im[#4], 1 - #5] /. jacobiRepRules)2 + #5 (sn[

Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Re[#4],

#5] /. jacobiRepRules)2 (sn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8,

#9, #10, #11] #3 + Im[#4], 1 - #5] /. jacobiRepRules)2)2 ((sn[

Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Re[#4],

#5] /. jacobiRepRules)2 (dn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8,
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#9, #10, #11] #3 + Im[#4], 1 - #5] /. jacobiRepRules)2 - (cn[

Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Re[#4],

#5] /. jacobiRepRules)2 (dn[ Reb[#1, #2, #3, #4, #5, #6, #7, #8,

#9, #10, #11] #3 + Re[#4], #5] /. jacobiRepRules)2 (sn[ Imb[#1,

#2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Im[#4], 1 - #5] /.

jacobiRepRules)2 (cn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10,

#11] #3 + Im[#4], 1 - #5] /. jacobiRepRules)2)) /. jacobiRepRules )

+ #6, tol] &;

ImρNonLin = Chop[((2 #1)/((cn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8,

#9, #10, #11] #3 + Im[#4], 1 - #5] /. jacobiRepRules)2 + #5 (sn[

Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Re[#4], #5]

/. jacobiRepRules)2 (sn[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10,

#11] #3 + Im[#4], 1 - #5] /. jacobiRepRules)2)2) (sn[ Reb[#1, #2, #3,

#4, #5, #6, #7, #8, #9, #10, #11] #3 + Re[#4], #5] cn[ Reb[#1, #2, #3,

#4, #5, #6, #7, #8, #9, #10, #11] #3 + Re[#4], #5] dn[ Reb[#1, #2, #3,

#4, #5, #6, #7, #8, #9, #10, #11] #3 + Re[#4], #5] sn[ Imb[#1, #2, #3,

#4, #5, #6, #7, #8, #9, #10, #11] #3 + Im[#4], 1 - #5] cn[ Imb[#1, #2,

#3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Im[#4], 1 - #5] dn[ Imb[#1,

#2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Im[#4], 1 - #5]) /.

jacobiRepRules, tol] &;

ReρLin = #1 (Sin[ Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3

+ Re[#4]]2 Cosh[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3

+ Im[#4]]2 - Cos[Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3

+ Re[#4]]2 Sinh[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3

+ Im[#4]]2) + #6 &; ImρLin = 2 Sin[Reb[#1, #2, #3, #4, #5, #6, #7, #8,
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#9, #10, #11] #3 + Re[#4]] Cos[ Reb[#1, #2, #3, #4, #5, #6, #7, #8,

#9, #10, #11] #3 + Re[#4]] Sinh[ Imb[#1, #2, #3, #4, #5, #6, #7, #8,

#9, #10, #11] #3 + Im[#4]] Cosh[ Imb[#1, #2, #3, #4, #5, #6, #7, #8,

#9, #10, #11] #3 + Im[#4]] &;

Linear density:

ρLin = ReρLin[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] + i

ImρLin[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] &;

Derivative of the density:

RedρNonLin = Chop[2 #1 ((Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10,

#11] Resn[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] - Imb[#1, #2,

#3, #4, #5, #6, #7, #8, #9, #10, #11] Imsn[#1, #2, #3, #4, #5, #6,

#7, #8, #9, #10, #11]) (Recn[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10,

#11] Redn[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] - Imcn[#1,

#2, #3, #4, #5, #6, #7, #8, #9, #10, #11] Imdn[#1, #2, #3, #4, #5,

#6, #7, #8, #9, #10, #11]) - (Reb[#1, #2, #3, #4, #5, #6, #7, #8,

#9, #10, #11] Imsn[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] +

Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] Resn[#1, #2, #3,

#4, #5, #6, #7, #8, #9, #10, #11]) (Recn[#1, #2, #3, #4, #5, #6, #7,

#8, #9, #10, #11] Imdn[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11]

+ Imcn[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] Redn[#1, #2, #3,

#4, #5, #6, #7, #8, #9, #10, #11])), tol] &;

ImdρNonLin = Chop[2 #1 ((Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10,

#11] Imsn[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] + Imb[#1, #2,

#3, #4, #5, #6, #7, #8, #9, #10, #11] Resn[#1, #2, #3, #4, #5, #6,

#7, #8, #9, #10, #11]) (Recn[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10,
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#11] Redn[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] - Imcn[#1,

#2, #3, #4, #5, #6, #7, #8, #9, #10, #11] Imdn[#1, #2, #3, #4, #5,

#6, #7, #8, #9, #10, #11]) + (Reb[#1, #2, #3, #4, #5, #6, #7, #8,

#9, #10, #11] Resn[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] -

Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] Imsn[#1, #2, #3,

#4, #5, #6, #7, #8, #9, #10, #11]) (Recn[#1, #2, #3, #4, #5, #6, #7,

#8, #9, #10, #11] Imdn[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11]

+ Imcn[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] Redn[#1, #2, #3,

#4, #5, #6, #7, #8, #9, #10, #11])), tol] &;

RedρLin = 2 #1 (Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] Sin[

Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Re[#4]] Cos[

Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Re[#4]] (Cosh[

Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Im[#4]]2 +

Sinh[Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Im[#4]]2)

- Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] Sinh[ Imb[#1, #2,

#3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Im[#4]] Cosh[ Imb[#1, #2,

#3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Im[#4]] (Cos[ Reb[#1, #2,

#3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Re[#4]]2 - Sin[Reb[#1, #2,

#3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Re[#4]]2)) &;

ImdρLin = 2 #1 (Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11]

Sin[Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Re[#4]]

Cos[ Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Re[#4]]

(Cosh[ Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 +

Im[#4]]2 + Sinh[Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3

+ Im[#4]]2) + Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] Sinh[
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Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Im[#4]] Cosh[

Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Im[#4]] (Cos[

Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Re[#4]]2 -

Sin[Reb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] #3 + Re[#4]]2))

&;

dρ = If[#5 <= linearCutoff, RedρLin[#1, #2, #3, #4, #5, #6, #7, #8,

#9, #10, #11] + i ImdρLin[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10,

#11], RedρNonLin[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11] + i

ImdρNonLin[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11]] &;

Equations (from boundary conditions) where V1 is V on the RHS of the boundary of

interest, ρ0 and α0s represent ρ and α2 respectively on the LHS, and A and B are the

values on the RHS of the boundary of interest. V0 is the potential on the LHS of the

boundary of interest. xb is the boundary of interest. We do not define the equations in

terms of pure functions; rather, parameters such as µ, V1, and ρ0 will be substituted

later using the /. operator. In the linear case, the equations can be solved analytically

for A and B. We use these in the limit, since the solutions of the nonlinear versions

result in infinities in Mathematica.

In the linear case, if the boundary happens to fall at a point where the density is

zero, Mathematica can have problems with infinities. Therefore we simplify the ex-

pression for A explicitly in the linear case using the explicit formula for ρ. As a result,

we must pass as parameters A,b, m, and δ0 on the LHS of the boundary of interest.

eq1 = α0s == B (A + B) (2 µ - 2 V1 - A g - 2 B g);

eq2 = dρ02 == -4 (B - ρ0) (A + B - ρ0) (2 µ - 2 V1 - A g - 2 B g - ρ0

g);
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solnNonLin = {A, B} /. Solve[{eq1, eq2}, {A, B}];

linearSolnVals = {(AL bL2 Cos[bL xb + δ0L]2)/( 2 (µ - V1)) + ρ0, 0};

Since there are 6 nonlinear solutions, we define a list of six linear solutions (all the

same, of course) for consistency with existing nonlinear code.

solnLin = {};

For[j = 1, j <= 6, ++j, AppendTo[solnLin, linearSolnVals]];

We take the linear expression in the limit:

Set[soln, If[Abs[mLHS] <= mLinear, solnLin, solnNonLin]];

Period of the density, using Jacobi’s reciprocal transformation when m > 1. If b is

imaginary, we must use the imaginary period, i K(1-m).

realperiod = If[#5 < 1, Chop[(2 EllipticK[#5])/#2, tol], Chop[(2

EllipticK[1/#5])/(#2 #5(1/2)), tol]] &;

imperiod = 2 i Chop[EllipticK[1 - #5]/#2, tol] &;

period = If[Abs[Imb[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11]]

< tol, realperiod[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11],

imperiod[#1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11]] &;

Physical Parameter Definitions

Define global parameters, such as nonlinearity, and known parameters in region I

Define parameters on LHS of first boundary (region I)

*Make sure that AI +BI >= 0

AI = SetPrecision[1, prec];

BI = SetPrecision[1, prec];

δ0I = SetPrecision[0, prec];
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Boundary locations:

x1 = SetPrecision[ 2, prec];

x2 = SetPrecision[7, prec];

Potentials in regions I, II, III for barrier.

VI = SetPrecision[0, prec];

VII = SetPrecision[1, prec];

VIII = SetPrecision[0, prec];

Transmission Calculation

Numerically calculate the transmission coefficient and find resonances

Initialize data arrays:

transArr = {};

resArr = {};

Tolerance for resonances:

oneTol = SetPrecision[10−4, prec];

Clear values that will be computed in transmission loop:

Clear[bI, AII, bII, δ0II, mII, BII, AIII, bIII, δ0III, mIII, BIII,

µ0, x];

Number of subdivisions of integration region:

NumBoxes=25;

(This subdivides the region for Simpson’s Rule. Each of these subdivisions will be

further split into 4 equidistant points and Simpson’s 3/8 Rule applied.)

Define substrings used in filenames:
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transFileString = "transmission ";

resFileString = "resonance ";

Loop parameters:

glin = SetPrecision[10−5, prec];

gstep = SetPrecision[1/100, prec];

ginit = SetPrecision[glin + (fileN - 1)*gstep, prec];

gfinal = SetPrecision[glin + (fileNfinal - 1)*gstep, prec];

Loop to compute the transmission coefficient, and export transmission data and res-

onance data to files.

For[g0=ginit,g0<=gfinal,g0=g0+gstep,

Initialize arrays for transmission and resonance data

transArr={};

resArr={};

Linear limits

If[g0<=mLinear,Set[BI,SetPrecision[0,prec]],Set[BI,

SetPrecision[1,prec]]];

Index for plot data files

µNum=1;

For each µ, compute the transmission...

For[µ0=µinit,µ0<=µfinal,µ0=µ0+µstep,

Initialize arrays for parameters, to be used later in the calculation

paramArr={};

generalParams={};

paramsI={};

paramsII={};
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paramsIII={};

newParamsII={};

newParamsIII={};

Variables to hold values for numerical transmission integrals

intIII=SetPrecision[0,prec];

δxIII=SetPrecision[0,prec];

Put known parameters into arrays

generalParams=µ->µ0,g->g0;

paramsI=Flatten[Append[{A->AI,B->BI,δ0->δ0I,Vv->VI},generalParams]];

paramsII=Flatten[Append[{Vv->VII,V0->VI,V1->VII,xb->x1},generalParams]];

paramsIII=Flatten[Append[{xb->x2,A->AIII,B->BIII,b->bIII,V0->VII,

VI->VIII,δ0->δ0III,α->αIII,m->mIII},generalParams]];

Calculate remaining parameters in region I...

bIsquared=Chop[SetPrecision[bsq[AI,b,x,δ0,mI,BI,VI,VII,g0,µ0,bs],

prec],tol];

bI=Chop[SetPrecision[bf[AI,b,x,δ0I,mI,BI,VI,VII,g0,µ0,bIsquared],

prec],tol];

mI=Chop[SetPrecision[mf[AI,bI,x,δ0I,m,BI,VI,VII,g0,µ0,bIsquared],

prec],tol];

...and add their values to the array

paramsI=Flatten[Append[paramsI,m->mI]];

αI
2

αIs=Chop[SetPrecision[αsq[AI,bI,x,δ0I,mI,BI,VI,VII,g0,µ0,bIsquared],

prec],tol];

paramsI=Flatten[Append[paramsI,α0s->αIs]];



111

Density and its derivative in region I

ρI=Chop[SetPrecision[ρ[AI,bI,#3,δ0I,mI,BI,VI,VII,g0,µ0,bIsquared],

prec],tol]&;

dρI=Chop[SetPrecision[dρ[AI,bI,#3,δ0I,mI,BI,VI,VII,g0,µ0,bIsquared],

prec],tol]&;

Region I density and derivative at the first boundary, for use in equations

ρL=ρI[AI,bI,x1,δ0I,mI,BI,VI,VII,g0,µ0,bIsquared];

dρL=dρI[AI,bI,x1,δ0I,mI,BI,VI,VII,g0,µ0,bIsquared];

Parameter values needed for region II solutions

newParamsII={ρ0->ρL,dρ0->dρL,α0s->αIs,AL->AI,bL->bI,δ0L->δ0I,mLHS->mI};

paramsII=Flatten[Append[paramsII,newParamsII]];

Loop parameters

hasImPart=True;

index=1;

Loop through all algebraic solutions until a physically valid solution (real) is found

While[index<=6&&hasImPart,

AII=Chop[SetPrecision[Part[(soln/.paramsII),index,1]/.paramsII,

prec],tol];

BII=Chop[SetPrecision[Part[(soln/.paramsII),index,2]/.paramsII,

prec],tol];

If[Abs[Im[AII]]>tol||Abs[Im[BII]]>tol,hasImPart=True,hasImPart=False];

If[hasImPart,++index];

];

If no real solutions are found, print a message and abort

If[hasImPart,Print["Complex density solution encountered in region
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II."]];

If[hasImPart,Print["AII = ",N[AII,5]]];

If[hasImPart,Print["BII = ",N[BII,5]]];

If[hasImPart,Print["g = ", N[g0,5]]];

If[hasImPart,Print["µ = ",N[µ0,5]]];

If[hasImPart,Abort[]];

Add known region II parameters to array

paramsII=Flatten[Append[paramsII,{A->AII,B->BII}]];

Calculate remaining parameters in region II...

bIIsquared=Chop[SetPrecision[bsq[AII,bII,x,δ0II,mII,BII,VII,VIII,

g0,µ0,bIIs],prec],tol];

bII=Chop[SetPrecision[bf[AII,bII,x,δ0II,mII,BII,VII,VIII,g0,µ0,

bIIsquared],prec],tol];

bII=bII/.i->I;

...and add their values to the array

paramsII=Flatten[Append[paramsII,b->bII]];

α2
II

αIIs=Chop[SetPrecision[αsq[AII,bII,x,δ0II,mII,BII,VII,VIII,g0,

µ0,bIIsquared],prec],tol];

mII=Chop[SetPrecision[mf[AII,bII,x,δ0II,m,BII,VII,VIII,g0,µ0,

bIIsquared],prec],tol];

paramsII=Flatten[Append[paramsII,m->mII]];

δ0II=Chop[SetPrecision[δ0f1[AII,bII,x1,δ,mII,BII,VII,VIII,g0,µ0,

bIIsquared]/.paramsII,prec],tol];

paramsII=Flatten[Append[paramsII,δ0->δ0II]];
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Density and its derivative in region II

ρII=Chop[SetPrecision[ρ[AII,bII,#3,δ0II,mII,BII,VII,VIII,g0,µ0,

bIIsquared],prec],tol]&;

dρII=Chop[SetPrecision[dρ[AII,bII,#3,δ0II,mII,BII,VII,VIII,g0,

µ0,bIIsquared],prec],tol]&;

Check boundary conditions

ρdisc1=Chop[Abs[ρII[AII,bII,x1,δ0II,mII,BII,VII,VIII,g0,µ0,

bIIsquared]-ρI[AI,bI,x1,δ0I,mI,BI,VI,VII,g0,µ0,bIsquared]],tol];

dρdisc1=Chop[Abs[dρII[AII,bII,x1,δ0II,mII,BII,VII,VIII,g0,µ0,

bIIsquared]-dρI[AI,bI,x1,δ0I,mI,BI,VI,VII,g0,µ0,bIsquared]],tol];

If the derivative is discontinuous, choose the other sign of the square root in the

expression for δ0

If[Abs[dρdisc1]<disctol,δ0II=Chop[SetPrecision[δ0f1[AII,bII,x1,δ

,mII,BII,VII,VIII,g0,µ0,bIIsquared]/.paramsII,prec],tol],

δ0II=Chop[SetPrecision[δ0f2[AII,bII,x1,δ,mII,BII,VII,VIII,g0,µ0,

bIIsquared]/.paramsII,prec],tol]];

Add δ0 to the array

paramsII=Flatten[Append[paramsII,δ0->δ0II]];

Redefine density and derivative, using the (possibly) new value of δ0II

ρII=Chop[SetPrecision[ρ[AII,bII,#3,δ0II,mII,BII,VII,VIII,g0,µ0,

bIIsquared],prec],tol]&;

dρII=Chop[SetPrecision[dρ[AII,bII,#3,δ0II,mII,BII,VII,VIII,g0,µ0,

bIIsquared],prec],tol]&;

Check boundary conditions with new values

ρdisc1=Chop[Abs[ρII[AII,bII,x1,δ0II,mII,BII,VII,VIII,g0,µ0,
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bIIsquared]-ρI[AI,bI,x1,δ0I,mI,BI,VI,VII,g0,µ0,bIsquared]],tol];

dρdisc1=Chop[Abs[dρII[AII,bII,x1,δ0II,mII,BII,VII,VIII,g0,

µ0,bIIsquared]-dρI[AI,bI,x1,δ0I,mI,BI,VI,VII,g0,µ0,bIsquared]],tol];

If the derivative is still discontinuous (it shouldn’t be!), print a message.

If[Abs[dρdisc1]>disctol,Print["Derivative discontinuity encountered

at x1"]];

If[Abs[dρdisc1]>disctol,Print["Discontinuity of ",dρdisc1]];

If[Abs[dρdisc1]>disctol,Print["g = ", N[g0,5]]];

If[Abs[dρdisc1]>disctol,Print["µ = ",N[µ0,5]]];

Add physical parameters to Region III array

paramsIII=Flatten[Append[{xb->x2,Vv->VIII,V0->VII,V1->VIII},

generalParams]];

Region II density and derivative at the second boundary, for use in equations

ρLL=ρII[AII,bII,x2,δ0II,mII,BII,VII,VIII,g0,µ0,bIIsquared];

dρLL=dρII[AII,bII,x2,δ0II,mII,BII,VII,VIII,g0,µ0,bIIsquared];

Parameter values needed for region III solutions

newParamsIII={ρ0->ρLL,dρ0->dρLL,α0s->αIIs,AL->AII,bL->bII,

δ0L->δ0II,mLHS->mII};

paramsIII=Flatten[Append[paramsIII,newParamsIII]];

Loop parameters

hasImPart2=True;

index2=1;

Loop through all algebraic solutions until a physically valid solution (real) is found

While[index2<=6&&hasImPart2,

AIII=Chop[SetPrecision[Part[(soln/.paramsIII),index2,1]
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/.paramsIII,prec],tol];

BIII=Chop[SetPrecision[Part[(soln/.paramsIII),index2,2]

/.paramsIII,prec],tol];

If[Abs[Im[AIII]]>tol||Abs[Im[BIII]]>tol,hasImPart2=True,

hasImPart2=False];

If[hasImPart2,++index2];

];

If no real solutions are found, print a message and abort

If[hasImPart2,Print["Complex density solution encountered in region

III."]];

If[hasImPart2,Print["AIII = ",N[AIII,5]]];

If[hasImPart2,Print["BIII = ",N[BIII,5]]];

If[hasImPart2,Print["g = ", N[g0,5]]];

If[hasImPart2,Print["µ = ",N[µ0,5]]];

If[hasImPart2,Abort[]];

Add known region III parameters to array

paramsIII=Flatten[Append[paramsIII,{A->AIII,B->BIII}]];

Calculate remaining parameters in region III...

bIIIsquared=Chop[SetPrecision[bsq[AIII,bIII,x,δ0III,mIII,BIII,

VIII,VIII,g0,µ0,bIIIs],prec],tol];

bIII=Chop[SetPrecision[bf[AIII,b,x,δ0III,mIII,BIII,VIII,VIII,

g0,µ0,bIIIsquared],prec],tol];

bIII=bIII/.i->I;

...and add them to the array

paramsIII=Flatten[Append[paramsIII,b->bIII]];
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α2
III

αIIIs=Chop[SetPrecision[αsq[AIII,bIII,x,δ0III,mIII,BIII,

VIII,VIII,g0,µ0,bIIIsquared],prec],tol];

mIII=Chop[SetPrecision[mf[AIII,bIII,x,δ0III,m,BIII,VIII,

VIII,g0,µ0,bIIIsquared],prec],tol];

paramsIII=Flatten[Append[paramsIII,m->mIII]];

δ0III=Chop[SetPrecision[δ0f1[AIII,bIII,x2,δ,mIII,BIII,

VIII,VIII,g0,µ0,bIIIsquared]/.paramsIII,prec],tol];

paramsIII=Flatten[Append[paramsIII,δ0->δ0III]];

Density and its derivative in region III

ρIII=Chop[SetPrecision[ρ[AIII,bIII,#3,δ0III,mIII,BIII,VIII,

VIII,g0,µ0,bIIIsquared],prec],tol]&;

dρIII=Chop[SetPrecision[dρ[AIII,bIII,#3,δ0III,mIII,BIII,VIII,

VIII,g0,µ0,bIIIsquared],prec],tol]&;

Check boundary conditions

ρdisc2=Chop[Abs[ρIII[AIII,bIII,x2,δ0III,mIII,BIII,VIII,VIII,

g0,µ0,bIIIsquared]-ρII[AII,bII,x2,δ0II,mII,BII,VII,VIII,g0,

µ0,bIIsquared]],tol];

dρdisc2=Chop[Abs[dρIII[AIII,bIII,x2,δ0III,mIII,BIII,VIII,VIII,

g0,µ0,bIIIsquared]-dρII[AII,bII,x2,δ0II,mII,BII,VII,VIII,g0,

µ0,bIIsquared]],tol];

If the derivative is discontinuous, choose the other sign of the square root in the

expression for δ0

If[Abs[dρdisc2]<disctol,δ0III=Chop[SetPrecision[δ0f1[AIII,bIII,x2,δ,

mIII,BIII,VIII,VIII,g0,µ0,bIIIsquared]/.paramsIII,prec],tol],
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δ0III=Chop[SetPrecision[δ0f2[AIII,bIII,x2,δ,mIII,BIII,VIII,VIII,

g0,µ0,bIIIsquared]/.paramsIII,prec],tol]];

Add δ0 to the array

paramsIII=Flatten[Append[paramsIII,δ0->δ0III]];

Redefine density and derivative, using the (possibly) new value of δ0III

ρIII=Chop[SetPrecision[ρ[AIII, bIII,#3,δ0III,mIII,BIII,VIII,VIII,

g0,µ0,bIIIsquared],prec],tol]&;

dρIII=Chop[SetPrecision[dρ[AIII,bIII,#3,δ0III,mIII,BIII,VIII,VIII

,g0,µ0,bIIIsquared],prec],tol]&;

Check boundary conditions with new values

ρdisc2=Chop[Abs[ρIII[AIII,bIII,x2,δ0III,mIII,BIII,VIII,VIII,g0,

µ0,bIIIsquared]-ρII[AII,bII,x2,δ0II,mII,BII,VII,VIII,g0,µ0,

bIIsquared]],tol];

dρdisc2=Chop[Abs[dρIII[AIII,bIII,x2,δ0III,mIII,BIII,VIII,VIII,g0,

µ0,bIIIsquared]-dρII[AII,bII,x2,δ0II,mII,BII,VII,VIII,g0,µ0,

bIIsquared]],tol];

If the derivative is still discontinuous (it shouldn’t be!), print a message.

If[Abs[dρdisc2]>disctol,Print["Derivative discontinuity encountered

at x2"]];

If[Abs[dρdisc2]>disctol,Print["Discontinuity of ",dρdisc2]];

If[Abs[dρdisc2]>disctol,Print["g = ", N[g0,5]]];

If[Abs[dρdisc2]>disctol,Print["µ = ",N[µ0,5]]];

Export coefficients for plot

paramArr=Flatten[Append[paramArr,{AI,bI,δ0I,mI,BI,AII,bII,δ0II

,mII,BII,AIII,bIII,δ0III,mIII,BIII}]];
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Calculate average density in region I.

ρavgI=1/period[AI,bI,x,δ0I,mI,BI,VI,VII,g0,µ0,bIsquared]*

Integrate[ρI[AI,bI,x,δ0I,mI,BI,VI,VII,g0,µ0,bIsquared],

{x,x1-period[AI,bI,x,δ0I,mI,BI,VI,VII,g0,µ0,bIsquared],x1}];

Simpson’s Rule interval width for numerical integration

δxIII=1/numBoxes*period[AIII,bIII,x,δ0III,mIII,BIII,VIII,VIII,

g0,µ0,bIIIsquared];

Numerically integrate density in region III, over one period, using Simpson’s 3/8

Rule. Note: NIntegrate leads to infinities.

For[j=0,j<numBoxes,++j,

xj=x2+#1 δxIII &;

δj=(xj[j+1]-xj[j])/3;

intIII=intIII+SetPrecision[3/8 δj (ρIII[AIII,bIII,xj[j],δ0III,mIII,

BIII,VIII,VIII,g0,µ0,bIIIsquared]+3 ρIII[AIII,bIII,xj[j]+δj,δ0III,

mIII,BIII,VIII,VIII,g0,µ0,bIIIsquared]+3 ρIII[AIII,bIII,

xj[j]+2*δj,δ0III,mIII,BIII,VIII,VIII,g0,µ0,bIIIsquared]

+ρIII[AIII,bIII,xj[j]+3*δj,δ0III,mIII,BIII,VIII,VIII,g0,µ0,

bIIIsquared]),prec];

];

Average density in region III

ρavgIII=SetPrecision[1/period[AIII,bIII,x,δ0III,mIII,BIII,VIII,VIII,

g0,µ0,bIIIsquared]*intIII,prec];

Transmission!

Tcoeff=SetPrecision[ρavgIII/ρavgI,prec];

Since densities are real, transmission also must be real. If not, print a message and
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abort.

If[Abs[Im[Tcoeff]]>tol,Print["Complex transmission encountered.

Aborting."]];

If[Abs[Im[Tcoeff]]>tol,Print["g = ", N[g0,5]]];

If[Abs[Im[Tcoeff]]>tol,Print["µ = ",N[µ0,5]]];

If[Abs[Im[Tcoeff]]>tol,Print["mI = ",N[mI,5]]];

If[Abs[Im[Tcoeff]]>tol,Print["mIII = ",N[mIII,5]]];

If[Abs[Im[Tcoeff]]>tol,Abort[]];

Add (µ,T) pair to transmission array

transArr=Append[transArr,{µ0,Tcoeff}];

Check for resonance. If there is a resonance, add (µ,g) pair to resonance array.

If[Abs[Tcoeff-1]<=oneTol,AppendTo[resArr,{µ0,g0}]];

Export coefficient data for use in plotting density, if desired. See DensityPlotFrom-

TransmissionNotebook Nov11 2009.nb

plotFilename=StringJoin["rhoCoeffs ",ToString[fileN]," ",

ToString[µNum],".csv"];

Export[plotFilename,paramArr];

Increment µ-index

µNum=µNum+1;

];

Export transmission and resonance data

gstring=ToString[fileN];

finalTransFilename=StringJoin[transFileString,gstring,".csv"];

finalResFilename=StringJoin[resFileString,gstring,".csv"];

Export[finalTransFilename,transArr];
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Export[finalResFilename,resArr];

Increment g-index

fileN=fileN+1;

];


