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ABSTRACT

We study complex quantum many-body dynamics of ultracold bosons in one-

dimensional optical lattice potentials. Until recently, reliable time-dependent simula-

tion of these systems was limited due to exponential growth of the Hilbert space with

the size of the quantum system. However, in 2003-2004, G. Vidal devised the time-

evolving block decimation algorithm: a time-adaptive density matrix renormalization

group routine with roots in quantum information theory that allows efficient quasi-

exact classical simulation of one-dimensional quantum many-body systems exhibiting

a limited amount of entanglement. We apply these algorithms to the Bose-Hubbard

Hamiltonian, a truncation of the full many-body Hamiltonian in second quantization

that accurately describes the physics of ultracold bosons in deep optical lattices.

Specifically, we study dark solitons, self-sustaining nonlinear waves that are ob-

served throughout nature and are an emergent property of Bose-Einstein condensates

in the mean-field limit; we treat solitons in the fully quantum many-body setting of

ultracold atoms on a Bose-Hubbard lattice. We consider two types of initial con-

ditions for subsequent soliton propagation. In the first method, we build quantum

analogs to the dark soliton solutions of the discrete nonlinear Schrödinger (DNLS)

equation, a mean-field approximation of the Bose-Hubbard Hamiltonian; in the sec-

ond method, we use density and phase engineering techniques to quantum engineer

dark soliton initial conditions directly. We show that for both types of initial con-

ditions, quantum fluctuations cause standing dark solitons to fill in at times on the

order of tens of tunneling times. The static Bogoliubov spectrum is calculated for

the dark soliton state of the discrete nonlinear Schrödinger equation, and we show
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that such a treatment is inadequate to fully describe the filling-in of the soliton. We

also show that quantum many-body effects can effectively induce an inelasticity in

a collision between two solitons. Both of these results are in strong contrast to the

predictions of pure mean-field theory.

Finally, we present a preliminary study of spin-1 bosons on an optical lattice

undergoing a symmetry-breaking dynamical quantum phase transition. Using a mean-

field vector DNLS approach, we show that the scaling properties of the system with

respect to the rate of the phase transition should be describable by the Kibble-Zurek

mechanism, an effect originally proposed to predict string and monopole formation

during the evolution of the early Universe. Comparisons are made to previous mean-

field studies in continuous geometries, and we make suggestions regarding how to

investigate quantum many-body effects on this phase transition by simulating it using

the aforementioned time-evolving block decimation method.
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Chapter 1

INTRODUCTION

This introductory chapter gives a thorough review of the main theories and

experiments pertaining to Bose-Einstein condensation and ultracold atoms in optical

lattices. We discuss the history of simulation techniques used for many-body quantum

lattice systems and also review the theories and experimental studies of solitons and

dynamical phase transitions in spinor condensates. The chapter concludes with a

short overview of the entire thesis.

1.1 Ultracold Atoms and Bose-Einstein Condensation

Low-temperature phenomena have been at or near the forefront of modern physics

for a large part of the past century. Among early advances, Einstein in 1925, inspired

by the work of Bose on photon statistics a year earlier [1], predicted a phase tran-

sition of non-interacting bosons when cooled below a critical temperature [2]. This

phase transition is characterized by macroscopic occupation, i.e., condensation, of

the particles into the lowest-lying single-particle quantum state. Known today as

Bose-Einstein condensation (BEC), this phenomenon now allows scientists to study,

test, and apply the microscopic theory of quantum mechanics in macroscopic settings.

However, for typical dilute Bose gases, the onset of BEC occurs at ultracold tempera-

tures (∼100 nanokelvin), and it wasn’t until 70 years after Einstein’s prediction that

BEC was first observed in the laboratory. Combining laser cooling techniques pio-

neered by Chu, Cohen-Tannoudji, and Phillips (1997 Nobel Prize) with the technique
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of evaporative cooling, groups at Colorado, MIT, and Rice were able to experimen-

tally create BEC in dilute atomic vapors of rubidium [3], sodium [4], and lithium [5],

respectively. The 2001 Nobel Prize recognized the achievements of the former two.

Ever since the experimental birth of BEC 13 years ago, theoretical and experi-

mental research in ultracold atomic gases has progressed at an astonishing rate. This

excitement can mainly be attributed to the following characteristics of systems of

ultracold atoms: (i) precise control of external fields which leads to precise knowl-

edge of system parameters; (ii) the ability to probe the properties of the system in

unprecedented detail; and (iii) knowledge of a detailed description of the system’s mi-

croscopic properties. These characteristics make systems of ultracold atoms not only

a perfect testbed for the fundamentals of quantum theory in macroscopic systems,

but they also open up exciting possibilities for applications of quantum theory. Ex-

amples of the former case include studies of ultracold collisional properties of atoms

and molecules [6] and the experimental demonstration of matter-wave coherence of

Bose-Einstein condensates via observation of interference between two initially sep-

arated Bose condensed clouds [7]. Examples of applications of BEC-related systems

include the creation of atom lasers with Bose-condensed atoms [8], measurement of

the deviation of Newtonian gravity at small length scales [9], and proposals to build

a quantum computer via controlled manipulations of ultracold atoms [10].

Einstein’s original prediction of Bose condensation was for the case of non-

interacting particles. A natural question arises: how do interactions affect the oc-

currence of BEC? Penrose and Onsager formally defined BEC in interacting systems

by noting that off-diagonal long-range order in the system’s single-particle density

matrix is closely related to the onset of BEC; in this formalism, the condensate wave

function and condensate fraction can be calculated via an eigen-decomposition of
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the single-particle density matrix [11]. Strong interactions may prevent the forma-

tion of BEC altogether. However, the zero-temperature statics and dynamics of a

weakly interacting dilute Bose gas in the mean-field limit is, somewhat surprisingly,

well-described by the so-called nonlinear Schrödinger (NLS) or Gross-Pitaevskii (GP)

equation [12]. This equation is equivalent to the usual linear Schrödinger equation in

quantum mechanics with the addition of a nonlinear term representing the effective

potential of the condensate’s mean field on the condensate wave function. In this

treatment, it is still assumed that all particles occupy only one single-particle state

which, up to normalization, corresponds to the condensate wave function; the effects

of interactions are taken into account by a two-body contact interaction that leads to

a relatively simple and intuitive, yet nonlinear, equation describing the condensate.

The NLS is ubiquitous and has been studied extensively in many fields outside of ul-

tracold atomic gases including nonlinear optics [13] and integrable nonlinear equations

[14]. In the BEC context, the NLS has proven an excellent model for experiments in

harmonic traps [12, 15, 16, 17]. However, for the lattice geometries discussed in the

next section, one must usually go beyond mean-field theory and use a more complete

quantum many-body description, as we well demonstrate in this thesis. Perturba-

tions of pure mean-field (NLS) theory usually begin with the original prescription of

Bogoliubov in which quasiparticle amplitudes are added onto a stationary condensate

wave function resulting in a linearization of the GP equation [18]. Other formalisms

that go beyond GP theory include the Hartree-Fock and Popov [19] approximations

which can be used to describe elementary excitations due to thermal or quantum

fluctuations [20].
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1.2 Ultracold Atoms in Optical Lattices

Systems of ultracold atoms in optical lattice potentials may presently be the most

versatile BEC-related system both for studies of fundamental quantum many-body

phenomena as well as for potential applications of ultracold atoms. Mainly due to

experimental convenience, BEC was originally achieved in harmonic trap geometries;

however, counter-propagating laser beams can be used to produce a standing light

field and hence a periodic optical potential for the atoms. In 1998, Anderson and

Kasevich performed the first experiment of Bose-Einstein condensates in an optical

lattice [21]. The unprecedented control of system parameters mentioned in the pre-

vious section especially holds in optical lattice systems where experimentalists can

rather trivially adjust the height of the lattice by changing the intensity of the laser

field used to create it. The height of the lattice can be used to control the strength of

atom-atom interactions, but it should be noted that interaction strength, symmetry,

and sign (repulsive versus attractive) can be varied independent of the lattice height

via use of a Feshbach resonance [22]. In these systems, experimentalists presently also

have control over the lattice site filling factor, lattice geometry and dimensionality,

as well as species type (bosons versus fermions). The importance of using ultracold

atoms here is not necessarily to achieve BEC. In fact, BEC-like many-body states in

optical lattices are not energetically favorable if the lattice height is too great. In-

stead, ultracold temperatures are necessary so that the thermal energy of the atoms

does not exceed the lattice height energy and the atoms remain confined in the lat-

tice. Also, ultracold temperatures allow for the study of purely quantum mechanical

phenomena without the intervention of finite-temperature effects.

Ultracold atoms in optical lattices behave very much like electrons in periodic

crystals. Instead of feeling the Coulomb potential of ionized atoms, the atoms interact
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with the periodic laser light through the AC-Stark effect, creating an effective periodic

potential. However, optical lattice systems are experimentally and theoretically (ex-

cept for non-uniformity and finite-size corrections) much cleaner than their solid state

counterparts: first, there are no impurities present, as is unavoidable in real solid state

systems; and second, the lattice sites remain stationary, so there are no atom-phonon

interactions as there are electron-phonon interactions in naturally-occurring crystals.

For these reasons, along with the advantages mentioned above, ultracold atoms in

optical lattices can be used to effectively design condensed matter systems. In fact,

as was shown in the seminal paper of Jaksch et al., an optical lattice containing ultra-

cold bosons is an almost perfect realization of the Bose-Hubbard Hamiltonian [23], a

model introduced in 1989 by M. P. A. Fisher et al. to describe short-range interact-

ing bosons on a lattice [24]. Similarly, an optical lattice containing ultracold fermions

is an excellent realization of the well-known Hubbard Hamiltonian introduced by J.

Hubbard in 1963 [25] and solved analytically in one spatial dimension by Lieb and

Wu in 1968 [26]. If the fermions are allowed to couple to a bosonic molecular state,

then one arrives at a Fermi-Bose-Hubbard Hamiltonian which may eventually be

used to fully describe the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation

(BCS-BEC) crossover in an atomic Fermi gas trapped on a lattice [27, 28, 29, 30, 31].

Traditionally, theoretical investigations of condensed matter Hamiltonians, e.g.,

the Hubbard and Bose-Hubbard models, have focused almost exclusively on the static

ground state properties of the system. The reason is that crystals in solid state are

not easily moved far from equilibrium. One cannot alter the potential on the electrons

due to the ionized atoms in a nontrivial way. Nor can one alter the electron-electron

interaction. The system parameters are set by nature, and the initial task of the

physicist is to determine the system’s ground state. However, the control permitted
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by ultracold atoms and optical lattices gives the physicist an ideal setting for study-

ing far-from-equilibrium quantum many-body dynamics. Examples include the cele-

brated Greiner experiment of the non-adiabatic transition across the Mott-superfluid

boundary [32, 33], numerous experiments designed to study quantum transport phe-

nomena [34, 35] including the experimental observation of Bloch oscillations [36, 37],

and recent theoretical works investigating relaxation properties of the system after a

quantum quench [38, 39].

When working with a lattice geometry, unlike in simpler geometries such as

the harmonic trap, pure mean-field theory and its perturbations are not always a

satisfactory description of the many-body physics. In fact, at a critical value of

the lattice height, a system of ultracold bosons on an optical lattice undergoes a

quantum phase transition from a superfluid to a Mott insulator, an effect that pure

mean-field theory, i.e., the GP equation, will completely fail to describe. Generally

speaking, a quantum phase transition is characterized by a fundamental change in

some macroscopic order parameter as the system is swept through a critical point;

the transition is driven by quantum, not thermal, fluctuations and thus occurs even

at zero temperature. The superfluid-Mott insulator quantum phase transition in

the Bose-Hubbard model was first predicted in the condensed matter context by

Fisher et al. [24]. In 1998, Jaksch et al. demonstrated that the same quantum phase

transition should be realizable in an optical lattice [23]; this prediction was proven

correct by the experimental work of Greiner et al. four years later [32]. If the kinetic

energy of the atoms dominates the atom-atom interaction energy, i.e., for a sufficiently

weak lattice potential, then one has a superfluid-like many-body ground state. The

condensate fraction is large and there is long-range phase coherence in the system

due to macroscopic occupation of a delocalized single-particle orbital. But, as the
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lattice height is raised, the energetically preferable single-particle states are localized

about each site, so that the many-body ground state is a Mott insulator. In this

case, one has entered the strongly correlated regime. Then, a full quantum many-

body description of the problem is necessary. Experimentally, the phase transition

is observed by taking absorption images of the matter wave interference pattern in

time of flight (see Figure 2 in [32]). Although certain mean-field theories can give

insight into nature of this phase transition [23], a full solution of the Bose-Hubbard

Hamiltonian is required for accurate calculations.

1.3 Simulation Techniques, Solitons, and a Spin-1 Phase Transition

Simulating an N -body quantum system is a notoriously difficult task due to

exponential growth of the Hilbert space dimension with system size. For concrete-

ness, consider a single-band lattice problem containing M lattice sites. If we restrict

each site to contain at most d − 1 bosons, then the Hilbert space containing all

pure states of this many-body quantum system is dM -dimensional. This space is pro-

hibitively large, especially if one wants to perform exact diagonalization of the govern-

ing Hamiltonian. However, there do exist well-established numerical methods, such as

quantum Monte Carlo [40] and density matrix renormalization group (DMRG) [41],

that can accurately calculate the system’s ground state. Recently, G. Vidal devel-

oped the time-evolving block decimation (TEBD) algorithm: a time-adaptive DMRG

(t-DMRG) routine rooted in quantum information theory that allows efficient clas-

sical simulation of slightly entangled one-dimensional quantum many-body systems

[42, 43]. Specifically, given that the amount of entanglement is not too large, one can

accurately simulate time-dependent quantum many-body phenomena in such a way

that the simulation scales linearly with the number of lattice sites. The simulation
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protocol requires specification of an entanglement cutoff parameter, which we denote

as χ, that should be chosen close to the system’s Schmidt number [44] for accurate

results [42]. Although Vidal’s original papers were in the context of quantum com-

putation and quantum simulation, Daley et al. [45] and White and Feiguin [46] soon

translated the algorithm into the more familiar DMRG language. The important dif-

ference between TEBD and early attempts at time-dependent DMRG lies in TEBD’s

ability to adapt the truncated Hilbert space so as to most accurately represent the

time-evolving quantum state [47]. In this thesis, we employ the TEBD algorithm to

simulate quantum many-body dynamics in the Bose-Hubbard Hamiltonian.

In particular, for the scalar Bose-Hubbard model, we consider the quantum evo-

lution of solitons. Solitons are robust nonlinear waves that appear throughout nature.

Regardless of the physical system in which they occur, solitons are characterized by

stable, non-dispersing propagation of either a minima (dark solitons) or a maxima

(bright solitons) of the physically relevant dependent variable, e.g., electric field in-

tensity or particle number density. Solitons have been observed in many places in

nature including, but not limited to, fiber optics, plasmas, DNA, and water: an ex-

ample of a soliton in the last case is a tsunami. It has been well-known for decades,

since the seminal papers of Zakharov and Shabat on the inverse scattering transform

[48, 49], that solitons exist as solutions to the NLS. However, the success of the NLS

as a model to describe the ultracold atomic Bose gas, as well as the observation of

solitons in systems such as photonic crystals and nonlinear waveguide arrays, excited

a new interest in solitons in the last decade. Both dark [15, 16, 50, 51] and bright

[52, 53] solitons have been observed experimentally in systems of ultracold atoms.

On the theoretical side, solitons in Bose-Einstein condensates have been studied ex-

tensively using the mean-field NLS approach both in the free continuum [54, 55] and
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on the periodic lattice [56]; in the latter case, the lattice soliton solutions of the

NLS have been mapped out in detail [57, 58]. Discretization of the continuous NLS

on a lattice using a lowest Bloch band tight-binding approximation results in the

discrete nonlinear Schrödinger equation (DNLS) [59]. However, the DNLS is more

perspicuously obtained as a mean-field approximation of the quantum Bose-Hubbard

Hamiltonian [60]. Solitons in fundamentally discrete models, e.g., the DNLS and the

Ablowitz-Ladik equation [61], have been given much attention both in purely math-

ematical [62, 63] and in BEC-related [59, 64] contexts. A large portion of this thesis

is devoted to addressing how quantum effects such as fluctuations and entanglement

affect the stability of dark solitons on a lattice, thereby providing a quantitative

measure of the applicability of mean-field theory. To this end, we study analogs of

the dark soliton solutions of the DNLS in a quantum Bose-Hubbard setting. Us-

ing Bogoliubov-based methods and few-mode approximations, Dziarmaga and Sacha

characterized the effects of quantum fluctuations on excited condensates, e.g., soliton-

like states, in continuous geometries [65, 66, 67, 68, 69]. Using related methods, Law

studied the dynamical depletion of dark solitons created via phase imprinting [70].

An early study of quantum lattice solitons is presented in [71]; a quantum theory of

solitons in optical fibers was developed by Lai and Haus [72]. Here, we present the

first full entangled dynamical quantum many-body treatment of dark solitons formed

by ultracold atoms in optical lattices.

The final component of this thesis involves a dynamical phase transition involving

bosons with a contributing internal degree of freedom, namely the hyperfine degree

of freedom. This degree of freedom arises from the interaction of the nuclear spin

with the outer electronic spin which results in a splitting of atomic energy levels. In

the presence of a magnetic field, the energy levels are further split by the Zeeman
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effect leading to different possible hyperfine sublevels labeled by the projection of

the atomic spin in the direction of the field [20, 73]. The hyperfine degree of free-

dom ultimately manifests itself in the dynamics of an ultracold Bose gas through

spin-dependent scattering process between atoms. In traditional BEC experiments in

magnetic traps, the spin degree of freedom plays no role because the trap selects only

a single hyperfine species so that there exist no spin-conserving collisional processes to

change the hyperfine levels of the atoms. The atoms in such experiments are referred

to as spinless or scalar bosons. In 2006, an experiment was performed at Berkeley

involving a dynamical phase transition in a system of 87Rb atoms in an optical trap

[74]. In optical traps, unlike in magnetic traps, it is possible to simultaneously hold

atoms with different magnetic sublevels, so that the hyperfine degree of freedom does

in general contribute to the physics. This was demonstrated in the first spinor BEC

experiments performed at MIT in the late 1990s [75, 76]. In the Berkeley experiment,

through the quadratic Zeeman effect, a strong uniform magnetic field (not a magnetic

trap) was used to create a polar condensate with all atoms in the zero hyperfine level.

Because 87Rb atoms interact with a ferromagnetic sign, there is an energy compe-

tition between the quadratic Zeeman and spin-dependent interaction terms in the

governing Hamiltonian: the former prefers a ground state phase with zero net mag-

netization, whereas the latter prefers a ferromagnetic broken-symmetry phase. When

quenching the applied magnetic field below the critical value that separates these two

phases, a spontaneous symmetry breaking occurs. Such a quench was performed in

the Berkeley experiment, and the subsequent evolution revealed formation of spin

textures, magnetic domains, and topological spin polar core vortices. If instead of

an instantaneous quench, the magnetic field is decreased adiabatically but still fast

enough to produce macroscopic excitations, it has been shown [77, 78, 79] that scaling
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properties of the system can be described by the Kibble-Zurek mechanism, a theory

that predicts topological defect formation during nonequilibrium phase transitions.

The Kibble-Zurek mechanism was originally proposed by Kibble in the context of

nonequilibrium evolution in the early Universe [80, 81] and later shown by Zurek to

be applicable in tabletop condensed matter experiments [82, 83]. Numerous studies

have thus far been performed on the aforementioned spinor condensate phase transi-

tion investigating both the instantaneous [84, 85] and finite-rate [77, 79, 78] quench;

on the other hand, symmetry restoration dynamics can be achieved by quenching in

the opposite direction from the broken-symmetry to the polar phase [86]. Investiga-

tions of Kibble-Zurek mechanism in the quantum Ising [87] and Landau-Zener [88]

models suggest a quantum version of the mechanism. Using TEBD, we eventually

hope to simulate a fully quantum Kibble-Zurek mechanism in a system of ultracold

spin-1 bosons on an optical lattice. In Chapter 6, we present a numerical analysis of

the dynamical quantum phase transition using the corresponding discrete mean-field

theory, i.e., a DNLS with a three-component vector order parameter. These calcu-

lations are inspired by the recent work of Damski and Zurek in which the authors

investigate the Kibble-Zurek mechanism in a system of spin-1 ferromagnetic Bose

condensates in a continuous 1D box [78].

1.4 Thesis Overview

The remainder of the thesis is organized as follows. Chapter 2 provides the reader

a background on some fundamental aspects of ultracold quantum gases. In particu-

lar, we discuss Bose-Einstein condensation for both non-interacting and interacting

systems, the atomic and optical physics governing how optical potentials influence

atoms, and the pertinent models we use to describe both scalar and spin-1 bosons on
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optical lattices. Chapter 3 is devoted to the numerical methods we employ to sim-

ulate the system both in the mean-field and quantum pictures. For the latter case,

we explain the important aspects of the TEBD routine and our implementation of it.

In Chapter 4, we consider the quantum many-body evolution according to the Bose-

Hubbard Hamiltonian of mean-field dark soliton initial states. We also perform a

static Bogoliubov calculation for a dark soliton. The beginning of the chapter focuses

on the measures that we employ to characterize the system during quantum evolution.

In Chapter 5, we propose a scheme to quantum engineer dark solitons using density

and phase manipulation techniques. Both standing solitons and soliton-soliton col-

lisions are studied in Chapters 4 and 5. We show that quantum many-body effects

cause stationary dark solitons to fill in and can induce an inelasticity in a collision

between two solitons. In Chapter 6, we present preliminary mean-field results of a

Kibble-Zurek phase transition for spin-1 bosons in the presence of a lattice; the di-

rection of future quantum many-body studies is suggested. Finally, in Chapter 7,

we summarize our results and present an outlook on where this work may head in

the future. In Appendix A, we derive Vidal decompositions for simple but important

states. Discussion of the accuracy and convergence of our results obtained via TEBD

can be found in Appendix B. Appendices C and D contain important pieces of code

used for mean-field and TEBD calculations, respectively.
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Chapter 2

BACKGROUND:

FUNDAMENTALS OF ULTRACOLD QUANTUM GASES AND

THEORETICAL CONNECTIONS BETWEEN MODELS

The purpose of this chapter is to review the fundamental principles of the theory

of BEC and optical lattices, as well as to derive and connect the pertinent models

describing ultracold atomic gases on optical lattices. First, a general discussion of

Bose-Einstein condensation is given. This includes derivations of the critical temper-

ature and condensate fraction for the non-interacting Bose gas in simple harmonic

trap geometries as well as consideration of the effects of interactions on Bose con-

densation. We then formally discuss the basic atomic physics governing optical lat-

tice potentials including a derivation of the AC-Stark effect. Next, the continuous

Gross-Pitaevskii or nonlinear Schrödinger equation is derived from the full continu-

ous Hamiltonian in second quantization, and the Bose-Hubbard Hamiltonian is ob-

tained as a discretization of the second-quantized continuous Hamiltonian for the

case of an optical lattice potential. Then, connections are made between the con-

tinuous Gross-Pitaevskii equation, the Bose-Hubbard Hamiltonian, and the discrete

nonlinear Schrödinger equation. Finally, we discuss the hyperfine degree of free-

dom and derive the spin-1 Bose-Hubbard Hamiltonian and vector discrete nonlinear

Schrödinger equation which describe a system of spin-1 bosons on a lattice.
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2.1 Bose-Einstein Condensation

In this section, we discuss the concepts and mathematics behind Bose-Einstein

condensation for both non-interacting and interacting systems.

2.1.1 Non-Interacting Systems

For the case of a uniform, non-interacting gas of spinless bosons, the formal

mathematics behind BEC is a standard topic in textbooks on statistical physics. For

example, see Reference [89]. Here, we summarize those results and formally derive the

critical temperature for condensation and the condensate fraction. The derivations

are based explicitly on discussion presented in Chapter 2 of Reference [20]. To begin,

the statistical distribution function for non-interacting bosons in thermal equilibrium

at temperature T is

fBE(εν , µ, T ) =
1

e(εν−µ)/kBT − 1
, (2.1)

where εν is the energy of the single-particle state |ν〉, µ is the chemical potential, and

kB is Boltzmann’s constant. The function fBE ≡ 〈ν|n̂|ν〉 is the mean occupation of

the single-particle state |ν〉. The chemical potential appears as a Lagrange multiplier

that ensures the total number of particles N is conserved; it is defined implicitly by

requiring N =
∫

dε g(ε)fBE(ε, µ, T ), where g(ε) is the energy density of states that

is used to convert sums over discrete sets of states to integrals over energy. The

dimensionless quantity g(ε)dε is the number of allowed energy states in the region

of the energy spectrum from ε to ε + dε. For concreteness, we consider a density of

states of the form

gα(ε) = Cα εα−1, (2.2)
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which appears in many contexts, e.g., free, boxed, and harmonically trapped particles

in d = 1, 2, or 3 dimensions [20]. Cα and α are constants that depend on the specific

potential.

To calculate the condensation critical temperature and condensate fraction, we

note that if the number of particles N is sufficiently large, the zero-point energy of

the atoms may be neglected, and we are allowed to set the minimum of energy to

zero. The number of particles in excited states is therefore given by

Nex =

∫ ∞

0

dε gα(ε)fBE(ε, µ, T ), (2.3)

which is maximized for µ = 0. The critical temperature Tc is defined as the temper-

ature at which all N particles reside in excited states for µ = 0:

N = Nex =

∫ ∞

0

dε gα(ε)fBE(ε, µ = 0, Tc). (2.4)

Thus, the critical temperature for BEC can be viewed as the temperature below

which additional particles added to the system can only enter the ground state, in

equilibrium. The integral in Equation (2.4) can be evaluated analytically to obtain

an expression for Tc with the result being

kBTc =
N1/α

[CαΓ(α)ζ(α)]1/α
, (2.5)

where Γ(α) and ζ(α) are the gamma and Riemann zeta functions evaluated at α > 1.

Below Tc, we may compute the total occupation of excited states as before:

Nex =

∫ ∞

0

dε gα(ε)fBE(ε, µ = 0, T ) = CαΓ(α)ζ(α)(kBT )α = N

(
T

Tc

)α

, (2.6)
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where the last equality makes use of (2.5). The condensate fraction at temperature

T is thus given by

N0

N
=

N −Nex

N
=

[
1−

(
T

Tc

)α]
. (2.7)

Bose-Einstein condensation refers to the macroscopic population of the lowest-lying

state (N0/N ∼ 1) for temperatures T < Tc, although the term can be generalized to

include macroscopic occupation of any single-particle state, a point we address in the

next section.

Now, we briefly consider the effect of reduced dimensionality on BEC. Consider

the three-dimensional (3D) harmonic oscillator potential in which case α = 3 and

C3 = (2~3ωxωyωz)
−1, with ωi being the trapping frequency in direction i. From (2.5),

we have for the critical temperature

kBTc,3D =

[
N

ζ(3)

]1/3

~ω̄3D ≈ 0.94 N1/3~ω̄3D ≈ 4.5
( ω̄3D

2π · 100 Hz

)
N1/3 nK · kB, (2.8)

where ω̄3D ≡ (ωxωyωz)
1/3 is the geometrical mean of the three trapping frequencies

[20]. A two-dimensional (2D) BEC can be obtained in the x-y plane in a harmonic

trap geometry given

~ωz > kBTc,2D À ~ω̄2D, (2.9)

where ω̄2D ≡ (ωxωy)
1/2 and the critical temperature can be computed using (2.5) with

α = 2 resulting in

kBTc,2D =

[
N

ζ(2)

]1/2

~ω̄2D ≈ 0.78 N1/2~ω̄2D ≈ 3.7
( ω̄2D

2π · 100 Hz

)
N1/2 nK·kB. (2.10)

The one-dimensional (1D) case is of special importance, since all new results in

this thesis pertain to 1D models. For a 1D harmonic trap, α = 1, and the integral
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(2.4) defining the critical temperature diverges. Hence, BEC does not occur in 1D in

the thermodynamic limit; however, given the one-dimensionality condition

ωy, ωz À ωx, (2.11)

macroscopic occupation of the lowest-lying state can still occur in a finite one-

dimensional system aligned in the x-direction. BEC is thus not restricted to 3D

systems. In fact, it has been observed experimentally in 2D and 1D as well [90].

2.1.2 Interacting Systems

In 1956, Penrose and Onsager elaborated on an earlier work by Penrose [91] and

developed an extremely useful criterion for defining the onset of BEC for the case of

interacting particles [11]. Their work was originally in the context of liquid helium,

but it applies equally well to any system of Bose particles, liquid or gas. The basic idea

is as follows. For a non-interacting ideal Bose gas, we know from above that below the

critical temperature a finite fraction of the particles occupy the lowest single-particle

energy level of the system’s single-particle Hamiltonian. However, when interactions

are added into the picture, macroscopic occupation of the lowest single-particle energy

eigenstate will not necessarily occur. The contribution of Penrose and Onsager was

to (1) consider the von Neumann statistical operator [92], i.e., the density matrix ρ̂,

in a basis of the real-space coordinates of the N particles that constitute the many-

body system, (2) perform a partial trace over all but one of the N particles resulting

in the single-particle density matrix denoted ρ̂sp ≡ N Tr2···N(ρ̂), (3) diagonalize the

(Hermitian) single-particle density matrix, and (4) note that the eigenstates of the

single-particle density matrix are the system’s single-particle natural orbitals with

occupation numbers given by the corresponding eigenvalues. This is conceptually
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equivalent to diagonalization of a general density matrix describing a mixed quantum

system:

ρ̂ =
∑

α

wα|ψα〉〈ψα| →
∑

n

pn|n〉〈n|, (2.12)

where |n〉 are the eigenstates of ρ̂ with eigenvalues pn. The usual interpretation is

that the mixed quantum system described by ρ̂ will be found in the pure state |n〉
with probability pn. Note, however, this is only a convenient interpretation since the

density matrix does not uniquely specify the ensemble of quantum states present.

The single-particle density matrix is the reduced density matrix that describes

a single particle which is, in general, in a mixed state due to it being part of a

larger quantum system containing N > 1 particles. We can say that if a particle’s

reduced density matrix, i.e., the single-particle density matrix, has more than one

nonzero eigenvalue, then it is entangled with at least one of the remaining N − 1

particles. In general, this will be the case because the particles are interacting [93].

One rather trivial difference between the general density matrix given in (2.12) and

ρ̂sp is that we take the eigenvalues of ρ̂sp to be actual occupation numbers and not

occupation probabilities, hence Tr(ρ̂sp) = N . The main point made by Penrose and

Onsager is that the system can be said to be Bose-condensed if the largest eigenvalue

N0 of ρ̂sp remains on the order N while the other eigenvalues remain finite in the

thermodynamic limit.

In practice, the matrix elements of the single-particle density matrix are cal-

culated as two-point correlation functions between points r and r′ [20, 73]. That

is,

ρsp(r, r
′) ≡ 〈r|ρ̂sp|r′〉 = 〈Ψ̂†(r′)Ψ̂(r)〉, (2.13)

where Ψ̂(r) and Ψ̂†(r) are the bosonic destruction and creation operators, respectively,
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which destroy and create a boson in a given internal atomic state at position r, and

the expectation value is taken with respect to the state |Ψ〉 of the many-body system.

Thus, ρsp(r, r
′) is the amplitude for creating a particle at position r′ while destroying

one at position r. Diagonalization of the single-particle density matrix in position

representation yields

ρsp(r, r
′) =

∑
j

Nj χ∗j(r
′)χj(r), (2.14)

where χj are the many-body system’s single-particle natural orbitals with occupation

numbers Nj. Since off-diagonal long-range order is required for a macroscopic eigen-

value of ρsp(r, r
′), it is clear that BEC is directly related to off-diagonal long-range

order [11, 94]. In fact, the presence of BEC implies off-diagonal long-range order,

while its connection to superfluidity is less direct [95, 96, 97].

For systems of finite size, one cannot rigorously employ the criterion of Penrose

and Onsager because it assumes the thermodynamic limit, i.e., the number of particles

N and the system size L both tend to infinity while the ratio N/L remains constant.

Specifically, we cannot strictly determine the absence of BEC for finite-size systems

because the single-particle density matrix will always have an eigenvalue Ni & a/L

for finite L, where a is some natural length scale of the system [97]. However, this is

just a formal complication, and we will still use the Penrose-Onsager prescription for

calculating natural orbitals and the condensate fraction.

2.2 Optical Lattices

As discussed in Chapter 1, systems of ultracold atoms in optical lattices offer

an enormous wealth of interesting physics. Such systems are useful both as ideal

testbeds for quantum many-body dynamics as well as for exciting new applications of

quantum theory. In this section, we discuss from an atomic and optical perspective
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how individual atoms interact with laser light to create an effective optical lattice

potential. The basic mechanism is the interaction of the electric field with the dipole

moment of the atom that leads to an effective potential proportional to the intensity

of the laser field.

For simplicity, consider a single-mode laser of frequency ωL and an atom with a

ground state |g〉 and excited state |e〉 differing in energy by amount ~ωeg. We use the

dipole approximation to describe the interaction between the atom and the electric

field. The resulting Hamiltonian is

Hdip = −d · E(r, t), (2.15)

where d is the electric dipole moment of the atom and E(r, t) is the electric field.

The standing light field created by two identical single-mode laser beams counter-

propagating along the x-direction polarized in the ε-direction with electric fields

E±(x, t) = ε E0e
i(±kx−ωLt) is given by

E(x, t) = E+(x, t)+E−(x, t) = ε 2E0 cos(kx)e−iωLt → ε 2E0 cos(kx) cos(ωLt), (2.16)

where k = ωL/c is the magnitude of the laser’s wave vector. If the laser light only

couples the ground state |g〉 to the single excited state |e〉, then basic perturbation

theory can be used to calculate the shift in the ground state energy due to the presence

of the electric field [20]. The first nonzero term in perturbation theory is of second

order and is referred to as the AC-Stark shift :

∆Eg(x) = −1

2
α < E2(x, t) >, (2.17)
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where the angular brackets denote a time average and α is the atomic polarizability.

Taking only the term in α with the smallest energy denominator, we find [20]

α ≈ −|〈e|d · ε|g〉|
2

~ δ
, (2.18)

where δ ≡ ωL − ωeg is the detuning. The time average of the squared electric field

can be calculated from Equation (2.16) from which, after a shift of the origin, we can

write the optical lattice potential as

Vlat(x) ≡ ∆Eg(x) = V0 sin2(kx), (2.19)

where the lattice height V0 ≡ −αE2
0 is proportional to the laser intensity. Note

that the sign of the potential depends on whether we have blue detuning (δ > 0 and

V0 > 0) or red detuning (δ < 0 and V0 < 0). We have made the following assumptions

when deriving Equation (2.17) and hence Equation (2.19): (1) the excited state |e〉
has an infinite lifetime, i.e., we have neglected the spontaneous emission of photons,

and (2) the laser frequency is close to resonance so that the electric field couples the

ground state |g〉 to only a single excited state, namely |e〉. Succinctly, the validity

of Equation (2.17), assuming no spontaneous emission, is ΩR(x) ¿ |δ|, where ΩR(x)

is the position-dependent Rabi frequency that drives transitions between |g〉 and |e〉
[20, 98, 99].

To obtain a full 3D periodic potential landscape, two additional pairs of orthog-

onally polarized counter-propagating laser beams can be added to give

Vlat(r) = V0x sin2(kxx) + V0y sin2(kyy) + V0z sin2(kzz). (2.20)
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(a) Laser setup (b) 3D optical lattice

Figure 2.1. Schematic of 3D optical lattice. (a) Three pairs of counter-propagating
laser beams add to give (b) a 3D optical lattice potential. The black circle at the
intersection of the three pairs of laser beams in (a) indicates the array of lattice sites
shown in (b). As explained in Section 2.3.3, ramping up the lattice height in one
direction creates a stack of parallel 2D lattices, whereas ramping up the lattice height
in two directions creates an array of parallel 1D lattices, i.e., an array of 1D tubes
with a sinusoidal potential in the longitudinal direction. The latter situation gives
rise to the 1D optical lattice depicted in in Figure 2.3.

The subscripts x, y, z on the factors V0 and k are needed to indicate that, if desired,

the lattice heights and wave vectors can be altered in each direction independently.

Experimentally, this tunability can be used to change the effective dimensionality of

the system and/or create exotic lattice geometries. The geometry can also be altered

by using beams not orthogonal to one another in which case interference terms appear

in Equation (2.20) [100]. In Figure 2.1, we depict a schematic of a 3D optical lattice

and the counter-propagating laser beams used to create it.
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2.3 Governing Models for Scalar Bosons

In this section, we derive the models that we employ to study the behavior of

scalar bosons at zero temperature both in the free continuum (full second-quantized

Hamiltonian and Gross-Pitaevskii equation) and on the periodic lattice (Bose-Hub-

bard Hamiltonian and discrete nonlinear Schrödinger equation) and elucidate the

connections between them.

2.3.1 Basic Quantum Many-Body Theory

Neglecting interaction processes involving three or more particles, the Hamil-

tonian of a system of N interacting spinless particles of mass m with positions

{r1, r2, . . . , rN} and momenta {p1,p2, . . . ,pN} is given in first quantization by

H =
N∑

i=1

[
p2

i

2m
+ V (ri)

]
+

1

2

∑

i6=j

Vint(ri − rj), (2.21)

where V (r) is an external potential and Vint(ri−rj) is the interaction potential between

particles i and j; the factor of 1/2 avoids double-counting interactions. In principle,

the problem amounts to diagonalization of Equation (2.21) in the N coordinates

{r1, r2, . . . , rN} while imposing a symmetry condition (symmetrical or antisymmetri-

cal) on the wave function under any two-particle interchange to reflect the particles’

quantum statistics (Bose-Einstein or Fermi-Dirac). For the general N -body problem,

this is a task of hopeless difficulty.

It is more convenient to work in second quantization in which the corresponding

Hamiltonian describing a system of interacting bosons at zero temperature is given
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by [101]

Ĥ =

∫
dr Ψ̂†(r)

[
− ~

2

2m
∇2 + V (r)

]
Ψ̂(r)

+
1

2

∫
dr

∫
dr′Ψ̂†(r)Ψ̂†(r′)Vint(r− r′)Ψ̂(r′)Ψ̂(r). (2.22)

The field operators Ψ̂ and Ψ̂† obey the canonical commutation relations:

[Ψ̂(r), Ψ̂†(r′)] = δ(r− r′), (2.23)

[Ψ̂(r), Ψ̂(r′)] = 0, (2.24)

[Ψ̂†(r), Ψ̂†(r′)] = 0, (2.25)

where δ(r − r′) is the Dirac delta function. For completeness, we note that in the

case of Fermi statistics, Equation (2.22) still holds except the commutation relations

(2.23)–(2.25) are replaced by anti-commutation relations.

2.3.2 Continuous Gross-Pitaevskii Equation

The Gross-Pitaevskii (GP) equation can be used to accurately describe the zero-

temperature statics and dynamics of a dilute, weakly interacting Bose gas. One can

derive the GP equation in first quantization as follows [20]: first, assume a fully-

condensed state so that the many-body wave function Ψ takes the form of a simple

product Ψ(r1, r2, . . . , rN) =
∏N

i=1 χ0(ri), where χ0 is the single-particle state into

which all particles are condensed; second, calculate the energy functional for this state

using Equation (2.21) with a contact interaction for Vint [see Equation (2.31) below];

finally, minimize the energy functional with respect to variations of the condensate

wave function and its complex conjugate under the constraint of fixed total particle
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number to obtain the time-independent GP equation. Generalization to the time-

dependent version is straightforward.

In the following, we derive the GP equation using the second quantization for-

malism. First, we evolve the bosonic field operator forward in time in the Heisenberg

picture to obtain its evolution equation:

i~
∂

∂t
Ψ̂ = [Ψ̂, Ĥ], (2.26)

where Ψ̂ = Ψ̂(r, t) is a function of both position and time. On the right-hand side, the

first two terms due to the kinetic energy and external potential are straightforward

to evaluate. For the kinetic energy term, we have

[Ψ̂(r),

∫
dr′Ψ̂†(r′)

(
− ~

2

2m
∇′2

)
Ψ̂(r′)] = − ~

2

2m
∇2Ψ̂(r), (2.27)

where we have used the commutation relations in Equations (2.23)–(2.25) and sup-

pressed writing explicitly the time dependence of Ψ̂. Similarly, for the external po-

tential term, we find

[Ψ̂(r),

∫
dr′Ψ̂†(r′)V (r′)Ψ̂(r′)] = V (r)Ψ̂(r). (2.28)

To evaluate the interaction term, we note

[Ψ̂(r),Ψ̂†(r′)Ψ̂†(r′′)Vint(r
′ − r′′)Ψ̂(r′′)Ψ̂(r′)]

= 2δ(r′′ − r′)Ψ̂†(r′′)Vint(r− r′)Ψ̂(r′′)Ψ̂(r), (2.29)
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so, finally, we find

i~
∂

∂t
Ψ̂(r, t) = [Ψ̂, Ĥ]

=

[
− ~

2

2m
∇2 + V (r) +

∫
dr′Ψ̂†(r′, t)Vint(r− r′)Ψ̂(r′, t)

]
Ψ̂(r, t). (2.30)

For a cold and dilute Bose gas, we can describe the interatomic potential by

considering only binary contact collisions characterized by a single parameter as, the

three-dimensional s-wave scattering length [12]. Specifically,

Vint(r− r′) = g δ(r− r′), (2.31)

where

g ≡ 4π~2as

m
(2.32)

is proportional to the scattering length and thus parameterizes the interaction strength.

Equation (2.31) is valid for low energies when all other relevant length scales of the

system, i.e., the de Broglie wavelength of the atoms and the average interatomic

spacing, are much larger than the range of the two-body scattering potential Vint.

Throughout this thesis, we consider repulsively interacting atoms so that g > 0.

After inserting (2.31) into (2.30) and replacing the field operator Ψ̂ with the

classical c-number Φ ≡ N1/2χ0, where χ0 is the condensed single-particle state from

above, we obtain the well-known Gross-Pitaevskii [102, 103] or nonlinear Schrödinger

(NLS) equation:

i~
∂

∂t
Φ(r, t) =

[
− ~

2

2m
∇2 + V (r) + g|Φ(r, t)|2

]
Φ(r, t). (2.33)

The function Φ(r, t), which we normalize to the number of particles N =
∫

dr |Φ(r, t)|2,
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is known as the condensate order parameter or condensate wave function, and, up to

normalization, corresponds directly to the single-particle wave function into which we

have Bose-Einstein condensation [73]. Note, however, that A. Leggett, the author of

Reference [73], disagrees with defining the order parameter as the expectation value of

the (non-Hermitian) field operator. For this definition to be valid, we fundamentally

must have a non-conservation of total particle number and a broken Bose symmetry

[104].

The derivation of Equation (2.33) assumed three spatial dimensions, although

it is also valid in the quasi-1D and quasi-2D regimes where the gas is tightly con-

fined in the transverse directions by means of a harmonic trap. To obtain the lower-

dimensional equations one assumes separability of the condensate wave function in its

transverse coordinates and projects onto the mean-field ground state in the transverse

directions [105, 106, 107]. Then, ∇2 becomes the appropriate d-dimensional Lapla-

cian, and the coupling constant g becomes dependent on the transverse confinement.

Specifically, in d-dimensions, we find the following for g → g(d):

g(1) = 2~ω⊥as, g(2) =

√
8π~3ωz

m
as, and g(3) =

4π~2as

m
, (2.34)

where g(3) is included for completeness and ω⊥ and ωz are the transverse trapping

frequencies for 1D and 2D, respectively. The quasi-1D (-2D) regime is obtained if

(1) the transverse confinement length `⊥ ≡
√
~/mω⊥ (`z ≡

√
~/mωz) is on the

order of the condensate healing length ξ ≡ 1/
√

8πn̄0as, where n̄0 is the mean particle

density, and (2) the trapping is sufficiently strong in the transverse directions so that

ω⊥ À ωx (ωz À ωx, ωy), where we have assigned x the longitudinal direction in 1D

and the x-y plane the 2D plane for 2D. The term quasi is used to describe the lower

dimensionality because even though excitations only occur along the longitudinal
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direction, the underlying scattering process is still three-dimensional so long as the

transverse confinement length is much greater than the scattering length. For systems

in which the confinement length is comparable to the interaction length or to the

actual atomic size, a completely different treatment becomes necessary [108, 109].

Some discussion is in order as to what allows one to replace the field operator Ψ̂

with a scalar quantity Φ in obtaining Equation (2.33). The Bogoliubov prescription

is to split the field operator into a condensate term and a fluctuation term. That is,

Ψ̂(r, t) = Φ(r, t) + ζ̂(r, t), (2.35)

where Φ(r, t) ≡ 〈Ψ̂(r, t)〉 is termed the condensate mean field whose square modulus

corresponds to the condensate density n0(r, t) ≡ |Φ(r, t)|2 and ζ̂(r, t) is an operator

representing fluctuations away from the mean field. Hence, when taking the expecta-

tion value of each side of Equation (2.30) to obtain Equation (2.33), we are assuming

vanishing moments for the fluctuation operator when evaluating the right-hand side,

i.e., 〈ζ̂〉 = 〈ζ̂ ζ̂〉 = 〈ζ̂†ζ̂〉 = 〈ζ̂†ζ̂ ζ̂〉 = 0, where the vanishing second and third moment

conditions are required for the interaction term. Perturbations to pure mean-field

theory involve retaining terms up to a given order in the fluctuation operator. For

example, the Bogoliubov theory retains terms up to first-order in ζ̂, while its variants,

e.g., Hartree-Fock-Bogoluibov and Hartree-Fock-Bogoluibov-Popov, retain terms up

to second order.

2.3.3 Bose-Hubbard Hamiltonian

The Bose-Hubbard Hamiltonian is an approximation of the continuous many-

body Hamiltonian (2.22) appropriate for a system of ultracold bosons in a strong

periodic potential. It is an approximation in the sense that the full quantum many-
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body Hamiltonian of Equation (2.22) is truncated on physical grounds. However, the

model is still a quantum many-body Hamiltonian; no semiclassical approximations

are present. To derive the Bose-Hubbard model, we first split the potential into a

term pertaining to the lattice potential plus an arbitrary external potential:

V (r) = Vlat(r) + Vext(r). (2.36)

As above, we assume that the only contributing interatomic interactions are two-body

contact interactions so that we can insert Equation (2.31) into Equation (2.22). Next,

we expand the field operators in a basis of localized Wannier functions [23]:

Ψ̂(r) =
∑
i; m

b̂
(m)
i w(m)(r− ri). (2.37)

The operator b̂
(m)
i (b̂

(m)†
i ) annihilates (creates) a boson in the mth Bloch band Wannier

state w(m)(r − ri) localized at site i with ri being the primitive translation vectors

of the lattice. Hence, subscripts are site indices, while superscripts are band indices.

Insertion of Equation (2.37) into Equation (2.22) yields

Ĥ = −
∑

i,j; m,n

Jmn
ij b̂

(m)†
i b̂

(n)
j +

∑

i,j,k,`; m,n,p,q

Umnpq
ijk`

2
b̂
(m)†
i b̂

(n)†
j b̂

(p)
k b̂

(q)
` +

∑
i,j; m,n

εmn
ij b̂

(m)†
i b̂(n)

n ,

(2.38)

where

Jmn
ij ≡ −

∫
drw(m)∗(r− ri)

[
− ~

2

2m
∇2 + Vlat(r)

]
w(n)(r− rj), (2.39)

Umnpq
ijk` ≡ g

∫
drw(m)∗(r− ri)w

(n)∗(r− rj)w
(p)(r− rk)w

(q)(r− r`), (2.40)

εmn
ij ≡

∫
drw(m)∗(r− ri)Vext(r)w

(n)(r− rj). (2.41)
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Up to this point, we have been completely general regarding dimensionality, num-

ber of allowed bands, and range of coupling between sites. The only approximation

we have made thus far is the contact interaction approximation (2.31). If we only

allow particles to occupy the lowest Bloch band and invoke the tight-binding approx-

imation so that only nearest-neighbor tunneling and on-site interactions contribute

to the energy, we recover the usual BHH:

Ĥ = −J
∑

〈i,j〉
b̂†i b̂j +

U

2

∑
i

b̂†i b̂
†
i b̂ib̂i +

∑
i

εi b̂
†
i b̂i, (2.42)

where b̂i ≡ b̂
(0)
i annihilates a boson in the lowest vibrational Wannier state of the ith

lattice site and 〈i, j〉 denotes a summation over nearest neighbors.

From Section 2.2, a general optical lattice potential in 3D can be written as

Vlat(r) = V0x sin2(kxx) + V0y sin2(kyy) + V0z sin2(kzz), (2.43)

where V0i and ki are the lattice height and wave vector in direction i. Parallel 2D

lattices in the x-y plane can be made by imposing the condition V0x, V0y ¿ V0z. Sim-

ilarly, parallel 1D lattices in the x-direction require V0x ¿ V0y, V0z. These conditions

suppress tunneling in the transverse directions. We will work strictly with 1D lattices

from here on. In this limit, with V0⊥ ≡ V0y = V0z and k⊥ ≡ ky = kz, we can expand

the transverse part of Vlat(r) in a Taylor series:

V⊥(y, z) = V0⊥
[
sin2(k⊥y) + sin2(k⊥z)

] ≈ 1

2
mω2

⊥r2
⊥, where ω2

⊥ ≡
4V0⊥ER⊥
~2

(2.44)

and r2
⊥ ≡ y2 + z2; ER⊥ ≡ ~2k2

⊥/2m is the transverse recoil energy. We denote the



31

longitudinal part of the lattice potential as

Vlat(x) = V0 sin2(kx) ≡ V0x sin2(kxx). (2.45)

For the 1D lattice with spatial period a = π/k containing M sites and assuming

box boundary conditions, Equation (2.42) can be written as

Ĥ = −J

M−1∑
i=1

(b̂†i+1b̂i + h.c.) +
U

2

M∑
i=1

n̂i(n̂i − 1̂) +
M∑
i=1

εi n̂i, (2.46)

where we have introduced the number operator n̂i ≡ b̂†i b̂i which counts the number

of bosons at site i. We can write the parameters of the 1D Bose-Hubbard model in

terms of overlap integrals involving single-particle Wannier wave functions and the

external potentials:

J ≡ −
∫ ∞

−∞
dxw(0)∗(x)

[
− ~

2

2m

d2

dx2
+ Vlat(x)

]
w(0)(x− a), (2.47)

U ≡ g(1)

∫ ∞

−∞
dx |w(0)(x)|4, (2.48)

εi ≡
∫ ∞

−∞
Vext(x)|w(0)(x− xi)|2 ≈ Vext(xi), (2.49)

where we have shifted the zero of energy such that J00
ii ≡ 0, cf. Equation (2.39), and

g(1) is given by (2.34) using (2.44) for ω⊥. The last relationship regarding an external

potential aside from the lattice potential assumes Vext(x) varies sufficiently slowly over

the spatial extent of a single lattice site so that it can be pulled out of the integral

as a constant. Strictly speaking, a correct usage of box boundary conditions would

account for the change in form of the localized wave functions near the boundary,

cf. the butadiene molecule in elementary quantum chemistry [110], and change the
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Figure 2.2. Bose-Hubbard parameters calculated from overlap integrals of Wannier
orbitals. (a) J and (b) U are plotted versus V0 scaled to the recoil energy ER. In
(a), we see that the simple harmonic oscillator (SHO) approximation underestimates
the tunneling coefficient by about an order of magnitude, while in (b), the SHO
approximation can be considered exact for calculation of the interaction parameter
as in Reference [111].

tunneling and interaction parameters for those sites accordingly. However, since we

are not greatly concerned with the behavior of the system near the boundary, we

assume identical Wannier functions at all M sites so that our model contains only a

single tunneling parameter J and a single interaction parameter U .

The Bose-Hubbard parameters J and U can be expressed in terms of the lattice

heights and recoil energy, both experimentally tunable parameters. Next, we discuss

this calculation for the case of a 1D lattice. Approximating the Wannier functions

with the ground state of the simple harmonic oscillator, we have

w(0)(x) ≈ `
−1/2
ho π−1/4 exp (−x2/2`2

ho), (2.50)
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where `ho ≡
√
~/mω is the oscillator length and ω ≡ √

4V0ER/~ is the effective

trapping frequency. After evaluating the integrals (2.47) and (2.48) using (2.50) for

the Wannier orbitals and (2.45) for the lattice potential and simplifying, we find

J

ER

≈ V0

2ER

exp

(
−π2

4

√
V0

ER

)[
π2 − 2

2
−

√
ER

V0

− exp

(
−

√
ER

V0

)]
, (2.51)

U

ER

≈ 4
√

2π
(as

λ

) (
V0⊥
ER

)1/2 (
V0

ER

)1/4

, (2.52)

where λ = 2a is the wavelength of the laser used to create the lattice. This approxima-

tion is insufficient for the tunneling coefficient as it completely ignores any oscillatory

behavior in the tails of the Wannier wave function. A better expression can be found

in References [111, 100] obtained by Fourier transforming Mathieu functions which

are exact solutions of the single-particle Schrödinger equation for a sinusoidal poten-

tial, calculating the overlap integral (2.47) for different lattice heights, and performing

a numerical fit to the data. The resulting expression, which for most purposes can be

considered exact, is quoted as

J

ER

≈ A

(
V0

ER

)B

exp

(
−C

√
V0

ER

)
, (2.53)

where A ≡ 1.397, B ≡ 1.051, and C ≡ 2.121. On the other hand, Equation (2.52) for

the interaction parameter derived in the Gaussian approximation is adequate [111].

See Figure 2.2 for plots of J and U versus the lattice height V0 and Figure 2.3 for

a schematic of the 1D Bose-Hubbard model with Gaussian wave functions shown to

approximate the real Wannier functions.

Let us now discuss precisely the conditions under which Equation (2.46) is an

accurate description of the physical system:
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Figure 2.3. Schematic of 1D optical lattice and Bose-Hubbard Hamiltonian. The
lattice potential Vlat(x) = V0 sin2(kx) is plotted (solid gray curve) in units of the
recoil energy ER versus position x in units of the lattice constant a = π/k. The
simple harmonic oscillator approximation (dashed gold curve) was used to generate
approximations of the Wannier functions (solid blue curves) for the case V0 = 5ER.
The tunneling and interaction processes are indicated by their corresponding energy
scales J and U , respectively. In the latter case, the localized Wannier function is
shown higher up on the graph to indicate that there is an energy cost ∼U for the case
of two particles simultaneously occupying the same on-site Wannier state. Let it be
clear that both particles at the site centered at x = a occupy the same single-particle
Wannier function shown.

1. The tight-binding approximation must be valid; this assumes second-order ef-

fects such as nearest-neighbor interactions and next-nearest-neighbor tunneling

can be neglected. In the former case, we find the nearest-neighbor interaction

parameter to be V = U exp(−a2/2`2
ho), which for a relatively shallow lattice of

height V0 = ER is only V ≈ 0.01 U . Of course, V decreases as the lattice height

is increased, so V . 0.01 U .

2. Contributions from the second band of the lattice must be negligible. This

assumes that the temperature, tunneling, interaction energies are smaller than

the band spacing ~ω. That is, kBT, J, ν2U . ~ω, where ν is the average lattice
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site filling factor [99]. The latter two conditions are generally satisfied if V0 & ER

for reasonable scattering lengths as and transverse lattice heights V0⊥. Note that

for V0 . ER the tunneling coefficient in Figure 2.2(a) decreases as the lattice

height is decreased, thus clearly indicating a breakdown of the model at that

point.

3. The entire model is based on single-particle physics, so the interactions must

be small enough so that the condensate mean field does not distort the single-

particle wave functions. Specifically, we must have ν2U . ~ω. This condition

is not independent of the second condition above, and if it is not met, a com-

pletely different treatment is necessary. An example of such a treatment is the

time-dependent multiconfigurational Hartree-Fock theory, a method which has

heretofore only been applied successfully to two-well systems [112, 113, 114].

2.3.4 Connections to Discrete Nonlinear Schrödinger Equation

The discrete nonlinear Schrödinger equation (DNLS) describing ultracold atoms

on a discrete lattice can be obtained as either a discretization of the continuous

Gross-Pitaevskii equation or as a semiclassical approximation of the Bose-Hubbard

Hamiltonian. In the latter case, the derivation is more physically intuitive because the

Bose-Hubbard Hamiltonian is a more complete quantum description of the problem

and occupation of a single natural orbital is not assumed until the end. We note that

DNLS is not the only route to discretization for the continuous NLS. For example,

another sensible discretization results in the integrable Ablowitz-Ladik equation [61];

however, quantum mechanics motivates DNLS over Ablowitz-Ladik.

Let us first consider the simplest discretization of the continuous GP equation.

The first step is to expand the condensate wave function in a basis of localized wave
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functions φ(r− ri) in the lowest Bloch band of the lattice:

Φ(r, t) =
∑

i

ψi(t)φ(r− ri). (2.54)

The coefficients ψi(t) ≡
√

ρi(t)e
iθi(t) are dimensionless c-numbers that weight the

localized wave functions at sites i, with ρi and θi being the average particle number

occupation and phase, respectively, associated with site i. Next, we insert (2.54) into

(2.33), multiply by the complex conjugate of another member of the set of localized

condensate wave functions, integrate over all space, and invoke the tight-binding

approximation [59]. The result is the DNLS in the following form:

i~ψ̇k = −J
∑

j ∈Ωk

ψj + U |ψk|2ψk + εkψk, (2.55)

where Ωk is the set of site k’s nearest neighbors and the coefficients are defined as

J ≡ −
∫

drφ∗(r)
[
− ~

2

2m
∇2 + Vlat(r)

]
φ(r− a), (2.56)

U ≡ g

∫
dr |φ(r)|4, (2.57)

εk ≡
∫

drVext(r)|φ(r− rk)|2 ≈ Vext(rk), (2.58)

with a ≡ rk+1 − rk being a primitive translation vector of the assumed cubic lattice.

The tight-binding approximation assumes that the φ(r− ri) are sufficiently localized

on-site so that

∫
drφ∗(r− ri)φ(r− ri+j) ≈ 0, (2.59)

∫
drφ∗(r− ri)

[
− ~

2

2m
∇2 + Vlat(r)

]
φ(r− ri+k) ≈ 0, (2.60)
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for |j| ≥ 1, |k| ≥ 2 or k = 0 with j and k integers. The restriction of Equations

(2.55)–(2.58) to the 1D lattice is straightforward:

i~ψ̇k = −J(ψk+1 + ψk−1) + U |ψk|2ψk + εkψk, (2.61)

where

J ≡ −
∫ ∞

−∞
dxφ∗(x)

[
− ~

2

2m

d2

dx2
+ Vlat(x)

]
φ(x− a), (2.62)

U ≡ g(1)

∫ ∞

−∞
dx |φ(x)|4, (2.63)

εk ≡
∫ ∞

−∞
dx Vext(x)|φ(x− xk)|2 ≈ Vext(xk). (2.64)

For a 1D lattice of M lattice sites, the site index takes on values k ∈ {1, 2, . . . , M}.
The approximations made here are very similar to the single-band tight-binding ap-

proximation used to derive the Bose-Hubbard Hamiltonian in Section 2.3.3 except

that in that case the localized wave functions were actual single-particle Wannier

functions, whereas here they are a set of yet unspecified localized condensate wave

functions with which we have chosen to expand the full condensate wave function.

Alternatively, the DNLS can be obtained as a mean-field approximation of the

quantum Bose-Hubbard Hamiltonian. This derivation can be done in at least two

ways, each of which assume the many-body state to be in the form of a product

of Glauber coherent states. We discuss both methods in the following. In the first

method, we evolve the bosonic destruction operator b̂k forward in time in the Heisen-

berg picture according to the Bose-Hubbard Hamiltonian [Equation (2.46)]. That

is,

i~
d

dt
b̂k = [b̂k, Ĥ]. (2.65)
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Then we can use the commutation relations

[b̂i, b̂
†
j] = δi,j and [b̂i, b̂j] = [b̂†i , b̂

†
j] = 0 (2.66)

to obtain the following evolution equation for the on-site destruction operator:

i~
d

dt
b̂k = −J(b̂k+1 + b̂k−1) + U b̂kb̂

†
kb̂k + εk b̂k. (2.67)

We can then take the expectation value of Equation (2.67) to obtain an equation of

motion for the order parameter 〈b̂k〉. The DNLS is recovered exactly if the expectation

value is taken with respect to a product of atom-number Glauber coherent states.

Hence, for states of the form

|Ψ〉 =
M⊗

k=1

|zk〉, where |zk〉 ≡ e−
|zk|2

2

∞∑
n=0

(zk)
n

√
n!
|n〉, (2.68)

we obtain the DNLS for the equation of motion governing the coherent state ampli-

tudes zk = 〈b̂k〉 ≡ ψk:

i~ψ̇k = −J (ψk+1 + ψk−1) + U |ψk|2ψk + εkψk. (2.69)

For an extensive review of coherent states and their properties, see Reference [115].

The DNLS can also be derived from the Bose-Hubbard model within the time-

dependent variational principle [60]. In this case, we take as a trial state

|Ψ〉 = eiS/~ |Z〉, where |Z〉 ≡
M⊗

k=1

|zk〉. (2.70)

Thus, the trial state is a product of coherent states multiplied by the exponential of
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an effective action S = S(t). If the time evolution is constrained to obey a weaker

form of the time-dependent Schrödinger equation 〈Ψ|(i~∂t − Ĥ)|Ψ〉 = 0, then we

obtain for the action

Ṡ = i~〈Z|∂t|Z〉 − 〈Z|Ĥ|Z〉. (2.71)

Upon integration and evaluation of 〈Z|∂t|Z〉, Equation (2.71) becomes

S =

∫
dt

[
i~

∑
i

1

2
(żiz

∗
i − ż∗i zi)−H(Z)

]
≡

∫
dtL, (2.72)

where H(Z) ≡ 〈Z|Ĥ|Z〉 takes the place of a semiclassical Hamiltonian. Invoking the

Lagrange equation of motion

∂L
∂z∗k

=
d

dt

∂L
∂ż∗k

(2.73)

and simplifying, one obtains exactly the DNLS given in Equation (2.69) with ψk ≡ zk.

In each derivation of the DNLS from the Bose-Hubbard Hamiltonian, a different

answer is obtained if one uses n̂i(n̂i − 1̂) instead of b̂†i b̂
†
i b̂ib̂i for the interaction term.

Of course, these two forms are equivalent in the quantum picture. The only difference

in the semiclassical DNLS is a constant shift in energy which has for simplicity been

set to zero in Equation (2.69).

The coherent states of Equation (2.68) are known to well describe the ground

state of the Bose-Hubbard Hamiltonian for J À U in the limit of an infinite number

of sites M and particles N at fixed filling N/M [116]. It is in this regime that quan-

tum depletion can be safely neglected and Equation (2.69) is an accurate description

of the system. However, the lattice must be deep enough so that the single-band

tight-binding approximation is still valid. In Chapter 4, we use truncated coherent

states discussed later in Section 4.2 to create nonequilibrium initial quantum states

in the Bose-Hubbard Hamiltonian that are analogs to the dark soliton solutions of
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the discrete nonlinear Schrödinger equation.

2.3.5 The Bogoliubov Approximation

One can perform linear stability analysis on any stationary state of the DNLS

by employing the Bogoliubov prescription [18, 20]. The result is the spectrum of

elementary excitations about the condensate’s mean field. Let us assume a stationary

state of the DNLS so that the amplitude at each site k evolves according to ξke
−iµt/~,

where ξk is not a function of time t. We then perturb this initial condition and look

for solutions to the DNLS of the form

ψk = ψk(t) =
[
ξk + uke

−iωt + v∗ke
iω∗t] e−iµt/~, (2.74)

where uk and vk are quasiparticle amplitudes with frequency ω and µ is the chemical

potential of the stationary state ξk as given in Equation (4.24). With ξk and µ

assumed known, insertion of Equation (2.74) into the DNLS results in the following

coupled linear system for the amplitudes uk and vk:




−J(uk+1 + uk−1) + 2U |ξk|2uk − µuk + εkuk + Uξ2

kvk = ~ω uk ,

J(vk+1 + vk−1)− 2U |ξk|2vk + µvk − εkvk − U(ξ∗k)
2uk = ~ω vk .

(2.75)

Hence, the Bogoliubov transformation of Equation (2.74) acts as a linearization of

the DNLS around a stationary solution. An alternative route to Bogoliubov analysis

for a lattice potential is to start from the quantum picture, i.e., the Bose-Hubbard

Hamiltonian, and include small quantum fluctuations by assuming the lowering op-

erator takes the form b̂k = (zk + δ̂k)e
−iµt/~ [cf. Equation (2.35)] as explained, for

instance, in References [117, 118].

In practice, we solve the system (2.75) by defining the vectors (u)k ≡ uk and
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(v)k ≡ vk and their concatenation w ≡ (u,v)T so that (2.75) can be written in the

form Gw = ~ωw, where, as usual, the site index k ∈ {1, 2, . . . , M}. The matrix G

represents the left-hand side of the equations in (2.75) and is given by

G ≡

 G1,1 G1,2

G2,1 G2,2


 , (2.76)

where

G1,1 ≡




−µ + ε1 + 2U |ξ1|2 −J 0 · · · 0

−J −µ + ε2 + 2U |ξ2|2 −J
. . .

...

0 −J
. . . . . . 0

...
. . . . . . . . . −J

0 · · · 0 −J −µ + εM + 2U |ξM |2




,

(2.77)

G1,2 ≡




Uξ2
1 0 · · · · · · 0

0 Uξ2
2

. . . . . .
...

...
. . . . . . . . .

...

...
. . . . . . . . . 0

0 · · · · · · 0 Uξ2
M




, (2.78)

G2,2 ≡ −G1,1, and G2,1 ≡ −G∗
1,2. Note that the terms Uξ2

kvk and −U(ξ∗k)
2uk are

accounted for on the diagonals of the upper-right and lower-left blocks of G, respec-

tively. Hence, the problem amounts to diagonalizing G to solve for the eigenvectors w

and corresponding eigenvalues ~ω. The diagonalization routine results in 2M eigen-

vectors with eigenvalues, but the only relevant modes are those jmax ≤ M modes with



42

positive norm:
M∑

k=1

[
|u(j)

k |2 − |v(j)
k |2

]
> 0, (2.79)

where j ∈ {1, 2, . . . , jmax} is a mode index. The frequency associated with mode j

is denoted ωj, and the frequencies are ordered such that ω1 ≤ ω2 ≤ · · · ≤ ωjmax The

density of a given mode j at site k is defined as |u(j)
k |2 − |v(j)

k |2 and we renormalize

the amplitudes so that
M∑

k=1

[
|u(j)

k |2 − |v(j)
k |2

]
= 1. (2.80)

The MATLAB code we use to calculate the Bogoliubov spectrum for a given DNLS

stationary state can be found in Appendix C under the name BogModes.m.

If for a given mode the frequency ωj is complex, the DNLS solution ξk is said to

be dynamically unstable, whereas if ωj is negative, the mode is said to be anomalous

and the stationary DNLS solution is energetically unstable [119, 120]. That is, an

anomalous mode is one with negative frequency but positive norm. In Chapters 4

and 5, we apply the above methods to analyze the stability of dark soliton solutions

of the DNLS and make direct comparisons to full many-body TEBD simulations.

2.4 Complexity, Integrability, and Connections to Solitons

In deriving the Gross-Pitaevskii equation from the full continuous quantum

many-body Hamiltonian in Section 2.3.2, we have replaced a linear N -body problem

of nondeterministic polynomial (NP) complexity with a much more tractable, albeit

nonlinear, partial differential equation. The presence of a Bose condensate allows

one to effectively replace the N -body problem with a one-body problem in which the

interactions between atoms are accounted for in the nonlinear term which represents

the condensate mean field. To demonstrate the NP complexity of the many-body
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problem, consider the Bose-Hubbard model derived above in Section 2.3.3. For a

number-conserving Fock space with N particles and M lattice sites, a full solution of

the model requires knowledge of

ΩNC =

(
N + M − 1

N

)
≡ (N + M − 1)!

N !(M − 1)!
(2.81)

coefficients of the many-body quantum state ket |Ψ〉. By Stirling’s approximation,

the multiplicity ΩNC scales as NM−1 for large N . If the Fock space does not conserve

particle number and instead one allows up to d−1 bosons per site, then the multiplicity

becomes

ΩNNC = dM . (2.82)

In both cases, the size of the Hilbert space scales exponentially with the system size

M , so the problem is said to be an NP problem. However, we can still study the

fundamental physics of the model by considering systems of sufficiently small size

or by applying specialized approximative techniques for such many-body problems.

Examples of the latter include quantum Monte Carlo [40] and the density matrix

renormalization group [41].

Integrability of a given model refers to the existence of an infinite number of

conserved quantities or integrals of motion. Usually, this means that the solution

to the model can be written down in terms of elementary and/or special functions.

Hence, an NP problem can be solved exactly if the governing model is integrable.

In quantum many-body theory, this amounts to being able to exactly diagonalize

the governing Hamiltonian analytically. However, analytic exact diagonalization is

usually not possible, in which case the model is said to be non-integrable. Exceptions

are usually limited to one spatial dimension; they include the well-known Bethe ansatz
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originally developed to solve the Heisenberg model with antiferromagnetic interactions

[121], the gas of hard-core bosons both in the continuum [122, 123] and on the lattice

[124, 125], and the attractive Fermi-Hubbard model describing fermions on a lattice

[26]. The Bose-Hubbard model is integrable only in special cases, e.g., for the case of

hard-core interacting bosons where exact studies can be performed by mapping the

problem onto one of noninteracting fermions via the Jordan-Wigner transformation

[124]. On the other hand, the mean-field GP equation is an integrable model as has

been known since the invention of the inverse scattering transform [48, 49]. Other

related integrable nonlinear equations include the Korteweg-de Vries [126] and sine-

Gordon equations [127].

Solitons exist as solutions to each of these nonlinear partial differential equa-

tions. Such solutions are characterized by non-dispersing propagation of a density

maximum or minimum. A bright soliton is a density maxima made stable by a focus-

ing nonlinearity. A dark soliton, on the other hand, is a density minima made stable

by the countering forces of a defocusing nonlinearity and steep phase gradient across

the density notch. Solitons are also characterized by their ability to survive mutual

collisions, i.e., a collision between two solitons is completely elastic. In contrast, sta-

bly propagating nonlinear waves that do not survive collisions are termed solitary

waves. In a mathematically rigorous sense, solitons are defined as localized solutions

to integrable partial differential equations such as the NLS. However, discretization of

continuous integrable models often breaks the integrability. For example, the DNLS,

a discretization of the NLS, is known to be non-integrable, whereas the closely re-

lated Ablowitz-Ladik equation is in fact integrable [61]. Even though the DNLS is

non-integrable, it still possesses solutions that closely resemble the bright and dark

solitons of the continuous GP equation, although the discretization does introduce
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novel effects [62]. For instance, discreteness has been shown to affect the stability

of dark solitons [63, 128] and the collisional properties of bright solitons [129]. Even

though these structures are not rigorous solutions of an integrable system, we still

refer to such solutions as solitons. In Chapter 4, we consider the quantum evolution

of mean-field DNLS dark solitons in the Bose-Hubbard model; in Chapter (5), we

study the dynamics of density and phase engineered dark solitons on a Bose-Hubbard

lattice. Collectively, we refer to all soliton-like solutions in the Bose-Hubbard model

as quantum solitons. These are by no means soliton solutions of an integrable quan-

tum system—in fact, the corresponding mean-field and quantum models are both

non-integrable—but are instead quantum analogs to the dark soliton solutions en-

countered in discrete mean-field theory.

2.5 The Hyperfine Degree of Freedom and Spin-1 Bosons

Up to this point, we have considered a system of scalar bosons, i.e., bosons with

no contributing hyperfine degree of freedom. In this section, we briefly discuss the

effects of this internal degree of freedom on the physics with emphasis placed on the

pertaining models for spin-1 bosons on optical lattices. For more extensive discussions

of the hyperfine degree of freedom and its consequences, see, for instance, References

[20, 73].

2.5.1 Hyperfine Degree of Freedom

When we refer to a system of scalar bosons, we mean that the hyperfine degree

of freedom has been frozen out so that it plays no role in the system dynamics. The

individual atoms, of course, still have finite total spin. To clarify this point, consider

neutral 87Rb which, having an even number of neutrons, is an effective boson. The
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total nuclear spin of 87Rb is I = 3/2, as is the case for 23Na , the other most commonly

used alkali atom in BEC experiments. Like all alkali atoms, for 87Rb there is only

one electron in an outer shell, namely the s orbital, so the total electronic angular

momentum is J = S = 1/2. Hence, the total spin can be either F = 1 or 2. In the

absence of an external magnetic field, the atomic levels will be split by the hyperfine

interaction between the nuclear and electronic spins resulting in different hyperfine

manifolds labeled by the total spin quantum number F [20]. However, the atoms

can be subject to a magnetic trapping potential which selects only a single hyperfine

species, e.g., the “maximally stretched” states |F = 1,mF = −1〉 or |F = 2,mF = 2〉
[73], where mF is the projection of the spin in the direction of the applied field. With

all atoms in such a hyperfine state, the internal degree of freedom is irrelevant, i.e.,

there will be no two-body collision processes which alter the hyperfine levels of the

colliding atoms, and the atoms behave as scalar bosons. However, optical traps can

hold multiple hyperfine components at once in which case the hyperfine degree of

freedom can give rise to interesting physics. In this thesis, we consider a system of

atoms all from the same hyperfine manifold F = 1 loaded into an optical lattice where

all hyperfine sublevels mF ∈ {1, 0,−1} are in general present.

2.5.2 Spin-1 Bose-Hubbard Hamiltonian

As in Section 2.3.3 for the case of scalar bosons on a tight optical lattice, one can

truncate a full continuous many-body Hamiltonian and obtain a spin-1 Bose-Hubbard

model [130, 131]. For the case of spin-1, all components come from the same hyperfine

manifold and the number of parameters in the model is reduced substantially. In

contrast, see the two-component Bose-Hubbard model as in [132] which models a

two-state bosonic system created either by forbidding a single hyperfine state of the
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F = 1 manifold or by taking two components from different manifolds. The final

result for the spin-1 case is

Ĥ =− J

M−1∑
i=1

1∑
α=−1

(b̂†i+1,αb̂i,α + h.c.) +
U0

2

M∑
i=1

n̂i(n̂i − 1̂)

+
U2

2

M∑
i=1

(Ŝ2
i − 2n̂i) +

M∑
i=1

1∑
α=−1

εi,αn̂i,α, (2.83)

where b̂i,α, b̂†i,α, and n̂i,α ≡ b̂†i,αb̂i,α are the destruction, creation, and number operators

for an atom in the hyperfine state |F = 1,mF = α〉, α ∈ {1, 0,−1}, in a Wannier

function localized at site i in the lowest Bloch band of the lattice. In Equation

(2.83), we are neglecting small differences in the atomic polarizability of the three

spin components; this means that each spin component feels approximately the same

effective potential from the lattice via the AC-Stark effect. One implication of this

assumption is that the model includes only a single hopping parameter J which is

the same for each spin component. The on-site total number and spin operators n̂i

and Ŝ2
i can be written in terms of the more primitive operators b̂i,α, b̂†i,α, and n̂i,α as

follows:

n̂i ≡
1∑

α=−1

n̂i,α, (2.84)

Ŝ2
i ≡

(
1∑

α,β=−1

b̂†i,αFαβ b̂i,β

)2

= 2n̂i,1n̂i,0 + 2n̂i,0n̂i,−1 + n̂i,1 + 2n̂i,0 + n̂i,−1

+ n̂2
i,1 − 2n̂i,1n̂i,−1 + n̂2

i,−1 + 2b̂†i,1b̂
†
i,−1b̂

2
i,0 + 2(b̂†i,0)

2b̂i,1b̂i,−1. (2.85)
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The Fαβ are elements of the usual spin-1 matrices:

Fx =
1√
2




0 1 0

1 0 1

0 1 0


 , Fy =

i√
2




0 −1 0

1 0 −1

0 1 0


 , Fz =




1 0 0

0 0 0

0 0 −1


 , (2.86)

where the selected basis orders the hyperfine states in decreasing value of α, β =

1, 0,−1.

As in the Bose-Hubbard Hamiltonian for scalar bosons, the parameters J , U0,

and U2 can be written in terms of overlap integrals of single-particle Wannier orbitals,

where for the quasi-1D case we obtain

J ≡ −
∫ ∞

−∞
dxw(0)∗(x)

[
− ~

2

2m

d2

dx2
+ Vlat(x)

]
w(0)(x− a), (2.87)

UF ≡ c
(1)
F

∫ ∞

−∞
dx |w(0)(x)|4, F ∈ {0, 2}. (2.88)

In 3D, we have for the coupling factors

c
(3)
0 =

g
(3)
0 + 2g

(3)
2

3
and c

(3)
2 =

g
(3)
2 − g

(3)
0

3
, (2.89)

where

g
(3)
F ≡ 4π~2aF

m
(2.90)

and aF is the s-wave scattering length for two atoms scattering in a channel with

total spin F . The c
(1)
F in (2.88) are 1D coupling constants obtained by projecting

onto the mean-field ground state in the transverse directions as in Equation (2.34).
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Specifically, we have

c
(1)
0 =

g
(1)
0 + 2g

(1)
2

3
and c

(1)
2 =

g
(1)
2 − g

(1)
0

3
, (2.91)

where

g
(1)
F ≡ 2~ω⊥aF . (2.92)

Also, εi,α is an external potential aside from the lattice potential acting on hyperfine

state α at site i:

εi,α ≡
∫ ∞

−∞
dx Vext,α(x)|w(0)(x− xi)|2 ≈ Vext,α(xi). (2.93)

The second term in Equation (2.83) accounts for spin-independent interactions,

whereas the third term accounts for spin-dependent interactions [131]. For anti-

ferromagnetic interactions as in 23Na, a2 > a0 so U2 > 0, while for ferromagnetic

interactions as in 87Rb, a2 < a0 so U2 < 0. We concern ourselves with the latter case.

Although the individual scattering lengths aF can be tuned independently via Fesh-

bach resonance, typical values of non-Feshbach-tuned scattering lengths give values

of U2 one to two orders of magnitude less than U0 [131]. We neglect magnetic dipole-

dipole interactions which are an order of magnitude smaller than spin-dependent

interactions [133].

2.5.3 Spin-1 Vector Discrete Nonlinear Schrödinger Equation

An analog to the DNLS for a spin-1 system results in a vector DNLS. This

model can be obtained from the spin-1 Bose-Hubbard Hamiltonian introduced in the

previous section by applying the time-dependent variational principle used in Section

2.3.4 for the scalar case. Specifically, we assume a trial state in form of a multi-mode
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coherent state

|Ψ〉 = eiS/~|Z〉, where |Z〉 ≡
M⊗

k=1

1⊗
α=−1

|zα,k〉 (2.94)

and the |zα,k〉 are usual Glauber coherent states with amplitudes zα,k at sites indexed

k and for hyperfine states indexed α. Applying to Equation (2.83) an identical pro-

cedure to that used in Section 2.3.4 by constraining the dynamics to a weaker form

of the time-dependent Schrödinger equation and invoking Lagrange’s equations of

motion applied to the classical action S = S(t), we arrive at the spin-1 vector DNLS

for the amplitudes ψα,k ≡ zα,k:

i~ψ̇±1,k = − J (ψ±1,k+1 + ψ±1,k−1) +

(
ε±1,k + U0

1∑
α=−1

|ψα,k|2
)

ψ±1,k

+ U2

(
1√
2
f∓,k ψ0,k ± fz,k ψ±1,k

)
, (2.95)

i~ψ̇0,k = − J (ψ0,k+1 + ψ0,k−1) +

(
ε0,k +

U2

2
+ U0

1∑
α=−1

|ψα,k|2
)

ψ0,k

+ U2 (f+,k ψ+1,k ± f−,k ψ−1,k) , (2.96)

where

fz,k ≡ |ψ+1,k|2 − |ψ−1,k|2, (2.97)

f+,k ≡
√

2
(
ψ∗+1,kψ0,k + ψ∗0,kψ−1,k

)
= f ∗−,k (2.98)

are derived from the spin-1 matrices [79]. The matrix representation of the vector

DNLS given in Equations (2.95)–(2.96) can be found in Section 3.1.1. Note that there

is an additional energy in the amount U2/2 on the α = 0 component in Equation (2.96)

which comes from the factor of 2 multiplying n̂i,0 in Equation (2.85). This additional

term is not present in the continuous version of Equations (2.95)–(2.96) presented in



51

Reference [79]. However, for our particular calculation, this point does not matter

as we explain in the next section. In Chapter 6, we present numerical simulation of

the vector DNLS discussed above in the context of the dynamical phase transition in

a ferromagnetic spin-1 condensate studied in References [79, 78] for the continuous

case.

2.5.4 Dynamical Phase Transition and Kibble-Zurek Mechanism

Through the quadratic Zeeman effect, application of a magnetic field B in the

z-direction has the effect of adding a potential

ε±,k = Q ≡ µ2
BB2

4Ehf

(2.99)

to the α = ±1 hyperfine components, where µB is the Bohr magneton and Ehf > 0

is the hyperfine splitting between manifolds F = 1 and F = 2 [79]. We ignore the

linear Zeeman effect by assuming that in spin space we are in a frame rotating at

the Larmor frequency. For ferromagnetic interactions with U2 < 0 as in 87Rb, we

expect a quantum phase transition at a critical value of Q so that above the critical

value we find a polar phase and below the critical value a broken-symmetry phase.

In the polar phase, all atoms are in the mF = 0 hyperfine level, while the broken-

symmetry phase is characterized by magnetization in a direction perpendicular to

the magnetic field, i.e., finite transverse magnetization. For the discrete 1D box that

we consider in Chapter 6, we do not derive an analytic expression for the critical

value but numerically observe its existence by propagating the spin-1 vector DNLS

in imaginary time to calculate the equilibrium state; this derivation will be done in

future work. For a similar derivation without the lattice present, see Reference [79].

In Chapter 6, we show that generalization of this continuum prediction holds in the
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discrete lattice up to a few percent for the lattice sizes we consider. That is, the

critical quadratic Zeeman strength is

Qc ≈ 2ν|U2|, (2.100)

where ν is the filling factor. Also, the extra U2/2 term in Equation (2.96) can be

eliminated by changing the zero of energy since the potential Q only affects the

α = ±1 components. For consistency with previous work [78, 79], we thus ignore the

U2/2 term in the vector DNLS calculations done in Chapter 6. The energy shift on

the α = 0 component would just change the critical point Qc by an amount U2/2.

As described in Section 1.3, in a beautiful experiment performed by the Stamper-

Kurn group at Berkeley [74], a Bose-Einstein condensate of 87Rb was prepared in the

polar phase so that (almost) all atoms were in the state |F = 1,mF = 0〉. The

magnetic field used to create the polar phase was then quenched below the critical

value and transverse magnetization appeared in the x-y plane, thus breaking the

axisymmetry in spin space. Topological spin textures and ferromagnetic domains were

observed to form when the system was driven across the critical point. A number of

recent theoretical works have investigated this dynamical phase transition [79, 78, 84,

77, 85]. These studies have mainly focused on topological defect formation and have

revealed that the scaling properties of the dynamical phase transition can be explained

by the Kibble-Zurek mechanism, e.g., the rate of growth of transverse magnetization

and the size of post-transition defects are simple power laws of the transition rate

[78]; however, this has yet to be clearly observed in experiment. In Chapter 6, we

numerically investigate this dynamical phase transition in the presence of a lattice by

using the vector DNLS as defined in Equations (2.96)–(2.96). The finite difference

methods we use to simulate Equations (2.96)–(2.96) are described in Section 3.1.
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Chapter 3

SIMULATION METHODS: MEAN FIELD AND QUANTUM FIELD

The majority of the results presented in this thesis are numerical in nature. The

purpose of this chapter is to describe the methods we use to numerically simulate

systems of ultracold bosons on one-dimensional optical lattices. The chapter has

two sections. The first section focuses on the finite difference methods, e.g., Crank-

Nicolson and Runge-Kutta, that we use to simulate the relevant discrete mean-field

theories, i.e., the discrete nonlinear Schrödinger equation for both scalar and spin-1

bosons. The second section describes the time-evolving block decimation algorithm,

an advanced and recently developed routine, which we employ to simulate the full

quantum many-body Bose-Hubbard Hamiltonian.

3.1 Mean-Field Simulation: Finite Difference Methods

From a numerical standpoint, it is important to note that discretization of the

continuum NLS to obtain the DNLS as derived in Section 2.3.4 can be thought of

as application of the finite element method. That is, we take the full condensate

wave function Φ(r, t) and expand it in a basis of localized condensate wave functions

φi(r) ≡ φ(r − ri) with complex, time-dependent weighting coefficients ψi(t). In the

language of finite element analysis, the functions φi(r) are termed finite elements.

By selecting this basis of functions, we have discretized the problem in space and

kept the time variable t continuous. This approach is known as the method of lines.

It replaces a continuous partial differential equation with a set of coupled ordinary
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differential equations (ODEs). For scalar bosons, we obtain the M coupled ODEs

given in Equation (2.61), and for spin-1 bosons, we obtain the 3M coupled ODEs

given in Equations (2.95)–(2.96). We then solve these systems of ODEs numerically

using finite difference methods. In this section, we discuss the Crank-Nicolson and

Runge-Kutta methods as applied to the DNLS for both scalar and spin-1 bosons.

3.1.1 Formulation of Problem

We first consider the scalar boson DNLS. The system of M coupled ODEs in

Equation (2.61) can be written in matrix-vector form as

i~ ~̇ψ(t) = H[~ψ(t), t]~ψ(t), (3.1)

where ~ψ(t) is an M -dimensional vector with elements [~ψ(t)]k ≡ ψk(t) and H[~ψ(t), t]

is an M ×M matrix:

H ≡




U |ψ1|2 + ε1 −J 0 · · · 0

−J U |ψ2|2 + ε2 −J
. . .

...

0 −J
. . . . . . 0

...
. . . . . . . . . −J

0 · · · 0 −J U |ψM |2 + εM




. (3.2)

In general, H is explicitly dependent both on the state ~ψ(t) and on time t since the

external potential εk is allowed to be time-dependent. Equation (3.2) assumes box

boundary conditions so that ψ0 = ψM+1 ≡ 0.

The spin-1 vector DNLS of Equations (2.95)–(2.96) can also be written in the

form (3.1). In this case, ~ψ(t) is taken as a concatenation of M -dimensional vectors
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for each spin component: ~ψ(t) = [~ψ+1(t), ~ψ0(t), ~ψ−1(t)]
T , where [~ψα(t)]k ≡ ψα,k(t),

α ∈ {1, 0,−1}. In this case, H[~ψ(t), t] is a 3M × 3M matrix that splits up into nine

M ×M submatrices as follows:

H ≡




H+1,+1 H+1,0 H+1,−1

H0,+1 H0,0 H0,−1

H−1,+1 H−1,0 H−1,−1


 . (3.3)

The submatrices are defined as

H±1,±1 ≡




V±1,1 ± U2fz,1 −J 0 · · · 0

−J V±1,2 ± U2fz,2 −J
. . .

...

0 −J
. . . . . . 0

...
. . . . . . . . . −J

0 · · · 0 −J V±1,M ± U2fz,M




, (3.4)

H0,0 ≡




V0,1 −J 0 · · · 0

−J V0,2 −J
. . .

...

0 −J
. . . . . . 0

...
. . . . . . . . . −J

0 · · · 0 −J V0,M




, (3.5)

H+1,0 ≡




U2√
2
f−,1 0 · · · · · · 0

0 U2√
2
f−,2

. . . . . .
...

...
. . . . . . . . .

...

...
. . . . . . . . . 0

0 · · · · · · 0 U2√
2
f−,M




= H0,−1 = H†
0,+1 = H†

0,−1, (3.6)

H±1,∓1 ≡ 0, (3.7)
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where Vα,k ≡ εα,k +
∑1

α′=−1 |ψα′,k|2 and f±,k, fz,k are defined in Equations (2.97)–

(2.98).

3.1.2 Methods

We have established that the scalar and vector DNLS can both be written in

matrix-vector form as in Equation (3.1). Such a set of first-order ODEs can be solved

using standard methods. We consider the Crank-Nicolson and Runge-Kutta methods.

Crank-Nicolson The Crank-Nicolson method [134, 135] considers propaga-

tion forward and backward one-half time step δt/2 according to the Euler method:

~ψ(t± δt/2) ≈
{

I ± iδt

2~
H[~ψ(t), t]

}
~ψ(t), (3.8)

where I is the identity matrix of appropriate dimensionality. From the backward time

step, we have

~ψ(t) ≈
~ψ(t− δt/2)

I + iδt
2~H[~ψ(t), t]

, (3.9)

which in combination with the forward time step allows us to write

~ψ(t + δt/2) ≈ I − iδt
2~H[~ψ(t), t]

I + iδt
2~H[~ψ(t), t]

~ψ(t− δt/2). (3.10)

The matrices in denominators indicates matrix inversion which we perform in practice

with the MATLAB “slash” operator. A shift in time by δt/2 gives us a formula for

propagation forward in time by one full time step δt according to the Crank-Nicolson

method:

~ψ(t + δt) ≈ I − iδt
2~H[~ψ(t + δt/2), t + δt/2]

I + iδt
2~H[~ψ(t + δt/2), t + δt/2]

~ψ(t). (3.11)
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The vector ~ψ(t+δt/2) can be approximated with the Euler method applied over a half

time step starting from ~ψ(t). Starting with an initial configuration ~ψ(0), Equation

(3.11) can be applied iteratively to obtain approximate solutions of the DNLS at times

t = 0, δt, 2δt, . . . , tf . It can be shown that the error of the Crank-Nicolson method at

each time step is O(δt3), i.e., it is a second-order method.

The Crank-Nicolson method as outlined above is equivalent to the Cayley trans-

formation in the limit of the linear Schrödinger equation. The Cayley transformation

is appealing for numerical simulations of the Schrödinger equation because it pre-

serves unitary, whereas a method like Runge-Kutta does not. However, for nonlinear

equations such as the DNLS, Crank-Nicolson does not necessarily preserve unitarity

and is thus not always the most preferable method to use.

Runge-Kutta The fourth-order Runge-Kutta method [136] is a commonly

used explicit scheme. First, we rewrite Equation (3.1) as

~̇ψ(t) = F [~ψ(t), t]~ψ(t), (3.12)

where F [~ψ(t), t] ≡ H[~ψ(t), t]/i~. The Runge-Kutta prescription is to first calculate

the following intermediate vectors at time t:

~k1(t) = F [~ψ(t), t]~ψ(t), (3.13)

~k2(t) = F [~ψ(t), t]

{
~ψ(t) +

δt

2
~k1(t)

}
, (3.14)

~k3(t) = F [~ψ(t), t]

{
~ψ(t) +

δt

2
~k2(t)

}
, (3.15)

~k4(t) = F [~ψ(t), t]
{

~ψ(t) + δt~k3(t)
}

. (3.16)
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Then, the approximate solution at time t + δt reads

~ψ(t + δt) ≈ ~ψ(t) +
δt

6

[
~k1(t) + 2~k2(t) + 2~k3(t) + ~k4(t)

]
. (3.17)

As with Crank-Nicolson, we can iteratively apply Equation (3.17) to propagate an

initial condition forward in time in steps of size δt for total duration tf . The error

associated with each time step can be shown to be O(δt5). For all mean-field results

in this thesis, we use the fourth-order Runge-Kutta method with time steps of size

δt = 0.001 ~/J to obtain converged results.

3.1.3 Implementation

We implement the above routines in a MATLAB code. The core real time propa-

gation functions for scalar and spin-1 vector DNLS can be found in Appendix C under

the names scalarDNLS RTP.m and vectorDNLS RTP.m, respectively. The functions

take the method as an input argument; the forward Euler method is also included as

an option. Imaginary time propagation can trivially be implemented by taking τ ≡ it

and renormalizing the solution to the desired value at each time step. The functions

used for imaginary time are not included in Appendix C.

3.2 Quantum Many-Body Simulation: Time-Evolving Block Decimation

Efficient numerical simulation of quantum many-body phenomena is currently

one of the most sought-after challenges in theoretical physics. The main difficulty

lies in the exponential growth of the full many-body Hilbert space with the size

of the system, thus rendering exact diagonalization of the governing Hamiltonian

intractable for large systems. Over the past 20 years, well-proven methods such

as quantum Monte Carlo and density matrix renormalization group (DMRG) have
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been developed which allow accurate calculation of ground state properties of many-

body systems in one spatial dimension without knowledge of all coefficients of the

full many-body state ket. However, within the past five years, generalization of the

latter method to time-dependent phenomena received a major boost from a rather

unexpected corner: quantum information theory.

In 2003 and 2004, G. Vidal developed the now well-established time-evolving

block decimation (TEBD) routine for accurate time-dependent simulation of quantum

many-body lattice systems [42, 43]. Unlike exact diagonalization methods which

scale exponentially in the spatial extent of the system, TEBD scales linearly with

the system size, hence allowing numerical investigation of rather large systems. In

its original form, this method is restricted to 1D systems governed by Hamiltonians

that only link nearest-neighbor sites. However, so-called swapping routines [137] can

be used to map multi-legged systems [138] and/or systems with non-nearest-neighbor

interactions to a more TEBD-friendly 1D nearest-neighbor interaction system. The

accuracy of the routine depends explicitly on the amount of entanglement present.

This is due to the fact that the number of basis sets required to exactly represent

the quantum state for a given bipartite splitting of the system is in itself a measure

of entanglement. The TEBD method retains a number of basis sets less than that

required for exact representation, and hence the method is more accurate provided

the number of required basis sets is small. This idea of a reduction of the Hilbert space

to its most important states, namely the eigenstates of bipartite reduced matrices,

is central to DMRG, a method originally invented by White in 1992 [139]. In fact,

attempts at time-dependent DMRG occurred well before Vidal (see [45] and references

therein). In these early attempts at time-dependent DMRG, the manner in which

the Hilbert space is truncated remains constant throughout time evolution. However,



60

as established in References [45, 46], the ideas set forth by Vidal can be cast very

nicely into the original DMRG language, and TEBD is actually equivalent to a time-

adaptive DMRG routine. That is, at each time step the truncation adapts itself in

the way that most accurately represents the evolving state. Hence, TEBD allows for

the quasi-exact integration of the time-dependent Schrödinger equation for relatively

large 1D quantum many-body systems with nearest-neighbor coupling. Note that the

ground state of such systems can also be determined using TEBD by propagation in

imaginary time.

In this section, we discuss in detail the most important aspects of TEBD, its

application to simulation of the Bose-Hubbard Hamiltonian for both scalar and spin-

1 bosons, as well as specific aspects of our implementation of the algorithm. Our

actual code can be found in Appendix D. A complete version of the code is included

in the attached thesis DVD under the name AppD:TEBDcode.pdf.

3.2.1 Schmidt Decomposition

Perhaps the most important concept in TEBD is that of the Schmidt decompo-

sition of a vector in a bipartite tensor product space, an idea developed in 1906 [140].

Consider a general state in a Hilbert generated by a tensor product of M subsystem

Hilbert spaces each of dimension d. Then, any pure state of the full Hilbert space

H = H⊗M
d can be written as

|Ψ〉 =
d∑

i1,i2,...,iM=1

ci1i2···iM |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iM〉 ∈ H, (3.18)

where ik indexes the states for subsystem k. Clearly the dimension of the space is

exponential in M , i.e., dim(H) = dM . For the case of bosons on a lattice, we can take

ik → nk ∈ {0, 1, . . . , d − 1} so that the state index corresponds directly to particle
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occupation number at the subsystem site k. However, the ik need not necessarily

denote occupation numbers; they are general labels for the states of each subsystem.

Also, note that the subsystems need not necessarily be sites. For example, in a

system of bosons and fermions on a lattice, one can choose to describe the occupation

of bosonic and fermionic fields on the same site as different subsystems; in this case,

M would be twice the number of lattice sites.

If we partition the full system into two subsystems A and B containing subsys-

tems [1 · · · `] and [` + 1 · · ·M ], respectively, then the Schmidt decomposition guaran-

tees

|Ψ〉 =

χ∑̀
α`=1

λ[`]
α`
|Φ[A]

α`
〉 ⊗ |Φ[B]

α`
〉, (3.19)

where the coefficients are ordered such that λ
[`]
1 ≥ λ

[`]
2 ≥ · · · ≥ λ

[`]
χ` ≥ 0. Upon tracing

over either subsystem A or B in the full density matrix ρ̂ ≡ |Ψ〉〈Ψ|, it is clear that the

|Φ[A]
α` 〉 (|Φ[B]

α` 〉) are the eigenkets of the reduced density matrix ρ̂A (ρ̂B) for describing

subsystem A (B). Hence, each subsystem’s reduced density matrix has the same

spectrum of eigenvalues (λ
[`]
α`)

2 which satisfy the normalization

∑
α`

(λ[`]
α`

)2 = 1. (3.20)

Also, the number of eigenvalues χ` is bounded from above by the dimension of the

smaller subsystem, i.e., 1 ≤ χ` ≤ min[dim(A), dim(B)]. However, χ` is often much

less than its upper bound. This point is central to the functioning of the TEBD

algorithm.

When χ` = 1, then |Ψ〉 is a product state with respect to subsystems A and B,

and we have maximal knowledge of each subsystem. We say that the two subsystems

are separable or completely unentangled from one another. More coefficients (larger
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χ`) needed in the expansion (3.19) implies more eigenvalues of each reduced density

matrix ρ̂A and ρ̂B, from which it follows that each subsystem is in a more mixed state.

The integer χ` is thus naturally a measure of entanglement between subsystems A

and B. If we consider all possible bipartite splittings, then the Schmidt number

χ
S
≡ max

`
(χ`), ` ∈ {1, 2, . . . , M − 1}, (3.21)

is a global measure of entanglement in the system. Vidal points out that the related

measure logd(χS
) satisfies a number of desirable properties for use as an entanglement

quantifier, e.g., it is an entanglement monotone and is additive under tensor products

[42]. We stress that the TEBD algorithm uses an entanglement cutoff parameter

χ ≤ χS to truncate the Schmidt decomposition at each link of the lattice. It is in this

sense that TEBD works for states with a limited amount of entanglement: the lower

the Schmidt number χS, the fewer retained Schmidt basis vectors χ are required for

accurate representation of the state. In Section 3.2.3, we discuss the exact manner

that χ enters into the inner workings of the algorithm.

The Schmidt decomposition of a vector as in Equation (3.19) is guaranteed by

the singular value decomposition of a matrix [44]. Let i (j) denote collectively the

states of subsystem A (B) so that we can write

|Ψ〉 =
∑
i,j

cij|ij〉. (3.22)

By the singular value decomposition, we can write the matrix of coefficients as

cij =
∑

k

uikdkkvkj. (3.23)
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Then, the dkk are the singular values corresponding to Schmidt coefficients λ
[`]
α` , and

the elements of the unitary matrices u and v are the Fock space coefficients of the

Schmidt vectors |Φ[A]
α` 〉 and |Φ[B]

α` 〉. Specifically, in our original notation, we can write

λ[`]
α`

= dα`,α`
, (3.24)

|Φ[A]
α`
〉 =

∑
i

ui,α`
|i〉, (3.25)

|Φ[B]
α`
〉 =

∑
j

vα`,j|j〉, (3.26)

where the states |i〉 (|j〉) are identified with subsystem A (B).

3.2.2 Vidal’s Decomposition

The starting point for TEBD is to express the coefficients in Equation (3.18) as

a product of M tensors {Γ[`]} and M − 1 vectors {λ[`]}:

ci1i2···iM =

χ
S∑

α1,...,αM−1=1

Γ[1]i1
α1

λ[1]
α1

Γ[2]i2
α1α2

λ[2]
α2

Γ[3]i3
α2α3

· · ·Γ[M ]iM
αM−1

. (3.27)

This representation of the state can be thought of as a matrix product decomposition

(MPD) [45, 46], an idea used since near the inception of DMRG [141]. Referring to

the subsystems associated with the indices ik as “sites,” it is useful to associate the

Γs with sites and the λs with links between sites. The λ
[`]
α` are the Schmidt coefficients

obtained when a bipartite splitting is made at link `. On the other hand, elements

of the Γ tensors are related to the elements of the Schmidt vectors. The indices ik ∈
{1, 2, . . . , d} label the states of subsystem k, whereas the indices α` ∈ {1, 2, . . . , χS}
label the Schmidt coefficients and vectors at link `. In writing Equation 3.27, dM
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coefficients have been replaced by

ΩTEBD ≈ (dχ2
S

+ χ
S
)M (3.28)

coefficients, where the change in structure of the Γs at the boundaries of our 1D

box require us to use an approximate equality. We note that ΩTEBD is linear in

M , but for general states, the Schmidt number χ
S

scales as O[exp(M)], so that the

decomposition (3.27) by itself is not useful. However, if χ
S

scales as O[poly(M)],

approximate exponential speedup will occur. This is the case for many states of

physical interest.

The procedure for determining the Γs and λs from known coefficients ci1i2···iM is

only of theoretical importance because for arbitrary states in which χ
S

scales expo-

nentially with M we cannot practically expect to know all dM coefficients. However,

we outline this procedure here because it is useful in connecting the Vidal represen-

tation (3.27) to the Schmidt decomposition of the state at each bipartite splitting of

the system. For examples of decompositions of important low-χ
S

states using rather

ad hoc yet intuitive methods, see Appendix A.

The general procedure for calculation of Γs and λs from the ci1i2···iM can be

effectively illustrated by considering, for simplicity, a system of M = 4 subsystems.

In this case, according to (3.27), we have

ci1i2i3i4 =

χ
S∑

α1,α2,α3=1

Γ[1]i1
α1

λ[1]
α1

Γ[2]i2
α1α2

λ[2]
α2

Γ[3]i3
α2α3

λ[3]
α3

Γ[4]i4
α3

. (3.29)

The elements of Γ[1] and λ[1] come directly from the Schmidt decomposition obtained
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by splitting after subsystem 1 as follows:

|Ψ〉 =

χ
S∑

α1=1

λ[1]
α1
|Φ[1]

α1
〉 ⊗ |Φ[2 3 4]

α1
〉 =

∑
α1; i1,i2,i3,i4

λ[1]
α1

Γ[1]i1
α1
|i1〉 ⊗ Γ[2 3 4]i2i3i4

α1
|i2i3i4〉, (3.30)

where the tensor product symbol has been suppressed. We have defined a new tensor

Γ[2 3 4] with only a single index α1 whose elements are the coefficients of the Schmidt

vector |Φ[2 3 4]
α1 〉 in the original Fock space spanned by the vectors {|i2i3i4〉} for the

subsystem [2 3 4]. We then identify from Equation (3.29) that

Γ[2 3 4]i2i3i4
α1

=
∑
α2,α3

Γ[2]i2
α1α2

λ[2]
α2

Γ[3]i3
α2α3

λ[3]
α3

Γ[4]i4
α3

. (3.31)

Another Schmidt decomposition needs to be performed before we can solve for the

Γ
[2]i2
α1α2 . Splitting after subsystem 2, we obtain for the Schmidt decomposition

|Ψ〉 =

χ
S∑

α2=1

λ[2]
α2
|Φ[1 2]

α2
〉 ⊗ |Φ[3 4]

α2
〉 =

∑
α2; i1,i2,i3,i4

λ[2]
α2

Γ[1 2]i1i2
α2

|i1i2〉 ⊗ Γ[3 4]i3i4
α2

|i3i4〉. (3.32)

Once again we can inspect (3.29) to write

Γ[3 4]i3i4
α2

=
∑
α3

Γ[3]i3
α2α3

λ[3]
α3

Γ[4]i4
α3

, (3.33)

so it must be that

Γ[1 2]i1i2
α2

=
∑
α1

Γ[1]i1
α1

λ[1]
α1

Γ[2]i2
α1α2

, (3.34)

but the numbers Γ
[1 2]i1i2
α2 on the left-hand side are just the coefficients in Fock space

of the Schmidt vector |Φ[1 2]
α2 〉. We have already calculated the Γ

[1]i1
α1 and λ

[1]
α1 , so we

can solve for the Γ
[2]i2
α1α2 on the right-hand side of (3.34) algebraically. Similarly, we
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can split the system after subsystem 3 and again inspect (3.29) to find

Γ[3 4]i3i4
α2

=
∑
α3

Γ[3]i3
α2α3

λ[3]
α3

Γ[4]i4
α3

, (3.35)

from which we can solve for the Γ
[3]i3
α2α3 algebraically after computing the Γ

[4]i4
α3 via

Schmidt decomposition. In practice, as discussed in the previous section, all Schmidt

decompositions are easily calculated via the singular value decomposition. Note that

the elements of all λs can be calculated directly via a Schmidt decomposition at

each splitting as in Equation (3.19). No algebraic solving using previously calculated

quantities is necessary for the λs as it is for the Γs.

3.2.3 Two-Site Operation

To see why the Vidal decomposition (3.27) is useful, let us consider a two-site

unitary operation

V̂ =
∑

i`,i`+1; i
′
`,i
′
`+1

V
i`i`+1

i′`i
′
`+1
|i`i`+1〉〈i′`i′`+1| (3.36)

acting on sites ` and `+1. By sites we of course mean the two subsystems associated

with indices i` and i`+1 that may or may not correspond to actual physical sites as

explained in Section 3.2.1. First, we write |Ψ〉 in terms of Schmidt vectors for the

subsystems [1 · · · ` − 1] and [` + 2 · · ·M ] spanned by the Hilbert spaces on the left

and right of the cut at link `. That is,

|Ψ〉 =
∑

α`−1,α`,α`+1; i`,i`+1

λ[`−1]
α`−1

Γ[`]i`
α`−1α`

λ[`]
α`

Γ[`+1]i`+1
α`α`+1

|Φ[1···`−1]
α`−1

〉 ⊗ |i`i`+1〉 ⊗ |Φ[`+2···M ]
α`+1

〉

=
∑

α`−1,α`+1; i`,i`+1

Θi`i`+1
α`−1α`+1

|Φ[1···`−1]
α`−1

〉 ⊗ |i`i`+1〉 ⊗ |Φ[`+2···M ]
α`+1

〉 (3.37)
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by invoking Equations (13) and (14) of [42], where

Θi`i`+1
α`−1α`+1

≡
∑
α`

λ[`−1]
α`−1

Γ[`]i`
α`−1α`

λ[`]
α`

Γ[`+1]i`+1
α`α`+1

λ[`+1]
α`+1

. (3.38)

Note that this definition of the tensor Θ differs from an analogous construct in [42]

which is also denoted Θ in that work. Up to this point, we have assumed that we know

the decomposition (3.27) of |Ψ〉, and hence we also know all elements of Θ. However,

by writing |Ψ〉 in the form of Equation (3.37) we can easily write the updated state

after the application of V̂ as

V̂ |Ψ〉 =
∑

α`−1,α`+1; i`,i`+1

Θ̃i`i`+1
α`−1α`+1

|Φ[1···`−1]
α`−1

〉 ⊗ |i`i`+1〉 ⊗ |Φ[`+2···M ]
α`+1

〉, (3.39)

where Θ̃ can be written in terms of the updated tensors Γ̃[`] and Γ̃[`+1] and the updated

vector λ̃[`]:

Θ̃i`i`+1
α`−1α`+1

=
∑

i′`,i
′
`+1

V
i`i`+1

i′`i
′
`+1

Θ
i′`i
′
`+1

α`−1α`+1 =
∑
α̃`

λ[`−1]
α`−1

Γ̃
[`]i`
α`−1α̃`

λ̃
[`]
α̃`

Γ̃
[`+1]i`+1

α̃`α`+1
λ[`+1]

α`+1
. (3.40)

In the above discussion, α` ∈ {1, 2, . . . , χ}, where χ ≤ χ
S

is the number of retained

reduced density matrix eigenvalues associated with a splitting at link `. The closer χ

is to the Schmidt number χ
S

of the state after the application of V̂ , the more faithful

is this method of applying the two-site operation.

In practice, a given two-site operation is performed as follows: (1) form Θ from

current Γs and λs [Equation (3.38)]; (2) update Θ by applying V̂ to obtain Θ̃ [Equa-

tion (3.40)]; (3) reshape Θ̃ from a 4-tensor to a (χd) × (χd) matrix; (4) perform a

singular value decomposition on this matrix, retaining only the largest χ singular

values λ̃
[`]
α` ; and (5) divide out the previous values of λ[`−1] and λ[`+1] in order to
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compute Γ̃[`] and Γ̃[`+1] from the matrix elements obtained via the singular value de-

composition. Note that for simplicity we retain χ singular values regardless of the

size of the subsystems on the left and right of the cut at site `. Slight computational

speedup could be achieved if near the ends of the system we selected χ so as not to

exceed its upper bound of min[dim(A), dim(B)]. The most expensive computational

steps are (1), the formation of Θ, and (2), the update of Θ after the application

of V̂ . The former requires O(d2χ3) elementary operations, whereas the latter re-

quires O(d4χ2) elementary operations; hence, our overall two-site operation scales

as O[max(d2χ3, d4χ2)]. We stress that in step (4) we discard the smallest χ(d − 1)

eigenvalues of the (χd) × (χd) matrix obtained by reshaping Θ̃. It is in this sense

that we have approximated the two-site operation V̂ and truncated the full Hilbert

space. Owing to the normalization of the Schmidt coefficients as in Equation (3.20),

the validity of this truncation can be quantified by computing the Schmidt truncation

error associated with application of V̂ :

τS
` ≡ 1−

χ∑
α`=1

(λ[`]
α`

)2. (3.41)

It is important to note that the accuracy of the method depends explicitly on the

amount of entanglement created by applying the two-site operation. However, this

method optimally truncates the Hilbert space as the truncation itself is determined

by the present state. Hence, TEBD is a time-adaptive routine. TEBD is also termed

quasi-exact because the accuracy of the routine is strictly controlled by the Schmidt

truncation error, a quantity itself controlled by the tunable numerical parameter χ.
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3.2.4 Suzuki-Trotter Expansion and Time Evolution

We have thus far established that any two-site operation can be performed in such

a manner that is low-order polynomial in both χ, the number of basis sets retained,

and d, the local Hilbert space dimension. The ultimate goal is to be able to perform

time-dependent simulation of a given many-body Hamiltonian in 1D. To this end, we

need a way to write the time evolution operator e−iĤδt/~ over small time steps δt as

a product of one- and two-site unitary operations. One-site operations are much less

computationally costly than their two-site counterparts and only require updating the

Γ associated with the site being operated upon [42]. This procedure scales as O(dχ2).

All but the most trivial of many-body Hamiltonians consist of multi-site operations.

If the Hamiltonian consists only of one- and two-site operations that link only nearest

neighbors, then it is convenient to decompose the Hamiltonian Ĥ =
∑

` Ĥ` as

Ĥ = Ĥodd + Ĥeven, where Ĥodd ≡
∑

odd `

Ĥ` and Ĥeven ≡
∑

even `

Ĥ`, (3.42)

where ` is best thought of as a link index so that Ĥ` operates only on sites connected

to link `, i.e., sites ` and `+1. Note that any one-site operations in Ĥ can be written

as two-site operations by appropriate tensor products with the identity operator 1̂.

Although Ĥodd and Ĥeven do not commute with each other, i.e., [Ĥeven, Ĥodd] 6= 0,

each term within both Ĥodd and Ĥeven commute because Ĥ consists of terms that

only couple nearest-neighbor sites, i.e., [Ĥ`, Ĥ`+j] = 0 for |j| ≥ 2. The natural way

to proceed is to then employ a Suzuki-Trotter expansion [142] of the time evolution

operator. In our implementation, we use the second-order expansion:

e−iĤδt/~ = e−iĤoddδt/2~e−iĤevenδt/~e−iĤoddδt/2~ +O(δt3). (3.43)
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Because all terms within both Ĥodd and Ĥeven commute, we have

e−iĤoddδt/2~ =
∏

odd `

e−iĤ`δt/2~, (3.44)

e−iĤevenδt/~ =
∏

even `

e−iĤ`δt/~. (3.45)

So, by (3.43)–(3.45), we can in practice approximate |Ψ(t + δt)〉 = e−iĤδt/~|Ψ(t)〉, the

evolution of the full many-body state over a small time step δt, by (1) propagating all

odd links forward in time one-half time step, (2) propagating all even links forward

in time one full time step, and (3) again propagating all odd links forward one-

half time step. The exact details of this procedure depend on the specific order of

the Suzuki-Trotter expansion being utilized, where the above prescription is for the

second-order expansion of Equation (3.43). It is important to note that evolving the

state of the entire system forward at each time step involves only O(M) two-site

operations. For evolution over a total time interval of size tf , the overall algorithm

scales as O[M
tf
δt

max(d2χ3, d4χ2)], a quantity linear in the system size M . There are

two sources of error inherent in the algorithm: (1) the retention of only the largest

χ singular values of the tensor Θ̃ in Equation (3.40) and (2) the Suzuki-Trotter

representation of the time evolution operator as in Equation (3.43). We can monitor

the former error by computing, for a given time step, the total Schmidt truncation

error, which we denote τS, defined as the sum of the Schmidt truncation errors τS
`

[see Equation (3.41)] associated with all two-site operations required to evolve the

full system forward in time by amount δt. The more entanglement generated by

application of e−iĤδt/~, the greater is the total Schmidt truncation error over that time

step; hence,
∫ t

0
τS(t′)dt′ serves as a global measure of spatial entanglement present

in the system at time t. Plots of τS over time for our particular applications of the
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algorithm can be found in Appendix B. Regarding the latter source of error, we find

that using time steps of size δt = 0.01 ~/J is sufficient to obtain converged results for

simulating the Bose-Hubbard Hamiltonian.

Real time evolution on some initial configuration |Ψ(t = 0)〉 decomposed accord-

ing to the Vidal form of Equation (3.27) can be performed by the procedure described

above. A faithful ground state can also obtained by starting with some initial state

with finite overlap of the true ground state and performing imaginary time evolu-

tion. That is, we let τ ≡ it and renormalize the state at each time step according to

Equation (3.20). This renormalization is also done in real time to help preserve the

unitarity of the evolution. We can succinctly write the ground state as

|Ψground〉 = lim
τ→∞

e−Ĥτ/~|Ψ0〉
‖ e−Ĥτ/~|Ψ0〉 ‖

, (3.46)

where, in practice, |Ψ0〉 is often taken as the completely uniform product state with

ci1i2···iM = 1√
dM

. It is common to take as the initial condition for real time evolu-

tion some perturbed state of the system’s ground state. It is also straightforward

to simulate many-body dynamics after a quantum quench by performing real time

evolution according to Hamiltonian ĤB on a ground state configuration of a different

Hamiltonian ĤA. In Chapter 5, we use this type of approach to density and phase

engineer dark quantum solitons on a Bose-Hubbard lattice. In Chapter 4, we perform

real time evolution according to the Bose-Hubbard Hamiltonian on initial product

states resembling discrete dark solitons in the corresponding mean-field theory.

3.2.5 Calculation of Observables

Of course, in order to understand the physical properties of the system, it is

necessary to be able to calculate expectation values of relevant physical observables.
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For definitions of the observables we use, see Section 4.1. To calculate expectation

values, we first compute the reduced density matrix of the subsystem of interest.

Then, the expectation value of any observable associated with that subsystem is easily

computable. The main observables we are concerned with are single-site observables

such as 〈n̂k〉, the expectation value of the number operator at site k (see Section

4.1.1), and two-site observables such as 〈b̂†j b̂i〉, the elements of the single-particle

density matrix (see Section 4.1.5).

For a general single-site observable Â, we calculate its expectation value at site

k as

〈Âk〉 = Tr(ρ̂k Â), (3.47)

where ρ̂k, the reduced density matrix of site k, is calculated as follows. The density

matrix of the full system in terms of Fock space coefficients is

ρ̂ = |Ψ〉〈Ψ| =
∑

i1,...,iM ; i′1,...,i′M

ci1···iM c∗i′1···i′M |i1 · · · iM〉〈i
′
1 · · · i′M |. (3.48)

Tracing over all sites but site k results in

ρ̂k = Trj 6=k(ρ̂) =
∑

ik,i′k


 ∑

i1,...,ik−1,ik+1,...,iM

c∗i1···i′k···iM ci1···ik···iM


 |ik〉〈i′k|, (3.49)

so the elements of the d× d matrix ρ̂k are

(ρ̂k)i′kik =
∑

i1,...,ik−1,ik+1,...,iM

c∗i1···i′k···iM ci1···ik···iM . (3.50)

The same partial trace can easily be performed in terms of the Vidal decomposition
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of Γs and λs if the state is written as

|Ψ〉 =
∑

ik; αk−1,αk

|Φ[1···k−1]
αk−1

〉 ⊗ λ[k]
αk

Γ[k]ik
αk−1αk

λ[k]
αk
|ik〉 ⊗ |Φ[k+1···M ]

αk
〉. (3.51)

The end result is

(ρ̂k)iki′k =
∑

αk−1,αk

λ[k−1]
αk−1

(
Γ

[k]i′k
αk−1αk

)∗
λ[k]

αk
λ[k−1]

αk−1
Γ[k]ik

αk−1αk
λ[k]

αk
. (3.52)

At the boundaries, we get a slightly different result owing to the change in form of

Γ[1] and Γ[M ]:

(ρ̂1)i1i′1 =
∑
α1

(
Γ[1]i′1

α1

)∗
λ[1]

α1
Γ[1]i1

α1
λ[1]

α1
, (3.53)

(ρ̂M)iM i′M =
∑

αM−1

λ[M−1]
αM−1

(
Γ

[M ]i′M
αM−1

)∗
λ[M−1]

αM−1
Γ[M ]iM

αM−1
. (3.54)

Calculation of a given single-site density matrix thus requires O(d2χ2) elementary

operations, and, of course, the small matrix multiplication and trace required to

evaluate the actual expectation value in Equation (3.47) can be performed with O(d2)

elementary operations.

Now, suppose we want to compute the expectation value of a two-site operator

B̂ at sites k and `. As before, we must compute a reduced density matrix, this time

for sites k and `. Then, similar to Equation (3.47), the expectation value of B̂ is

〈B̂k`〉 = Tr(ρ̂k` B̂). (3.55)

For instance, to calculate the correlation function 〈b̂†kb̂`〉, we take B̂ = b̂† ⊗ b̂ in

(3.55). The bookkeeping required for actual calculation of ρ̂k` is rather cumbersome,
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especially if k and ` are not near one another in the indexing of sites. Here, we just

quote the final result as

(ρ̂k`)iki`; i
′
ki′` =

∑
ik+1,...,i`−1

∑
αk−1,α`

∑
αk,...,α`−1

∑

α′k,...,α′`−1

(3.56)

×
[
λ[k−1]

αk−1
Γ[k]ik

αk−1αk
λ[k]

αk
Γ[k+1]ik+1

αkαk+1
λ[k+1]

αk+1
· · ·λ[`−2]

α`−2
Γ[`−1]i`−1

α`−2α`−1
λ[`−1]

α`−1
Γ[`]i`

α`−1α`
λ[`]

α`

]

×
[
λ[k−1]

αk−1

(
Γ

[k]i′k
αk−1α′k

)∗
λ

[k]
α′k

(
Γ

[k+1]i′k+1

α′kα′k+1

)∗
· · ·

(
Γ

[`−1]i′`−1

α′`−2α′`−1

)∗
λ

[`−1]
α′`−1

(
Γ

[`]i′`
α′`−1α′`

)∗
λ

[`]
α′`

]
,

where for simplicity and without loss of generality we have assumed k < `. Clearly, the

number of elementary operations required to calculate a given two-site density matrix

depends on how close k and ` are in the indexing; however, this is not a limiting step

because we only record data at a relatively small fraction of time steps throughout

the evolution. Actual implementation of the calculation in Equation (3.56) by em-

ploying convenient kernels for data storage can be found in subroutines ThetaKernal,

ThetaNext, and TwoSiteRho of the module named observables module.f90 in the

Fortran code.

Alternatively, one can compute the expectation value of any one-site observable

or any two-site correlation function by first performing one-site operations on the ket

on the right-hand side of the expectation value and then taking an inner product with

the bra on the left-hand side [143]. The above procedure of first calculating reduced

density matrices, however, is more robust and applies to any class of operators. It is

also easily generalizable to operators acting on more than two sites.

3.2.6 Application to Bose-Hubbard Hamiltonian

The Bose-Hubbard Hamiltonian of Equation (2.46) is a perfect testbed for the

TEBD algorithm as it is a one-dimensional many-body lattice model involving only
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nearest-neighbor coupling. Splitting the Hamiltonian into two terms

Ĥodd ≡ −J
∑

i odd

(b̂†i+1b̂i + h.c.) +
∑

i odd

[
U

2
n̂i(n̂i − 1̂) + εin̂i

]
, (3.57)

Ĥeven ≡ −J
∑

i even

(b̂†i+1b̂i + h.c.) +
∑

i even

[
U

2
n̂i(n̂i − 1̂) + εin̂i

]
(3.58)

so that Ĥ = Ĥodd + Ĥeven as in Equation (3.42), allows us to use the Suzuki-Trotter

time-stepping routine explained in Section 3.2.4 since each term within both Ĥodd

and Ĥeven commute. In practice, we build matrix representations of each term in

the Hamiltonian in a two-site basis, i.e., the matrices we construct are of dimension

d2 × d2. Each term multiplying J is already a two-site operator, so building these

terms amounts to computing b̂†⊗ b̂ and b̂⊗ b̂†. Even though the terms involving only

n̂ are one-site operations, we still treat them as two-site operations by appropriate

tensor products with the identity operator. Namely, we must compute n̂⊗ 1̂, 1̂⊗ n̂,

n̂2 ⊗ 1̂, and 1̂⊗ n̂2 in order to use two-site operations that only act on a single site.

Careful consideration must be taken to not doubly apply these one-site operations.

Also, the boundary terms must be taken into account separately. Building matrix

representations of the required operators in Fock space is rather trivial because the

on-site state index ik ∈ {1, 2, . . . , d} can be mapped in an unambiguous way to the

particle occupation number nk for a given on-site state, i.e., ik → nk + 1 because

we only allow up to d − 1 bosons per site. The destruction, creation, and number

operators for a localized Wannier function are easily obtained in this number basis

(see Sections 4.1.3 and 4.1.1). The tensor product operation is the usual Kronecker

tensor product.

In our code, actual construction of the Bose-Hubbard Hamiltonian takes place

in the subroutine HamiltonianBoseHubbard. The exponentiation of the Hamiltonian
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terms [see Equations (3.44) and (3.45)] is performed in the subroutine ConstructPropa-

gators. Both of these subroutines are in the module MPDtools module.f90. The

second-order Suzuki-Trotter time propagation procedure is performed by the subrou-

tine TrotterStep2ndOrder located in propagation module.f90. TrotterStep2nd-

Order uses the two-site operation subroutine TwoSiteOp which is located in local

operations module.f90 and performs the tasks described in Section 3.2.3.

In Chapters 4 and 5, we use our Bose-Hubbard implementation of TEBD to

simulate quantum many-body dynamics of dark solitons formed by ultracold atoms

in optical lattices. In Appendix B, we discuss the accuracy associated with using

the Vidal-truncated Hilbert space as well as convergence of the results presented in

Chapters 4 and 5.

3.2.7 Implementation of Spin-1 Bose-Hubbard Hamiltonian

The inner workings of the TEBD algorithm do not depend on the exact choice

of Hamiltonian so long as it fits into the TEBD framework. Consider the one-

dimensional spin-1 Bose-Hubbard Hamiltonian for a lattice of M sites as presented

in Section 2.5.2. Each site, i.e., each localized Wannier function, can now hold atoms

with three different hyperfine states, namely mF = 1, 0,−1. If we restrict each site to

contain at most nmax bosons regardless of their spin, then the size of the local Hilbert

space dimension is

d =
nmax∑
n=0

(n + 2)(n + 1)

2
=

(nmax + 3)(nmax + 2)(nmax + 1)

6
, (3.59)

where this expression can be derived by considering the number of ways of arranging

n ∈ {0, 1, . . . , nmax} particles among three spin states and summing the individual

multiplicities. The multiplicity for each given n can be computed from Equation (2.81)
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with M = 3 and N = n. For nmax = 1, 2, 3, 4, we have d = 4, 10, 20, 35, respectively.

The low-order polynomial scaling of TEBD with local dimension d thus restricts us to

take nmax = 1 or 2 in our current spin-1 code which is not yet optimized with number

and spin conservation as discussed next in Section 3.2.8. Then, simulation of the spin-

1 Bose-Hubbard Hamiltonian amounts to selecting an ordering of the d on-site states

and building matrix representations of all one- and two-site operators in Equations

(2.83)–(2.85) under this ordering. The procedure is conceptually equivalent to that

explained above in Section 3.2.6 for the scalar boson Bose-Hubbard model except that

the matrix representations are not quite as trivial to compute, although that aspect

is still rather straightforward. All necessary subroutines for implementation of the

spin-1 Bose-Hubbard model in TEBD are included in the module spin1 module.f90

of the Fortran package; this module is included in Appendix D.

We note that the spin-1 Bose-Hubbard Hamiltonian of Equation (2.83) can easily

be mapped onto a three-legged ladder model by considering each on-site spin state

a different leg of the ladder. Then, the three-legged ladder can be flattened onto a

one-legged ladder and the different “sites” can be brought together using the swap

gate [137] as in [138] in order to apply the local operations of the Hamiltonian as

explained in Section 3.2.4. This would be computationally beneficial because the

local dimension for each spin state is much lower than the on-site local dimension as

discussed in the previous paragraph. That is, we would incur a substantial speedup

by tripling the number of sites and having a local dimension on the order of 3 to 5,

say. However, the two spin-exchange terms 2b̂†i,1b̂
†
i,−1b̂

2
i,0 and 2(b̂†i,0)

2b̂i,1b̂i,−1 in the Ŝ2
i

part of the spin-1 Bose-Hubbard Hamiltonian [see Equations (2.83)–(2.85)] are three-

site operations within the framework of this approach. To date, there does not exist

a three-site operation routine for the TEBD algorithm, and hence we must specify a
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physical site local dimension nmax as described above.

3.2.8 Use of Conserved Quantities

As demonstrated in References [45, 46], the ideas of TEBD fit nicely into the

framework of the already well-established DMRG methods. One of the reasons for

the success of DMRG lies in its ability to take into account good quantum numbers

to improve efficiency. By good quantum numbers, we mean some quantity conserved

by the Hamiltonian during time evolution, e.g., total particle number in the scalar

Bose-Hubbard Hamiltonian and total particle number and total spin in the spin-1

Bose-Hubbard Hamiltonian. Not surprisingly, use of good quantum numbers can

be used to enhance the efficiency of TEBD as well [143]. Ippei Danshita at NIST,

Gaithersburg, has implemented such a procedure in our Fortran code to conserve

total particle number during time evolution according to the Bose-Hubbard Hamilto-

nian. We find that employing number conservation speeds up the method by about

one order of magnitude for typical simulation parameters. In the future, we will

add spin conservation capabilities to our code for use with the spin-1 Bose-Hubbard

Hamiltonian.
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Chapter 4

QUANTUM EVOLUTION OF MEAN-FIELD SOLITONS

In this chapter, we investigate how quantum many-body phenomena, e.g., quan-

tum fluctuations and quantum entanglement, affect the behavior of mean-field dark

solitons formed by ultracold atoms loaded into one-dimensional optical lattices. We

first give a list of measures used to characterize the system. These include purely

quantum measures of quantum depletion, spatial entanglement, and number fluctua-

tions. We consider both stationary dark solitons and soliton-soliton collisions.

4.1 Characterization Measures

For a lattice containing M sites, a full quantum description of the problem in-

volves knowledge of the pure state |Ψ〉 of the many-body system. In an occupation

number basis, i.e., a Fock basis, of localized Wannier states, we can write

|Ψ〉 =
d−1∑

n1,n2,...,nM=0

cn1n2···nM
|n1n2 · · ·nM〉, (4.1)

where nk is the number of particles occupying the Wannier state localized at site

k, cn1n2···nM
are the coefficients weighting the individual Fock states, and we’ve sup-

pressed writing the tensor product symbol between on-site states. The occupancy of

a given site is restricted to d−1 bosons so that the local Hilbert space is of dimension

d. That is, nk ∈ {0, 1, . . . , d − 1}. The multiplicity of the full Hilbert space is then

ΩNNC = dM . Knowledge of the state ket in Fock space, either in full form or in the
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Vidal-truncated form of Section 3.2.2, is necessary, but by itself ultimately useless.

The bulk measures by which we use to characterize the full Hilbert space are outlined

below. These measures are what allow us to probe the physical properties of the

system.

4.1.1 Average Particle Number

The number operator is an on-site observable whose expectation value is the

average particle number which corresponds directly to the particle density observed

in experiment average over many runs. Being an on-site observable, the number

operator

n̂ =
d−1∑
n=0

n|n〉〈n| (4.2)

is diagonal in the on-site occupation basis. As with any local observable, we can

compute the expectation value of the number operator at site k by first calculating

ρ̂k = Trj 6=k|Ψ〉〈Ψ|, the reduced density matrix for site k, and then using 〈n̂k〉 =

Tr(ρ̂k n̂) as explained in Section 3.2.5.

4.1.2 Normalized Particle Number Variance

Another number related observable is the normalized particle number variance

defined as

η ≡ 〈(∆n)2〉
〈n̂〉 ≡ 〈n̂2〉 − 〈n̂〉2

〈n̂〉 . (4.3)

This measure characterizes the deviation of on-site number statistics away from the

classical Poissonian limit. Specifically, η = 1 for atom-number Glauber coherent

states which obey Poissonian number statistics, η < 1 for a number-squeezed state,

η > 1 for a phase-squeezed state, and η = 0 for a single Fock state of definite
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occupancy. Calculation of the normalized number variance on-site simply amounts

to calculating 〈n̂k〉, the expectation value of the number operator, and 〈n̂2
k〉, the

expectation value of the number operator squared, at a given site.

4.1.3 The Order Parameter

In a dynamical mean-field theory in which one assumes the many-body state is

for all times a direct product of atom-number Glauber coherent states [60, 144], the

condensate order parameter is accurately defined as 〈b̂k〉, the expectation value of the

on-site destruction operator. The destruction operator can be written in the number

basis as

b̂ =
d−1∑
n=1

√
n|n− 1〉〈n|. (4.4)

Such a definition of the order parameter fundamentally requires that the Hilbert space

not conserve total particle number because the average of the destruction operator

will obviously yield zero for a number-conserving space. Note that this definition

of the order parameter is just a discrete version of defining the condensate wave

function as the expectation value of the field operator when deriving the continuous

GP equation in Section 2.3.2. In practice, the on-site order parameter is calculated

just as any other local observable: 〈b̂k〉 = Tr(ρ̂k b̂). In the following sections of this

chapter, we use this observable to streamline the mapping from solitons obtained

in the semiclassical picture (DNLS) to those in the quantum picture (Bose-Hubbard

Hamiltonian).

4.1.4 Pegg-Barnett Hermitian Phase Operator

For an infinite-dimensional Fock space, one cannot define states of definite phase

for obvious normalization reasons. However, following the prescription of Pegg and
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Barnett [145, 146], we can define such states for a Fock space of dimension d < ∞:

|θ〉 ≡ 1√
d

d−1∑
n=0

exp (inθ)|n〉, (4.5)

where θ is the phase and i =
√−1. We point out that such a phase state describes a

given mode, e.g., a localized Wannier state, and should not be confused with states of

definite quasimomentum that describe single particles, not modes. States of the form

(4.5) differing in phase θ by integer multiples of 2π/d can be shown to be orthogonal.

There are d such states in the window θ0 ≤ θ < θ0 + 2π that can be used as an

eigenbasis to define a Hermitian phase operator. In the number basis, the result is

θ̂ ≡ θ0 +
(d− 1)π

d
+

2π

d

∑

n 6=n′

exp [i(n′ − n)θ0]

exp [i(n′ − n)2π/d]− 1
|n′〉〈n|, (4.6)

where θ0 is a reference phase that can be set to θ0 = 0 for convenience. The matrix

elements of the phase operator in the number basis, i.e., 〈n′|θ̂|n〉, can be gleaned

directly from Equation (4.6). We use 〈θ̂k〉 = Tr(ρ̂k θ̂), the expectation value of the

on-site phase operator, as a quantum measure of relative phase between lattice sites

in characterizing quantum solitons.

4.1.5 Quantum Depletion

In Section 2.1.2, it was established that the condensate wave function and con-

densate fraction can be calculated via a diagonalization of the single-particle density

matrix:

ρsp(x, x′) = 〈Ψ̂†(x′)Ψ̂(x)〉 →
M−1∑
j=0

Nj χ∗j(x
′)χj(x), (4.7)
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where 1D has been assumed for simplicity and the summation limits have been stated

explicitly with M being the number of allowed single-particle modes in the sys-

tem. For a single-band Bose-Hubbard model of M lattices in which there are M

allowed Wannier functions, the number of allowed single-particle modes is simply

equal to the number of lattice sites. When deriving the Bose-Hubbard Hamiltonian

in Section 2.3.3, we expanded the field operator in a basis of Wannier functions:

Ψ̂(x) =
∑

i b̂iw(x − xi), where w(x) ≡ w(0)(x) is the lowest-band Wannier function.

Thus the single-particle density matrix can be represented fully by a discrete matrix

ρlat
sp as

ρsp(x, x′) =
M∑

i,j=1

(ρlat
sp )ij w∗(x− xj)w(x′ − xi), (4.8)

where

(ρlat
sp )ij ≡ 〈b̂†j b̂i〉 (4.9)

is an M ×M matrix that can be diagonalized using standard methods. The single-

particle natural orbitals [cf. Equation (2.14)] can then be written as

χj(x) =
M∑
i=1

φ
(j)
i w(x− xi), (4.10)

where now j ∈ {0, 1, . . . ,M−1} is an index of the natural orbitals with j = 0 (M−1)

denoting the most (least) highly occupied natural orbital. The quantity φ
(j)
i is the

coefficient of the (j + 1)th most highly occupied natural orbital associated with the

Wannier function localized at site i. That is, φ
(j)
i is the ith component of the (j +1)th

largest eigenvector of the matrix ρlat
sp . The eigenvalues of ρlat

sp are the occupation

numbers of the natural orbitals and are denoted Nj with N0 ≥ N1 ≥ · · · ≥ NM−1.

Note that we assume eigenvectors normalized to unity:
∑M

i=1 |φ(j)
i |2 = 1.
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The condensate wave function is the system’s most highly occupied natural or-

bital:

χ0(x) =
M∑
i=1

φ
(0)
i w(x− xi), (4.11)

a function that is completely specified by the components φ
(0)
i of the largest eigen-

vector of ρlat
sp . From Section 2.1, the condensate fraction is simply N0/N with N0 the

largest eigenvalue of ρlat
sp and N = Tr(ρlat

sp ) the total number of particles. Correspond-

ingly, we define quantum depletion as the proportion of particles not in the condensed

mode:

D ≡ 1− N0

N
. (4.12)

When working at zero temperature, finite quantum depletion (D 6= 0) is due

entirely to interactions between particles and is commonly referred to as quantum

fluctuations. In continuous geometries such as the harmonic trap, one can show that

D ∼ (as/r̄)
3/2, where as is the s-wave scattering length and r̄ is the average interpar-

ticle spacing [20]. For typical BEC experiments in harmonic traps, this quantity is on

the order of one percent or less. This is the main reason for the success of mean-field

theory in describing the ground state properties of condensates in simple geometries.

However, when working with excited condensates, e.g., solitons, and/or more exotic

geometries, e.g., optical lattices, quantum fluctuations cannot be neglected, and a

more complete quantum treatment of the problem becomes necessary. In the latter

case of optical lattices, quantum depletion can actually be used to generate a ground

state phase diagram of the Bose-Hubbard Hamiltonian and accurately predict the

location of the Mott-superfluid border [147].
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4.1.6 Quantum Entanglement

Quantum entanglement is one of the most fascinating predictions of quantum

theory and has puzzled physicists ever since the seminal paper of Einstein, Podolsky,

and Rosen (EPR) in 1935 [93]. The idea is quite basic, but it’s consequences are

profound. Simply put, two subsystems of a larger quantum system are said to be

entangled if in order to describe one of the subsystems, we must reference the other.

That is, the two subsystems are entangled when it is not possible to write down a pure

quantum state for one of the subsystems. To describe each subsystem, we must resort

to the reduced density matrix formalism. We consider two types of entanglement in

characterizing a system of atoms on a Bose-Hubbard lattice: entanglement of modes

and entanglement of particles. In the former case, we can think of each localized

Wannier function as a quantum system that is, in general, entangled with the other

M − 1 Wannier functions. Because different Wannier functions are spatially distinct,

we can refer to entanglement between Wannier modes as spatial entanglement or en-

tanglement between sites. On the other hand, the particles themselves are interacting

with one another so that the state of a given particle is, in general, entangled with

the remaining N − 1 particles [93]. We refer to this type of entanglement as particle

entanglement.

Spatial Entanglement The purity of a quantum state described by the den-

sity matrix ρ̂ in a Hilbert space of dimension d is given by

Tr(ρ̂2) ∈
[
1

d
, 1

]
. (4.13)

For a pure state, the matrix elements of ρ̂ in a diagonal basis are (ρ̂)ij = δi,jδi,0,

whereas for a maximally mixed state, (ρ̂)ij =
δi,j

d
. Hence, the upper (lower) bound
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of the purity corresponds to a pure (maximally mixed) state. Based on this idea, we

define the average local impurity as

Qmodes ≡ d

d− 1

[
1− 1

M

M∑

k=1

Tr(ρ̂2
k)

]
∈ [0, 1], (4.14)

where d is the local Hilbert space dimension, M is the number of lattice sites, and ρ̂k

is the reduced density matrix for site k. In Equation (4.14), ρ̂k is the reduced density

matrix for a single lattice site and should not be confused with the single-particle

density matrix ρ̂sp. In the former case, the partial trace is over all lattice sites except

site k, whereas in the latter case, the partial trace is over all particles except one. We

generalize this measure to entanglement between particles below. The normalization

factor d/(d − 1) in Equation (4.14) ensures Qmodes ≤ 1. The average local impurity

is maximal if each site is maximally mixed and is minimal for a direct product of

on-site pure states. The measure Qmodes quantifies multipartite entanglement in the

sense that it averages the bipartite entanglement between each site and the remaining

sites. A related measure was originally introduced by Meyer and Wallach [148] and

later put into more useable form by Brennen [149] for the purpose of quantifying

multipartite entanglement as a function of pure states, i.e., for a system of qubits

collectively in a pure state. We note that the average local impurity is equally well

described as the average local mixedness, the generalized entropy [150, 151, 152], or

a local average quantum Tsallis entropy [153].

We now turn to discussion of the localized von Neumann entropy. It can be

shown that Shannon’s definition of information entropy,

S ≡ −
n∑

i=1

pi log(pi), (4.15)
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where the pi are probabilities of events labeled i, is the unique function of the proba-

bility distribution {pi} that is (1) a continuous function of the pi, (2) a monotonically

increasing function of n for a uniform probability distribution pi = 1
n
, and (3) inde-

pendent of the grouping of the events [154]. It is an extremely useful measure for

quantifying the amount of information lost due to a given probability distribution.

The quantum generalization is known as the von Neumann entropy which we define

for a single site k as

SvN,k ≡ −Tr [ρ̂k logd(ρ̂k)] ∈ [0, 1], (4.16)

resulting in the local von Neumann entropy where the base d logarithm is taken to

ensure SvN,k ≤ 1. We use both the average local impurity and the local von Neumann

entropy to quantify the deviation of the system away from the semiclassical mean-field

limit in which spatial entanglement between lattice sites is neglected completely.

Particle Entanglement Entanglement between particles is also neglected in

pure mean-field theory because it is assumed that each particle occupies the same

single-particle wave function. Thus, each particle can be described by a pure state,

and, by definition, there is zero entanglement between each particle and the remaining

N−1 particles. However, if a single particle is in an ensemble of different pure states,

then there will be a finite amount of entanglement between particles. The particle

entanglement measures that we employ are functions of the single-particle density

matrix ρ̂sp. Generalizing the notions of impurity and von Neumann entropy to ρ̂sp,

the reduced density matrix for a single particle, we define the single-particle impurity

as

Qparticles ≡ M

M − 1

[
1− 1

N2
Tr(ρ̂2

sp)

]
∈ [0, 1], (4.17)
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and the single-particle von Neumann entropy as

SvN, particles ≡ −Tr

[
ρ̂sp

N
logM

(
ρ̂sp

N

)]
∈ [0, 1], (4.18)

where the factors of total particle number N are necessary since Tr(ρ̂sp) = N . In

a space of single-particle wave functions, the number of modes M takes the role of

local dimension, hence the factor of M/(M − 1) appearing in (4.17) and the base-M

logarithm appearing in (4.18). Owing to the indistinguishability of the particles, the

single-particle impurity and single-particle entropy are in a sense bulk measures that

characterize the system globally. Similarly, the average local impurity of Equation

(4.14) is also a global entanglement measure, but it measures entanglement between

spatially distinct modes.

4.2 Truncated Coherent States

We demonstrated in Section 2.3.4 that if the system is in a many-body state

in the form of a direct product of Glauber coherent states, then the Bose-Hubbard

Hamiltonian maps directly onto the discrete nonlinear Schrödinger equation. Within

a truncated Fock space in which we retain only the first d number states, we must

work with a product of truncated coherent states :

|Ψ〉 =
M⊗

k=1

|zk〉, where |zk〉 ≡ Nd e−
|zk|2

2

d−1∑
n=0

zn
k√
n!
|n〉, (4.19)

where Nd is a normalization factor that ensures 〈zk|zk〉 = 〈Ψ|Ψ〉 = 1.

The truncation error is defined as the amount of probability lost due to truncation
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at d number states. If we define an unnormalized truncated coherent state

∣∣z(d)
〉 ≡ e−

|zk|2
2

d−1∑
n=0

zn
k√
n!
|n〉, (4.20)

then the coherent state truncation error can be written as

∆(d, z) ≡ 1− 〈
z(d)|z(d)

〉
= 1− e−|z|

2
d−1∑
n=0

|z|2n

n!
. (4.21)

In Figure 4.1, the coherent state truncation error is plotted for a relevant range of

values of d and |z|2. The modulus of the coherent state amplitude and the average

particle number are equivalent for infinite-dimensional coherent states and are approx-

imately equivalent for truncated coherent states, i.e., |zk|2 ≈ 〈n̂k〉. Hence, the trunca-

tion becomes less faithful for larger filling factors. However, we see that even for unit

filling (|z|2 = 1), we only need d = 5, 6, 7, corresponding to ∆ ≈ 10−2.4, 10−3.2, 10−4.0,

in order for truncated coherent states to well-represent true coherent states. We take

d = 7 for all simulations that follow.

4.3 Standing Solitons

Even though discretization of the GP equation breaks integrability, the first

excited state of the DNLS can be considered its fundamental dark soliton solution.

Due to the non-integrability, this solution must be found numerically. Such a solution

is, by construction, a stationary state of the DNLS. In this section, we ask how

such a solution evolves in time according to the corresponding quantum equations

of motion. To this end, we use the TEBD routine to simulate the Bose-Hubbard

Hamiltonian, taking as initial configurations the dark soliton solutions of the DNLS

obtained via truncated coherent states. It is demonstrated that even deep in the
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Figure 4.1. Coherent state truncation error. The logarithm of the coherent state
truncation error, as defined in Equation (4.21), is plotted versus local dimension d
and filling |z|2. For the low filling factors that we consider in this thesis (|z|2 ≤
1), truncation at d = 7 number states corresponding to ∆ ∼ 10−4 is sufficient to
accurately approximate infinite-dimensional coherent states. We investigate higher
filling factors in a future work [155].

superfluid regime of the Bose-Hubbard phase diagram there is always a time scale

at which the soliton fills in, indicating a breakdown of mean-field theory. For the

parameters we consider, this time scale is on the order of tens of tunneling times

and should thus be very observable in experiments. After displaying a characteristic

simulation of the “graying” of the soliton, i.e., filling in of the density notch, we plot

soliton decay times for different interaction strengths and filling factors.

4.3.1 Fundamental Dark Soliton Solutions

The fundamental dark soliton solution of the DNLS is obtained by performing

constrained imaginary time relaxation on Equation (2.61) using the Runge-Kutta

method as described in Section 3.1. Specifically, we begin the imaginary time proce-
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dure with a linear function through the center of the lattice:

ψk(τ = 0) = βxk, (4.22)

where the slope β is arbitrary and

xk

a
= k − M + 1

2
, k ∈ {1, 2, . . . M}, (4.23)

is the position of the kth lattice site assuming the lattice is centered at x = 0 with a

the lattice constant and M the number of sites. Propagation of (4.22) in imaginary

time according to the DNLS results in a node in the center of the lattice across which

there is a π phase drop. The solution heals to ψk = 0 on a length scale ξ ∼ a/
√

νU/J

analogous to the healing length in continuum mean-field theory; ν is the average

local density. Such a solution is the fundamental dark soliton of the DNLS. For the

parameters used in Section 4.3.2 below, Figure 4.2(a) depicts the evolution of the

solution in imaginary time, while Figure 4.2(b) shows the resulting soliton profile.

Note the vanishing density notch at x = 0 and the π phase drop across the notch.

The dark soliton solution of the DNLS is then carried over to the quantum

picture by mapping the value of the mean-field condensate order parameter to the

corresponding on-site coherent state amplitude, i.e., ψk → zk. We then use the

truncated coherent states of Equation (4.19) to initialize the system in a soliton-like

state in which the quantum theory is approximately (due only to our truncation; see

Figure 4.1) equivalent to the corresponding discrete mean-field theory.
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J
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(a) Imaginary time evolution
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Figure 4.2. Fundamental dark soliton solution of DNLS. (a) Imaginary time evolution
of an initial configuration ψk = βxk, where β = 1/a, results in (b) the fundamental
dark soliton solution of the DNLS. The solution vanishes identically at the origin
because we have selected an odd number of lattice sites.

4.3.2 Characteristic Simulation

For definitiveness, we now focus on a single simulation displaying the system’s

characteristic behavior. In the following, we analyze the real time evolution of the

fundamental dark soliton configuration calculated in Figure 4.2 according to both the

mean-field and quantum equations of motion. Relevant parameters for the mean-field

evolution are νJ/U = 0.35 at filling ν ≡ NDNLS/M = 1 for M = 31 lattice sites. As

a brief aside, we report that the qualitative picture of the results presented below

for both mean-field and quantum evolution is the same for an even number of lattice

sites, e.g., M = 30. The DNLS solution is normalized to NDNLS ≡
∑M

k=1 |ψk|2 at each

step of imaginary time in Figure 4.2(a). We refer to νU/J as the effective interaction

strength because it accounts for both the atom density ν and the interaction energy
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U , all scaled to the tunneling coefficient J . Of course, formation of a dark soliton

requires repulsive interactions so that U > 0. In Figure 4.3, we show the density

and phase during real time evolution according to the DNLS. Of course, the initial

configuration is a stationary solution of the DNLS, so the density does not change in

time and the phase changes linearly at a rate µ/~, where

µ = −J

(
ψk+1 + ψk−1

ψk

)
+ U |ψk|2, k ∈ {1, 2, . . . M}, (4.24)

is the chemical potential of the mean-field solution which, by definition, does not

depend on the site index k for an eigenstate ψk. The argument of the order parameter

is depicted in the window π ≤ arg(ψk) < π, and we assume box boundary conditions

so that ψ0 = ψM+1 ≡ 0. The steep phase gradient across the notch is necessary for

stable dark soliton propagation. Physically, this is because for a dark soliton state

with repulsive interactions (U > 0) the mean-field potential U |ψk|2 is minimal in the

regions of the density notch and does not by itself support a density minima. The step

function π phase drop across the density notch directly balances this effect creating

a stable dark soliton as in Figure 4.3.

We now turn to the quantum picture and consider the evolution of the fundamen-

tal dark soliton solution of the DNLS according to the Bose-Hubbard Hamiltonian

derived in Section 2.3.3. The solution of Figure 4.2(b) is carried over to an approx-

imate Fock space representation using a direct product of truncated coherent states

with d = 7 number states. Specifically, we take ψk → zk in Equation (4.19). The

Vidal decomposition of a product state |Ψ〉 =
⊗M

k=1

(∑d−1
nk=0 c

(k)
nk |nk〉

)
is trivial to

compute:

λ[`]
α`

= δα`,1 and Γ[`]n`
α`−1α`

= c(`)
n`

δα`−1,1δα`,1, (4.25)
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(a) DNLS density
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Figure 4.3. DNLS soliton propagation. The initial condition created in Figure 4.2 is
an eigenstate of the DNLS, so the evolution of the (a) density and (b) phase is trivial.
The nonlinearity is in a regime where discreteness-induced instability [63] does not
destroy the soliton stability over the time scales that we consider.

where for truncated coherent states c
(k)
nk = Nd e−

|zk|2
2

zn
k√
n!

. Equation (4.25) is derived

in Appendix A.1. After carrying out the mapping from mean-field DNLS to Fock

space, we propagate in time according to the Bose-Hubbard Hamiltonian using TEBD

retaining basis sets of size χ = 50 throughout the procedure. The results are shown

in Figures 4.4–4.6.

The density and phase dynamics during quantum evolution is shown in Figure

4.4. The expected particle number on site [Figure 4.4(a)] is the average number

density measured in experiment. Hence, quantum evolution of a mean-field dark

soliton state causes the soliton to fill in, or gray, over time. Eventually, the soliton

is no longer visible in the density profile. Because we work with a system of finite

size, exact quantum revivals will occur. However, these revivals occur on a time scale



95

〈n̂k〉

xk/a

tJ
/
h̄

 

 

−10 0 10
0

5

10

15

20

25

30

35

40

0

0.2

0.4

0.6

0.8

1

1.2

(a) Average particle number

〈θ̂k〉/π

xk/a

tJ
/
h̄

 

 

−10 0 10
0

5

10

15

20

25

30

35

40

0.4

0.6

0.8

1

1.2

(b) Pegg-Barnett phase
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(c) Order parameter density
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Figure 4.4. Density and phase measures during quantum evolution of a standing
mean-field soliton. The expectation value of (a) the number operator and (b) the
Pegg-Barnett phase operator during quantum evolution of a mean-field dark soliton.
The density notch fills in with depleted atoms over time. (c) The order parameter
density is initially approximately equivalent to the number density but decays over
time as the system loses overall phase coherence, while (d) the order parameter phase
maintains a π phase drop across x = 0 for all times. The horizontal dashed line in
(a) indicates the time at which Nb drops to 1/e of its initial value.
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much longer than can be accurately simulated using TEBD and, hence, they are never

observed. For a discussion of when and how the TEBD algorithm breaks down, please

see Appendix B.

During quantum evolution, the condensate order parameter, calculated as the ex-

pectation value of the lowering operator, has a time-dependent norm Nb ≡
∑M

k=1 |〈b̂k〉|2

that measures the overall system coherence [104, 156, 157]. The density and phase

of 〈b̂k〉 are shown in Figure 4.4(c)–(d). The decay of Nb is clearly observable and is

correlated with the soliton fill-in time (see Figure 4.7). The phase, as measured by

both the argument of the order parameter [Figure 4.4(d)] and the expectation value

of the Pegg-Barnett phase operator [Figure 4.4(b)], initially drops by an amount π

across the soliton notch and oscillates at the same rate as the DNLS phase [Figure

4.3(b)]. The phase operator does not retain the π drop over time, and for points in

space-time where the order parameter density becomes negligible (tJ/~ & 25), the ar-

gument of the order parameter is meaningless. Decay in the phase drop according to

the Pegg-Barnett definition does correlate with a filling-in of the soliton notch. One

should expect this behavior because in mean-field theory the steep π phase gradient

across the notch is what counters the repulsive mean-field interaction and leads to

stable dark soliton propagation. However, a full quantum many-body calculation as

we have presented here predicts depletion of particles out of the initial antisymmetric

soliton mode into higher order modes of both even and odd symmetry (see Figure

4.5 and discussion in the following paragraphs). This has the effect of decreasing the

Pegg-Barnett phase drop across the notch. We note that for times t > 0 when multi-

ple single-particle orbitals are occupied, the phase of the system in the single-particle

wave function sense is ill-defined even though the Pegg-Barnett definition remains

valid. Let it be stressed that, like all results we present, this is an effect observed over
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many measurements.

The mean-field DNLS assumes all bosons occupy the same single-particle wave

function. When creating quantum many-body states in the form of truncated coher-

ent states obtained via the DNLS, we have effectively placed all bosons in the same

configuration. However, the Bose-Hubbard Hamiltonian does not restrict bosons

from depleting into other single-particle orbitals if it is energetically favorable. In

pure mean-field theory, e.g., DNLS, the symmetry of the initial condition is preserved

throughout time evolution in a manner very similar to that of the single-particle

Schrödinger equation. Hence, for an initial configuration in the form of a soliton, the

antisymmetry of the condensate wave function is preserved during mean-field evolu-

tion. But, a full quantum treatment such as simulation of the Bose-Hubbard model

predicts depletion into modes with nonzero density in the center of the lattice. Be-

cause derivation of the Bose-Hubbard Hamiltonian takes into account only two-body

scattering processes, it must be these processes that are responsible for depletion into

non-solitonic orbitals. The symmetry of the many-body wave function is preserved

regardless of the model chosen. Therefore, the mechanism most responsible for soliton

graying should involve two atoms depleting from the antisymmetric condensate wave

function into symmetric modes, the lowest energy of which has significant density in

the region of the soliton notch. The other main scattering process involves two atoms

previously depleted into a symmetric mode scattering into an antisymmetric mode

of higher order than the soliton mode. Both of these processes retain the symmetry

of the many-body wave function. A similar conclusion is reached in [65] where the

authors use a three-mode approximation to model the antisymmetric to symmetric

depletion of a soliton in a continuous trap geometry. Our treatment has the advan-

tage in that bosons are allowed to occupy any of the M allowable natural modes of
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Figure 4.5. Natural orbital dynamics during quantum evolution of a standing mean-
field soliton. (a) The condensate wave function and the (b) second, (c) third, and (d)
fourth most highly occupied natural orbitals during quantum evolution of a mean-
field dark soliton. Note the different color bars in each case. As explained in the text,
the discontinuities are due to a swapping of natural orbital occupation numbers at
specific times during the evolution.
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the lattice so that both depletion processes can occur. Our method also allows us

to directly probe the quantum many-body nature of the system using entanglement

measures and number fluctuations as depicted in Figure 4.6.

The dynamics of the four most highly occupied natural orbitals, as calculated by

diagonalization of the single-particle density matrix, are displayed in Figure 4.5. At

the initial time, there is negligible depletion out of the soliton orbital (D ≈ 0.1%).

This mode is occupied by all but DNave bosons, where Nave ≡
∑M

k=1〈n̂k〉 ≈ NDNLS

is the total average number, a conserved quantity according to the Bose-Hubbard

Hamiltonian. As explained above, quantum evolution causes an increase in occupation

of non-solitonic orbitals, giving the soliton a finite lifetime. At the final time shown,

approximately 48% of the bosons reside in the lowest-lying depleted symmetric mode,

whereas the soliton mode is occupied by only 33% of the bosons. The other 19% can

be accounted for in higher order orbitals. The discontinuities in the surface plots of

Figure 4.5 are due to the fact that the natural orbitals are ordered such that χj denotes

the (j+1)th most highly occupied natural orbital [see Equation (4.10)], and at certain

times, the occupation numbers cross. In fact, for the simulation considered here, the

first depleted symmetric mode gains higher occupation than the soliton mode at time

tJ/~ ≈ 32.5 and becomes the system’s official condensate wave function. Similarly,

χ2 and χ3 cross in occupation at tJ/~ ≈ 10. During the early stages of time evolution

χ0 and χ2 are symmetric modes, whereas χ1 and χ3 are antisymmetric. The time

dependence of the phase of the natural orbitals is difficult to show graphically because

at each time step an independent diagonalization of the single-particle density matrix

is performed, and the diagonalization routine arbitrarily assigns a global phase to

the eigenvectors. However, the symmetry of the natural orbitals can still easily by

discerned from these plots regardless of their unsightliness.
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Figure 4.6. Quantum measures during quantum evolution of a standing mean-field
soliton. (a) The normalized variance is initially unity at all sites due to on-site co-
herent states, but the system becomes phase-squeezed inside the density notch and
number-squeezed outside until it begins to approach Poissonian number statistics at
long times. (b) At t = 0, we have maximal knowledge about the state of each site, so
the on-site entropy vanishes; however, the system becomes entangled spatially over
time. (c) The average local impurity (order parameter norm) grows (decays) approx-
imately exponentially in time (see Section 4.3.3). (d) Single-particle entanglement
measures plateau approximately exponentially in time, and the peak in depletion co-
incides with condensate fragmentation [cf. the discontinuity in Figure 4.5(a)–(b)].
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The semiclassical DNLS assumes that the system remains in product of Glauber

coherent states for all times. However, unitary evolution according to the Bose-

Hubbard Hamiltonian of a solitonic mean-field initial state causes quantum effects to

crop up. Such effects are not describable by pure mean-field theory. Specifically, the

DNLS assumes the following: (1) Poissonian on-site number statistics due to each

site being in a coherent state, (2) zero entanglement between lattice sites due to the

many-body state being a direct product of on-site states, and (3) zero entanglement

between particles due to complete occupation of one single-particle wave function.

The violation of these assumptions is depicted in Figure 4.6 where we display the

time dependence of the normalized number variance, the local von Neumann entropy,

the average local impurity, the order parameter norm, the single-particle impurity,

the single-particle entropy, and the quantum depletion. All of these measures are

discussed above in Section 4.1, and they are all related to the quantum many-body

nature of the system. The relative number variance is maximal in regions of space-

time where the soliton is filling in, thus indicating large fluctuations of the density

away from its average value as particles deplete into the density notch. Also, we

observe a growth in spatial entanglement between lattice sites as measured locally

by the local von Neumann entropy and globally by the average local impurity. The

particle entanglement also grows over time, as evidenced by an increase in both the

single-particle impurity and single-particle von Neumann entropy.

4.3.3 Soliton Lifetimes

In the previous section, we analyzed a single instance of quantum propagation

of a mean-field dark soliton. The observed behavior is observed consistently in all

numerical simulations except that the soliton lifetime and growth times of quantum
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effects change for different parameters. For brevity, we consider the average local

impurity Qmodes and the order parameter norm Nb in determining the growth rate of

quantum many-body effects. These quantities, being averages over local observables,

are very stable numerically in the TEBD routine. Other quantities, e.g., growth in

the first depleted mode χ1, are used to calculate these characteristic time scales in

Chapter 5 where we consider the stability of density and phase engineered solitons in

the Bose-Hubbard model.

Using the nonlinear fitting routine FindFit in Mathematica, we fit the order

parameter norm to

Nb

Nb(t = 0)
≈ e−t/τb . (4.26)

and the average local impurity to

Qmodes ≈ Q0

(
1− e−t/τQ

)
(4.27)

In Figure 4.7(a)–(b) the time scales τb and τQ are plotted over a range of effec-

tive interaction strengths νU/J , all of which reside deep in the superfluid regime

of the Bose-Hubbard ground state phase diagram, at three separate filling factors

ν = 0.1, 0.5, 1. As expected, the growth rates of decoherence and spatial entangle-

ment increase monotonically (the characteristic time scales decrease) for increased

interaction strength. Also, except for at very low interaction strengths, the growth

rates decrease for increased filling. For a given filling factor, there is a positive cor-

relation between the lifetime of the soliton and the time scales τb and τQ. To define

the soliton lifetime, we fit the average number in the center site, i.e., the number of
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Figure 4.7. Growth times of quantum effects and correlation to soliton lifetime. The
characteristic time scales of (a) decay in Nb and (b) growth in Qmodes are on the
order of tens of tunneling times for the parameter regimes considered. Hence, there
is always a very observable time scale at which quantum effects become significant
no matter what the parameters. (c) The soliton fill-in time τmid is plotted versus τb

and τQ for the ν = 1 data showing a positive correlation. In all cases, the curves are
a guide to the eye.
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particles in the notch, to

〈n̂mid〉 ≈ n0

(
1− e−t/τmid

)
. (4.28)

Due to a poor reduced χ2 value, we find this fit to not be valid for interaction strengths

νU/J ≤ 0.20. Figure 4.7(c) shows the positive correlation between τb, τQ and τmid for

the ν = 1 data points with νU/J > 0.20.

4.3.4 Comparison to Experiment and to Finite-Temperature Effects

We use the definitions of the tunneling coefficient J and the interaction coeffi-

cient U in terms of overlap integrals involving Wannier orbitals (see Figure 2.2). We

estimate that the simulation discussed at length in Section 4.3.2 and its associated

data point in Figure 4.7 correspond experimentally to 87Rb atoms tuned via Fesh-

bach resonance to a scattering length of as = 1.0 nm loaded into an optical lattice

created with lasers of wavelength λ = 850 nm with lattice heights V0 = ER and

V0⊥ = 25 ER in the longitudinal and transverse directions, respectively, where ER is

the recoil energy. Using these quantities, the relevant time scales are

τb ≈ 9.1 (~/J) ≈ 2.8 ms, (4.29)

τQ ≈ 8.2 (~/J) ≈ 2.5 ms, (4.30)

τmid ≈ 28 (~/J) ≈ 8.5 ms. (4.31)

In the original Hannover experiment in which solitons were engineered using phase

engineering methods in a highly elongated trapped Bose-Einstein condensate, inter-

action of the soliton with the thermal cloud caused the soliton contrast to decay to

50% on a time scale of 10 ms [15]. Note that our τmid is a 1/e decay time and is thus
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a longer time scale than a 50% decay time. We stress that we are comparing two very

different experiments here, one is in a harmonic trap and the other is in an optical

lattice; the optical lattice experiment we are simulating has never been performed.

To make a concrete comparison to finite-temperature effects, we use the recent

work of Jackson et al. [158] in which dark soliton decay due to thermal effects was

studied numerically using the mean-field Zaremba-Nikuni-Griffin (ZNG) formulism

[159]. In [158], the lowest velocity solitons for temperatures 0.25 Tc . T . 0.5 Tc,

where Tc is the condensation critical temperature defined in Equation (2.5), have

50% decay times τ1/2 on the order of tens of longitudinal trap times. Using the

ω⊥/ωx = 250 trap frequency ratio as in [158], we can convert to our units using

Equation (2.44) for ω⊥ with the result for the soliton fill-in time being

τ1/2 & 10 (4.2 ~/J) ≈ 13 ms. (4.32)

Hence, as a rough estimate, we estimate soliton decay due to thermal effects in a

harmonic trap to occur on a time scale approximately 2 to 10 times slower than

quantum effects in an optical lattice. Even though the parameters for the two cases

are completed different, it is still useful to make comparisons in real experimental

units. For truly stationary solitons such as the ones we consider, interaction with a

thermal cloud, pushed out to the sides of the trap (or box) by the condensate mean

field, would be minimal and the time scale of thermal effects should be much longer.

The parameters used in the simulation analyzed above are so deep in the su-

perfluid regime of the Bose-Hubbard phase diagram that keeping V0 & ER (we take

V0 = ER) requires the scattering length tuned down by approximately a factor of five.

Yet, the solitons still have a very observable decay time, thus clearly demonstrating

the inadequacy of mean-field theory for describing solitons on a lattice with just a
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few atoms per site. The use of one band is justified by a quick calculation as follows.

For V0 = ER, we have J ≈ 0.17 ER by Equation (2.53); and for νU/J = 0.35 with

ν = 1, we have U ≈ 0.06 ER. But the band spacing is ~ω =
√

4V0ER = 2ER, so in

fact J, U . ~ω.

4.3.5 Bogoliubov Analysis

We now turn to the Bogoliubov method described in Section 2.3.5. We take the

values of stationary dark solutions such as that shown in Figure 4.2(b) as the ξk in

Equation (2.75). For the case of a harmonic trap geometry, it can be shown that the

Bogoliubov quasiparticle spectrum for the dark soliton solution of the continuous GP

equation contains a negative frequency mode with finite density in the region of the

soliton notch [66, 67]. The frequency of this mode is −1/
√

2 times the longitudinal

trapping frequency ωx [160, 66]. For effective interaction strengths νU/J . 0.70 on

a tight-binding lattice, we observe in our calculations an anomalous mode with small

negative frequency 0 > ω1 & −0.1 J/~ that is characterized by a density maxima

concentrated in the soliton region. In Figure 4.8(a), we show the density of this mode

for νU/J ∈ {0, 0.05, 0.20, 0.35}. Figure 4.8(b) depicts the density of the even natural

orbital with highest occupation at times tJ/~ ≈ 25, 30, 35, 40 for the simulation pre-

sented in Section 4.4.2 for νU/J = 0.35 and ν = 1 [see Figure 4.5(a)–(b)]. Formally

speaking, this mode is χ1 for tJ/~ . 32.5 and χ0 for tJ/~ & 32.5. It is clear that

for the parameter regimes considered here the symmetric natural orbital in Figure

4.8(b), the natural orbital most responsible for the soliton decay, is not equivalent to

the negative frequency mode of the Bogoliubov theory. Also, as can be seen in Figure

4.13(c)–(d), there is significant contribution from natural orbitals of higher order, i.e.,

χ2, χ3, etc., to the filling-in effect.
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Figure 4.8. Anomalous Bogoliubov mode: Density profile, comparison to first depleted
mode, and frequency. (a) The density of the anomalous (negative frequency) mode of
the Bogoliubov excitation spectrum is plotted versus space for effective interactions
νU/J = 0, 0.05, 0.20, 0.35. (b) For the latter case of νU/J , we show the time evolution
at time steps tJ/~ ≈ 25, 30, 35, 40 of the depleted natural orbital most responsible for
the decay of the dark soliton as shown in Figure 4.4(a). We see that the Bogoliubov
mode in (a) for νU/J = 0.35 does not resemble the evolving symmetric mode shown
in (b). (c) The frequency ω1 of the anomalous mode is plotted for different values of
nonlinearity νU/J .
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In the continuous setting, Bogoliubov modes such as those shown in Figure 4.8(a)

are anomalous, i.e., have negative frequency, only in the presence of a harmonic trap

[160, 66]. On a tight-binding lattice with no harmonic trap and box boundary con-

ditions, we show in Figure 4.8(c) the dependence of the frequency of the anomalous

mode for different values of νU/J . For νU/J & 0.70, the anomalous mode does not

appear in the Bogoliubov spectrum at all. When we add a harmonic trap on top of

the lattice, as predicted in Reference [160] for the continuous case, we observe the

frequency of the anomalous mode to change at a rate approximately proportional to

minus the trapping frequency. This serves as a check on the validity of our calculation.

It is also known for a continuous 1D box that the Bogoliubov spectrum for the soli-

ton solution of the GP equation contains two zero modes, i.e., modes with vanishing

frequency and vanishing norm. These two modes correspond to degeneracies in the

soliton energy associated with the global phase of the wave function and the position

of the soliton in the box [69]. Even though the magnitudes of the negative frequency

modes obtained in our calculations are relatively small, they are surely nonzero. Be-

fore normalization to unity, the norms of the solutions are also nonzero (∼0.1). Thus,

we do believe that an anomalous mode indeed exists in the Bogoliubov theory, but,

as shown in Figure 4.8(a)–(b), this mode is not identical to the first depleted mode

observed during quantum evolution. Finally, we report that anomalous modes such

as in Figure 4.8(a) fail to appear at all in the Bogoliubov theory for systems with an

even number of lattice sites at interaction strengths νU/J & 0.25. However, quantum

many-body evolution of dark solitons in such systems is qualitatively identical to the

behavior observed in Section 4.3.2 in which an odd number of sites was assumed.

In Figure 4.9, we show the Bogoliubov modes of lowest frequency for both the

ground state and first excited (dark soliton) state of the DNLS. For the latter case,
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Figure 4.9. Low frequency Bogoliubov modes: Ground and first excited state of DNLS.
For νU/J = 0.35, the densities of the lowest-lying Bogoliubov modes for (a)–(d) the
ground state and (e)–(h) the dark soliton state of the DNLS are plotted versus spatial
coordinate. In the latter case, we leave out the anomalous mode corresponding to
j = 1 because it is shown in Figure 4.8(a).

we omit the anomalous mode because it shown in Figure 4.8(a). The effective non-

linearity is chosen to be νU/J = 0.35. We see that modes of the ground state

corresponding to odd (even) j are zero (maximal) at x = 0. The modes that appear

in the ground state spectrum also appear in the spectrum for the dark soliton except

that the modes with zero (maximal) density at x = 0 develop a peak (dip) in the

region of the soliton. These results are reminiscent of those in Reference [70] where

time-dependent numerical Bogoliubov calculations were done to model quantum dy-

namics during dark soliton generation via phase imprinting in a harmonic trap. In

our calculations, the lowest natural orbitals obtained using TEBD do not match the

low energy Bogoliubov modes for the dark soliton state [compare Figure 4.5(b)–(d)

to Figure 4.8(a) and Figure 4.9(e)–(f)]. The second and third depleted natural or-
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bital, i.e., χ1 and χ2, compare more favorably to the second and third lowest energy

Bogoliubov modes of the DNLS ground state [compare Figure 4.5(c)–(d) to Figure

4.9(b)–(d)]. Direct comparison is made difficult because the natural orbitals them-

selves are time-dependent. Exactly how the density of noncondensed atoms depends

on the static Bogoliubov modes is unclear. The main point to be made is that a static

Bogoliubov calculation as we have presented here gives some insight into the nature

of quantum fluctuations but is ultimately inadequate for fully describing the dark

soliton decay observed in Section 4.3.2. Another point to be made is that Bogoliubov

analysis assumes the modes are completely decoupled. Our full quantum calculation

clearly shows this not to be the case.

4.4 Soliton-Soliton Collisions

We now turn to the case of a collision of two mean-field dark solitons in the Bose-

Hubbard Hamiltonian. The initial conditions are generated in a very similar fashion

to the stationary dark solitons discussed in the previous section in that we perform a

mapping from the DNLS to the Bose-Hubbard model via truncated coherent states.

However, instead of computing a fundamental dark soliton solution of the DNLS, we

instead use the techniques of density and phase engineering to arrive at an initial

condition resembling two dark solitons moving toward one another to the center

of the lattice at finite velocity. We show that, unlike in pure mean-field theory,

a collision between two solitons can become inelastic if the time scale of quantum

fluctuations is less than or on the order of the time at which the solitons collide.

This phenomenon can be understood by considering two-body scattering processes

that deplete atoms into an antisymmetric mode that effectively increases the duration

time of the collision.
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4.4.1 Density and Phase Engineering Dark Soliton-Soliton Collisions

The initial conditions are obtained by performing imaginary time relaxation in

the DNLS on a constant initial condition ψk(τ = 0) = 1 in the presence of an external

potential in the form of two Gaussians of height V2 and width σV 2 displaced a distance

b from the center of the lattice. This potential takes the form

εk = V2

{
exp

[
−(xk + b)2

2σ2
V 2

]
+ exp

[
−(xk − b)2

2σ2
V 2

]}
, (4.33)

which has the effect of creating two identical density notches at positions x = ±b

with depths and widths controlled by V2 and σV 2, respectively. We then imprint an

instantaneous phase of the form

θk = ∆θ2

{
−1

2
tanh

[
2(xk + b)

σθ2

]
+

1

2
tanh

[
2(xk − b)

σθ2

]
+ 1

}
(4.34)

by multiplying the local condensate wave function ψk by the phase factor eiθk . Ap-

plication of this phase profile gives the solitons equal-and-opposite initial velocities

toward the center of the lattice. The speed of the solitons is controlled by the phase

drop ∆θ2, and phonon generation is minimized by appropriately tuning the width σθ2

of the phase profiles to the soliton depth as determined by V2 in the density engineer-

ing stage. In Figure 4.10, we show the imaginary time evolution of the DNLS wave

function and the final solution after phase imprinting; this solution is in turn used in

Section 4.4.2 as an initial condition to analyze quantum evolution of a soliton-soliton

collision.

The Gaussian potentials used for density engineering model two tightly-focused,

blue-detuned laser beams shined at positions x = ±b on the lattice. Blue detuning

is required so that the Gaussian intensity profiles of the lasers produce a positive
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Figure 4.10. Dark soliton engineering in DNLS. (a) The DNLS is propagated forward
in imaginary time with an external potential in the form of Equation (4.33), resulting
in two symmetric density notches. An instantaneous phase given by Equation (4.34)
is then imprinted on the wave function resulting in the solution shown in (b). This
solution is used an initial condition for the simulation analyzed in Section 4.4.2 where
the relevant parameters are given.

potential for the atoms. Phase engineering can be realized experimentally by shining

far-detuned laser pulses on the left and right ends of the lattice for a short, but specific,

amount of time tpulse so that a local potential εk = −θk~/tpulse is felt by the atoms at

sites k with θk given by Equation (4.34). Since all atoms are in phase, as assumed by

the DNLS, this procedure has the effect of altering the on-site phase by amount θk

according to the time-dependent Schrödinger equation for a single particle. In order

to ensure that the density is unaltered during phase engineering, we require tpulse be

much less than the correlation time ~/µ, where µ is the chemical potential. This

assumption is what allows us to apply the phase instantaneously in simulations. It

should be noted that the atoms interact with the laser light used for density and phase
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engineering in the exact same way as they do with the optical lattice (see Section 2.2

for details). Such a density and phase engineering method is closely modelled after

that presented in References [54, 55] for creating solitons in Bose-Einstein condensates

in continuous geometries. The method of phase engineering alone was used to generate

solitons experimentally in harmonic traps [15, 50]. For an array of 1D optical lattices,

each 1D tube is density and phase engineered simultaneously. The present discussion

concerns soliton engineering in the DNLS for the purpose of creating theoretically

pleasing mean-field initial conditions for subsequent propagation according to the

Bose-Hubbard Hamiltonian. In Chapter 5, we perform more experimentally relevant

simulations by generalizing the procedure to the quantum picture and engineering

solitons directly in the Bose-Hubbard Hamiltonian using TEBD.

4.4.2 Characteristic Simulation

We now evolve the DNLS configuration calculated in Figure 4.10 in real time

according to the both the DNLS and Bose-Hubbard Hamiltonian. As in Section 4.3.2,

we take νU/J = 0.35 at filling ν = 1 on a lattice of M = 31 sites. The parameters

used for the density and phase engineering are V2/J = 0.4, σV 2/a = 1, b/a = 6,

∆θ2 = 0.3 π, and σθ2/a = 2, where a is the lattice constant. Figure 4.11 depicts the

mean-field DNLS evolution of the initial condensate wave function shown in Figure

4.10(b). The collision is very elastic as the speeds of the solitons are unchanged as a

result of the collision. The forward in time (backward in space) trajectory shifts of

the solitons due to the collision are barely noticeable by eye.

We now turn to the quantum picture and build the same initial condition in Fock

space via a product of truncated coherent states as we did previously for standing

solitons in Section 4.3.2, i.e., we take ψk → zk in Equation (4.19). The coherent states
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Figure 4.11. DNLS soliton-soliton collision. The density and phase engineered initial
condition of Figure 4.10 is propagated forward in real time according to the DNLS.
The dashed line in (a) is the trajectory of the soliton before collision. The space-time
shift associated with the collision is very small. The phase drop across the solitons is
maintained throughout evolution as can be seen in (b).

are truncated at d = 7 number states. As before, we perform a Vidal decomposition

on this initial condition for input into the TEBD routine which we employ for real

time quantum evolution, keeping χ = 50 basis sets as before. The results are depicted

in Figures 4.12–4.14.

We first focus on density and phase measures. The average particle number

density [Figure 4.12(a)] closely follows the DNLS density [Figure 4.11(a)] before and

during the collision because the decoherence time, as indicated by the dashed line

in Figure 4.12(a), occurs just after the collision. As expected, the Pegg-Barnett

phase operator exhibits a phase drop across the notch for short times. However,

after the decoherence time, this drop is less pronounced. As in the standing soliton

case, |〈b̂k〉|2, the square modulus of the order parameter, decays over time. Its phase
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arg(〈b̂k〉) rotates at the same rate as both the expectation value of the Pegg-Barnett

phase operator and the phase of the DNLS wave function, although arg(〈b̂k〉) does

lose meaning in the regions of space-time for which |〈b̂k〉|2 vanishes.

The initial condition exhibits negligible quantum depletion, i.e., all atoms occupy

the even single-particle mode proportional to that shown in Figure 4.10(b). However,

as occurs for the standing soliton analyzed in Section 4.3.2, there exist two-body

scattering processes which deplete the system and give rise to entangled quantum

dynamics. The depletion processes which preserve the overall symmetry of the many-

body function include two atoms scattering from an even mode into an odd mode

and two atoms scattering from an even mode into another even mode of higher order.

Since odd modes must vanish at x = 0, occupation of such modes will obviously

effect a collision of two solitons that occurs at the center of the lattice. We show

the densities of the four natural orbital with highest occupation. As in Figure 4.5,

the discontinuities are due to the ordering of natural orbital occupation numbers at

each time step shown. For times tJ/~ & 3, we see that the second most highly

occupied natural orbital χ1 is indeed an antisymmetric mode similar to a standing

soliton. However, for this particular simulation, such depletion processes do not have

a drastic effect on the collision because they occur on a slightly longer time scale

than the time it takes the solitons to collide. In the next section, we show that if the

depletion time scale is tuned to occur at or before the time at which the two solitons

collide, then an inelasticity is effectively induced in the collision.

In Figure 4.14, we show, for the soliton-soliton collision discussed above, the time

evolution of the same quantum measures as in Figure 4.6 for the standing case. Fig-

ure 4.14(a) shows a normalized number variance less then unity, i.e., sub-Poissonian

or number-squeezed number statistics, for all times t > 0. However, the relative
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Figure 4.12. Density and phase measures for quantum evolution of a mean-field
soliton-soliton collision. The expectation value of (a) the number operator and (b)
the Pegg-Barnett phase operator during quantum evolution of a collision between two
mean-field solitons. The collision is mean-field-like since it occurs before the deco-
herence time which is indicated by the dashed line in (a). The order parameter (c)
density and (d) phase are shown for the same simulation.
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Figure 4.13. Natural orbital dynamics during quantum evolution of a mean-field
soliton-soliton collision. (a) The condensate wave function and the (b) second, (c)
third, and (d) fourth most highly occupied natural orbitals during quantum evolution
of a collision between two mean-field solitons. Even though depletion is significant
(D ≈ 40% at the final time), the collision is still quite elastic as the time scale for
quantum fluctuations is slightly longer than the time of collision.
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Figure 4.14. Quantum measures for quantum evolution of a mean-field soliton-soliton
collision. The same measures as in Figure 4.6 are shown but for the case of a soliton-
soliton collision. The behavior of the measures in (b)–(d) is generally similar to that
observed in Figure 4.6. On the other hand, the normalized number variance in (a)
displays number-squeezed number statistics for all times t > 0, whereas both number-
and phase-squeezed statistics occur in the standing soliton simulation.
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Figure 4.15. Inelastic soliton-soliton collision induced by quantum fluctuations. The
average number density is plotted versus position and time for the exact same param-
eters as in Section 4.4.2, including the effective interaction strength νU/J = 0.35 but
with filling factors (a) ν = 0.5 and (b) ν = 0.1. We see that when the decoherence
time lies at or near the collision time, the collision elasticity decreases.

number variance is greatest during the soliton collision. Of course, the local von

Neumann entropy shown in Figure 4.14(b) is initially zero since the initial condition

is a full product state. As expected, quantum evolution causes a build-up in spatial

entanglement as evidenced by nonzero values of both SvN,k, the local von Neumann

entropy, and Qmodes, the average local impurity, as shown in Figure 4.14(c). Growth

in entanglement between particles is shown in Figure 4.14(d).

4.4.3 Quantum-Induced Inelasticity

For a fixed value of the effective nonlinearity νU/J , we can tune the growth rate

of quantum fluctuations by changing the filling without altering the initial density-

phase profile of the initial condition. Specifically, according to Figure 4.7, we can



120

increase this growth rate by decreasing the filling. When this occurs, support from

the many-body wave function is lessened and the depletion processes occur at a faster

rate. Depletion into an antisymmetric mode like that in Figure 4.13(b) is thus more

pronounced. The final result on the dynamics is that the soliton-soliton collision

becomes more inelastic, i.e., the solitons interact or “stick together” for a longer

time. Subsequent filling in of the notch after collision can be explained by depletion

into higher order natural orbitals, e.g., χ2, χ3, etc. This point is demonstrated in

Figure 4.15 in which we show the number density for identical simulations to the one

analyzed in detail in Section 4.4.2 except with filling factors ν = 0.5, 0.1. The effective

interaction is still taken to be νU/J = 0.35. As before, the dashed lines indicate the

1/e decay time of the order parameter norm Nb.

4.5 Summary

In summary, we have presented a quasi-exact numerical analysis of quantum

many-body effects on mean-field dark solitons in 1D optical lattice potentials. This

was achieved by using the TEBD routine to simulate quantum many-body dynamics

in the Bose-Hubbard Hamiltonian of initial dark soliton states based on a product of

Glauber coherent states obtained via the discrete nonlinear Schrödinger equation. We

showed that quantum depletion (1) causes standing solitons to have a finite lifetime

that should be very observable in experiment and (2) induces an inelasticity in soliton-

soliton collisions. For a 1D optical lattice, even deep in the superfluid region of

the ground state phase diagram, discrete mean-field theory, i.e., the DNLS, is an

inadequate description of dark solitons, at least for the parameter regimes that we

explore. We also calculated the Bogoliubov spectrum for a discrete dark soliton

state in the tight-binding limit. For low enough interaction strengths, we observe an
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anomalous mode in the Bogoliubov spectrum with a density maximum in the soliton

notch. However, this mode is different from the first depleted natural orbital in our

TEBD calculations. All in all, the static Bogoliubov treatment leaves out a wealth of

physics accessible with a full many-body treatment.

For a discussion of the convergence and accuracy of the results obtained using

TEBD, see Appendix B. Because we are most interested in the short-time behavior of

the system which is initially in a low-energy, spatially unentangled state, TEBD serves

as an ideal numerical tool. However, our method for this particular problem could

be improved by adapting χ, the number of retained basis sets, in simulation time

to the amount of entanglement currently present. We note that number-conserving

methods can fundamentally not be used for the types of simulations presented in this

chapter. The reason is that the initial conditions, products of truncated coherent

states, are themselves a superposition of states that do not conserve total number. In

the next chapter, we generate dark solitons in the Bose-Hubbard model in a manner

that exactly replicates how it would be done in experiment. For such studies, we do

in fact employ number conservation.
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Chapter 5

QUANTUM SOLITON ENGINEERING

In the previous chapter, we investigated quantum many-body effects on dark

solitons in an optical lattice by using the Bose-Hubbard Hamiltonian, a quantum

many-body theory, to simulate initial conditions obtained directly from solitons ob-

tained in the DNLS, the corresponding mean-field theory. From a theoretical per-

spective, this method has the advantage in that it provides a quantitative measure of

the applicability of mean-field theory. Namely, we have shown that there is always

a very observable time scale at which quantum effects cause mean-field theory to

break down. However, from an experimental perspective, the initial conditions used

in Chapter 4 are not easily created. That is, a direct product of Glauber coherent

states is not close to the ground state of the Bose-Hubbard Hamiltonian unless one

assumes (1) the thermodynamic limit, i.e., M, N →∞ at fixed filling N/M , and (2)

a hopping parameter much greater than the interaction parameter, i.e., J À U [116].

In this chapter, we create dark solitons that are in fact close to the system’s ground

state. The idea is very natural. We generalize to the Bose-Hubbard Hamiltonian the

methods of density and phase engineering as discussed in Section 4.4.1 for the DNLS.

Here, all calculations are done using TEBD. We first relax the system in the presence

of one or two external Gaussian beams to create one or two density notches. Next,

we remove the external potential and imprint a desired phase. Finally, we evolve the

system with only the lattice potential turned on. The evolution is characterized by

a set of measures very similar to those presented in Section 4.1. As in the previous
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chapter, we consider both standing solitons and soliton-soliton collisions, although

emphasis is placed on the former.

5.1 Methods for Density and Phase Engineering

Density engineering in a system described by the Bose-Hubbard Hamiltonian is

a rather straightforward task. To mold the desired density, one simply selects an

appropriate external potential εk to use in Equation (2.46) and then finds the ground

state of the resulting Hamiltonian. Using TEBD, this ground state can be found by

propagation in imaginary time as explained in Section 3.2.4. Of course, for sufficiently

small systems, the ground state can be calculated via exact diagonalization.

On the other hand, phase engineering is more subtle. In mean-field theory, all

atoms are assumed to be in the same wave function and hence in phase with one

another. Thus, imprinting a phase on the many-body wave function is conceptually

equivalent to doing so on a single-particle wave function. Quantum-field theory relaxes

the assumption that all particles are in phase. However, we can still imprint a phase

in the natural way so long as the condensate fraction is large enough. To do this,

we can change the local lattice potential to εk = −θk~/tpulse for a short time tpulse in

real time to imprint a phase θk at site k. In simulation, it suffices to apply the phase

instantaneously which amounts to applying the on-site unitary operator exp(in̂θk),

where n̂ is the local number operator. The exact forms of the external potential εk

used for density engineering and of the imprinted phase θk depend on the problem in

question. The forms used for soliton engineering are given in the sections that follow.
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5.2 Standing Solitons

We first concentrate on the case of an engineered standing soliton in the center

of the lattice. A single Gaussian beam is used to engineer the density notch and a

hyperbolic tangent phase profile is then imprinted across the notch. First, we present

a characteristic simulation of engineered quantum soliton propagation and then cal-

culate soliton decay times for different values of the effective interaction parameter.

5.2.1 Density and Phase Engineering of Standing Solitons

We can dig a single density notch centered at x = 0 by performing imaginary

time relaxation with an external Gaussian potential of the form

εk = V1 exp

(
− x2

k

2σ2
V 1

)
. (5.1)

For the phase imprinting, we use a hyperbolic tangent phase profile of the form

θk =
∆θ1

2
tanh

(
2xk

σθ1

)
. (5.2)

For a true standing dark soliton, we would have to use a Dirac delta function

for the potential in Equation (5.1) to effectively create two independent boxes so the

wave function would heal perfectly to zero at the center of the lattice. Thus, for a

Gaussian potential of finite amplitude and width, a certain fraction of the energy

used to form the notch goes into the creation of phonons and a certain fraction goes

into the creation of the soliton [54]. Also, standing solitons have a π phase drop

across the notch in the form of a perfect step function; hence, ideally we should take

∆θ1 = π and σθ1 → 0. Experimentally, the parameter σθ1, i.e., the width of the

phase profile, represents diffraction-limited fall-off of the far-detuned laser beam used
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(a) Free lattice

(b) Density engineering

(c) Phase engineering

(d) Resulting state

Figure 5.1. Schematic of density and phase engineering a standing soliton. To engi-
neering a standing soliton in a lattice, we (a) take a free lattice, (b) apply a tightly-
focused blue-detuned Gaussian beam to dig a density notch, (c) turn off the Gaussian
beam and raise half the lattice to imprint a phase, (d) lower the lattice resulting in
(d). The lattice heights are the same in each panel, red indicates a π phase change
on those atoms, and particle numbers should not be taken literally as the lattice is
meant to extend past the sites shown.
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to raise half the lattice [54]. If σθ1 is on the order of the soliton healing length, the

engineered soliton will to drift to the left. We ignore this effect in simulation by taking

a sufficiently small value of σθ1. Note, however, that stationary solitons can still be

created with significant diffraction-limited fall-off by choosing a value of ∆θ slightly

greater than π to create a second shallow soliton to carry away the momentum of the

first [54].

Density and phase engineering using the forms (5.1) and (5.2) can be applied to

either the DNLS or the Bose-Hubbard Hamiltonian for soliton creation. We consider

both cases in this section. A schematic of the procedure used to quantum engineer a

stationary dark soliton is depicted in Figure 5.1.

5.2.2 Characteristic Simulation

Let us now consider a single simulation of soliton engineering in both the mean-

field and quantum many-body pictures. Like all simulations in Chapter 4, we select

for the effective interaction parameter νU/J = 0.35. We choose to work on a lattice

of M = 30 sites with N = 30 particles so that the filling factor ν ≡ N/M = 1.

This definition of the filling factor differs from that in Chapter 4 in which it was

defined in terms of the norm of the DNLS solution used to create the initial state

in the quantum picture. The relevant parameters used to engineering the soliton are

V1/J = 1, σV 1/a = 1, ∆θ = π, σθ1/a = 0.1, where a is the lattice constant. The

reason that we select an even number of sites is that it allows us to set a reasonable

amplitude V1 for the Gaussian potential. For an odd number of sites, V1 would have

to be increased substantially in order for a node to be created at x = 0, a requirement

for the dark soliton to be stationary. Not increasing V1 for an odd number of sites

results in dynamical instability of the soliton since the wave function does not vanish
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Figure 5.2. Standing soliton engineering in DNLS. (a) The DNLS is propagated
forward in imaginary time with an external potential in the form of Equation (5.1)
resulting in a single density notch in the center of the lattice. An instantaneous
phase given by Equation (5.2) is then imprinted on the wave function resulting in the
solution shown in (b).

at the origin, an effect we have observed. The solitons created with this method with

an even number of sites are similar to the “B modes” analyzed in Reference [63].

Figure 5.2 shows imaginary time evolution in the DNLS with the potential (5.1)

and the resulting DNLS condensate wave function after application of the phase

imprint (5.2). The subsequent real time evolution (according to the DNLS) of the

DNLS wave function in Figure 5.2(b) is displayed in Figure 5.3. We now wish to

compare these results to a full quantum many-body calculation using TEBD.

To this end, we take the same parameters as used for the DNLS and perform

imaginary time propagation in TEBD with the same Gaussian potential used to

produce the density structure in Figure 5.2(b). Retaining χ = 80 basis sets and

allowing up to d − 1 = 5 particles per site, we are able to calculate a ground state
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(a) DNLS density
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Figure 5.3. Engineered standing soliton propagation in DNLS. The density and phase
engineered initial condition of Figure 5.2 is propagated forward in real time according
to the DNLS. In (a), phonons are generated because we use a Gaussian potential of
finite height (V1 6= ∞) and finite width (σV 1 6= 0) when density engineering the
notch. As clearly seen in (b), a π phase drop across the notch persists throughout
time evolution.

converged to 10−6 on max`

(
λ

[`]
α`

)
, where ` ∈ {1, 2, . . . ,M − 1} is a link index. The

quantum depletion in this ground state is only D ≈ 11%. We then remove the

Gaussian potential and model the application of an instantaneous phase imprint by

applying to each site k the on-site unitary exp(in̂θk), where θk is the same narrow tanh

phase profile shown in Figure 5.2(b). The resulting quantum dynamics are shown in

Figures 5.4 and 5.5.

The evolution of the average particle number density and the three most highly

occupied natural orbitals can be seen in Figure 5.4. As in the case of the mean-

field soliton initial conditions presented in Section 4.3, we see that, in contrast to

the DNLS dynamics of Figure 5.3, time evolution according to the Bose-Hubbard
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(d) Second depleted mode

Figure 5.4. Density and natural orbital dynamics for engineered standing quantum
soliton. The average particle density in (a) is a sum of all occupied natural orbitals.
The three most highly occupied natural orbitals are shown in panels (b)–(d), including
the condensate wave function in (b) which resembles a stationary dark soliton. The
soliton fills in over time due mainly to depletion of atoms into mode χ1 as shown in
(c).
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Figure 5.5. Quantum measures for engineered standing quantum soliton. (a) As in the
quantum evolution of a mean-field soliton, the normalized particle number variance
is greatest in the areas of space-time where the soliton is filling in. (b) On the
other hand, unlike for a mean-field soliton, the local von Neumann entropy has finite
value at the initial time. Soliton density engineering causes a decrease in entropy
in the region of the notch. The average local impurity in (c) only changes slightly
as the soliton fills. In (c) and (d), we see that both quantum depletion and particle
entanglement grow in time.
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Hamiltonian causes the soliton to fill in. This phenomena can be attributed to the

same two-body scattering processes discussed in Section 4.3.2. The phase angles of

the natural orbitals are not displayed, but we quote the symmetries of the lowest

four modes as follows: χ0 is an antisymmetric mode; χ1 and χ2 are both symmetric

modes; and χ3 (not shown) is an antisymmetric mode.

To characterize the quantum nature of the system, we consider normalized num-

ber variance, local von Neumann entropy, average local impurity, quantum depletion,

single-particle impurity, and single-particle entropy. We show the time dependence of

each of these measures in Figure 5.5. The general behavior of the normalized num-

ber variance [Figure 5.5(a)] is similar to that for mean-field soliton initial conditions

as can be seen in Figure 4.6(a). In Figure 5.5(b), we see that soliton engineering

causes the local von Neumann entropy to decrease in the region of the density notch.

Time evolution causes this notch in entropy to dissipate. Unlike for mean-field ini-

tial conditions, we cannot define an order parameter based on the expectation value

of the lowering operator. This is because such a quantity is inherently zero for a

number-conserving Fock space. Also, in contrast to the results in Chapter 4, the av-

erage local impurity Qmodes now has finite value at t = 0 and remains approximately

constant over time. Panels (c) and (d) of Figure 5.5 depict this time dependence of

Qmodes as well as growth in quantum depletion D, single-particle impurity Qparticles,

and single-particle entropy SvN,particles.

The simulation discussed above can be realized experimentally with the same

parameters used to realize the simulation in Section 4.3.2. Those parameters can

be found in Section 4.3.4, but we quote them here for completeness. The Bose-

Hubbard parameter νU/J = 0.35 at filling ν = 1 corresponds to 87Rb atoms with an

s-wave scattering length tuned via Feshbach resonance to as = 1.0 nm in an optical
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lattice with longitudinal and transverse lattice heights V0 = ER and V0⊥ = 25 ER

created with lasers of wavelength λ = 850 nm. The Gaussian beam used for density

engineering then has height V1 = J ≈ 0.17 ER and width σV 1 = a = 425 nm. The

width of the fall-off of tanh phase profile is σθ1 = 0.1 a = 42.5 nm. Increasing the

width of the phase profile to the order of the soliton healing length will cause the

soliton to drift to the left, as we observed in simulations.

5.2.3 Soliton Lifetimes

Unlike in Section 4.3.3, we can no longer characterize growth time in quantum

many-body effects by such measures as the order parameter norm and average local

impurity. In fact, the initial state already exhibits highly nonclassical behavior, so

it is no longer meaningful to discuss such a time scale. However, as demonstrated

in the previous section, dark solitons engineered in optical lattices dissipate on an

observable time scale due to quantum fluctuations. We characterize the time scale at

which this instability occurs by (1) fitting the average particle number at the center

lattice site to

〈n̂mid〉 ≈ n0

(
1− e−t/τmid

)
, (5.3)

as in Equation 4.28, (2) fitting the inner product of the time-evolving state with the

initial state to

I ≡ |〈Ψ(t)|Ψ(0)〉|2 ≈ e−t/τinner , (5.4)

and (3) the occupation in the first depleted mode to

N1

N
≈ A + B tanh

(
t− τshift

τN1

)
, (5.5)
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Figure 5.6. Engineered dark soliton decay times. (a) For the same simulation analyzed
in Section 5.2.1, we plot versus time the average number in the middle lattice site, the
inner product with the initial state, and occupation of the first depleted mode. Decay
in I, the inner product of the state at time t with the state at time t = 0, signifies
nonstationarity of the initial state. In (b)–(d), we plot the time scales τmid, τinner,
and τshift as defined in Equations (5.3)–(5.5) versus the effective interaction strength
νU/J at unit filling ν = 1. The time scales all decrease as interactions are increased.
The curves connecting data points in (b)–(d) serve as guides to the eye.
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In Figure 5.6(a), we show the characteristic behavior of 〈n̂mid〉, I, and N1 for the same

simulation parameters used in Section 5.2.1, and in Figure 5.6(b)–(d), we plot the

time scales τmid, τinner, and τshift for different values of the interaction parameter νU/J

at fixed filling ν = 1. We investigate the effects of filling factor on these time scales

in our Reference [155] which is currently in preparation. As expected, increasing the

interaction strength causes the soliton lifetime to decrease. This behavior was also

observed in Section 4.3.3 for the case of mean-field soliton initial conditions.

5.3 Soliton-Soliton Collisions and Quantum-Induced Inelasticity

It is straightforward to apply the above density and phase engineering techniques

to prepare an initial state in the Bose-Hubbard Hamiltonian that leads to a soliton-

soliton collision. In Section 4.4, we looked at a soliton-soliton collision in the DNLS

and analyzed soliton-soliton collisions in the Bose-Hubbard model by preparing the

quantum system in an appropriate mean-field state. We showed that certain two-

body scattering processes lead to depletion of atoms out of the condensate wave

function and into natural orbitals of higher order. The first of which is an odd mode

with vanishing density in the center of the lattice. If significant depletion into this

mode occurs at a time scale comparable to the time of collision, there is an induced

inelasticity in the collision. This point is demonstrated in Figure 4.15.

We now consider analogous simulations except that the initial conditions are

prepared by performing density and phase engineering directly in the Bose-Hubbard

Hamiltonian. For the external potential and phase profile, we use identical forms to

those given in Equations (4.33)–(4.34). The results are generally similar to those in

Section 4.4 except, of course, that the initial state itself exhibits quantum many-body

behavior, i.e., finite depletion and finite entanglement. For brevity, we focus only
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Figure 5.7. Quantum-induced inelasticity for quantum engineered dark solitons. A
collision between two engineered dark quantum solitons is shown for fixed νU/J =
0.35 at filling factors (a) 1, (b) 0.7, (c) 0.4, and (d) 0.2. The average particle number
is plotted in each case. The collision elasticity decreases with decreased filling in a
similar way to that observed in Figure 4.15.
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the evolution of the average number distribution and show that quantum-induced

inelasticity is not just an artifact of the mean-field initial conditions used throughout

Chapter 4. For consistency, we select parameters values identical to those used in

Section 4.4. To be precise, the effective interaction parameter is taken to be νU/J =

0.35 on a lattice of M = 31 sites. The two-soliton engineering parameters are V2/J =

0.4, σV 2/a = 1, b/a = 6, ∆θ2 = 0.3 π, and σθ2/a = 2. Relevant TEBD parameters

are χ = 80 and d = 6. In Figure 5.7, we show a collision of two solitons at four

separate filling factors: ν = 1, 0.7, 0.4, 0.2. Up to a scale factor, the initial density is

approximately the same in each case because we hold the effective nonlinearity fixed

at νU/J = 0.35. As we lower the filling, the growth rate of quantum fluctuations

increases. The mode into which most atoms deplete vanishes at x = 0 and is similar

at t = 0 to the lowest-lying mode in the Bogoliubov spectrum for the ground state

of the DNLS; it evolves in time into a mode with a sharp density notch at the center

of the lattice. This behavior is similar to that shown in panels (b) and (c) of Figure

4.13. Tuning the time scale of this effect to near the time of collision causes the

soliton-soliton interaction time to increase, hence decreasing the collision elasticity.

This can clearly be seen by comparing the ν = 1 case to the ν = 0.2 case in Figure

5.7. Going to higher filling factors in this case would not be insightful because the

collision is already much like the mean-field result at ν = 1. Comparison to the

associated DNLS simulation can be made by examining Figure 4.11.

5.4 Summary

In summary, we have demonstrated that the techniques of density and phase en-

gineering for dark soliton creation [54, 55] can be generalized to ultracold bosons on

a lattice described by the Bose-Hubbard Hamiltonian. When deep in the superfluid



137

phase of the ground state phase diagram, stationary dark solitons can be created with

lifetimes on the order of tens of tunneling times. The lifetime of such quantum engi-

neered solitons decreases as one tunes toward the Mott border. The basic mechanism

responsible for soliton decay involves two-body scattering processes which deplete

atoms out of the soliton condensate wave function into orbitals with nonvanishing

density in the soliton’s notch. Using the same density and phase engineering meth-

ods, we created initial conditions resembling two dark solitons moving toward one

another at finite speed. For very low filling factors when the growth rate of quantum

fluctuations is large, the collision becomes inelastic due to depletion processes which

lead to occupation of modes with vanishing density at the position of the collision.

We purposely did not perform a time-independent Bogoliubov calculation in

this chapter to analyze engineered standing dark solitons because the initial state is

itself a dynamical state. However, one can still make comparisons to the Bogoliubov

spectrum calculated in Section 4.3.5. The first depleted natural orbital in Figure

5.4(c) compares favorably at t = 0 to the lowest-energy Bogoliubov excitation for

the DNLS ground state, although at later times there is obviously large contributions

from other Bogoliubov modes to the first depleted orbital, including the anomalous

mode. Such a static Bogoliubov-based analysis once again gives us some insight but

leaves out a lot of physics. A time-dependent Bogoliubov calculation could perhaps

be done for this problem in a similar fashion to that presented in Reference [70] in

the context of phase imprinting soliton generation in harmonic traps. However, with

TEBD available to give us a quasi-exact answer, such a calculation should not be

necessary.
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Chapter 6

PRELIMINARY STUDY OF KIBBLE-ZUREK MECHANISM IN

OPTICAL LATTICE OF SPIN-1 BOSONS

In this chapter, we perform a mean-field analysis of a symmetry-breaking quan-

tum phase transition involving spin-1 bosons on a 1D optical lattice. These calcula-

tions will be used as a starting point for future analogous full quantum many-body

simulations using TEBD. As with the quantum soliton problem studied in Chapters

4 and 5, the mean-field picture presents a simpler problem to solve. But, in that

case, we showed that a more complete quantum description is necessary to accurately

describe the quantum dynamics. We might expect a similar result in this study.

The chapter is organized as follows. We first clearly formulate the problem and re-

view its history. Next, discrete mean-field calculations are presented and comparisons

are made to continuum mean-field results already in the literature. Finally, we give

suggestions for future work and elucidate the advantages in using a full many-body

description over its mean-field counterpart.

6.1 Formulation of Problem and Methods Used

As described in Section 2.5.4, the Stamper-Kurn group at Berkeley conducted

a seminal experiment [74] in which a ferromagnetic spin-1 condensate was prepared

in the mF = 0 hyperfine level with a strong magnetic field. The magnetic field was

then instantaneously quenched below a critical value that separates the mF = 0 polar

phase from a ferromagnetic phase characterized by finite magnetization in directions
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transverse to the magnetic field. Because the ferromagnetic phase exhibits rotational

symmetry in the transverse plane, spontaneous symmetry breaking occurs when the

system is quenched below the critical value. In the Berkeley experiment, the subse-

quent dynamics of the system involved the formation of spin textures, ferromagnetic

domains, and topological spin vortices. Some recent theoretical works have investi-

gated the effects of the quench rate on the dynamical phase transition [78, 79] and

have revealed that scaling with the quench rate can be predicted by Kibble-Zurek

theory [80, 81, 82, 83]. In this chapter, we focus on a 1D version of the phase tran-

sition when in the presence of an optical lattice. An analogous continuum study can

be found in Reference [78] upon which we model our calculations.

We consider ferromagnetic atoms with total spin F = 1 on a 1D lattice with box

boundary conditions. This choice of boundary conditions is made because the future

TEBD studies will most likely use box boundary conditions as well. Employing the

single-band tight-binding approximation, the spin-1 Bose-Hubbard Hamiltonian as in

Equation (2.83) becomes our governing model. Because the interactions are ferro-

magnetic, the spin-dependent interaction coefficient is negative, i.e., U2 < 0. Also,

the addition of a magnetic field of strength B in the z-direction, which we choose to

be along the longitudinal direction of the 1D lattice, gives rise to a constant external

potential Q > 0 on the mF = ±1 atoms, cf. Equation (2.99). This potential is due

to the quadratic Zeeman effect; we ignore the linear Zeeman effect because it com-

mutes with the Hamiltonian and thus only rotates the spins at the Larmor frequency

[79]. Hence, the spin-dependent interaction term (proportional to U2 < 0) favors a

ferromagnetic phase and competes with the quadratic Zeeman term (proportional to

Q > 0) which favors a polar phase characterized by all atoms in the mF = 0 hyperfine

state.
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For the present study, we use the spin-1 vector DNLS given in Equations (2.95)–

(2.96) to study the mean-field behavior of the system in the single-band tight-binding

limit. Specifically, we numerically simulate the vector DNLS using the fourth-order

Runge-Kutta method in both real and imaginary time (see Section 3.1). To study the

phase transition dynamically, we first calculate the ground state of a pure mF = 0

condensate; this will be the ground state of the full system for quadratic Zeeman

strengths above a critical value Qc. Generalizing the corresponding continuum result

[78, 79], we expect a critical value Qc ≈ 2ν|U2|. It is apparent from Equations (2.95)–

(2.96), that if at t = 0, ψ±1,k = 0, then ψ±1,k = 0 for t > 0, i.e., mean-field theory

neglects quantum depletion out of a pure mF = 0 condensate due to two-particle

spin-exchange scattering processes involving two colliding atoms in the mF = 0 state

scattering into the mF = ±1 states. In order to mimic these quantum fluctuations

in mean-field, we seed the initial mF = ±1 components with Gaussian white noise of

width σ. That is, at each lattice site k, we use MATLAB’s randn function to generate

random numbers with the probability distribution p(x) = exp(−x2/2σ2)/(
√

2πσ) to

assign to the real and imaginary parts of ψ±1,k. This seeding procedure was also used

in References [78, 79] to model quantum fluctuations, although in the latter case the

seeding was done in momentum space. In order to allow repetition of simulations,

for each simulation we set the state of MATLAB’s random number generator to a

specified state s ∈ {1, 2, . . . , 232 − 1}. Also, before real time evolution, the total

number of atoms in the system is normalized to

N =
M∑

k=1

1∑
α=−1

|ψα,k|2. (6.1)

Next, we numerically propagate the vector DNLS forward in real time. The quadratic
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Zeeman strength is ramped linearly through the critical point:

Q(t) = Q0

(
1− t

τQ

)
, (6.2)

where Q0 > Qc and 0 ≤ t ≤ τQ. Thus, the rate of the downward quench is given

by Q0/τQ. We can also calculate the corresponding equilibrium phase transition by

using imaginary time propagation of the vector DNLS at each value of Q ∈ [0, Q0].

Comparisons can then be made between the dynamical phase transition and its cor-

responding equilibrium prediction.

To characterize the system, we observe the local magnetization at site k ∈
{1, 2, . . . , M}:

fk = (fx,k, fy,k, fz,k)
T ≡

1∑

α,β=−1

ψ∗α,k Fαβ ψβ,k, (6.3)

where Fαβ are elements of the spin-1 matrices given in Equation (2.86). From the

local magnetization, we can calculate the local transverse magnetization given by

mT,k ≡ f 2
x,k + f 2

y,k (6.4)

and the total transverse magnetization given by

MT ≡
M∑

k=1

mT,k. (6.5)

It is also insightful to compute the total occupation numbers of the three spin com-

ponents:

Nα =
M∑

k=1

|ψα,k|2, α ∈ {+1, 0,−1}. (6.6)

In the next two sections, we use these measures to analyze the characteristic behavior
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of the system and make direct comparisons to the analogous continuum prediction

presented in Reference [78].

6.2 Characteristic Simulation

In the following, we focus on a specific set of vector DNLS parameters in order

to highlight the general behavior of the system. Namely, we choose M = 100 sites

at filling ν ≡ N/M = 1 with spin-independent interaction strength U0/J = 3 and

spin-dependent interaction strength U2/J = −0.5 < 0. Hence, from the continuum

result, we should expect a critical value of Qc ≈ 2ν|U2| = J , cf. Equation (2.100). For

the case of the dynamical phase transition, to ensure that at t = 0 the system is in

the polar phase, we select an initial quadratic Zeeman strength Q0/J = 1.3 & 1 that

is subsequently ramped linearly to Q = 0 at a rate τQJ/~ = 300. Before real time

evolution, we seed the real and imaginary parts of the polar phase ground state order

parameter at each site with Gaussian noise of width σ = 10−4 generated after setting

the state of MATLAB’s random number generator to s = 1. During evolution, we

calculate the observables defined in the previous section.

In Figure 6.1(a), we depict the evolution of the transverse magnetization versus

quadratic Zeeman strength both for the dynamical linear ramp of Q through the crit-

ical point and for the equilibrium prediction obtained by imaginary time relaxing the

vector DNLS at each value of Q starting from a uniform state ψα,k =
√

N/3M . The

equilibrium prediction agrees well with the continuum result in that the transverse

magnetization is nonzero for Q < Qc ≈ 2ν|U2| = J . We note that calculation of

the ground state near the critical point converges slowly in imaginary time due to

the phenomena of critical slowing down. For the equilibrium data in Figure 6.1, the

imaginary time procedure was allowed to run for up to 300 tunneling times in step
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Figure 6.1. Comparison of dynamic and equilibrium quantum phase transition. For
the parameters mentioned in the text, we compute (a) the total transverse magne-
tization and (b) occupation numbers of the three spin components as the quadratic
Zeeman coefficient is swept through the critical point to zero. In each case, we con-
sider both the dynamical and equilibrium phase transition. The inset in panel (a) is
a magnification of the behavior near the critical point. We see that the critical point
for our discrete box coincides with the continuum periodic boundary condition value
up to about 1%; however, as we will see in Section 6.3, this discrepancy is important
and cannot be neglected.

sizes δt = 0.001 ~/J to obtain convergence to ∼1% in MT near the critical point; on

the other hand, the equilibrium states far from the critical point typically converge

after only ∼20 tunneling times. In Section 6.3, we show that small uncertainties in the

critical point Qc lead to relatively large uncertainties in the critical scaling properties

of the system. This suggests that further analytical and numerical investigations are

in order regarding whether finite size and/or discreteness cause fine-scale changes in

the critical point. As for the former effect, we report that Qc does increase past the

2ν|U2| prediction as the system size is decreased, e.g., for M = 10 sites with the same

filling and interaction parameters as above, we find Qc ≈ 1.03 J = 1.03 (2ν|U2|).
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Due to the finite rate at which the critical point is crossed, the transverse magne-

tization begins growing at a value of Q past that predicted by the equilibrium curve.

For the selected value of τQ, the final state of the system is a slightly perturbed

broken-symmetry ground state with MT = ν2M . As in [78], the oscillation amplitude

of MT decreases over time after the fast growth in magnetization that occurs at a

distance ∆Qg after the critical point is crossed. As seen in Figure 6.1(b), oscillations

are also observed in the occupation numbers Nα of the three spin components when

the phase transition occurs dynamically. Also, the equilibrium values for the Nα are

approximately the same as in the continuous case. That is, in the continuum we

expect N0

N
= 1

2

(
Q
J

+ 1
)

and N±1

N
= 1

4

(
1− Q

J

)
, which are both in good agreement with

the fine dotted black curves in 6.1(b).

Next, we consider the local behavior of the magnetization in the x-y plane, i.e.,

in directions transverse to the magnetic field. The degeneracy of the ground state

in the broken-symmetry phase an means arbitrary but particular orientation of the

transverse magnetization across the whole system. However, undergoing the phase

transition dynamically will necessarily break this symmetry. We see in Figure 6.2 that

spatial correlations appear in the transverse spin once the transverse magnetization

begins growing at a time ∆tg after passing the critical point. As the system evolves

further in time, the correlation length of the magnetization increases. For the case

of M = 100 sites considered here, the correlation length at the final time, which

corresponds to Q = 0, is greater than the extent of the lattice. Thus, the lattice size

would need to be increased to see entire spin textures.

At time t = 0 when we are in the slightly perturbed (due to our Gaussian random

seeding) polar phase, the longitudinal magnetization is approximately zero: fz,k ≈ 0.

Because the the total longitudinal magnetization
∑M

k=1 fz,k is conserved during time
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Figure 6.2. Time evolution of transverse spin components. For the dynamical phase
transition, the local magnetization in the (a) x and (b) y directions is plotted versus
space and time. The U(1) symmetry in spin space (and resulting rotational symmetry
in the transverse plane) when in equilibrium in the broken-symmetry phase renders a
corresponding equilibrium calculation irrelevant. Note that here we have defined the
the longitudinal direction to lie along the z-direction, hence zk denotes the spatial
position of site k. We see that there are spatial correlations in the transverse spins
once nontrivial evolution begins, and the spin correlation length increases over time.
The horizontal dashed lines indicate when the critical point has been crossed after
which there is time a delay ∆tg before growth in transverse magnetization begins.

evolution, magnetic domains with fixed fz,k sign form when the system enters the

broken-symmetry phase. In Figure 6.3, we depict the local transverse magnetization

[see Equation (6.4)] and the local longitudinal magnetization at the instant when

Q(t)/J = 0.2 < 1. The center of the domains should occur where the local maximum

of |fz,k| line up with the local minima of the transverse magnetization mT,k. The

vertical dashed lines in Figure 6.3 lie approximately at the maxima of |fz,k|, and it

can be seen that in most cases there is a coincidence with a minima in mT,k. Although
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Figure 6.3. Snapshot of formed magnetic domains. For the instant Q(t)/J = 0.2, we
plot the total local transverse magnetization on the top panel and the local longitudi-
nal magnetization on the bottom panel. We see that magnetic domains, i.e., regions
of constant fz,k sign, have formed. The dashed vertical lines highlight coincidences
between maxima in |fz,k| and minima in mT,k; such coincidence are signatures of the
magnetic domains. In both panels, we have, for visual purposes, connected discrete
data points at each lattice site with straight lines.

we do not explore it here, the size of the formed magnetic domains after the system

has dynamically entered the broken-symmetry phase should depend on the quench

rate τQ via a simple power law which is explainable by the Kibble-Zurek mechanism

[78]. In the next section, we explore another scaling law predicted by Kibble-Zurek

theory that relates the rate of the quench to the time at which nontrivial evolution

begins.
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6.3 Calculation of Time Scaling Exponent

It is clear from Figure 6.1 that there is a finite time after which the system has

crossed the equilibrium critical point that unstable evolution begins. We denote this

time ∆tg. If we let Qg be the quadratic Zeeman strength at which MT /(ν2M) = 0.01,

then by Equation (6.2) we can define

∆tg ≡
(

Qc −Qg

Q0

)
τQ, (6.7)

where Qc is the equilibrium critical value separating the polar phase from the broken-

symmetry phase. Kibble-Zurek theory predicts a power law dependence of ∆tg with

quench rate τQ [78]:

∆tg ∝ τ
1/3
Q . (6.8)

We test this prediction in our system by running a number of simulations with iden-

tically seeded initial states but with different τQ, calculating ∆tg for each run. We

then perform a fit of the form

∆tgJ

~
= C

(
τQJ

~

)p

(6.9)

to the obtained data.

Using the continuum critical point Qc = 2ν|U2| = J to compute ∆tg, our fit

returns C = 6.12 ± 0.21, p = 0.273 ± 0.005, giving an exponent p that differs by

approximately 18% from the prediction in Equation (6.8). Figure 6.1 suggests a

critical point slightly greater than 2ν|U2|. The inset in Figure 6.1(a) suggests that

we might take Qc/J = 1.007, i.e., Qc = 1.007 (2ν|U2|), which yields C = 4.49± 0.18,

p = 0.338± 0.006, a result in much better agreement with (6.8). Figure 6.4(a) shows



148

10
2

10
3

10
1.4

10
1.5

10
1.6

10
1.7

τQJ/h̄

∆
t g

J
/
h̄

(a) Fit for Qc = 1.007 (2ν|U2|)

0.99 1 1.01 1.02 1.03
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Qc/(2ν|U2|)

p

(b) Effects of small changes in critical point

Figure 6.4. Calculation of power law scaling exponent in time. Defining the critical
point to be Qc = 1.007 J = 1.007 (2ν|U2|), we show in (a) data of ∆tg versus quench
rate τQ for the filling and interaction parameters used in Section 6.2. The red dashed
line is the obtained best-fit curve defined in the text. (b) The dependence on the scal-
ing exponent p is very sensitive to fine-scale (∼1%) changes in the critical point. The
horizontal green dashed-dotted line indicates the 1/3 prediction, and the red dashed
curve serves as a guide to the eye. The error bars represent asymptotic standard devi-
ations returned by NonlinearRegress command in Mathematica. Finite-size and/or
discreteness effects which slightly alter the critical point, cf. the inset in Figure 6.1(a),
should thus not be neglected when investigating scaling properties of the system with
quench rate.

the data associated when taking Qc = 1.007 (2ν|U2|) and the corresponding fit. In

Figure 6.4(b), we show how the calculation of p depends on the selection of Qc. We

stress how sensitive p is on where we define the critical point. Similarly, the calculation

should also depend strongly on how we define Qg, the quadratic Zeeman strength at

which growth in transverse magnetization begins during dynamical evolution. Here,

as in [78], we have defined it as the point at which the normalized total transverse

magnetization reaches 1%; however, this is just an arbitrary definition. In conclusion,

we have observed in the spin-1 vector DNLS the 1/3 exponent predicted in [78]. But,
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determination of this exponent is very sensitive to where the critical point lies and

where one defines the instant at which unstable evolution begins. The former is not

a consideration in analogous continuum periodic boundary condition studies because

the critical point is obtainable analytically [79].

6.4 Summary and Suggestions for Future Work

In this chapter, we have presented a discrete mean-field analysis of a quantum

phase transition involving spin-1 bosons on a 1D optical lattice. This phase transition

occurs due to a competition between ferromagnetic spin-dependent interactions and a

quadratic Zeeman effect arising from the application of a spatially uniform magnetic

field along the longitudinal direction of the lattice: the spin-dependent interactions

favor a broken-symmetry phase, whereas the quadratic Zeeman effect favors a polar

phase with all atoms in the mF = 0 hyperfine level. We considered a specific set

of parameters and showed that the general qualitative behavior of the system is

consistent with the results of a recent similar study performed by Damski and Zurek

[78] which assumed a continuous 1D box with periodic boundary conditions.

In summary, if the quadratic Zeeman strength is decreased linearly through the

critical point, then nontrivial evolution begins at a point in time after the equilibrium

critical point has been passed. Oscillations appear in the total transverse magneti-

zation, as well as in the occupation of the three allowed spin components, and the

amplitudes of these oscillations decrease with time as the system tends to a slightly

perturbed broken-symmetry phase at the final time when the magnetic field goes

to zero. At the beginning of nontrivial evolution, spatial correlations appear in the

transverse magnetization and the associated spin correlation length increases during

time evolution. Also, longitudinal magnetic domains form after the system begins



150

unstable evolution. Finally, we showed that the scaling properties of the delay time

at which unstable evolution begins are strongly dependent on the placement of the

equilibrium critical point. Calculating the equilibrium behavior of the system near

the critical point to high accuracy is relatively challenging numerically with imagi-

nary time propagation; however, even at M = 100 sites, we obtain converged results

for the location of the critical point which indicate that it differs from the continuum

periodic boundary condition result by less than 1%. This difference is greater for

smaller systems, indicating that the discrepancy is likely due to the finite size of our

1D box. Using the calculated critical point for M = 100, we are able to obtain good

agreement with the 1/3 power law behavior relating quench rate to delay time.

For future work, we suggest the following. The pure mean-field theory used

above completely neglects the quantum fluctuations that are ultimately responsible

for the observed dynamical phase transition. That is, a pure mF = 0 condensate

will remain in the mF = 0 level for all time according the spin-1 vector DNLS. This

is hardly an accurate description of the physics though, because there exists a spin-

conserving two-body collision process which depletes atoms out of the mF = 0 state

into the mF = ±1 states. To emulate these quantum fluctuations in the mean field,

we randomly seed the initial mF = ±1 components at each position as was done in

previous continuum studies [84, 78, 79]. Subsequently, further growth in occupation

of the mF = ±1 states is allowed. We propose the following questions concerning

the validity of using such a mean-field theory for this problem. How important is

the assumption that quantum fluctuations can be simulated in mean field simply via

a random seeding procedure? Also, what happens when we relax the assumption

that all atoms in a given spin component occupy the same spatial wave function?

Both of these questions can be answered by performing a full quantum-many body
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calculation of the dynamical phase transition. To this end, TEBD should serve as an

ideal tool as it allows for quasi-exact simulation of quantum many-body dynamics on

a lattice. In Appendix D, we include the module spin1 module.f90 which builds the

spin-1 Bose-Hubbard Hamiltonian in the appropriate TEBD form. This Hamiltonian

could immediately be folded into the current non-number-conserving Fortran code

but would be too inefficient to be effective without number and spin conservation.

The reason for this inefficiency lies in the poor scaling of the algorithm with local

Hilbert space dimension as discussed in Chapter 3.

Two other main advantages of using TEBD to simulate a spin-1 Kibble-Zurek

mechanism on a lattice include (1) the ability to calculate entanglement dynamics

during the phase transition and (2) the freedom to raise the lattice height and en-

ter the strongly correlated regime. In the latter case, the mean-field vector DNLS

description will inevitably break down. We also need to check whether the critical

quadratic Zeeman strength changes in the quantum theory. Regardless, the above vec-

tor DNLS calculations should serve as a guide for the eventual full many-body TEBD

calculations. At least initially, the procedure for simulating the phase transition in

TEBD could mimic that which we have employed for the mean field. Specifically, we

can calculate equilibrium properties of the system via imaginary time propagation

for all relevant values of external magnetic field, and then simulate the phase transi-

tion dynamically by ramping down the quadratic Zeeman energy in real time. The

latter can be accomplished by redefining and diagonalizing the Hamiltonian at each

time step. This diagonalization process will further slow down the algorithm, making

number and spin conservation in the spin-1 code even more necessary. This proposed

numerical calculation will surely prove to be a challenge, but it will undoubtedly be

accompanied by a wealth of interesting physics.
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Chapter 7

CONCLUSIONS AND OUTLOOK

We have presented a quantum many-body treatment of the dynamics of dark

solitons formed by ultracold bosonic atoms on one-dimensional optical lattices. Past

studies of solitons in optical lattices have employed mean-field theories using both

the continuum NLS [57, 58] and its discrete counterpart, the DNLS [59, 64]. These

approaches are justified given that quantum fluctuations can be safely neglected.

However, this assumption is only valid when we have (1) a hopping parameter much

greater than the interaction parameter and (2) a system in the thermodynamic limit.

The systems that we investigate are closer to those actually studied experimentally

where one has an array of 1D lattices in which each lattice site contains a few atoms. In

this thesis, we considered average filling factors up to one atom per site but will present

results with higher filling factors in a future work [155]. We have clearly demonstrated

that even far into the superfluid region of the Bose-Hubbard phase diagram, quantum

fluctuations greatly affect dark soliton dynamics. For the case of harmonic trap

geometries, previous studies have shown that quantum fluctuations cause standing

dark solitons to fill in [65, 66, 67, 68, 70]. Here, we have obtained similar results for

dark solitons in an optical lattice. We have also shown that, unlike with true dark

solitons that exist as solutions of nonlinear partial differential equations, soliton-

soliton collisions on a Bose-Hubbard lattice can be made inelastic by tuning the time

scale of quantum fluctuations to occur near the time of collision. Thus, perhaps these

structures should technically be termed solitary waves, although we continue to refer
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to them as solitons.

We have considered two types of initial conditions for subsequent propagation of

dark solitons according to the Bose-Hubbard Hamiltonian. In Chapter 4, we created

quantum analogs to the dark solitons of the DNLS by selecting as initial quantum

many-body states truncated Glauber coherent states with appropriate coherent state

amplitudes. Although these states may not be easily obtained experimentally, they

are pleasing from a theoretical standpoint as they exhibit negligible quantum deple-

tion. That is, at time t = 0 all bosons are made to occupy the same single-particle

wave function. For our purposes, this wave function is either (1) a standing dark soli-

ton positioned at the lattice center or (2) two dark solitons with equal and opposite

phase drops with density notches displaced from the origin by a prescribed amount.

Such states exhibit nearly perfect semiclassical behavior, e.g., zero quantum fluctua-

tions, zero spatial entanglement, zero particle entanglement, and Poissonian number

statistics. Hence, their behavior under the corresponding quantum equations of mo-

tion is an interesting theoretical question. In Chapter 4, it was shown that quantum

evolution of mean-field soliton initial conditions differs greatly from the correspond-

ing semiclassical evolution. Namely, certain allowed two-body scattering processes

cause standing dark solitons to fill in within a time on the order of tens of tunneling

times. A similar mechanism causes soliton-soliton collisions to appear inelastic. In

our analysis, we have characterized the quantum dynamics with a complete set of

measures including generalized quantum entropies and number fluctuations. As ex-

pected, quantum evolution causes a growth in quantum effects and the state evolves

into one not describable by semiclassical theories. We have found that the growth

time of quantum effects correlates with the soliton fill-in time.

Chapter 5 was devoted to the quantum engineering of solitons using density and
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phase engineering techniques applied directly to the Bose-Hubbard Hamiltonian. This

approach has the advantage that it emulates exactly how one would experimentally

create dark solitons in optical lattices experimentally. With these initial conditions

and for the parameter regimes considered, dark solitons once again decay on a time

scale that is on the order of tens of tunneling times. Also, if the time scale of quantum

effects is tuned appropriately, collisions may become inelastic. The qualitative behav-

ior is similar to that displayed by the quantum evolution of purely mean-field solitons

in Chapter 4. The main difference is that for quantum engineered dark solitons, the

initial conditions themselves are already entangled.

As with any problem, there is more that can be learned. Comparison of our

TEBD results to a time-dependent Bogoliubov calculation may prove insightful, as

it would allow evaluation of the validity of the Bogoliubov method to describe dark

soliton dissipation on a lattice. Also, the TEBD method, although very powerful,

does not use an efficient basis for the kinds of states considered herein. We are forced

to work in a basis of localized Wannier states in order for the TEBD algorithm to be

applicable. One can generalize the Bose-Hubbard Hamiltonian to a Hamiltonian that

contains destruction and creation operators in something other than a Wannier basis,

e.g., delocalized Bloch wave functions. In such a basis, however, there is no way to

order the modes so that only “nearest-neighbor” coupling occurs, hence TEBD is once

again rendered inefficient. It is clear that for our problem the natural orbitals of the

system are hardly localized on-site and are themselves time-dependent. It would thus

be ideal to work with a basis that is time-adaptive to the current state. Methods

which strive towards this goal are in a relatively early stage of development and

collectively go by the name time-dependent multiconfigurational Hartree-Fock theory

[112, 113, 114]. These methods were mentioned briefly at the end of Section 2.3.3.
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Application of such theories to complicated systems such as lattice geometries could

prove to be not only a better method for solving our soliton problem but could become

another powerful tool for quasi-exact study of many-body phenomena, perhaps as a

complement to TEBD. It may also be worthwhile to develop our own code to include

finite temperature, both in mean field using the ZNG method [159] briefly discussed in

Section 4.3.4 and in quantum field using the finite-temperature extension of TEBD

[161]. Then, direct comparisons can be made between the effects of quantum and

thermal fluctuations on dark solitons.

There are many variations on initial dark soliton-like initial conditions whose

subsequent quantum many-body evolution can be explored with TEBD simulations.

One example would be to create a pair of solitons with equal and opposite finite

velocities via density engineering only but with no phase imprint. Another example

would be to investigate the depletion of a single drifting dark soliton in the lattice

not undergoing a collision. It may also be insightful to study the symmetries and

dynamics of the natural orbitals when the system is initialized in a dark soliton state

not placed in the center of the box. In this case, we should still expect the soliton to fill

in, but the underlying natural orbitals would likely lose their even or odd symmetry.

On a related note, it would be interesting to explore quantum-induced inelasticity

for a pair of solitons colliding with different speeds. Another obvious extension of

this work could involve the investigation of quantum fluctuations on bright solitons

formed by attractive bosons in an optical lattice. In this case, the soliton is the

system’s ground state, so we might expect mean-field theory to work better than for

the dark soliton. However, it would be interesting to see how quantum fluctuations

affect the dynamics of bright solitons and collisions between two bright solitons. It

should be straightforward to perform such studies within the framework of our current
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TEBD code.

After the completion of the main chapters in this thesis, we calculated the pair

correlation function during quantum evolution of a dark soliton. On the lattice, we

define this quantity between sites i and j as g
(2)
ij ≡ 〈b̂†i b̂†j b̂j b̂i〉. This correlation function

is related to the probability that when a particle is measured at site i another particle

will be measured at site j, or vice versa. For visualization, we plot g
(2)
mid,k over time,

i.e., the pair correlation function from the initial location of the soliton out to site k.

Initially, there is a notch in g
(2)
mid,k, but this notch does not persist in time. This is one

piece of evidence that the dark soliton is not simply diffusing in space, i.e., wandering

to the left or right without dissipating. That is, the filling-in phenomena observed in

the average local density is not just the result of averaging over many measurements

of a wandering dark soliton. Note that this is consistent with the observation of

population of higher-order natural orbitals that fill in the density notch. Another

strong piece of evidence that the solitons are not spreading out is related to our

quantum-induced inelasticity result: if solitons were spreading out, they would not

appear to stick together on average over many density measurements. Hence, our

study can confidently be classified as a full quantum entangled dynamical study of

dark solitons.

In Chapter 6, we considered a dynamical quantum phase transition in a system

of ferromagnetic spin-1 bosons trapped in a 1D lattice potential. This phase transi-

tion is driven by changing an external magnetic field that influences the energetics

of the system through the quadratic Zeeman effect. Above a critical value of the

quadratic Zeeman energy, continuous mean-field theory predicts a polar phase with

zero net magnetization, while below the critical value, we expect a broken-symmetry

ground state with rotational symmetry in the plane transverse to the magnetic field.
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The dynamics of this phase transition are consistent with the Kibble-Zurek mech-

anism [77, 78, 79]. Using the recent continuum work of Damski and Zurek [78] as

a guide, we showed that a discrete mean-field tight-binding theory on a lattice can

describe this phase transition. To this end, we performed simulations of a spin-1

vector DNLS. We simulated the phase transition dynamically and made comparisons

to the equilibrium prediction. The obtained results are consistent with those in Ref-

erence [78]. Using the transverse magnetization as an order parameter describing the

equilibrium transition, our calculations indicate that for a finite and discrete system

the critical point changes slightly from the corresponding prediction obtained in the

continuum limit assuming periodic boundary conditions. However, we pointed out

that this small discrepancy is important when calculating certain scaling properties

of the system with quench rate. In the future, we plan to perform an analogous cal-

culation in TEBD to fully characterize the role of quantum many-body effects on this

dynamical phase transition. As highlighted in Section 6.4, there are many distinct

advantages in using TEBD over a simple vector DNLS mean-field theory. On another

note, a potential research question involving both solitons and spin-1 would be to

investigate spin-exchange fluctuations on a dark soliton. That is, we could consider

what happens when a dark soliton is formed by an mF = 0 condensate. Here, not only

would the quantum fluctuations observed in Chapters 4 and 5 play a role, but there

is also the depletion of the mF = 0 mode when two mF = 0 atoms collide resulting

in two mF = ±1 atoms. Neglecting the former depletion processes, we might expect

the soliton notch to be stable but with the soliton tails depleting to mF = ±1 states;

this is due to finite density being necessary for spin-exchange processes. However, a

full TEBD calculation would allow all depletion processes and potentially result in

interesting spin dynamics during dissipation of the soliton.
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[64] P. G. Kevrekidis, R. Carretero-González, G. Theocharis, D. J. Frantzeskakis,
and B. A. Malomed. Stability of dark solitons in a Bose-Einstein condensate
trapped in an optical lattice. Physical Review A, 68:035602, 2003.

[65] Jacek Dziarmaga, Zbyszek P. Karkuszewski, and Krzysztof Sacha. Quantum
depletion of an excited condensate. Physical Review A, 66:043615, 2002.

[66] Jacek Dziarmaga and Krzysztof Sacha. Depletion of the dark soliton: The
anomalous mode of the Bogoliubov theory. Physical Review A, 66:043620, 2002.

[67] Jacek Dziarmaga, Zbyszek P. Karkuszewski, and Krzysztof Sacha. Images of
the dark soliton in a depleted condensate. Journal of Physics B, 36:1217–1229,
2003.

[68] Jacek Dziarmaga and Krzysztof Sacha. Images of a Bose-Einstein condensate:
Diagonal dynamical Bogoliubov vacuum. Journal of Physics B, 39:57–68, 2006.

[69] J. Dziarmaga. Quantum dark soliton: Nonperturbative diffusion of phase and
position. Physical Review A, 70:063616, 2004.

[70] C. K. Law. Dynamic quantum depletion in phase-imprinted generation of dark
solitons. Physical Review A, 68:015602, 2003.

[71] A. C. Scott, J. C. Eilbeck, and H. Gilhoj. Quantum lattice solitons. Physica
D, 78:194–213, 1994.

[72] Y. Lai and H. A. Haus. Quantum theory of solitons in optical fibers. I. Time-
dependent Hartree approximation. Physical Review A, 40:844–853, 1989.

[73] Anthony J. Leggett. Bose-Einstein condensation in the alkali gases: Some
fundamental concepts. Rev. Mod. Phys., 73:307–356, 2001.

[74] L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and D. M. Stamper-
Kurn. Spontaneous symmetry breaking in a quenched ferromagnetic spinor
Bose-Einstein condensate. Nature, 443:312–315, 2006.

[75] J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Meisner, A. P. Chikkatur, and
W. Ketterle. Spin domains in ground-state Bose-Einstein condensates. Nature,
396:345–348, 1998.



164

[76] H.-J. Miesner, D. M. Stamper-Kurn, J. Stenger, S. Inouye, A. P. Chikkatur,
and W. Ketterle. Observation of metastable states in spinor Bose-Einstein
condensates. Physical Review Letters, 82:2228–2231, 1999.

[77] Austen Lamacraft. Quantum quenches in a spinor condensate. Physical Review
Letters, 98:160404, 2007.

[78] Bogdan Damski and Wojciech H. Zurek. Dynamics of a quantum phase tran-
sition in a ferromagnetic Bose-Einstein condensate. Physical Review Letters,
99:130402, 2007.

[79] Hiroki Saito, Yuki Kawaguchi, and Masahito Ueda. Kibble-Zurek mechanism
in a quenched ferromagnetic Bose-Einstein condensate. Physical Review A,
76:043613, 2007.

[80] T. W. B. Kibble. Topology of cosmic domains and strings. Journal of Physics
A: Mathematical and Theoretical, 9:1387–1398, 1976.

[81] T. W. B. Kibble. Some implications of a cosmological phase transition. Physics
Reports, 67:183–199, 1980.

[82] W. H. Zurek. Cosmological experiments in superfluid helium? Nature, 317:505–
508, 1985.

[83] W. H. Zurek. Cosmological experiments in condensed matter systems. Physics
Reports, 276:177–221, 1996.

[84] Hiroki Saito, Yuki Kawaguchi, and Masahito Ueda. Topological defect forma-
tion in a quenched ferromagnetic Bose-Einstein condensates. Physical Review
A, 75:013621, 2007.
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APPENDIX A

VIDAL DECOMPOSITION EXAMPLES

Vidal’s decomposition on an arbitrary state in Fock space of the form

|Ψ〉 =
d∑

i1,i2,...,iM=1

ci1i2···iM |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iM〉, (A.1)

reads

ci1i2···iM =

χ∑
α1,...,αM

Γ[1]i1
α1

λ[1]
α1

Γ[2]i2
α1α2

λ[2]
α2

Γ[3]i3
α2α3

· · ·Γ[M ]iM
αM−1

. (A.2)

For an arbitrary state in Hilbert space for which all the coefficients ci1i2···iM are known,

performing this decomposition is not generally useful because (1) χ generally grows

exponentially in size of the system M and (2) we usually do not have all the dM

coefficients at our disposal. Nonetheless, it is instructive to explicitly derive expres-

sions for the Γs and λs in (A.2) for a few well-known low-χ states in order to get

a feel for how one performs the decomposition. In this appendix, we focus on the

product states, the GHZ state, and the W state. In Section 3.2.2, the procedure for

decomposition of a general state is outlined.

A.1 Product States

When creating initial states for quantum soliton propagation in Chapter 4, we

begin with a product of Glauber atom-number coherent states. Similarly, when using

non-number conserving TEBD to calculate the ground state of a given Hamiltonian,
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one often begins imaginary time propagation with a state that is an equal superpo-

sition of all allowed Fock states. Such a state is, of course, also a product state. It

is thus essential to be able to perform the decomposition (A.2) for product states.

Consider the vacuum state of a system of size M :

|Ψ〉 = |0〉⊗M , (A.3)

which is the simplest product state of the M sites. (For simplicity, we refer to the

subsystems associated with each index ik as sites.) The Schmidt decomposition of

any product state will involve only a single term so that with χ = 1 we have an exact

representation of the state. Performing a splitting after site 1, we can write

|Ψ〉 =
∑
α1

λ[1]
α1
|Φ[1]

α1
〉|Φ[2···M ]

α1
〉 = |0〉|0〉⊗M−1, (A.4)

and thus λ
[1]
α1 = δα1,1 or, more generally, λ

[`]
α` = δα`,1. The first Γ simply represents

the coefficients associated with the individual Fock states |i1〉. That is, |Φ[1]
α1〉 =

∑
i1

Γ
[1]i1
α1 |i1〉, so Γ

[1]i1
α1 = δα1,1δi1,0.

We then proceed to expand the |Φ[2···M ]
α1 〉 in a local basis for the second site. That

is,

|Φ[2···M ]
α1

〉 =
∑
i2

|i2〉|τ [3···M ]
α1i2

〉. (A.5)

For the present case, we can easily identify the vectors

|τ [3···M ]
α1i2

〉 = δα1,1δi2,0|0〉M−2. (A.6)
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Γ[2] is then obtained by

|τ [3···M ]
α1i2

〉 =
∑
α2

Γ[2]i2
α1α2

λ[2]
α2
|Φ[3···M ]

α2
〉, (A.7)

where the Schmidt vectors |Φ[3···M ]
α2 〉 for the second bipartite splitting are trivially

|0〉M−2, and so Γ
[2]i2
α1α2 = δα1,1δα2,1δi2,0. In general, we thus have Γ

[`]i`
α`−1α` = δα`−1,1δα`,1δi2,0.

This procedure can easily be applied to a general product state of the form

|Ψ〉 =
M⊗

k=1

|ψk〉, where |ψk〉 =
d∑

ik=1

c
(k)
ik
|ik〉. (A.8)

Of course, we still have χ = 1, so λ
[`]
α` = δα`,1. For the first bipartite splitting, we have

|Ψ〉 = |ψ1〉
M⊗

k=2

|ψk〉, (A.9)

so |Φ[1]
α1〉 = δα1,1|ψ1〉 and |Φ[2···M ]

α1 〉 = δα1,1

⊗M
k=2 |ψk〉, and hence Γ

[1]i1
α1 = c

(1)
i1

. As before,

we can expand |Φ[2···M ]
α1 〉 in the second site’s local basis and find the vectors |τ [3···M ]

α1i2
〉

[see Equation (A.7)] to be

|τ [3···M ]
α1i2

〉 = δα1,1c
(2)
i2

M⊗

k=3

|ψk〉, (A.10)

from which we can identify Γ
[2]i2
α1α2 = c

(2)
i2

δα1,1δα2,1. Or, more generally, we can write

Γ
[`]i`
α`−1α` = c

(`)
i`

δα`−1,1δα`,1 for an arbitrary Γ and have thus obtained explicit expressions

for the Γs and λs in (A.2) for a product state (A.8).
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A.2 GHZ State

Next, we consider the GHZ (Greenberger-Horne-Zeilinger) state [162] of M qubits

(we now refer to the subsystems as qubits because they are assumed to be two-

state systems) which is a maximally entangled state according to most entanglement

measures:

|Ψ〉 =
1√
2

(|0〉⊗M + |1〉⊗M
)
. (A.11)

The Schmidt decomposition at an arbitrary link ` will involve only χ = 2 terms:

|Ψ〉 =
1√
2

(|0〉⊗`|0〉⊗M−` + |1〉⊗`|1〉⊗M−`
)
. (A.12)

For the first splitting, we can easily identify λ
[1]
α1 =

δα1,1√
2

and Γ
[1]i1
α1 = δα1,1δi1,0 +

δα1,2δi1,1. In fact, the λs can be written down immediately from the general Schmidt

decomposition given in (A.12):

λ[l]
αl

=
1√
2

(δα`,1 + δα`,2) . (A.13)

We can then write the [2 · · ·M ] part of the Schmidt vectors for the first splitting in

the local basis for the second qubit

|Φ[2···M ]
α1

〉 =
∑
i2

|i2〉|τ [3···M ]
α1i2

〉 = δα1,1|0〉M−1 + δα1,2|1〉M−1, (A.14)

and hence,

|τ [3···M ]
α1i2

〉 = δα1,1δi2,0|0〉M−2 + δα1,2δi2,1|1〉M−2. (A.15)
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The [3 · · ·M ] part of the Schmidt vectors for the second splitting is given by

|Φ[3···M ]
α2

〉 = δα2,1|0〉M−2 + δα2,2|1〉M−2, (A.16)

from which we can use (A.7) with (A.15) to solve for the Γ
[2]i2
α1α2 yielding Γ

[2]i2
α1α2 =

δα1,1δα2,1δi2,0 + δα1,2δα2,2δi2,1 which can be generalized immediately to yield

Γ[`]i`
α`−1α`

= δα`−1,1δα`,1δi`,0 + δα`−1,2δα`,2δi`,1. (A.17)

A.3 W State

A less trivial example is the M -qubit W state defined by

|Ψ〉 =
1√
M

M∑

k=1

|0〉⊗M−k|1〉|0〉⊗k−1, (A.18)

which is an equal superposition of all states involving only a single qubit in the state

|1〉 and the remaining M − 1 qubits in the state |0〉. This state can always be written

as a sum of two products:

|Ψ〉 =

√
M − `

M
(|0〉⊗`)⊗ 1√

M − `

(
M−`∑
i=1

|0〉⊗M−`−i|1〉|0〉⊗i−1

)

+

√
M

`

(
1√
`

∑̀
i=1

|0〉⊗`−i|1〉|0〉⊗i−1

)
⊗ (|0〉⊗M−`), (A.19)
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and thus has a Schmidt number χ = 2. From Equation (A.19), we can identify the

λs and the first Γ:

λ[`]
α`

= δα`,1

√
M − `

M
+ δα`,2

√
`

M
, (A.20)

Γ[1]i1
α1

= δα1,1δi1,0 + δα1,2δi1,1. (A.21)

For ` > M/2, λ
[`]
2 > λ

[`]
1 , so in practice the Schmidt vectors and coefficients should be

reordered accordingly. For the sake of this discussion, we need not be concerned with

this detail.

As before, we will write the [2 · · ·M ] part of the Schmidt vectors for the ` = 1

splitting, i.e., |Φ[2···M ]
α1 〉, in the local basis for the second qubit and find the vectors

|τ [3···M ]
α1i2

〉. First, let us write down the actual Schmidt vectors for an arbitrary `:

|Φ[1···`]
α`

〉 = δα`,1|0〉⊗` + δα`,2
1√
`

∑̀

k=1

|0〉⊗`−k|1〉|0〉⊗k−1, (A.22)

|Φ[`+1···M ]
α`

〉 = δα`,1
1√

M − `

M−`∑

k=1

|0〉⊗M−`−k|1〉|0〉⊗k−1 + δα`,2|0〉⊗M−`. (A.23)

Thus, for the first splitting we have

|τ [3···M ]
α1i2

〉 = δα1,1δi2,0

√
M − 2

M − 1
|Φ[3···M ]

α2=1 〉+ δα1,1δi2,1
1√

M − 1
|Φ[3···M ]

α2=2 〉

+ δα1,2δi2,0|Φ[3···M ]
α2=2 〉 (A.24)
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from which we can solve for the second Γ to be

Γ[2]i2
α1α2

= δα1,1δα2,1δi2,0

√
M

M − 1
+ δα1,1δα2,2δi2,1

√
M

2(M − 1)

+ δα1,2δα2,2δi2,0

√
M

2
. (A.25)

One can generalize this procedure for an arbitrary splitting and obtain

Γ[`]i`
α`−1α`

= δα`−1,1δα`,1δi`,0

√
M

M − ` + 1
+ δα`−1,1δα`,2δi`,1

√
M

`(M − ` + 1)

+ δα`−1,2δα`,2δi`,0

√
M

`
, (A.26)

which completes the decomposition.
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APPENDIX B

ACCURACY AND CONVERGENCE OF TIME-EVOLVING BLOCK

DECIMATION SIMULATIONS

In this appendix, we consider the main sources of error inherent in the TEBD

algorithm. First, we examine the convergence of our results with respect to χ, the

number of basis sets retained for each two-site operation of the procedure; this is

perhaps the most important numerical convergence parameter of the method. We

show convergence plots for time-dependent simulations using TEBD of both mean-

field dark solitons and quantum engineered dark solitons, as can be found in Chapters

4 and 5, respectively. In the second section, we discuss the other errors present in

the routine, namely the errors associated with a Suzuki-Trotter expansion of the time

evolution operator and with truncation of the local boson Hilbert space dimension.

Convergence of our results with respect to δt, the Suzuki-Trotter time-step size, and

d, the local Hilbert space dimension, will be summarized.

B.1 Error in Schmidt Truncation Procedure

As explained in Section 3.2.3, for each two-site operation performed during time

evolution, we only retain the largest χ eigenvectors of the reduced density matrices for

the subsystems on each side of the link associated with the two-site operation. Due

to the way in which we perform the two-site operation by calculating a singular value

decomposition of a (χd)× (χd) matrix, we discard the smallest χ(d− 1) eigenvalues.

In this section, we analyze convergence of our results with respect to χ, thus assessing
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the validity of truncating each Schmidt decomposition at the largest χ Schmidt basis

sets.

B.1.1 Mean-Field Soliton Initial Conditions

In Figure B.1, we plot the time dependence of selected observables for different

values of χ for quantum evolution of a mean-field dark soliton. Other than χ, the

parameters used are identical to those used for the simulation in Section 4.3.2. Aver-

ages over local observables, such as the order parameter norm in Figure B.1(a) and

the average local impurity in Figure B.1(b), converge quickly in χ. Even at χ as low

as 20, we obtain physically sensible results. In Figure B.1(c), we plot the average

number at the center site, i.e., the density at the soliton’s center. It is clear from

this figure that average local number is well-converged in χ. On the other hand,

quantum depletion as shown in B.1(d) is only converged to . 5% at the final time for

χ = 50. The reason being that depletion is calculated via an eigendecomposition of

the single-particle density matrix with elements 〈b̂†j b̂i〉 that are nonlocal observables.

This is a general result: because of the local nature of the matrix product decompo-

sition of the state as defined in Equation (3.27), the more local an observable, the

faster convergence occurs with respect to χ. Thus, there is error on the quantitative

value of the fragmentation time of the soliton, as signified by the peak in depletion,

that is on the order of a few tunneling times. The qualitative picture, however, should

remain unaffected. In Figure B.2, we take the χ = 50 simulation as the best result

and plot the error of the observables displayed in Figure B.1 for the χ ∈ {40, 30, 20}
simulations relative to the χ = 50 simulation. In the relative error calculations, we

normalize the difference between the two results to the average of the two results.

These calculations can be used to make estimates in the percent error of the χ = 50
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results.

The local Schmidt truncation error τS
` is defined as the sum of discarded reduced

density matrix eigenvalues for a given two-site operation at link `, cf. Equation

(3.41). The total Schmidt truncation error τS for a given time step is the sum of local

Schmidt truncation errors associated with forward propagation of the entire system

at that time step. Of course, this procedure requires O(M) two-site operations. In

Figure B.3(a), we plot the total Schmidt truncation error at each time. As expected,

this value decreases with increased χ. These simulations run for 4000 time steps

because we use time steps of size δt = 0.01 ~/J for a total simulation time tf =

40 ~/J . Thus, when integrated over time to the final time tf , the total Schmidt

truncation error is O(10−2). However, the local Schmidt truncation error at the final

time can be estimated at 10−2/M ∼ 10−3, a very acceptable result. As a last check on

our TEBD results we consider how well the method conserves total average number

and total average energy, both conserved quantities according to the Bose-Hubbard

Hamiltonian. In Figure B.3, we plot the relative error in these quantities at the final

time as compared to the initial time. We see that both errors are . 1%. The error in

energy decreases as χ is increased, while the error in total number does not depend

strongly on χ for the range of χ considered here.

B.1.2 Quantum Engineered Soliton Initial Conditions

We now consider convergence of our results with respect to χ for the case of our

quantum soliton engineering calculations as presented in Chapter 5. Here, we select

the same parameters as the characteristic density and phase engineered dark soliton

analyzed in Section 5.2.2. Recall that for that simulation we chose χ = 80. In Figure

B.4(a)–(c), we plot the number variance, von Neumann entropy, and average particle
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(d) Depletion

Figure B.1. Dependence of observables on χ for quantum evolution of a standing
mean-field soliton. For values of χ ∈ {50, 40, 30, 20}, we plot over time the (a) order
parameter norm, (b) average local impurity, (c) average particle occupation number
at the center lattice site, and (d) quantum depletion. All other simulation parameters
are the same as those used in the characteristic simulation of mean-field dark soliton
quantum evolution presented in Section 4.3.2. The quantum depletion in (d) is less
well-converged the other measures at late times due to its dependence on nonlocal
observables.



182

10
−5

10
−4

10
−3

10
−2

10
−1

10
00

5

10

15

20

25

30

35

40
tJ

/
h̄

Error in Nb/Nb(0)

 

 

χ = 40
χ = 30
χ = 20

(a) Order parameter norm

10
−5

10
−4

10
−3

10
−2

10
−10

5

10

15

20

25

30

35

40

tJ
/
h̄

Error in Qmodes

 

 

χ = 40

χ = 30

χ = 20

(b) Average local impurity

10
−5

10
−4

10
−3

10
−2

10
−10

5

10

15

20

25

30

35

40

tJ
/
h̄

Error in 〈n̂mid〉

 

 

χ = 40

χ = 30

χ = 20

(c) Average number at lattice center

10
−5

10
−4

10
−3

10
−2

10
−1

10
00

5

10

15

20

25

30

35

40

tJ
/
h̄

Error in D

 

 

χ = 40

χ = 30

χ = 20
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Figure B.2. Relative error of observables with different χ for quantum evolution of a
standing mean-field soliton. For the same measures as in Figure B.1, we plot the error
of the χ ∈ {40, 30, 20} results relative to the χ = 50 result. (a) The relative error in
the order parameter norm at long times is large due to the quantity itself vanishing,
hence small magnitude fluctuations are magnified. The errors in (b) average local
impurity, (c) average number at lattice center, and (d) quantum depletion are all
very acceptable.
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(b) Energy and number conservation

Figure B.3. Truncation error and conservation of good quantum numbers for quantum
evolution of a standing mean-field soliton. (a) The total Schmidt truncation error for
each TEBD time step is plotted over time for χ ∈ {50, 40, 30, 20}. We see that for the
values of χ considered here this quantity stays O(10−5). Because for these simulations
we choose M = 31 sites, the Schmidt truncation error is only O(10−6) for each time
step. (b) As compared to their initial values, the relative error in average total particle
number and average total energy at the final time are plotted versus the same values
of χ as in (a). We see that these errors are an acceptable O(10−2). The curves in (b)
are a guide to the eye; actual data are points.

number all at the center site over time for different values of χ. It is clear that local

observables are converged at χ = 80. Figure B.4(d) reveals that quantum depletion

is also converged for χ = 80 despite it being nonlocal. For the same measures as in

Figure B.4, Figure B.5 depicts the error in the χ ∈ {70, 60, 50} data relative to the

χ = 80 simulation. As expected, increasing χ generally decreases the relative error of

a given observable.

As in Section B.1.1, we now consider the Schmidt truncation error and conser-

vation of total number and energy. In Figure B.6(a), we see that the total Schmidt

truncation error at the final time is . 10−5 for χ = 80; thus, the integrated lo-



184

0.8 0.9 1 1.1 1.2 1.3
0

5

10

15

20

25

30

35

40  
tJ

/
h̄

〈(∆n̂mid)
2〉/〈n̂mid〉

 

 

χ = 80
χ = 70
χ = 60
χ = 50

(a) Normalized variance at lattice center

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40  

tJ
/
h̄

SvN, mid

 

 

χ = 80

χ = 70

χ = 60

χ = 50

(b) von Neumann entropy at lattice center

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40  

tJ
/
h̄

〈n̂mid〉

 

 

χ = 80

χ = 70

χ = 60

χ = 50

(c) Average number at lattice center

0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40  
tJ

/
h̄

D

 

 

χ = 80

χ = 70

χ = 60

χ = 50

(d) Depletion

Figure B.4. Dependence of observables on χ for engineered standing quantum soliton.
For values of χ ∈ {80, 70, 60, 50}, we plot over time the (a) normalized number vari-
ance, (b) local von Neumann entropy, and (c) average particle occupation number all
at the center of the lattice. Because we use an even number of sites, we average the
data associated with the sites immediately to the left and right of the lattice center.
An analogous plot of quantum depletion is shown in (d). All other simulation param-
eters are the same as those used in the characteristic simulation of engineered dark
quantum soliton propagation presented in Section 5.2.2. All results are acceptably
well-converged with respect to χ.
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Figure B.5. Relative error of observables with different χ for engineered standing
quantum soliton. For the same measures as in Figure B.4, we plot the error of the
χ ∈ {70, 60, 50} results relative to the χ = 80 result. Although at a given time
increasing χ generally decreases the percent error, there are exceptions at certain
times in the normalized number variance plot shown in (a). All results are clearly
well-converged at χ = 80.
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(b) Energy and number conservation

Figure B.6. Truncation error and conservation of good quantum numbers for engi-
neered standing quantum soliton. (a) The total Schmidt truncation error for each
TEBD time step is plotted over time for χ ∈ {80, 70, 60, 50}. We see that for the
values of χ considered here this quantity stays O(10−5). Because for these simulations
we choose M = 31 sites, the Schmidt truncation error is only O(10−6) for each time
step. (b) As compared to their initial values, the relative error in average total par-
ticle number and average total energy at the final time are plotted versus the same
values of χ as in (a). Total number is conserved fundamentally due to our use of
number-conserving methods. The energy is conserved to about 0.1%. Again, curves
in (b) are a guide to the eye.

cal Schmidt truncation error over the 4000 time steps of the simulation is O(10−2).

We see that increasing χ from 20 to 80 results in only about a factor of two drop

in Schmidt truncation error for these simulations. Figure B.6(b) shows the relative

error in computed total number and average energy at the final time as compared

to the initial time. Because we use number-conserving algorithms for these simula-

tions, total number is conserved to machine precision, whereas the error in energy

conservation is at an acceptable 10−3.
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B.2 Other Sources of Error

For all TEBD simulations in this thesis, we use a time step of size δt = 0.01 ~/J .

Using the second-order Suzuki-Trotter expansion as in Equation (3.43), results in an

error O(δt3) for each time step. Hence, by taking δt = 0.01 ~/J over 4000 time steps,

we should expect an accumulated error of O(10−3). We tested the validity of using

δt = 0.01 ~/J by going to δt = 0.005 ~/J and δt = 0.001 ~/J in the number-conserving

code. The δt = 0.005 ~/J data agrees with the δt = 0.01 ~/J data to about 1% at

long times. However, we do observe that decreasing the step size helps to hold the

symmetry about the lattice center of the space-time surface plots displaying soliton

evolution. As expected, this is especially true at long times. At short times, using a

larger step size, e.g., δt = 0.05 ~/J , may be justifiable.

The truncation of the local Hilbert space of a boson lattice system is not specific

to TEBD. For instance, it is an approximation used in exact diagonalization studies

as well. For the quantum evolution of mean-field soliton simulations in Chapter 4,

we take the local dimension to be d = 7, allowing up to 6 bosons per site. For

the ν ≤ 1 filling factors considered, this leads to a coherent state truncation error

of ∆ . 10−4. Also, the normalized number variance remains on the order of unity

throughout time evolution, thus indicating that 7 number states is plenty sufficient

to describe the dynamics. However, we do find that decreasing d to 5 or 6 truncates

the coherent state to such an extent that the soliton fill-in times decrease by a few

tunneling times. For our quantum engineering soliton studies, we take d = 6 in all

simulations. In general, observables at d = 6 are converged to about 1% compared

to those obtained at d = 7. As with χ, there is really no straightforward prescription

in determining what local dimension is necessary for a given simulation. Instead, it

is best to look for convergence of observables upon successively increasing d.
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APPENDIX C

MEAN-FIELD SIMULATION CODE

This appendix contains the most important functions used for our discrete mean-

field calculations in Chapters 4, 5, and 6. For specifics of the finite difference methods

employed for time propagation of the DNLS for both scalar and spin-1 bosons, see

Section 3.1. The real time propagation functions for the scalar and vector DNLS are

shown below in Sections C.1 and C.2, respectively. In Section C.3, we show the code

used to calculate Bogoliubov excitation spectrums as in Section 4.3.5. Discussion of

Bogoliubov methods as applied to the DNLS is presented in Section 2.3.5. All mean-

field code can be found in the thesis DVD under the folder \DiscreteMeanField.

C.1 scalarDNLS RTP.m

function [x, t, psi] = ...
scalarDNLS_RTP(methodOpt, M, tf, dt, stores, printPeriod, ...
psi0, Vext, hbar, J, U)

% [x, t, psi] = ...
% scalarDNLS_RTP(methodOpt, M, tf, dt, stores, printPeriod, ...
% psi0, Vext, hbar, J, U)
%
% Input parameters:
% methodOpt = type of method to use:
% ’expEuler’ for explicit Euler,
% ’CN’ for Crank-Nicolson.
% ’RK4’ for 4th-order Runge-Kutta.
% M = number of lattice sites.
% tf = final time.
% dt = time step size.
% stores = number of time points to store for output.
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% printPeriod = number of steps between status print.
% psi0 = initial wave function;
% either M-dimensional vector or function handle.
% Vext = function handle for external potential.
% hbar = Planck’s constant!
% J = hopping parameter.
% U = interaction parameter.
%
% Output variables:
% x = spatial grid.
% t = temporal grid with stores points.
% psi = solution with stores data points.

% Calculate temporal grids. T is the actual temporal grid with ~tf/dt
% points, whereas t is the truncated grid with stores points used for
% plotting.
Dt = tf/(stores - 1);
small_steps = ceil(Dt/dt);
dt = Dt/(small_steps - 1);
T = 0:dt:tf;
t = 0:Dt:tf;
Tpts = length(T);

% Calculate spatial grid.
x = ((-M + 1)/2:(M - 1)/2)’;

% Allocate space for solution over time and set initial condition.
psi = zeros(M, stores);
psitemp = zeros(M, 1);
if ischar(psi0)

psitemp = feval(psi0, x);
else

psitemp = psi0;
end

% Define identity matrix and imaginary number i.
I = sparse(1:M, 1:M, 1, M, M);
i = sqrt(-1);

% Define kinetic energy part of Jacobian.
Hkin = sparse(1:M-1, 2:M, -J, M, M);
Hkin = Hkin + Hkin’;

% Define external potential part of Jacobian.
if ischar(Vext)

V = sparse(1:M, 1:M, feval(Vext, x), M, M);
else

V = sparse(1:M, 1:M, Vext, M, M);
end
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% Time iteration using method specified by input parameter methodOpt.
print_steps = ceil(printPeriod/dt);
storeInd = 1
display(’Starting RTP!’);
if strcmp(methodOpt, ’expEuler’)

for Tind = 1:Tpts
if mod(Tind-1, small_steps-1) == 0

psi(:, storeInd) = psitemp;
storeInd = storeInd + 1;

end
if mod(Tind-1, print_steps) == 0

disp([’time = ’, num2str(T(Tind))]);
end
Hint = U * sparse(1:M, 1:M, abs(psitemp.^2), M, M);
H = Hkin + V + Hint;
psitemp = (I - i*dt*H/hbar) * psitemp;

end
elseif strcmp(methodOpt, ’CN’)

for Tind = 1:Tpts
if mod(Tind-1, small_steps-1) == 0

psi(:, storeInd) = psitemp;
storeInd = storeInd + 1;

end
if mod(Tind-1, print_steps) == 0

disp([’time = ’, num2str(T(Tind))]);
end
Hintleft = U * sparse(1:M, 1:M, abs(psitemp.^2), M, M);
Hleft = Hkin + V + Hintleft;
psihalf = (I - i*Hleft*dt/(2*hbar)) * psitemp;
Hinthalf = U * sparse(1:M, 1:M, abs(psihalf.^2), M, M);
Hhalf = Hkin + V + Hinthalf;
Lop = I + i*Hhalf*dt/(2*hbar);
Rop = I - i*Hhalf*dt/(2*hbar);
psitemp = (Rop/Lop) * psitemp;

end
elseif strcmp(methodOpt, ’RK4’)

for Tind = 1:Tpts
if mod(Tind-1, small_steps-1) == 0

psi(:, storeInd) = psitemp;
storeInd = storeInd + 1;

end
if mod(Tind-1, print_steps) == 0

disp([’time = ’, num2str(T(Tind))]);
end
Hint = U * sparse(1:M, 1:M, abs(psitemp.^2), M, M);
H = Hkin + V + Hint;
F = H/(i*hbar);
k1 = F * psitemp;
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k2 = F * (psitemp + dt/2.0 * k1);
k3 = F * (psitemp + dt/2.0 * k2);
k4 = F * (psitemp + dt * k3);
psitemp = psitemp + dt/6.0 * (k1 + 2*k2 + 2*k3 + k4);

end
else

error(’methodOpt in scalarDNLS_RTP must be either expEuler, CN, or RK4’);
end
display(’RTP finished!’);

C.2 vectorDNLS RTP.m

function [x, t, psi, indsUp, inds0, indsDown] = ...
vectorDNLS_RTP(methodOpt, M, tf, dt, stores, printPeriod, ...
psiUp, psi0, psiDown, Vup, V0, Vdown, hbar, J, U0, U2)

% [x, t, psi, indsUp, inds0, indsDown] = ...
% vectorDNLS_RTP(methodOpt, M, tf, dt, stores, printPeriod, ...
% psiUp, psi0, psiDown, Vup, V0, Vdown, hbar, J, U0, U2)
%
% Input parameters:
% methodOpt = type of method to use:
% ’expEuler’ for explicit Euler,
% ’CN’ for Crank-Nicolson,
% ’RK4’ for 4th-order Runge-Kutta.
% M = number of lattice sites.
% tf = final time.
% dt = time step size.
% stores = number of time points to store for output.
% printPeriod = number of steps between status print.
% psiUp = initial wave function for up component;
% either M-dimensional vector or function handle.
% psi0 = initial wave function for 0 component;
% either M-dimensional vector or function handle.
% psiDown = initial wave function for down component;
% either M-dimensional vector or function handle.
% Vup = function handle for potential on up component.
% V0 = function handle for potential on 0 component.
% Vdown = function handle for potential on down component.
% hbar = Planck’s constant!
% J = hopping parameter.
% U0 = spin-independent interaction parameter.
% U2 = spin-dependent interaction parameter.
%
% Output variables:
% x = spatial grid.
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% t = temporal grid with stores points.
% psi = solution with stores data points.
% indsUp = row indices of up component.
% inds0 = row indices of 0 component.
% indsDown = row indices of down component.

% Calculate temporal grids. T is the actual temporal grid with ~tf/dt
% points, whereas t is the truncated grid with stores points used for
% plotting.
Dt = tf/(stores - 1);
small_steps = ceil(Dt/dt);
dt = Dt/(small_steps - 1);
T = 0:dt:tf;
t = 0:Dt:tf;
Tpts = length(T);

% Calculate spatial grid.
x = ((-M + 1)/2:(M - 1)/2)’;

% Calculate indices of different spin components.
indsUp = 1:M;
inds0 = M+1:2*M;
indsDown = 2*M+1:3*M;

% Allocate space for solution over time and set initial conditions.
psi = zeros(3*M, stores);
psitemp = zeros(3*M, 1);
if ischar(psiUp)

psitemp(indsUp) = feval(psiUp, x);
else

psitemp(indsUp) = psiUp;
end
if ischar(psi0)

psitemp(inds0) = feval(psi0, x);
else

psitemp(inds0) = psi0;
end
if ischar(psiDown)

psitemp(indsDown) = feval(psiDown, x);
else

psitemp(indsDown) = psiDown;
end

% Define identity matrix and imaginary number i.
I = sparse(1:3*M, 1:3*M, 1, 3*M, 3*M);
i = sqrt(-1);

% Time iteration using method specified by input parameter methodOpt.
print_steps = ceil(printPeriod/dt);
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storeInd = 1;
display(’Starting RTP!’);
if strcmp(methodOpt, ’expEuler’)

for Tind = 1:Tpts
if mod(Tind-1, small_steps-1) == 0

psi(:, storeInd) = psitemp;
storeInd = storeInd + 1;

end
if mod(Tind-1, print_steps) == 0

disp([’time = ’, num2str(T(Tind)), ’, Q = ’, ...
num2str(feval(Vdown, x, T(Tind)))]);

end
[Fz, Fminus] = ...

calculateFs(psitemp(indsUp), psitemp(inds0), psitemp(indsDown));
H = sparse([1:M-1, M+1:2*M-1, 2*M+1:3*M-1], ...

[2:M, M+2:2*M, 2*M+2:3*M], -J, 3*M, 3*M) ...
+ sparse(1:2*M, M+1:3*M, ...
U2/sqrt(2)*[Fminus; Fminus], 3*M, 3*M);

H = H + H’;
H = H + sparse(1:3*M, 1:3*M, ...

[feval(Vup, x, T(Tind)) + U0*(abs(psitemp(indsUp)).^2 + ...
abs(psitemp(inds0)).^2 + abs(psitemp(indsDown)).^2) + U2*Fz; ...
feval(V0, x, T(Tind)) + U0*(abs(psitemp(indsUp)).^2 + ...
abs(psitemp(inds0)).^2 + abs(psitemp(indsDown)).^2); ...
feval(Vdown, x, T(Tind)) + U0*(abs(psitemp(indsUp)).^2 + ...
abs(psitemp(inds0)).^2 + abs(psitemp(indsDown)).^2) - U2*Fz], ...
3*M, 3*M);

psitemp = (I - i*dt*H/hbar) * psitemp;
end

elseif strcmp(methodOpt, ’CN’)
for Tind = 1:Tpts

if mod(Tind-1, small_steps-1) == 0
psi(:, storeInd) = psitemp;
storeInd = storeInd + 1;

end
if mod(Tind-1, print_steps) == 0

disp([’time = ’, num2str(T(Tind)), ’, Q = ’, ...
num2str(feval(Vdown, x, T(Tind)))]);

end
[Fzleft, Fminusleft] = ...

calculateFs(psitemp(indsUp), psitemp(inds0), psitemp(indsDown));
Hleft = sparse([1:M-1, M+1:2*M-1, 2*M+1:3*M-1], ...

[2:M, M+2:2*M, 2*M+2:3*M], -J, 3*M, 3*M) ...
+ sparse(1:2*M, M+1:3*M, ...
U2/sqrt(2)*[Fminusleft; Fminusleft], 3*M, 3*M);

Hleft = Hleft + Hleft’;
Hleft = Hleft + sparse(1:3*M, 1:3*M, ...

[feval(Vup, x, T(Tind)) + U0*(abs(psitemp(indsUp)).^2 + ...
abs(psitemp(inds0)).^2 + abs(psitemp(indsDown)).^2) + U2*Fzleft; ...
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feval(V0, x, T(Tind)) + U0*(abs(psitemp(indsUp)).^2 + ...
abs(psitemp(inds0)).^2 + abs(psitemp(indsDown)).^2); ...
feval(Vdown, x, T(Tind)) + U0*(abs(psitemp(indsUp)).^2 + ...
abs(psitemp(inds0)).^2 + abs(psitemp(indsDown)).^2) ...
- U2*Fzleft], 3*M, 3*M);

psihalf = (I - i*Hleft*dt/(2*hbar)) * psitemp;
[Fzmid, Fminusmid] = ...

calculateFs(psihalf(indsUp), psihalf(inds0), psihalf(indsDown));
Hhalf = sparse([1:M-1, M+1:2*M-1, 2*M+1:3*M-1], ...

[2:M, M+2:2*M, 2*M+2:3*M], -J, 3*M, 3*M) ...
+ sparse(1:2*M, M+1:3*M, ...
U2/sqrt(2)*[Fminusmid; Fminusmid], 3*M, 3*M);

Hhalf = Hhalf + Hhalf’;
Hhalf = Hhalf + sparse(1:3*M, 1:3*M, ...

[feval(Vup, x, (T(Tind)+T(Tind+1))/2) + ...
U0*(abs(psihalf(indsUp)).^2 + abs(psihalf(inds0)).^2 + ...
abs(psihalf(indsDown)).^2) + U2*Fzleft; ...
feval(V0, x, (T(Tind)+T(Tind+1))/2) + ...
U0*(abs(psihalf(indsUp)).^2 + abs(psihalf(inds0)).^2 + ...
abs(psihalf(indsDown)).^2); ...
feval(Vdown, x, (T(Tind)+T(Tind+1))/2) + ...
U0*(abs(psihalf(indsUp)).^2 + abs(psihalf(inds0)).^2 + ...
abs(psihalf(indsDown)).^2) - U2*Fzleft], ...
3*M, 3*M);

Lop = I + i*Hhalf*dt/(2*hbar);
Rop = I - i*Hhalf*dt/(2*hbar);
psitemp = (Rop/Lop) * psitemp;

end
elseif strcmp(methodOpt, ’RK4’)

for Tind = 1:Tpts
if mod(Tind-1, small_steps-1) == 0

psi(:, storeInd) = psitemp;
storeInd = storeInd + 1;

end
if mod(Tind-1, print_steps) == 0

disp([’time = ’, num2str(T(Tind)), ’, Q = ’, ...
num2str(feval(Vdown, x, T(Tind)))]);

end
[Fz, Fminus] = ...

calculateFs(psitemp(indsUp),psitemp(inds0),psitemp(indsDown));
H = sparse([1:M-1, M+1:2*M-1, 2*M+1:3*M-1], ...

[2:M, M+2:2*M, 2*M+2:3*M], -J, 3*M, 3*M) ...
+ sparse(1:2*M, M+1:3*M, ...
U2/sqrt(2)*[Fminus; Fminus], 3*M, 3*M);

H = H + H’;
H = H + sparse(1:3*M, 1:3*M, ...

[feval(Vup, x, T(Tind)) + U0*(abs(psitemp(indsUp)).^2 + ....
abs(psitemp(inds0)).^2 + abs(psitemp(indsDown)).^2) + U2*Fz; ...
feval(V0, x, T(Tind)) + U0*(abs(psitemp(indsUp)).^2 + ...
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abs(psitemp(inds0)).^2 + abs(psitemp(indsDown)).^2); ...
feval(Vdown, x, T(Tind)) + U0*(abs(psitemp(indsUp)).^2 + ...
abs(psitemp(inds0)).^2 + abs(psitemp(indsDown)).^2) - U2*Fz], ...
3*M, 3*M);

F = H/(i*hbar);
k1 = F * psitemp;
k2 = F * (psitemp + dt/2.0 * k1);
k3 = F * (psitemp + dt/2.0 * k2);
k4 = F * (psitemp + dt * k3);
psitemp = psitemp + dt/6.0 * (k1 + 2*k2 + 2*k3 + k4);

end
else

error(’methodOpt in vectorDNLS_RTP must be either expEuler, CN, or RK4’);
end
display(’RTP finished!’);

C.3 BogModes.m

function [u, v, evals] = BogModes(psi, mu, J, U, epsilon)

% [u, v, evals] = BogModes(psi, mu, J, U, epsilon)
%
% Input parameters:
% psi = DNLS solution.
% mu = chemical potential of DNLS solution.
% J = hopping parameter.
% U = interaction parameter.
% epsilon = external potential
%
% Output variables:
% u = u’s in Bogoliubov equations.
% v = v’s in Bogoliubov equations.
% evals = frequencies of collective excitations.

% Calculate matrix G to diagonalize.
M = length(psi);
G = sparse(1:M, 1:M, -mu + 2*U*abs(psi).^2 + epsilon, 2*M, 2*M) ...

+ sparse(M+1:2*M, M+1:2*M, mu - 2*U*abs(psi).^2 - epsilon, 2*M, 2*M) ...
+ sparse(1:M-1, 2:M, -J, 2*M, 2*M) ...
+ sparse(M+1:2*M-1, M+2:2*M, J, 2*M, 2*M) ...
+ sparse(1:M-1, 2:M, -J, 2*M, 2*M).’ ...
+ sparse(M+1:2*M-1, M+2:2*M, J, 2*M, 2*M).’ ...
+ sparse(1:M, M+1:2*M, U*psi.^2, 2*M, 2*M) ...
+ sparse(M+1:2*M, 1:M, -U*conj(psi).^2, 2*M, 2*M);

% Diagonalize G, select only those modes with positive norm, and normalize
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% solution accordingly.
[evecs, evals] = eig(full(G)); diag(evals);
[evals, sortInds] = sort(diag(evals), ’ascend’);
evecs = evecs(:, sortInds);
norms = sum(abs(evecs(1:M, :)).^2 - abs(evecs(M+1:2*M, :)).^2, 1);
posInds = find(norms > 10^-8);
evals = evals(posInds);
evecs = evecs(:, posInds);
for i = 1:size(evecs, 2)

evecs(:, i) = evecs(:, i)./sqrt(norms(posInds(i)));
end

% Store final solution.
u = evecs(1:M, :);
v = evecs(M+1:2*M, :);
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APPENDIX D

TIME-EVOLVING BLOCK DECIMATION CODE

In this appendix, we present the current version of our TEBD code. For brevity in

display, we only show in Section D.1 the module used for generation of the spin-1 Bose-

Hubbard Hamiltonian; this module will be used in a future work investigating the

Kibble-Zurek mechanism in a system of spin-1 bosons on an optical lattice. The entire

code used to produce the results in this thesis can be found in a nicely formatted pdf

file entitled sourceCode.pdf in the included thesis DVD under the folder \AppendixD.

D.1 spin1 module.f90

MODULE spin1_module

USE system_parameters
USE MPDtools_module

IMPLICIT NONE

! Declare spin-1 operators.
TYPE(matrix) :: aup_op
TYPE(matrix) :: adagup_op
TYPE(matrix) :: a0_op
TYPE(matrix) :: adag0_op
TYPE(matrix) :: adown_op
TYPE(matrix) :: adagdown_op
TYPE(matrix) :: nup_op
TYPE(matrix) :: n0_op
TYPE(matrix) :: ndown_op
TYPE(matrix) :: nupn0_op
TYPE(matrix) :: n0ndown_op
TYPE(matrix) :: nupndown_op
TYPE(matrix) :: nupsq_op
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TYPE(matrix) :: ndownsq_op
TYPE(matrix) :: adagupadagdowna0sq_op
TYPE(matrix) :: adag0sqaupadown_op
TYPE(matrix) :: Ssq_op
TYPE(matrix) :: ntot_op
TYPE(matrix) :: ntotsq_op
TYPE(matrix) :: Ssqxone_op
TYPE(matrix) :: onexSsq_op
TYPE(matrix) :: ntotxone_op
TYPE(matrix) :: onexntot_op
TYPE(matrix) :: ntotsqxone_op
TYPE(matrix) :: onexntotsq_op
TYPE(matrix) :: nupxone_op
TYPE(matrix) :: onexnup_op
TYPE(matrix) :: ndownxone_op
TYPE(matrix) :: onexndown_op
TYPE(matrix) :: adagupxaup_op
TYPE(matrix) :: adag0xa0_op
TYPE(matrix) :: adagdownxadown_op
TYPE(matrix) :: tup_op
TYPE(matrix) :: t0_op
TYPE(matrix) :: tdown_op
TYPE(matrix) :: ttot_op

CONTAINS

! Function to calculate physical site local dimension for spin-1 system.
FUNCTION spin1LocalDim(maxFill)

INTEGER, INTENT(IN) :: maxFill
INTEGER :: spin1LocalDim
spin1LocalDim = ((maxFill + 3)*(maxFill + 2)*(maxFill + 1))/6

END FUNCTION spin1LocalDim

! Subroutine that returns list of on-site states for a Hilbert space truncated at &
nmax maximum particles per site.

SUBROUTINE onsiteStateList(list, nmax)
INTEGER, INTENT(IN) :: nmax
COMPLEX(KIND=8), INTENT(OUT) :: list(:, :)
INTEGER i, j, n(3), counter, k
list = 0.0_8
counter = 0

! Loop over all nmax, beginning with nMax=0.

DO k = 1, nmax+1, 1
counter = counter+1
n = 0.0_8

! Put all particles in the m=1 spin state.
n(1) = k-1

! Counter keeps track of the proper indexing.
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list(counter, :) = n(:)

! Loop over the number in the m=0 spin state
DO i = 1, k-1, 1

counter = counter+1
n(1) = n(1)-1

! Begin by placing all particles that are not in the m=1 state in the m=0 state.
n(2) = k-1-n(1)
n(3) = 0
list(counter, :) = n(:)

DO j = 1, k-1-n(1), 1
counter = counter+1

! Move particles out of the m=0 state into the m=-1 state.
n(2) = n(2)-1
n(3) = n(3)+1

list(counter, :) = n(:)
END DO

END DO
END DO

END SUBROUTINE onsiteStateList

! Kronecker delta function defined for two vectors vec1 and vec2.
FUNCTION kronDelta(vec1, vec2, dim)

COMPLEX(KIND=8), INTENT(IN) :: vec1(:), vec2(:)
INTEGER, INTENT(IN) :: dim
INTEGER :: kronDelta
INTEGER :: dim1, dim2, i, j
INTEGER, DIMENSION(dim) :: booles
dim1 = SIZE(vec1)
dim2 = SIZE(vec2)
IF (dim1 /= dim .OR. dim2 /= dim) THEN

STOP "Dimensions of input vectors in function kronDelta &
must be the same."

END IF
DO i = 1, dim

IF (vec1(i) == vec2(i)) THEN
booles(i) = 1

ELSE
booles(i) = 0

END IF
END DO
kronDelta = 1
DO j = 1, dim

kronDelta = kronDelta * booles(j)
END DO

END FUNCTION kronDelta
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! Subroutine to create matrix representations of operators pertinent to spin-1 &
Bose-Hubbard Hamiltonian.

SUBROUTINE CreateSpin1ops()
INTEGER :: i, j, d, dsq, spinSize
TYPE(matrix) :: stateList, newState
COMPLEX(KIND=8) :: preFactor
d = localSize
dsq = d*d
spinSize = 3
ALLOCATE(aup_op%m(d, d))
ALLOCATE(adagup_op%m(d, d))
ALLOCATE(a0_op%m(d, d))
ALLOCATE(adag0_op%m(d, d))
ALLOCATE(adown_op%m(d, d))
ALLOCATE(adagdown_op%m(d, d))
ALLOCATE(nup_op%m(d, d))
ALLOCATE(n0_op%m(d, d))
ALLOCATE(ndown_op%m(d, d))
ALLOCATE(nupn0_op%m(d, d))
ALLOCATE(n0ndown_op%m(d, d))
ALLOCATE(nupndown_op%m(d, d))
ALLOCATE(nupsq_op%m(d, d))
ALLOCATE(ndownsq_op%m(d, d))
ALLOCATE(adagupadagdowna0sq_op%m(d, d))
ALLOCATE(adag0sqaupadown_op%m(d, d))
ALLOCATE(Ssq_op%m(d, d))
ALLOCATE(ntot_op%m(d, d))
ALLOCATE(ntotsq_op%m(d, d))
ALLOCATE(Ssqxone_op%m(dsq, dsq))
ALLOCATE(onexSsq_op%m(dsq, dsq))
ALLOCATE(ntotxone_op%m(dsq, dsq))
ALLOCATE(onexntot_op%m(dsq, dsq))
ALLOCATE(ntotsqxone_op%m(dsq, dsq))
ALLOCATE(onexntotsq_op%m(dsq, dsq))
ALLOCATE(nupxone_op%m(dsq, dsq))
ALLOCATE(onexnup_op%m(dsq, dsq))
ALLOCATE(ndownxone_op%m(dsq, dsq))
ALLOCATE(onexndown_op%m(dsq, dsq))
ALLOCATE(adagupxaup_op%m(dsq, dsq))
ALLOCATE(adag0xa0_op%m(dsq, dsq))
ALLOCATE(adagdownxadown_op%m(dsq, dsq))
ALLOCATE(tup_op%m(dsq, dsq))
ALLOCATE(t0_op%m(dsq, dsq))
ALLOCATE(tdown_op%m(dsq, dsq))
ALLOCATE(ttot_op%m(dsq, dsq))
aup_op%m = CMPLX(0.0, KIND=8)
a0_op%m = CMPLX(0.0, KIND=8)
adown_op%m = CMPLX(0.0, KIND=8)
ALLOCATE(stateList%m(d, spinSize))
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ALLOCATE(newState%m(1, spinSize))
CALL onsiteStateList(stateList%m, maxFilling)
DO j = 1, d

newState%m(1, :) = stateList%m(j, :)
preFactor = SQRT(newState%m(1, 1))
newState%m(1, 1) = newState%m(1, 1) - 1.0_8
DO i = 1, d

aup_op%m(i, j) = &
preFactor*kronDelta(stateList%m(i, :), &
newState%m(1, :), spinSize)

END DO
END DO
adagup_op%m = TRANSPOSE(aup_op%m)
DO j = 1, d

newState%m(1, :) = stateList%m(j, :)
preFactor = SQRT(newState%m(1, 2))
newState%m(1, 2) = newState%m(1, 2) - 1.0_8
DO i = 1, d

a0_op%m(i, j) = &
preFactor*kronDelta(stateList%m(i, :), &
newState%m(1, :), spinSize)

END DO
END DO
adag0_op%m = TRANSPOSE(a0_op%m)
DO j = 1, d

newState%m(1, :) = stateList%m(j, :)
preFactor = SQRT(newState%m(1, 3))
newState%m(1, 3) = newState%m(1, 3) - 1.0_8
DO i = 1, d

adown_op%m(i, j) = &
preFactor*kronDelta(stateList%m(i, :), &
newState%m(1, :), spinSize)

END DO
END DO
adagdown_op%m = TRANSPOSE(adown_op%m)
nup_op%m = MATMUL(adagup_op%m, aup_op%m)
n0_op%m = MATMUL(adag0_op%m, a0_op%m)
ndown_op%m = MATMUL(adagdown_op%m, adown_op%m)
nupn0_op%m = MATMUL(nup_op%m, n0_op%m)
n0ndown_op%m = MATMUL(n0_op%m, ndown_op%m)
nupndown_op%m = MATMUL(nup_op%m, ndown_op%m)
nupsq_op%m = MATMUL(nup_op%m, nup_op%m)
ndownsq_op%m = MATMUL(ndown_op%m, ndown_op%m)
adagupadagdowna0sq_op%m = &

MATMUL(MATMUL(MATMUL(adagup_op%m, adagdown_op%m), &
a0_op%m), a0_op%m)

adag0sqaupadown_op%m = &
MATMUL(MATMUL(MATMUL(adag0_op%m, adag0_op%m), &
aup_op%m), adown_op%m)
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Ssq_op%m = 2.0_8*nupn0_op%m + 2.0_8*n0ndown_op%m + nup_op%m + &
2*n0_op%m + ndown_op%m + &
nupsq_op%m - 2.0_8*nupndown_op%m + ndownsq_op%m + &
2*adagupadagdowna0sq_op%m + 2*adag0sqaupadown_op%m

ntot_op%m = nup_op%m + n0_op%m + ndown_op%m
ntotsq_op%m = MATMUL(ntot_op%m, ntot_op%m)
CALL TensorProduct(Ssqxone_op%m, Ssq_op%m, one_op%m)
CALL TensorProduct(onexSsq_op%m, one_op%m, Ssq_op%m)
CALL TensorProduct(ntotxone_op%m, ntot_op%m, one_op%m)
CALL TensorProduct(onexntot_op%m, one_op%m, ntot_op%m)
CALL TensorProduct(ntotsqxone_op%m, ntotsq_op%m, one_op%m)
CALL TensorProduct(onexntotsq_op%m, one_op%m, ntotsq_op%m)
CALL TensorProduct(nupxone_op%m, nup_op%m, one_op%m)
CALL TensorProduct(onexnup_op%m, one_op%m, nup_op%m)
CALL TensorProduct(ndownxone_op%m, ndown_op%m, one_op%m)
CALL TensorProduct(onexndown_op%m, one_op%m, ndown_op%m)
CALL TensorProduct(adagupxaup_op%m, adagup_op%m, aup_op%m)
CALL TensorProduct(adag0xa0_op%m, adag0_op%m, a0_op%m)
CALL TensorProduct(adagdownxadown_op%m, adagdown_op%m, adown_op%m)
tup_op%m = adagupxaup_op%m + Transpose(adagupxaup_op%m)
t0_op%m = adag0xa0_op%m + Transpose(adag0xa0_op%m)
tdown_op%m = adagdownxadown_op%m + Transpose(adagdownxadown_op%m)
ttot_op%m = tup_op%m + t0_op%m + tdown_op%m
DEALLOCATE(stateList%m)
DEALLOCATE(newState%m)
PRINT *, "Spin-1 operators created!"

END SUBROUTINE CreateSpin1ops

! Subroutine to deallocate spin-1 operators.
SUBROUTINE DestroySpin1ops()

DEALLOCATE(aup_op%m, adagup_op%m, a0_op%m, adag0_op%m, &
adown_op%m, adagdown_op%m, nup_op%m, n0_op%m, ndown_op%m)

DEALLOCATE(nupn0_op%m, n0ndown_op%m, nupndown_op%m, &
nupsq_op%m, ndownsq_op%m, &
adagupadagdowna0sq_op%m, adag0sqaupadown_op%m)

DEALLOCATE(Ssq_op%m, ntot_op%m, ntotsq_op%m)
DEALLOCATE(Ssqxone_op%m, onexSsq_op%m, &

ntotxone_op%m, onexntot_op%m, &
ntotsqxone_op%m, onexntotsq_op%m)

DEALLOCATE(nupxone_op%m, onexnup_op%m, &
ndownxone_op%m, onexndown_op%m)

DEALLOCATE(adagupxaup_op%m, adag0xa0_op%m, adagdownxadown_op%m, &
tup_op%m, t0_op%m, tdown_op%m, ttot_op%m)

PRINT *, "Spin-1 operators destroyed!"
END SUBROUTINE DestroySpin1ops

! TEBD form of spin-1 Bose-Hubbard Hamiltonian with quadratic Zeeman strength VB.
! J, U0, U2 are the usual spin-1 Bose-Hubbard parameters and mu0 is the &
chemical potential.
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! This subroutine needs to be modified if an arbitary external potenial on the &
three components is desired.

SUBROUTINE HamiltonianSpin1(H, J, U0, U2, mu0, VB)
TYPE(matrix), POINTER :: H(:)
REAL(KIND=8), INTENT(IN) :: J, U0, U2, mu0, VB
INTEGER :: i, n
n = systemSize
DO i = 1, (n-1)

H(i)%m = ((-1.0_8*mu0 - U0/2.0_8 - U2)*ntotxone_op%m + &
U0/2.0_8*ntotsqxone_op%m)/2.0_8 + &
((-1.0_8*mu0 - U0/2.0_8 - U2)*onexntot_op%m + &
U0/2.0_8*onexntotsq_op%m)/2.0_8 + &
(U2/2.0_8*Ssqxone_op%m)/2.0_8 + &
(U2/2.0_8*onexSsq_op%m)/2.0_8 + &
VB*(nupxone_op%m + ndownxone_op%m)/2.0_8 + &
VB*(onexnup_op%m + onexndown_op%m)/2.0_8 + &
J*ttot_op%m

END DO
H(1)%m = H(1)%m + ((-1.0_8*mu0 - U0/2.0_8 - U2)*ntotxone_op%m + &

U0/2.0_8*ntotsqxone_op%m)/2.0_8 + &
(U2/2.0_8*Ssqxone_op%m)/2.0_8 + &
VB*(nupxone_op%m + ndownxone_op%m)/2.0_8

H(n-1)%m = H(n-1)%m+((-1.0_8*mu0-U0/2.0_8 - U2)*onexntot_op%m + &
U0/2.0_8*onexntotsq_op%m)/2.0_8 + &
(U2/2.0_8*onexSsq_op%m)/2.0_8 + &
VB*(onexnup_op%m + onexndown_op%m)/2.0_8

END SUBROUTINE HamiltonianSpin1

END MODULE spin1_module


