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ABSTRACT

Interatomic interactions in a Bose-Einstein condensate (BEC) may be tuned via

a Feshbach resonance, as in experiments where a stable condensate is given attrac-

tive interactions and caused to collapse. The Bosenova, as this collapse is sometimes

called, qualitatively resembles a supernova, with energetic bursts, jets of atoms, and

formation of higher mass molecules from initially lower mass atomic constituents. Ex-

periments performed in the seemingly opposite vein, with repulsive interactions, have

similar features, including bursts and sometimes more than 50 percent of condensate

atoms escaping detection.

Attempts to describe these experiments using mean field theory produce only

qualitative agreement, suggesting that quantum fluctuations may play a signicant

role in these experiments concerning BECs with order-unity diluteness parameters.

Hartree-Fock-Bogoliubov (HFB) theories that incorporate lowest-order fluctuations

have been proposed in the past to describe such situations. We present a rigorous

derivation of dynamical HFB equations and use an established and successful model

of the Feshbach resonance that is valid at the resonance, where the Gross-Pitaevskii

equation is undefined. This model takes the form of four coupled nonlinear partial

differential equations defined over time and six spatial independent variables. As-

suming symmetries more general than those used in the past reduces the number of

spatial independent variables to four, and simulations in cylindrical symmetry require

five independent variables, in addition to time.

We approximate solutions to these equations by the method of lines, using an

adaptive Runge-Kutta method for time propagation and pseudospectral approxima-
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tions to spatial derivatives. Collapse simulations in spherical symmetry qualitatively

resemble the experiments, and we are able to predict a rapid and oscillatory exchange

of particles between condensed atomic and molecular fields. Such oscillations also ex-

ist in simulations with repulsive interactions and have been experimentally observed.

Among our other predictions are an approximately quadratic time dependence of the

time to collapse, and high molecular velocities, on the order of millimeters per second,

when molecules dissociate. Simulations also suggest that initially contracted conden-

sates have distinct regions of collapse and expansion, and that the total number of

noncondensed atoms has a periodic modulation of a predictable frequency when the

condensate is subjected to particular ramps in magnetic field. Though our goal is

to reproduce the experiments in our simulations, our quantitative disagreement with

experiments indicates that second order quantum fluctuations are not the primary

mechanism for burst formation or condensate loss in experiments with either attrac-

tive or repulsive interactions. We have also written and tested parallel code that

allows for simulation of experimental parameters in cylindrical geometry, which has

previously been thought unfeasible.
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Chapter 1

INTRODUCTION

Bose-Einstein condensates (BECs) provide a medium in which to observe quan-

tum mechanics on a macroscopic scale. BECs subject to external magnetic fields

that influence the sign and strength of interatomic interactions within the conden-

sate exhibit exotic behavior, as demonstrated by recent collapse experiments [1] that

qualitatively resemble supernovas, with energetic bursts, jets, excited remnants with

nonlinear dynamics, and formation of higher mass components from lower mass ones.

Experiments [2, 3] performed in the seemingly opposite vein, using repulsive inter-

atomic interactions, have some of the same mysterious features of the collapse experi-

ments; namely, an energetic burst of atoms and a significant portion of atoms escaping

detection. Experimental observations of collapsing Bose-Einstein condensates have

eluded satisfactory quantitative explanation for years, with the mechanism for the for-

mation of bursts in the case of collapse and that of repulsive interactions remaining

particularly mysterious.

Mean field theory (namely, the Gross-Pitaevskii equation) appears able to explain

neither the bursts’ origin, nor a key element of the driving force towards collapse, as

evidenced by consistent over-estimations of the time required for the condensate to

collapse. This theory is essentially a classical field theory, and does not account for

quantum fluctuations. These fluctuations are deviations from a measured average;

manifestations of quantum fluctuations in other scenarios include the Casimir effect,

in which nonzero fluctuations of an electric field that is zero on average cause two
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electrically neutral conducting plates to attract [4]; and some explanations of the

Hawking radiation of a black hole, in which the fluctuations around the vacuum allow

for the creation of particle-antiparticle pairs, with only one member of the pair falling

into the black hole. In the quantum field theoretic description of BECs, quantum

fluctuations correspond to particles that are not Bose-condensed, and the Gross-

Pitaevskii equation, though it is computationally quite feasible, does not account for

these. A full quantum treatment of BECs accounts exactly for all particles in the

system, but is numerically and analytically impractical for the numbers of atoms and

geometries encountered in experiments.

Besides providing insight into experimental quantum physics, the experiments

concerning repulsive interactions may allow for the creation of a molecular BEC,

which could provide a means by which to demonstrate the Einstein-Podolsky-Rosen

paradox [5], and an explanation of the collapse may have implications for astrophysics.

Indeed, the Bosenova, as the collapse is sometimes called, may be the only way to

model a supernova-like process in a laboratory. Dimer, trimer, and tetramer formation

from the consituent atoms of the BEC could be important to both processes, though

our model will only account for dimers. The astrophysical connection may be more

than qualitative, as superfluidity and possible condensation in the cores of neutron

stars play an important role in neutron star evolution [6]. Neutron stars having

kaon-condensed1 cores may even be especially prone to later collapse into black holes

[8, 9], making the laboratory study of collapsing BECs directly applicable to proposed

astrophysical processes.

Our attempt to simulate the results of these experiments uses a Hartree-Fock-

1A kaon is a strange meson with spin 0, composed of either an up quark and strange antiquark,
a down quark and a strange antiquark, a down antiquark and a strange quark, or an up antiquark
and a strange quark [7].
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Bogoliubov (HFB) theory that accounts for low-order quantum fluctuations. HFB

theories similar to our own have been applied successfully in explanations of certain

repulsive-interaction experiments [10], and have been used with modest success in

describing collapsing condensates [11, 12, 13]. We extend established theory by com-

bining the proven Feshbach resonance model of Kokkelmans et al. [14] with more

advanced numerical methods than have been used in past HFB simulations. Our

model for spherical geometry is more general than that of Milstein et al. [11] and

Wüster et al. [12, 13], in that we assume no symmetry in the relative momentum

between two particles. We also provide a parallelization scheme and working imple-

mentation for a cylindrical geometry, which was previously thought to be impractical.

As a consequence, this thesis is heavily computational in nature.

1.1 Bose-Einstein Condensation

Bose-Einstein condensation refers to a macroscopic occupation of a single quan-

tum state by many bosons, first proposed by S. N. Bose in 1924 [15] for photons,

and generalized to massive bosons by Einstein shortly thereafter [16, 17]. Though

long suspected to play a key role in 4He superfluidity, Bose-Einstein condensation was

unambiguously achieved experimentally for the first time in 1995 [18, 19, 20].

In the ideal gas approximation (see [21], for example), the excited states of

a bosonic system can hold only a finite number of bosons, while the ground state

has no such limitation below a critical temperature Tc. For a given number density

n of noninteracting identical particles, condensation in an untrapped gas in three

dimensions occurs at a temperature

Tc =
h2

2πmkB

[
n

ζ
(

3
2

)]2/3

, (1.1)
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where h is Planck’s constant, m is a particle’s mass, kB is Boltzmann’s contsant, and

ζ is the Riemann zeta function. The presence of a harmonic trap changes the critical

temperature to

Tc =
h

2πkB

[
N

ζ(3)

]1/3

ω̄, (1.2)

where N is the number of particles and ω̄ ≡ (ωxωyωz)
1/3 is the geometric mean of

the three dimensional trap’s frequencies. Experimentally, it is most practical to work

at very low densities and pressures (and thus very low temperatures, on the order

of nanokelvin), though condensation, albeit far from the noninteracting limit, may

occur in such dense systems as helium superfluids and neutron stars [22]. where

N is the number of particles and ω̄ ≡ (ωxωyωz)
1/3 is the geometric mean of the

three dimensional trap’s frequencies. Experimentally, it is most practical to work at

very low densities and pressures (and thus very low temperatures, on the order of

nanokelvin), though condensation, albeit far from the noninteracting limit, can occur

in such dense systems as helium superfluids and neutron stars [22].

BECs are typically formed in magneto-optical traps, where atoms far from the

origin of the trap are, due to a nonuniform magnetic field, more likely to transition to

states that are subject to the radiation pressure of incident lasers, exerting a restoring

force towards the trap center. Ever-present laser light can heat the condensate, so

the atoms are then irradiated with a pump laser that forces them into a state where

the atoms’ electrons have particular orbital and spin magnetic moments (that is,

a particular hyperfine state) so that they may be contained by a purely magnetic

trap. This trap consists of a magnetic field that varies quadratically in space. The

energy shift of an atom in a magnetic field due to the weak field Zeeman effect is

approximately linear, making the magnetic trap effectively harmonic. The final stage

of cooling usually consists of evaporative cooling, where the walls of the magnetic trap
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are temporarily cut so that the faster-moving atoms can escape. The traps considered

in some of the experiments below are somewhat unique in that evaporative cooling is

accomplished with electromagnetic pulses to which the higher energy atoms respond

by making transitions to hyperfine states that are not confined by the magnetic trap

[22, 23, 24].

The dynamic properties of BECs in harmonic traps are usually well modeled by

the Gross-Pitaevskii equation (GPE):

i~
∂

∂t
ψ(x, t) =

[
− ~2

2m
∇2 + Vext + g |ψ(x, t)|2

]
ψ(x, t) , (1.3)

where m is the mass of the constituent atom; Vext is the possibly time- and position-

dependent external potential; g controls the strength of the mean-field, or self in-

teraction; and ψ(x, t), sometimes called the “wavefunction of the condensate,” is the

condensate’s order parameter corresponding to a broken gauge symmetry (see [25], for

example). The squared modulus of the condensate wavefunction gives the number

density of atoms in the condensate at the position x and time t, while the gradi-

ent of the condensate phase angle is proportional to the local velocity. Implicit in

the GPE are many assumptions which the experiments described below challenge;

we mention some of these assumptions (and corrections to them) throughout this

thesis. The validity of the GPE in any particular situation may be most easily sum-

marized by consideration of the diluteness parameter,
√
na3, where n is the density

of condensed particles and a is the s-wave scattering length, which characterizes the

strength and sign of interatomic interactions. The diluteness parameter gives an

order-of-magnitude estimate of the fraction of particles in the system that are not in

the condensate [22]. As long as
√
na3 � 1, the GPE accounts for the majority of

particles in the system [22, 23].
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If the interactions between atoms are sufficiently attractive, the kinetic energy of

the atoms (also called quantum pressure) may become overwhelmed by the potential

energy of their interactions, and the condensate may collapse. A variational treatment

of the GPE shows that a condensate with attractive interactions will be stable in a

harmonic trap if [22, 23]

κ ≡ N |a|
aho

< 0.67, (1.4)

where N is the number of particles in the condensate and aho =
√

~/mω is the

harmonic oscillator length. Numerical solutions [26] of the GPE replace the stability

coefficient kstab on the right hand side of (1.4) with the more accepted value of 0.574,

which experiments [27, 28, 24] confirm.2 The nearly ten percent disagreement between

the variational treatment and the numerical results of Ruprecht et al. [26] is due to

the Gaussian variational ansatz; the numerical studies show that the ground state of

a stable, attractive condensate is narrower, closer to a double exponential.

1.1.0 Interatomic Interactions

The constituent atoms of a BEC are usually neutral alkali atoms, having a single

valence electron outside of completely closed electronic shells. As described in Refs.

[22] and [29], for example, the electron clouds of neutral atoms are not rigid in the

presence of an external electric field and are subject to polarization. At long and

moderate distances, two neutral atoms induce electric dipole moments in each other,

resulting in an attractive potential proportional to r−6, where r is the separation

between the atoms’ nuclei. This is the van der Waals interaction. The potential at

long range varies as r−7 due to retardation effects, but characterizations of interactions

2Reference [27] has a measured stability coefficient substantially lower than 0.574, but Reference
[24] states that the more accurate atomic parameters published in [28] make the measurements of
[27] agree very well with the predicted value of 0.574.
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are rarely concerned with these long distances. As two neutral atoms approach each

other and their wavefunctions begin to overlap, the Pauli exclusion principle may

have significant effects on their valence electrons. If the valence electrons of the two

atoms have opposite spins, the valence electron clouds can spatially overlap without

any increase in energy. If the electrons have the same spin, as the outer electrons of

alkali atoms in magnetically trapped BECs do, the Pauli exclusion principle requires

that one or both electrons make energetically expensive transitions to other states if

they are to overlap, markedly reducing the attraction due to the electric dipole-dipole

interaction. As the atoms grow nearer still, their closed-shell electrons must make

prohibitively expensive transitions for the closed-shell clouds to overlap, resulting in

an effectively hard-sphere repulsive potential. This hard-sphere potential is difficult

to calculate from first principles, but computational convenience and agreement with

empirical data suggest a r−12 model [30]. A linear combination of the r−6 and r−12

models is called the Lennard-Jones potential [29].

Alkali atoms have abundant hyperfine states, and magnetic and Coulombic inter-

actions between atoms can cause the spin configurations of colliding atoms to change.

Since most of the methods for trapping atoms (including those methods used in the

experiments with which we are concerned) rely on the atoms having a particular spin

configuration, such spin exchange processes can result in condensed atoms transition-

ing to untrapped states, and perhaps exiting the system entirely. Conversely, spin

exchange processes between noncondensed atoms can contribute to the condensate,

but usually the loss terms dominate. The rates of these losses are proportional to the

square of the condensate’s density. Other losses occur through three-body recombi-

nation, in which three atoms collide; two of the atoms form a bound pair, and the

third absorbs the new molecule’s binding energy. This loss rate is proportional to
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the cube of the condensate density, and so becomes especially important in regions of

high density. Finally, some atoms are removed from the condensate by collisions with

atoms or molecules not of the condensate’s species, the presence of which is due to

an imperfect vacuum in experiments. These loss rates are determined by the density

of the impurities.

Following [22], for example, a Feshbach resonance is an elastic scattering phe-

nomenon that is particularly susceptible to experimental control. Formally defined

as a scattering process in which a bound state would result if some parameter of the

governing Hamiltonian were slightly changed (see [31], for one), an example will best

illustrate the application to BECs. Consider two atoms in unbound states having

total energy E and subject to a potential Vin(r) such that E is barely larger than

Vin(r), where r is the separation of the nuclei. After some spin exchange process, the

atoms may transition to other hyperfine states, making them now subject to a slightly

different potential, Vout(r). If the new potential is such that E < Vout(r) for some

r outside the hard-sphere radius, the atoms will form a bound pair. See Figure 1.1

for a conceptual illustration. It may happen that the colliding atoms have a poorly

defined energy such that the uncertainty ∆E in that energy is much less than the

characteristic width (in units of energy) of the resonance. In this case, a quasi-bound

state may result, but will decay into unbound states after a sufficiently long time

[32]. The large number of hyperfine states makes a realistic calculation difficult, and

a coupled channels formalism is most convenient.

In practice, the offset of Vout relative to Vin is controlled by an external magnetic

field, which interacts with atoms via the Zeeman effect. The effective scattering length

is given by

aeff = abg

(
1− ∆B

B −Bres

)
, (1.5)
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Figure 1.1: Conceptual illustration of Feshbach resonance. Two unbound particles
with zero energy are initially in the open channel potential (solid curve). As they
approach each other and interact, they may transition to other hyperfine states, in
which they are subject to the closed channel potential (dashed curve). Since the closed
channel potential is higher than the particles’ energy, they now form a bound pair.
The energy of the bound state in the closed channel potential nearest the continuum
threshhold in the open channel is the detuning ν0 (dotted curve).
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where B is the external magnetic field, Bres is the value of the magnetic field for which

aeff diverges, ∆B = Bzero − Bres, where Bzero is the value of the magnetic field for

which aeff = 0, and the background scattering length abg is particular to each atomic

species and isotope.

1.2 Overview of Theory

Ideally, the physics of the N particles in a condensate would be calculated from

the Schrödinger equation with at least binary interaction terms:

i~
∂

∂t
Ψ(x1,x2, . . . ,xN)

=

[
−

N∑
j=1

~2

2m
∇2

xj
+ Vtrap(x1,x2, . . . ,xN) +

1

2

N∑
j 6=k

Vint(xj − xk)

]
Ψ(x1,x2, . . . ,xN) ,

(1.6)

where Ψ(x1,x2, . . . ,xN) is the many-body wavefunction, Vtrap is the external trapping

potential, and Vint is the potential of the binary interactions. This equation scales

in a non-polynomial way with N , and so is impractical for the numbers of atoms

we wish to consider. Quantum field theory formally allows for exact solution of

many-body problems, but is often unfeasible for actual calculations. A mean field

approach that deals only with averages is much simpler and has proven successful in

many descriptions of BECs [23], but masks possibly important quantum fluctuations.

Many theories, including ours, attempt to incorporate fluctuations in a practical way.

1.2.1 Quantum Field Theory

As a practical introduction to quantum field theory applied to bosons (somewhat

in the spirit of [33]), consider a system of N indistinguishable particles. Each particle
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may occupy one of any number of single-particle states |k〉, where k is a discrete

index, and the {|k〉} form a complete basis. We could then describe the state of the

entire system of particles by reporting the number of particles in each single-particle

state; for example,

|Φ〉 = |n1, . . . , nk, . . .〉, (1.7)

where nk is the number of particles in the single-particle state |k〉. This representa-

tion is sometimes called the occupation-number representation, and the Hilbert space

spanned by all vectors of the type (1.7) is called Fock space.

Now define the ladder operators âk and â†k such that

âk|n1, . . . , nk, . . .〉 =
√
nk |n1, . . . , nk − 1, . . .〉 (1.8)

â†k|n1, . . . , nk, . . .〉 =
√
nk + 1 |n1, . . . , nk + 1, . . .〉 (1.9)[

âk, â
†
l

]
= δk,l, [âk, âl] =

[
â†k, â

†
l

]
= 0. (1.10)

âk and â†k remove and add, respectively, a particle from the kth single-particle state,

and the constants on the right-hand sides in (1.8) and (1.9) are for normalization.

Consider a linear combination of the ladder operators above:

Ψ̂(x) =
∑
k

ζk(x) âk, (1.11)[
Ψ̂(x) , Ψ̂†(y)

]
= δ(3)(x− y) ,

[
Ψ̂(x) , Ψ̂(y)

]
=
[
Ψ̂†(x) , Ψ̂†(y)

]
= 0, (1.12)

where ζk(x) is the position-space representation of the single-particle state |k〉. The

field operators Ψ̂(x) and Ψ̂†(x) destroy and create a particle at the point x (time

dependence is usually included in the Heisenberg or Interaction picture [4], which

we neglect here for brevity). Note that, in this theory, x is not an operator, like
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momentum. It is a continuous parameter, along with time. We have effectively

exchanged a discrete and large (possibly infinite) number of degrees of freedom (the

k) for a single degree of freedom, defined over a single continuous independent variable

(x). Many-body quantum mechanical systems can then be described entirely in terms

of the ladder or field operators.

Following [34], the formal derivation of the results above begins with the La-

grangian formulation of classical mechanics. In the case of the non-relativistic Schrö-

dinger equation,

i~
∂

∂t
Ψ(x) =

[
− ~2

2m
∇2 + V (x)

]
Ψ(x) , (1.13)

the Lagrangian is written using the wavefunction Ψ and its gradient as the generalized

coordinates. Variational calculus leads to Poisson brackets for Ψ and Ψ∗; the brackets

are replaced by commutators, according to Dirac’s quantization procedure

{A,B} → 1

i~

[
Â, B̂

]
, (1.14)

where A and B represent the two quantities that become quantized, and the braces

denote Poisson brackets. Having performed this substitution, Ψ becomes Ψ̂ and is

now quantized and an operator, satisfying the commutation relations (1.12).

The expansion (1.11) of Ψ̂ is always valid, assuming the ζk(x) form a basis of

the Hilbert space (in position representation). One typically chooses a representation

in which the number operator Nk is diagonal for all k. Then the treatment of the

âk operators is identical to that for the harmonic oscillator in single-body quantum

mechanics, but with the ladder operators indexed by k and having the interpretation

of removing (or adding, in the case of â†k) particles from (to) the kth single-particle

state. Hence, the chosen representation is the occupation-number representation
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(1.7).

Note that the commutators cited above are valid for bosons; a quantum field

theoretic treatment of a fermionic system has the commutators replaced with ap-

propriate anti-commutators. Field theories other than that corresponding to the

non-relativistic Schrödinger equation are quantized in similar ways.

1.2.2 Mean Field Theory

In describing a Bose-Einstein condensate, it will be convenient to decompose the

field operator as

Ψ̂(x) =
〈
Ψ̂(x)

〉
Î + χ̂(x) , (1.15)

where Î is the identity operator. By assuming that the vast majority of particles

are Bose-condensed, we can interpret
〈
Ψ̂(x)

〉
as a number density amplitude of con-

densed particles, where
∣∣∣〈Ψ̂(x)

〉∣∣∣2 gives an actual number density. The condensate

wavefunction also contains information on the local velocity [35]:

~
m
∇Arg

[〈
Ψ̂ (x)

〉]
(1.16)

By the assumption that most particles are Bose-condensed, χ̂(x), called the depletion

of the condensate, is small.

Assuming that χ̂(x) is small enough to completely neglect, one can find an equa-

tion of motion for the field operator, take its expectation value, assume particles

interact only upon contact, and arrive at the Gross-Pitaevskii equation, (1.3). Recall

that the fraction of noncondensed particles is approximately proportional to
√
na3,

where n is the density of particles and a is the scattering length. In harmonic traps,

this parameter is usually less than 1 percent, so neglecting χ̂(x) is acceptable [23].
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During the experiments we will model, the diluteness parameter becomes unusually

large (of order unity), indicating that the Gross-Pitaevskii equation may not ade-

quately describe the processes. The derivation in Chapter 2 addresses this concern by

including terms up to second order in χ̂(x), a level of approximation called Hartree-

Fock-Bogoliubov. This theory is a second-order correction to the Gross-Pitaevskii

equation and is appropriate for BECs in which
√
na3 . 1. Both quantum field the-

ory and the time evolution of averaged quantities are exact extensions of quantum

mechanics—the formulation called “mean field theory” is an approximation due to

the significant assumptions involved in the interpretation of (1.15), the form of inter-

particle potentials, and the neglect of the depletion.

1.2.3 Quantum Fluctuations

A quantum mechanical expectation value, like a mean field, may be understood as

the average over many measurements. In the context of quantum field theory applied

to Bose-Einstein condensation, an often-encountered expectation value is ψ(x, t) ≡〈
Ψ̂(x, t)

〉
, the condensate wavefunction. Though the condensate wavefunction is

usually interpreted as the square root of the number of particles at that space-time

point (up to a phase factor), any particular measurement of the number amplitude,

that is, any single application of the field operator, may return a number other than

the average. The difference between the measured number and the expectation value,

an example of a quantum fluctuation, is related to the number density amplitude of

particles not in the condensate. Mean field theories like the Gross-Pitaevskii equation

that deal only with the condensate wavefunction neglect the fluctuations and therefore

neglect all particles that are not a part of the condensate. This approximation can

fail when there are already a significant percentage of noncondensed particles, or
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in situations where noncondensed particles may be produced dynamically. Under

these circumstances, quantum fluctuations may play an important role in condensate

dynamics for which a simple mean field theory does not account.

Several authors have proposed techniques to account for quantum fluctuations

in a tractable way. Gardiner and Zoller [36] developed a modification and quan-

tum mechanical extension of the Boltzmann equation, which is an integro-differential

equation governing the phase-space distribution function of particles in a classical gas

[37]. Their “quantum kinetic master equation” (QKME) assumes that only a few of

the noncondensed modes must be accounted for quantum mechanically and handles

the rest classically. The theory is valid when the system is nearly in equilibrium,

making it capable of treating nearly adiabatic processes but not the violent dynamics

of a collapsing condensate.

Corney and Drummond [38] present a Monte Carlo method based on Gaussian

quantum operators. Unlike typical Monte Carlo methods, this theory can determine

both the static properties and the dynamics of a system. The method performs well

in the simplistic situations in which it has been tested, with a low sampling error.

Most theories try to determine the time evolution of the N -body density opera-

tor, which describes the state of the entire system. Time evolving block decimation

(TEBD) [39] does this numerically by concentrating only on the salient parts of the

density matrix at each time step. The theory is restricted to one spatial dimension

and nearest-neighbor interactions between atoms, but can handle limited amounts

of entanglement. TEBD has proven effective at demonstrating beyond-mean field

effects in systems of entangled solitons [40]. The P and positive-P approaches (sum-

marized in [41]) derive quasi-probability distribution functionals from the N -body

density matrix in terms of complex fields. Expectation values can be calculated from
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these functionals, so the task is then to determine the time evolution of the func-

tionals. In practice, this approach is numerically unstable. Deuar and Drummond

[42] describe a generalized positive-P method that correctly accounts for boundary

terms that are often unjustly neglected in other positive-P theories. With a prudent

choice of gauge, otherwise intractable problems become computationally feasible. The

method outperforms typical positive-P methods in situations where exact results are

known.

The truncated Wigner approximation (TWA) [41, 43] is similar to the P and

positive-P methods in that a partial differential equation for a functional is derived

from the density matrix. The complex fields upon which the functional depends are

chosen to be a suitable basis for the problem at hand, and their time evolution is

determined by an equation resembling the Gross-Pitaevskii equation with a spatial

third derivative. This derivative is unfeasible to deal with in practice, and so is

neglected. Wüster et al. [13] have used this method in the context of collapse, finding

that the TWA requires an impractical number of complex fields to model the compact

post-collapse condensate. Their simulations agree quite well with a Hartree-Fock-

Bogoliubov method, but both overestimate by about 40 percent the time for the

condensate to collapse.

Carusotto et al. [44] determine the evolution of the density matrix under the

assumption that the system is in a Fock (definite particle number) or coherent (semi-

classical) state. Fluctuations are included by adding noise with zero mean to the

condensate wavefunction during time integration. The noise distribution has some

dependence on the condensate itself, thus coupling the noncondensed component that

the noise represents to the condensate’s dynamics. Reliable numerical simulations us-

ing this scheme work best for small numbers of particles, on the order of ten.
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Zaremba, Griffin, and Nikuni [45] (ZGN) derive equations of motion for the field

operator and a fluctuation operator, considering collisions between noncondensed

atoms and between atoms in and out of the condensate. These authors simplify their

equations and ensure consistency with their renormalization procedure by using the

Popov approximation, in which a two-particle correlation function called the anoma-

lous fluctuations is neglected. This approximation is strictly only valid when the

condensate is nearly in static equilibrium. The ZGN equations take the form of hy-

drodynamic equations, but are difficult to solve; the authors recommend a variational

technique. Fetter and Svidzinsky [46] summarize the more typical hydrodynamic ap-

proach to BEC, where the phase angle of the condensate wavefunction is used as a

velocity potential.

Including the anomalous fluctuations can introduce an unphysical quasiparti-

cle excitation gap, Hutchinson et al. [47] point out. They correct this problem by

renormalizing and adjusting the strength of the two-particle contact interaction po-

tential to depend on the condensate and anomalous densities. In simulations of a

cylindrically-confined condensate near the critical temperature, a situation where the

GPE performs poorly, Hutchinson et al.’s approach predicts condensate collective ex-

citation frequencies only three percent different from those predicted by the Popov

approximation.

Morgan [48] develops a gapless theory by requiring number conservation from a

second-quantized Hamiltonian. The Hamiltonian is then predominantly quadratic in

momentum-space ladder operators, with third and fourth order terms that are handled

by perturbation theory. Our Hartree-Fock-Bogoliubov theory, similar to that used by

Milstein et al. [11] and Wüster et al. [12], resembles Morgan’s approach in that we

exactly account for quadratic terms in the Hamiltonian, but approximate all third
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and fourth order fluctuations. We find that this is usually a computationally feasible

model of experiments concerning the dynamics of BECs with attractive or repulsive

interactions.

1.3 Collapse Experiments

Lithium-7 atoms have inherently attractive interactions, so BECs of 7Li are sup-

posed [49] to undergo a series of collapses whenever the number of atoms in the

condensate, constantly fed by a nonequilibrium noncondensed cloud, approaches the

critical number. Observations [50] at Rice University of a 7Li condensate indeed show

large variations in condensate number, which is attributed to collapse and regrowth

cycles. However, a given set of number-versus-time data is difficult to reproduce, as

the particular collapse and regrowth sequence appears to depend sensitively on initial

number and thermal and quantum fluctuations.

By exploiting a Feshbach resonance, the interactions between atoms can be tuned

from repulsive to attractive values over only a few microseconds [3]. In an often-

examined set of experiments [1, 27, 24] conducted at the Joint Institute for Lab-

oratory Astrophysics (JILA), condensates of about 15,000 rubidium-85 atoms were

formed at a temperature of 3 nK with slightly repulsive interactions. The repulsion

was balanced by a magnetic trap that was well approximated by an axisymmetric

harmonic potential, so that an initial condensate was stable and neither expanding

nor collapsing. The interactions were then suddenly tuned to be attractive, so that

the critical condition (1.4) was exceeded. A condensate appeared stable for a short

time tcollapse after this transition (the length of time decreasing as the magnitude of

the interactions or the initial density increased), then suddenly lost atoms at an ex-

ponential rate, the decay constant τdecay of which was only slightly influenced by the
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Figure 1.2: Schematic of a collapse. Condensed atoms (blue) are suddenly given
attractive interactions, causing the condensate to collapse and emit an anisotropic
burst of noncondensed atoms (red). When interactions are shifted to slight repulsion,
radial jets appear, and a core of colliding solitary waves remains after atom loss ends.

initial number of atoms and the magnitude of their interactions. Finally, a stable,

excited, and highly anistotropic condensate remained, containing Nremnant atoms. See

Figure 1.2 for a pictorial description of a collapse experiment and Figure 1.3 for a

reproduction of experimental measurements [1] of condensate number versus time.

During the collapse, a surprising burst of energetic atoms was emitted from the

condensate. Between experiments, the number of atoms in the bursts varied by as

much as a factor of two, even for identical sets of controlled and observed experimental

parameters. The energies of the burst atoms were usually higher for atoms emitted

in the radial rather than axial direction, even though the trap was stronger in the

radial direction.
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Figure 1.3: Number loss during a collapse [1]. At τevolve = 0, the interactions become
attractive, but no appreciable loss is observed until tcollapse, when exponential loss
occurs with decay constant τdecay, until a nonzero number Nremnant of atoms remains.
Used with permission [51].

A significant number of atoms lost from the condensate went undetected; for

example, about 8500 atoms out of an initial condensate of 15,000 were missing after

a collapse [24]. Atoms with energies greater than about 20 µK,3 atoms in states that

were not influenced by the trapping potential, and pairs of atoms bound to each other

because of the Feshbach resonance (henceforth referred to as molecules) could not be

detected by the imaging apparatus. Whatever the nature of these missing atoms,

their fraction increased with the magnitude of the attractive interactions and was

independent of the initial number of atoms.

3In this context, energy is often expressed in terms of temperature; multiplying by Boltzmann’s
constant restores the correct units.
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If the atom loss was interrupted by changing the strength of the interactions a

second time, now to a slightly repulsive value, atoms of a lower energy than the bursts

were emitted, almost entirely in the radial direction. The sizes of such jets, which

were sometimes asymmetrically distributed around the condensate, varied even when

all noted experimental parameters were unchanged between experiments.

The fraction of atoms in the remnant decreased as the length of time for which

the interactions were attractive increased, decreased as the magnitude of those inter-

actions increased, and was independent of the initial number of atoms. The remnant

itself entered a breathing mode, the dominant frequencies of which were approxi-

mately twice the radial and axial trap frequencies.

Subsequent experiments [52] showed that in nearly every case, the number of

atoms in the remnant was above the critical value given by (1.4) at which collapse

should occur. Equation (1.4) correctly predicted the initial collapse, yet no remnant

collapsed; in fact, each persisted for about 3 s, the expected lifetime of a stable con-

densate in this experimental configuration. Remnants were observed to separate into

distinct clouds, the number of which generally increased as either the magnitude of

the interactions during collapse increased, or the initial number of atoms increased.

These clouds collided tens of times during the life of the remnant. All these obser-

vations led the experimenters to infer that each cloud in the remnant was a solitary

wave containing less than the critical number of atoms, and that all the solitary waves

interacted repulsively with each other. Thus, the remnant condensate was thought

to be composed of several small, colliding condensates that did not overlap.

In similar experiments [53] at Rice University, performed with lithium-7 atoms

(this time exploiting a Feshbach resonance) in a long and narrow cylindrical trap,

experimenters formed a stable condensate with an axial displacement and then altered
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the interactions to be slightly attractive or repulsive. In the case of slightly repulsive

interactions, nothing more than a spreading of the condensate was observed. For small

attractive interactions, a line of solitary waves formed, while a significant number of

atoms escaped detection. If the trap was altered such that the axial displacement

was no longer a stable arrangement (that is, the condensate was “released” from its

initial position), the solitary waves oscillated in the trap without overlapping. The

waves bunched up when concentrated in the ends of the trap, and spread out when

concentrated in the center of the trap, implying that they interacted repulsively. The

number of solitary waves seemed to depend not on the rate at which the magnetic field

controlling the interactions was changed, but only on the time between the release of

the initial condensate and the instant at which the interactions passed from repulsive

to attractive. See Figure 1.4 for experimental images of the solitary wave dynamics

[53].

We attempt to reproduce the JILA experiments in our simulations. The Rice

experiments require careful consideration of a nonequilibrium thermal cloud, which

would necessitate a more complicated model. The solitary wave experiment [53] is

concerned primarily with the post-collapse dynamics rather than the collapse itself,

which is our main concern. Finally, the trap used in the JILA experiments are better

approximated by a spherical trap than those used in the Rice experiments, allowing

more practical simulations in spherical symmetry.

1.4 Experiments with Repulsive Interactions

Collapsing BECs are not the only experiments to produce exotic results concern-

ing condensates with order-unity diluteness parameters. One set of related experi-

ments [2, 24] formed a stable, noninteracting or weakly repulsive BEC in the trap
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Figure 1.4: Post-collapse solitary wave dynamics [53]. At 0 ms, interatomic interac-
tions are made attractive, and a 7Li BEC forms a line of small clouds. The trap is
then altered so that the condensate is “released,” and the long-lived clouds are seen to
oscillate in the trap as if they were solitary waves with repulsive interactions. Shown
are time-slices of the density of the condensate, integrated along one radial direction.
Used with permission [54].

used in the JILA collapse experiments, and then subjected it to a rapid magnetic field

pulse (we henceforth refer to such experiments as one- or single-pulse experiments).

The field was linearly ramped from its initial value to a value near the Feshbach

resonance in tens to hundreds of microseconds, held at a constant value for one to

hundreds of microseconds, called the hold time, and then quickly and linearly ramped

back to the initial value. Likewise, the scattering length was ramped from zero or a

small positive value, to a very large positive value, and finally back to its initial small

value.
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Following a pulse, the experimenters observed that the number of atoms re-

maining in the condensate increased for longer ramp times, indicating that the loss

mechanism is not the usual density-dependent loss responsible for the rethermaliza-

tion of a stable condensate. Figure 1.5 is a plot from [2] showing the described trend.

Varying the initial density of the BEC did not appreciably alter the rate of loss, fur-

ther suggesting that the loss was not density-dependent. As expected, pulses which

came closer to the resonance resulted in more loss from the condensate. If the mag-

netic field was held at 157.1 ± 0.1 G during the hold time,4 small, damped oscillations

in atom number were apparent when the hold time was varied.

Surprisingly, a burst of atoms similar to that in the collapse experiments appeared

in this experiment with repulsive interactions. The number of atoms in the burst

increased with the hold time (saturating at about 4000 atoms out of a 16,600 atom

condensate), yet the energy of the burst atoms decreased as the hold time increased.

As in the collapse experiments, the bursts were markedly anisotropic, having larger

velocities in the radial rather than axial direction. When the magnetic field was

held above 160 G during the hold time, no burst atoms were observed. Varying the

number of atoms in the surrounding thermal cloud did not appreciably affect the

bursts, indicating that interactions with noncondensed atoms were not responsible.

The burst atoms remained in the same spin state as the condensed atoms, indicating

that spin-flip interactions were not involved.

These single-pulse experiments inspired experiments (henceforth referred to as

two-pulse experiments) [3, 24] with two magnetic field pulses, separated by a “free

precession” time, during which the magnetic field was held constant, below the ini-

tial value. As with the other experiments, an energetic burst of atoms emanated

4To put the number in context, consider that the effective scattering length is zero at 165.750 G
and formally diverges at 155.041 G [28].
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Figure 1.5: Condensate loss in one-pulse experiment [2]. Number of atoms remaining
in an initially stable BEC after a single magnetic field pulse for various hold times.
The horizontal axis has all values divided by 4, and the continuous lines are only
meant to guide the eye. Note that loss decreases as time spent near the Feshbach
resonance increases. Used with permission [51].

from the condensate. The most intriguing results of these experiments were damped

oscillations in the number of condensed and burst atoms measured after the pulse se-

quence, when the free precession time was varied. The frequency of these oscillations

increased when the magnetic field during the free precession time was held further

from resonance, but had no obvious dependence on the duration or amplitude of the

magnetic field pulses, the density of atoms, or the initial magnetic field. Again, be-

tween 8 and 50 percent of the atoms escaped detection, and this fraction increased as

either the density or the length of the magnetic field pulses increased. The numbers
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Figure 1.6: Oscillations in number for two-pulse experiments [3]. Observed oscilla-
tions in the number of burst atoms (open circles), condensed atoms (filled circles), and
the total number of detected atoms (squares). The dashed horizontal line indicates
the total number of atoms initially in the condensate. Since the total detected num-
ber oscillates, the number of missing atoms oscillates, as well. Used with permission
[51].

of the three components—condensed, burst, and missing atoms—all oscillated with

the same frequency, but out of phase. The oscillations were apparent for a wide range

of magnetic fields, rather than the thin window in the single-pulse experiments. See

Figure 1.6 [3] for an example of the experimental results.

1.5 Current Understanding

BEC collapse has been theoretically studied for several years. Kagan et al. [55]

predicted that collapse occurs on a time scale tcollapse ∼ ω−1, where ω is the trap

frequency. The observations of [1] have shown this prediction to be incorrect. Kagan



27

and coworkers also supposed [56] that during a collapse, the condensate’s density

increases until density-dependent losses due to three-body recombination (see Section

1.1.0) take over, eventually causing expansion of the condensate. The cycle then

repeats, as the trap pushes the remaining condensate back towards the trap center.

The GPE simulations of Saito and Ueda and Bao [57, 58, 59, 60] clearly show such

behavior, leading to significant atom loss and the prevention of the appearance of a

singularity during collapse.

These and other [61, 62, 63, 64] simulations qualitatively reproduce the collapse

process, the time to collapse tcollapse, the condensate number decay constant τdecay,

bursts, and jets, but have achieved no solid quantitative agreement with observation.

Minor differences in these authors’ results, as well as the lack of quantitative agree-

ment with experiment, may be due to their different choices of density-dependent loss

rates. These losses have been shown [65] to have a complicated dependence on mag-

netic field, especially near a Feshbach resonance, making them difficult to precisely

characterize.

Recognizing the deficiency in atom loss models, Bao and coworkers [60] perform

a GPE simulation with a loss rate chosen so that their simulations correctly reproduce

the experimental values of tcollapse and condensate remnant number. The atom number

decay constant τdecay is reasonably well reproduced, but the simulated burst energies

are much lower than what is experimentally observed. This failure suggests that

a Gross-Pitaevskii model with simple density-dependent loss does not sufficiently

describe the collapse. Savage et al. [66], surveying the literature and performing

their own simulations with several different loss rate coefficients, arrive at the same

conclusion, noting that theoretical values of tcollapse are consistently larger than the

experimental values. The authors mention that this is especially odd, since the period
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before collapse begins should be the realm where the GPE applies.

Duine and Stoof [67] propose that two condensed atoms can collide, scattering

one atom out of the condensate. They use a Gaussian variational technique to in-

vestigate this “quantum evaporation” as a possible player in the collapse, especially

concerning remnant number and burst formation. Their simulations show a consid-

erable loss from the condensate, but, disagreeing with observation, this loss begins

immediately after the interatomic interactions become attractive.

Mackie and coworkers [68] suggest that pairs formed by the Feshbach resonance

may dissociate into noncondensed atoms during the collapse, and the simulations

of Milstein et al. [11], which neglect three-body losses but include quantum fluctu-

ations and pair formation via the Feshbach resonance, show an energetic burst of

noncondensed atoms, though using parameters not taken from experiments.

Calzetta and coworkers [69] downplay the importance of such a molecular com-

ponent for the values of the scattering length acollapse in the collapse experiments,

which are far from resonance. Like Yurovsky [70], they attribute loss from the con-

densate to the growth of noncondensed modes. Calzetta et al. suggest that a theory

accounting for fluctuations would have instabilities growing out of those fluctuations,

which may account for earlier collapse times. The authors extract a scaling argu-

ment, tcollapse = α (a/acritical − 1)−1/2, where acritical is the smallest scattering length

that will allow collapse, according to Equation (1.4). A choice of α = 5 ms creates

good agreement with experimental data, but more recent work [71] finds no theoret-

ical justification for that particular choice of α. Calzetta now attributes condensate

loss to a loss of coherence between atoms, though no significant investigations of this

proposal have yet been performed.

Wüster and coworkers [12] use the same theory of fluctuations as Milstein et al.,
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but also regard the molecular component as unimportant to collapse. Their simula-

tions still find a tcollapse exceeding the observed value. Using an alternate, truncated

Wigner, formulation and including initial and dynamical noise, a background ther-

mal component, and cylindrical geometry with experimental parameters, Wüster et

al. [13] still overestimate the experimentally measured tcollapse by about 40 percent.

All these models have at least some qualitative agreement with observation, and

some provide insight into other aspects of the collapse experiments. Saito and Ueda

[59] show that the collapse in a cylindrical trap forms several density spikes, rather

than a single, spherical clump. The authors allege that interference among these

spikes’ matter waves is responsible for the observed jets. Bao et al. [60] find that slight

disturbances in initial conditions can be responsible for the significant anisotropy of

the jets and the wide variation in the number of atoms in the jets. Adhikari [62] agrees

with the experimenters’ interpretation [1] of the jets as expanding density spikes, but

his simulations clarify that those spikes are a consequence of the collapse dynamics

in a non-spherical trap, and not of a “lumpy” initial condition.

Saito and Ueda [57] suggest the bursts are atoms originally near the center of the

collapse that acquire kinetic energy when three-body losses suddenly remove a large

number of atoms from the center of the collapse. In these simulations and others

[59, 61, 62, 63, 64, 60], the burst atoms are distinguished from the condensate purely

by their location. In the simulations of Milstein et al. and Wüster et al. the burst

is assumed to be a distinct noncondensed field, which can occupy the same space as

the condensate.

Finally, Parker and coworkers [72] have used a GPE without loss terms to model

the remnant observed in [52]. Without making specific quantitative comparisons,

they find that two solitary waves governed by the GPE in a cylidrical trap can, under
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certain circumstances that probably [52] occured in the experiments, survive more

than 40 collisions. Both the waves’ velocities and their relative phase are found to

be important to the waves’ stability. Carr and Brand [73] show that solition trains

like those observed in the Rice experiment [53] may be the result of a modulational

instability that is seeded by the initial condensate’s self-interference and manifests

itself when the interatomic interactions are made attractive.

The magnetic field pulse experiments on repulsive condensates have stimulated

fewer simulations than the collapse experiments. Duine and Stoof [74] use coupled

mean fields allowing for molecule formation, quantum evaporation, and three-body

losses in modeling the one-pulse experiments. These simulations had only general

qualitative agreement with the experiments, but with the interesting observation

that the inclusion of three-body losses supressed oscillations in numbers of atoms and

molecules, despite the fact that these density-dependent losses should be unimportant

under the experimental circumstances [24]. Mackie and coworkers [68] use a coupled

mean field model that allows for dissociation of molecules into noncondensed atom

pairs, but find only about five percent loss to the noncondensed component, with

very few molecules being retained. The authors observe a larger loss in simulations

of the two-pulse experiments, but the oscillation envelopes have a behavior markedly

different from the slight damping observed in the experiments. Kokkelmans and

Holland [10] use the same model as the Milstein et al. collapse simulation [11],

but use a Gaussian average over a homogeneous gas to simulate the behavior of a

trapped gas. These simulations agreed well both qualitatively and quantitatively

with the two-pulse experiments, showing that the majority of atoms lost from the

condensate go into noncondensed modes, and the missing atoms are identified as

molecules. Köhler and coworkers [75] model the two-pulse experiments with a theory
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that includes molecule formation and quantum fluctuations, and find good qualitative

agreement with the experiments. They also find that the presence of the trap moves

the means of the condensate and burst numbers’ oscillations closer together in a

way not captured by a Gaussian average of a homogeneous gas. They attribute

this difference to the presence of a length scale not found in the homogeneous gas

simulations.

1.6 Overview of Numerical Methods

Our model for the experiments leads to four coupled, nonlinear, partial differen-

tial equations defined over continuous domains. Useful analytical solutions of these

equations are presently unknown and may not exist, so we must properly discretize the

equations using prudent numerical methods and implement the resulting algorithms

on a computer. Assuming spherical or cylindrical symmetry and coordinates reduces

the number of independent variables, but parallel computation is still necessary for

simulations to run in a reasonable amount of time, especially in the cylindrical case.

1.6.1 Analytical Treatment of Nonlinear Partial Differential Equations

As described in [76], a nonlinear partial differential equation (PDE) contains

terms which are not linear in the dependent variable or its derivatives (in out case, a

quantum average, itself a function of space and time). A quasilinear PDE is linear in

the dependent variable’s derivatives, but may contain any function of the dependent

variable itself, or multiply any derivative of the dependent variable by the dependent

variable. In either case, analytical solutions are often very difficult to obtain, since

most of the methods used on linear equations do not apply. Especially noteworthy

is the fact that superposition is not valid for nonlinear equations—the sum of two
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solutions is not, in general, also a solution, thus making separation of variables, one of

the most powerful methods of solving PDE’s, unavailable. Some nonlinear equations

can be solved analytically, and quasilinear equations are particularly susceptible to

the method of characteristics, which is effectively a change of independent variables

that leads to simpler, often coupled linear, equations. Many nonlinear equations

that have wave-like solutions balance the dispersion of the waves with a focusing or

defocusing nonlinearity, leading to solitary waves and, sometimes, solitons. However,

the vast majority of nonlinear equations are analytically intractable.

Important exceptions, one of which is the one-dimensional Gross-Pitaevskii equa-

tion, are integrable equations (see [77], for example). According to one of many defi-

nitions, an integrable PDE has a Lax pair formulation, which is based on an operator

equation closely resembling a Heisenberg equation of motion in quantum mechan-

ics. A Lax pair implies that the PDE has infinitely many conserved quantities and

may be formally solved by the inverse scattering transform (see [78], for example),

a generalized Fourier transform method requiring the solution of a linear integral

equation.

1.6.2 Approximate Numerical Solutions

We approximate the solutions to our equations by numerical methods. Finite

difference schemes are perhaps the most popular method of solving partial differential

equations, but past research with nonlinear Schrödinger equations [79] and a Hartree-

Fock-Bogoliubov simulation [11] of the collapse suggests that finite differences are

inaccurate and inefficient in this situation.

We seek a method of lines solution. Our particular approach discretizes in space

using pseudospectral approximations to derivatives, which may be viewed as the dis-
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crete Fourier transform analogy of the Fourier transform method of solving continuous

PDE’s, or analytical derivatives of truncated basis function expansions. Time prop-

agation is performed using an adaptive Runge-Kutta method, which estimates by a

truncated Taylor series the solution to the system of ODE’s which results from spatial

discretization. Thus, our initially continuous model remains continuous in time but

is discretized in space.

1.6.3 Implementation

The simulation is written in C++. The code consists of several libraries mostly

containing easily extended and reusable functions, such as a Runge-Kutta integrator

and numerical derivatives. Most code is custom-written, with the notable exception

of the Fourier transform routines, which are taken from [80] and modified.

The several independent variables in the cylindrical model of Chapter 3 necessi-

tate parallel computing. As described in [81], choice and implementation of parallel

algorithms is highly machine-dependent—given our resources, we will only consider

parallelization on a cluster. Such a computer consists of several connected nodes,

each of which is a symmetric multiprocessor (SMP), or a unique computer having

multiple processors that all address a common memory space. Machines of this type

lend themselves well to multiple-instruction, multiple-data (MIMD) programming

paradigms, since different nodes see different memory spaces (hence multiple data

streams), and multiple processors on a single node see the same memory space (hence

multiple instructions).

While there is no consensus on parallel programming implementations, two gen-

eral approaches dominate: threading and message passing. In threading, a single

process, or instance of a program, spawns several threads, all of which see the same
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memory space and may each run on a different processor in an SMP. Unique threads

spawned from a single process require less overhead and startup time than an equal

number of individual processes.

In message passing, each process sees a unique memory space and is able to

send data to and receive data from the other processes. The physical communica-

tion channel usually consists of Ethernet connections or a specially-made high-speed

switch. The most advanced parallelization schemes on the computer we consider use

threading on each node and message passing to move data between nodes.

Not all algorithms benefit from parallelization. Amdahl’s law [82] says that the

time tM for M processors to perform a task is

tM = tS +
tP
M
, (1.17)

where tP and tS are the times to sequentially execute the portions of the code that can

and cannot be parallelized, respectively. For example, a Runge-Kutta method applied

to a one-dimensional ODE has little or no opportunity for parallelization, since each

calculation in the method depends on at least one of the calculations that preceeded

it. However, a system of ODE’s could be solved by running several Runge-Kutta

integrators in parallel, with the ratio tS/tP declining as the number and complexity

of the ODE’s increase.

Our simulations in spherical symmetry use threading to share work among dif-

ferent processing cores in an SMP. This parallelization scheme can better than halve

such a simulation’s wallclock runtime when using four cores. Simulations in cylin-

drical symmetry have four spatial independent variables; this code is written for a

cluster, with message passing between nodes and on-node threading. Communication

time could be kept to a minimum by using every core on a node to simultaneously send
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and receive data from other nodes during the communication phases of the parallel

algorithm.
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Chapter 2

PHYSICAL MODEL

Our theory to describes the dynamics of trapped condensates with order-unity

diluteness parameters by a mean field approach with two-point equal-time correla-

tions, or lowest-order quantum fluctuations. The general equations of this model have

been written, in some form, in [14] and [83], for example; we present an unusually

thorough derivation. Motivated by the success of Kokkelmans and Holland [10] in

explaining the two-pulse experiments, our model includes pairing of atoms due to the

Feshbach resonance. Despite controversy [12, 69], some work [11, 10, 68] suggests

that this molecular component is important to both collapse and pulse experiments.

We derive equations of motion for field operators and two pairs of fluctuation

operators, average these equations, factorize consistently, and apply the renormalized

theory of [14] to model the Feshbach resonance. The result is four, coupled, nonlinear

PDE’s that include quantum fluctuations up to second order.

2.1 Field Operators

Define Ψ̂a(x, t) as the atomic field operator, which destroys a bosonic atom at

the position x and time t. Its Hermitian conjugate, Ψ̂†
a(x, t), creates a bosonic atom

at position x and time t. The molecular field operator Ψ̂m(x, t) and its Hermitian

conjugate Ψ̂†
m(x, t) are the corresponding operators for bosonic molecules. A molecule

is defined as a pair atoms bound because of the Feshbach resonance. The same instant

in time is used in everything that follows, so we usually omit the t for brevity; for
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example, the atomic field operator is written Ψ̂a(x). All four operators are taken to

be in the Heisenberg picture.

The field operators obey the following commutation relations:

[
Ψ̂a(x) , Ψ̂a(x

′)
]

=
[
Ψ̂m(x) , Ψ̂m(x′)

]
=
[
Ψ̂†
a(x) , Ψ̂†

a(x
′)
]

=
[
Ψ̂†
m(x) , Ψ̂†

m(x′)
]

= 0

(2.1)[
Ψ̂a(x) , Ψ̂†

a(x
′)
]

=
[
Ψ̂m(x) , Ψ̂†

m(x′)
]

= δ(3)(x− x′) , (2.2)

where δ(3)(x) is the three-dimensional Dirac delta function. Other useful commutators

are

[
Ψ̂a(x) , Ψ̂m(x′)

]
=
[
Ψ̂†
a(x) , Ψ̂m(x′)

]
=
[
Ψ̂a(x) , Ψ̂†

m(x′)
]

=
[
Ψ̂†
a(x) , Ψ̂†

m(x′)
]

= 0,

(2.3)

which are true because the atomic and molecular field operators act in different sub-

spaces of the full Hilbert space. Conceptually, this means that an operator acting on

an atom has no effect on a molecule. It is an approximation in that by writing, for

example,
〈
Ψ̂†
a(x

′) Ψ̂m(x)
〉

=
〈
Ψ̂†
a(x

′)
〉〈

Ψ̂m(x)
〉
, we are assuming that Ψ̂m(x) |λ〉 is

completely uncorrelated with Ψ̂a(x
′) |λ〉, where |λ〉 is the state of the system.

We decompose the atomic field operator as its average plus a fluctuation around

that average; that is,

Ψ̂a(x) =
〈
Ψ̂a(x)

〉
Î + χ̂a(x) , (2.4)

where the identity operator I will usually be omitted for brevity. We should in prin-

ciple decompose the molecular field operator in the same fashion, but this would lead

to computationally and presently theoretically intractable four-particle fluctuations.
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Thus we have our second approximation:

Ψ̂m(x) =
〈
Ψ̂m(x)

〉
I. (2.5)

2.2 Hamiltonian

We are interested in the kinetic and potential energies of the atoms, that of

the molecules, the energy associated with collisions between atoms, and the energy

associated with collisions between atoms in which a molecule is formed due to the

Feshbach resonance. The corresponding Hamiltonian is

Ĥ = Ĥa + Ĥm + Ĥaa + Ĥam, (2.6)

where

Ĥa =

∫
d3y Ψ̂†

a(y)

[
− ~2

2m
∇2
y + Va (y)− µa

]
Ψ̂a(y) (2.7)

Ĥm =

∫
d3y Ψ̂†

m(y)

[
− ~2

4m
∇2
y + Vm (y)− µm

]
Ψ̂a(y) (2.8)

Ĥaa =
U

2

∫
d3y Ψ̂†

a(y) Ψ̂†
a(y) Ψ̂a(y) Ψ̂a(y) (2.9)

Ĥam =
g

2

∫
d3y Ψ̂†

m(y) Ψ̂a(y) Ψ̂a(y) +
g

2

∫
d3y Ψ̂†

a(y) Ψ̂†
a(y) Ψ̂m(y) . (2.10)

In these four equations, y is a position variable used for integration, and the integrals

run over the entire domain. The mass m is that of a single atom; ∇2
y is the Laplacian

acting on functions defined over y coordinates; Va (y) is the external potential felt by

an atom at position y, and Vm (y) is that felt by a molecule; µa and µm are the atomic

and molecular chemical potentials, respectively; U relates to the energy of interactions

between atoms; and g relates to the energy of atom-atom interactions in which a
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molecule is formed or dissociated. The form of the interaction terms (2.9) and (2.10)

assume a contact interaction between atoms; specifically, Vaa(y − y′) = U δ(3) (y − y′)

and Vam(y − y′) = g δ(3) (y − y′), where Vaa is the interatomic potential between two

atoms which scatter off of each other, and Vam is the interatomic potential between

two colliding atoms that form a molecule. We shall see later that this approximation

does well for the ultracold systems we consider.

While the Hamiltonian (2.6) is a reasonable model of boson fields in which pair

formation and fluctuations are important, it is also approximate in that we have

neglected the energy associated with collisions between molecules and the energy

associated with collisions between molecules and atoms in which pair formation or

dissociation is not involved. To be completely inclusive of all events, the Hamiltonian

should really account for collisions between all possible particles and involving all

possible numbers of such particles, but we neglect all interactions not mentioned

in (2.7) through (2.10) for simplicity. We also neglect density dependent losses to

establish the importance of the molecular component and quantum fluctuations, as

well as to understand our numerics in a situation where number is conserved.

2.3 Quantities of Interest

In modeling a collapsing Bose-Einstein condensate, we are interested in the av-

erage number density amplitude of Bose-condensed atoms as a function of position,

φa(x) ≡
〈
Ψ̂a(x)

〉
, (2.11)

and the average number density amplitude of Bose-condensed molecules as a function

of position,

φm(x) ≡
〈
Ψ̂m(x)

〉
. (2.12)
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Again, time dependence is implied, but not explicitly written. The term “number

density amplitude” is an analogy to the probability amplitudes of single- or few-

particle quantum mechanics, which are complex valued functions, the square moduli

of which are probability densities. Recall that the number density amplitude is the

order parameter of the condensate, and also contains information about velocity in

its phase angle.

We also desire quantities related to the fluctations about the atomic mean field,

GN(x,x′) ≡
〈
χ̂†a(x

′) χ̂a(x)
〉

(2.13)

and

GA(x,x′) ≡ 〈χ̂a(x′) χ̂a(x)〉 , (2.14)

called the normal and anomalous fluctuations, respectively.1 Recalling Equation

(2.4), we see that the normal and anomalous fluctuations satisfy the definition of

correlation functions (see, for example, [84]). In interpreting (2.13) and (2.14), we

must be careful to note that same-time correlations alone imply nothing about causal-

ity. Expanding the correlation functions in terms of field operators, we have

GN(x,x′) =
〈
Ψ̂†
a(x

′) Ψ̂a(x)
〉
−
〈
Ψ̂†
a(x

′)
〉〈

Ψ̂a(x)
〉

(2.15)

GA(x,x′) =
〈
Ψ̂a(x

′) Ψ̂a(x)
〉
−
〈
Ψ̂a(x

′)
〉〈

Ψ̂a(x)
〉
. (2.16)

Let us concentrate on the first terms on the right-hand sides of (2.15) and (2.16). Nam-

ing the system’s state |λ〉,
〈
Ψ̂†
a(x

′) Ψ̂a(x)
〉

gives the overlap between states Ψ̂a(x) |λ〉

and Ψ̂a(x
′) |λ〉. That is, if we remove a condensed atom from point x,

〈
Ψ̂†
a(x

′) Ψ̂a(x)
〉

1The anomalous fluctuations are sometimes referred to in the literature as the “anomalous den-
sity” or a “pairing field,” not to be confused with our φm(x).
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is the amplitude of how likely we are to find the system in a state with a condensed

atom removed from x′;
〈
Ψ̂†
a(x

′) Ψ̂a(x)
〉

contains information about how the system

at the points x and x′ is correlated. Now recall that if two quantities are uncorre-

lated, the average of their product factorizes:
〈
Ψ̂†
a(x

′) Ψ̂a(x)
〉

=
〈
Ψ̂†
a(x

′)
〉〈

Ψ̂a(x)
〉
.

The subtraction of the product of expectation values [the final terms in Equations

(2.15) and (2.16)] sets the zeros of the correlation functions to be states that are

completely uncorrelated. In a classical system, these correlation functions should be

approximately zero for large |x− x′|. If the correlation functions are significant over

such distances, we have off-diagonal long range order (ODLRO), one of the hallmarks

of a system where many-body quantum mechanical effects are important [21]. The

definition (2.16) also illustrates that GA(x,x) is equivalent to the variance in the

expectation value of the atomic field operator.

Finally, note that by Equation (2.4) and our definition of
∣∣∣〈Ψ̂a(x)

〉∣∣∣2 as the

number density of condensed atoms, χ̂a(x) is the field operator for all of the atoms

that are not condensed. Thus we may interpret
〈
χ̂†a(x) χ̂a(x)

〉
as the number density

of noncondensed atoms.

We will find these four quantities, φa(x), φm(x), GN(x,x′), and GA(x,x′), by first

computing the Heisenberg equations of motion for each of Ψ̂a(x), Ψ̂m(x), χ̂†a(x
′) χ̂a(x),

and χ̂a(x
′) χ̂a(x), and then taking the expectation value of each side of the resulting

equations. We must consistently factorize some of the resulting expectation values

so that the desired partial differential equations depend only on the four fields they

govern.
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2.4 Equations of Motion

The time evolution of any operator Â in the Heisenberg picture is determined by

i~
∂

∂t
Â =

[
Â, Ĥ

]
, (2.17)

where Ĥ is the system’s Hamiltonian. This equation is the Heisenberg equation of

motion for Â, for Â time independent in the Schrödinger picture.

2.4.1 Atomic Field Operator

In order to find an equation for φa(x), we must first calculate

i~
∂

∂t
Ψ̂a(x) =

[
Ψ̂a(x) , Ĥ

]
=
[
Ψ̂a(x) , Ĥa

]
+
[
Ψ̂a(x) , Ĥm

]
+
[
Ψ̂a(x) , Ĥaa

]
+
[
Ψ̂a(x) , Ĥam

]
. (2.18)

We proceed term-by-term using the commutation relations given in Equations (2.1)

through (2.3).

[
Ψ̂a(x) , Ĥa

]
=

∫
d3y Ψ̂a(x) Ψ̂†

a(y)

[
− ~2

2m
∇2
y + Va (y)− µa

]
Ψ̂a(y)

−
∫

d3y Ψ̂†
a(y)

[
− ~2

2m
∇2
y + Va (y)− µa

]
Ψ̂a(y) Ψ̂a(x)

=

∫
d3y

[
Ψ̂a(x) , Ψ̂†

a(y)
] [
− ~2

2m
∇2
y + Va (y)− µa

]
Ψ̂a(y)

=

[
− ~2

2m
∇2
x + Va (y)− µa

]
Ψ̂a(x) , (2.19)

where we have used the fact that Ψ̂a(x) commutes with ∇2
y (since the Laplacian is

only acting on y coordinates) and the evenness of the Dirac delta function.
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Since Ψ̂a(x) commutes with every factor appearing in Hm, we may immediately

write [
Ψ̂a(x) , Ĥm

]
= 0. (2.20)

Then

2

U

[
Ψ̂a(x) , Ĥaa

]
=

∫
d3y Ψ̂a(x) Ψ̂†

a(y) Ψ̂†
a(y) Ψ̂a(y) Ψ̂a(y)

−
∫

d3y Ψ̂†
a(y) Ψ̂†

a(y) Ψ̂a(y) Ψ̂a(y) Ψ̂a(x)

=

∫
d3y Ψ̂a(x) Ψ̂†

a(y) Ψ̂†
a(y) Ψ̂a(y) Ψ̂a(y)

−
∫

d3y Ψ̂†
a(y) Ψ̂a(x) Ψ̂†

a(y) Ψ̂a(y) Ψ̂a(y)

+

∫
d3y Ψ̂†

a(y) Ψ̂a(x) Ψ̂†
a(y) Ψ̂a(y) Ψ̂a(y)

−
∫

d3y Ψ̂†
a(y) Ψ̂†

a(y) Ψ̂a(y) Ψ̂a(y) Ψ̂a(x)

= 2

∫
d3y δ(3)(y − x) Ψ̂†

a(y) Ψ̂a(y) Ψ̂a(y)

= 2 Ψ̂†
a(x) Ψ̂a(x) Ψ̂a(x) , (2.21)

where we have employed the common trick of adding and subtracting a term of our

choice in order to form a commutator.

For the pair formation/dissociation term,

2

g

[
Ψ̂a(x) , Ĥam

]
=

∫
d3y Ψ̂a(x) Ψ̂†

a(y) Ψ̂†
a(y) Ψ̂m(y)

−
∫

d3y Ψ̂†
a(y) Ψ̂†

a(y) Ψ̂m(y) Ψ̂a(x)

= 2

∫
d3y δ(3)(y − x) Ψ̂m(y) Ψ̂†

a(x)

= 2 Ψ̂m(x) Ψ̂†
a(x) . (2.22)
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Equation (2.18), the equation of motion for the atomic field operator, is then

i~
∂

∂t
Ψ̂a(x) =

[
− ~2

2m
∇2
x + Va (x)− µa

]
Ψ̂a(x)

+ UΨ̂†
a(x) Ψ̂a(x) Ψ̂a(x) + gΨ̂m(x) Ψ̂†

a(x) . (2.23)

2.4.2 Molecular Field Operator

The techniques used above for calculating an equation of motion are the same

for every operator; having established those techniques, we will dispense with much

of the detail in finding the equation of motion for the molecular field operator,

i~
∂

∂t
Ψ̂m(x) =

[
Ψ̂m(x) , Ĥ

]
=
[
Ψ̂m(x) , Ĥa

]
+
[
Ψ̂m(x) , Ĥm

]
+
[
Ψ̂m(x) , Ĥaa

]
+
[
Ψ̂m(x) , Ĥam

]
.

(2.24)

In this case, only two of the above commutators are non-zero. They are

[
Ψ̂m(x) , Ĥm

]
=

[
− ~2

4m
∇2
x + Vm (x)− µm

]
Ψ̂m(x) , (2.25)

which was derived in the same manner as Equation (2.19), and

[
Ψ̂m(x) , Ĥam

]
=
g

2

∫
d3y

[
Ψ̂m(x) , Ψ̂†

m(y)
]
Ψ̂a(y) Ψ̂a(y)

=
g

2
Ψ̂a(x) Ψ̂a(x) . (2.26)

The equation of motion is then

i~
∂

∂t
Ψ̂m(x) =

[
− ~2

4m
∇2
x + Vm (x)− µm

]
Ψ̂m(x) +

g

2
Ψ̂a(x) Ψ̂a(x) . (2.27)
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2.4.3 Normal Fluctuations Operator

To simplify some of the math and enable us to use results we have already found,

we will use the product rule in computing the Heisenberg equation for χ̂†a(x
′) χ̂a(x):

i~
∂

∂t

[
χ̂†a(x

′) χ̂a(x)
]

=

[
i~
∂

∂t
χ̂†a(x

′)

]
χ̂a(x) + χ̂†a(x

′)

[
i~
∂

∂t
χ̂a(x)

]
=
[
χ̂†a(x

′) , Ĥ
]
χ̂a(x) + χ̂†a(x

′)
[
χ̂a(x) , Ĥ

]
. (2.28)

Solving Equation (2.4) for χ̂a(x) and finding the Hermitian conjugate of the result

provides further simplification:

[
χ̂†a(x

′) , Ĥ
]

=
[
Ψ̂†
a(x

′) , Ĥ
]
−
〈
Ψ̂a(x

′)
〉∗ [

I, Ĥ
]

=
[
Ψ̂†
a(x

′) , Ĥ
]

(2.29)

and [
χ̂a(x) , Ĥ

]
=
[
Ψ̂a(x) , Ĥ

]
−
〈
Ψ̂a(x)

〉 [
Î , Ĥ

]
=
[
Ψ̂a(x) , Ĥ

]
, (2.30)

so

i~
∂

∂t

[
χ̂†a(x

′) χ̂a(x)
]

=
[
Ψ̂†
a(x

′) , Ĥ
] [

Ψ̂a(x)−
〈
Ψ̂a(x)

〉]
+
[
Ψ̂†
a(x

′)−
〈
Ψ̂a(x

′)
〉∗] [

Ψ̂a(x) , Ĥ
]
. (2.31)

We have already found
[
Ψ̂a(x) , Ĥ

]
as the right-hand side of Equation (2.23), so we

must compute
[
Ψ̂†
a(x

′) , Ĥ
]
. But observe that

[
Ψ̂†
a(x

′) , Ĥ
]

=Ψ̂†
a(x

′) Ĥ − ĤΨ̂†
a(x

′)

=
[
ĤΨ̂a(x

′)− Ψ̂a(x
′) Ĥ

]†
=−

[
Ψ̂a(x

′) , Ĥ
]†
. (2.32)
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This expression gives

[
Ψ̂†
a(x

′) , Ĥ
]

= −Ψ̂†
a(x

′)

[
− ~2

2m
∇2
x′ + Va (x′)− µa

]
− UΨ̂†

a(x
′) Ψ̂†

a(x
′) Ψ̂a(x

′)− gΨ̂†
m(x′) Ψ̂a(x

′) , (2.33)

where we have assumed that the external potential felt by atoms is Hermitian.

2.4.4 Anomalous Fluctuations Operator

The methods used to obtain Equation (2.31) give for the Heisenberg equation

for χ̂a(x
′) χ̂a(x)

i~
∂

∂t
[χ̂a(x

′) χ̂a(x)]

=
[
Ψ̂a(x

′) , Ĥ
] [

Ψ̂a(x)−
〈
Ψ̂a(x)

〉]
+
[
Ψ̂a(x

′)−
〈
Ψ̂a(x

′)
〉] [

Ψ̂a(x) , Ĥ
]
. (2.34)

Again, we have aleady computed the necessary commutator.

2.5 Partial Differential Equations for Scalar Quantities

We obtain partial differential equations for the desired quantities from the Heisen-

berg equations of motion derived above by averaging and then factorizing those av-

erages of products of operators in a consistent way.

2.5.1 Expectation Values

Though lengthy, let us explicitly write the expectation values of each of the four

equations of motion. The following four equations are a landmark in the deriva-

tion because some of the factorizations required for further simplification involve a
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significant assumption about the system.

i~
∂

∂t

〈
Ψ̂a(x)

〉
=

[
− ~2

2m
∇2
x + Va (x)− µa

]〈
Ψ̂a(x)

〉
+ U

〈
Ψ̂†
a(x) Ψ̂a(x) Ψ̂a(x)

〉
+ g

〈
Ψ̂m(x) Ψ̂†

a(x)
〉

(2.35)

i~
∂

∂t

〈
Ψ̂m(x)

〉
=

[
− ~2

4m
∇2
x + Vm (x)− µm

]〈
Ψ̂m(x)

〉
+
g

2

〈
Ψ̂a(x) Ψ̂a(x)

〉
(2.36)

i~
∂

∂t

〈
χ̂†a(x

′) χ̂a(x)
〉

=−
[
− ~2

2m
∇2
x′ + Va (x′)− µa

]〈
Ψ̂†
a(x) Ψ̂a(x

′)
〉∗

− U
〈
Ψ̂†
a(x

′) Ψ̂†
a(x

′) Ψ̂a(x
′) Ψ̂a(x)

〉
− g

〈
Ψ̂†
m(x′) Ψ̂a(x

′) Ψ̂a(x)
〉

+

[
− ~2

2m
∇2
x′ + Va (x′)− µa

]〈
Ψ̂a(x

′)
〉∗ 〈

Ψ̂a(x)
〉

+ U
〈
Ψ̂†
a(x

′) Ψ̂†
a(x

′) Ψ̂a(x
′)
〉〈

Ψ̂a(x)
〉

+ g
〈
Ψ̂†
m(x′) Ψ̂a(x

′)
〉〈

Ψ̂a(x)
〉

+

[
− ~2

2m
∇2
x + Va (x)− µa

]〈
Ψ̂†
a(x

′) Ψ̂a(x)
〉

+ U
〈
Ψ̂†
a(x

′) Ψ̂†
a(x) Ψ̂a(x) Ψ̂a(x)

〉
+ g

〈
Ψ̂m(x) Ψ̂†

a(x
′) Ψ̂†

a(x)
〉

−
[
− ~2

2m
∇2
x + Va (x)− µa

]〈
Ψ̂a(x

′)
〉∗ 〈

Ψ̂a(x)
〉

− U
〈
Ψ̂†
a(x) Ψ̂a(x) Ψ̂a(x)

〉〈
Ψ̂a(x

′)
〉∗

− g
〈
Ψ̂m(x) Ψ̂†

a(x)
〉〈

Ψ̂a(x
′)
〉∗

(2.37)
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i~
∂

∂t
〈χ̂a(x′) χ̂a(x)〉 =

[
− ~2

2m
∇2
x′ + Va (x′)− µa

]〈
Ψ̂a(x

′) Ψ̂a(x)
〉

+ U
〈
Ψ̂†
a(x

′) Ψ̂a(x
′) Ψ̂a(x

′) Ψ̂a(x)
〉

+ g
〈
Ψ̂m(x′) Ψ̂†

a(x
′) Ψ̂a(x)

〉
−
[
− ~2

2m
∇2
x′ + Va (x′)− µa

]〈
Ψ̂a(x

′)
〉〈

Ψ̂a(x)
〉

− U
〈
Ψ̂†
a(x

′) Ψ̂a(x
′) Ψ̂a(x

′)
〉〈

Ψ̂a(x)
〉

− g
〈
Ψ̂m(x′) Ψ̂†

a(x
′)
〉〈

Ψ̂a(x)
〉

+

[
− ~2

2m
∇2
x + Va (x)− µa

]〈
Ψ̂a(x

′) Ψ̂a(x)
〉

+ U
〈
Ψ̂a(x

′) Ψ̂†
a(x) Ψ̂a(x) Ψ̂a(x)

〉
+ g

〈
Ψ̂m(x) Ψ̂a(x

′) Ψ̂†
a(x)

〉
−
[
− ~2

2m
∇2
x + Va (x)− µa

]〈
Ψ̂a(x)

〉〈
Ψ̂a(x

′)
〉

− U
〈
Ψ̂†
a(x) Ψ̂a(x) Ψ̂a(x)

〉〈
Ψ̂a(x

′)
〉

− g
〈
Ψ̂m(x) Ψ̂†

a(x)
〉〈

Ψ̂a(x
′)
〉

(2.38)

We have made some use of Equation (2.3).

2.5.2 Factorizations

In the equations above, many terms are expectation values of products of more

than two operators, or are expectation values of a product of two operators for which

we do not have an equation of motion (for example,
〈
Ψ̂†
a(x

′) Ψ̂a(x)
〉
). We would like

to express Equations (2.35) through (2.38) entirely in terms of expectation values of

operators for which we have derived equations of motion. Many of these products

can be exactly factorized, but others will require the use of Wick’s theorem.

Exact Factorizations By applying Equation (2.5), and so making no further ap-

proximations beyond those we have already made, we can replace expectation values
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involving a molecular field operator or its Hermitian conjugate by the expectation

value of that molecular field operator or conjugate times the expectation value of the

remaining product of operators. For example,

〈
Ψ̂m(x) Ψ̂†

a(x
′)
〉

=
〈
Ψ̂m(x)

〉〈
Ψ̂†
a(x

′)
〉

(2.39)

and 〈
Ψ̂m(x) Ψ̂a(x

′) Ψ̂†
a(x)

〉
=
〈
Ψ̂m(x)

〉〈
Ψ̂a(x

′) Ψ̂†
a(x)

〉
. (2.40)

We can also apply Equation (2.4) to write products of two atomic field oper-

ators in terms of operators mostly for which we have equations. Noting 〈χ̂a(x)〉 =〈
χ̂†a(x)

〉
= 0, we have

〈
Ψ̂†
a(x

′) Ψ̂a(x)
〉

=
〈
Ψ̂a(x

′)
〉∗ 〈

Ψ̂a(x)
〉

+
〈
χ̂†a(x

′) χ̂a(x)
〉
, (2.41)

〈
Ψ̂a(x

′) Ψ̂†
a(x)

〉
=
〈
Ψ̂a(x

′)
〉〈

Ψ̂a(x)
〉∗

+
〈
χ̂a(x

′) χ̂†a(x)
〉
, (2.42)〈

Ψ̂a(x
′) Ψ̂a(x)

〉
=
〈
Ψ̂a(x

′)
〉〈

Ψ̂a(x)
〉

+ 〈χ̂a(x′) χ̂a(x)〉 , (2.43)〈
Ψ̂†
a(x

′) Ψ̂†
a(x)

〉
=
〈
Ψ̂a(x) Ψ̂a(x

′)
〉†

=
〈
Ψ̂a(x)

〉∗ 〈
Ψ̂a(x

′)
〉∗

+ 〈χ̂a(x) χ̂a(x
′)〉∗ (2.44)

Approximate Factorizations—Wick’s Theorem After making the substitu-

tions described above, expectation values of products of more than two atomic field

operators remain. Applying Equation (2.4) to these products will only result in more

complicated terms, many of which are also expectation values of products of more

than two operators. To factorize such expectation values, we will use Wick’s theorem

(described in Appendix A). This factorization is exact if the state of the system is

an eigenstate of every Bogoliubov quasiparticle annihilation operator, which is an
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operator that is a linear superposition of the momentum-space creation and annihi-

lation operators (the a†k and ak of Section 1.2.1). This state is a squeezed state, and

it saturates the number-phase Heisenberg uncertainty relation ∆N ∆φ ≥ 1/2, where

∆N and ∆φ are the variances in the number and phase, respectively [4].2 Though

the system is likely not always in such a state, we must make such an approximation

in order for our equations to be numerically tractable. The fact that our simulations

resemble known results for simple scenarios suggests the approximation is reasonable.

Note that a quasiparticle coherent state (a squeezed state) is not generally the

same as a coherent state of the field operator, which would be

〈
Ψ̂a(x) Ψ̂a(x

′)
〉

=
〈
Ψ̂a(x)

〉〈
Ψ̂a(x

′)
〉
. (2.45)

If the state is such that Equation (2.45) would be true, one obtains the Gross-

Pitaevskii equation, lacking (effectively assuming negligible) the fluctuations in which

we are interested.

Using Wick’s theorem, the high-order expectation values factorize as

〈
Ψ̂†
a(x) Ψ̂a(x) Ψ̂a(x)

〉
=
∣∣∣〈Ψ̂a(x)

〉∣∣∣2 〈Ψ̂a(x)
〉

+
〈
Ψ̂a(x)

〉∗
〈χ̂a(x) χ̂a(x)〉

+ 2
〈
Ψ̂a(x)

〉 〈
χ̂†a(x) χ̂a(x)

〉
(2.46)

〈
Ψ̂†
a(x

′) Ψ̂†
a(x

′) Ψ̂a(x
′)
〉

=
∣∣∣〈Ψ̂a(x

′)
〉∣∣∣2 〈Ψ̂a(x

′)
〉∗

+
〈
Ψ̂a(x

′)
〉
〈χ̂a(x′) χ̂a(x′)〉∗

+ 2
〈
Ψ̂a(x

′)
〉∗ 〈

χ̂†a(x
′) χ̂a(x

′)
〉

(2.47)

2The discussion of the phase operator is a subtle one; we refer the reader to Pegg and Barnett
[85, 86].
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〈
Ψ̂†
a(x

′) Ψ̂†
a(x

′) Ψ̂a(x
′) Ψ̂a(x)

〉
=
∣∣∣〈Ψ̂a(x

′)
〉∣∣∣2 〈Ψ̂a(x

′)
〉∗ 〈

Ψ̂a(x)
〉

+
〈
Ψ̂a(x

′)
〉∗2

〈χ̂a(x′) χ̂a(x)〉

+ 2
∣∣∣〈Ψ̂a(x

′)
〉∣∣∣2 〈χ̂†a(x′) χ̂a(x)

〉
+ 2

〈
Ψ̂a(x

′)
〉∗ 〈

Ψ̂a(x)
〉 〈
χ̂†a(x

′) χ̂a(x
′)
〉

+
〈
Ψ̂a(x

′)
〉〈

Ψ̂a(x)
〉
〈χ̂a(x′) χ̂a(x′)〉∗

+ 〈χ̂a(x′) χ̂a(x′)〉∗ 〈χ̂a(x′) χ̂a(x)〉

+ 2
〈
χ̂†a(x

′) χ̂a(x
′)
〉 〈
χ̂†a(x

′) χ̂a(x)
〉

(2.48)〈
Ψ̂†
a(x

′) Ψ̂†
a(x) Ψ̂a(x) Ψ̂a(x)

〉
=
∣∣∣〈Ψ̂a(x)

〉∣∣∣2 〈Ψ̂a(x)
〉〈

Ψ̂a(x
′)
〉∗

+
〈
Ψ̂a(x

′)
〉∗ 〈

Ψ̂a(x)
〉∗
〈χ̂a(x) χ̂a(x)〉

+ 2
〈
Ψ̂a(x

′)
〉∗ 〈

Ψ̂a(x)
〉 〈
χ̂†a(x) χ̂a(x)

〉
+ 2

∣∣∣〈Ψ̂a(x)
〉∣∣∣2 〈χ̂†a(x′) χ̂a(x)

〉
+
〈
Ψ̂a(x)

〉2

〈χ̂a(x′) χ̂a(x)〉∗

+ 〈χ̂a(x′) χ̂a(x)〉∗ 〈χ̂a(x) χ̂a(x)〉

+ 2
〈
χ̂†a(x

′) χ̂a(x)
〉 〈
χ̂†a(x) χ̂a(x)

〉
(2.49)〈

Ψ̂†
a(x

′) Ψ̂a(x
′) Ψ̂a(x

′) Ψ̂a(x)
〉

=
∣∣∣〈Ψ̂a(x

′)
〉∣∣∣2 〈Ψ̂a(x

′)
〉〈

Ψ̂a(x)
〉

+ 2
∣∣∣〈Ψ̂a(x

′)
〉∣∣∣2 〈χ̂a(x′) χ̂a(x)〉

+
〈
Ψ̂a(x

′)
〉∗ 〈

Ψ̂a(x)
〉
〈χ̂a(x′) χ̂a(x′)〉

+ 2
〈
Ψ̂a(x

′)
〉〈

Ψ̂a(x)
〉 〈
χ̂†a(x

′) χ̂a(x
′)
〉

+ 2
〈
χ̂†a(x

′) χ̂a(x
′)
〉
〈χ̂a(x′) χ̂a(x)〉

+
〈
χ̂†a(x

′) χ̂a(x)
〉
〈χ̂a(x′) χ̂a(x′)〉

+
〈
Ψ̂a(x

′)
〉2 〈

χ̂†a(x
′) χ̂a(x)

〉
(2.50)
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〈
Ψ̂a(x

′) Ψ̂†
a(x) Ψ̂a(x) Ψ̂a(x)

〉
=
∣∣∣〈Ψ̂a(x)

〉∣∣∣2 〈Ψ̂a(x
′)
〉〈

Ψ̂a(x)
〉

+
〈
Ψ̂a(x

′)
〉〈

Ψ̂a(x)
〉∗
〈χ̂a(x) χ̂a(x)〉

+ 2
〈
Ψ̂a(x

′)
〉〈

Ψ̂a(x)
〉 〈
χ̂†a(x) χ̂a(x)

〉
+ 2

∣∣∣〈Ψ̂a(x)
〉∣∣∣2 〈χ̂a(x′) χ̂a(x)〉

+
〈
Ψ̂a(x)

〉2 〈
χ̂a(x

′) χ̂†a(x)
〉

+
〈
χ̂a(x

′) χ̂†a(x)
〉
〈χ̂a(x) χ̂a(x)〉

+ 2 〈χ̂a(x′) χ̂a(x)〉
〈
χ̂†a(x) χ̂a(x)

〉
(2.51)

2.5.3 General Six-Dimensional Equations

After factorizing according to Wick’s theorem, we arrive at four coupled, non-

linear, second order partial differential equations for the quantities in which we are

interested. By the definitions of Section 1.6.1, these equations are actually quasi linear

in that they are linear in the dependent variables’ partial derivatives.

i~
∂

∂t
φa (x) =

{
− ~2

2m
∇2
x + Va (x)− µa + U

[
|φa (x) |2 + 2GN (x,x)

]}
φa (x)

+ [UGA (x,x) + gφm (x)]φ∗a (x) (2.52)

i~
∂

∂t
φm (x) =

[
− ~2

4m
∇2
x + Vm (x)− µm

]
φm (x) +

g

2

[
φ2
a (x) +GA (x,x)

]
(2.53)

i~
∂

∂t
GN (x,x′) =

[
− ~2

2m

(
∇2
x −∇2

x′

)
+ Va (x)− Va (x′)

]
GN (x,x′)

+ 2U
[
|φa (x) |2 − |φa (x′) |2 +GN (x,x)−GN (x′,x′)

]
GN (x,x′)

+
{
gφm (x) + U

[
φ2
a (x) +GA (x,x)

]}
G∗
A (x,x′)

−
{
gφ∗m (x′) + U

[
φ∗2a (x′) +G∗

A (x′,x′)
]}
GA (x,x′) (2.54)
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i~
∂

∂t
GA (x,x′) =

{
− ~2

2m

(
∇2
x +∇2

x′

)
+ Va (x) + Va (x′)− 2µa

}
GA (x,x′)

+ 2U
[
|φa (x) |2 + |φa (x′) |2 +GN (x,x) +GN (x′,x′)

]
GA (x,x′)

+
{
gφm (x) + U

[
φ2
a (x) +GA (x,x)

]}
G∗
N (x,x′)

+
{
gφm (x′) + U

[
φ2
a (x′) +GA (x′,x′)

]}
GN (x,x′)

+
{
gφm (x) + U

[
φ2
a (x) +GA (x,x)

]}
δ(3) (x− x′) (2.55)

Similarities between equations are apparent when presented in this slightly unconcise

form. Note that we have used GN(x′,x) =
〈
χ̂†a(x) χ̂a(x

′)
〉

=
〈
χ̂†a(x

′) χ̂a(x)
〉†

=

G∗
N(x,x′).

For convenience, we summarize the unknowns in Equations (2.52) through (2.55).

• The independent variables x and x′ are two generally distinct three-dimensional

coordinates.

• The independent variable t is the time.

• The dependent variable φa(x) is the generally complex wavefunction of the

atomic condensate, which contains information about the number density of

condensed atoms at the point x and time t and about the local flow velocity at

that point and time.

• The dependent variable φm(x) contains the same information as φa(x), but

about the molecular condensate.

• The dependent variable GN(x,x′) is the generally complex normal fluctuations

field and contains information about second-order quantum fluctuations. Its

diagonal elements GN(x,x) give a number density of noncondensed atoms at

the points x and time t.
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• The dependent variable GA(x,x′) is the generally complex anomalous fluctua-

tions field and contains information about second-order quantum fluctuations.

Its diagonal elements GA(x,x) give the variance in the atomic mean field φa(x).

The normal and anomalous fluctuations are both correlations functions and

Green’s functions [83].

Chapter 3 simplifies these equations, mainly with symmetry arguments, so that

they are computationally feasible.

2.6 Physical Parameters

Having the mathematical form of our model, let us explore and refine some of

the physical quantities appearing so far.

2.6.1 Renormalization

The parameters appearing in Equations (2.52) through (2.55)—namely, U , g,

µa, and µm—must be properly renormalized to avoid an unphysical divergence of the

ground-state energy. Kokkelmans et al. [14] model pair formation via a Feshbach

resonance as scattering in coupled square wells (see Appendix B for an example

solution to such a system). The good agreement of the square well model with the

more rigorous Feshbach formalism (described in [87], for example) demonstrates that

only a few parameters are needed to accurately model the resonance, despite the

divergence of the effective scattering length (1.5), which is the only parameter needed

to describe non-resonant scattering in ultracold systems with short-range interactions.

Next, by introducing a wavenumber cutoff and taking the limiting case of the square

wells’ radii going to zero, Kokkelmans et al. derive a contact interaction model of

the resonance in which the ground state energy does not diverge. Comparison with a
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detailed coupled channels calculation that incorporates realistic interatomic potentials

and hyperfine structure shows that the contact interaction [which was assumed in

the form of the terms (2.9) and (2.10) of the Hamiltonian] accurately models pair

formation via a Feshbach resonance in ultracold systems.

In applying the above renormalization procedure, we follow Kokkelmans and

Holland [10]. By defining ν = 2µa − µm and taking µa = 0, we identify in our own

Hamiltonian (2.6) the same parameters that appear in the Hamiltonian considered in

[10].3 Then

U = ΓU0 (2.56)

g = Γg0 (2.57)

ν = ν0 +
1

2
αgg0, (2.58)

where

Γ ≡ 1

1− αU0

(2.59)

α ≡ mK

2π2~2
(2.60)

with K the wavenumber cutoff, which in practice is determined by the range of a

relative coordinate and the number of relative grid points.

Parameters with a subscript 0 are unrenormalized parameters; they are

U0 =
4π~2abg

m
, (2.61)

3Our Hamiltonian (2.6) includes external trapping potentials which [10] lacks, but these do not
affect the definitions of the parameters.



57

g0 =
√
U0 ∆B∆µmag, (2.62)

ν0 = (B −Bres) ∆µmag, (2.63)

where abg is the background scattering length of the atom; ∆B is the width of the

Feshbach resonance, defined as the distance from the resonance position to the point

where the effective scattering length, Equation (1.5), is zero; ∆µmag is the difference in

magnetic moments of a bound and unbound pair of atoms; B is the external magnetic

field; and Bres is the position of the resonance, defined as the value of the magnetic

field for which the effective scattering length diverges.

The above definitions are taken from [10], except for g0, which can be calculated

from Equations (1) and (14) in [14]; that reference’s Equation (1) is the same as our

Equation (1.5) from Chapter 1, while [14]’s (14) is

aeff = abg −
m

4π~2

|g0|2

ν0

, (2.64)

where aeff is the effective scattering length, and we have neglected the possible sec-

ond resonance mentioned in [14]. Equating these two expressions for the effective

scattering length gives Equation (2.62) above.

Table 2.1 has values of the relevant physical parameters of 85Rb, and Figures 2.1

through 2.5 show how the renormalized parameters depend on the magnetic field and

wavenumber cutoff.
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Parameter Value
abg −443 a0

∆B 10.71 G
∆µmag −2.23 µB
Bres 155.041 G
m 84.91174 amu
U0 −2.32× 10−50 J m3

g0 2.27× 10−38 J m3/2

Table 2.1: Physical parameters of 85Rb. These values are intrinsic properties of 85Rb.
The given values for abg, ∆B, and Bres are from Claussen et al. [28], the given value of
∆µmag is mentioned in [10], and U0 and g0 are calculated from the other parameters.



59

-4000

-2000

 0

 2000

 4000

 140  145  150  155  160  165  170

a
e
ff

 (
a

0
)

B (G)

∆B

-60

0

100

164 167

Figure 2.1: Effective scattering length aeff(B) for 85Rb. The effective scattering length
is given by Equation (1.5). The vertical line indicates the position Bres of the Feshbach
resonance. Note that the scattering length passes through zero only for B > Bres.
Inset : effective scattering length near B = Bzero where aeff = 0.
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Figure 2.2: Renormalized detuning ν(B) for 85Rb. The detuning is given by Equation
(2.58), here for a wavenumber cutoff of K = 5 × 107 m−1. The vertical dotted line
on the left indicates the position Bres of the Feshbach resonance. The thick dashed
line on the right is the value of ν where the effective scattering length is zero. The
effective scattering length aeff is positive only between the vertical lines.
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Figure 2.3: K-dependence of renormalized detuning ν for 85Rb. The detuning is given
by Equation (2.58) as a function of wavenumber cutoff K, here for B = Bres (solid
curve) and B = Bzero (dotted curve).
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Figure 2.4: K-dependence of renormalized self-interaction U for 85Rb. The parameter
U is given by Equation (2.56) as a function of wavenumber cutoff K. Notice that
U depends only on K and the intrinsic properties of 85Rb given in Table 2.1, and is
independent of B.
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Figure 2.5: K-dependence of renormalized molecular coupling g for 85Rb. The param-
eter g is given by Equation (2.57) as a function of wavenumber cutoff K. Notice that
g depends only on K and the intrinsic properties of 85Rb given in Table 2.1, and is
independent of B.
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2.6.2 Length and Time Scales

By nondimensionalizing Equations (2.52) through (2.55), we can discover the

natural length and time scales of the problem. We explicitly include the dimensions

by letting

t→ t0t, x → x0x

φa(x) → 1

x
3/2
0

φa(x) , φm(x) → 1

x
3/2
0

φm(x)

GN(x,x′) → 1

x3
0

GN(x,x′) , GA(x,x′) → 1

x3
0

GA(x,x′) ,

where now t0 and x0 carry the dimensions, and t, x, and all four fields are dimen-

sionless. We substitute these into (2.52) through (2.55) (recall that ν = 2µa − µm

and µa → 0) and form dimensionless quantities. From any of the four equations, we

could recover the natural scales of the harmonic oscillator,

t0 =
1

ω
, x0 =

√
~
mω

.

We are most interested in the physics intrinsic to the interatomic interactions and

independent of the trap, so we only concentrate on scales independent of ω.

In the equation for φa, the dimensionless factors4

Ut0
~x3

0

, (2.65)

gt0

~x3/2
0

, (2.66)

4Such factors are typically called dimensionless groups, and can convey basic information about
a complicated process; the Reynolds number in fluid mechanics is another example.
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and

~t0
mx2

0

. (2.67)

appear (after some algebraic manipulation). Since the nondimensionalization proce-

dure only introduces two new degrees of freedom (t0 and x0), we must choose two of

the three groups above and set them equal to 1 when solving for t0 and x0. Combining

(2.65) with (2.67), (2.66) with (2.67), and (2.65) with (2.66), we get, respectively,

t0 =
m3

~5
U2, x0 =

m

~2
U ; (2.68)

t0 =
~7

m3

1

g4
, x0 =

~4

m2

1

g2
; (2.69)

t0 = ~
U

g2
, x0 =

(
U

g

)2/3

, (2.70)

where the last pair is just a combination of the first two.

Using the same procedure on the equation for φm, we get the pair (2.69) in

addition to

t0 =
~
ν
, x0 =

√
~2

m

1

ν
; (2.71)

t0 =
~
ν
, x0 =

(g
ν

)2/3

. (2.72)

Nondimensionalizing the equations for GN and GA reveals no new scales.

To summarize, each parameter that appears in the Hamiltonian and characterizes

interactions has a time and length scale that is independent of the trap:

tU =
m3

~5
U2, xU =

m

~2
U ; (2.73)
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tg =
~7

m3

1

g4
, xg =

~4

m2

1

g2
; (2.74)

tν = ~
1

ν
, xν =

√
~2

m

1

ν
. (2.75)

These scales are unique in that there no other scales involving each parameter (U , g, or

ν) by itself. Using U0, g0, andm for 85Rb from Table 2.1, observe that tU0 = 1.16×10−4

s and tg0 = 1.95 × 10−13 s, indicating that a numerical solution may encounter stiff

sets of equations.

2.7 Energy and Momentum

Whenever the magnetic field is constant, no energy enters or leaves the system,

and so average total energy must be conserved. The total energy in the system is

calculated from the expectation value of the Hamiltonian, Equation (2.6). With the

aid of the field operator’s expansion (2.4) in terms of an average plus a fluctuation

and Wick’s theorem, Equation (2.48) specifically, the total energy neglecting kinetic

terms is

E − T =

∫
d3x Va(x)

[
GN(x,x) + |φa(x)|2

]
+

∫
d3x [Vm(x) + ν] |φm(x)|2

+
U

2

∫
d3x

{
|φa(x)|4 + 2 Re

[
φ∗2a (x)GA(x,x)

]
+ 4 |φa(x)|2GN(x,x)

+ |GA(x,x)|2 + 2G2
N(x,x)

}
+ g

∫
d3x Re

{
φ∗m(x)

[
GA(x,x) + φ2

a(x)
]}
. (2.76)

Equation (2.76) only involves quantities for which we have derived equations; that is,

all parts of the energy except for the kinetic contribution can be computed from the

atomic and molecular mean fields and the normal and anomalous fluctuations. The
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kinetic contribution requires a more involved treatment.

If the system were in a coherent state |λ〉 such that

Ψ̂a(x) |λ〉 = φa(x) |λ〉, (2.77)

which would make the GPE exact to within the approximations of the contact po-

tential, the kinetic energy could be calculated as

〈
T̂
〉

= − ~2

2m

∫
d3x 〈λ|Ψ̂†

a(x)∇2Ψ̂a(x) |λ〉 =
~2

2m

∫
d3x |∇φa(x)|2 , (2.78)

where we have integrated by parts and assumed normalized states and box boundary

conditions. Since we neglect fluctuations around the molecular mean field, Equation

(2.78) may be immediately adapted to the molecules’ contributions Tm to the kinetic

energy:

Tm = − ~2

4m

∫
d3x |∇φm(x)|2 . (2.79)

If Equation (2.77) is not true, as in the case of the atomic part of our model, we

may apply the decomposition (2.4) and arrive at Equation (2.78) for the condensate’s

contribution to the kinetic energy. The noncondensed fluid’s contribution remains; it

is

− ~2

2m

∫
d3x

〈
χ̂†a(x)∇2χ̂a(x)

〉
, (2.80)

which cannot immediately be expressed in terms of the four quantities that our model

includes. Integration by parts is available to transfer the Laplacian from the fluctu-

ation operator to its Hermitian conjugate, but does not result solely in a derivative

applied to a product of the operators (namely, the normal fluctuations). Thus, it

appears we are unable to calculate the kinetic energy of the noncondensed fraction
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using only the atomic and molecular mean fields and the normal and anomalous

fluctuations.

The calculation of total momentum is hindered by similar concerns. The calcu-

lation starts with

〈
P̂tot

〉
= −i~

∫
d3x

〈
Ψ̂†
a(x)∇Ψ̂a(x)

〉
− i~

∫
d3x

〈
Ψ̂†
m(x)∇Ψ̂m(x)

〉
. (2.81)

Applying Equation (2.4) and recalling that we neglect molecular fluctuations, the

total momentum reduces in a similar fashion as the kinetic energy did:

〈
P̂tot

〉
= −i~

∫
d3x φ∗a(x)∇φa(x)− i~

∫
d3x φ∗m(x)∇φm(x)

− i~
∫

d3x
〈
χ̂†a(x)∇χ̂a(x)

〉
. (2.82)

All but the last term, the momentum of noncondensed atoms, may be calculated in

terms of the four fields accounted for by our model. Again, integration by parts does

not result in a useful expression.
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Chapter 3

SIMPLIFICATIONS AND MODIFICATIONS

Equations (2.52) through (2.55) are capable of handling a completely general

geometry, but their seven independent variables, six in space and one in time, present

a formidable computational challege. We proceed to make some assumptions about

the geometry and symmetry of the problem in order to simplify the equations.

3.1 Change of Coordinates

Since the experimental results with which we will compare primarily concern

the atomic and molecular condensed and atomic uncondensed number densities, we

seek to retain as much information as possible about these quantities. Looking at

Equations (2.52) through (2.55), we lose absolutely no information about number

densities by placing some restrictions on the relative values of x and x′. Specifically,

the evolutions of the atomic and molecular fields and the diagonal (that is, x = x′)

elements of the correlation functions are determined only by single-coordinate fields.

One could go so far as to require x = x′ in Equations (2.54) and (2.55) without

affecting the evolution of number densities or the diagonal elements of GA. The

system of equations (2.52) through (2.55) would be reduced from six to three spatial

independent variables, even in the absence of any symmetries, and the derivatives

in the correlation functions would greatly simplify. (A delta function evaluated at

zero appears in the GA equation, but may be replaced by a commutator.) While

important observable quantities (that is, number densities) would be unaffected, we
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lose all knowledge of off-diagonal correlations. Seeking to retain as much of this

potentially useful information as possible, we back off from the x = x′ restriction,

and employ symmetry assumptions to simplify (2.52) through (2.55). Again, looking

at Equations (2.54) and (2.55), the evolutions of the off-diagonal correlations that we

do retain are completely unaffected by those correlations of which we would have no

knowledge.

In the case of spherical geometry, we assume that all external potentials Va(x)

and Vm(x) are rotationally invariant, as are the initial conditions on fields which

are functions of a single coordinate, namely, φa(x), φm(x), GA(x,x), and GN(x,x).

The combination of these two sets of assumptions ensures that those single-coordinate

fields will always be rotationally invariant. We wish to write Equations (2.52) through

(2.55) in terms of center of mass and relative coordinates (which will facilitate a

Fourier transform later—see [88] for substantial theory surrounding this procedure

in the context of quantum mechanical correlation functions), but without knowing

the forms of the single-coordinate fields, terms such as |φa(x)|2 − |φa(x′)|2 cannot

immediately be written in terms of a function φ̄a that is a function only of a single

center of mass coordinate R. However, if we restrict our attention to x and x′ such

that x = x′, where x ≡ |x|, that is, we restrict our knowledge of correlations only to

those between points on the surface of a spherical shell (see Figure 3.1), all the terms

requiring knowledge of unknown fields’ forms vanish, and several terms combine in

(2.54) and (2.55).

With similar assumptions and restrictions, Equations (2.52) through (2.55) for

a cylindrical geometry reduce in the same way as for the spherical case. Specifically,

we must assume that the external potentials and single-coordinates fields’ initial con-

ditions (and therefore their later values) are invariant with respect to rotations only



71

Figure 3.1: Coordinate restrictions for spherical symmetry. In a spherically symmetric
trap (the blue outer circle, cut in half for visibility), rotationally invariant single-
coordinate fields have the same value all over the surface of a spherical shell (inner,
sharp-edged, green circle). The two vectors (bold red), x and x′, are not equal, but
both point to the shell; we can then write, for example, φa(x) = φa(x

′), facilitating a
change to center of mass and relative coordinates. With this restriction x = x′, the
only two-point correlations we will know about for a given center of mass coordinate
R are those between points on a single shell. This is physically motivated by bursts
produced by collapsing condensates.

about a particular vertical axis (let it be the z-axis), and invariant about reflections

over a particular plane, normal to the axis of rotational symmetry (let this be the

xy-plane passing through the origin). Then, if we restrict our attention to x and x′

such that their z-components xz and x′z are equal in magnitude, and the components

of x and x′ lying in the xy-plane, xρ and x′ρ, are equal in magnitude, the same terms

that canceled and combined in the spherical case cancel and combine here, too. In

this case, our knowledge of correlations is restricted to those between a point lying

on a ring xz above the xy-plane and another point on a ring of the same radius as

the first, but lying xz below the xy-plane, or between two points on the same ring

(see Figure 3.2).
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Figure 3.2: Coordinate restrictions for cylindrical symmetry. In a cylindrically sym-
metric trap (blue rectangle, and cut in half for visibility), single-coordinate fields are
invariant with respect to rotations about the z-axis and to reflections over the xy-
plane. Such fields will have a single value at all points on two rings (curved green
lines) of equal radii, equidistant from and parallel to the xy-plane, and centered on
the z-axis. The two vectors x and x′ (bold red), are not equal, but each may point
to a different ring; we can then write, for example, φa(x) = φa(x

′), facilitating a
change to center of mass and relative coordinates. With the restrictions xz = x′z
and xρ = x′ρ, the only two-point correlations we will know about for a given center
of mass coordinate R are those between points lying on the same or different rings.
Physically, this allows us to study correlations between bursts running along the axial
direction of a collapsing condensate in a cylindrically symmetric trap, or on a ring
moving outwards radially.
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To put these assumptions and restrictions in a concise mathematical form, define

the center of mass and relative coordinates, respectively, as

R =
x + x′

2
, (3.1)

r = x− x′. (3.2)

Then the functions in Equations (2.52) through (2.55) transform as

φa(x) = φa(x
′) ≡ φ̄a(R) ,

φm(x) = φm(x′) ≡ φ̄m(R) ,

GN(x,x) = GN(x′,x′) ≡ ḠN(R,0) ,

GA(x,x) = GA(x′,x′) ≡ ḠA(R,0) ,

GN(x,x′) ≡ ḠN(R, r) ,

GA(x,x′) ≡ ḠA(R, r) ,

Va(x) = Va(x
′) ≡ V̄a(R) ,

Vm(x) = Vm(x′) ≡ V̄m(R) ,

a notation general enough to handle either the spherical or cylindrical geometries and

their corresponding assumptions and restrictions. For consistency with the assump-

tions that single-coordinate fields have no angular dependence for the spherical case

and no azimuthal dependence for the cylindrical case, we make the same assumptions

for the dependence of the correlation functions on R, so that only the magnitude R

is important in all the fields in the spherical case, and only Rz and Rρ (the magni-

tudes of R’s components lying along the z-axis and in the xy-plane, respectively) are

important in the cylindrical case.
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Transformation of Laplacians In order to explicity re-write the collapse equa-

tions in center of mass and relative coordinates, we must transform the Laplacians in

Equations (2.54) and (2.55), all of which act on quantities that are defined over two

distinct variables. We first calculate the most general case.

Consider two Cartesian vectors, x and y, and the transformations R ≡ (x + y) /2

and r ≡ x−y. In terms of the new vectors, x and y are x = R+r/2 and y = R−r/2.1

Then we have

R =
1

2

(
x1 + y1

)
î +

1

2

(
x2 + y2

)
ĵ +

1

2

(
x3 + y3

)
k̂ = R1î +R2ĵ +R3k̂ (3.3)

r =
(
x1 − y1

)
î +
(
x2 − y2

)
ĵ +
(
x3 − y3

)
k̂ = r1î + r2ĵ + r3k̂ (3.4)

x =

(
R1 +

r1

2

)
î +

(
R2 +

r2

2

)
ĵ +

(
R3 +

r3

2

)
k̂ = x1î + x2ĵ + x3k̂ (3.5)

y =

(
R1 − r1

2

)
î +

(
R2 − r2

2

)
ĵ +

(
R3 − r3

2

)
k̂ = y1î + y2ĵ + y3k̂, (3.6)

where î, ĵ, and k̂ are Cartesian unit vectors.

Now consider a scalar function of x and y, f(x,y). Denoting partial differentia-

tion with a subscript, the chain rule gives

fx1 = fR1R1
x1 + fR2R2

x1 + fR3R3
x1 + fr1r

1
x1 + fr2r

2
x1

+ fr3r
3
x1 , (3.7)

which reduces to

fx1 = fR1R1
x1 + fr1r

1
x1 (3.8)

given our chosen forms of R and r.

1For the duration of the derivation of the Laplacians’ transformation, a superscript denotes a
particular component of a vector, not a power.
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Another careful application of the chain rule gives

fx1x1 =
∂

∂ (x1)

(
fR1R1

x1 + fr1r
1
x1

)
= fR1x1R1

x1 + fR1R1
x1x1 + fr1x1r1

x1 + fr1r
1
x1x1

= fR1x1R1
x1 + fr1x1r1

x1 , (3.9)

where we have again used our choices for R and r in making simplifications. We are

still not done, since the above equation mixes partial derivatives with respect to R1,

x1, and r1. Another pass with the chain rule finally results in

fx1x1 =
(
fR1R1R1

x1 + fR1r1r
1
x1

)
R1
x1 +

(
fr1R1R1

x1 + fr1r1r
1
x1

)
r1
x1 . (3.10)

The derivatives with respect to the other components of x can be found by letting

1 → 2 and 1 → 3, and the derivatives with respect to the components of y can be

found by letting x→ y. Now we can write the Laplacian with respect to x, ∇2
x, as

∇2
xf =

[
∂2

∂ (x1)2 +
∂2

∂ (x2)2 +
∂2

∂ (x3)2

]
f

=
(
fR1R1R1

x1 + fR1r1r
1
x1

)
R1
x1 +

(
fr1R1R1

x1 + fr1r1r
1
x1

)
r1
x1

+
(
fR2R2R2

x2 + fR2r2r
2
x2

)
R2
x2 +

(
fr2R2R2

x2 + fr2r2r
2
x2

)
r2
x2

+
(
fR3R3R3

x3 + fR3r3r
3
x3

)
R3
x3 +

(
fr3R3R3

x3 + fr3r3r
3
x3

)
r3
x3 , (3.11)

where ∂2

∂(x1)2
means the second partial derivative with respect to the component of x

called x1. The analogy of Equation (3.11) for ∇2
y is found by letting x→ y. Referring

to the definitions of R and r, we find

R1
x1 = R2

x2 = R3
x3 = R1

y1 = R2
y2 = R3

y3 =
1

2



76

r1
x1 = r2

x2 = r3
x3 = −r1

y1 = −r2
y2 = −r3

y3 = 1, (3.12)

so Equation (3.11) reduces to

∇2
xf =

1

4
(fR1R1 + fR2R2 + fR3R3) + fR1r1 + fR2r2 + fR3r3 + fr1r1 + fr2r2 + fr3r3

(3.13)

∇2
yf =

1

4
(fR1R1 + fR2R2 + fR3R3)− fR1r1 − fR2r2 − fR3r3 + fr1r1 + fr2r2 + fr3r3 .

(3.14)

In finding the preceeding two equations, we assumed fRiri = friRi , i ∈ {1, 2, 3}, which

is true if fRiri and friRi , i ∈ {1, 2, 3}, are all continuous on the domain containing

every point in which we are interested, a reasonable assumption for a physical system.

Taking the gradients with respect to R and r, ∇R and ∇r, respectively, to mean

∇R =
∂

∂ (R1)
î +

∂

∂ (R2)
ĵ +

∂

∂ (R3)
k̂, (3.15)

∇r =
∂

∂ (r1)
î +

∂

∂ (r2)
ĵ +

∂

∂ (r3)
k̂, (3.16)

we have four useful results:

∇2
xf =

(
1

4
∇2
R +∇R · ∇r +∇2

r

)
f (3.17)

∇2
yf =

(
1

4
∇2
R −∇R · ∇r +∇2

r

)
f (3.18)

(
∇2
x +∇2

y

)
f =

(
1

2
∇2
R + 2∇2

r

)
f (3.19)

(
∇2
x −∇2

y

)
f = 2∇R · ∇rf. (3.20)

The position-space representation of the equations (2.52) through (2.55) in center
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of mass and relative coordinates, given the appropriate assumptions and restrictions

described above, is now, in the most general notation,

i~
∂

∂t
φ̄a(R) =

{
− ~2

2m
∇2
R + V̄a(R) + U

[∣∣φ̄a(R)
∣∣2 + 2ḠN(R,0)

]}
φ̄a(R)

+
[
UḠA(R,0) + gφ̄m(R)

]
φ̄∗a(R) (3.21)

i~
∂

∂t
φ̄m(R) =

[
− ~2

4m
∇2
R + V̄m(R) + ν

]
φ̄m(R) +

g

2

[
φ̄2
a(R) + ḠA(R,0)

]
(3.22)

i~
∂

∂t
ḠN(R, r) =− ~2

m
∇R · ∇rḠN(R, r)

+
{
gφ̄m(R) + U

[
φ̄2
a(R) + ḠA(R,0)

]}
Ḡ∗
A(R, r)

−
{
gφ̄∗m(R) + U

[
φ̄∗2a (R) + Ḡ∗

A(R,0)
]}
ḠA(R, r) (3.23)

i~
∂

∂t
ḠA(R, r) =

{
− ~2

2m

(
1

2
∇2
R + 2∇2

r

)
+ 2V̄a(R)

+ 4U
[∣∣φ̄a(R)

∣∣2 + ḠN(R,0)
]}

ḠA(R, r)

+
{
gφ̄m(R) + U

[
φ̄2
a(R) + ḠA(R,0)

]}
×
[
Ḡ∗
N(R, r) + ḠN(R, r) + δ(3)(r)

]
, (3.24)

where we have made the ν = 2µa − µm, µa → 0 substitution described in Section

2.6.1.
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3.2 Fourier Transform

Equations (3.23) and (3.24) may equivalently be given in a relative momentum

representation, obtained by a Fourier transform over the r variable. This transform

will replace some of the derivatives, which are often a source of numerical error in

simulation, with simple multiplication. The transform also serves to remove the

Dirac delta function appearing in the ḠA equation, which may also be a source of

computational inaccuracy (though rigorously discretized delta functions, catered to

computation, do exist—see [89], for example).

We adopt the conventions

f̃(k) =

∫
all r

d3r f̄(r) e−ik·r (3.25)

f̄(r) =

∫
all k

d3k

(2π)3 f̃(k) eik·r, (3.26)

where f̄(r) is an arbitrary function. In Equations (3.23) and (3.24), we multiply each

side of the equations by e−ik·r and integrate over all r-space.

The transform of the Dirac delta function in Equation (3.24) becomes unity. The

diagonal parts of the normal fluctuations ḠN(R,0) can be expressed in terms of the

momentum representation as

ḠI
N(R) ≡ ḠN(R,0) =

∫
all k

d3k

(2π)3 G̃N(R,k) eik·r =

∫
all k

d3k

(2π)3 G̃N(R,k) . (3.27)

The same is true for N → A.

3.2.0 Transforms of Derivatives

We first consider a term appearing in the transformed Equation (3.23):
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∇R ·
∫

d3r ∇r

[
ḠN(R, r)

]
e−ik·r, (3.28)

where henceforth the range of integration is understood to be all r-space in all three-

dimensional integrals, unless otherwise noted. Looking only at the vth Cartesian

component of the integral above,

Iv ≡
∫ ∞

−∞
drv

∂ḠN

∂rv
e−i(kuru+kvrv+kwrw), (3.29)

we may integrate by parts. Assuming that

lim
rv→∞

ḠN(R, r) = lim
rv→−∞

ḠN(R, r) = 0 (3.30)

and recognizing that this procedure applies as well to the uth and wth Cartesian

components of Equation (3.28), we have

∇R ·
∫

d3r ∇r

[
ḠN(R, r)

]
e−ik·r = i∇R · k

∫
d3r ḠN(R, r) e−ik·r

= i∇R · kG̃N(R, r) . (3.31)

In Equation (3.29), we replace the partial derivative with a second partial deriva-

tive. Then Iv becomes

Iv =
∂ḠN

∂rv
e−ik·r

∣∣∣∣∞
−∞

+ ikv

∫ ∞

−∞
drv

∂ḠN

∂rv
ei(kuru+kvrv+kwrw). (3.32)

Assuming that the first partial derivatives of ḠN(R, r) are also bounded as rv → ±∞,

we recognize Equation (3.29) in Equation (3.32). Using the result from Equation
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(3.31), we have

∫
d3r ∇2

r

[
ḠN(R, r)

]
e−ik·r = −k2

∫
d3r ḠN(R, r) e−ik·r = −k2G̃N(R,k) . (3.33)

The equations in momentum space (for the relative coordinate) are then

i~
∂

∂t
φ̄a(R) =

{
− ~2

2m
∇2
R + V̄a(R) + U

[∣∣φ̄a(R)
∣∣2 + 2ḠI

N(R)
]}

φ̄a(R)

+
[
UḠI

A(R) + gφ̄m(R)
]
φ̄∗a(R) (3.34)

i~
∂

∂t
φ̄m(R) =

[
− ~2

4m
∇2
R + V̄m(R) + ν

]
φ̄m(R) +

g

2

[
φ̄2
a(R) + ḠI

A(R)
]

(3.35)

i~
∂

∂t
G̃N(R,k) =− i

~2

m
k · ∇RG̃N(R,k)

+
{
gφ̄m(R) + U

[
φ̄2
a(R) + ḠI

A(R)
]}
G̃∗
A(R,k)

−
{
gφ̄∗m(R) + U

[
φ̄∗2a (R) + Ḡ∗ I

A (R)
]}
G̃A(R,k) (3.36)

i~
∂

∂t
G̃A(R,k) =

{
− ~2

2m

(
1

2
∇2
R − 2k2

)
+ 2V̄a(R)

+ 4U
[∣∣φ̄a(R)

∣∣2 + ḠI
N(R)

]}
G̃A(R,k)

+
{
gφ̄m(R) + U

[
φ̄2
a(R) + ḠI

A(R)
]}

×
[
G̃N(R,k) + G̃∗

N(R,k) + 1
]
, (3.37)

where ḠI
N(R) and ḠI

A(R) are defined by Equation (3.27). We emphasize that the vec-
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tor notation is for generality; these equations will not actually be taken to have seven

independent variables, but a lesser number, depending on the particular symmetry.

3.3 Equations for Spherical Symmetry

We now concentrate on the spherically symmetric case, and acknowledge that all

the dependence on R is encoded entirely in R, the magnitude of R, by replacing R

with R everywhere. Strictly speaking, we should then use different symbols to name

the functions when changing the arguments from vectors to scalars, but we forego

this formality to simplify notation. As explained in Ref. [11], we may evaluate the

gradients in any coordinate system we choose, and given the spherical symmetry and

geometry, we use spherical coordinates with the z-axis aligned with k. Then

k · êφ = 0

k · êρ = k cos θ

k · êθ = k cos
(
θ +

π

2

)
= −k sin θ,

where êφ, êρ, and êθ are the spherical unit vectors of some arbitrary vector (see Figure

3.3). Now ∇2
R becomes the spherical Laplacian, and ∇R · k becomes

∇R · k = k

(
cos θ

∂

∂R
− sin θ

R

∂

∂θ

)
, (3.38)

where we are careful to note the distinction between the gradient and Laplacian

operators themselves, and those operators acting on particular fields.2

2Hence, the disappearance of angular derivatives when a Laplacian acts on a single-coordinate
field and the persistence of those derivatives when acting on a two-coordinate field.
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Figure 3.3: Coordinate axes for spherical symmetry. Since all fields are independent
of the orientation of R, we are free to rotate the axes (keeping the origin fixed), and so
we align the z-axis with k. Then the dependence of the correlation functions’ values
on the relative orientations of k and R (thin arrows) can be expressed in spherical
coordinates. The spherical unit vectors (bold arrows) of some particular vector (R,
in this case) depend on the orientation of that vector.

To simplify the radial derivatives, we define

ϕa(R) = Rφ̄a(R) =

∣∣∣∣x + x′

2

∣∣∣∣φa(x) =

∣∣∣∣x + x′

2

∣∣∣∣φa(x′) ,
ϕm(R) = Rφ̄m(R) =

∣∣∣∣x + x′

2

∣∣∣∣φm(x) =

∣∣∣∣x + x′

2

∣∣∣∣φm(x′) ,

GN(R, k, θ, φ) = RG̃N(R, k, θ, φ) = RFr

[
ḠN(R, r)

]
=

∣∣∣∣x + x′

2

∣∣∣∣Fx−x′ [GN(x,x′)] ,

GA(R, k, θ, φ) = RG̃A(R, k, θ, φ) = RFr

[
ḠA(R, r)

]
=

∣∣∣∣x + x′

2

∣∣∣∣Fx−x′ [GA(x,x′)] ,

(3.39)

where Fy denotes a Fourier transform over the variable y, and for notational consis-
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tency,

GIN(R) = RḠI
N(R) =

∣∣∣∣x + x′

2

∣∣∣∣GN(x,x) =

∣∣∣∣x + x′

2

∣∣∣∣GN(x′,x′)

GIA(R) = RḠI
A(R) =

∣∣∣∣x + x′

2

∣∣∣∣GA(x,x) =

∣∣∣∣x + x′

2

∣∣∣∣GA(x′,x′) .

The HFB equations become, for the spherically symmetric case expressed in spherical

coordinates,

i~
∂

∂t
ϕa(R) =

{
− ~2

2m

∂2

∂R2
+ V̄a(R) + U

[
|ϕa(R)|2

R2
+ 2

GIN(R)

R

]}
ϕa(R)

+

[
U
GIA(R)

R
+ g

ϕm(R)

R

]
ϕ∗a(R) , (3.40)

i~
∂

∂t
ϕm(R) =

[
− ~2

4m

∂2

∂R2
+ V̄m(R) + ν

]
ϕm(R) +

g

2

[
ϕ2
a(R)

R
+ GIA(R)

]
, (3.41)

i~
∂

∂t
GN(R, k, θ, φ) =− i

~2k

m

[
cos θ

(
∂

∂R
− 1

R

)
− sin θ

R

∂

∂θ

]
GN(R, k, θ, φ)

+

{
g
ϕm(R)

R
+ U

[
ϕ2
a(R)

R2
+
GIA(R)

R

]}
G∗A(R, k, θ, φ)

−
{
g
ϕ∗m(R)

R
+ U

[
ϕ∗2a (R)

R2
+
G∗ IA (R)

R

]}
GA(R, k, θ, φ) , (3.42)

i~
∂

∂t
GA(R, k, θ, φ) =

{
− ~2

4m

[
∂2

∂R2
+

1

R2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

R2 sin2 θ

∂2

∂φ2
− 4k2

]

+ 2V̄a(R) + 4U

[
|ϕa(R)|2

R2
+
GIN(R)

R

]}
GA(R, k, θ, φ)

+

{
g
ϕm(R)

R
+ U

[
ϕ2
a(R)

R2
+
GIA(R)

R

]}
× {GN(R, k, θ, φ) + G∗N(R, k, θ, φ) +R} . (3.43)
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Note that φ (with no subscript) indicates the azimuthal angle in spherical coordinates.

3.3.0 Partial Wave Expansion

We begin removing the angular derivatives in Equations (3.42) and (3.43) by

expanding the correlation functions in partial waves; that is,

GN(R, k, θ, φ) =
∞∑
l=0

l∑
q=−l

Gl,qN (R, k)Y q
l (θ, φ) , (3.44)

and similarly for the anomalous fluctuations. Being Laplace series, these expansions

are uniformly convergent, allowing us to differentiate each series term by term. Ap-

pendix C develops recurrence relations for the derivatives and trigonometric factors

appearing in Equations (3.42) and (3.43). Since the spherical harmonics are linearly

independent, we can equate expansion coefficients term by term in (3.42) and (3.43),

as long as the sums on both sides of each equation cover an identical range and

have no coupling between spherical harmonics with different indices. To this end, we

expand the lone R appearing in (3.43) as

R =
√

4πR
∞∑
l=0

l∑
q=−l

δ0,l δ0,qY
q
l (θ, φ) , (3.45)

where δi,j is the Kroenecker delta symbol. Also note that

G∗N(R, k, θ, φ) =
∞∑
l=0

l∑
q=−l

G∗ l,qN (R, k)Y ∗ q
l (θ, φ) ,

=
∞∑
l=0

−l∑
q=l

G∗ l,−qN (R, k) (−1)q Y q
l (θ, φ) , (3.46)

where we have allowed q → −q in the last step. The order of summation is unimpor-
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tant, though, and we may write

G∗N(R, k, θ, φ) =
∞∑
l=0

l∑
q=−l

G∗ l,−qN (R, k) (−1)q Y q
l (θ, φ) , (3.47)

with the same holding true for N → A. Finally, employing the results derived in

Appendix C, both sides of Equations (3.42) and (3.43) are summed over the same

spherical harmonics, and we can equate the expansion coefficients:

i~
∂

∂t
Gl,qN (R, k) =− i

~2k

m

[√
(l − q + 1) (l + q + 1)

(2l + 1) (2l + 3)

(
∂

∂R
+
l + 1

R

)
Gl+1,q
N (R, k)

+ uq−l+1

√
(l + q) (l − q)

(2l + 1) (2l − 1)

(
∂

∂R
− l

R

)
Gl−1,q
N (R, k)

]

+ (−1)q
{
g
ϕm(R)

R
+ U

[
ϕ2
a(R)

R2
+
GIA(R)

R

]}
G∗ l,−qA (R, k)

−
{
g
ϕ∗m(R)

R
+ U

[
ϕ∗2a (R)

R2
+
G∗ IA (R)

R

]}
Gl,qA (R, k) , (3.48)

i~
∂

∂t
Gl,qA (R, k) =

{
− ~2

4m

[
∂2

∂R2
− l (l + 1)

R2
− 4k2

]
+ 2V̄a(R) + 4U

[
|ϕa(R)|2

R2
+
GIN(R)

R

]}
Gl,qA (R, k)

+

{
g
ϕm(R)

R
+ U

[
ϕ2
a(R)

R2
+
GIA(R)

R

]}
×
[
Gl,qN (R, k) + (−1)q G∗ l,−qN (R, k) +

√
4πδ0,l δ0,qR

]
. (3.49)

Equations (3.48) and (3.49) hold true for integers l ≥ 0 and |q| ≤ l, with
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uq−l+1 ≡


1, q ≥ −l + 1

0, q < −l + 1.

(3.50)

An entire Laplace series need not be summed to find GIN(R); only the l = q =

0 term survives, due to the periodicity of the eiqφ appearing in the definition of

the spherical harmonic and the recurrence relations and even- and oddness of the

associated Legendre polynomials. Thus

GIN(R) =
1

4π5/2

∫ ∞

0

dk k2 G0,0
N (R, k) , (3.51)

which is also true for N → A.

Equations (3.40), (3.41), (3.48), and (3.49) are the final computational form of

the equations for spherical symmetry in the center of mass coordinate. This represents

the first publication of a spherical harmonic expansion of the equations, rather than

a regular Legendre polynomial expansion in which the azimuthal angle φ is assumed

to be unimportant, making these equations more general than those used by Milstein

et al. [11].

3.4 Equations for Cylindrical Geometry

We now specialize Equations (3.34) through (3.37) to the cylindrically symmetric

case, acknowledging that all the R dependence is encoded entirely in Rz, the com-

ponent of R along the z-axis, and Rρ, the magnitude of the component lying in the

xy-plane.

It would be most expedient to re-use the spherical coordinates and Laplace se-

ries of the preceeding section, but the alignment of the z-axis with k violates our
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assumption of rotational invariance about the z-axis and invariance with respect to

reflections over the x-y plane. Instead, we rotate the coordinate axes about the z-

axis so that k has only x- and z-components. Single-coordinate fields maintain their

invariances with respect to rotations about the z-axis, since the z-axis remains fixed,

and maintain their invariances about reflections over the x-y-plane, since this plane

has not changed orientation. Then

k · êρ = kρ cosφ, (3.52)

k · êφ = kρ cos
(
φ+

π

2

)
= −kρ sinφ, (3.53)

k · êz = kz (3.54)

where êρ, êφ, and êz are the cylindrical unit vectors of some arbitrary vector (see

Figure 3.4). The Laplacian∇2
R becomes the cylindrical Laplacian, and k·∇R becomes

k · ∇R = kρ cosφ
∂

∂Rρ

− kρ
Rρ

sinφ
∂

∂φ
+ kz

∂

∂Rz

. (3.55)

To simplify the radial derivatives, define

ϕa(Rρ, Rz) ≡ R1/2
ρ φ̄a(Rρ, Rz) ,

ϕm(Rρ, Rz) ≡ R1/2
ρ φ̄m(Rρ, Rz) ,

GN(Rρ, Rz, kρ, kz, φ) ≡ R1/2
ρ G̃N(Rρ, Rz, kρ, kz, φ) ,

GA(Rρ, Rz, kρ, kz, φ) ≡ R1/2
ρ G̃A(Rρ, Rz, kρ, kz, φ) ,
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Figure 3.4: Coordinate axes for cylindrical symmetry. Since all fields are independent
of the azimuthal angle of R, we are free to rotate the axes so long as the z-axis
and origin remain fixed. We align the x-axis with the component of k lying in the
x-y plane. Then the dependence of the correlation functions’ values on the relative
orientations of k and R (thin arrows) can be expressed in cylindrical coordinates.
The cylindrical unit vectors (bold arrows) of some particular vector (R, in this case)
depend on the orientation of that vector.

and

GIN(Rρ, Rz) ≡ R1/2
ρ ḠI

N(Rρ, Rz) ,

GIA(Rρ, Rz) ≡ R1/2
ρ ḠI

A(Rρ, Rz)

for consistency.

The HFB equations become, for the cylindrically symmetric case expressed in
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cylindrical coordinates,

i~
∂

∂t
ϕa(Rρ, Rz) =

{
− ~2

2m

(
1

4R2
ρ

+
∂2

∂R2
ρ

+
∂2

∂R2
z

)
+ V̄a(Rρ, Rz)

+ U

[
|ϕa(Rρ, Rz)|2

Rρ

+ 2
GIN(Rρ, Rz)

R
1/2
ρ

]}
ϕa(Rρ, Rz)

+

[
U
GIA(Rρ, Rz)

R
1/2
ρ

+ g
ϕm(Rρ, Rz)

R
1/2
ρ

]
ϕ∗a(Rρ, Rz) , (3.56)

i~
∂

∂t
ϕm(Rρ, Rz) =

[
− ~2

4m

(
1

4R2
ρ

+
∂2

∂R2
ρ

+
∂2

∂R2
z

)
+ V̄m(Rρ, Rz) + ν

]
ϕm(Rρ, Rz)

+
g

2

[
ϕ2
a(Rρ, Rz)

R
1/2
ρ

+ GIA(Rρ, Rz)

]
, (3.57)

i~
∂

∂t
GN(Rρ, Rz, kρ, kz, φ) =− i

~2

m

[
kρ cosφ

(
∂

∂Rρ

− 1

2Rρ

)
− kρ
Rρ

sinφ
∂

∂φ
+ kz

∂

∂Rz

]
× GN(Rρ, Rz, kρ, kz, φ)

+

{
g
ϕm(Rρ, Rz)

R
1/2
ρ

+ U

[
ϕ2
a(Rρ, Rz)

Rρ

+
GIA(Rρ, Rz)

R
1/2
ρ

]}
× G∗A(Rρ, Rz, kρ, kz, φ)

−

{
g
ϕ∗m(Rρ, Rz)

R
1/2
ρ

+ U

[
ϕ∗2a (Rρ, Rz)

Rρ

+
G∗ IA (Rρ, Rz)

R
1/2
ρ

]}
× GA(Rρ, Rz, kρ, kz, φ) , (3.58)
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i~
∂

∂t
GA(Rρ, Rz, kρ, kz, φ) =

{
− ~2

4m

[
1

4R2
ρ

+
∂2

∂R2
ρ

+
1

R2
ρ

∂2

∂φ2
+

∂2

∂R2
z

− 4
(
k2
ρ + k2

z

)]

+ 4U

[
|ϕa(Rρ, Rz)|2

Rρ

+
GIN(Rρ, Rz)

R
1/2
ρ

]

+ 2V̄a(Rρ, Rz)

}
× GA(Rρ, Rz, kρ, kz, φ)

+

{
g
ϕm(Rρ, Rz)

R
1/2
ρ

+ U

[
ϕ2
a(Rρ, Rz)

Rρ

+
GIA(Rρ, Rz)

R
1/2
ρ

]}
×
[
GN(Rρ, Rz, kρ, kz, φ) + G∗N(Rρ, Rz, kρ, kz, φ) +R1/2

ρ

]
.

(3.59)

3.4.0 Cosine Series Expansion

We expand the angular dependence of Equations (3.58) and (3.59) in a set of

basis functions, with the foresight that we will need to severely truncate the expansion

to make the problem computationally feasible. Legendre polynomials are a popular

basis, but lead to complicated expressions in Equations (3.58) and (3.59), especially

in the case of the second angular derivative in (3.59). Trigonometric functions lead to

simpler expressions, and such expansions are common in the angular part of spectral

solutions to PDE’s in cylindrical or spherical coordinates [90].

We expand the correlation functions as

GN(Rρ, Rz, kρ, kz, φ) ≡
∞∑
n=0

GnN(Rρ, Rz, kρ, kz) cos (nφ) (3.60)

GA(Rρ, Rz, kρ, kz, φ) ≡
∞∑
n=0

GnA(Rρ, Rz, kρ, kz) cos (nφ) , (3.61)

where a superscript n is an index, not a power. These series can be differentiated

term by term if ∂
∂φ
GN and ∂

∂φ
GA are piecewise smooth [76], or if we truncate the series
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and accept them as approximations.3 Appendix C develops the recurrence relations

to handle the angular derivatives and sine and cosine factors appearing in (3.58) and

(3.59). Using the definition of the step function in Equation (3.50) and

R1/2
ρ =

∞∑
n=0

R1/2
ρ δn,0 cos (nφ) , (3.62)

each side of Equations (3.58) and (3.59) is summed over the same linearly independent

basis functions, allowing us to equate each expansion coefficient. Then

i~
∂

∂t
GnN(Rρ, Rz, kρ, kz) =− i

~2

2m

[
kρ

(
∂

∂Rρ

+
2n+ 1

2Rρ

)
Gn+1
N (Rρ, Rz, kρ, kz)

+ kρ

(
∂

∂Rρ

− 2n− 1

2Rρ

)
un1 Gn−1

N (Rρ, Rz, kρ, kz)

+ kρ

(
∂

∂Rρ

− 1

2Rρ

)
δn,1 G0

N(Rρ, Rz, kρ, kz)

+ 2kz
∂

∂Rz

GnN(Rρ, Rz, kρ, kz)

]
+

{
g
ϕm(Rρ, Rz)

R
1/2
ρ

+ U

[
ϕ2
a(Rρ, Rz)

Rρ

+
GIA(Rρ, Rz)

R
1/2
ρ

]}
× Gn∗A (Rρ, Rz, kρ, kz)

−

{
g
ϕ∗m(Rρ, Rz)

R
1/2
ρ

+ U

[
ϕ∗2a (Rρ, Rz)

Rρ

+
G∗ IA (Rρ, Rz)

R
1/2
ρ

]}
× GnA(Rρ, Rz, kρ, kz) , (3.63)

3We have chosen cosines instead of sines because sine series are slightly more stringent in their
criteria for uniform convergence [76].
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i~
∂

∂t
GnA(Rρ, Rz, kρ, kz) =

{
− ~2

4m

[
1− 4n2

4R2
ρ

+
∂2

∂R2
ρ

+
∂2

∂R2
z

− 4
(
k2
ρ + k2

z

)]
+ 2V̄a(Rρ, Rz) + 4U

[
|ϕa(Rρ, Rz)|2

Rρ

+
GIN(Rρ, Rz)

R
1/2
ρ

]}
× GnA(Rρ, Rz, kρ, kz)

+

{
g
ϕm(Rρ, Rz)

R
1/2
ρ

+ U

[
ϕ2
a(Rρ, Rz)

Rρ

+
GIA(Rρ, Rz)

R
1/2
ρ

]}
×
[
GnN(Rρ, Rz, kρ, kz) + Gn∗N (Rρ, Rz, kρ, kz) +R1/2

ρ δn,0
]
,

(3.64)

with

GIN(Rρ, Rz) =
1

(2π)2

∫ ∞

−∞
dkz

∫ ∞

0

kρ dkρ G0
N(Rρ, Rz, kρ, kz) , (3.65)

with the same holding for N → A. Note that only the n = 0 coefficients appear in

the integral, due to the periodicity of the basis functions for n > 0.

3.5 Boundary Conditions

Boundary and initial conditions are required to solve these partial differential

equations in space and time. The initial condition is determined by an imaginary

time relaxation method, and is described in detail in Section 4.3. To determine the

boundary conditions (BC’s), we first assume that far from the origin the trap is strong

enough that the probability for a particle to be found beyond a certain distance from

the origin is negligible, this distance depending on direction in the cylindrical case.4

Then, for spherical symmetry, we have

4The outer boundary conditions are really for computational convenience; physically, we can only
claim that all fields are bounded as |R| → ∞.
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ϕa(Rmax) = 0,

ϕm(Rmax) = 0,

Gl,qN (Rmax, k) = 0,

Gl,qA (Rmax, k) = 0, (3.66)

where Rmax is the outermost center of mass grid point in a simulation, that distance

beyond which no particle is likely to be found. In the cylindrical case, we have

ϕa(Rρ,max, Rz) = ϕa(Rρ, |Rz| = Rz,max) = 0,

ϕm(Rρ,max, Rz) = ϕm(Rρ, |Rz| = Rz,max) = 0,

GnN(Rρ,max, Rz, kρ, kz) = GnN(Rρ, |Rz| = Rz,max, kρ, kz) = 0,

GnA(Rρ,max, Rz, kρ, kz) = GnA(Rρ, |Rz| = Rz,max, kρ, kz) = 0, (3.67)

where Rρ,max is the distance from the origin of the radial center-of-mass grid point

that is furthest from the origin and in the x-y plane, and Rz,max is the distance from

the origin of the axial center-of-mass grid point furthest from the origin and lying

along the z-axis.

To determine the boundary conditions at the origin in the spherical case, recall

that we have assumed spherical symmetry in R and consider that negative values of

R are equivalent to positive values of R with φ→ φ+ π and θ → θ + π; that is, any

field that is a function of R is even in R. Now require that each of the four fields

are bounded at the origin, and assume that their R dependence may be expressed

in terms of power series. Then each field will be proportional to either 1 or R2, to

lowest order. From Equation (3.39), each of these fields is multiplied by R, so that

ϕa(R), ϕm(R), Gl,qN (R, k), and Gl,mA (R, k), which are the dependent variables we are
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simulating, are proportional to either R or R3, to lowest order. Thus, at the origin,

the variables for which we numerically approximate solutions are identically zero:

ϕa(0) = 0,

ϕm(0) = 0,

Gl,qN (0, k) = 0,

Gl,qA (0, k) = 0. (3.68)

The argument for the cylindrical case along the z-axis is very similar to that for

the spherically symmetric model at the origin. A negative value of Rρ is equivalent

to a positive value of Rρ with φ → φ + π, and since we assume that all four fields

are invariant with respect to rotations about the z-axis, the four fields must be even

with respect to Rρ. If they are bounded at the origin and their Rρ dependence can be

expanded in power series, they go as either 1 or R2
ρ, to lowest order. We do not nu-

merically approximate solutions to these four fields, but to these fields each multiplied

by
√
Rρ, so that ϕa(Rρ, Rz), ϕm(Rρ, Rz), G0

N(Rρ, Rz, kρ, kz), and G0
A(Rρ, Rz, kρ, kz) all

scale as either R
1/2
ρ or R

5/2
ρ to lowest order, and so vanish at Rρ = 0. That is,

ϕa(0, Rz) = 0,

ϕm(0, Rz) = 0,

GnN(0, Rz, kρ, kz) = 0,

GnA(0, Rz, kρ, kz) = 0 (3.69)

for the cylindrically symmetric case.
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3.6 Summary of Model and Approximations

For the spherical case, the HFB model consists of Equations (3.40), (3.41), (3.48),

and (3.49), along with (3.51), which is needed to compute the diagonal parts of the

normal and anomalous fluctuations. The equations corresponding to the atomic,

molecular, and anomalous fields are second order in the radial center of mass variable

R, and the equations corresponding to the normal fluctuations are first order in R.

Derivatives with respect to the relative coordinate r have been replaced by multiplica-

tion by the relative momentum magnitude k and recurrence relations among spherical

harmonics. Because of the partial wave expansions, there are infinitely many equa-

tions (3.48) and (3.49) for a given (R, k) point. All equations are quasilinear and first

order in time.

The model for the cylindrical case consists of Equations (3.56), (3.57), (3.63),

and (3.64), along with (3.65) for computing the diagonal parts of the normal and

anomalous densities. The equations corresponding to the atomic, molecular, and

anomalous fields are second order in the radial and axial center of mass variables Rρ

and Rz, respectively, and the equations corresponding to the normal fluctuations are

first order in Rρ and Rz. Derivatives with respect to the relative coordinate r are

replaced by multiplication by radial and axial relative momentum variables kρ and

kz, respectively, and by recurrence relations among cosines. Because of the cosine

series expansions, there are infinitely many equations (3.63) and (3.64) for a given

(Rρ, Rz, kρ, kz) point. All equations are quasilinear and first order in time.

In both geometries, all center of mass variables are subject to homogeneous

Dirichlet boundary conditions, which we often refer to as box boundary conditions.

As a practical note, observe that as long as every part of the normal fluctuations

field is initially real, Equations (3.48) and (3.63) ensure that the normal fluctuations
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remains purely real.

Several approximations were used in deriving the equations of our models. We

enumerate the approximations common to both geometries.

1. The states Ψ̂m(x) |λ〉 and Ψ̂a(x
′) |λ〉 are completely uncorrelated, where |λ〉 is

the state of the system.

2. Quantum fluctuations of the molecular mean field are negligible.

3. Atoms interact only on contact.

4. We neglect all collisions except those between two atoms.

5. We neglect all density-dependent losses from the condensate, such as three-body

recombination.

6. The trapping potential is Hermitian.

7. The system is in a squeezed state |λ〉 that is an eigenstate of a Bogoliubov

quasiparticle operator b̂k, such that âk =
∑

j

(
Ujkb̂j + V ∗

jkb̂
†
j

)
for all k, where

âk removes a particle with wavenumber k.

8. We only account for a single Feshbach resonance, while many real atoms, in-

cluding 85Rb, have at least two that are relevant to experiments.

9. Any practical calculation with our models is subject to the experimental inac-

curacies in the measured intrinsic atomic properties that are used.

We make several more approximations when we specialize the equations to the

spherical case.

1. The external potentials are rotationally invariant.



97

2. The initial conditions on every function of a single coordinate are rotationally

invariant.

3. We only consider coordinates x and x′ such that their moduli are equal: x = x′.

This is not truly an approximation, since it does not alter the values of any of

the fields we do consider, but rather is a restriction on our knowledge of the

system.

4. The dependence of the off-diagonal parts of the normal and anomalous fluctu-

ations on the center of mass coordinate R is entirely encoded in the magnitude

R of that coordinate.

5. All fields are such that ∂
∂Ri

∂
∂rj

= ∂
∂rj

∂
∂Ri

, where ∂
∂Ri

represents partial differen-

tiation with respect to the ith component of the R coordinate and likewise for

∂
∂rj

, for all i and j. This assumption will be true if these partial derivatives are

continuous.

6. The integrals
∫

d3r ḠN(R, r) e−ik·r and
∫

d3r ḠN(R, r) e−ik·r converge when

integrated over all r-space.

7. The correlation functions ḠN(R, r) and ḠA(R, r) and their derivatives with

respect to any component of r both go zero as that component of r goes to plus

or minus infinity. Physically, this means that two points infinitely far apart are

completely uncorrelated.

8. The correlation functions G̃N(R, k, θ, φ) and G̃A(R, k, θ, φ) are continuous in θ

and φ.

The specialization to the cylindrical case requires very similar assumptions.
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1. The external potentials are invariant with respect to rotations about the z-axis

and invariant with respect to reflections over the x-y plane.

2. The initial conditions on every function of a single coordinate are invariant with

respect to rotations about the z-axis and invariant with respect to reflections

over the x-y plane.

3. We only consider coordinates x and x′ such that their radial (in the sense of

cylindrical coordinates) components are equal, and the absolute values of their

axial components are equal: xρ = x′ρ and |xz| = |x′z|. Again, this does not alter

the values of quantities we do consider, but merely restricts our knowledge of

the system.

4. All dependence of the off diagonal parts of the normal and anomalous densities

on the center of mass coordinate R is entirely encoded in the magnitude of the

radial and axial components Rρ and Rz of that coordinate.

5. All fields are such that ∂
∂Ri

∂
∂rj

= ∂
∂rj

∂
∂Ri

, where ∂
∂Ri

represents partial differen-

tiation with respect to the ith component of the R coordinate and likewise for

∂
∂rj

, for all i and j.

6. The integrals
∫

d3r ḠN(Rρ, Rz, r) e−ik·r and
∫

d3r ḠN(Rρ, Rz, r) e−ik·r converge

when integrated over all r-space.

7. The correlation functions ḠN(Rρ, Rz, r) and ḠA(Rρ, Rz, r) and their derivatives

with respect to any component of r both go zero as that component of r goes

to plus or minus infinity.

8. The derivatives of the correlation functions with respect to the azimuthal angle

φ are piecewise smooth.
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Numerical solutions to either of the two models introduces still more approxima-

tions.

1. A quantum mechanical particle is never truly excluded from any region where

the potential is finite; our box boundary conditions are an approximation at the

outer edge of the trap. This is a finite domain approximation.

2. We truncate the eigenfunction expansions of the correlation functions.

3. The dependence of any function on its center of mass variable or variables is

represented by a truncated eigenfunction expansion (a defining characteristic of

pseudospectral approximations to derivatives).

4. We use a set of discrete momenta k in the spherical case and kρ and kz in

the cylindrical case appropriate for box confinement, rather than the momenta

appropriate for interacting particles in a harmonic trap.

5. The time dependence of every function is represented by a Taylor series, trun-

cated after fifth order.
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Chapter 4

NUMERICAL METHODS

Even with our mathematical modifications and assumptions about symmetry,

an analytical solution to our model appears unfeasible, and we turn to numerical

methods for approximate solutions.

Perez-Garcia and Liu find that a finite difference approximation to the solution

of nonlinear Schrödinger equations requires a very small time step and produces

inaccurate results for long simulations [79]. Past simulations [11] of the collapse used

a Crank-Nicholson scheme to solve the equations for spherical symmetry, but the

negative experiences cited in [79] motivate the choice of a different method of solving

these nonlinear partial differential equations; therefore, we use the method of lines,

in which a system of PDE’s is approximated by a larger, coupled system of ODE’s.

A numerical integrator is used on the resulting ODE’s, and the other derivatives that

appeared in the PDE must be represented by some algebraic means.

Our method of lines approach amounts to a discretization of the spatial domain

while retaining the continuous time domain, which is plausible when comparing the

resolutions in the experiments. In the widely-studied JILA experiments [1], the imag-

ing apparatus had a spatial resolution of 7 µm, while a typical image was 60 µm in

the radial direction and 310 µm in the axial direction, giving about 9 × 43 spatial

samples. In the Rice experiments [53], the apparatus had a resolution of about 10

µm, while the cross-sectional area in which the solitary waves oscillated was about

1.5 µm in the radial direction and 1280 µm in the axial direction, giving about 1
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× 128 spatial samples. Neither experiment cites a temporal resolution, but Leggett

[91] asserts that this resolution is affected mostly by the time required to turn on

the imaging laser, so that temporal measurements are effectively instantaneous. If

a mechanical shutter is placed between a laser and its target, the turn-on time can

effectively be on the order of 10−9 seconds [92], while experimental time scales are

& 10−6 s for the Feshbach resonance and & 10−4 for the nonlinearities.

4.1 Time Propagation

Wüster et al. [12] use a fixed-step Runge-Kutta method for time propagation

of equations similar to ours, and, unlike Milstein et al. [11] are able to examine

the experimental parameter regime (albeit with multiple processors). The important

ability to simulate a real atom, as well as our own positive experiences in other

contexts, motivates the use of a Runge-Kutta method. We opt for adaptive step

size selection, which allows for more efficient computation and acts as a real-time

convergence check on the temporal solution. See Appendix D for a derivation of

a typical Runge-Kutta method; it effectively estimates the solution to an ordinary

differential equation by a truncated Taylor series evaluated at particular points of a

continuous domain.

We use Cash and Karp’s [93, 80] fifth-order method with an embedded fourth-

order formula. This method approximates the solution y(x + h) to the first-order

ordinary differential equation

dy

dx
= f(x, y) , (4.1)

given a known value y(x), by

y(x+ h) = y(x) +
37

378
K1 +

250

621
K3 +

125

594
K4 +

512

1771
K6 +O

(
h6
)
, (4.2)
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where

K1 = hf [x, y(x)] ,

K2 = hf

[
x+

1

5
h, y(x) +

1

5
K1

]
,

K3 = hf

[
x+

3

10
h, y(x) +

3

40
K1 +

9

40
K2

]
,

K4 = hf

[
x+

3

5
h, y(x) +

3

10
K1 −

9

10
K2 +

6

5
K3

]
,

K5 = hf

[
x+ h, y(x)− 11

54
K1 +

5

2
K2 −

70

27
K3 +

35

27
K4

]
,

K6 = hf

[
x+

7

8
h, y(x) +

1631

55296
K1 +

175

512
K2 +

575

13824
K3 +

44275

110592
K4 +

253

4096
K5

]
.

(4.3)

The difference between the fifth-order formula (4.2) and the embedded fourth-order

formula is

∆ =

(
37

378
− 2825

27648

)
K1 +

(
250

621
− 18575

48384

)
K3

+

(
125

594
− 13525

55296

)
K4 −

277

14336
K5 +

(
512

1771
− 1

4

)
K6, (4.4)

which provides an estimate of the truncation error in the fourth-order formula. This

error estimate provides the basis for the step size adjustment, which follows Numerical

Recipes ’s [80] approach: if that error is below some tolerance ∆0, the fifth-order

stepped solution is accepted, and the step size hnext to try during the next iteration

is

hnext =
9

10
hnow

∣∣∣∣∆0

∆

∣∣∣∣1/5 , (4.5)

where hnow is the current step size. If the estimated error ∆ is larger than the
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Figure 4.1: Illustration of adaptive Runge-Kutta algorithm. All the pieces necessary
for computing a stepped solution are calculated, and then those pieces are combined
to estimate the truncation error in the solution. If the error is too high, the step size is
reduced, and the pieces necessary for computing a stepped solution are re-calculated
using the new step size. If the error is acceptable, the stepped solution is accepted
(either recorded or used as the next step’s initial condition), and a step size to use
when computing the next stepped solution is computed. The process then repeats
for the next stepped solution.

tolerance, the step size is re-scaled as

hnow →
9

10
hnow

∣∣∣∣∆0

∆

∣∣∣∣1/4 , (4.6)

and the current step is repeated using the re-scaled step size. Figure 4.1 illustrates

the algorithm.

4.2 Spatial Derivatives

While the time domain remains continuous in the numerical solution of our

model, we discretize the spatial domain. This discretization allows us to represent

the model’s spatial derivatives with algebraic expressions, as required by the method
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of lines. Since a derivative is defined as a limit in which a step size goes to zero,

derivatives in the continuum sense are not defined for functions on a discrete domain.

However, we may discretize a derivative by finding formulas that approximate the

derivative of a function using that function evaluated at a finite number of points.

Two options are finite differences and pseudospectral derivatives.

Given a continuous function f(x), Taylor series expansions of f(x+ h) and

f(x− h) may be combined to form an approximation to a second derivative, as de-

scribed in [94]:

d2f

dx2
=

1

h2
[f(x+ h)− 2f(x) + f(x− h)] +O

(
h2
)
, (4.7)

called the three-point formula. Including expansions of f(x± 2h) produces a more

accurate formula:

d2f

dx2
=

1

12h2

[
− f(x+ 2h) + 16f(x+ h)− 30f(x)

+ 16f(x− h)− f(x− 2h)
]
+O

(
h4
)
, (4.8)

called the five-point formula.

Pseudospectral derivatives (derived in Appendix E) offer an alternative to finite

differences. The pseudospectral derivatives we consider can be computed using fast

transform algorithms.

We can approximate a function f(x) by a truncated sine series

f(x) ≈
N∑
k=1

f̃k sin (kx) . (4.9)
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The expansion coefficients f̃k are computed by the discrete sine transform:

f̃k =
2

N
Sk[f(xj)] , k ∈ {1, . . . , N − 1} , (4.10)

where Sk[f(xj)] denotes the kth value of the discrete sine transform of the set of

values f(xj). Taking derivatives of the series (4.9) gives pseudospectral first and

second derivatives at the grid points xj = j
N

(b− a) + a, j ∈ {1, . . . , N − 1},

df(xj)

dx
≈ π

b− a
Cj
(
kf̃k

)
, j ∈ {1, . . . , N − 1} (4.11)

d2f(xj)

dx2
≈ π2

(b− a)2Sj
(
−k2f̃k

)
, j ∈ {1, . . . , N − 1} , (4.12)

where Cj denotes a discrete cosine transform. Each of these derivatives assumes box

boundary conditions.

Similarly, we may take finite differences of the series (4.9), giving

f(xj+1 − xj−1)

2h
=

N

b− a
Cj
[
f̃k sin

(
πk

N

)]
, (4.13)

f(xj+1)− 2f(xj) + f(xj−1)

h2
=

2

h2
Sj
{
f̃k

[
cos

(
πk

N

)
− 1

]}
, (4.14)

where h is the grid spacing.1 Relatively little theory surrounds these pseudospectral

derivatives based on finite differences [95]. Kosloff [96] shows that in the context

of the linear Schrödinger equation, approximation of a kinetic energy operator by

means of a finite difference applied to an interpolating trigonometic polynomial in

the Fourier basis inaccurately accounts for higher-momentum modes, while analytical

1Note that we are not equating a finite difference to a pseudospectral derivative, but rather
simplifying a finite difference formula applied to Equation (4.9). The right hand side of Equation
(4.14) is sometimes called a pseudospectral derivative, though this is a slight misnomer; we see here
that it is only second-order accurate, as is the finite difference.



107

derivatives of interpolants like (4.11) and (4.12) handle these modes more accurately.

Such pseudospectral derivatives are the subject of extensive study [97, 98, 99, 100,

101], and may be shown to converge faster than any power of 1/N . Fornberg [90]

derives such pseudospectral derivatives as limiting cases of finite differences in which

every available grid point is used. For these reasons, and to use methods as far

removed from finite differences as possible in this context, we shall concentrate on

pseudospectral derivatives which are analytical derivatives of interpolants. In the

numerical solution of the spherical model, Equations (3.40), (3.41), (3.48), and (3.49),

we employ Equations (4.11) and (4.12).

Recall that for the cylindrical model, we multiplied the four functions to be

solved for by
√
Rρ. If φ̄a(Rρ, Rz), for example, has a power series expansion, as many

functions encountered in the modeling of nature do, this division results in a function

that scales as R
1/2
ρ or R

5/2
ρ to lowest order. The sinusoidal basis assumed in Equation

(4.9), upon which (4.11) and (4.12) are based, then requires a large number N of basis

functions to converge. (The derivatives in the Rz direction have no such issue, so we

continue to use sinusoidal pseudospectral derivatives for these.) As an alternative, we

use a set of N + 1 first-kind Chebyshev polynomials Tk(x):

f(x) ≈
N∑
k=0

f̃kTk(x) , (4.15)

where x ∈ [−1, 1].2 Table 4.1 lists the first five Chebyshev polynomials. Using

xj = cos
(
πj
N

)
, j ∈ {0, . . . , N − 1} as the grid points, the expansion coefficients are

found from

f̃k =
1

N
Ck[f(xj)] , (4.16)

2The physical grid runs from a to b, so we must multiply the first and second pseudospectral
derivatives by 2/(b− a) and 4/(b− a)2, respectively, according to the chain rule.
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and the back transform is given by

f(xj) = Cj
(
2bkf̃k

)
, (4.17)

where bk = 1/2 for 0 < k < N , and b0 = bN = 1. Now write the derivative of

Equation (4.15) as its own Chebyshev series with expansion coefficients f̃ ′k:

f ′(x) ≈
N∑
k=0

f̃ ′kTk(x) . (4.18)

From recurrence relations among Chebyshev polynomials, the f̃ ′k are calculated by

f̃ ′k−1 =
1

ck−1

(
2kf̃k + f̃ ′k+1

)
, k ≥ 1. (4.19)

The recurrence begins at k = N , with f̃ ′N+1 = f̃ ′N = 0, and the second derivative is

found by applying the recurrence twice, then with f̃ ′N−1 = 0. Having the expansion

coefficients f̃ ′k, one applies the back transform (4.17) to obtain the pseudospectral

derivative. Chebyshev interpolants on this nonuniform grid have the advantage that

they do not exhibit a Gibbs phenomenon, or rapid oscillations near a discontinuity,

at the ends of the grid (though a discontinuity on the interior will have an overshoot),

and resolves the Runge phenomenon, in which interpolation on a uniform grid does

not converge as the number of interpolation nodes increases [100]. Figure 4.2 is an

example of a grid for the cylindrical model, and Figure 4.3 is an example for the

spherical model.
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Order k Tk(x)
0 1
1 x
2 2x2 − 1
3 4x3 − 3x
4 8x4 − 8x2 + 1

Table 4.1: First five Chebyshev polynomials of the first kind.

-Rz, max

0

Rz, max

0 Rρ, max

R
z

Rρ

Figure 4.2: Example of center of mass grid in cylindrical model. The grid is uniformly
spaced in the Rz direction, but nonuniformly spaced in Rρ. There are NRρ + 1 grid
points, indexed from zero and including the boundaries, in the Rρ direction, and
NRz + 1 grid points in the Rz direction.
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Figure 4.3: Example of center of mass grid in spherical model. At any given time, the
center of mass grid points are evenly spaced. There are N + 1 grid points, indexed
from 0, including the boundaries.

4.3 Imaginary Time Relaxation

Since most of the collapse experiments start out with a condensate in a stable,

steady state, we should use the lowest energy eigenstate as the initial condition for

any collapse simulation. For a noninteracting condensate the ground state is that

of the Schrödinger equation in a harmonic potential, and so is analytically solvable.

However, in most experiments the initial condensate is weakly interacting, or per-

haps we want to include a non-harmonic potential. In these cases, most of which are

analytically unsolvable, we must resort to numerical means of calculating the ground

state. Even in the noninteracting case, the analytical ground state may be signifi-

cantly different from zero at the end of the grid, causing undesired reflections due to

the box boundary conditions. Imaginary time relaxation resolves both of these issues,

achieving the true ground state in the simulation geometry.

A Hamiltonian must be Hermitian in order for it to correspond to some observable

quantity, and ours is no exception, as inspection of Equation (2.6) reveals. Being

Hermitian, its eigenkets |n〉 span the Hilbert space in which it acts, and the operator

also has a spectral decomposition such that

e−iHt/~ =
∞∑
n=0

e−iEnt/~|n〉〈n|, (4.20)
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where En is the nth eigenvalue of the Hamiltonian H, and t is some scalar. This

statement is true even for Hilbert spaces of infinite dimension. Note that we have

assumed that the Hilbert space consists only of bound states. Recalling that the

Hamiltonian is the generator of time translations, Equation (4.20) is the (unitary)

time evolution operator [4], where t is the time. Applying this operator to some

arbitrary state |ψ(t = 0)〉, a vector in the Hilbert space in which H acts, and noting

that H 6= H(t),

|ψ(t)〉 = e−iHt/~|ψ(0)〉 =
∞∑
n=0

e−iEnt/~ 〈n|ψ (0)〉 |n〉. (4.21)

Making the substitution τ = it, Equation (4.21) becomes

|ψ(−iτ)〉 =
∞∑
n=0

e−Enτ/~ 〈n|ψ(0)〉 |n〉. (4.22)

For large τ , higher energy eigenkets will be exponentially supressed. This same evo-

lution can be achieved through the Schrödinger equation with the substitution τ = it.

Hence, imaginary-time propagation of the Schrödinger equation will eventually result

in only the lowest energy eigenket in the sum (4.22) having any appreciable weight. If

the initial state |ψ(0)〉 has any non-zero component 〈n|ψ(0)〉, then the solution of the

imaginary-time Schrödinger equation for large τ will effectively be the lowest energy

eigenstate. A position-space representation is obtained by left-multiplying Equation

(4.22) by some state of definite position 〈x|. As a practical note, if the ground state

energy eigenvalue is non-zero, then even the ground state will become exponentially

supressed for large τ (albeit less so than all other eigenstates), so the state should be

normalized at every step to ensure computationally feasible values.
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4.4 Postprocessing Methods

After a simulation completes, we may calculate total number, which should be

conserved, as a gauge of the stability and physical relevance of the simulation. We

also wish to extract the dominant frequencies of oscillation in particle number for a

given field, and to examine kinematics by calculating flow velocities.

4.4.1 Monitoring Total Number

Summing all the number densities and integrating over all space gives the total

number of particles,

Ntot =

∫
d3x

[
|φa(x)|2 + 2 |φm(x)|2 +GN(x,x)

]
, (4.23)

which should be constant in time, since our model has no imaginary loss terms. A

deviation in any conserved quantity is usually expressed in terms of average error, or

εavg ≡ 2
Ntot(t)−Ntot(0)

Ntot(t) +Ntot(0)
(4.24)

for the case of total number. Allowing for roundoff error, εavg may vary randomly (or

seemingly so) from time step to time step, by about machine precision. We interpret

a monotonic trend in the change in Ntot versus time as an indicator of instability or

a lack of convergence.

In the spherical model, the total number may be calculated as

Ntot = 4π

∫ ∞

0

dR |ϕa(R)|2 + 8π

∫ ∞

0

dR |ϕm(R)|2

+
1

π3/2

∫ ∞

0

dR R

∫ ∞

0

dk k2G0,0
N (R, k) . (4.25)
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We calculate this during postprocessing using the trapezoid rule:

Ntot ≈ 4π

NR−1∑
j=1

δR |ϕa(Rj)|2 + 8π

NR−1∑
j=1

δR |ϕm(Rj)|2

+
1

π3/2

NR−1∑
j=1

δR (j δR)
Nr−1∑
i=0

δk (i δk)2 G0,0
N (Rj, ki) , (4.26)

where NR + 1 is the number of center of mass grid points, including the boundaries;

Rj is the jth center of mass grid point, where R0 is the origin and RN = Rmax is

the outer boundary; δR = Rmax/NR is the center of mass grid spacing; Nr is the

number of relative grid points (in practice, the relative grid only serves to determine

the largest momentum and number of distinct momenta accounted for); δk = π/rmax

is the smallest nonzero momentum and momentum grid spacing, where rmax is the

extent of the relative coordinate; and ki is the ith momentum grid point, such that

ki = iδk. Note that we have left off the ends of the center of mass grid, since all

dependent variables are zero there. The trapezoid rule has an error on the order of

the square of the grid spacing, which in most simulations is about 10−7, giving an

error of about 10−14, very near machine precision.

The total number in the cylindrical model is

Ntot = 2π

∫ ∞

0

dRρ

∫ ∞

−∞
dRz |ϕa(Rρ, Rz)|2 + 4π

∫ ∞

0

dRρ

∫ ∞

−∞
dRz |ϕm(Rρ, Rz)|2

+
1

2π

∫ ∞

0

dRρ R
1/2
ρ

∫ ∞

−∞
dRz

∫ ∞

−∞
dkz

∫ ∞

0

dkρ kρ G0
N(Rρ, Rz, kρ, kz) . (4.27)

The grids in the Rz, kz, and kρ directions are uniform, so we use the trapezoid rule, as

above. Using Chebyshev pseudospectral derivatives for the Rρ direction derivatives

requires an integration scheme appropriate for the grid Rρ,j = Rρ,max

2

[
cos
(

πj
NRρ

)
+ 1
]
,
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where Rρ,max is the outer extent of the radial center of mass grid. The grid points

xj = cos
(

πj
NRρ

)
(where NRρ + 1 is the number of radial grid points in the center

of mass coordinate, including the boundaries) are the nodes of Chebyshev-Gauss-

Lobatto quadrature, which we use to calculate the Rρ parts of the integrals. The

weights of this Gaussian quadrature scheme are wj = π/NRρ for 0 < j < NRρ and

w0 = wN = π/2NRρ . Then, noting that
√

1− x2
j = sin

(
πj
NRρ

)
, the total number from

a given time step in a cylindrical simulation is calculated in postprocessing using

Ntot ≈πRρ,max

NRz
−1

2∑′′

j=−
NRz

−1

2

δRz

NRρ∑
l=0

wl sin

(
πl

NRρ

)[
|ϕa(Rρ,l, Rz,j)|2 + 2 |ϕm(Rρ,l, Rz,j)|2

]

+
Rρ,max

4π

NRz
−1

2∑′′

j=−
NRz

−1

2

δRz

Nkz
−1

2∑′′

q=
Nkz

−1

2

δkz

Nkρ∑′′

n=0

(n δkρ) δkρ

NRρ∑
l=0

√
l δRρ

× wl sin

(
πl

NRρ

)
G0
N(Rρ,l, Rz,j, kρ,n, kz,q) , (4.28)

where δRz, δkz, and δkρ are the axial center of mass, axial relative momentum, and

radial relative momentum grid spacings, respectively; Rρ,l and Rz,j are the lth radial

and jth axial center of mass grid points; kρ,n and kz,q are the nth radial and qth axial

relative momentum grid points; and a double-prime on a sum indicates that the first

and last terms of the sum are halved, though the first and last terms of the sum over

j do not strictly need to be halved, since the box boundary conditions ensure that

these terms are zero, anyway.

4.4.2 Estimating Power Spectra

The total number of particles in a particular field is given by one of the sums

above; for example, the number of condensed atoms in a spherically symmetric sim-
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ulation is

Na ≈ 4π

NR−1∑
j=1

δR |ϕa(Rj)|2 . (4.29)

As a function of time, this or any total number of particles may exhibit oscillations,

the frequency of which we wish to determine. If the number data were taken at

equally-spaced intervals, we would use the discrete Fourier transform to estimate

the power spectrum, but the adaptive nature of our time integration method results

in nonuniform sampling intervals. Experience suggests that uniformly sampling an

interpolant of the data produces specious results. Reference [80] summarizes a method

for calculating a Lomb normalized periodogram, which is a method for more reliably

estimating the prominence of periodic signals in a set of nonuniformly sampled data.

Consider a set of data points fi = f(ti), i ∈ {0, . . . , N − 1}, where now N

represents the total number of samples. The times ti of the samples are not necessarily

evenly spaced. Lomb [102] shows that the function

P (ω) =
1

2σ2

{[∑
i

(
fi − f̄

)
cos (ωti − ωτ)

]2∑
i cos2 (ωti − ωτ)

+

[∑
i

(
fi − f̄

)
sin (ωti − ωτ)

]2∑
i sin

2 (ωti − ωτ)

}
,

(4.30)

where f̄ is the arithmetic mean of the {fi}, σ2 is their variance, and

τ =
1

2ω
tan−1

[∑
i sin (2ωti)∑
i cos (2ωti)

]
, (4.31)

is the least-squares fit of the data to the function f(t) = a cos (ωt) + b sin (ωt), where

ω is an angular frequency. Scargle [103] extends this result by showing that, for F

independent frequencies,

p = 1− {1− exp [−P (ω)]}F (4.32)
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is the probability that a value of P (ω) or larger is due to random noise. Thus, a spike

in P (ω) indicates a prominent periodic signal of angular frequency ω in the data. The

number F of independent frequencies can be roughly estimated as F = N when the

data are almost evenly spaced and the highest frequency considered is the average

Nyquist frequency N/2 (tN−1 − t0) [80].

When comparing two peaks in a Lomb periodogram, we must recall that the

frequency of the larger peak is exponentially more prominent in the actual signal

than the smaller peak. Figure 4.4 shows a normalized Lomb periodogram of the

function sin (7.5t), sampled at 10,000 points between 0 and 10π. The most prominent

peak occurs at 1.1938 Hz, which is the frequency 7.5/2π of the sampled signal; thus,

the algorithm correctly estimates the dominant frequency. However, the periodogram

contains frequency spikes adjacent to the largest peak that may be misinterpreted as

harmonics, which are not actually present in the sampled signal. Therefore, we will

only accept the largest frequency component in a Lomb periodogram; all smaller

peaks may or may not actually exist in the signal.

4.4.3 Calculating Velocities

As mentioned in the Introduction, a hydrodynamic treatment [46, 23, 22] of BEC

uses the condensate wavefunction’s phase angle to find a velocity potential Φ such

that

Φ(x) =
~
m
S(x) , (4.33)

where S(x) = arg [φa(x)] for the atomic condensate, for example. Then an irrotational

(since the curl of a gradient is zero) flow velocity is

v = ∇Φ(x) . (4.34)
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Figure 4.4: Example of Lomb normalized periodogram. The periodogram has been
computed from a 10,000 point sampling of the function sin (7.5t). Only the largest
peak represents a frequency component actually present in the signal. Adjacent points
are connected by a line, to guide the eye.

This procedure could be applied to the atomic or molecular field in our model. Since

we do not have a complex amplitude whose squared modulus is the noncondensed

density, we cannot apply this hydrodynamic formulation to the noncondensed field.

Using finite differences in time and space would fail to capture events in which atoms

enter or leave the noncondensed field for the condensed or molecular fields. Lacking

a truthful and straightforward method of calculation, we ignore velocities of noncon-

densed atoms.

By convention, the phase angle of a complex number lies between plus and minus

π. Therefore, if the phase angle at one location is π and at a neighboring location
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is π + δ, where δ is positive and arbitrarily small, a naive calculation of the phase

angle would result in approximately −π, introducing an unphysical discontinuity in

the velocity potential. When calculating phase angles, we are careful to remain at

all times on the same Riemann sheet; in practice, given a sequence of angles, we add

to or subtract from each angle whatever integer multiple of 2π gives the value that

differs the least from the neighboring angles in the sequence. As this process often

results in phases that are not zero on the domain boundaries, we must use finite differ-

ences to approximate the gradients, as sinusoidal pseudospectral derivatives applied

to data with nonhomogeneous boundary values would result in a substantial Gibbs

phenomenon, corrupting the velocity data with unphysical, spatially-periodic values.
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Chapter 5

SIMULATIONS AND ANALYSES

We present the results of simulations that are intended to quantitatively mimic

experiments, and of simulations that could inspire new experiments. Besides qualita-

tively reproducing collapses and bursts, our simulations predict shorter collapse times

for stronger traps, and rapid pre-collapse atom-molecule oscillations. We find that

molecules move extremely rapidly before or during dissociation, and form in a rela-

tively static state. Simulations with single and double magnetic field pulses, though

quantitatively inaccurate, qualitatively resemble most aspects of the corresponding

experiments, with the notable exception that we observe condensate remnant number

increasing with hold time instead of decreasing. All simulations are done in spheri-

cal symmetry, so that only days or weeks of CPU time are needed for an insightful

simulation.

5.1 Collapse Simulations

Collapse may be the most interesting experimental scenario, but it requires the

most computation, since these are the longest experiments we consider. Still, we may

extract physically meaningful data from even the initial stages of such simulations.

5.1.1 Experimental Parameters

Anticipating the simulations to be time-consuming, we attempt to model the

experimental situation that resulted in the shortest collapse time. From Donley et
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al.’s [1] Figure 2, we see that an effective scattering length of −55a0 gave a time to

collapse of about 1 ms for an initial condensate number of 6000.

Using the geometric mean of these experiments’ trap frequencies, 2π× 12.77 Hz,

we find a noninteracting initial state using imaginary time relaxation and immediately

set the external magnetic field to B = 167.2691701 G.1 All other fields are initialized

to zero, though the experiments [1] actually begin with a small thermal cloud. The

results below are for 33 center of mass points ranging from R = 0 to R = 10.0 µm,

16 noncondensed modes ranging from k = 0 to k = 3π/2 µm−1, four spherical

harmonics with q = 0 only (that is, no azimuthal dependence) in the correlation

function expansions, and a maximum allowed truncation error limit of 10−16 in the

adaptive Runge-Kutta integrator. This limit resulted in time step sizes on the order

of 7×10−12 s for the duration of the simulation, making simulations with finer spatial

resolutions prohibitively time-consuming.

Figures 5.1 and 5.2 each show the time evolution of the density and number of

condensed atoms and molecules. The atomic and molecular fields oscillate rapidly

and 180◦ out of phase. The oscillations, which have never before been simulated in

the context of collapse, have very small amplitudes, such that not even an entire

particle is lost from the atomic field. The size and frequency of these oscillations

would make them extremely hard to detect and measure.

Figure 5.3 is a normalized Lomb periodogram for the molecule number during the

time t = 0.4046465526444529 to 0.4048009943305098 ms. This periodogram is calcu-

lated from every computed time step in the interval, and so is not subject to aliasing

due to sampling the computed data. The frequency of the number oscillations is 40

1Values such at the magnetic field that are used in a simulations may cited to 16 significant
figures, since they are computational parameters and not results of a simulation.
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(a) (b)

Figure 5.1: Condensed particle densities in a realistic collapse simulation. Densities

(a)
∣∣φ̄a(R)

∣∣2 of atoms and (b)
∣∣φ̄m(R)

∣∣2 of molecules.

MHz.2 The time scales (2.73) through (2.75) may be inverted to give characteristic

frequencies of the system; these are fU0 = 8.62 kHz, fg0 = 5120 GHz, and fν0 = 240

MHz when using unrenormalized parameters, or fU = 9.96 kHz, fg = 3830 GHz, and

fν = 232 MHz when using renormalized parameters. Note that 2π × 40 MHz = 300

MHz.

The time evolution of the density and number of noncondensed atoms is shown

in Figure 5.4. At about t = 0.4 ms the noncondensed density starts to form a cloud

near the origin; as time progresses, the cloud moves outward and increases in density,

resembling a burst. This burst contains only a small fraction of a single atom, and

cannot account for any significant loss from the condensate. The condensate still

retains nearly all of its atoms at this time. If the next burst of noncondensed atoms,

2We write all frequencies taken from simulations with a single significant figure. See Appendix F
for discussion. The characteristic frequencies for our model depend on the accuracy of the experi-
mental measurements of the resonance parameters; we choose to include three significant figures for
these values.
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(a) (b)

Figure 5.2: Condensed particle numbers in a realistic collapse simulation. Numbers
(a) Na of condensed atoms and (b) Nm of those molecules, exhibiting rapid, small-
amplitude oscillations. The upper figures cover the entire duration of the simulation,
while the lower figures are for a short interval in the middle of the simulation. The
lower figures use every computed time step, and so are not subject to aliasing the
computed solution.
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Figure 5.3: Pre-collapse molecule number power spectrum. Lomb periodogram of
molecule number during that time.

visibly forming at the origin at about t = 0.8 ms grows as did its predecessor, the

condensate could lose a large number of atoms to the noncondensed component.

For computational reasons, the simulation stops just short of the experimental

collapse time. By t = 0.8 ms, the noncondensed density already has several points

which have large negative values. Beyond the times shown in the plots, the non-

condensed density, which should be positive-definite, consists mostly of very negative

values, and the total noncondensed number also becomes negative. These unphysical

developments could indicate a lack of convergence or the growth of an instability.

Preliminary simulations at higher resolution, though terminated well before t = 0.8

ms, also had grid points with increasingly negative noncondensed densities. The poor

number conservation shown in Figure 5.5, with its smooth and clearly defined trends,

is another indicator of poor convergence or growing instability.

Figure 5.6 shows the magnitude of the anomalous fluctuations. This complex

field with units of density may or may not indicate computational inaccuracies.

The velocities of condensed atoms and molecules are shown for the entire simula-
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(a) (b)

Figure 5.4: Noncondensed atoms in a realistic collapse simulation. (a) Density
ḠN(R, 0) and (b) number Nnon of those noncondensed atoms. Something resem-
bling a burst has emanated from the origin and gained substantial density when far
from the origin, near the end of the simulation.

tion in Figure 5.7, and the velocities and density of molecules for the interval of Figure

5.3 are shown in Figure 5.8. As expected for attractive interactions, inward radial

velocities dominate the atomic and molecular fields. The velocities of the molecules

over very short time scales (Figure 5.8a) exhibit an interesting behavior in which

the molecules about 6 µm from the origin acquire a large outward velocity; then

the molecules remaining in this region resume their inward velocities while molecules

slightly nearer the origin assume large outward velocities. The trend continues until

the outgoing molecules appear at R = 3µm; then, suddenly, the molecules remaining

in this region resume their inward velocities, while molecules slightly nearer the origin

assume very large inward velocities. These brief periods of dramatic kinetics appear

whenever the molecular density decreases. It seems that molecules form in a nearly

static state, but just before dissociation, their binding energies are converted to ki-

netic energy, until the molecules are destroyed and their constituent atoms reenter
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Figure 5.5: Average error in number during a realistic collapse simulation. A smooth
curve, like the one above, as opposed to a jagged, seemingly random curve, indicates
a lack of convergence or an instability. The divergent error near the end signals that
the simulation’s results have become unphysical.

Figure 5.6: Diagonal parts of anomalous fluctuations in a realistic collapse simulation.
Shown is the magnitude

∣∣ḠA(R, 0)
∣∣.
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(a) (b)

Figure 5.7: Condensed particle velocities in a realistic collapse simulation. Radial
velocities for (a) condensed atoms and (b) molecules. Consistent with attractive
interactions, the dominant velocities are inwards. Notice the “noise” in the molecular
velocities.

the condensate. The process occurs in about 4 ns; the comparable time scale in the

problem is tν = 1/fν = 4.31 ns. Note the “noise” in the molecular velocity plot in

Figure 5.7b, which uses every 10,000th computed time step; this noise does not appear

in Figure 5.8a, which uses every single computed time step. We conclude that noise

such as that in Figure 5.7b and many of the other molecular velocity plots in this

chapter are a result of an undersampling of the kinetic phenomenon exhibited in Fig-

ure 5.8a. We provide Figure 5.9, which is a plot of a single episode of high molecular

velocities, to show that this phenomenon is not a numerical anomaly occuring on a

single time step.
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(a) (b)

Figure 5.8: Pre-collapse molecule (a) velocities and (b) density. Extremely high
velocities appear when the density decreases. Notice the absence of noise in the
molecular velocities.

Figure 5.9: Single episode of molecular velocities on dissociation. The high molecular
velocities at a given radius are spread over several time steps, indicating that these
velocities are not a numerical anomaly.



128

5.1.2 Influence of Trapping Potential

No experiments to date have investigated any dependence of the collapse on

the strength of the trapping potential. To this end, we simulate condensates having

stability coefficients [the stability coefficient κ was defined in Equation (1.4)] κ = 0.26,

0.52, and 0.60 in trapping potentials of strength ω = 2π × 12.77 and 8π × 12.77 Hz.

Preliminary explorations of the parameter space suggested that using a mass one

quarter that of 85Rb’s resulted in faster simulations, though now it appears that this

may be true only for initial conditions that are more compact than the ground state.

For a given κ, the trap frequency and initial number of particles are both changed;

aeff = −400a0 in all cases, so that collapse occurs as soon as possible. The extent

of the 33-point center of mass grid is altered between 50 µm in the ω = 2π × 12.77

and 12 µm in the 8π × 12.77 Hz simulations so that the condensate is spread over

several grid points, but a pair of simulations for a given κ uses the same 16-point

relative momentum grid, ranging from 0 to 3π/10 µm−1, so that the dynamics of one

simulation does not show effects of momenta not included in the other simulation.

All simulations use four q = 0 spherical harmonics. As with all the simulations

we present, all fields but the atomic field are initialized to zero. The atomic field

is initialized to unity everywhere, and imaginary time relaxation runs for 100,000

iterations.

As seen in Figures 5.10, 5.11, and 5.12, every condensate contracts, including the

stable (κ = 0.26 and 0.52) ones. For the κ = 0.60 case, we also conduct simulations

that neglect normal and anomalous fluctuations but are otherwise identical to the

simulations including quantum fluctuations. A plot of condensate contraction appears

indistinguishable from Figure 5.12, and the values differ in no reliable significant

figures between the mean-field-only and HFB simulation. This suggests that second-
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order quantum fluctuations are unimportant at this very early stage of collapse. For

the κ = 0.60 HFB simulation, Figure 5.13 shows the same information as Figure 5.12

along with bounds on numerical error.

Returning to the simulations including fluctuations, the contraction is more dra-

matic for larger (that is, less stable) stability coefficients, though the contractions for

the κ = 0.52 and 0.60 simulations are very similar. In every case, the stronger trap-

ping potential results in a faster contraction. This difference suggests that tcollapse,

defined as the time at which the condensate width reaches a given fraction of its

initial width, does depend on the trap frequency. Recall that we did not scale space

and time to harmonic oscillator units. It is possible that for κ very near the critical

value, collapse may or may not occur, depending on the trap strength; Figure 5.14

shows that the stronger trap results in condensate atoms away from the origin rushing

inward with a velocity an order of magnitude larger than in the case of the weaker

trap.

For a sufficiently strong trap, the quantum pressure of the condensate may not

be able to balance both the attractive interaction and the kinetic energy of this

contraction. Based on the Gaussian variational treatment of the GPE mentioned in

Section 1.1, any stable condensate is only metastable; as the width of the condensate

decreases, macroscopic quantum tunneling becomes increasing likely, and a stable

condensate may collapse (see Figure 5.15). An initially stable condensate in a very

strong trap, then, may be especially prone to collapse, as Figure 5.10 shows that the

initially quite compact condensate does indeed contract further.

As expected from consideration of the stability coefficients, only in the κ = 0.60

case does a visible contraction of the condensate occur for the simulated times, as

shown in Figure 5.16, and even then only for the stronger trap.
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An interesting manipulation of trapping potentials results if one forms a non-

interacting condensate in a strong trap, and then suddenly weakens the trap at the

same time attractive interactions are introduced. The result is a condensate that is

already contracted but lacks the kinetic energy of contraction. Since the initial state

is not the ground state of the trap, the estimate of 0.574 for the critical value of

the stability coefficient does not apply; Figures 5.17, 5.18, and 5.19 show that even

for κ = 0.26, the condensate quickly collapses and a burst of noncondensed density,

though small in magnitude, emanates from the origin. The velocities of the atoms

and molecules, shown in Figure 5.20, during this collapse are towards the origin for

R smaller than about 3 µm, and away from the origin for R larger. Spatially distinct

regions of a single condensate are then governed by drastically different dynamics, the

beyond mean field effects of the order-unity diluteness parameter in the inner region,

and simple harmonic oscillator dynamics in the sparse outer region.

Finally, Figure 5.21 shows that tcollapse decreases as initial density increases, which

is consistent with experimental observation. If tcollapse is defined as the time it takes

for the condensate to contract to 88 percent of its initial width, our simulations

indicate that doubling the density doubles the time to collapse. It is important to note

that both simulations represented in Figure 5.21 have developed large, unphysical,

negative noncondensed densities by the time they ended, signally a lack of stability,

convergence, or both. All these simulations have an erratic average error in total

number less than or on the order of 10−12 over their durations, with the exception of

the initially contracted simulations, both of which develop monotonic trends in error

after about t = 0.14 ms.

Finally, we attempt to more precisely characterize the behavior of the widths

of the condensates described above. For each trap and stability coefficient examined
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above, we fit the ratio of the width to its initial width, σ/σini, to a power law of the

form

σ

σini

= αtβ + 1, (5.1)

where α and β are parameters to be found from a least-squares procedure. The

parameters for each fit are summarized in Table 5.1, which also includes solutions to

the power law (5.1) for t such that σ/σini = 1/e. We see that the condensate width

in each simulation is well described by such a fit, with the exception of the κ = 0.26

simulation. In this case, the fit’s r2 value is about 10−10 (recall that a value very

close to 1 is ideal). The discrepancy could be due to the fact that this simulation ran

longer than the others, into a regime where the Gaussian fit from which the width

is found is a poor approximation, and where concentration of the dynamics on a few

grid points results in very poor convergence. Alternatively, the failure of the power

law fit could be due to physical reasons, as the situation of a highly contracted but

nominally quite stable condensate could be very different from every other situation

we present.

For the condensates that are initially in the trap’s ground state, we observe that

both the power and coefficient of the fit depend more sensitively on the trap potential

than the stability coefficient. Whenever ω = 2π × 12.77 Hz, the power β is 1.6 and

the coefficient α is on the order of -10. Whenever ω = 8π × 12.77 Hz, the power β

increases to 1.8 or 1.9, and the coefficient α increases in magnitude such that it is on

the order of -1000. As is clear from Figures 5.10 through 5.12 and 5.21, the stronger

traps result in much faster condensate contraction, but note that Table 5.1 assumes

that every condensate continues contracting and that such contraction obeys the same

power law; it is quite possible that these condensates, especially for κ = 0.26, enter

breathing modes well before their widths have reached 1/e of their initial values.
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Figure 5.10: Condensate contraction for different trap strengths: κ = 0.26. The
width σ of a condensate, initially in the ground state, is found from a Gaussian fit

to the density
∣∣φ̄a(R)

∣∣2 and compared to its initial value. Even in this configuration
for which κ is well below the critical value, the trap frequency influences the rate of
contraction. The solid curve is the width for a trap frequency four times that of the
dashed curve.
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Figure 5.11: Condensate contraction for different trap strengths: κ = 0.52. Same as
Figure 5.10, but for a less stable configuration. For this κ slightly below the critical
value, the trap frequency influences the rate of contraction; both condensates contract
faster than did the κ = 0.26 condensates.
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Figure 5.12: Condensate contraction for different trap strengths: κ = 0.60. Same as
Figures 5.10 and 5.11, but for an unstable configuration. For this κ slightly above the
critical value, the trap frequency influences the rate of contraction; both condensates
contract faster than did the κ = 0.26 and 0.52 condensates.
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Figure 5.13: Condensate contration for κ = 0.60, with error bounds. The solid curves
give the same information as Figure 5.12, where now panel (a) represents the ω =
2π×12.77 Hz simulation and (b) is for the stronger trap. The dotted lines place upper
and lower bounds on the possible numerical error. This error analysis is discussed in
Appendix F.

(a) (b)

Figure 5.14: Atom velocities for different trap strengths. At a given time, the radial
velocities of condensate atoms for (a) ω = 2π × 12.77 Hz is an order of magnitude
less than those for (b) ω = 8π × 12.77 Hz. Both panels are for κ = 0.52.
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Figure 5.15: Width dependence of BEC stability [104]. For a stability coefficient
κ < 0.574, there exists a width at which the condensate will be in metastable equilib-
rium. There always exists a nonzero probability of macroscopic quantum tunneling,
by which a nominally stable condensate could collapse. As the condensate’s width
decreases, the likelihood of tunneling to collapse increases. Used with permission.
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(a) (b)

Figure 5.16: Condensate density for different trap strengths. For κ = 0.60, an unstable
value, the condensate (a) in the weaker trap has not visibly contracted, while the
condensate (b) in the stronger trap is beginning to (barely) visibly contract.

κ ω (×2π × 12.77 Hz) α β r2 tcollapse (ms)
0.26 1 -40 1.6 0.9823 80
0.26 4 -2000 1.8 0.9998 10
0.52 1 -70 1.6 0.9822 50
0.52 4 -6000 1.9 0.9999 8
0.60 1 -90 2 0.9822 50
0.60 4 -8000 1.93 0.9999 8
0.26* 1 ∼ 0 -1.7 -2.020 1× 10−7

0.52* 1 −2× 106 2.0 1.000 0.5

Table 5.1: Power laws and collapse times for hypothetical experiments. For various
values of the stability coefficient κ and trap strength ω, α and β are determined by
a least squares fit to σ/σini = αtβ + 1. An r2 value very near one indicates a good
fit. The time to collapse tcollapse is the time, according to the fit, for the width of
the condensate to reach 1/e of its initial value. The starred (*) values of κ are for
condensates that are initially one-fourth the width of the trap’s ground state. The
analysis of Appendix F suggests that three significant figures are reliable in the power
β for the κ = 0.6, ω = 4× 2π × 12.77 Hz case.
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(a) (b)

Figure 5.17: Condensed atoms for an initially contracted condensate. (a) Density∣∣φ̄a(R)
∣∣2 and (b) change in number Na(t) − Na(0) of those atoms. Dramatic con-

traction of the condensate and a downturn in condensate number are visible even for
this case of κ = 0.26, when the initial condensate has a width one quarter that of
the trap’s ground state. By the end of the simulation, nearly all of the dynamics
occurs on the innermost two grid points, even though the initial state was spread
over 33 grid points. Note that the number plot gives a general trend and oscillation
amplitude only; every 10,000th computed time step is recorded, so frequencies cannot
be reliably measured.
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(a) (b)

Figure 5.18: Molecules for an initially contracted condensate. (a) Density
∣∣φ̄m(R)

∣∣2
and (b) number Nm of those molecules, for κ = 0.26, where the initial state has
one quarter the width of the trap’s ground state. As the collapse progresses, the
molecular oscillations become larger in amplitude and more concentrated near the
origin. Again, every 10,000th computed time step is recorded.

(a) (b)

Figure 5.19: Noncondensed atoms for an initially contracted condensate. (a) Density
ḠN(R, 0) and (b) number Nnon of those atoms, for κ = 0.26, where the initial state
has one quarter the width of the trap’s ground state. Burst-like behavior is apparent,
though only a fraction of a noncondensed atom is produced.
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(a) (b)

Figure 5.20: Condensed particle velocities for an initially contracted state. Radial
velocities for (a) condensed atoms and (b) molecules, for κ = 0.26, where the initial
state has one quarter the width of the trap’s ground state. Note the distinct regions
of inward and outward velocities.



141

Figure 5.21: Condensate width for initially contracted states. Both condensates start
with an initial width one quarter that of the trap ground state. The width at any

later time is the width of a Gaussian fit to the density
∣∣φ̄a(R)

∣∣2. The condensate
having a stability coefficient κ = 0.52 (the dashed curve) differs from the κ = 0.26
condensate (solid curve) only in that it initially has twice as many atoms.
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5.2 Single Pulse Simulations

In the spirit of Claussen et al. [2], we perform simulations of a condensate sub-

jected to a magnetic field pulse of the shape shown in Figure 5.22. Figure 5.23 shows

the corresponding behavior of the effective scattering length. The weakly interacting

initial state is found by imaginary time relaxation, with all other fields initialized to

zero. The magnetic field then linearly ramps to the hold value, which is closer to

resonance, thus increasing the effective scattering length. After an amount of time

thold, the field is ramped to its final value, which in practice is the same as the initial

value, and the field is held at that value for a time ttail.

All of the single-pulse simulations start with 16,600 atoms at aini = 7a0 and use

ω = 2π × 12.77 rad/s, which is the geometric mean of the trap frequencies cited in

[2]. The center of mass coordinate has 65 grid points and ranges from R = 0 to

R = 10 µm, there are 30 noncondensed modes with wavenumbers ranging from k = 0

to 29π/10 µm−1, and seven q = 0 spherical harmonics in the correlation function ex-

pansions. Comparison with lower resolution simulations in a few cases suggests that

these results are spatially converged. By setting the maximum allowable truncation

error to 10−16 in the Runge-Kutta integrator, the simulations are temporally con-

verged. In all simulations, the average error in total number never exceeds 1.3×10−13

and behaves erratically (see Figure 5.24), suggesting that the solutions are stable and

converged.

In each case, we present plots of number density and total number of con-

densed atoms, molecules, and noncondensed atoms, along with normalized Lomb

periodograms. The characteristic frequencies taken from the time scales (2.73) and

(2.74) are fU0 = 8.62 kHz and fg0 = 5120 GHz for unrenormalized parameters and

fU = 11.2 kHz and fg = 3020 GHz for renormalized parameters, while the frequencies
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Figure 5.22: Computational model of magnetic field pulse. The magnetic field starts
at Bini at t = 0 and linearly ramps to Bhold in an amount of time tramp 1. The field
remains at this value for thold, then ramps to the final value Bfin in tramp 2, at which
it remains for ttail.

corresponding to the detuning depend on the magnetic field. Oscillations have only

been measured in these experiments for very particular values of magnetic field; we

predict that rapid oscillations in condensate number occur for every set of parameters.

5.2.1 Varying Magnetic Field Pulse Strength

For times tramp 1 = tramp 2 = 12.5 µs, thold = 1 µs, and ttail = 1 µs, we consider

three different magnetic field strengths during the hold time: Bhold = 158 G, 156

G, and Bres = 155.041 G. When using the first two fields, we are simulating the
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Figure 5.23: Behavior of effective scattering length during magnetic field pulse. The
condensate is initially weakly interacting, strongly repulsive during a time interval
thold, and again weakly interacting at the end of the simulation.

parameters that experimentally produced the top and bottom left-most points in

Claussen et al.’s [2] Figure 4, which shows that the stronger magnetic field results in

a smaller number of atoms remaining in the condensate at the end of the experiment.

The field Bhold = Bres is beyond the realm of typical (that is, Gross-Pitaevskii) mean

field theory, since the effective scattering length formally diverges here, though our

model, using the resonance theory of Reference [14], remains valid. This value of

magnetic field has not been investigated experimentally, though it is possible to do

so.

Figures 5.25, 5.26, and 5.27 show the time evolution of the density and number
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Figure 5.24: Example of number conservation during a single-pulse simulation. Av-
erage error in total number for one of the cases considered below, as calculated by
Equation (4.24). The erratic behavior and nearly machine level magnitude of the
error suggests stability and convergence. These error data are representative of those
for each of the single-pulse simulations we present.

of condensed atoms, molecules, and noncondensed atoms, respectively, for the case

of Bhold = 158 G. As the magnetic field and effective scattering length increase,

the atomic and molecular fields pass particles back and forth in rapid oscillations.

The noncondensed number shows generally smooth trends, but small amplitude, high

frequency oscillations are present.

The frequencies of the number oscillations during the time intervals tramp 1, thold,

and tramp 2 are shown in Figure 5.28. During both ramps, the condensate number is

dominated by low frequency components, corresponding to the overall decline (during

the first ramp) and rise (during the second ramp) in number seen in Figure 5.25b.

During the hold time, a frequency of 7 MHz dominates, while the characteristic

frequencies taken from the time scale (2.75) are fν0 = 58.0 MHz and fν = 45.1
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(a) (b)

Figure 5.25: Condensed atoms in a simulation of a single weak magnetic field pulse.

(a) Density
∣∣φ̄a(R)

∣∣2 and (b) number Na of those atoms, about eight of which are lost
to the molecular field during the peaks of the oscillations.

MHz for unrenormalized and renormalized parameters, respectively. Note that 2π ×

7 MHz = 40 MHz (angular frequency). The lowest frequency component dominates

the noncondensed number during the hold time, but frequencies of 60 kHz and 80

kHz are prevalent during tramp 1 and tramp 2, respectively. These are within an order

of magnitude of fU = 11.2 kHz.

Next, we consider a magnetic field Bhold = 156 G. Figures 5.29, 5.30, and 5.31

show the time evolution of the density and number of condensed atoms, molecules,

and noncondensed atoms, and Figure 5.32 shows normalized Lomb periodograms of

the condensed and noncondensed number during the ramp and hold times. In this

simulation, it is apparent that a molecular component persists even after the magnetic

field pulse has ended, and the higher frequency oscillations in noncondensed number

are larger in amplitude than for the Bhold = 158 G case, though they are still small.

As in the previous case, low frequency components dominate the condensate number
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(a) (b)

Figure 5.26: Molecules in a simulation of a single weak magnetic field pulse. (a) Den-

sity
∣∣φ̄m(R)

∣∣2 and (b) number Nm of those molecules. As many as four molecules are
formed from the atoms lost from the atomic field during the peaks of the oscillations.

(a) (b)

Figure 5.27: Noncondensed atoms in a simulation of a single weak magnetic field
pulse. (a) Density ḠN(R, 0) and (b) number Nnon of those noncondensed atoms.
Only a fraction of a single noncondensed atom is formed.
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(a) (b)

Figure 5.28: Frequency components of atom numbers during a simulation of a single
weak magnetic field pulse. Normalized Lomb periodogram of (a) condensed atom num-
ber data and (b) noncondensed atom number data. A periodogram of the molecule
number data looks the same as that for the condensed atom number. A solid curve
represents data during tramp 1, the dashed curve is for thold, and the dotted curve is
for tramp 2.

during the ramp times, while a frequency of 1 MHz dominates during the hold time.

Compare this to characteristic frequencies of fν0 = 18.8 MHz and fν = 5.86 MHz and

note that 2π× 1 MHz = 6 MHz. The noncondensed number has a distinct frequency

component only during the second ramp, where again 80 kHz dominates, within an

order of magnitude of fU . Figure 5.33 shows the time evolution of the diagonal parts

of the anomalous fluctuations, which exhibit nontrivial behavior reminiscent of the

diagonal parts of the normal fluctuations.

Now we consider Bhold = Bres, where the Gross-Pitaevskii equation is undefined

due to a divergent effective scattering length. Figures 5.34, 5.35, and 5.36 show

the time evolution of the condensed atoms, molecules, and noncondensed atoms.

After prounounced oscillations, a molecular component persists after the pulse has

ended, and now the noncondensed density and number qualitatively resemble the
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(a) (b)

Figure 5.29: Condensed atoms in a simulation of a single magnetic field pulse. (a)

Density
∣∣φ̄a(R)

∣∣2 and (b) number Na of those atoms, about 400 of which are lost to
the molecular field during the peak of the oscillations.

(a) (b)

Figure 5.30: Molecules in a simulation of a single magnetic field pulse. (a) Density∣∣φ̄m(R)
∣∣2 and (b) number Nm of those molecules. As many as 200 molecules are

formed from the atoms lost from the atomic field during the peak of the oscillations.
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(a) (b)

Figure 5.31: Noncondensed atoms in a simulation of a single magnetic field pulse.
(a) Density ḠN(R, 0) and (b) number Nnon of those noncondensed atoms. Only a
fraction of a single noncondensed atom is formed.

(a) (b)

Figure 5.32: Frequency components of atom numbers during a simulation of a single
magnetic field pulse. Same as Figure 5.28, but for a stronger pulse.
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Figure 5.33: Anomalous fluctuations for a single magnetic field pulse. Shown are the
magnitudes of the diagonal parts,

∣∣ḠA(R, 0)
∣∣.

molecular evolution. Figure 5.37 shows the dominant frequencies during the three

time intervals. Only during the hold time is a single high frequency pronounced in

the condensed number, which is 2 MHz. Compare this to fν = 12.9 MHz, and note

that 2π × 2 MHz = 13 MHz. The frequency corresponding to the unrenormalized

detuning is formally zero for this value of magnetic field. The prevalent frequency

in the noncondensed number is nearly the same as that in the condensed number,

indicating that atom-molecule oscillations completely dominate the dynamics of the

system on resonance.

Figure 5.38 shows the diagonal parts of the anomalous fluctuations, which qual-

itatively mimics the other fields.

In this case, we conduct another simulation that is identical in set-up, but ne-

glects quantum fluctuations.3 Plots of condensate and molecule number from this

mean-field-only simulation are indistinguishable from Figures 5.34b and 5.35b, and

3While the GPE is undefined at resonance, recall that the resonance theory of Ref. [14], which
we use, is not.
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(a) (b)

Figure 5.34: Condensed atoms in a simulation of a single strong magnetic field pulse.

(a) Density
∣∣φ̄a(R)

∣∣2 and (b) number Na of those atoms, nearly 4000 of which are lost
to the molecular field during the peak of the oscillations.

the numbers and dominant frequencies of oscillation differ in no reliable significant

figures between the simulations. We conclude that second order quantum fluctuations

are unimportant to the experiment in this brief but strong magnetic field pulse.

We compare the number of atoms remaining in the consendate after the pulse is

over, for the three values of Bhold. This comparison is reminiscent of the left-most data

points of Claussen et al.’s [2] Figure 4. About 14,000 atoms remain in the condensate

at the end of the experiment when Bhold = 158 G, and slightly more than 10,000

remain when Bhold = 156 G. Our simulations greatly overestimate these numbers,

with nearly 16,600 atoms (the initial number) remaining when Bhold = 158 G and

16,550 remaining when Bhold = 156 G. Still, the simulations qualitatively reproduce

the experimentally observed trend of remnant number decreasing as Bhold approaches

the resonance. Figure 5.39 shows the time evolution of the number of atoms in the

condensate for the three values of Bhold we studied during ttail.
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(a) (b)

Figure 5.35: Molecules in a simulation of a single strong magnetic field pulse. (a)

Density
∣∣φ̄m(R)

∣∣2 and (b) number Nm of those molecules. Nearly 2000 molecules are
formed from the atoms lost from the atomic field during the peak of the oscillations.

(a) (b)

Figure 5.36: Noncondensed atoms in a simulation of a single strong magnetic field
pulse. (a) Density ḠN(R, 0) and (b) number Nnon of those noncondensed atoms. Only
a fraction of a single noncondensed atom is formed. A nearly constant noncondensed
component persists after the pulse has ended.
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(a) (b)

Figure 5.37: Frequency components of atom numbers during a simulation of a single
strong magnetic field pulse. Same as Figure 5.28, but for the strongest pulse.

Figure 5.38: Diagonal parts of anomalous fluctuations for a single strong magnetic
field pulse. Same as Figure 5.33, but for a pulse to resonance.
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Figure 5.39: Pulse strength dependence of condensate number in single-pulse sim-
ulations. Number of condensed atoms Na during ttail, when the magnetic field is
constant, after the pulse is over. The solid curve is for Bhold = 158 G, the dashed
curve is for Bhold = 156 G, and the dotted curve is for Bhold = Bres.

Lastly, we compare the velocities of atoms and molecules for the different pulse

strengths. Figures 5.40, 5.41, and 5.42 show the velocities of condensed atoms and

molecules when Bhold = 158 G, 156 G, and Bres, respectively. When the field is far

from resonance during the hold time, both fields have a small inward velocity during

the first ramp, even though the interatomic interactions are becoming more repulsive.

This slight contraction could be a novel physical effect, or it could be the result of

an initial state that is not perfectly relaxed. In all three cases, the atoms acquire a

large outward velocity during the second ramp, which increases as the magnetic field



156

approaches resonance. This velocity saturates at about 140µm/s, even when Bhold is

not on resonance. We may estimate the speed of sound for these atoms as [23]

cs =

√
4π~2

∣∣φ̄a(R)
∣∣ aeff

m2
, (5.2)

where we take R ≈ 2 µm so that
∣∣φ̄a(R)

∣∣ ≈ 6× 1013 cm−3 and Bhold = 158 G. Then

cs ≈ 10, 000 µm/s, which greatly exceeds the maximum velocity of 140 µm/s we ob-

serve in these simulations. Excitations of the superfluid such as vortices are therefore

unlikely, though excitations of the normal (noncondensed) fraction are possible.

During the second ramp, the molecules acquire mostly inward velocities that are

about half the magnitude of the atoms’ velocities. When Bhold = Bres, the second

ramp is marked by a region, about 3 µm from the origin and 0.5 µm in width, where

molecules take on large inward and outward velocities. In Figure 5.42b this region has

a noisy appearance, leading us to believe this region has dynamics similar to those of

Figure 5.8a in the case of collapse, where molecules dissociate with high outward and

then inward velocities in a very short period of time. The region of high velocities does

not correspond to a region of significant density in Figure 5.35a, though, suggesting

that these are small-amplitude oscillations. In all cases (but most easily seen for

the moderate-strength pulse), molecules produced during the hold time, when most

molecules are produced, move rapidly outwards.

5.2.2 Varying Pulse Shape

We now compare the effects of changing tramp 1, thold, and tramp 2 for a magnetic

field Bhold = 156 G. Again, we use realistic 85Rb parameters.

First, consider the case of a longer first ramp, where tramp 1 = 16.5 µs, thold =

1.00 µs, and tramp 2 = 12.5 µs. Figures 5.43, 5.44, and 5.45, the densities and numbers
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(a) (b)

Figure 5.40: Condensed particle velocities for a weak magnetic field pulse. Radial
velocities for (a) atoms and (b) molecules for a simulation where Bhold = 158 G.
Notice the atoms’ small but increasing inward velocities during the first ramp.

(a) (b)

Figure 5.41: Condensed particle velocities for a moderate magnetic field pulse. Radial
velocities for (a) atoms and (b) molecules for a simulation where Bhold = 156 G.
Particles’ inward velocities are especially pronounced during the second ramp.
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(a) (b)

Figure 5.42: Condensed particle velocities for a strong magnetic field pulse. Radial
velocities for (a) atoms and (b) molecules for a simulation where Bhold = Bres G.
The atoms’ inward velocities are no larger than in the Bhold = 156 G case, while
the molecules’ velocities rapidly alter between large inward and outward values in a
region about 3 µm from the origin.

of condensed atoms, molecules, and noncondensed atoms, are all qualitatively very

similar to Figures 5.29, 5.30, and 5.31, which are the corresponding plots for the same

parameters, but with tramp 1 = 12.5 µs. The atomic and molecular fields’ oscillations

have the same structure and amplitude, but the noncondensed number reaches a 20

percent larger value than in the tramp 1 case, suggesting that very long first ramp times

may result in depletion of the condensate. The frequencies of oscillation extracted

from the data (see Figure 5.46) look very similar to those from the tramp 1 = 12.5 µs

case, with a frequency of condensate number oscillations of 1 MHz during thold and a

frequency of noncondensed number oscillations of 80 kHz during tramp 2. Recall that

for this value of Bhold, the characteristic frequency corresponding to the renormalized

detuning is fν = 5.86 MHz.

Next, consider a longer second ramp, where tramp 1 = 12.5 µs, thold = 1.00 µs,
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(a) (b)

Figure 5.43: Condensed atoms in a simulation of a single magnetic field pulse: long

first ramp. (a) Density
∣∣φ̄a(R)

∣∣2 and (b) number Na of those atoms, about 400 of
which are lost to the molecular field during the peak of the oscillations.

(a) (b)

Figure 5.44: Molecules in a simulation of a single magnetic field pulse: long first

ramp. (a) Density
∣∣φ̄m(R)

∣∣2 and (b) number Nm of those atoms, about 200 of which
formed from condensed atoms during the peak of the oscillations.
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(a) (b)

Figure 5.45: Noncondensed atoms in a simulation of a single magnetic field pulse:
long first ramp. (a) Density ḠN(R, 0) and (b) number Nnon of those noncondensed
atoms. Only a fraction of a single noncondensed atom is formed.

(a) (b)

Figure 5.46: Frequency components of atom numbers during a simulation of a single
magnetic field pulse: long first ramp. Same as Figure 5.32, but for a long first ramp.
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(a) (b)

Figure 5.47: Condensed atoms in a simulation of a single magnetic field pulse: long

second ramp. (a) Density
∣∣φ̄a(R)

∣∣2 and (b) number Na of those atoms, about 400 of
which are lost to the molecular field during the peak of the oscillations.

and tramp 2 = 16.5 µs. The number and number density results, shown in Figures 5.47,

5.48, and 5.49, are nearly identical with the results for the longer first ramp, only

shifted towards earlier times. One notable feature is the slight decrease in the number

of remaining condensed atoms compared to the previous case (this is examined in

more detail later). Figure 5.50 shows the frequencies extracted from the number

data, which is effectively identical to the tramp 1 = 16.5 µs case.

Now consider the case where both ramps are long: tramp 1 = tramp 2 = 12.5 µs and

thold = 1.00 µs. Once more, the density and number data in Figure 5.51, 5.52, and

5.53 and the frequency data in Figure 5.54 is nearly identical to that from the case of

tramp 1 = tramp 2 = 12.5 µs. A notable exception is the nearly 60 percent increase in

peak noncondensed number; since the noncondensed number typically grows as time

with significant interactions increases, this long simulation has a higher noncondensed

number than others.
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(a) (b)

Figure 5.48: Molecules in a simulation of a single magnetic field pulse: long second

ramp. (a) Density
∣∣φ̄m(R)

∣∣2 and (b) number Nm of those atoms, about 200 of which
formed from condensed atoms during the peak of the oscillations.

(a) (b)

Figure 5.49: Noncondensed atoms in a simulation of a single magnetic field pulse:
long second ramp. (a) Density ḠN(R, 0) and (b) number Nnon of those noncondensed
atoms. Only a fraction of a single noncondensed atom is formed.
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(a) (b)

Figure 5.50: Frequency components of atom numbers during a simulation of a single
magnetic field pulse: long second ramp. Same as Figure 5.32, but for a long second
ramp.

(a) (b)

Figure 5.51: Condensed atoms in a simulation of a single magnetic field pulse: long

ramps. (a) Density
∣∣φ̄a(R)

∣∣2 and (b) number Na of those atoms, about 400 of which
are lost to the molecular field during the peak of the oscillations.
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(a) (b)

Figure 5.52: Molecules in a simulation of a single magnetic field pulse: long ramps.

(a) Density
∣∣φ̄m(R)

∣∣2 and (b) number Nm of those atoms, about 200 of which formed
from condensed atoms during the peak of the oscillations.

(a) (b)

Figure 5.53: Noncondensed atoms in a simulation of a single magnetic field pulse:
long ramps. (a) Density ḠN(R, 0) and (b) number Nnon of those noncondensed atoms.
Only a fraction of a single noncondensed atom is formed.
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(a) (b)

Figure 5.54: Frequency components of atom numbers during a simulation of a single
magnetic field pulse: long ramps. Same as Figure 5.32, but for two long ramps.

Having explored the effects of varying the ramp times, we now consider a longer

hold time of thold = 4.00 µs, with tramp 1 = tramp 2 = 12.5 µs. Figures 5.55, 5.56, and

5.57 show the density and number of the condensed atoms, molecules, and noncon-

densed atoms. All these are very similar to the thold = 1.00 µs case, except that the

oscillations during the hold time are visibly damped, and the peak in the noncon-

densed number is increased about 400 percent over the short hold time case. As in the

case of the long ramps, increased time with significant interaction strength increases

the noncondensed number; in this simulation, the condensate spends more time having

the strongest interactions, and so sees the highest loss to the noncondensed number

of any simulation presented so far. Again, Figure 5.58 shows that the oscillation

frequencies are unchanged compared to previous simulations with Bhold = 156 G. In

this case, we also present the diagonal parts of the anomalous fluctuations in Figure

5.59.

The last pulse shape we consider is one with a hold time of thold = 12.0 µs,

with tramp 1 = tramp 2 = 12.5 µs. The density and number data in Figures 5.60,
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(a) (b)

Figure 5.55: Condensed atoms in a simulation of a single magnetic field pulse: long

hold. (a) Density
∣∣φ̄a(R)

∣∣2 and (b) number Na of those atoms, about 400 of which
are lost to the molecular field during the peak of the oscillations.

(a) (b)

Figure 5.56: Molecules in a simulation of a single magnetic field pulse: long hold.

(a) Density
∣∣φ̄m(R)

∣∣2 and (b) number Nm of those atoms, about 200 of which formed
from condensed atoms during the peak of the oscillations.
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(a) (b)

Figure 5.57: Noncondensed atoms in a simulation of a single magnetic field pulse:
long hold. (a) Density ḠN(R, 0) and (b) number Nnon of those noncondensed atoms.
Only a fraction of a single noncondensed atom is formed.

(a) (b)

Figure 5.58: Frequency components of atom numbers during a simulation of a single
magnetic field pulse: long hold. Same as Figure 5.32, but for a long hold time.
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Figure 5.59: Diagonal parts of the anomalous densisty during a simulation of a single
magnetic field pulse: long hold. Same as Figure 5.33, but a long hold time.

5.61, and 5.62 are still mostly similar to the thold = 4.00 µs and thold = 1.00 µs

cases, with the noncondensed number peaking around 2500 percent of its largest

value when thold = 1.00 µs. This simulation has the condensate spending more time

with strong interactions than any other simulation we present; hence, this simulation

has a higher number of noncondensed atoms than any other. Table 5.2 summarizes

the noncondensed number at the end of the thold = 1.0, 4.0, and 12.0 µs simulations.

Figures 5.64, 5.65, and 5.66 are the same plots of number as in Figures 5.60, 5.61,

and 5.62, but include estimates of numerical error.4

For this pulse shape, which is the longest hold time we consider, we fit a curve

of the form

Nnon(t) = αtβ (5.3)

to the noncondensed number Nnon during the hold time. A least squares procedure

estimates α = 1.85 × 1020 s−β and β = 4.73 with an r2 goodness-of-fit parameter of

4The plots including error bounds are kept separate for clarity.
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0.9906. If this power law remains in effect until the condensate is entirely depleted,

we can estimate that a hold time of tth = thold = 400 ± 150 µs would completely

rethermalize the condensate, entirely by means of second order quantum fluctuations

and pairing via the Feshbach resonance.5 Over this time scale, density-dependent

losses are quite likely to play an effect.

The molecular density now exhibits some behavior distinct from previous cases.

The rapid oscillations in density form long, narrow, straight, radial spikes early on

during thold. Later on during the hold time, the small regions of high molecular den-

sity far from the origin lag the regions of high molecular density near the origin (the

spikes start to “bend”). Also, during the second ramp and after the pulse ends, the

molecule density forms two distinct and nearly constant bands, one centered on the

origin and extending about 1 µm outward, and the other, smaller band centered at

about R = 3 µm. Development of a technique for imaging the molecular condensate,

preferably in real time, could lead to experimental observation of such exotic dynam-

ics. As before, the dominant oscillation frequencies in Figure 5.63 are unchanged from

previous scenarios.

For these parameters, we also conduct a simulation in which we neglect fluctua-

tions. Plots of condensate and molecule number from this mean-field-only simulation

look indistinguishable from Figures 5.60b and 5.61b, and the numbers differ in no

reliable significant figures between the simulation. The dominant frequencies of os-

cillation are the same to three significant figures. Note that it is not possible to

estimate the rethermalization time of the condensate from the mean-field-only sim-

ulation. Still, the quantitative and qualitative agreement of the mean-field-only and

HFB simulations and the HFB simulation’s estimated rethermalization time of 400

5See Appendix F for discussion of the uncertainty.
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(a) (b)

Figure 5.60: Condensed atoms in a simulation of a single magnetic field pulse: longest

hold. (a) Density
∣∣φ̄a(R)

∣∣2 and (b) number Na of those atoms, about 400 of which
are lost to the molecular field during the peak of the oscillations.

µs suggest that quantum fluctuations are important only in the much later stages of

such an experiment.

Now we compare the number of atoms remaining in the condensate after the

pulses of varying shapes have ended. Figure 5.67 shows the number of condensed

atoms during ttail, which was 1.00 µs. We see that the remnant number increases

with increasing thold, in contradiction to the experimental findings [2], where a thold

of 5 µs decreased the remnant number from about 13,000 to 11,000 compared to a

thold of 1 µs.6 Comparison of the number remaining in the tramp 1 = tramp 2 = 12.5 µs

and tramp 1 = tramp 2 = 16.5 µs cases shows a very slight increase for the larger

ramp times. Experimentally, for the parameters we simulated, the remnant number

declines with ramp time for ramp times less than about 80 µs; for larger ramp times,

6These experimental values are for Bhold = 156.7 G and an initial condensate number of 16,500
atoms, rather than our simulated parameters of Bhold = 156.0 G and initial number of 16,600.
Again, all of the atomic parameters are those of 85Rb.
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(a) (b)

Figure 5.61: Molecules in a simulation of a single magnetic field pulse: longest hold.

(a) Density
∣∣φ̄m(R)

∣∣2 and (b) number Nm of those atoms, about 200 of which formed
from condensed atoms during the peak of the oscillations. Two bands of nonzero
density persist after the pulse ends.

(a) (b)

Figure 5.62: Noncondensed atoms in a simulation of a single magnetic field pulse:
longest hold. (a) Density ḠN(R, 0) and (b) number Nnon of those noncondensed
atoms. Only a fraction of a single noncondensed atom is formed.
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(a) (b)

Figure 5.63: Frequency components of atom numbers during a simulation of a single
magnetic field pulse: longest hold. Same as Figure 5.32, but for the longest hold time.

thold (µs) Nnon

1.0 0.00097
4.0 0.0052
12 0.031

Table 5.2: Remaining noncondensed number as a function of hold time. The noncon-
densed number increases by orders of magnitude as the hold time in a single-pulse
simulation increases.

the remnant number increases but does not exceed the tramp 1 = tramp 2 = 12.5 µs

figure for even the largest ramp time considered in the experiments, about 252 µs.

Our simulations qualitatively reproduce the counterintuitive experimental result that

longer ramp times can result in increased remnant number, but overestimate by at

least 240 µs the ramp time for which the increased remnant number appears.

One significant difference between our simulations and the experiments is the

experimental imaging process, in which the magnetic field is slowly ramped to a
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Figure 5.64: Condensate number when thold = 12 µs, including error estimates. The
solid curve is the same number data that appears in Figure 5.60, and the dotted
curves bound the maximum numerical error, as described in Appendix F.

value near the resonance, expanding the condensate to a size larger than the imaging

system’s resolution. The results of the simulation with the longer first ramp suggest

that this mean field imaging expansion has a significant effect on the measured number

of atoms in a condensate. Realistically, the imaging ramp is much slower than what

we have simulated, and would allow for losses due to three-body recombination, as

well.

None of our simulations reproduced anything resembling the observed bursts of

noncondensed atoms. Our small noncondensed fraction occupied the center of the

trap, rather than expanding in one or more rings. This disagreement implies that our

model does not include whatever mechanism is responsible for the observed bursts

in the single-pulse experiments, but the following two-pulse simulations (see Section
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Figure 5.65: Molecule number when thold = 12 µs, including error estimates. Same as
Figure 5.64, but for the molecular field.

5.3) suggest that the burst behavior emerges later, after a pulse, while the magnetic

field is constant.

We observe that the size of the peak in molecule number appears to be indepen-

dent of pulse shape. Only the strength of the magnetic field determines how many

molecules are produced at the height of the atom-molecule oscillations.

Lastly, we compare the dependence of condensed particle velocities on pulse

shape. Figures 5.68, 5.69, 5.70, 5.71, and 5.72 show the radial velocities of condensed

atoms and molecules for the simulations having a long hold time, the longest hold

time, a long first ramp, a long second ramp, and two long ramps, respectively. Com-

paring the figures for various hold times with Figure 5.41 shows that the outward

velocities of the atoms during the second ramp is highly dependent on the hold time,
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Figure 5.66: Noncondensed number when thold = 12 µs, including error estimates.
Same as Figure 5.64, but for noncondensed atoms.

while Figures 5.70, 5.71, and 5.72 show that this quantity is largely independent of

ramp times. Molecular velocities are also mostly independent of ramp times, but

the number of molecules having the largest inward velocity during the second ramp

increases whenever the second ramp is longer, likely because this longer transition

to a magnetic field far from resonance is more adiabatic, allowing more molecules to

persist. In both cases of extended hold times, regions of varying but large molecular

velocities exist, reminiscent of that seen in Figure 5.42b for the pulse to resonance.

When the hold time is the longest, two such regions simulatenously exist, one about

1.5 µm from the origin and the other centered near 4 µm. In Figure 5.61a we see faint

molecular oscillations in these regions, suggesting that the bands of high molecular

velocity in the second ramp do correspond to the dissociation of molecules.
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Figure 5.67: Pulse shape dependence of condensate number in single-pulse simulations.
Number of condensed atoms during ttail, when the magnetic field is constant, after the
pulse is over. (The horizontal axis is labeled from the start of the simulation.) Here,
Bhold = 156 G in every data set. (a) tramp 1 = tramp 2 = 12.5 µs and thold = 1 µs. (b)
Long hold. tramp 1 = tramp 2 = 12.5 µs and thold = 4 µs. (c) Long ramp 2. tramp 1 =
12.5 µs, tramp 2 = 16.5 µs, and thold = µs. (d) Long ramp 1. tramp 1 = 16.5 µs,
tramp 2 = 12.5 µs, and thold = µs. (e) Two long ramps. tramp 1 = tramp 2 = 16.5 µs and
thold = 1 µs. (f) Longest hold. tramp 1 = tramp 2 = 12.5 µs and thold = 12 µs.
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We may estimate an effective temperature of the molecules with the equiparti-

tion theorem. This estimate is strictly only valid when the molecular condensate is in

equilibrium, which it likely is not, as evidenced by the rapid oscillations. We nonethe-

less make this estimate, assuming that each grid point in the simulation represents

a region where the molecular condensate is in local equilibrium. If no rotational or

vibrational molecular modes are excited, equating the equipartition theorem to the

kinetic energy gives an effective temperature of

T =
2

3kB
mv2, (5.4)

where kB is Boltzmann’s constant, m is the mass of a single atom, and v is the flow

velocity of the molecular condensate at a point. Figure 5.73 gives the estimated

effective temperature of the molecules in the case of the thold = 12.0 µs simulation.

As the plot of molecular velocities suggests, two distinct regions of high temperature

persist at the end of the experiment.

5.3 Two-Pulse Simulations

In the spirit of Donley et al. [3], we perform simulations using all the same

computational parameters as in the above one-pulse simulations, but now with two

magnetic field pulses of the shape shown in Figure 5.74. Figure 5.75 shows the

corresponding behavior of the effective scattering length. The noninteracting initial

state is found using imaginary time relaxation with 16,500 atoms, and all other fields

are initialized to zero. The magnetic field then ramps linearly to Bhold 1 in a time

tramp 1, and stays at this field for an amount of time thold 1. The field then rises in

tramp 2 to a constant value of Bev, where it remains for the “free evolution time”

tev. Another pulse follows, after which the field remains at a final and constant
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(a) (b)

Figure 5.68: Condensed particle velocities for a long hold time. The radial velocities
of (a) atoms and (b) molecules. A region of moderate molecular velocities appears
far from the origin.

(a) (b)

Figure 5.69: Condensed particle velocities for the longest hold time. The radial veloc-
ities of (a) atoms and (b) molecules. Two distinct regions of large molecular velocities
persist during the second ramp, and atomic velocities are much larger in this case
than for shorter hold times.
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(a) (b)

Figure 5.70: Condensed particle velocities for a long first ramp. The radial velocities
of (a) atoms and (b) molecules. These data are little different from case of the shorter
first ramp.

(a) (b)

Figure 5.71: Condensed particle velocities for a long second ramp. The radial ve-
locities of (a) atoms and (b) molecules. Notice that the maximum velocity of the
molecules is the same as in the case of the longer first ramp, but more molecules have
this largest velocity.
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(a) (b)

Figure 5.72: Condensed particle velocities for two long ramps. The radial velocities of
(a) atoms and (b) molecules. Notice that the maximum velocity of the molecules is
the same as in the case of the longer first ramp, but more molecules have this largest
velocity. These data are little different from the case where only the second ramp is
longer.

Figure 5.73: Effective temperature of molecules. During the simulation where thold =
12.0 µs, the molecules’ temperatures may be estimated by Equation (5.4), which
assumes that each grid point represents a region of local equilibrium and no rotational
or vibrational molecular modes are excited.
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Figure 5.74: Computational model of magnetic field pulses. In practice, the pulses
are symmetric and the free evolution time tev is varied between simulations.

value Btail for ttail. In practice, Bhold 1 = Bhold 2 = 156.65 G, Bev = 157.6 G, and

Btail = Bini = 166.0 G, with tramp 1 = tramp 2 = tramp 3 = tramp 4 = 14.0 µs and

thold 1 = thold 2 = 15.0 µs. We consider three evolution times, tev = 10, 25, and

40 µs, in an attempt to reproduce some of the results of Donley et al.’s [3] Figure 4,

showing that the number of atoms remaining in the condensate after the pulses does

not increase or decrease monotonically with tev.

In every simulation, the average error in number behaves erratically and never

exceeds 1.3× 10−13 in magnitude, suggesting stability and convergence. Figure 5.76

shows the error for the tev = 40 µs simulation.
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Figure 5.75: Behavior of effective scattering length during magnetic field pulses. The
linear ramps in magnetic field result in nonlinear ramps in effective scattering length.

We first consider tev = 10 µs. Figures 5.77, 5.78, and 5.79 show the time evolution

of the density and number of condensed atoms, molecules, and noncondensed atoms,

respectively. The first pulse closely resembles one of the long hold time single-pulse

simulations, with rapid, damped oscillations. A cloud of noncondensed density forms

at and around the center of the trap during the first hold time, and radiates outward

during the free evolution time. During this time and the second hold time, the atom-

molecule oscillations take on a much smaller amplitude, and a second, dense burst

of noncondensed atoms (or rather, fractions of atoms) forms at and near the origin,

radiating outward during the final magnetic field ramp. It is during the hold times
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Figure 5.76: Example of number conservation during a two-pulse simulation. The
average error for every simulation (above, for the tev = 40 µs simulation) exhibits
seemingly random behavior, suggesting stability and convergence.

that the noncondensed number increases the most. Figure 5.80 shows the diagonal

parts of the anomalous fluctuations, which qualitatively mimics the noncondensed

density.

Figure 5.81 shows the prominent frequencies in atom number during the four

ramp times. The condensed atom number is dominated in every case by the low

frequencies associated with the overall rise and fall of condensed number, but the

noncondensed number has a prevalent higher frequency of 50 kHz during the first

and fourth ramps. Compare this to the characteristic frequency fU = 11.2 kHz.

Figure 5.82 shows the dominant frequencies in number during the hold times and free

evolution time. The noncondensed number has no distinct higher frequencies, but the

condensed number oscillations have prominent contributions from 3 MHz during the



184

(a) (b)

Figure 5.77: Condensed atoms in a simulation of a two magnetic field pulses: 10 µs

evolution time. (a) Density
∣∣φ̄a(R)

∣∣2 and (b) number Na of those atoms, about 45 of
which are lost to the molecular field during the peak of the oscillations.

hold times and 6 MHz during the free evolution time, or 20 and 40 MHz, respectively,

in terms of angular frequency. Compare these to detuning-dependent characteristic

frequencies of fν = 18.6 MHz and fν = 37.2 MHz, computed from the magnetic fields

during the hold and evolution times, respectively.

Next, we simulate tev = 25 µs. The qualitative behavior of the densities and

numbers shown in Figure 5.83, 5.84, 5.85, and 5.86 is the same as the tev = 10 µs

case, though a noticeable burst of noncondensed density is starting to form near the

origin towards the end of the evolution time. Note that by about t = 100 µs, this

burst, now centered slightly more than 1 µm from the origin, has a higher density

than the burst originating from the first hold time, even though the second burst

developed later. The frequency data from Figures 5.87 and 5.88 has the same peaks

as the tev = 10 µs scenario, matching well with the frequencies derived from our

model’s detuning.

Lastly, we simulate an evolution time of tev = 40 µs. The condensed atomic
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(a) (b)

Figure 5.78: Molecules in a simulation of two magnetic field pulses: 10 µs evolution

time. (a) Density
∣∣φ̄m(R)

∣∣2 and (b) number Nm of those molecules, about 22 of which
are formed from condensed atoms during the peak of the oscillations.

(a) (b)

Figure 5.79: Noncondensed atoms in a simulation of two magnetic field pulses: 10 µs
evolution time. (a) Density ḠN(R, 0) and (b) number Nnon of those atoms. Only a
fraction of a noncondensed atom is formed.
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Figure 5.80: Diagonal parts of anomalous fluctuations in a simulation of two magnetic
field pulses: 10 µs evolution time. Shown is the magnitude

∣∣ḠA(R, 0)
∣∣.

(a) (b)

Figure 5.81: Frequency components of atom numbers during a simulation of four
magnetic field ramps: 10 µs evolution time. Normalized Lomb periodogram for (a)
condensed atoms and (b) noncondensed atoms during ramps. A periodogram for the
molecular number data looks the same as the condensed atoms’ periodogram. A solid
curve represents data from tramp 1, the dashed curve is for tramp 2, the dotted is for
tramp 3, and the finely dotted is for tramp 4. Adjacent points are connected with a line,
to guide the eye.
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(a) (b)

Figure 5.82: Frequency components of atom numbers during a simulation of three
constant magnetic fields: 10 µs evolution time. Normalized Lomb periodogram for
(a) condensed atoms and (b) noncondensed atoms during hold and evolution times.
A solid curve represent data from thold 1, the dashed curve is for tev, and the dotted
curve is for thold 2. Adjacent points are connected with a line, to guide the eye.

(a) (b)

Figure 5.83: Condensed atoms in a simulation of a two magnetic field pulses: 25 µs

evolution time. (a) Density
∣∣φ̄a(R)

∣∣2 and (b) number Na of those atoms, about 45 of
which are lost to the molecular field during the peak of the oscillations.
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(a) (b)

Figure 5.84: Molecules in a simulation of two magnetic field pulses: 25 µs evolution

time. (a) Density
∣∣φ̄m(R)

∣∣2 and (b) number Nm of those molecules, about 22 of which
are formed from condensed atoms during the peak of the oscillations.

(a) (b)

Figure 5.85: Noncondensed atoms in a simulation of two magnetic field pulses: 25 µs
evolution time. (a) Density ḠN(R, 0) and (b) number Nnon of those atoms. Only a
fraction of a noncondensed atom is formed.
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Figure 5.86: Diagonal parts of anomalous fluctuations in a simulation of two magnetic
field pulses: 25 µs evolution time. Same as Figure 5.80, but for a longer evolution
time.

(a) (b)

Figure 5.87: Frequency components of atom numbers during a simulation of four
magnetic field ramps: 25 µs evolution time. Same as Figure 5.81, but for a moderate
evolution time.
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(a) (b)

Figure 5.88: Frequency components of atom numbers during a simulation of three con-
stant magnetic fields: 25 µs evolution time. Same as Figure 5.82, but for a moderate
evolution time.

density in Figure 5.89 is visibly reduced at the origin by the end of the simulation,

indicating that 120 µs is sufficient time for the condensate to begin spreading due to

repulsive interactions. The condensed atom number and the molecular density and

number in Figure 5.90 is qualitatively similar to the earlier simulations, while the non-

condensed density in Figure 5.91 shows that three bursts have developed, one during

the first hold time, the second during the later part of the free evolution time, with

the last burst growing near the origin when the simulation ends. Still, the noncon-

densed number represents only a small fraction of a particle, and so cannot account

for the bursts observed in the experiments. As before, the anomalous fluctuations in

Figure 5.92 qualitatively mimic the noncondensed density. The dominant frequencies

in atom number given in Figures 5.93 and 5.94 are identical to those found earlier.

Figures 5.95, 5.96, and 5.97 are identical to the plots of number in Figures 5.89, 5.90,

and 5.91, but include estimates of numerical error.

In this case, we also perform a simulation neglecting fluctuations. During the
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(a) (b)

Figure 5.89: Condensed atoms in a simulation of two magnetic field pulses: 40 µs

evolution time. (a) Density
∣∣φ̄a(R)

∣∣2 and (b) number Na of those atoms, about 45 of
which are lost to the molecular field during the peak of the oscillations.

last hold and ramp times, a plot of molecule number from the mean-field-only simu-

lation starts to visibly differ from Figure 5.90b, with the number consistently lower

than that from the HFB simulation by about 0.02. This difference appears in the

fourth significant figure, though, and so cannot be considered quantitatively reliable.

All oscillation frequencies in atom and molecule number are the same to three sig-

nificant figures, except during the first hold time, when the frequency measured in

the HFB simulation is larger by 0.625 percent. All these differences are too small to

be considered reliable, and we conclude that second order quantum fluctuations are

unimportant to the pulse-train phase of this experiment.

We now compare the number of atoms remaining in the condensate at the end of

the simulations for the various evolution times. Figure 5.98 shows the condensed atom

number during ttail, where the magnetic field is a constant Btail = 166 G. The means of

the oscillations are 16,499.419, 16,499.415, and 16,499.424 atoms for the tev = 10 µs,

tev = 25 µs, and tev = 40 µs simulations, respectively. As in the experiments, an
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(a) (b)

Figure 5.90: Molecules in a simulation of two magnetic field pulses: 40 µs evolution

time. (a) Density
∣∣φ̄m(R)

∣∣2 and (b) number Nm of those molecules, about 22 of which
are formed from condensed atoms during the peak of the oscillations.

(a) (b)

Figure 5.91: Noncondensed atoms in a simulation of two magnetic field pulses: 40 µs
evolution time. (a) Density ḠN(R, 0) and (b) number Nnon of those atoms. Only a
fraction of a noncondensed atom is formed.
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Figure 5.92: Diagonal parts of anomalous fluctuations in a simulation of two magnetic
field pulses: 40 µs evolution time. Same as Figure 5.80, but for the longest evolution
time.

(a) (b)

Figure 5.93: Frequency components of atom numbers during a simulation of four
magnetic field ramps: 40 µs evolution time. Same as Figure 5.81, but for the longest
evolution time.
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(a) (b)

Figure 5.94: Frequency components of atom numbers during a simulation of three
constant magnetic fields: 40 µs evolution time. Same as Figure 5.82, but for the
longest evolution time.

Figure 5.95: Condensate number when tev = 40 µs, including error estimates. The
solid line is the simulated condensate number, and the dotted lines provide an estimate
of numerical error. See Appendix F for a description of this estimate.



195

Figure 5.96: Molecule number when tev = 40 µs, including error estimates. Same as
Figure 5.95, but for the molecular field.

evolution time of 25 µs resulted in a lower remnant condensate number than either

the 10 µs or 40 µs evolution times. However, the numbers in all three cases are

much higher than the experimental values, which were between 3500 and 6000 atoms,

and are hardly different from the initial condensate number (and are identical is all

reliable significant digits). As with the single-pulse simulations, our model does not

account for the vast majority of condensate loss.

The velocities of condensed particles look nearly identical between simulations,

so we present the data for the 40 µs evolution time only (see Figure 5.99). In constrast

to the single-pulse simulations, the dominant molecular velocity is outwards during

the last half of the simulation, while the final ramp exhibits the dramatic variations in

velocity that we interpret as an undersampling of the phenomenon observed in Figure
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Figure 5.97: Noncondensed number when tev = 40 µs, including error estimates. Same
as Figure 5.95, but for noncondensed atoms.

5.8a. An experiment with a sequence of several such magnetic field pulses could reveal

very interesting dynamics. With minor modifications, our code could simulate such

an experiment, though the numerics may only conserve number for pulse sequences

lasting less than about 150 µs.
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Figure 5.98: Evolution time dependence of condensate number in two-pulse simula-
tions. Number of condensed atoms Na during ttail, when the magnetic field is con-
stant. The means of the oscillations are 16,499.419, 16,499.415, and 16,499.424 for
the tev = 10, 25, and 40 µs simulations, respectively, though not all these significant
figures are reliable.
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(a) (b)

Figure 5.99: Condensed particle velocities during a two-pulse simulation. These radial
velocities of (a) atoms and (b) molecules are representative of the data for the other
simulated evolution times, as well. During the final ramp, the molecules acquire
rapidly changing and large-magnitude velocities.
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Chapter 6

CYLINDRICAL SIMULATIONS

The code, which is provided in Appendix G and numerically approximates solu-

tions to our model, is written in C++. The parallelization scheme used in the cylin-

drical code lends itself well to an object-oriented programming approach, in which

equations defined over (Rρ, Rz) are divided amongst nodes in a cluster and divided

amongst cores on each node.

6.1 Parallelization Scheme for Cylindrical Simulation

The cylindrical model consists of Equations (3.56), (3.57), (3.63), and (3.64),

where (3.65) is needed to compute the diagonal parts of the normal and anomalous

fluctuations. Considering only n = 0 in the cosine series expansions of the correlation

functions reduces the number of spatial independent variables to four. The amount

of computation per time step required by the cylindrical model may be several times

that required by the spherical model, so parallelization on a cluster appears practical

and worthwhile.

6.1.1 Data Dependencies

The Runge-Kutta method requires us to calculate K1 through K6, defined in

Equation (4.3), in order to calculate the time-stepped solution. Each K term depends

on the one that preceeded it; for example, K2 is required to calculate K3. Since each

field depends in some way on every other field, a given K term must be computed for
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every field before the next K term can be computed for any field; for example, K2

must be calculated for the atomic and molecular fields and the normal and anomalous

densities before anyK3 term can be calculated. However, the order in which the fields’

Ki terms are calculated for a given i is irrelevant; for example, K2 for ϕa(Rρ, Rz) can

be calculated before K2 for ϕm(Rρ, Rz), or vice versa. This independence allows

several threads to simultaneously calculate a given K term for different fields, but

only at one stage of the time stepping process for a single time step; hence, our

choice of an explicit Runge-Kutta method for time propagation effectively forbids

any temporal parallelization but allows spatial parallelization.

Inspection of Equations (3.56) and (3.57), the equations for the atomic and

molecular fields, shows that each depends on both single-particle fields, as well as the

diagonal parts of the correlation functions. These diagonal parts are calculated from

the correlation functions at every (Rρ, Rz, kρ, kz) point. The correlation functions at

any such point depend on the same data as the atomic and molecular fields, in addi-

tion to each other; that is, G0
N(Rρ, Rz, kρ, kz) and G0

A(Rρ, Rz, kρ, kz) both depend on

ϕa(Rρ, Rz), ϕm(Rρ, Rz), G0
N(Rρ, Rz, kρ, kz), and G0

A(Rρ, Rz, kρ, kz).
1 We can minimize

the amount of internodal communication by ensuring that G0
N(Rρ, Rz, kρ, kz) is on the

same node as G0
A(Rρ, Rz, kρ, kz) for a given (Rρ, Rz, kρ, kz) point. As long as fields are

distributed over nodes, the atomic and molecular fields and the diagonal parts of the

correlation functions must be transmitted to every other node at least six times per

time step.

1Note that truncating the cosine series expansions at an n > 0 would introduce dependencies
among the Gn

N (Rρ, Rz, kρ, kz) for different n, substantially complicating the communication issues.
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6.1.2 Load Balancing

Efficient use of a cluster (again, a group of interconnected multi-core machines)

requires careful load balancing, so we attempt to give each node roughly the same

number of floating point operations per time step. It is useful to think of a correlation

function as a set of equations defined over (Rρ, Rz) for a particular point (kρ, kz). We

use a real equation defined over (Rρ, Rz) as a unit of computational work. The

atomic and molecular fields each consist of two such equations (one for the real part

and one for the imaginary part); the normal fluctuations field consists of NkzNkρ

such equations, where Nkz is the number of axial relative momentum grid points

and Nkρ is the number of radial relative momentum grid points, and we recall that

the normal fluctuations are real as long as their initial conditions are real; and the

anomalous fluctuations field consists of 2NkzNkρ such equations. Each of these units of

computational work requires at least one derivative in the Rz direction, which is done

in order NRρNRz log2 (NRz) operations (assuming we take pseudospectral derivatives

via fast transforms), where NRρ + 1 and NRz + 1 are numbers of center of mass

radial and axial grid points, respectively. Equations other than those for the normal

fluctuations also require a derivative in the Rρ direction, making their operation count

of order NRρNRz log2

(
NRρNRz

)
. The dominant factor is still NRρNRz , justifying our

treatment of the normal fluctuations’s equations and the real or imaginary part of

any other equation defined over (Rρ, Rz) as equal units of computational work.

The task is now to ensure that each node has nearly the number of floating point

operations per time step. The total number of units of computational work in the

system is

Wtot = 4 + 3NkρNkz . (6.1)

If we use M nodes of a computer, the computational work assigned to each node is
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W = Wtot/M , though in practice we round W to the next highest integer divisible by

three, since our units of computational work must be whole and are usually assigned

in threes (one unit for a normal fluctuations equation and two for the anomalous

fluctuations equation with the same values of kz and kρ). One node may have less

work than all the others; this node should be burdened with any serial housekeeping

duties. See Figure 6.1 for an example arrangement.

6.1.3 Basic Algorithm

Each node has assigned to it several real equations defined over (Rρ, Rz). Our def-

inition of a unit of computational work fits well into C++’s object-oriented program-

ming paradigm; each equation defined over (Rρ, Rz) residing on a node is an instance

of a class. This approach also facilitates loop-level parallelization with OpenMP; for

example, calculation of a general number of equations’ K terms on a node might be

easily programmed as

#pragma omp parallel for

for ( int e = 0 ; e < myNumberOfEquations ; e++ )

{

myEqns[e].CalcKArg();

}

where the member function handles the particulars of the Runge-Kutta method. Since

the amount of computation in each equation is considerable, one would have insignif-

icant overhead with dynamic thread scheduling, so that no threads remain idle for

long periods of time.

The assignment of equations to nodes is handled during initialization and remains

the same for the duration of the simulation. The algorithm for computing a single
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Figure 6.1: Example of load balancing in parallel cylindrical code. Consider a grid with
only one kz point, 10 kρ points, and an arbitrary number of center of mass grid points
(Rρ, Rz). If we run the simulation on four nodes (represented by the boxes above),
each node is assigned at least one pair of correlation function equations defined over
(Rρ, Rz), for particular values of kρ and kz. A single G0

N(Rρ, Rz, kρ, kz) equation at a
(kρ, kz) point is one unit of computational work; a single G0

A(Rρ, Rz, kρ, kz) equation
at such a point is two units, as are the atomic and molecular fields. Note that the
bottom right node has seven units of computational work, while the others have nine;
this node should perform any serial housekeeping duties. If the upper left node has
six cores, each of the six equations on that note could be handled simultaneously by
a different thread; if equations outnumber threads, OpenMP (the threading standard
we use) determines at runtime how equations will be distributes amongst cores.
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time step is as follows:

1. Each thread computes the argument needed to compute the current K term for

a particular set of the fields residing on the node. Each thread waits until every

thread on every node has computed its arguments.

2. Each thread having an equation corresponding to a (kρ, kz) point of a correla-

tion function adds the argument corresponding to that correlation function to

one of two accumulators, one of which is for the diagonal parts of the normal

fluctuations and the other for the diagonal parts of the anomalous fluctuations.

These accumulators are shared by every thread on the node.

3. Once every thread on every node has added all correlation function arguments

to the proper local accumulators, an MPI collective reduction call adds together

the local accumulators (keeping the diagonal parts of the normal and anoma-

lous densities separate) and broadcasts the results to every node. Now every

node has access to the diagonal elements of the correlation functions. Simul-

taneously, using different threads, the arguments corresponding to the atomic

and molecular fields are broadcast to all nodes.

4. Each thread calculates the current K term for whatever equations it is assigned.

All nodes block until every equation’s K term has been calculated.

5. The first four steps are repeated until K1 through K6 are available for every

field. The master thread on each node determines the highest truncation error

on the node.

6. An MPI collective reduction call notifies every node of the highest truncation

error in the system.
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7. Each node’s master thread determines whether or not to accept the stepped

solution, and either refines the current time step size, or recommends a step

size to use during the next cycle. Here, it is very important that every core

on every node in the computer does arithmetic identically; otherwise, different

nodes might use slightly different time step sizes. If the cores are not identical,

a single thread in a single node could do this step, but this necessitates more

communication and further complicates already complicated code.

8. Once a stepped solution is accepted, each thread calculates that solution for

whatever equations in the system it is assigned.

This algorithm is slowed by the overhead associated with threading, which is

negligible in comparison to the time spent on computation, and the time spent send-

ing data. Only four fields must be passed between nodes; as long as each node has at

least four cores, the communication time is that required to accumulate and broad-

cast 2NRρNRz double-precision numbers.2 The real and imaginary parts of the three

complex fields could each be sent by separate threads if at least seven cores exist on

each node; then the communication time is halved (neglecting overhead). The barri-

ers and blocking calls in the algorithm are unavoidable due to the time propagation

method we have chosen, as the Ki−1 term must be known for every field before the

Ki term can be calculated for any field. Preliminary testing suggests a 370 percent

speedup when using four nodes as compared to one, and a 200 percent speedup when

using four cores as compared to one.

2While the MPI-2 specification nominally allows for simultaneous inter-process communication
by each process’ threads, not all implementations are compliant. On the Golden Energy Computing
Organization’s Ra supercomputer, OpenMPI 1.2.5 does not guarantee thread-safety for simultaneous
calls to MPI routines by multiple threads in a single process; hence, our code checks for MPI thread
safety and serializes all MPI calls when thread safety is not ensured.
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6.2 Parallelization Scheme for Spherical Simulation

Considering resource limitations at the time of development and the smaller

amount of computation per time as compared to the cylindrical model, we write the

spherical code with a multithreaded (OpenMP) parallelization appropriate for use

only on an SMP (again, a machine where all cores address the same memory space).

In practice, we require q = 0 in the spherical harmonic expansions of the correlation

functions for expediency, since this eliminates one independent variable.3 Preliminary

testing of the spherical code suggests a speedup of over 200 percent when using four

cores as compared to a single core.

6.3 Cylindrical Proof-of-Concept Simulations

Our results thus far have exclusively concerned the spherical model, though a

great deal of time and effort is embodied in the cylindrical model and parallel code.

As a demonstration that this code functions, we present plots of all fields and total

numbers for a simulation with repulsive interactions and one with attractive inter-

actions. Each case uses 17 axial relative momentum grid points ranging from −1.0

to 1.0 µm−1, 33 radial relative momentum points ranging from 0 to 6.7 µm−1, 17

axial center of mass points ranging from -12.5 to 12.5 µm, and 33 radial center of

mass points ranging from 0 to 15 µm. Imaginary time relaxation works correctly but

extremely slowly, requiring several days to approach the ground state, so we use an

analytical initial state for expediency.4 The repulsive simulation has aeff = 2000a0,

3The simulations of Ref. [11] effectively make the same approximation, however; Milstein et al.
make this approximation from the outset, expanding the correlation functions in Legendre polyno-
mials. We retain our spherical harmonic expansion, but only consider q = 0 spherical harmonics.
Some terms in our correlation function equations differ from those of Ref. [11] by a constant factor.

4A more prudent choice of initial conditions during imaginary time relaxation may result in faster
convergence to the ground state.
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the attractive simulation has aeff = −400a0, and both use realistic 85Rb parameters.

We do not calculate total energy for these simulations, since the nonuniform Gauss-

Lobatto grid in the radial center of mass coordinate does not facilitate the necessary

transformation to momentum space in a straightforward way.

These parameters, in the attractive case, should simulate a collapse in less than

125 days when using 64 nodes. The repulsive case is more feasible, and would likely

produce interesting results within a few (tens of) days, using a more modest number

of nodes. For example, the longest two-pulse simulation of Section 5.3 would take

approximately 25 days to complete on 16 nodes.

The results are qualitatively similar to spherical simulations, with atom-molecule

oscillations of a higher frequency in the attractive, low |aeff| case than in the repulsive,

high |aeff| case. Average error in number is of a considerable magnitude and exhibits

clear trends. Such error could be the result of a lack of convergence, or may be con-

nected to our use of Gauss-Lobatto quadrature in computing the number; preliminary

investigations suggest that the method of computing total number, independent of

the simulation, has nontrivial implications for number conservation. Note that the

noncondensed density has not yet acquired any of the large negative values frequently

seen in the spherical collapse simulations.

We show densities taken at Rz = 0 for all Rρ (a “slice in ρ”), and for all Rz

for the Rρ point that is indexed by the integer division quotient 3NRρ/4, which

is near the origin (a “slice in z”). Figures 6.2 through 6.7 are the results for the

repulsive case, and Figures 6.8 through 6.13 are the results for the attractive case.

Each simulation ran in about nine hours on eight nodes having eight cores each.

Comparison between a smaller-scale simulation run on four nodes and a single node

produced results identical in every significant digit, suggesting an absence of race
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(a) (b)

Figure 6.2: Condensate density in a repulsive cylindrical simulation. Slices in (a) ρ
and (b) z.

conditions5 due to the parallelization. The four-node simulation ran 370 percent

faster than the single-node simulation, and an even smaller simulation on a single

node achieved approximately 200 percent speedup when run on four cores instead of

one.

5A race condition is a situation where a calculation’s outcome depends on the order in which
cores or nodes finish their work.
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(a) (b)

Figure 6.3: Molecular density in a repulsive cylindrical simulation. Slices in (a) ρ and
(b) z.

(a) (b)

Figure 6.4: Noncondensed density in a repulsive cylindrical simulation. Slices in (a)
ρ and (b) z.
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(a) (b)

Figure 6.5: Diagonal parts of anomalous fluctuations in a repulsive cylindrical simu-
lation. Slices in (a) ρ and (b) z of

∣∣ḠA(R, 0)
∣∣.

(a) (b)

Figure 6.6: Numbers of (a) condensed atoms and (b) molecules in a repulsive cylin-
drical simulation.
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(a) (b)

Figure 6.7: (a) Number of noncondensed atoms and (b) average number error in a
repulsive cylindrical simulation.

(a) (b)

Figure 6.8: Condensate density in an attractive cylindrical simulation. Slices in (a) ρ
and (b) z.



212

(a) (b)

Figure 6.9: Molecular density in an attractive cylindrical simulation. Slices in (a) ρ
and (b) z.

(a) (b)

Figure 6.10: Noncondensed density in an attractive cylindrical simulation. Slices in
(a) ρ and (b) z.
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(a) (b)

Figure 6.11: Diagonal parts of anomalous fluctuations in an attractive cylindrical
simulation. Slices in (a) ρ and (b) z of

∣∣ḠA(R, 0)
∣∣.

(a) (b)

Figure 6.12: Numbers of (a) condensed atoms and (b) molecules in an attractive
cylindrical simulation. Subsequent points are connected by a line, which only serves
to guide the eye.
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(a) (b)

Figure 6.13: (a) Number of noncondensed atoms and (b) average number error in an
attractive cylindrical simulation. Subsequent points are connected by a line, which
only serves to guide the eye.



215

Chapter 7

CONCLUSION

We have rigorously derived a Hartree-Fock-Bogoliubov model of dynamic Bose-

Einstein condensates. The model accounts for kinetic and potential energies of atoms,

collisions between two atoms, and formation and dissociation of quasibound pairs

of atoms, or molecules, due to a single Feshbach resonance. So that the model is

tractable, we factorize to second order quantum fluctuations via Wick’s theorem. This

factorization is exact only if the system is in a squeezed state; such an assumption

is more general than that implicit in the Gross-Pitaevskii equation, but there is no

reason to believe a priori that a collapsing BEC or a condensate with significant

repulsive interactions must be in such a state. The theory then takes the form of four,

coupled, nonlinear partial differential equations, defined over time and six spatial

independent variables. Geometrical symmetry assumptions and restrictions reduce

the number of spatial independent variables to five in the case of cylindrical symmetry,

and four in the case of spherical symmetry. We have written and tested parallelized

code for simulations in cylindrical symmetry, and find that insightful simulations are

feasible, even with experimental parameters.

Our simulations in spherical symmetry have shown that the HFB model de-

veloped in Chapters 2 and 3 qualitatively reproduces condensate contraction and

burst formation for realistic collapse parameters. We are able to predict pre-collapse

atom-molecule oscillations of frequency ν/h, where ν is the detuning of the Feshbach

resonance and h is Planck’s constant. In this context we also predict brief periods,
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on the order of h/ν in duration, of high molecular velocities when molecules disso-

ciate and reenter the atomic condensate. We find that the stength of the trapping

potential influences the time to collapse, and stable condensates formed in a strong

trap and then suddenly given attractive interactions in a weaker trap develop two

spatially distinct regions, one where harmonic oscillator physics dominates, and the

other where unstable attractive interactions dominate. Condensates formed in the

ground state of their trap contract with a roughly quadratic time dependence when

given attractive interactions.

The model predicts small-amplitude atom-molecule oscillations in a single-pulse

experiment, regardless of pulse strength, with a molecular condensate remaining after

the pulse. The number of molecules in this remnant depends on pulse shape and

strength, but the number of molecules produced at the peak of the oscillations depends

only on pulse strength. A pulse to resonance produces atom-molecule oscillations

which completely dominate the dynamics of every field. Our simulations indicate that

the number in the atomic condensate remnant increases with the pulse hold time, in

contradiction to experimental observation, and increases slightly with the pulse ramp

times, in qualitative agreement (though significant quantitative disagreement) with

experiment. We find that increasing the duration of the first pulse ramp decreases

the remnant number, implying that the mean field expansion used in imaging could

cause a significant loss of atoms from the condensate.

We also predict atom-molecule oscillations with frequency ν/h during the peri-

ods of constant magnetic field in the two-pulse experiments, and a small modulation

of the total noncondensed fraction by an oscillation ~5/m3U2 in angular frequency.

This modulation appears during some periods of changing magnetic field, both in one-

and two-pulse simualtions. Bursts of noncondensed density form quickly when the
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magnetic field is close to resonance, while denser bursts form slowly when the field is

far from resonance. These simulations may indicate that the lack of bursts observed

in the single-pulse simulations are a result of the fact that the simulated bursts move

radially outward well after the pulse has ended. Our two-pulse simulations qualita-

tively reproduce the experimental observation that the remnant condensate number

does not monotonically increase or decrease with increasing evolution time.

We find that number conservation depends sensitively on temporal resolution and

not spatial resolution for situations far from collapse. The reason for this discrepancy

is unclear. Collapse simulations have an increasing error in total number as the

condensate contracts onto only a few grid points, suggesting numerical instabilities

and warranting further experimentation with spatial resolution.

None of our simulations show the dramatic loss from the condensate that is ex-

perimentally observed, or that has been simulated using similar methods based on

an HFB theory like ours, and Kokkelmans et al.’s [14] resonance theory. This dis-

agreement could suggest that our inclusion of the trap, the previously unattempted

expansion in terms of spherical harmonics, or the numerical methods we use somehow

suppress the mechanism which is responsible for condensate depletion. Conversely,

our methods are the most numerically accurate to date. Therefore, the more likely

explanation is that the model does not incorporate the correct physics. In particular,

we have intentionally neglected three-body and other density-dependent losses in or-

der to isolate the effects of quantum fluctuations. Second-order quantum fluctuations

alone do not account quantitatively for experimental results. Subsequent simulations

should include phenomenological three-body losses. Still, comparison of some of our

simulations to mean-field-only simulations suggests that second-order quantum fluc-

tuations are only important over long time scales, such as the approximately 400 µs
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rethermalization time determined in a single-pulse experiment.

Our inclusion of the azimuthal component of the relative momentum in the

spherical model would allow one to study collapse in a rotating condensate or a

vortex. The quantized nature of rotation in a BEC would lead to exotic, previously

unobserved dynamics, and the inclusion of rotation would further strengthen the

Bosenova’s qualitative analogy with a supernova.

Extensive use of this model of Bose-Einstein condensates would benefit enor-

mously from a more detailed theoretical and analytical treatment. The evaluation of

the kinetic energy of the noncondensed component appears intractable, though phys-

ical reasoning suggests that the quantum pressure term in the noncondensed gas’ ki-

netic energy should vanish. As mentioned in Section 3.1, if we sacrifice all knowledge

of off-diagonal correlations, the general problem with absolutely no symmetry may be

reduced from six to three spatial independent variables. Then, by assuming spherical

symmetry and using spherical coordinates, simulations would only need a single spa-

tial variable. Quantum fluctuations would still be present in the model in the form of

the diagonal parts of the normal and anomalous fluctuations. It may then be prac-

tical to include higher-order fluctuations, for example,
〈
χ̂†a(R) χ̂†a(R) χ̂a(R) χ̂a(R)

〉
,

where χ̂a(R) is a fluctuation operator acting at the radial coordinate R, without the

approximate factorizations of Wick’s theorem. This idea has been explored, to some

extent, in ZGN theory [45].

The model lacks realism in a few key aspects. Rubidium-85 has a second Fes-

hbach resonance which we have not accounted for, and the detailed inclusion of a

thermal cloud, though perhaps inconsequential [13] to the JILA collapse experiments,

would allow for truly insightful simulations of the Rice experiments. Our chosen sym-

metries also restrict what physical effects we could simulate; for example, jets cannot
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appear in our spherical simulations, nor can bursts with anisotropy. The cylindrically

symmetric case could allow for jets distributed along the axis, but those jets would

completely encircle the axis.

More involved analytical PDE methods could give some analytical insight into the

model. The method of characteristics (see Section 1.6.1) may lead to an analytical

solution, at least under some set of assumptions. Linearization might not yield a

realistic model, but could determine stability (or lack thereof). The integrability of

our HFB equations or some simplified version has never been examined. Given the

disparity of time scales we observe in our simulations and the nondimensionalization

procedure of Section 2.6.2, an analytical treatment of our equations by perturbation

theory (in the context of PDE’s) may be highly insightful, and could be the subject

of future work by this group.

Instabilities and computational impracticalities may be the result of the numer-

ics we have used. A solution using finite element methods in the spatial discretization

or a solution via finite element discrete variable representation could improve conver-

gence and compute time [105]. Another possibility is the use of implicit Runge-Kutta

methods (as opposed to the explicit kind that we use), which more efficiently handle

stiff equations [106], and for which many parallelized algorithms exist (see the work

of Korch and Rauber, for example). An adaptive spatial grid could be crucial to

accurate collapse simulations, since all of the Bosenova’s violent dynamics are highly

concentrated near the origin, while the initial state is relatively broad.
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APPENDIX A

WICK’S THEOREM FOR SQUEEZED STATES

A particular manifestation of Wick’s theorem expresses an expectation value of

a product of several field operators as a sum of terms, each of which is an expectation

value of a smaller number of field operators and is more amenable to calculation. The

theorem is exact if the state |λ〉 is a squeezed state.

We outline a derivation of a form of the theorem given by Blaizot and Ripka

[107], and then describe in detail how it is adapted, extended, and interpreted for use

in Chapter 3.

A.1 Outline of the Derivation

The derivation begins with a specialization of the Baker-Hausdorf lemma, called

Glauber’s formula:

eÂ+B̂ = eÂeB̂e[Â,B̂], (A.1)

true for any two operators Â and B̂ such that
[
Â,
[
Â, B̂

]]
=
[
B̂,
[
Â, B̂

]]
= 0.

This is extended by mathematical induction and the requirements that
[
Âi, Âj

]
=[

B̂i, B̂j

]
= 0 for all i and j so that the left-hand side of (A.1) consists of several factors

of the form exp
(
Âi + B̂i

)
, where the index i is unique to each factor. The resulting

expression can be simplified with the notation of normal- and T-ordered products and

contractions. Normal ordering consists of all the Â factors in a product being written

to the left of the B̂ factors, while a T-ordered product has the factors put in order of
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decreasing indices. A contraction of two operators is their T-ordered product minus

their normal-ordered product. The extended form of (A.1) can be written in terms of

a single T-ordered exponential of a sum of operators, a normal-ordered exponential

of the sum, and exponentials of sums of contractions and commutators. These sums

go to integrals as the operators’ discrete parameter (their summation index) becomes

continuous (this parameter later being identified as time), except for the sum over

commutators, which vanishes in the continuum limit.

Specializing to field theory, the generic operators are identified as weighted sums

of the single-particle momentum-space ladder operators âk and â†k, for which normal-

ordering is defined as a product in which all of the creation operators are written to

the left of the destruction operators, and T-ordering is defined as the operators being

ordered by decreasing values of their continuous parameter (time). Being interested

in expectation values, one then averages this expression, and only obtains any useful

simplifications if the average is assumed to be taken with respect to an eigenstate of

all annihilation operators âk (a coherent state). The resulting equation, still expressed

as exponentials of operators, is expanded in power series. Equating coefficients in the

series on each side of the equation gives another form of Wick’s theorem, in which

most contractions vanish.

However, the sums of âk and â†k can be related by a linear transformation (a

canonical transformation, in which commutation relations are preserved) to sums

of different operators, b̂j and b̂†j. Given the âk’s interpretation as momentum-space

ladder operators, the b̂j are Bogoliubov quasiparticle ladder operators, in which the

j indexes quasiparticle excitations, or the eigenvalues of the Bogoliubov-de Gennes

equations (see [108], for example). Since |λ〉, an eigenstate of all the âk, is not

generally an eigenstate of the b̂j, the contractions that vanished for the âk do not
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vanish for the b̂j.

The general rule for factorization of b̂’s is then: an expectation value of a product

of b̂’s and b̂†’s is equal to the product of the expectation values of all the operators

individually, plus all the products in which a single contraction of two of the operators

multiplies the expectation values of the remaining factors individually, plus all the

products in which two contractions multiply the expectation values of the remaining

factors individually, etc. This rule is best written schematically:

〈Product〉 = (Individual averages of each factor)

+
∑
a.p.c.

[
(Contraction of two of the factors)

× (Individual averages of the remaining factors)
]

+
∑
a.p.c.

[
(Contraction of two of the factors)

× (Contraction of two of the remaining factors)

× (Individual averages of the remaining factors)
]

+ . . .

+
∑
a.p.c.

[
(Contraction of two of the factors)

× (Contraction of two of the remaining factors)

× . . .

× (Contraction of the last two factors)

× (Average of the remaining lone factor, if it exists)
]
,

(A.2)

where a.p.c. stands for “all possible contractions”; for example,
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〈
ÂB̂ĈD̂

〉
=
〈
Â
〉〈

B̂
〉〈

Ĉ
〉〈

D̂
〉

+
(
Â•B̂•

〈
Ĉ
〉〈

D̂
〉

+
〈
Â
〉
B̂•Ĉ•

〈
D̂
〉

+
〈
Â
〉〈

B̂
〉
Ĉ•D̂•

+ Â•
〈
B̂
〉
Ĉ•
〈
D̂
〉

+ Â•
〈
B̂
〉〈

Ĉ
〉
D̂• +

〈
Â
〉
B̂•
〈
Ĉ
〉
D̂•)

+
(
Â•B̂•Ĉ••D̂•• + Â•B̂••Ĉ••D̂• + Â•B̂••Ĉ•D̂••), (A.3)

where, in this case, each factor is a b̂j or b̂†j, and each factor’s subscript and time

dependence is not necessarily the same. A contraction of two operators Â•B̂• =〈
T
(
ÂB̂
)〉
−
〈
Â
〉〈

B̂
〉
, where T (. . .) indicates T-ordering. If the times at which two

contracted factors are evaluated is the same, their T-ordered product is taken to be

their ordinary, or unaltered, product. This expansion is exact when the state |λ〉 with

respect to which the average is taken is an eigenstate of all the âk, to which the b̂k

are related by a canonical transformation.

A.2 Extension of the Established Result

As in Equation (1.11) in the Introduction (Section 1.2.1),

Ψ̂(x) =
∑
k

ζk(x) âk, (A.4)

where Ψ̂(x) is a field operator and ζk(x) is the wavefunction of the kth single-particle

energy eigenstate. Let us apply the requirement of Blaizot and Ripka’s derivation of

Wick’s theorem; that is,

âk|λ〉 = λk|λ〉 ∀ k, (A.5)
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where |λ〉 is the system’s state and λk is the eigenvalue of âk acting on |λ〉. Noting

that 〈
Ψ̂(x)

〉
= 〈λ|

∑
k

ζk(x) âk |λ〉 =
∑
k

ζk(x)λk (A.6)

(assuming normalized states), we would have

GN(x,x′) =
〈
Ψ̂†(x′) Ψ̂(x)

〉
−
〈
Ψ̂†(x′)

〉〈
Ψ̂(x)

〉
=
∑
k

〈λ| Ψ̂†(x′) ζk(x) âk |λ〉 −
〈
Ψ̂†(x′)

〉〈
Ψ̂(x)

〉
= 〈λ| Ψ̂†(x′) |λ〉

∑
k

ζk(x)λk −
〈
Ψ̂†(x′)

〉〈
Ψ̂(x)

〉
= 0; (A.7)

that is, absolutely no correlations. Since we desire information about correlations, the

requirement in Equation (A.5) will not do. Instead, let us interchange the âk and b̂j

in the derivation, so that |λ〉 (now a coherent state in another sense) is an eigenstate

of all the b̂j, and (A.5) now reads

b̂j|λ〉 = λj|λ〉 ∀ j, (A.8)

where the λj is now the eigenvalue of b̂j acting on |λ〉. The âk are related to the b̂j

by the canonicil transformation

âk =
∑
j

(
Ujkb̂j + V ∗

jkb̂
†
j

)
, (A.9)
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where the Ujk and Vjk are the (scalar) elements of the matrix that performs the

Bogoliubov transformation. Now, |λ〉 is not an eigenstate of âk:

âk|λ〉 =
∑
j

(
Ujkλj|λ〉+ V ∗

jkb̂
†
j|λ〉

)
, (A.10)

where the b̂†j|λ〉 terms cannot be evaluated any further, since b̂j is not Hermitian, and

so |λ〉 is not generally an eigenstate of b̂†j. Since the transformation of Equation (A.9)

is canonical, the state |λ〉 can be shown [4] to be a squeezed state, which saturates

the number-phase Heisenberg uncertainty relation:

∆N ∆φ ≥ 1

2
, (A.11)

where ∆N and ∆φ are the uncertainties in number and phase, respectively.

With the new assumption about |λ〉 and the definition of the âk in terms of the

b̂j and b̂†j, let us re-write Equation (A.4):

Ψ̂(x) =
∑
j

[
uj(x) b̂j + v∗j (x) b̂†j

]
, (A.12)

where

uj(x) ≡
∑
k

Ujkζk(x) (A.13)

v∗j (x) ≡
∑
k

V ∗
jkζk(x) . (A.14)

Now the general rule (A.2) for our desired manifestation of Wick’s theorem can be

re-written for field operators by letting â → b̂ and â† → b̂†, and then multiplying by

and summing over energy eigenstate wavefunctions. Then, the same schematic (A.2)
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applies, where each factor is a field operator, and each may be evaluated at a different

time and point.

A.3 Interpretation of Correlation Functions

In light of our assumption about |λ〉, let us evaluate the correlation functions

GN(x,x′) and GA(x,x′), which are defined in Equations (2.13) and (2.14).1

The normal fluctuations GN(x,x′) in terms of field operators [using the decom-

position (2.4)] is

GN(x,x′) =
〈
Ψ̂†
a(x

′) Ψ̂a(x)
〉
−
〈
Ψ̂†
a(x

′)
〉〈

Ψ̂a(x)
〉
. (A.15)

(Note that this is
[
Ψ̂†
a(x

′)
]• [

Ψ̂a(x)
]•

.) Assuming normalized states, the first term

on the right-hand side, in terms of the b̂j and b̂†j, is

〈λ| Ψ̂†
a(x

′) Ψ̂a(x) |λ〉 =
∑
j,j′

〈λ|
[
vj(x

′) b̂j + u∗j(x
′) b̂†j

] [
uj′(x) b̂j + v∗j′(x) b̂†j

]
|λ〉

=
∑
j,j′

[
vj(x

′)uj′(x)λjλj′ + vj(x
′) v∗j′(x) δj,j′ + vj(x

′) v∗j′(x)λjλ
∗
j′

+ u∗j(x
′)uj′(x

′)λ∗jλj′ + u∗j(x
′) v∗j′(x)λ∗jλ

∗
j′

]
, (A.16)

where we have added and subtracted the same term inside the sum in order to use

the commutation relation
[
b̂j, b̂

†
j′

]
= δj,j′ . The second term on the right-hand side, in

terms of the b̂j and b̂†j, is

1Henceforth, we take the b̂j and b̂†j to correspond to the atomic field.
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〈
Ψ̂†
a(x

′)
〉〈

Ψ̂a(x)
〉

=
∑
j,j′

〈λ|
[
vj(x

′) b̂j + u∗j(x
′) b̂†j

]
|λ〉 〈λ|

[
uj′(x) b̂j′ + v∗j′(x) b̂†j′

]
|λ〉

=
∑
j,j′

[
vj(x

′)uj′(x)λjλj′ + vj(x
′) v∗j′(x)λjλ

∗
j′

+ u∗j(x
′)uj′(x)λ∗jλj′ + u∗j(x

′) v∗j′(x)λ∗jλ
∗
j′

]
. (A.17)

Subtracting this from Equation (A.16) leaves

GN(x,x′) =
∑
j

vj(x
′) v∗j (x) . (A.18)

Using the same procedure on GA(x,x′) (which turns out to be
[
Ψ̂a(x

′)
]• [

Ψ̂a(x)
]•

)

results in

GA(x,x′) =
∑
j

uj(x
′) v∗j (x) . (A.19)

Note that neither Blaizot and Ripka’s derivation nor our adaption mentions either a

vacuum state or a Gaussian distribution.

A.4 Proof of Factorizations

With a considerable amount of algebra, one may use Equations (A.8), (A.12),

(A.18), and (A.19) to prove Equations (2.46) to (2.51). We shall henceforth use Ein-

stein’s summation convention, in which summation is implied in any term in which a

subscript is repeated. We will not explicitly write the x dependence of any coefficient,

and denote a coefficient that depends on x′ with an overbar. For example,
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Ψ̂a(x) =
∑
j

[
uj(x) b̂j + v∗j (x) b̂†j

]
= uj b̂j + v∗j b̂

†
j (A.20)

φa(x) =
∑
j

[
uj(x)λj + v∗j (x)λ∗j

]
= ujλj + v∗jλ

∗
j (A.21)

GN(x,x′) =
〈
χ̂†a(x

′) χ̂a(x)
〉

=
∑
j

vj(x
′) v∗j (x) = v̄jv

∗
j (A.22)

GA(x,x′) = 〈χ̂a(x′) χ̂a(x)〉 =
∑
j

uj(x
′) v∗j (x) = ūjv

∗
j (A.23)

〈
χ̂a(x

′) χ̂†a(x)
〉

=
∑
j

uj(x
′)u∗j(x) = ūju

∗
j (A.24)

It will also be important to recall that the Bogoliubov transformation is canonical,

so that we have the following commutation relations:

[
b̂j, b̂k

]
= 0 (A.25)[

b̂j, b̂
†
k

]
= δj,k, (A.26)

where δj,k is the Kronecker delta symbol.

We first prove Equation (2.46). Substitute Equation (A.20) and its Hermitian

conjugate into the left hand side of Equation (2.46), substitute Equations (A.21),

(A.22), and (A.23) into Equation (2.46)’s right hand side, recall the assumption (A.8),

and take care to use distinct summation indices when multiplying two or more sums.

In this proof and others, we frequently encounter expectation values of the form〈
bjb

†
k

〉
, which we cannot simplify with the assumption (A.8). These averages are

handled with the commutation relation (A.26); for example,

〈
b̂j b̂

†
k

〉
=
〈
b̂j b̂

†
k − b̂†kb̂j + b̂†kb̂j

〉
= δj,k + λ∗kλj. (A.27)
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The commutator (A.26) can be used as many times as necessary in an expectation

value so that we only have averages of delta symbols and normal-ordered products of

quasiparticle ladder operators, which can be simplified using (A.8).

Both sides of Equation (2.46), when written with the aforementioned substitu-

tions, reduce to the expression2

vjukulλjλkλl + vjv
∗
julλl + vjv

∗
kulλlλ

∗
kλj + u∗jukulλ

∗
jλkλl + u∗jv

∗
kulλ

∗
jλ

∗
kλl

+vjukv
∗
kλj + vjv

∗
jukλk + vjukv

∗
l λkλ

∗
l λj + vjv

∗
j v

∗
l λ

∗
l + vjv

∗
j v

∗
kλ

∗
k

+vjv
∗
kv

∗
l λ

∗
kλ

∗
l λj + u∗jukv

∗
kλ

∗
j + u∗jukv

∗
l λ

∗
jλ

∗
l λk + u∗jv

∗
kv

∗
l λ

∗
jλ

∗
kλ

∗
l , (A.28)

indicating that (2.46) is true. The factorization (2.47) is found more quickly by taking

the Hermitian conjugate of (2.46) and replacing x with x′.

One can prove Equation (2.48) by substituting Equation (A.20) and its Hermitian

conjugate (and taking x → x′ where appropriate) into the left hand side of Equation

(2.48), and then by substituting (A.21), (A.22), and (A.23) into the right hand side

of (2.48). Simplifying as described above, both the right and left hand sides of (2.48)

2We do not combine like terms, since someone who reproduces the calculations is likely to en-
counter these lengthier expressions first.
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result in the expression

v̄j v̄kūlumλjλkλlλm + v̄j v̄kūlv
∗
l λjλk + v̄j v̄kūlv

∗
kλlλj + v̄j v̄kūlv

∗
jλlλk

+v̄j v̄kūlv
∗
mλlλkλ

∗
mλj + v̄j v̄kv̄

∗
kumλmλj + v̄j v̄kv̄

∗
jumλmλk + v̄j v̄kv̄

∗
l umλmλkλjλ

∗
l

+v̄j v̄kv̄
∗
kv

∗
j + v̄j v̄kv̄

∗
kv

∗
mλjλ

∗
m + v̄j v̄kv̄

∗
j v

∗
k + v̄j v̄kv̄

∗
j v

∗
mλ

∗
mλk

+v̄j v̄kv̄
∗
l v

∗
kλ

∗
l λj + v̄j v̄kv̄

∗
l v

∗
jλ

∗
l λk + v̄j v̄kv̄

∗
l v

∗
mλ

∗
l λkλ

∗
mλj + v̄jū

∗
j ūlumλlλm

+v̄jū
∗
kūlumλlλmλjλ

∗
k + v̄jū

∗
j ūlv

∗
l + v̄jū

∗
j ūlv

∗
mλ

∗
mλl + v̄jū

∗
kūlv

∗
l λ

∗
kλj

+v̄jū
∗
kūlv

∗
jλ

∗
kλl + v̄jū

∗
kūlv

∗
mλ

∗
kλlλ

∗
mλj + v̄jū

∗
j v̄

∗
l umλmλ

∗
l + v̄jū

∗
kv̄

∗
jumλmλ

∗
k

+v̄jū
∗
kv̄

∗
l umλmλ

∗
kλ

∗
l λj + v̄jū

∗
j v̄

∗
l v

∗
mλ

∗
l λ

∗
m + v̄jū

∗
kv̄

∗
j v

∗
mλ

∗
kλ

∗
m + v̄jū

∗
kv̄

∗
l v

∗
jλ

∗
kλ

∗
l

+v̄jū
∗
kv̄

∗
l v

∗
mλ

∗
kλ

∗
l λ

∗
mλj + ū∗j v̄kūlumλ

∗
jλkλlλm + ū∗j v̄kūlv

∗
l λ

∗
jλk + ū∗j v̄kūlv

∗
kλ

∗
jλl

+ū∗j v̄kūlv
∗
mλ

∗
jλlλ

∗
mλk + ū∗j v̄kv̄

∗
kumλ

∗
jλm + ū∗j v̄kv̄

∗
l umλ

∗
jλmλ

∗
l λk + ū∗j v̄kv̄

∗
kv

∗
mλ

∗
jλ

∗
m

+ū∗j v̄kv̄
∗
l v

∗
kλ

∗
jλ

∗
l + ū∗j v̄kv̄

∗
l v

∗
mλ

∗
jλ

∗
l λ

∗
mλk + ū∗j ū

∗
kūlumλ

∗
jλ

∗
kλlλm + ū∗j ū

∗
kūlv

∗
l λ

∗
jλ

∗
k

+ū∗j ū
∗
kūlv

∗
mλ

∗
jλ

∗
kλ

∗
mλl + ū∗j ū

∗
kv̄

∗
l umλ

∗
jλ

∗
kλ

∗
l λm + ū∗j ū

∗
kv̄

∗
l v

∗
mλ

∗
jλ

∗
kλ

∗
l λ

∗
m, (A.29)

indicating that Equation (2.48) is true. The factorization (2.49) is found by taking

the Hermitian conjugate of (2.48) and interchanging x and x′.

One can prove Equation (2.50) by substituting Equation (A.20) and its Hermi-

tian conjugate into the left hand side of (2.50), and Equations (A.21), (A.22), and

(A.23) into (2.50)’s right hand side. Both sides of Equation (2.50) then reduce to the
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expression

v̄jūkūlumλjλkλlλm + v̄jūkūlv
∗
l λjλk + v̄jūkūlv

∗
kλlλj + v̄jūkūlv

∗
jλlλk

+v̄jūkūlv
∗
mλlλjλkλ

∗
m + v̄jūkumv̄

∗
kλmλj + v̄jūkumv̄

∗
jλmλk + v̄jūkumv̄

∗
l λmλkλ

∗
l λj

+v̄jūkv̄
∗
kv

∗
j + v̄jūkv̄

∗
kv

∗
mλ

∗
mλj + v̄jūkv̄

∗
j v

∗
k + v̄jūkv̄

∗
l v

∗
kλjλ

∗
l

+v̄jūkv̄
∗
j v

∗
mλ

∗
mλk + v̄jūkv̄

∗
l v

∗
jλ

∗
l λk + v̄jūkv̄

∗
l v

∗
mλ

∗
l λkλ

∗
mλj + v̄j v̄

∗
j ūlumλlλm

+v̄j v̄
∗
kūlumλlλmλjλ

∗
k + v̄j v̄

∗
j ūlv

∗
l + v̄j v̄

∗
j ūlv

∗
mλ

∗
mλl + v̄j v̄

∗
kūlv

∗
l λ

∗
kλj

+v̄j v̄
∗
kūlv

∗
jλ

∗
kλl + v̄j v̄

∗
kūlv

∗
mλ

∗
mλjλ

∗
kλl + v̄j v̄

∗
jumv̄

∗
l λmλ

∗
l + v̄j v̄

∗
kumv̄

∗
jλmλ

∗
k

+v̄j v̄
∗
kumv̄

∗
l λmλ

∗
kλ

∗
l λj + v̄j v̄

∗
j v̄

∗
l v

∗
mλ

∗
l λ

∗
m + v̄j v̄

∗
kv̄

∗
j v

∗
mλ

∗
kλ

∗
m + v̄j v̄

∗
kv̄

∗
l v

∗
jλ

∗
kλ

∗
l

+v̄j v̄
∗
kv̄

∗
l v

∗
mλ

∗
kλ

∗
l λ

∗
mλj + ū∗j ūkūlumλ

∗
jλkλlλm + ū∗j ūkūlv

∗
l λ

∗
jλk + ū∗j ūkūlv

∗
kλ

∗
jλl

+ū∗j ūkūlv
∗
mλ

∗
jλlλ

∗
mλk + ū∗j ūkumv̄

∗
kλ

∗
jλm + ū∗j ūkumv̄

∗
l λ

∗
jλmλ

∗
l λk + ū∗j ūkv̄

∗
kv

∗
mλ

∗
jλ

∗
m

+ū∗j ūkv̄
∗
l v

∗
kλ

∗
jλ

∗
l + ū∗j ūkv̄

∗
l v

∗
mλ

∗
jλ

∗
l λ

∗
mλk + ū∗j v̄

∗
kūlumλ

∗
jλ

∗
kλlλm + ū∗j v̄

∗
kūlv

∗
l λ

∗
jλ

∗
k

+ū∗j v̄
∗
kūlv

∗
mλ

∗
jλ

∗
kλ

∗
mλl + ū∗j v̄

∗
kumv̄

∗
l λ

∗
jλmλ

∗
kλ

∗
l + ū∗j v̄

∗
kv̄

∗
l v

∗
mλ

∗
jλ

∗
kλ

∗
l λ

∗
m. (A.30)

Thus, Equation (2.50) is true.

The last factorization we use is Equation (2.51). We substitute Equation (A.20)

and its Hermitian conjugate into the left hand side of (2.51), and Equations (A.21),

(A.23), (A.22), and (A.24) into the right hand side of (2.51). Then both sides of
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Equation (2.51) reduce to the expression

ūjvkulumλjλkλlλm + ūjvkulv
∗
l λjλk + ūjvkulv

∗
kλlλj + ūjvkulv

∗
jλlλk

+ūjvkulv
∗
mλlλkλ

∗
mλj + ūjvkv

∗
kumλmλj + ūjvkv

∗
jumλmλk + ūjvkv

∗
l umλmλkλ

∗
l λj

+ūjvkv
∗
kv

∗
j + ūjvkv

∗
kv

∗
mλ

∗
mλj + ūjvkv

∗
j v

∗
k + ūjvkv

∗
l v

∗
kλ

∗
l λj

+ūjvkv
∗
j v

∗
mλ

∗
mλk + ūjvkv

∗
l v

∗
jλ

∗
l λk + ūjvkv

∗
l v

∗
mλ

∗
l λkλ

∗
mλj

+ūju
∗
julumλlλm + ūju

∗
kulumλlλmλ

∗
kλj + ūju

∗
julv

∗
l + ūju

∗
kulv

∗
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∗
kλj

+ūju
∗
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∗
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∗
mλl + ūju

∗
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∗
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∗
kλl + ūju

∗
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∗
mλ

∗
kλlλ

∗
mλj

+ūju
∗
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∗
l umλmλ

∗
l + ūju

∗
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∗
jumλmλ

∗
k + ūju

∗
kv

∗
l umλmλ

∗
kλ

∗
l λj

+ūju
∗
jv

∗
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∗
mλ

∗
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∗
m + ūju

∗
kv

∗
j v

∗
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∗
kλ

∗
m + ūju

∗
kv

∗
l v

∗
jλ

∗
kλ

∗
l + ūju

∗
kv

∗
l v

∗
mλ

∗
kλ

∗
l λ

∗
mλj

+v̄∗j vkulumλ
∗
jλkλlλm + v̄∗j vkulv

∗
l λ

∗
jλk + v̄∗j vkulv

∗
kλ

∗
jλl

+v̄∗j vkulv
∗
mλ

∗
jλlλ

∗
mλk + v̄∗j vkv

∗
kumλ

∗
jλm + v̄∗j vkv

∗
l umλ

∗
jλmλ

∗
l λk

+v̄∗j vkv
∗
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∗
mλ

∗
jλ

∗
m + v̄∗j vkv

∗
l v

∗
kλ

∗
jλ

∗
l + v̄∗j vkv

∗
l v

∗
mλ

∗
jλ

∗
l λ

∗
mλk

+v̄∗ju
∗
kulumλ

∗
jλ

∗
kλlλm + v̄∗ju

∗
kulv

∗
l λ

∗
jλ

∗
k + v̄∗ju

∗
kulv

∗
mλ

∗
jλ

∗
kλ

∗
mλl

+v̄∗ju
∗
kv

∗
l umλ

∗
jλ

∗
kλ

∗
l λm + v̄∗ju

∗
kv

∗
l v

∗
mλ

∗
jλ

∗
kλ

∗
l λ

∗
m, (A.31)

so Equation (2.51) is true.
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APPENDIX B

SCATTERING IN COUPLED SQUARE WELLS

Kokkelmans et al. [14] consider scattering in coupled square wells as one step

in the derivation of a renormalized contact potential model of a Feshbach resonance.

Here, we treat the square well system in some detail.

Similar to Reference [14]’s Figure 3, consider the coupled square well system in

our Figure B.1. This model could represent two incident particles of combined energy

E with separation r. The open channel potential VP (r) is zero for r greater than the

potentials’ range R, while the closed channel potential VQ(r) is a constant ε > E > 0

for r > R. Inside the wells, VP (r) = −V1 and VQ(r) = −V2, both constant, and the

wavefunctions ψP (r) and ψQ(r) are coupled by the complex constant g. Since there

is no coupling for r > R, we write g as a function of r below.

Two coupled Schrödinger equations model the situation:

[
− ~2

2m
∇2 + VP (r)

]
ψP (r) + g(r)ψQ(r) = EψP (r) (B.1)[

− ~2

2m
∇2 + VQ(r)

]
ψQ(r) + g∗(r)ψP (r) = EψQ(r) , (B.2)

where we choose to work in spherical coordinates. Assuming no angular dependence

of the wavefunctions and making the substitutions

ψQ(r) =
uQ(r)

r
and ψP (r) =

uP (r)

r
, (B.3)
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r

Energy

E

V1
-

V2
-

R

VP
VQ

Figure B.1: Coupled square wells. The open [VP (r), bold red] and closed [VQ(r),
dotted blue] channel potentials are negative for r < R and zero and ε, respectively,
for r > R. The combined energy of the two colliding particles is E, which is greater
than zero but less than ε. The open and closed channel wavefunctions are coupled
only when r < R.

Equations (B.1) and (B.2) simplify to

[
− ~2

2m

d2

dr2
+ VP (r)

]
uP (r) + g(r)uQ(r) = EuP (r) (B.4)[

− ~2

2m

d2

dr2
+ VQ(r)

]
uQ(r) + g∗(r)uP (r) = EuQ(r) . (B.5)
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B.1 Interior Solutions

We first consider the interior region, where r ≤ R and the equations simplify to

− ~2

2m
u′′P (r)− V1 uP (r) + g uQ(r) = E uP (r) (B.6)

− ~2

2m
u′′Q(r)− V2 uQ(r) + g∗ uP (r) = E uQ(r) . (B.7)

Solving Equation (B.6) for uQ(r) and subsituting into Equation (B.7) decouples the

equations; then

uQ(r) =
1

g
(E + V1)uP (r) +

1

g

~2

2m
u′′P (r) (B.8)

u
(4)
P (r) + b u′′P (r) + c uP (r) = 0, (B.9)

where, for brevity, we define

b =
2m

~2
(2E + V1 + V2) (B.10)

c =
4m2

~4

[
(E + V1) (E + V2)− |g|2

]
. (B.11)

We attempt solutions of the form exr, where x is a constant to be determined. Sub-

stituting this solution into Equation (B.9), we have

x4 + b x2 + c = 0, (B.12)

a quadratic equation in x2. There are four solutions for x:

x1 = i
1√
2

√
b+

√
b2 − 4c, x2 = −i

1√
2

√
b+

√
b2 − 4c,
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x3 =
1√
2

√
−b+

√
b2 − 4c, and x4 = − 1√

2

√
−b+

√
b2 − 4c. (B.13)

Notice that, since we are only considering E > 0 (otherwise the open channel would

not be open) and V1 and V2 both positive (otherwise the potentials would not be

wells), b is strictly positive. Requiring

b2 − 4c > 0 (B.14)

is not very limiting; substituting Equations (B.10) and (B.11) into (B.14) gives

−4 |g|2 < (V1 − V2)
2 , (B.15)

which is true for all nonzero g and V1 and V2 both real. We henceforth accept these

lenient restrictions.

Now we are assured that x1 and x2 are both purely imaginary and complex

conjugates. We combine the solutions corresponding to x1 and x2 into

uP (r) = A sin

(
r

1√
2

√
b+

√
b2 − 4c

)
(B.16)

uQ(r) =
1

g
A

[
E + V1 −

1

2

~2

2m

(
b+

√
b2 − 4c

)]
sin

(
r

1√
2

√
b+

√
b2 − 4c

)
, (B.17)

where A is a constant to be determined, and we have discarded the cosine solutions,

since the wavefunctions ψP (r) and ψQ(r) must be bounded, and

lim
r→0

cos (r)

r
→∞. (B.18)

More solutions exist, but their general form depends on the particular physical
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parameters. For the situation we call “weak coupling,” where

−b+
√
b2 − 4c < 0 ⇒ c > 0 ⇒ (E + V1) (E + V2) > |g|2 , (B.19)

x3 and x4 are imaginary and complex conjugates. The corresponding solutions which

are bounded at the origin when divided by r are

uP (r) = B sin

(
r

1√
2

√
b−

√
b2 − 4c

)
(B.20)

uQ(r) =
1

g
B

[
E + V1 −

1

2

~2

2m

(
b−

√
b2 − 4c

)]
sin

(
r

1√
2

√
b−

√
b2 − 4c

)
. (B.21)

Note that these are linearly independent from the everpresent solutions (B.16) and

(B.17), since the arguments of the sine functions are different.

For the “strong coupling” situation, where

−b+
√
b2 − 4c > 0 ⇒ c < 0 ⇒ (E + V1) (E + V2) < |g|2 , (B.22)

x3 and x4 are both purely real. Then the corresponding solutions

uP (r) = C sinh

(
r

1√
2

√
−b+

√
b2 − 4c

)
(B.23)

uQ(r) =
1

g
C

[
E + V1 +

1

2

~2

2m

(
−b+

√
b2 − 4c

)]
sinh

(
r

1√
2

√
−b+

√
b2 − 4c

)
.

(B.24)

The remaining case, that of “moderate coupling,” concerns

−b+
√
b2 − 4c = 0 ⇒ c = 0 ⇒ (E + V1) (E + V2) = |g|2 . (B.25)
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Since c = 0, the differential equation reduces to

u
(4)
P (r) + b u′′P (r) = 0, (B.26)

which has linearly independent solutions

sin
(
r
√
b
)
, cos

(
r
√
b
)
, r, α, (B.27)

where α is a constant. The cosine and constant solutions diverge at the origin when

divided by r. The sine solution is equivalent to that in Equation (B.16), so that

(B.16) and (B.17) are still valid. Then the only new solutions are

uP (r) = Dr (B.28)

uQ(r) =
1

g
D (E + V1) r. (B.29)

B.2 Exterior Solutions

For r ≥ R, Equations (B.4) and (B.5) simplify to

− ~2

2m
u′′P (r)− E uP (r) = 0 (B.30)

− ~2

2m
u′′Q(r) + (ε− E) = 0, (B.31)

which are uncoupled and may be solved immediately to give

uP (r) = F sin

(
r

√
2mE

~2
+G

)
(B.32)

uQ(r) = L exp

[
−r
√

2m

~2
(ε− E)

]
, (B.33)
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where we have discarded the uQ(r) ∼ er solution because

lim
r→∞

er

r
→∞. (B.34)

B.3 Matching at the Well Boundary

Solutions to the Schrödinger equation must be finite anywhere the potential is

bounded. We must also have a continuous wavefunction, even where the potential is

discontinuous or has a singularity; that is,

ψout(R) = ψin(R) , (B.35)

where ψout is an exterior solution and ψin is an interior solution. Using a substitution

like those in (B.3), we have

uout(R)

R
=
uin(R)

R
⇒ uout(R) = uin(R) . (B.36)

The first derivative of a solution must also be continuous anywhere the potential is

bounded; that is,

ψ′out(r) |R = ψ′in(r) |R ⇒
[
u′out(r)

r
− uout(r)

r2

]
R

=

[
u′in(r)

r
− uin(r)

r2

]
R

⇒ u′out(r) |R = u′in(r) |R. (B.37)

To be concise, we define

k0 =
1√
2

√
b+

√
b2 − 4c =

√
m

~

√
2E + V1 + V2 +

√
(V1 − V2)

2 + 4 |g|2 (B.38)

kW =
1√
2

√
b−

√
b2 − 4c =

√
m

~

√
2E + V1 + V2 −

√
(V1 − V2)

2 + 4 |g|2 (B.39)
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kS =
1√
2

√
−b+

√
b2 − 4c =

√
m

~

√
−2E − V1 − V2 +

√
(V1 − V2)

2 + 4 |g|2 (B.40)

kM =
√
b =

√
2m

~
√

2E + V1 + V2 (B.41)

kP =

√
2mE

~2
(B.42)

τQ =

√
2m

~2
(ε− E). (B.43)

Since the overall norm is arbitrary in scattering problems, we take A = 1 for simplicity.

Then the matching conditions for weak coupling are

sin (k0R) +B sin (kWR) = F sin (kPR +G)

k0 cos (k0R) +BkW cos (kWR) = FkP cos (kPR +G)(
E + V1 −

~2k2
0

2m

)
sin (k0R) +B

(
E + V1 −

~2k2
W

2m

)
sin (kWR) = Lge−τQR

k0

(
E + V1 −

~2k2
0

2m

)
cos (k0R) +BkW

(
E + V1 −

~2k2
W

2m

)
cos (kWR) = −LτQge−τQR.

(B.44)

For strong coupling, the conditions are

sin (k0R) + C sinh (kSR) = F sin (kPR +G)

k0 cos (k0R) + CkS cosh (kSR) = FkP cos (kPR +G)(
E + V1 −

~2k2
0

2m

)
sin (k0R) + C

(
E + V1 +

~2k2
S

2m

)
sinh (kSR) = Lge−τQR

k0

(
E + V1 −

~2k2
0

2m

)
cos (k0R) + CkS

(
E + V1 +

~2k2
S

2m

)
cosh (kSR) = −LτQge−τQR.

(B.45)
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For moderate coupling, the conditions are

sin (k0R) +DR = F sin (kPR +G)

k0 cos (k0R) +D = FkP cos (kPR +G)(
E + V1 −

~2k2
0

2m

)
sin (k0R) +D (E + V1)R = Lge−τQR

k0

(
E + V1 −

~2k2
0

2m

)
cos (k0R) +D (E + V1) = −LτQge−τQR. (B.46)

Note that in each case the constants k0, F , and G are different.

B.4 Example

One can solve the systems (B.44), (B.45), and (B.46) for the necessary con-

stants [the identities F sin (kPR +G) = F cos (G) sin (kPR)+F sin (G) cos (kPR) and

F cos (kPR +G) = F cos (G) cos (kPR)−F sin (G) sin (kPR) are useful], but the com-

plicated expressions are not especially edifying, so we proceed immediately to an

example.

We use parameters appropriate on an atomic scale:

R = a0

V1 = 13.6 eV

V2 = 1.1× 13.6 eV

ε = 0.1× 13.6 eV

E = 0.05× 13.6 eV

m = 2mP , (B.47)
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where a0 is the Bohr radius and mP is the mass of a proton. For the case of

weak coupling, we use g = 0.1 ×
√

(E + V1) (E + V2); for strong coupling, g =

10×
√

(E + V1) (E + V2); and for moderate coupling, g =
√

(E + V1) (E + V2). The

phase shifts G calculated from the matching conditions are then 2.2808, 2.1999, and

2.3088 for weak, strong, and moderate coupling, respectively. Figures B.2 through

B.7 show the wavefunctions ψP (r) and ψQ(r) for the three different coupling regimes.

Only in the case of moderate coupling are the amplitudes of the open and closed chan-

nel wavefunctions comparable, and only in this case are the oscillations of the two

wavefunctions perfectly out of phase within the inner region. In every plot, the wave-

function is finite for r = 0 (though this does not appear in the plots, since the vertical

axes do not encompass the full range of the wavefunctions) and the wavefunctions

and their first derivatives are continuous.



255

-20

-10

0

10

20

0 a0 2a0 3a0

ψ
(r

) 
(x

1
0

-5
 a

0
-3

/2
)

r (a0)

Figure B.2: Weak coupling, open channel.
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Figure B.3: Weak coupling, closed channel.



257

-20

-10

0

10

20

0 a0 2a0 3a0

ψ
(r

) 
(x

1
0

-5
 a

0
-3

/2
)

r (a0)

Figure B.4: Strong coupling, open channel.
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Figure B.5: Strong coupling, closed channel.
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Figure B.6: Moderate coupling, open channel.
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Figure B.7: Moderate coupling, closed channel.
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APPENDIX C

RECURRENCE RELATIONS IN EIGENFUNCTION EXPANSIONS

When expanding the correlation functions in a basis of eigenfunctions, we have

in mind equating the expansion coefficients on each side of equations involving those

correlation functions. To do so, each side of the equation must be summed over

exactly the same linearly independent eigenfunctions.

C.1 Laplace Series

As described in [84], for example, a well-behaved and generally complex scalar

function G(θ, φ) of polar and azimuthal angles θ and φ, respectively, can be expanded

in a Laplace series, an infinite sum over spherical harmonics Y m
l (θ, φ):

G(θ, φ) =
∞∑
l=0

l∑
m=−l

Gl,mY m
l (θ, φ) , (C.1)

where Gl,m is a complex expansion coefficient. The series (C.1) is uniformly conver-

gent, allowing summation to commute with both integration and differentiation.

A spherical harmonic is a normalized product of an associated Legendre polyno-

mial and a complex exponential:

Y m
l (θ, φ) = Nm

l P
m
l (cos θ) eimφ, (C.2)

where
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Nm
l ≡ (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
. (C.3)

The spherical harmonics are eigenfunctions of the angular part of the Laplacian in

spherical coordinates; that is,

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
Y m
l (θ, φ) = −l (l + 1)Y m

l (θ, φ) . (C.4)

Using the recurrence relations for associated Legendre polynomials found in [84]

and [109], a constant multiple or an angular derivative of a Laplace series can often

be reduced to some algebraic manipulation of the original series. Consider

cos θ
∞∑
l=0

l∑
m=−l

Gl,mY m
l (θ, φ) ; (C.5)

using a recurrence relation for associated Legendre polynomials,

cos θPm
l (cos θ) =

l +m

2l + 1
Pm
l−1(cos θ) +

l −m+ 1

2l + 1
Pm
l+1(cos θ) , (C.6)

the series (C.5) becomes

cos θ
∞∑
l=0

l∑
m=−l

Gl,mY m
l (θ, φ) = S1 + S2, (C.7)

where

S1 =
∞∑
l=0

l∑
m=−l

Nm
l

l +m

2l + 1
Pm
l−1(cos θ) eimφGl,m (C.8)

S2 =
∞∑
l=0

l∑
m=−l

Nm
l

l −m+ 1

2l + 1
Pm
l+1(cos θ) eimφGl,m. (C.9)
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In the sum (C.8), observe that l = 0 ⇒ m = 0 ⇒ l+m = 0, so we can start the sum

over l at 1. Also, m = −l⇒ l+m = 0, so the sum over m can start at −l+1. Then,

defining an associated Legendre polynomial in terms of its Rodrigues’ formula,

Pm
l (cos θ) ≡

(
1− cos2 θ

)m/2 dm

d (cos θ)m
Pl(cos θ) , (C.10)

we see that Pm
l (cos θ) ≡ 0 for any |m| > l, since Pl(cos θ) (an ordinary Legendre

polynomial) is an lth order polynomial. (The negative values of m are handled by

defining the ordinary Legendre polynomials in terms of their own Rodrigues’ formula.)

This fact entitles us to end the sum over m at l − 1, giving

S1 =
∞∑
l=1

l−1∑
m=−l+1

Nm
l

l +m

2l + 1
Pm
l−1(cos θ) eimφGl,m. (C.11)

Now allowing l → l + 1 throughout the series (C.11) and defining Nm
l+1 such that

Nm
l+1 = Nm

l+1/N
m
l , we have

S1 =
∞∑
l=0

l∑
m=−l

Nm
l+1

l +m+ 1

2l + 3
Y m
l (θ, φ)Gl+1,m. (C.12)

No terms are obviously zero in the series (C.9), so begin by letting l→ l − 1:

S2 =
∞∑
l=1

l−1∑
m=−l+1

Nm
l−1

l −m

2l − 1
Pm
l (cos θ) eimφGl−1,m. (C.13)

Now the m = l term vanishes, so the sum over m can end at l. We would like to start

the sum over m at −l, but this would result in extra, non-zero terms, so we introduce

a step function um−l+1 such that1

1This is different from the usual Heaviside step function (as defined in [84], for example), which
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um−l+1 =


1, m ≥ −l + 1

0, m < −l + 1

(C.14)

Notice that multiplying S2 by this factor will also allow us to include the l = 0 term,

since both u0
1 = 0 and l = 0 ⇒ m = 0 ⇒ l −m = 0. Now Equation (C.13) can be

written

S2 =
∞∑
l=0

l∑
m=−l

um−l+1Nm
l−1

l −m

2l − 1
Y m
l (θ, φ)Gl−1,m. (C.15)

Using Equations (C.12) and (C.15), one could now express (C.5) without any mention

of the angle θ outside of a spherical harmonic, just altering the coefficient on each

spherical harmonic in the Laplace series.

Next, consider the Laplace series

sin θ
∂

∂θ

∞∑
l=0

l∑
m=−1

Gl,mY m
l (θ, φ) = S3 + S4, (C.16)

where

S3 =
∞∑
l=0

l∑
m=−l

Nm
l (l +m)

(
l

2l + 1
− 1

)
Pm
l−1(cos θ) eimφGl,m (C.17)

S4 =
∞∑
l=0

l∑
m=−l

Nm
l

l (l −m+ 1)

2l + 1
Pm
l+1(cos θ) eimφGl,m, (C.18)

which is obtained from a recurrence relation for associated Legendre polynomials.

The strategy for dealing with S3 is identical to the one we used for S1; the l = 0 and

|m| = l terms vanish. Then re-indexing with l→ l + 1, one obtains

would be undefined at the point m = −l + 1.
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S3 =
∞∑
l=0

l∑
m=−l

Nm
l+1 (l +m+ 1)

(
l + 1

2l + 3
− 1

)
Y m
l (θ, φ)Gl+1,m. (C.19)

In a treatment similar, though not identical, to that for S2, we notice that the

l = 0 term contributes nothing to the series (C.18), and then let l→ l− 1. With this

substitution, the m = l and l = 1 terms vanish and so may be included. Then we

can include the non-zero m = −l terms if we multiply S4 by the step function (C.14).

Including the l = 0 term, since both u0
1 = 0 and l = 0 ⇒ m = 0 ⇒ l −m = 0, we

have

S4 =
∞∑
l=0

l∑
m=−l

um−l+1Nm
l−1

(l − 1) (l −m)

2l − 1
Y m
l (θ, φ)Gl−1,m. (C.20)

Again, Equations (C.19) and (C.20) allow us to express a multiple and derivative of a

Laplace series as some algebraic manipulation and shifting of the coefficient on each

spherical harmonic in the series.

C.2 Cosine Series

A continuous, generally complex scalar function G(φ) of an angle φ ∈ [0, 2π] can

be expanded in a series of cosines,

G(φ) =
∞∑
n=0

Gn cos (nφ) , (C.21)

where Gn is the nth generally complex expansion coefficient. We will assume that the

series is uniformly convergent, which will be true if ∂
∂φ
G is continuous, so that we may

differentiate term-by-term. If the condition for uniform convergence does not hold,

we will still differentiate term-by-term, with the knowledge that we will truncate the

series.
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Consider

S5 = cosφG(φ) ; (C.22)

using 2 cosA cosB = cos (A−B) + cos (A+B), we have

S5 =
1

2

∞∑
n=0

Gn cos [(n− 1)φ] +
1

2

∞∑
n=0

cos [(n+ 1)φ] . (C.23)

Reindexing the sums in (C.23) gives

S5 =
1

2

∞∑
n=−1

Gn+1 cos (nφ) +
1

2

∞∑
n=1

Gn−1 cos (nφ) . (C.24)

Recalling that cosines are even, we can use convenient notation to start both sums

at n = 0:

S5 =
∞∑
n=0

1

2

(
Gn+1 +Gn−1 +G0 δ1,n

)
cos (nφ) . (C.25)

Next, consider

S6 = sinφ
∂

∂φ
G(φ) . (C.26)

As noted above, we formally differentiate term-by-term, and use 2 sinA sinB =

cos (A−B)− cos (A+B) to write

S6 =
1

2

∞∑
n=0

Gnn cos [(n+ 1)φ]− 1

2

∞∑
n=0

Gnn cos [(n− 1)φ] . (C.27)

Reindexing the sums and applying convenient notation as before, we have

S6 =
1

2

∞∑
n=0

[
Gn−1un1 (n− 1)−Gn+1 (n+ 1)

]
cos (nφ) . (C.28)
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Finally,

S7 =
∂2

∂φ2
G(φ) (C.29)

requires no trigonometric identities; we differentiate term by term twice and get

S7 = −
∞∑
n=0

Gnn2 cos (nφ) . (C.30)
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APPENDIX D

DERIVATION OF A RUNGE-KUTTA METHOD

We want to solve the ordinary differential equation

dψ

dx
= f(ψ, x) (D.1)

for ψ(x), with the initial condition ψn = ψ(xn). Assuming analytical methods are

unavailable or unfeasible, we intend to find an approximation to the solution at some

point, ψ(xn + h). We could use a truncated Taylor series expansion

ψ(xn + h) ≈
4∑
i=0

hi

i!

di

dxi
ψ(x)

∣∣∣∣
x=xn

, (D.2)

but cannot or wish not to use analytical derivatives of ψ(x). We will attempt to find

constants wi, ai, and Bij such that

ψ(xn + h) ≈ ψ(xn) +
4∑
i=1

wiki, (D.3)

where

ki = hf

(
xn + aih, ψn +

i−1∑
j=1

Bijkj

)
. (D.4)

Such a method is a fourth order Runge-Kutta method. The extensive algebra required

by a brute-force calculation is somewhat alleviated by using convenient, though per-

haps non-obvious, notation. To this end, the derivation will closely follow that given
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by Ralston [110].

D.1 Taylor Series Expansion of the Approximate Solution

Substituting Equation (D.1) into (D.2) and re-indexing gives

ψ(xn + h) ≈ ψn +
3∑
i=0

hi+1

(i+ 1)!

di

dxi
f(ψ, x)

∣∣∣∣
x=xn

. (D.5)

Note that evaluating everything at xn includes evaluating ψ at xn. Applying the

chain rule and again using Equation (D.1), we have

ψ(xn + h) ≈ ψn +
3∑
i=0

hi+1

(i+ 1)!

(
∂

∂x
+ f

∂

∂ψ

)i
f(ψ, x)

∣∣∣∣
x=xn

. (D.6)

Here is an important opportunity for expedient notation. Define a differential oper-

ator D such that

D =
∂

∂x
+ ψn

∂

∂ψ
, (D.7)

where we are careful to note that ψn is simply a constant and thus can be factored

out of any differentiation.

Equation (D.6) can be expanded in terms of D. For example, observe that

(
∂

∂x
+ f

∂

∂ψ

)
f

∣∣∣∣
x=xn

= Df (D.8)

(fx + ffψ)
∣∣
x=xn

= (fx + fnfψ)
∣∣
x=xn

,

where fx means the partial derivative of f with respect to x. Also,

(
∂

∂x
+ f

∂

∂ψ

)2

f

∣∣∣∣
x=xn

= D2f + fψDf
∣∣
x=xn

(D.9)
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(
∂2

∂x2
+

∂

∂x
f
∂

∂ψ
+ f

∂

∂ψ

∂

∂x
+ f

∂

∂ψ
f
∂

∂ψ

) ∣∣∣∣
x=xn

=

[(
∂2

∂x2
+ 2fn

∂

∂x

∂

∂ψ
+ f 2

n

∂2

∂ψ2

)
f + fψ

(
∂

∂x
+ fn

∂

∂ψ

)
f

] ∣∣∣∣
x=xn

(D.10)

(
fxx + fxfψ + 2ffxψ + ff 2

ψ + f 2fψψ
) ∣∣

x=xn

=
(
fxx + fxfψ + 2fnfxψ + fnf

2
ψ + f 2

nf
2
ψψ

) ∣∣
x=xn

, (D.11)

where we have carefully applied the product rule and assumed that the order of

partial differentiation is unimportant; e.g., fxψ = fψx. This is not a very restrictive

assumption, and is reasonable for most functions encountered in the modeling of

nature. With identical methods and much more work, one can prove

(
∂

∂x
+ f

∂

∂ψ

)3

f

∣∣∣∣
x=xn

=
(
D3f + fψD

2f + f 2
ψDf + 3DfDfψ

) ∣∣
x=xn

, (D.12)

and Equation (D.6) expands to

ψ(xn + h)− ψn ≈
[
hf +

h2

2
Df +

h3

6

(
D2f + fψDf

)
+

h4

24

(
D3f + fψD

2f + f 2
ψDf + 3DfDfψ

)]∣∣∣∣
x=xn

. (D.13)

D.2 Series Expansion of the Runge-Kutta Approximation

We wish to match the coefficients on each factor of h in Equation (D.13) to those

in (D.3). To do this we need to expand each ki as a Taylor series. Taking a1 = 0, we

can immediately write

k1 = hfn. (D.14)
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That result gives for k2

k2 = hf (xn + a2h, ψn +B21hfn) . (D.15)

k3 and k4, like k2, will have right-hand sides of the form

f

[
xn + aih, ψn + hfn

i−1∑
j=1

Bij

]
, (D.16)

which, expanded as a Taylor series in two variables, is

∞∑
l=0

hl

l!

[
ai
∂

∂x
+

(
fn

i−1∑
j=1

Bij

)
∂

∂ψ

]l
f(x, ψ)

∣∣∣∣
x=xn

. (D.17)

Here is the second important opportunity for concise notation. Define another differ-

ential operator Di such that

Di = ai
∂

∂x
+

(
fn

i−1∑
j=1

Bij

)
∂

∂ψ
. (D.18)

Note that this operator is slightly different from D, defined earlier, in that Di is

exactly the operator appearing in the Taylor series expansion of the given function,

whileD was a slightly modified version. Now we can write Equation (D.15), truncated

after fourth order in h, as

k2 = hf + h2D2f +
1

2
h3D2

2f +
1

6
h4D3

2f. (D.19)

We wish to get k3 in a form resembling (D.16), so we write it as

k3 = hf [xn + a3h, ψn + (B31 +B32)hfn +B32 (k2 − hfn)] . (D.20)
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Taylor expanding that expression gives

k3 = h

∞∑
i=0

1

i!

[
hD3 +B32 (k2 − hfn)

∂

∂ψ

]i
f(x, ψ)

∣∣∣∣
x=xn

. (D.21)

Note that Di and ∂/∂y commute, since we have assumed the order of partial differ-

entiation to be unimportant. Careful application of the product rule to (D.21) leads

to

k3 =

[
hfh2D3f + hB32 (k2 − hfn) fy +

1

2
h3D2

3f + h2B32 (k2 − hfn)D3fψ

+
1

2
hB2

32 (k2 − hfn)
2 fψψ +

1

6
h4D3

3f +
1

2
h3B32 (k2 − hfn)D

2
3fψ

+
1

2
h2B2

32 (k2 − hfn)
2D3fψψ +

1

6
hB3

32 (k2 − hfn)
3 fψψψ

]∣∣∣∣
x=xx

. (D.22)

In deriving that equation, we treated k2 as a constant, since it has been evaluated

at xn. The next step is to substitute k2, Equation (D.19), into Equation (D.22).

Evaluating the resulting expression at xn allows a great deal of terms to either combine

or cancel, and the result is

k3 =

[
hf + h2D3f + h3

(
1

2
D2

3f +B32fψD2f

)
+ h4

(
1

6
D3

3f +
1

2
B32fψD

2
2f +B32D2fD3fψ

)]∣∣∣∣
x=xn

. (D.23)

Even though evaluating at xn was an important step in reaching Equation (D.23), we

leave the evaluation-at-xn pipe symbol on the end of (D.23) to simplify the notation.

The derivation of the expression for k4 follows the same method, but with more al-

gebra and product rules. The result is
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k4 =

[
hf + h2D4f + h3

(
1

2
D2

4f +B42fψD2f +B43fψD3f

)
+ h4

(
1

6
D3

4f +
1

2
B42fψD

2
2f +B32B43f

2
ψD2f +

1

2
B43fψD

2
3f

+B42D2fD4fψ +B43D3fD4fψ

)]∣∣∣∣
x=xn

. (D.24)

D.3 Determining the Constants

The next step is to plug our new expressions for the ki into Equation (D.3) and

equate the resulting coefficients on each power of h with those in Equation (D.13).

The first two equations are

w1 + w2 + w3 + w4 = 1 (D.25)

and

w2D2f + w3D3f + w4D4f =
1

2
Df. (D.26)

For this last equation to be generally true, some restrictions must be placed on f(x, ψ).

This undesirable necessity if alleviated if we require

ai =
i−1∑
j=1

Bij, i = 2, 3, 4, (D.27)

so that Dif/Df = ai, i = 2, 3, 4. Equation (D.26) becomes

a2w2 + a3w3 + a4w4 =
1

2
. (D.28)

Equating coefficients on the h3 terms gives
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1

2

(
w2D

2
2f + w3D

2
3f + w4D

2
4f
)

+ fψ
(
B32w3D2f +B42w4D2f +B43w4D3f

)
=

1

6

(
D2f + fψDf

)
. (D.29)

We equate terms on the left- and right-hand sides that are second order in D, and

do the same for terms that are first order in D and proportional to fψ. Using the

proportionality of D and Di, we obtain

a2
2w2 + a2

3w3 + a2
4w4 =

1

3
(D.30)

and

a2B32w3 + a2B42w4 + a3B43w4 =
1

6
. (D.31)

Equating coefficients on the h4 terms gives

1

6

(
w2D

3
2f + w3D

3
3f + w4D

3
4f
)

+
1

2
fψ
(
B32w3D

2
2f +B42w4D

2
2f +B43w4D

2
3f
)

+B32w3D2fD3fψ +B42w4D2fD4fψ +B43w4D3fD4fψ +B32B43w4f
2
ψD2f

=
1

24

(
D3f + fψD

2f + 3DfDfψ + f 2
ψDf

)
. (D.32)

By the same logic used to obtain Equations (D.30) and (D.31) from (D.29), we obtain

from (D.32)

a3
2w2 + a3

3w3 + a3
4w4 =

1

4
(D.33)

a2
2B32w3 + a2

2B42w4 + a2
3B43w4 =

1

12
(D.34)

a2a3B32w3 + a2a4B42w4 + a3a4B43w4 =
1

8
(D.35)
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and

a2B32B43w4 =
1

24
. (D.36)

To summarize these 11 equations in 13 unknowns:

B21 = a2 (D.37)

B31 +B32 = a3 (D.38)

B41 +B42 +B43 = a4 (D.39)

w1 + w2 + w3 + w4 = 1 (D.40)

a2w2 + a3w3 + a4w4 =
1

2
(D.41)

a2
2w2 + a2

3w3 + a2
4w4 =

1

3
(D.42)

a2B32w3 + a2B42w4 + a3B43w4 =
1

6
(D.43)

a3
2w2 + a3

3w3 + a3
4w4 =

1

4
(D.44)

a2
2B32w3 + a2

2B42w4 + a2
3B43w4 =

1

12
(D.45)

a2a3B32w3 + a2a4B42w4 + a3a4B43w4 =
1

8
(D.46)

a2B32B43w4 =
1

24
. (D.47)

D.3.0 The Common Method

Two constants must be chosen before one can solve the above nonlinear set of

equations. The typical choice is a2 = a3 = 1/2, which leads to

a4 = 1
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B21 = B32 =
1

2

B43 = 1

B31 = B41 = B42 = 0

w1 = w4 =
1

6

w2 = w3 =
1

3
.

In practice, other solutions may have better properties [80]. In any case, since the

method was derived from a Taylor series that was truncated after the h4 term, the

method has an error proportional to h5 and so is considered fourth order accurate.

Given a known function value ψn = ψ(xn), one can then find an approximate

solution to the differential equation in Equation (D.1) at the point xn + h:

ψ (xn + h) ≈ ψn +
1

6
(k1 + 2k2 + 2k3 + k4) , (D.48)

where

k1 = hf (x, ψ)
∣∣
x=xn

k2 = hf

(
x+

1

2
h, ψ +

1

2
k1

) ∣∣∣∣
x=xn

k3 = hf

(
x+

1

2
h, ψ +

1

2
k2

) ∣∣∣∣
x=xn

k3 = hf (x+ h, ψ + k3)
∣∣
x=xn

.
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APPENDIX E

DERIVATION OF PSEUDOSPECTRAL DERIVATIVES

Spectral solutions to PDE’s generally involve expanding the solution in some

basis. In Galerkin and tau (or Lanczos tau) spectral methods, one works exclusively

with the expansion coefficients. These approaches are usually impractical in nonlinear

equations, requiring difficult convolutions. Pseudospectral methods use the expansion

coefficients solely for computing derivatives; all other computations are carried out in

physical space. Depending on the choice of basis, fast transform algorithms may allow

for rapid computation of pseudospectral derivatives; otherwise, one must resort to

differentiation matrices (though this is not always crippling) [90, 97, 98, 100, 101, 99].

E.1 Sinusoidal Basis

Let the function f be defined over a continuous variable x ∈ [0, π] such that

f(0) = f(π) = 0. Approximate f(x) by a truncated expansion in a basis of sines:

f(x) ≈
N−1∑
k=1

f̃k sin (kx) , (E.1)

where f̃k is the expansion coefficient corresponding to the basis function sin (kx).

Then the approximate first and second derivatives are

df(x)

dx
≈

N−1∑
k=1

kf̃k cos (kx) (E.2)
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d2f(x)

dx2
≈

N−1∑
k=1

(
−k2

)
f̃k sin (kx) . (E.3)

Now require the approximation in (E.1) to be exact at N − 1 points xj = jπ/N ,

j ∈ {1, . . . , N − 1}:

f(xj) =
N−1∑
k=1

f̃k sin

(
πjk

N

)
, j ∈ {1, . . . , N − 1} , (E.4)

which is a common form of a discrete sine transform. Then

f(xj) = Sj
(
f̃k

)
, j ∈ {1, . . . , N − 1} (E.5)

and

f̃k =
2

N
Sk[f(xj)] , k ∈ {1, . . . , N − 1} , (E.6)

where Sk denotes the value of the discrete sine transform at a particular value of k,

and we have used the fact that the discrete sine transform is nearly its own inverse,

apart from a factor of 2/N [80].

Interpolation does not commute with differentiation [97], so the requirement

(E.4) does not imply that the derivatives (E.2) and (E.3) are exact at the points xj.

Our pseudospectral approximations to the first and second derivatives of f at the

points xj are then

df(xj)

dx
≈

N−1∑
k=1

kf̃k cos

(
πjk

N

)
= Cj

(
kf̃k

)
, j ∈ {1, . . . , N − 1} (E.7)

and
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d2f(xj)

dx2
≈

N−1∑
k=1

(
−k2

)
f̃k sin

(
πjk

N

)
= Sj

(
−k2f̃k

)
, j ∈ {1, . . . , N − 1} , (E.8)

where Cj denotes the value of the (type 1, in the language of Reference [80]) discrete

cosine transform at a particular value of k. The identification of the sum in Equation

(E.7) as a discrete cosine transform is only true if we take f̃0 = f̃N = 0.

If the function f is instead defined over a continuous variable y ∈ [a, b], we can

use the results above if we also use the chain rule. Since

x =
y − a

b− a
π, (E.9)

we have

df

dy
=

df

dx

dx

dy
=

df

dx

π

b− a
, (E.10)

for example.

Alternatively, we may take f(xj) to be a discrete function from the outset. In

this case, derivatives are replaced by finite differences; the analogy of Equation (E.2)

might be

∆f(xj)

∆xj
=
f(xj+1)− f(xj−1)

2π/N

=
1

2π/N

N−1∑
k=1

f̃k

{
sin

[
πk

N
(j + 1)

]
− sin

[
πk

N
(j − 1)

]}
, (E.11)

where ∆
∆xj

is the operator that takes the centered finite difference at the xj. Using

sin (A)− sin (B) = 2 cos
[

1
2
(A+B)

]
sin
[

1
2
(A−B)

]
,

∆f(xj)

∆xj
=

1

π/N

N−1∑
k=1

f̃k sin

(
πk

N

)
cos

(
πjk

N

)
=

1

π/N
Cj
[
f̃k sin

(
πk

N

)]
. (E.12)
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Likewise, the analogy of Equation (E.3) might be

∆2f(xj)

∆x2
j

=
1

(π/N)2 [f(xj+1)− 2f(xj) + f(xj−1)]

=
1

(π/N)2

N−1∑
k=1

f̃k

{
sin

[
πk

N
(j + 1)

]
− sin

(
πk

N
j

)}

+
1

(π/N)2

N−1∑
k=1

f̃k

{
sin

[
πk

N
(j − 1)

]
− sin

(
πk

N
j

)}
, (E.13)

where ∆2

∆x2
j

is the operator that takes the three-point, second order finite difference at

the point xj. Using the same trigonometric identity as in the previous case as well as

sin2 (A) = 1
2
[1− cos (2A)], we eventually get

∆2f(xj)

∆x2
j

=
2

(π/N)2

N−1∑
k=1

f̃k

[
cos

(
πk

N

)
− 1

]
sin

(
πjk

N

)
=

2

(π/N)2S
{
f̃k

[
cos

(
πk

N

)
− 1

]}
. (E.14)

Again, if the discrete function is defined over a set of N + 1 points yj, where

y0 = a and yN = b, we can apply the chain rule and get, for instance

∆f(yj)

∆yj
=

1

(b− a) /N
Cj
[
f̃k sin

(
πk

N

)]
. (E.15)

E.2 Chebyshev Basis

With sines, the basis functions individually satisfy the box boundary conditions.

Chebyshev polynomials of the first kind Tk(x) are 1 at x = 1 and (−1)k at x =

−1. The most popular method of using Chebyshev polynomials in pseudospectral

methods directly enforces the box boundary conditions, but we also mention basis

recombination, frequently used in Galerkin spectral methods, in which one creates
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a new set of basis functions that do individually satisfy the boundary conditions,

nominally reducing the amount of computation.

E.2.1 Direct Enforcement

Let the function f be defined over a continuous variable x ∈ [−1, 1]. We do not

need f(−1) = f(1) = 0; practically, those boundary conditions are enforced sometime

other than during differentiation. Approximate f(x) by a truncated expansion in a

basis of first-kind Chebyshev polynomials:

f(x) ≈
N∑
k=0

f̃kTk(x) , (E.16)

where f̃k is an expansion coefficient. We can use fast transform algorithms if we

require the approximation to be exact at N + 1 interpolation nodes xj = cos
(
πj
N

)
,

j ∈ {0, . . . , N}:

f(xj) =
N∑
k=0

f̃kTk(xj) . (E.17)

With the chosen nodes (which are the nodes of Chebyshev-Gauss-Lobatto quadra-

ture), the first-kind Chebyshev polynomials obey the discrete orthogonality relation

[100]
N∑′′

j=0

Tk(xj)Tl(xj) = blNδk,l, 0 ≤ l ≤ N, (E.18)

where bl = 1/2 if 0 < l < N and b0 = bN = 1, and the double-prime on the sum

indicates that the first and last terms are halved. Multiplying both sides of Equation

(E.17) by Tl(xj) and summing over j as indicated in (E.18), we see that

f̃k =
1

Nbk

N∑′′

j=0

f(xj)Tk(xj) . (E.19)
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At the chosen nodes, the Chebyshev polynomials are Tk(xj) = cos
(
πjk
N

)
, so Equation

(E.19) is proportional to a cosine transform:

f̃k =
1

N
Ck[f(xj)] , (E.20)

which gives

f(xj) =
2

N
Cj
(
Nbkf̃k

)
= Cj

(
2bkf̃k

)
(E.21)

for the back transform.

Now we wish to express the derivative of f as another Chebyshev expansion;

that is,
N∑
k=0

f̃kT
′
k(x) =

N∑
k=0

f̃ ′kTk(x) , (E.22)

where f̃ ′k is an expansion coefficient in the derivative’s Chebyshev series. The task

now is to find the f̃ ′k in terms of the f̃k. Using

2Tk(x) =
1

k + 1
T ′
k+1(x)−

1

k − 1
uk2T

′
k−1(x) , k ≥ 1 (E.23)

[the step function u is defined in C.14] on Equation (E.22) gives

2
N∑
k=0

f̃kT
′
k(x) =2f̃ ′0T0(x) +

N∑
k=1

f̃ ′k
k + 1

T ′
k+1(x)−

N∑
k=2

f̃ ′k
k − 1

T ′
k−1(x)

=2f̃ ′0T0(x) +
N∑
k=2

f̃ ′k−1

k
T ′
k(x)−

N∑
k=1

f̃ ′k+1

k
T ′
k(x)

+
f̃ ′N

N + 1
T ′
N+1(x) +

f̃ ′N+1

N
T ′
N(x) , (E.24)

where in the last step we re-indexed the sums and added and subtracted terms so

that the sums at k = N . Now note that f̃ ′N = f̃ ′N+1 = 0, since the derivative of
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an Nth degree polynomial is (N − 1)th degree. On the left hand side of (E.24), the

k = 0 term is zero, since T ′
0(x) = 0, so we can start the left hand side’s sum at k = 1.

Recalling that T0(x) = T ′
1(x) and defining ck = 2 for k = 0 and ck = 1 otherwise, we

have

2
N∑
k=1

f̃kT
′
k(x) =

N∑
k=1

(
ck−1

k
f̃ ′k−1 −

1

k
f̃ ′k+1

)
T ′
k(x) . (E.25)

The sums (E.25) give a recurrence relation,

f̃ ′k−1 =
1

ck−1

(
2kf̃k + f̃ ′k+1

)
, k ≥ 1, (E.26)

which we can use to find the f̃ ′k by starting at k = N and working backwards, using

f̃ ′N+1 = f̃ ′N = 0 where necessary. The second derivative is found by applying the

recurrence twice, the second time with f̃N−1 = 0. Again, differentiation does not

commute with interpolation, and the derivatives are only approximate at nodes xj.

The above derivation has been given, in some form, in Canuto et al. [97] and Mason

and Handscomb [100].

The chain rule may be used to apply these derivatives to a function f defined

over y ∈ [a, b], where now

y =
b− a

2
(x+ 1) + a, (E.27)

giving

dx

dy
=

2

b− a
. (E.28)

As with the sine basis, we may use finite differences rather than continuous

derivatives. The nodes xj are not uniformly spaced, though, and we need more



286

complicated difference formulas. Quadratic Lagrange interpolants give [111]

df(xj)

dx
≈ xj − xj+1

(xj−1 − xj) (xj−1 − xj+1)
f(xj−1) + f(xj)

+
xj − xj−1

(xj+1 − xj−1) (xj+1 − xj)
f(xj+1) (E.29)

d2f(xj)

dx2
≈ 2

(xj−1 − xj) (xj−1 − xj+1)
f(xj−1) +

2

(xj − xj−1) (xj − xj+1)
f(xj)

+
2

(xj+1 − xj−1) (xj+1 − xj)
f(xj+1) . (E.30)

As the resulting pseudospectral derivatives are relatively computationally intensive,

and the first derivative performs poorly, we merely state the formulas:

df(xj)

dx
≈f(xj)

+
1

2
sin

(
πj

N
+

π

2N

)
csc

(
πj

N
− π

2N

)
csc

(
πj

N

)
csc
( π
N

)
×
{
Cj
[
2bkf̃k cos

(
πk

N

)]
+ Sj

[
f̃k sin

(
πk

N

)]}
− 1

2
sin

(
πj

N
− π

2N

)
csc

(
πj

N
+

π

2N

)
csc

(
πj

N

)
csc
( π
N

)
×
{
Cj
[
2bkf̃k cos

(
πk

N

)]
− Sj

[
f̃k sin

(
πk

N

)]}
(E.31)
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d2f(xj)

dx2
≈− 1

2
csc

(
πj

N
− π

2N

)
csc

(
πj

N
+

π

2N

)
csc2

( π

2N

)
f(xj)

+
1

2
csc

(
πj

N
− π

2N

)
csc

(
πj

N

)
csc
( π

2N

)
csc
(π
n

)
×
{
Cj
[
2bkf̃k cos

(
πk

N

)]
+ Sj

[
f̃k sin

(
πk

N

)]}
+

1

2
csc

(
πj

N
+

π

2N

)
csc

(
πj

N

)
csc
( π

2N

)
csc
( π
N

)
×
{
Cj
[
2bkf̃k cos

(
πk

N

)]
− Sj

[
f̃k sin

(
πk

N

)]}
. (E.32)

Division by zero at j = 0 and N restricts us to the interior of the grid.

E.2.2 Basis Recombination

Several modifications of Chebyshev polynomials give functions that are zero at

x = −1 and x = 1, but we seek one that has a somewhat straightforward recurrence

of the kind in Equation (E.26). Following Reference [100], we expand f as

f(x) ≈
N−2∑
k=0

f̃k [Tk(x)− Tk+2 (x)] = 2
N−2∑
k=0

f̃k
(
1− x2

)
Uk(x) , (E.33)

where Uk(x) is a Chebyshev polynomial of the second kind. Requiring the approxi-

mation to be exact at the nodes xj = cos
(
πj
N

)
and using the discrete orthogonality

of the second-kind Chebyshev polynomials at these nodes gives

f̃k =
1

N

N−1∑
j=1

f(xj)Uk(xj) , k ∈ {0, . . . , N − 2} , (E.34)

where we have used f(x0) = f(xN) = 0. Then with

Uk(xj) =
sin
[
(k + 1) πj

N

]
sin
(
πj
N

) , (E.35)
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the expansion coefficients f̃k can be found by fast transforms:

f̃k =
1

N
Sk
[
f(xj) cot

(
πj

N

)]
+

1

N
Ck[f(xj)] , k ∈ {0, . . . , N − 2} . (E.36)

The back transform is most easily found from Equation (E.33) taken at the nodes xj,

which upon re-indexing gives

f(xj) =
N−2∑
k=0

f̃kTk(xj)−
N∑
k=2

f̃k−2Tk(xj) = Cj
(
f̃k

)
, (E.37)

where f̃k = f̃k − f̃k−2 for 2 ≤ k ≤ N − 2 and f̃0 = 2f̃0, f̃1 = f̃1, f̃N−1 = −f̃N−3, and

f̃N = −2f̃N−2.

Now, in the same vein as Equation (E.2), we write

N−2∑
k=0

f̃kT
′
k(x)−

N−2∑
k=0

f̃kT
′
k+2(x) =

N−2∑
k=0

f̃ ′kTk(x)−
N−2∑
k=0

f̃ ′kTk+2 (x) (E.38)

and try to find the f̃ ′k in terms of the f̃k. Re-indexing Equation (E.38), applying the

recurrence in (E.23) to the right hand side, and re-indexing again gives

N−2∑
k=0

f̃kT
′
k(x)−

N∑
k=2

f̃k−2T
′
k(x) = f̃ ′0T

′
1(x) +

N−1∑
k=2

f̃ ′k−1

2k
T ′
k(x)−

N−3∑
k=1

f̃ ′k+1

2k
T ′
k(x)

−
N+1∑
k=3

f̃ ′k−3

2k
T ′
k(x) +

N−1∑
k=1

f̃ ′k−1

2k
T ′
k(x) . (E.39)

Recalling T ′
0(x) = 0 and using earlier notation, all the sums can run from k = 1 to
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k = N + 1:

N+1∑
k=1

[(
1− ukN−1

)
f̃k − uk2

(
1− ukN+1

)
f̃k−2

]
T ′
k(x)

=
N+1∑
k=1

[(
1− ukN

) ck−1f̃
′
k−1

2k
−
(
1− ukN−2

) f̃ ′k+1

2k
− uk3

f̃ ′k−3

2k
+
(
1− ukN

) f̃ ′k−1

2k

]
T ′
k(x) ,

(E.40)

from which we extract the recurrence relation

f̃ ′k−3 =
(
1− ukN

)
(ck−1 + 1) f̃ ′k−1 −

(
1− ukN−2

)
f̃ ′k+1

− 2k
[(

1− ukN−1

)
f̃k −

(
1− ukN+1

)
f̃k−2

]
, k = 3, . . . , N + 1. (E.41)

One finds the f̃ ′k by starting (E.41) with k = N + 1, with f̃k and f̃ ′k both zero for

k ≥ N − 1 and f̃ ′N−2 = 0.

Looking at the k = 3 term of the recurrence relation, we have

f̃ ′0 = 2f̃ ′2 − f̃ ′4 − 6
(
f̃3 − f̃1

)
. (E.42)

Thus, the approximation to the derivative takes no contribution from the T0(x)−T2(x)

term in the series (E.33), making this pseudospectral derivative a poor approximation.
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APPENDIX F

CONVERGENCE STUDIES

As this thesis is heavily computational, we attempt to determine the accuracy

of particular measurements in select simulations, and the effects of grid resolution

on number conservation. We find that most measurements are reliable only in a

single significant figure (with one exception), and that temporal resolution is more

important to number conservation than spatial resolution.

F.1 Accuracy of Simulations

To ensure the accuracy of a numerical solution to a partial differential equation,

one typically increases grid resolution until the difference between a simulation con-

ducted on N grid points gives effectively identical results to one conducted on 2N

grid points. Given time constraints and the computationally intensive nature of our

simulations, we are able to perform limited convergence studies for select simulations.

In the cases of the one-pulse simulation in which thold = 12 µs and the two-pulse

simulation in which tev = 40 µs, we use grid sizes of (NR + 1) × Nk × (`max + 1) =

65× 30× 7 and 33× 16× 4. We estimate the maximum value of the absolute error in

the higher resolution simulations to be the difference at a given point in time between

the higher and lower resolution simulations. The adaptive time stepping algorithm

complicates this estimate, though, as the simulations at different spatial resolutions

use slightly different time steps. To calculate the error at a particular value of the time

in the higher resolution simulation, we choose the two temporally nearest points in the
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lower resolution simulation, linearly interpolate them, and evaluate that interpolant

at the value of the time we desire. The difference between this interpolant and the

value of the number of particles in the higher resolution simulation at this point in

time is the absolute error at that time; in the case of the higher bound on error,

we add this difference to the higher resolution simulation’s value of the number of

particles, and subtract it for the lower bound on error. Such is the process by which

Figures 5.64, 5.65, 5.66, 5.95, 5.96, and 5.97 are calculated. Figure 5.13 is calculated

in a similar way, but for different simulations, one of which uses 17×8×2 grid points

and the other uses 33× 16× 4 grid points.

For the single-pulse simulation where thold = 12 µs, we also determine the number

of reliable significant figures in the frequency of atom-molecule oscillations measured

during the hold time. Following Scarborough [112], we calculate the relative error Er

as

Er =
|fhi − flo|

fhi

, (F.1)

where fhi is the frequency measured in the higher resolution simulation and flo is that

measured in the lower resolution simulation. Then

1

Er
= (k + 1) 10n−1, (F.2)

where 1 ≤ (k + 1) < 10 and n gives the number of reliable significant digits. For the

one-pulse simulation we consider, fhi = 1.06 MHz, flo = 1.96 MHz, Er = 0.849, and

n = 1. As the single-pulse simulations use as large a number of grid points of any

simulations we conduct and have well-conserved number, we apply the one significant

figure limit to all frequencies measured in any simulation.

The same procedure is used to find the number of reliable significant figures in
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the fit parameters applied to the collapsing condensates having κ = 0.6. Noteworthy

is that for the ω = 8π × 12.77 Hz cases, the relative error indicates that a single

significant figure is reliable in the coefficient in the power law for the condensate’s

width as a function of time, but the power β itself is reliable to three significant

figures, as β = 1.932 in a simulation using a 33 × 16 × 4 grid and β = 1.918 in a

simulation using a 17× 8× 2 grid.

The procedure for finding the uncertainty in the estimated rethermalization time

tth of the condensate in the one-pulse, thold = 12 µs simulation is different, even though

the calculation of tth uses a power law least-squares fit. In this case, tth is found from

tth =

(
N0

α

)1/β

, (F.3)

where N0 is the number of atoms initially in the condensate, α is the coefficient in the

power law, and β is the power itself. When a quantity is calculated from a function

such as tth with parameters α and β having absolute errors ∆α and ∆β, the error

∆tth in tth is estimated as [112]

∆tth =
∂tth
∂α

∆α+
∂tth
∂β

∆β, (F.4)

which for Equation (F.3) reduces to

∆tth = −
(
N0

α

)1/b [
∆α

αβ
+

ln (N0/α)

β2
∆β

]
. (F.5)

We estimate the absolute errors ∆α and ∆β by taking the differences in α and β as

determined by the higher and lower resolution simulations, and all other parameters

in Equation (F.5) are taken from the higher resolution simulation, leading to ∆tth =
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150 µs.

F.2 Dependence of Number Conservation on Resolution

Finally, we consider the effects of spatial and temporal resolution on number

conservation. The sometimes unphysical behavior of the total number, exemplified

by Figure 5.5, may be due, in part, to insufficient spatial or temporal resolution. We

use the parameters of Section 5.1.2 in exploring this issue, since they allow for quicker

simulations.

Figure F.1 compares the average error in total number for such simulations, where

the spatial grid resolution is varied. We examine three cases: NR = 65, Nk = 32,

lmax = 7; NR = 33, Nk = 16, lmax = 3; and NR = 17, Nk = 8, and lmax = 0, where NR

is the number of center of mass grid points, Nk is the number of noncondensed modes,

and lmax is the index of the highest spherical harmonic Y q=0
l used in the correlation

function expansions. In all cases, the truncation error limit in the adaptive Runge-

Kutta integrator is 10−16. With every spatial grid, the error in total number exhibits

the jagged and seemingly random behavior, nearly machine precision in magnitude,

that we interpret as an indication of a stable and possibly converged simulation.

To compare changes in the temporal resolution, we keep fixed NR = 33, Nk = 16,

and lmax = 3 and vary the truncation error limit. Figure F.2 shows average error in

total number for limits of 10−16, 10−8, and 10−2. Only in the case of 10−16, where

the truncation error is allowed to be no higher than machine precision, does the error

in total number have the desired nearly-zero mean and seemingly random behavior.

For next most stringent case of 10−8, the error is still a tolerable 5 × 10−11 by the

end of the simulation, but is growingly linearly. In the lax case of 10−2, the error

grows faster than linearly and exceeds 0.04 at the end of the simulation. Hence, the
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Figure F.1: Comparison of number conservation for different spatial resolutions. The
solid red curve is the average error in total number for the highest resolution spatial
grid, the dashed green curve is that for a moderate-resolution grid, and the dotted
blue for the lowest resolution. All three perform very well.

temporal aspects of our system, including the integration method and its resolution,

are key to the accuracy and stability of our approximate solutions. These results,

considered in conjunction with those in Figure F.1, suggest that a truncation error

limit of 10−16 may be appropriate for temporal convergence in most cases.
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its. Average error in total number for a given spatial grid, where the adaptive time
integrator’s truncation error is set to (top to bottom) 10−16, 10−8, and 10−2.
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APPENDIX G

COMPLETE HARTREE-FOCK-BOGOLIUBOV CODE

The spherical and cylindrical codes have substantial differences, mainly due to

their different grids and parallelization schemes. Still, each uses some of the same

routines.

G.1 Common Code

The following files are located in the bosenova/ directory.

• ARK.cpp and ARK.h. The files contain adaptive Runge-Kutta integrators.

A single routine is appropriate for numerically integrating a system of ODE’s

where a single function can handle each of the ODE’s right-hand sides; that is,

a single routine calculates dfi

dx
for all i. This approach is appropriate for a one-

dimensional GPE simulation, for example. Another set of routines numerically

integrates a system of ODE’s, like the spherical or cylindrical HFB simulations,

in which some or all ODE’s right-hand sides must be evaluated by different

routines.

• ARK 2.cpp. This file contains the same group of Runge-Kutta algorithms as

ARK.h and ARK.cpp, except for the single routine that handles ODE’s with a

common right-hand side. Rather than the procedural programming approach

of ARK.h and ARK.cpp, ARK 2.cpp implements a templated class appropriate

for the object-oriented parallelization used in the cylindrical code.
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• Contig.cpp has several templated routines for assigning a pointer with up to

fifth-level indirection to a contiguous chunk of dynamically allocated memory.

The result is a multidimensional array, sized at runtime, that is contiguous in

memory. Looping calls to the C++ “new” operator with such a pointer usually

results in non-contiguous memory allocation, which can result in cache misses.

The Message Passing Interface and the HDF5 library, used for writing data to

disk, both expect arrays of any dimensionality to be contiguous in memory.

Contig.cpp does not allow for deallocation of memory.

• ContigArray.cpp accomplishes the same task as Contig.cpp, but using a tem-

plated class. This approach is appropriate for the object-oriented cyldindrical

parallelization, allows for deallocation of memory via the class destructor, and

easily allows for deep copies of multidimensional arrays. This class is somewhat

atypical in that a data member, the name of the multidimensional array, is

public, which makes calls to MPI and HDF5 routines simpler.

• Derivatives.cpp and Derivatives.h contain routines for approximating one-di-

mensional first and second derivatives, assuming box boundary conditions. Fi-

nite difference and sine and Chebyshev pseudospectral methods are available,

and some functions allow for a derivative to be taken over the first of two array

indices. A future revision of these routines should make them templated.

• NRFourier.cpp and NRFourier.h. Fast Fourier transform routines, including

fast sine and cosine transforms, are found in these files. All the routines except

for the Chebyshev transform routines are adapted from Numerical Recipes in

C++ [80]. Adaptations include transformation over the first of two array in-

dices, direct transformation of the C++ complex<typename> datatype without
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repackaging complex<typename> arrays into two separate arrays,1 and modi-

fications for thread-safety.

• Utilities.cpp and Utilities.h contain a random number generator and quadrature

functions from [80], as well as inline functions for separating arrays of type

complex<double> into two arrays of type double.

G.2 Spherical Code

The following files are located in the bosenova/Sphere/ directory and are specific

to the HFB simulation in spherical geometry and symmetry.

• macRun.sh and runSph.sh are bash scripts that compile and run a spherical sim-

ulation on a personal computer or workstation, storing the data in a uniquely-

named directory.

• Makefile compiles the spherical simulation. Much of this code and the bash

scripts mentioned above are particular to the Colorado School of Mines Aca-

demic Computing and Networking department’s Macintosh cluster.

• Parameters.h is the sole user interface file, where physical and computational

parameters are set.

• SphereDriver.cpp makes multi-threaded calls to routines in ARK.h for time

propagation, and calls the initialization functions.

• SphIO.h and SphIO.cpp perform output using the platform-independent HDF5

library, reads output files for initial conditions, and initializes all data structures.

1This ability requires that the compiler and complex number library store a complex number as
two memory-adjacent doubles, real part first, with no other members in the data structure.
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• RHSSph.h and RHSSph.cpp contain the right hand sides of the ODE’s used in

the time integration. The condensed and noncondensed atomic, molecular, and

anomalous fields each have their own routines, and the diagonal parts of the

normal and anomalous fields are calculated by a fifth routine.

• RHSInfo.h defines the data structure which contains all information needed by

the right hand side routines other than the fields themselves.

The directory bosenova/Sphere/VizUtils contains Matlab routines for visualization

and post-processing. Due to differences between versions of Matlab, these scripts and

functions are guaranteed to work only with Matlab version 7.1.0.246 (R13) Service

Pack 3 running under Windows XP on a 32-bit machine.

• GetFields.m is a function that retrieves the atomic and molecular fields and the

diagonal parts of the normal and anomalous densities. The value of each field

at the origin is found by extrapolation.

• GetNoR.m is a function that performs the same task as GetFields.m, but with-

out dividing through by the center of mass grid, and so does not require ex-

trapolation.

• GetNorms.m is a function that performs the same task as GetNoR.m, but re-

turns the squared modulus of the atomic and molecular fields.

• GetNus.m is a function that extracts the detuning from each data file.

• GetParams.m is a function that retrieves metadata such as grids from a simu-

lation’s metadata file.

• GetScales.m is a function that calculates the characteristic time and length

scales from the parameters appearing in the Hamiltonian.



301

• getSteps.m finds the square modulus of the atomic and molecular fields returned

by GetFields.m, and writes these and the diagonal parts of the normal and

anomalous densities to an ASCII file for plotting in gnuplot. getSteps.m also

creates an HDF5 file for use by post-processing routines described below.

• getWidths.m fits the condensate width to a Gaussian and writes an array of

widths to an ASCII file.

• matPlot.m reads all the data and plots it directly in Matlab, for exploratory

purposes.

• octPlot.m reads all the data and plots in directly in Octave, should Matlab be

unavailable.

• pcolorPlot.m, written by Ryan Mishmash, creates contour plots of field data.

• SortDataFiles.m is a function that creates a cell array of filenames, ordered

according to each data file’s “Time” dataset. This function ensures that data

is stored chronologically, in case the data file names are corrupted.

G.3 Cylindrical Code

The following files are located in bosenova/Cyl/, and are specific to the HFB

simulation in cylindrical geometry and symmetry.

• Makefile compiles the cylindrical simulation or the ITR initialization program,

and is mostly specialized to the Golden Energy Computing Organization’s Ra

supercomputer.

• Eqn.cpp implements a templated Eqn<typename> class. Each Eqn object rep-

resents the atomic or molecular field, or the normal or anomalous fluctuations



302

at a particular point in relative momentum space. This class is the central

component of the object-oriented parallelization scheme.

• CylParams.h is the sole user interface, where physical and computational pa-

rameters are set.

• CylDriver.cpp initializes MPI, calls the initialization routine particular to a

cylindrical simulation, and calls the time propagation routine.

• Initialize.h and Initialize.cpp allocate memory and parse CylParams.h.

• ITROnly.cpp is a minimalistic version of Initialize.cpp that has its own main

function, and performs imaginary time relaxation only. ITROnly.cpp is pro-

vided so that the relaxation initialization method, which benefits little from

parallelization, can run on a workstation without MPI.

• Output.h and Output.cpp write data files in HDF5 format, and read the files

created by ITROnly.cpp for initialization.

• TimePropagation.h and TimePropagation.cpp call the routines needed for Run-

ge-Kutta time propagation, and contain all parallelization.

• RHSCyl.h and RHSCyl.cpp have functions for evaluating the right hand sides

of the differential equations for the atomic and molecular fields and the normal

and anomalous densities.

• RHSInfo.h defines the data structure which contains all information needed by

the right hand side routines other than the fields themselves.

The directory bosenova/Cyl/VizUtils contains Matlab visualization routines, guar-

anteed to run only on a particular version of Matlab, as described above. A C++
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program for visualization is included, as well.

• GetMids.m is a fuction that extracts number densities (values at the origin are

found by extrapolation) for a radial slice through the middle of the trap axis,

and for an axial slice about a quater of the way from the origin.

• GetRGrid.m is a function that reads the nonuniform radial center of mass grid

from the simulation’s metedata file.

• getDens.m is a script that takes the densities from GetMids.m and writes them

to an ASCII file for plotting in gnuplot.

• SortDataFiles.m is identical to that in bosenova/Sphere/VizUtils, and exists

here only for convenience.

• POCDump.cpp is a C++ program that reads ρ and z slices of the atomic and

molecular fields and the diagonal parts of the normal and anomalous densities,

computes numbers of each kind of particle and average error in total number

as a functions of time, and writes the results to an ASCII file.

G.4 Post-Processing Routines

Because a simulation can produce hundreds of thousands of data files and several

gigabytes of data, shell scripts and programs for manipulating the files are useful and

are found in bosenova/Tools/. All C++ programs in this directory are particular to

data from a spherical simulation.

• AvgErr.cpp reads the file created by getSteps.m and creates an ASCII file con-

taining the average error in total number as a function of time.
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• PowerSpect.cpp reads the file created by getSteps.m and creates ASCII files

containing data on the numbers of particles as a function of time, and computes

and outputs data for plotting a Lomb normalized periodogram.

• Currents.cpp reads HDF5 files directly and computes velocities of the atomic

and molecular fields. It writes these data to an ASCII file for plotting in gnuplot.

• NumCompare.cpp computes average error in total number as a function of time,

using the trapezoid rule and Simpson’s rule. The result is written to an ASCII

file for plotting and visual comparison.

• ConvNum.cpp computes the error in a high-resolution simulation’s number data

to that of a low-resolution simulation, using the interpolation procedure de-

scribed in Appendix F.

• decimate.sh is a bash script that deletes all but every nth data file, in case a

simulation produced an unnecessarily large number of files.

• pander.sh is a bash script that calls the h5repack utility for a set of files created

on Ra. While the files are perfectly valid, some versions of Matlab are unable

to read them unless this script is run first.

• rename.sh is a bash script that renames data files in a consistent way.


