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ABSTRACT

Negative bias temperature instability (NBTI) is a significant wearout mechanism

responsible for the degradation of crucial device performance characteristics in p-

doped metal-oxide-semiconductor field-effect transistor(pMOSFET)technologies. As

MOSFET dimensions are pushed deeper into the limits of scaling, NBTI is expected

to become an even greater reliability concern due to higher electric fields and greater

amounts of self-heating. For new device architectures such as the FinFET, predictive

modeling of NBTI is both essential to the long-term success of the technology and is

still in its nascent stages of development. This work constitutes a first step toward

establishing a simulation infrastructure for the predictive modeling of NBTI wearout

in the FinFET.

In the following, we consider the effects of NBTI degradation and self-heating

on the threshold voltage characteristics for p-doped silicon FinFET structures using

technology computer-aided design (TCAD) simulation. We employ a two-stage hole

trapping model for NBTI wearout and solve for a coupled set of moment equations

derived from the Boltzmann transport equation on a finite element mesh. For both

two- and three-dimensional FinFET structures, we observe a non-monotonic variation

in the threshold voltage degradation rate not observed in typical NBTI stress exper-

iments on planar MOSFET structures, and we find that monotonicity is restored

for high temperatures and asymmetric stress configurations. We further conclude

that the self-heating of the lattice is significant only for asymmetric stress config-

urations. Finally, we hypothesize that overestimates in the charge carrier velocity

and underestimates in the lattice self-heating contribute significantly to the observed

non-monotonic behavior, and this provides impetus and directions for future work.
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CHAPTER 1

INTRODUCTION

As conventional planar metal-oxide-semiconductor field-effect transistor (MOS-

FET) devices reach their functional limit for dimensional scaling, the semiconductor

industry must employ novel materials and device architectures to continue its trend

toward smaller and faster transistors. With the introduction of new transistor ar-

chitectures comes the need for a new developmental methodology. The existence of

this need can be understood in two ways. First, as the technology delves further into

the nanometer regime, the emergence of quantum mechanical phenomena becomes an

increasingly relevant concern. Second, if the technology is to be considered viable and

manufacturable in the long-term, then it must demonstrate a certain degree of relia-

bility, and the reliability metrics of these novels architectures are still unclear, if not

under-emphasized. This thesis addresses the second issue. Given that the evolution of

the MOSFET up to this point has been based on a standard planar geometry, issues

of performance and reliability analysis could be reduced to understanding how device

behavior conformed to scaling. However, with new potential architectures emerging,

meeting performance standards is not enough; a proper understanding of reliability

must also occur in the nascent stages of device development.

The FinFET structure (Figure 1.1) shows particular viability as a new transistor

model for gate lengths below 20 nm, admitting both relatively easy process integra-

tion and greater control of short-channel effects (SCE). However, the unconventional

geometry of the device raises new questions about process control and calibration, in

addition to performance and reliability. With respect to the latter, one must account

for all three dimensions of the conduction channel and the greater surface area of the

dielectric interface in order to properly model the behavior of the device. Further-
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more, the shorter length scales of the channel raise new questions about electrical

and thermal transport in confined geometries. A particular consequence of the Fin-

FET structure is the emergence of localized hot spots near the drain region of the

device [9]. The localization of heating has important implications not only for carrier

mobility in the channel (and thus device performance) but also for the activation of

intrinsic wearout mechanisms. A precise understanding of the effects of self-heating

on FinFET wearout, under both stress and normal operating conditions, could dictate

design parameters to be implemented in the early stages of development, which would

enhance the lifetime of the device. This work constitutes a first step toward charac-

terizing the nature of self-heating and its effects on a particular wearout mechanism,

namely the negative bias temperature instability (NBTI), in FinFET structures.

Figure 1.1: Generic Tri-Gate SOI FinFET

In the following, we will review several perspectives on charge transport, self-

heating and NBTI wearout in nanostructures, and then demonstrate how the con-

fluence of these previously distinct ideas lends itself to a new way of thinking about

device reliability. In particular, we will discuss the results that have been gathered

so far, their implications, and then what still remains to be done.
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1.1 Moore’s Law and the Need for FinFETs

In 1965, Gordon E. Moore described a trend encapsulating the continuous im-

provement of integrated circuit performance as reflected by the progressive scaling

of the transistor and the increase of on-chip component density. Simply stated, the

prediction set down by Moore maintains that the number of devices on a chip will

quadruple while doubling transistor performance every three years. Miraculously,

this prediction, now commonly referred to as Moore’s law, has provided an accu-

rate roadmap for transistor development and the semiconductor industry. While the

demand for faster and better performing technology has continued to provide much

of the impetus for this innovation, such progress would not be possible without the

ability to circumvent some of the limitations of fundamental physics encountered on

ever smaller length scales [1]. Indeed, until recently, the industry has relied on the

shrinking of the conventional planar MOSFET as the cornerstone of this innovative

drive. Quantum-mechanical tunneling through thin gate oxide layers and from source

to drain (the punch-through effect) as well as the complexity involved in controlling

dopant levels throughout the device are just some of the challenges encountered at

each new technology node. While the essential structure of the planar MOSFET

has remained the same, the employment of additional structures and materials, such

as high-k metal gates, silicon-on-insulator (SOI) design and channel straining, have

allowed the MOSFET to be scaled to smaller than 50 nm. The present smallest

transistor size is 22 nm [1].

Nonetheless, the extent to which the planar MOSFET can be scaled will reach its

practical and theoretical limit at a gate length of approximately 20 nm due to the

gate’s inability to control the channel region of the device. At such length scales, the

electric field between the source and drain regions gives rise to SCE. A new transistor

architecture is required to circumvent these problems. Since the 1980’s, it has been

suggested that a a dual-gate FET, in which two opposite sides of the channel are
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bounded by a gate, is a possible way to extend transistor scaling while still gaining

in performance [1, 5]. By increasing the relative surface area of the gate-channel

interface, the channel of the device is better controlled by the gate potential. This

tighter coupling between gate and channel allows for greater control of SCE with less

reliance on doping, as well as steeper subthreshold slope for better switching per-

formance. Lowered doping has the additional benefit of improving carrier transport

through the channel, as the probability for Coulomb scattering has been reduced, as

well as lowering the local electric field near the drain.

Despite the clear potential advantages of the dual-gate FET, controlling the align-

ment of the two gates has been a significant roadblock to its realization. A fruitful

way to circumvent this problem is to construct a thin vertical channel on a bulk or

SOI substrate and then wrap the gate around the exposed sides of the channel [5]. In

this way, one can have either a tri-gate structure or, if a hard mask is added to the

top part of the channel, a dual-gate structure. This self-aligned transistor structure is

aptly called the FinFET, ‘Fin’ referring to the thin, vertical orientation of the channel

(Figure 1.1). Nonetheless, significant challenges remain. Maintaining uniform chan-

nel thickness while reducing line-edge roughness, controlling the Fin pitch, properly

aligning source and drain regions, optimizing the height of the fin, and determining

the size and placement of contacts and interconnects continue to be on-going problems

for processing. In terms of performance, properly understanding carrier mobility and

scattering, the effects of doping and straining, and the nature of parasitic resistances

and capacitances that arise from the three-dimensional geometry of the device (i.e.,

effects of the corners) are also in their developing stages [2]. Questions of reliability

are also crucial to the success of the FinFET as the next step in transistor scaling

but have, as yet, received less attention.
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1.2 An Overview of Device Reliability

The success of a novel technology not only demands that it meets performance

and processing criteria, but also that it will function properly for a reasonable amount

of time. In order to develop reliability criteria and to predict the useful lifetime of a

device, one must be able to characterize the various defects and wearout mechanisms

that contribute to its failure. Conventionally, for the planar MOSFET, this is done

empirically by stress testing a large sample of devices and fitting their failure data

to a statistical model [6]. It has often been found that for newer technologies, the

results of this stress testing require retroactive changes to processing parameters and

steps, which ultimately complicates manufacturing and reduces yield. Thus in the

early stages of development for novel structures such as the FinFET, it becomes

particularly crucial to be able to predict device reliability behavior concurrently with

performance and process feasibility in order to ensure the device’s long-term viability.

The use of device simulation concurrent with device development and integration

is now common practice in the semiconductor industry [3]. To match the demands of

scaling reflected in Moore’s law, simulation has become an indispensable component

for saving development time as well as resources and cost, allowing for the optimiza-

tion of device parameters and processes. Indeed, the increasing use of simulation to

reduce costs, improve efficiency, and predict the emergence of new phenomena is not

unique to the semiconductor industry. For example, computer-aided-design software

has long been used to streamline and standardize production in construction and

mechanical manufacturing. IBM’s development of deep computing to understand

complex social and biological systems is yet another example of the growing use of

simulation. Likewise, the implementation of “computation thinking” to facilitate

engineering innovation and scientific discovery is the basis for the National Science

Foundation cyber-enabled discovery and innovation program [4]. These examples are

representative of a growing trend of using computational resources to understand
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increasingly complex systems with multiple degrees of freedom.

The simulation and prediction of device reliability requires an understanding of the

physics of semiconductor defects and wearout. Several wearout mechanisms, including

NBTI, depend on the interaction of charge carriers with defects in the semiconductor

structure. Thus, we briefly review the various defect structures that can occur in the

material lattice [34, 35]:

1. Point Defects: Localized, point-like disruptions in the discrete lattice symme-

try.

• Vacancy: the absence of an atom in the lattice.

• Interstitial: the presence of an additional atom in the lattice (occupying

an ‘interstitial’ site).

• Substitutional: the replacement of a regular host atom A by an atom B.

– Antisite: a substitutional defect in which a regular host atom A is

replaced by another host atom B.

• Shallow Impurity: a hydrogen-like point defect characterized by a highly

delocalized wave function extending over many primitive cells.

• Deep Center: point defects characterized by highly localized wave func-

tions and significant lattice relaxation. Their energy levels often occur near

the middle of the bandgap.

2. Line Defects: Extended, line-like disruption in the discrete lattice symmetry.

• Dislocation: the displacement of one or more rows of atoms in the lattice.

• Grain Boundary: a localized lattice region rotated in orientation with

respect to the surrounding crystalline structure.

3. Complexes: small clusters of point defects.
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• Frenkel defect pair: a vacancy-interstitial complex formed by the dis-

placement of a lattice atom to a nearby interstitial site.

The instantaneous failure rate, or hazard function, over time for a given set of

devices follows the distribution given in Figure 1.2, referred to as the bathtub curve.

Early failures (i.e., infant mortalities) occur primarily due to significant manufactur-

ing defects, such as the improper deposition or bonding of materials, the deposition of

excess material causing an errant conduction pathway, or the introduction of foreign

particles during processing. Once these devices have failed, the failure rate levels off

for the useful lifetime of the device. At the end of the distribution, we find that

wearout mechanisms begin to increase the failure rate until 100 percent of the set

has failed. When wearout begins to play a significant role and which mechanisms

dominate the wearout process dictate the stress and normal use conditions for the

device.

Figure 1.2: The Bathtub Curve
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There are several intrinsic wearout mechanisms that contribute to the eventual

failure of a complementary metal-oxide-semiconductor (CMOS) transistor device, and

we describe some of the more significant ones below [6]:

• Negative Bias Temperature Instability (NBTI) refers to the degradation

of threshold voltage and current-voltage (I-V) characteristics of a device due to

the build-up of positive charges at the gate dielectric-channel interface and the

generation of positively charged interface states. This mechanism is thermally

activated and nonlinearly dependent on the electric field in the gate oxide.

• Hot Carrier Injection (HCI) refers to the degradation caused by the scat-

tering of high-energy charge carriers (i.e., charge carriers whose effective tem-

perature is higher than the lattice temperature, called hot carriers) at device

interfaces and out of the channel. HCI typically occurs under high electric fields

or from the impact of high energy radiation, such as alpha particles from cosmic

ray showers [7]. The generation of hot carriers can affect the saturation con-

dition of the device, as well as generate dangling bonds at interfaces (interface

states) and substrate current due to impact ionization.

• Time-Dependent Dielectric Breakdown (TDDB) refers to the formation

of a conduction pathway through the gate dielectric caused by the tunneling of

charge carriers from the channel into the dielectric. This effect is particularly

sensitive to oxide thickness and surface area contact with the channel, as well

as the dielectric constant of the gate oxide material, the gate bias, and the

temperature of the device.

• Electromigration (EMG) refers to the diffusion of metal particles through

back-end-of-line (BEOL) metal interconnects and across material boundaries

due the presence of an electric field and the apparent fluidity of metal particles

assisted by defects, such as dislocations and grain boundaries.
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• Stress-Induced Voiding (SV) refers to the formation of voids in BEOL metal

contacts and structures due to mismatches in stress conditions and thermal

coefficients at material interfaces and grain boundaries.

We can give a general classification to the various wearout mechanisms in semi-

conductor CMOS technology according to the reproducible nature of the degradation

under stress [6]. Parametric mechanisms are those mechanisms that induce the same

degree of degradation for identical structures under identical stress configurations.

Thus, any variability in stress testing is the result of the intrinsic variability of the

device structure. Empirical characterization of parametric mechanisms thus only re-

quires small sample sizes given the degree of control over device processing. HCI,

NBTI and electromigration are examples of parametric mechanisms. By contrast,

structural mechanisms are those mechanisms for which device failure only depends

on a certain region or structure within the device. Empirical characterization of

structural mechanisms requires large sample sizes to determine that the degradation

is structurally systematic. Statistical mechanisms, on the other hand, are classified

by random behavior. Thus, identical structures will not fail in the same way for a sta-

tistical mechanism, but rather according to a random distribution (often a Weibull

distribution [7]), and one is required to use large sample sizes to characterize the

nature of the failure mode. TDDB is an example of a statistical mechanism. The

underlying physics of a particular wearout mechanism determines its deterministic

or statistical nature, and an understanding of the physics behind wearout is crucial

to mitigating its effects. This underscores the need for predictive device reliability

modeling.

Under stress conditions, understanding how the lattice heating of the device af-

fects thermally dependent wearout mechanisms becomes crucial to predicting device

reliability. This is especially so for novel structures like the FinFET, where the ef-

fects of the device geometry on self-heating may not be properly understood. Our
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goal, then, is to provide a qualitative analysis of a particular wearout mechanism in

a FinFET structure with self-heating. In the following, we will examine NBTI degra-

dation, for which a direct physical connection to the self-heating mechanism can be

established semiclassically.

1.3 The Evolving Importance of Self-Heating

For transistor devices deeply scaled beyond the 20 nm regime, the discrete nature

of the atomic structure of the material plays an increasingly important role. When

considering the transport of charge carriers through the device, one must not only

be concerned with the wave nature of the charge carriers and the entailed quantum

mechanical effects, but also with the quantization of lattice vibrations (phonons).

The emission of phonons as electrons and holes scatter off the lattice dictates several

important properties of device operation, including self-heating and switching time

(determined by the saturation velocity) [38]. Conversely, the presence of phonons

can limit electron and hole mobility, as well as activate new dynamic phenomena.

Indeed, the interaction between electrons and phonons is so important that it is

key component of the Bardeen-Cooper-Schrieffer (BCS) theory for superconductivity

[32]. Nonetheless, for our purposes, we will be concerned with how carrier-phonon

interactions affect the NBTI wearout of the device.

When a system is driven out of equilibrium, scattering processes act as pathways

for momentum and energy relaxation, allowing the system to return to an equilibrium

state. For example, phonon emission is often activated during charge transport when

the average kinetic energy of the charges exceeds the average thermal energy of the

lattice [34]. One can observe the macroscopic consequences of phonon emission when

considering a steady state current in a metal in the presence of an external electric

field. This steady state is maintained when the energy gained by the conduction elec-

trons accelerated in the field is transferred to the lattice [8]. There are several different

mechanisms for carrier-phonon scattering, which depend on the band structure of the
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material and the phonon mode participating in the interaction. In general, a three

dimensional lattice such as GaAs and Si can carry acoustic and optical phonon modes,

from which one can distinguish transverse and longitudinal lattice motion.1 Thus, we

will distinguish between four modes: longitudinal acoustic (LA), transverse acoustic

(TA), longitudinal optical (LO), and transverse optical (TO). Each mode involves a

different momentum and energy transition when interacting with electrons.

We can alternatively characterize phonon scattering by comparing initial and final

states. Intravalley scattering processes involve a momentum and/or energy transition

within the same energy level or band. This process can be induced by both acoustic

and optical phonons, as well as by impurity scattering. Intervalley scattering, on the

other hand, involves a momentum and/or energy transition between energy levels

or bands. This process can also be induced by both acoustical and optical phonons

[30, 8]. For intervalley scattering, we can make the further distinction between normal

and Umklapp processes. During normal processes, the electron momentum state

remains in the first Brillouin zone, whereas during Umklapp processes the electron

momentum state is scattered out of the first Brillouin zone [32].

For both polar (e.g. GaAs and InP) and covalent (e.g. Si) semiconductor materi-

als at high temperatures, the dominant pathway for charge carrier energy loss is via

the emission of longitudinal optical (LO) phonons, which then decay into acoustic

phonons through the Klemens’ channel [8]. Due to the non-zero group velocity of

acoustic phonons, as compared to the near-zero group velocity of optical phonons,

acoustic phonons act as the primary means of transferring heat away from the scat-

tering center. However, due to a mismatch in the timescales for the transfer of carrier

energy to LO phonons (on the order of 0.1 ps) and the decay of LO phonons into

acoustic phonons (on the order of 10 ps), a state of thermal nonequilibrium can de-

1Here transverse and longitudinal are used in the typical sense for wave motion. For transverse
waves, the wave displacement is perpendicular to the direction of propagation, while for longitudinal
waves, the displacement is parallel to the direction of propagation.
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velop between optical and acoustic phonon modes under strong electric fields. (A

strong electric field is required to supply sufficient energy for the charge carriers to

activate optical phonon modes.) This “phonon bottleneck” problem may have sig-

nificant implications for charge carrier mobility under high-field transport, as well as

the behavior of thermally dependent wearout mechanisms [9, 10, 11].

Few studies on FinFET reliability have yet been published. Scholten, et al, have

experimentally characterized the effects of self-heating in SOI FinFETS on drain and

drain-gate capacitances, extracting the frequency dependent thermal impedance of

the device [18]. Using pulsed I-V measurements and S-parameter measurements,

they found a significant rise in the device temperature (≈ 80 K) compared to bulk

planar MOSFETs, as well as an increase in thermal impedance at lower signal frequen-

cies. Choi, et al, have investigated both hot carrier effects and NBTI in multi-gate

CMOS FinFETs [19]. They observed a much higher sensitivity of NMOS FinFETs to

HCI, while PMOS FinFETs experienced more significant degradation due to NBTI.

Furthermore, they found that body-tied FinFET structures exhibit less NBTI degra-

dation than SOI FinFET structures due to the presence of a grounded substrate.

More importantly, NBTI degradation is increased for narrower fins, becoming the

most significant limiting factor for device lifetime. Finally, Wang, et al, have tested

the effects of self-heating due to ballistic phonons (i.e., the phonon bottleneck prob-

lem) in 90 nm planar pMOSFETs [20]. They found a higher than expect rise in

channel temperature consistent with the generation of ballistic phonons and observed

that NBTI degradation was significantly enhanced due to the presence of a localized

hot spot near the drain.
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CHAPTER 2

THEORY AND BACKGROUND

The predictive characterization of a reliability phenomena must rely on a sound,

underlying physical model. Below, we discuss the Boltzmann transport equation

(BTE) and its quantum mechanical foundations, which are essential for understand-

ing and modeling the transport of charge carriers in two- and three-dimensional device

geometries. We then discuss approximations (moments of the BTE) that can, and

often must be made, in order to simulate device operation. Additionally, we provide

a brief overview of the microscopic nature of self-heating, as well as of the complex-

ity of its treatment in device simulation. Next, we discuss NBTI wearout in general

and outline a two-stage charge-trapping model founded on the theory of charge cap-

ture in deep level defects by nonradiative multiphonon capture processes. We then

make the case that these models lend themselves to a unified way of understanding

NBTI and self-heating in FinFET structures. Finally, we discuss the finite element

simulation environment, TCAD (technology computer-aided design), and sketch its

implementation for solving the NBTI/self-heating problem for a FinFET structure.

It is important to note throughout this discussion that a certain number of trade-

offs between the computational efficiency of a simulation and the accuracy of the

employed physical models must be made if one is to address such questions in a rea-

sonable amount of time. Indeed, many sacrifices of model accuracy were required for

a converged and reasonably efficient numerical solution. The purpose of this chapter,

then, is to trace a logical path through the hierarchy of approximations that must be

made in order to simulate the FinFET device. It is our hope that this work provides

impetus for the continual improvement of simulating these phenomenon.
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2.1 Nanoscale Transport

Our discussion of FinFET NBTI and self-heating begins with the theory of elec-

tron/hole transport, which will provide the foundation for the set of device equations

characterizing the FinFET’s operation. Indeed, the kinetics of charge carriers and

the dissipative scattering processes that occur in the system dictate crucial device pa-

rameters such as conductivity and current-voltage relationships. Figure 2.1 shows a

schematic representation of the different scaled perspectives with which we can treat

charge transport phenomena. On the left, we have the classical picture, in which

the solid is treated as a smooth background characterized by some macroscopic ma-

terial parameters and transport occurs via a drift-diffusion process [38]. The next

level in the hierarchy gives the semiclassical picture, wherein we treat the discrete

nature of the lattice in an effective way and allow our models to account for more

realistic interactions with the lattice. This regime is modeled almost exclusively by

the Boltzmann transport equation (BTE), which describes the kinetics of a charge

distribution function subject to classical Newtonian fields and effective scattering

processes. This treatment becomes necessary in order to properly model aggressively

scaled devices subject to high electric fields, and it assumes that the phase of the

charge carriers is sufficiently randomized by numerous scattering events. For devices

scaled to the order of the lattice spacing of the material, it becomes necessary to

account for the wave nature of the charge carriers as well as of the lattice vibrations.

In this quantum mechanical regime, represented in the right picture, one must be

concerned with quantum phenomena such as the emergence of discrete energy sub-

bands, phonon and charge confinement effects, and phase coherent transport. Such

quantum mechanical approaches to charge transport include non-equilibrium Green’s

function (NEGF) methods (alternatively, the Kadanoff-Baym formalism), Wigner dis-

tribution functions, and the Kondo method [64, 32]. To facilitate our discussion of

transport phenomena, we will only consider the transport and scattering of electrons
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in semiconductor materials. The transport of holes can be treated in an analogous

manner.

Figure 2.1: Charge transport regimes in solids: classical → semiclassical → quantum
mechanical

2.1.1 Microscopic Foundations: The Quantum Boltzmann Equation

For completeness and to put the subsequent derivations on a firm theoretical

foundation, we begin with a brief discussion of the quantum Boltzmann equation

(QBE) and show how it is related to the semi-classical Boltzmann transport equation.

The QBE describes the quantum transport of charges in solids under electromagnetic

fields and readily includes low-order many-body correlations. It is generally derived

using the nonequilibrium Green’s function (NEGF) formalism, also referred to as the

Kadanoff-Baym formalism, which allows one to directly account for quantum and

nonequilibrium effects due to electromagnetic and phonon field interactions. Mahan

provides two detailed derivations of the QBE for electrons in solids, the first including

interactions with an electric field and the second including interactions with both an

electric and magnetic field [22]. We briefly consider the former case.

The QBE is an equation of motion for the single-particle Green’s function G<.

This Green’s function is defined within second quantization as the correlation of a
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field operator for a single fermion at two different positions and times

G<(r1, t1; r2, t2) = i〈ψ†(r2, t2)ψ(r1, t1)〉 . (2.1)

In order to obtain a quantum distribution function (the Wigner distribution function)

similar to the distribution function satisfying the semiclassical Boltzmann transport

equation,

∂f

∂t
+ v · ∇rf + F · 1

m
∇vf +

(
∂f

∂t

)
s

= 0 , (2.2)

we must make a change of coordinates. Thus, we combine both spatial and temporal

components ri and ti into one spacetime coordinate xi = (ri, ti) and then define an

effective center-of-mass coordinate system

(r, t) = x1 − x2 , (R, T ) =
1

2
(x1 + x2) . (2.3)

We denote the new coordinate dependence of the Green’s function as G<(r, t;R, T ).

Then, a Fourier transform in (r, t) yields

G<(k, ω;R, T ) =

ˆ
d3re−ik·r

ˆ
dteiωtG<(r, t;R, T ) , (2.4)

which can be related to the Wigner distribution function by

f(k, ω;R, T ) = −iG<(k, ω;R, T ) . (2.5)

The distribution f(k, ω;R, T ) satisfies a form of the QBE very similar in structure to

the semiclassical Boltzmann transport equation (2.2) [22]

∂f

∂t
+ v · ∇rf + F ·

[
1

m
∇v + v

∂

∂ω

]
f +

(
∂f

∂t

)
s

= 0 . (2.6)

Once the Wigner distribution function is known, or equivalently the Green’s function

G<, we can compute all single-particle quantities of interest, such as the particle

density, the particle current density, and the energy density [64]. This is an important

feature of the QBE as well as the semiclassical Boltzmann formalism. An integral

over the frequency recovers (2.2) and the semiclassical distribution function

16



f(r, v, t) =

∞̂

−∞

dω

2π
f(mv, ω; r, t) . (2.7)

Indeed, the coarse-grained averaging used to obtain the semiclassical distribution

removes the effects of the Pauli exclusion principle accounted for in the Wigner dis-

tribution function. While similar in structure, there are some important differences

to note between the Wigner distribution function (2.5) and the semiclassical Boltz-

mann distribution in (2.2). First, in the quantum mechanical picture, there is no

relationship between the energy E and the magnitude of the wave vector k, given

that plane waves are not necessarily energy eigenstates. In the semiclassical picture,

this distinction disappears, and the energy is defined implicitly based on the wave

vector k. Second, because the Wigner function is not positive definite, it does not

have a simple physical interpretation, whereas the semiclassical distribution is simply

the number of particles at given spacetime coordinate with a given momentum [64].

2.1.2 Semiclassical Transport: The Boltzmann Transport Equation

The BTE is a kinetic equation that describes the time evolution of a single-particle

distribution function f in six-dimensional phase space (i.e., three-dimensional physical

space and three-dimensional momentum space) in response to the application of an

external perturbation. Solutions to the BTE for a given system contain information

about particle density and current, as well as energy and momentum transfer during

charge transport, and thus f is a fundamental quantity for device simulation.2 For

transport in semiconductors, the Lorentz force (i.e., the existence of external electric

and magnetic fields) typically acts as the external field driving perturbations of the

system. However, in the following we will consider the case where only an electric

field is present.

2f can be said to play an analogous role to the wave function ψ in quantum theory.
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The validity of the BTE, in general, relies on the existence of two well-separated

time scales characterizing, respectively, the duration of each collision τ0 and the mean

time between collisions τ . The latter is related to the mean free path of the particle,

while the former depends on the coupling strength of the interaction constituting

the collision. We thus take collisions to be essentially local and instantaneous, with

τ0 � τ . In practice, this requirement holds for metals and semiconductors [33, 37].

We can justify the semiclassical treatment of charge transport by considering the

quasiparticle description of system excitations. The notion of a quasiparticle origi-

nates from a process of adiabatic continuity, through which we establish a one-to-one

correspondence between the excitations of a system of interacting particles to the

excitations of a system of nearly non-interacting particles. Adiabatic continuity is a

well-known concept in many-body and statistical physics, and therefore the subse-

quent discussion will be general and heuristic. In order to establish such a one-to-one

correspondence, or to connect these systems by adiabatic continuity, we must be able

to start from the excited state of the non-interacting system and turn on the inter-

action slowly enough so that the state occupation numbers do not change. If we

consider the energy of the system and the time for this adiabatic change to be con-

jugate variables, then we must require that the energy ε of the excited state is much

larger than the characteristic rate ξ at which the change occurs, i.e., ε � ~ξ [32].3

This simply requires that we consider excitations at sufficiently short time scales.

Furthermore, adiabatic continuity remains valid so long as the interactions do not

induce transitions between states in the relevant time window, or equivalently that

the lifetime of the state τl is long compared to the characteristic transition time, i.e.,

τl � ξ−1 [32]. Thus, we can relate the distribution functions between the interacting

and noninteracting cases, supposing that we are concerned with a time scale long

enough to establish a well-defined energy state but short enough so that the state

3In general, a factor of exp(−ξt) controls the turning-on of the interaction.
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does not decay. This requirement does not hold for strongly correlated systems. For

weakly correlated systems, the quasiparticles are then the approximate eigenstates

describing the excitation in the interacting system. For an electron gas, the quasi-

particle distribution f satisfies the Boltzmann equation [33]. One may wonder how

an equation originally used to describe weakly interacting, dilute gases can be valid

for an electron gas that is hardly dilute. The resolution of this observation resides in

the screening of the Coulomb interaction between electrons.

Thus within our quasiparticle framework, we define a semiclassical distribution

function f(r,k, t) to be the probability of finding a particle at r and at time t with

momentum ~k. This distribution is semiclassical because we are free to impose an

uncertainty relation on r and k, while we treat the force on the system classically (i.e.,

by Newtonian mechanics) [38]. In the absence of collisions, or alternatively for times

shorter than the lifetime of the particle, we find that the total number of particles in

each state k is conserved [32]. Thus, we can immediately write a general conservation

equation for f

df

dt
+∇r · jk = 0 , (2.8)

where jk = vkf = (~k/m)f is the particle current in k-space under the parabolic

band approximation.4 Then, given that jk is spatially invariant (i.e., independent of

r), and taking the total derivative of f with respect to t, we have

∂f

∂t
+ vk · ∇rf + k̇ · ∇kf = 0 . (2.9)

Here vk = ṙ = (1/~)∇kε(k) is the group velocity for a particle with energy ε(k),

and k̇ is a classical force on the particle, which for an external electric field is simply

k̇ = (q/~)E. To account for the effect of scattering, it suffices to add a nonequilibrium

term

4This approximation is valid for Si in the first Brillouin zone [30].
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Q(f) ≡
(
∂f

∂t

)
collisions

(2.10)

to the right-hand-side of (2.9) [33]. We thus have the full form of the BTE in the

presence of scattering

∂f

∂t
+ vk · ∇rf +

q

~
E · ∇kf = Q(f) , (2.11)

where Q(f) is termed the collision integral. The left-hand-side of (2.11) is often

called the streaming part of the BTE, and describes the unperturbed trajectory of a

particle through the six-dimensional phase space [38]. The collision integral on the

right-hand side of (2.11) captures deviations from this trajectory due to scattering.

The BTE does not obey time-reversal symmetry. Thus, the processes that drive

the evolution of the system are irreversible and consistent with the laws of thermal

equilibrium. Indeed, consistency with the BTE requires that scattering events be

numerous enough for the particles to sufficiently explore phase space, and hence the

trajectories of individual particles are too complicated to be described in microscopic

detail. The BTE allows us to account for the complex dynamics of individual particles

by solving for their average phase space distribution, which is significantly simpler in

principle.

In order to solve the BTE for a given system, we must find an explicit form for the

collision integral that accounts for the scattering mechanisms present in that system.

Since, in the context of this work, we are generally concerned with how charge carriers

interact with the lattice, we will consider Q(f) for electron-phonon interactions in the

Einstein model. (In the Einstein model, we assume that each lattice ion vibrates as a

harmonic oscillator independent of every other ion. This is a rough approximation to

the optical phonon modes [32].) Thus, we consider a general inelastic electron-phonon

scattering event in which a phonon of wave vector ±q interacts with an electron of

wave vector ±k. For the transition of a coupled electron-phonon system from state
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|k〉 ⊗ |q〉 to state |k′〉 ⊗ |q′〉, we denote the transition probability per unit time as

Wk′,k;q′,q. Likewise, we denote the occupation probability for phonon state q as gq.

Note that we are considering the general case of electron-phonon scattering, where

the phonon momentum may not be fully absorbed or emitted by the electron. Then,

for a discrete number of scattering events, the collision integral becomes

Q(f) =
∑

k′,q′,q

[
Wk,k′;q,q′gq′fk′(1− fk)−Wk′,k;q′,qgqfk(1− fk′)

]
, (2.12)

where we have specified the k-dependence of f as fk [37]. In the continuum limit of

k, the collision integral becomes

Q(f) =
V

(2π)3

ˆ
dk′
[
Ωk,k′fk′(1− fk)− Ωk′,kfk(1− fk′)

]
, (2.13)

where

Ωk′,k =
∑
q′,q

[
Wk′,k;q′,qgq +Wk′,k;q,q′gq′

]
=

2π

~
|〈k′q′|Hel|kq〉|2δ(ε(k)− ε(k′)± ~ωq) , (2.14)

and V is the crystal volume. The Fermi-Dirac distribution satisfies the BTE when

the collision integral is zero and, thus, describes systems that are in equilibrium. For

cases where the the Fermi level lies below the conduction band in the band gap, which

is typical for semiconductors, we can apply the principle of detailed balance [33]

Ωk,k′f 0
k′ = Ωk′,kf

0
k , (2.15)

where f 0
k is the Fermi-Dirac distribution. The collision integral is then

Q(f) = − V
(2π)3

ˆ
dk′Ωk′,k′

[
fk − fk′

f 0
k

f 0
k′

]
, (2.16)

We can derive a similar form for Q(f) for charge scattering with impurities in the

lattice, as well as for electron-electron scattering. For semiconductors at room tem-

perature, electron-phonon scattering and impurity scattering dominate over electron-
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electron scattering [38]. Indeed, the Coulomb interaction between pairs of electrons

is effectively screened by other electrons, and the phase space available for scatter-

ing is limited by the Pauli exclusion principle. For devices with reduced dimensions

and high carrier densities, the electron-electron contribution to scattering becomes

more important, although it remains relatively weak compared to the other scattering

mechanisms [37]. It is important to note that the inclusion of scattering induces a

finite lifetime of the quasiparticle states. This is precisely what one should expect

from inelastic process that provide a dissipative pathway for energy and momentum.

We can define a BTE for phonons as well, where we have assumed for simplicity

that the only driving force is a spatial gradient, which maintains consistency with the

Einstein model [32, 33] (
∂

∂t
+ vq · ∇r

)
g(r,q, t) = C(g) . (2.17)

In this case, the collision integral C(g) for electron-phonon scattering in the continuum

limit is the same as in (2.13)

C(g) =
V

(2π)3

ˆ
dk′
[
Ωk,k′fk′(1− fk)− Ωk′,kfk(1− fk′)

]
. (2.18)

Since phonons obey Bose-Einstein statistics, the equilibrium solution to (2.17) is the

Bose-Einstein distribution.

If we consider the full absorption or emission of phonons by electrons while ac-

counting for phonon-phonon interactions with an additional collision term, then the

we can write down the full form of the coupled BTE’s for our electron-phonon system

(
∂

∂t
+ ve(k) · ∇r +

q

~
E(r) · ∇k

)
f(r,k, t) =∑

q

(
W k+q→k
e,q +W k+q→k

a,−q −W k→k+q
e,−q −W k→k+q

a,q

)
(2.19)

(
∂

∂t
+ vp(q) · ∇r

)
g(r,q, t) =

∑
q

(
W k+q→k
e,q −W k→k+q

a,q

)
+

(
∂g

∂t

)
p−p

(2.20)
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where W k+q→k
i,±q denotes the emission or absorption of a phonon of wave vector ±q

respectively, W k→k+q
i,±q denotes the emission or absorption of a phonon of wave vector

∓q respectively, and the final term in (2.20) is the additional phonon-phonon collision

term [9]. We will further discuss phonon-phonon interactions in the next section.

We can perform a rescaling of the BTE (2.11) by introducing characteristic time,

length, and velocity scales given by the average time between scattering events τc,

the length of the device x0, and the thermal velocity of the charge carriers vth =√
3kBTL/m∗, where TL is the lattice temperature and m∗ is the effective mass [24].

The mean free path of the charge carriers is then λc = vthτc. We introduce the

dimensionless scaling parameter λ, referred to as the Knudsen number: λ = λc/x0.

The rescaled form of (2.11) is then

λ
∂f

∂t
+ λ(vk · ∇rf +∇rφ · ∇kf) = Q(f) (2.21)

where we have employed k̇ = −q∇rφ(r), with the electric potential φ(r). This rescal-

ing of the BTE is often called the hydrodynamic scaling. Collisions dominate a system

of carriers at room temperature in a semiconductor, which implies that λ� 1 [24].

For lower temperatures and smaller device dimensions, the validity of the BTE

becomes much more questionable due to the increasing importance of quantum me-

chanical effects. To be able to calculate scattering rates within the Born approxima-

tion, one must ensure that the intermediate time interval over which the distribution

function evolves is much smaller than the collision time τ [37]. For a non-degenerate

semiconductor, this condition can be written as

~
τ
� kBT . (2.22)

Furthermore, when the mean free path approaches the order of the lattice spacing,

λ → a, the validity of the BTE breaks down, and one must resort to a quantum

mechanical treatment of electron transport.
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2.1.3 Device Equations: Moments of the Boltzmann Transport Equation

In practice, it is very difficult to obtain a solution to the BTEs (2.19) and (2.20)

for a realistic semiconductor device [30]. To do this for a three-dimensional structure,

one must solve for the distribution functions f and g over their complete seven-

dimensional domains for a widely varying time scale5 [9, 10]. Circumvention of this

problem requires the implementation of another series of approximations. In order

to simplify our system, we derive macroscopic device equations by taking weighted

integrals over k-space. This procedure effectively reduces the dimensionality of the

problem and is referred to as taking moments of the BTE.

For simplicity, we will consider the form of the BTE (2.11) for some general

collision integral

∂f

∂t
+ v · ∇rf +

q

~
E · ∇kf = Q(f) . (2.23)

A moment is defined simply as the integration of the product of the distribution f

with some weighted quantity Φi over the momentum space of the system

〈Φj〉 ≡
ˆ
d3kΦjf . (2.24)

A general moment of the BTE can then be written as

∂

∂t
〈Φj〉+∇r · 〈v ⊗ Φj〉+

q

~
E · 〈∇k ⊗ Φj〉 =

ˆ
d3kΦjQ(f) , (2.25)

where ⊗ denotes a tensor product [24, 25]. Clearly, (2.25) forms an infinite series of

coupled equations. This is, in fact, a compensation for the information about charge

transport that is lost by integrating over momentum space. Indeed, each moment

depends on quantities from higher order moments, forming an infinite hierarchy of

equations that must be truncated if the problem is to be soluble. Determining how

to truncate and close the system is a difficult problem for device simulation. In

5This variance is due to the mismatch in scattering times between optical and acoustic phonon
scattering as well as impurity scattering, of which the latter possesses its own variance due to defect
and doping densities.
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practice, one takes the first few moments of the BTE and imposes empirically derived

constitutive relations to form a closed system [38]. This will be demonstrated for the

hydrodynamic model below.

To simplify the collision integral Q(f), we employ the much simpler relaxation

time approximation

Q(f) ∼= −
f − f0

τ
. (2.26)

where f0 is the equilibrium distribution, which is simply a Fermi-Dirac distribution,

and τ is a characteristic relaxation time, which is often the scattering time τc. The

relaxation time approximation remains valid for small perturbations away from equi-

librium [33]. Assuming this to be the case, the RHS of (2.25) becomes

ˆ
d3kΦjQ(f) ∼= −

〈Φj〉 − 〈Φj〉0
τΦj

, (2.27)

where τΦj
is defined for each local quantity Φj. The first four weights (j = 0, 1, 2, 3)

typically used in practice are

Φ0 = 1 , Φ1 = p = ~k , Φ2 = ε =
~2k2

2m∗
, Φ3 = vε , (2.28)

where ε is the kinetic energy of the carriers [24]. Then the first four moments are

〈Φ0〉 = n(r, t) ,
1

n
〈Φ1〉 = P (r, t) ,

1

n
〈Φ2〉 = ε(r, t) ,

1

n
〈Φ3〉 = S , (2.29)

where n is the carrier density, P is the average crystal momentum, ε is the average

energy, and S is the energy flux, or Poynting vector. Furthermore, we define v =

(1/n)〈v〉 to be the average carrier velocity. Then, referring to (2.25), the first three

moment equations of the BTE are [25]

∂n

∂t
+∇ · nv = nQn (2.30)

∂(nP )

∂t
+∇ · n〈~v ⊗ k〉 = nQP (2.31)

∂(nε)

∂t
+∇ · nS− nv · qE = nQε (2.32)
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The above system constitutes a simple version of the hydrodynamic equations often

employed in device simulation. Such hydrodynamic models account for energy trans-

ported by the charge carriers and the lattice. By applying the macroscopic relaxation

time approximation (2.27), we can take the collision integrals to be

Qn = 0 , QP = −P
τp

, Qε = −ε− ε0
τε

(2.33)

where we have introduced separate momentum and energy relaxation times and have

assumed that the carrier density does not change from collision processes. Further-

more, we approximate the energy flux S by [24]

nS = −5kBTn
2q

J− κ(Tn)∇Tn , (2.34)

where

J = µkB∇(nTn) + qnµE . (2.35)

Here we have introduced the carrier temperature Tn, the carrier heat capacity κ(Tn),

the carrier current J, and the carrier mobility µ. (2.34) and (2.35) are the phenomeno-

logical constitutive relations required to close the system.6 This model captures the

fact the carrier temperature can deviate from the lattice temperature given suffi-

ciently high electric fields and constitutes a better approximation to the BTE than

drift-diffusion models. The validity of these hydrodynamic models hinges on the exis-

tence of local equilibrium. This is equivalent to the existence of one chemical potential

for all electrons [33]. Thus, we implicitly assume that we can effectively model device

behavior by considering the exchange of energy and momentum between subregions

of the device [38].

An alternate approximation to the BTE can be made by expanding the distri-

bution f in terms of spherical harmonics. Unlike the moment approximations, this

approach does not require the assumption of local equilibrium [38]. First, we consider

6It has been tacitly assumed that we are working within the parabolic band approximation,
which is typical for silicon devices.
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a stationary form of the BTE and write the collision integral in terms of the scattering

probability factors Ωk′,k defined above (2.14), where we assume that electron-phonon

scattering dominates the collision processes:

vk ·∇rf(r,k)+
q

~
E ·∇kf(r,k) =

ˆ
dk′Ω(k′,k)f(r,k′)−f(r,k)

ˆ
dk′Ω(k,k′) (2.36)

Here we have changed the notation, Ωk′,k → Ω(k′,k) and fk → f(r,k), for clarity.

We then expand f as

f(r,k) = f0(r,k) +
ki
k
fi(r,k) +

1

2

kikj
k2

fij(r,k) + . . . , (2.37)

where fij is a traceless tensor, i, j = 1, 2, 3, and summation over repeated indices

is implied. This expansion is equivalent to a spherical harmonics expansion in mo-

mentum space, where a linear transformation relates the factors ki/k to the first

few spherical harmonics [27]. Furthermore, we assume that the scattering rates only

depend on the norm of the wave vectors and expand the scattering probability as

Ω(k′,k) = Ω0(k′,k) +
kik
′
i

k2
Ω1(k′,k) +

3

2

(
kik
′
ikjk

′
j

k4
− 1

3

)
Ω2(k′,k) + . . . . (2.38)

After substituting these expansions into the BTE, matching harmonic terms, truncat-

ing to the lowest two orders i, j = 1, 2, and performing a coordinate transformation

(r, k)→ (r,H), where H = E(k)−qφ(r) is the total electron energy in the conduction

band, we obtain the coupled set of equations

∂

∂ri

(
gλ1vk

∂f0

∂ri

)
+ 3g(H)cop

(
g+(H){N+

opf
+
0 (H)−Nopf0(H)}

− g−(H){N+
opf0(H)−Nopf

−
0 (H)}

)
= 0 , (2.39)

with

fi = −λ1
∂f0

∂ri
(2.40)
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Here, Nop and ~ωop are respectively the optical phonon occupation number and energy,

with N+
op = Nop+1, cop is a parameter related to the optical phonon coupling strength,

g is the density of states with g±(H) = g(H±~ωop), and vk is the group velocity [27].

Furthermore, f±0 (H) = f(H ± ~ωop), and λ1 is the mean free path defined as above

by λ1 = vkτ .

In the following, we will separately employ a hydrodynamic model and a spherical

harmonic expansion (SHE) to simulate charge transport in the FinFET.7 The hydro-

dynamic model has been calibrated against experimental data for silicon, while the

SHE model has been calibrated against 2D Monte Carlo simulations.

2.2 Phonon Scattering and Self-heating

The electron-phonon interaction is fundamental to the emergence of many signif-

icant properties of electronic materials and electronic transport, including electrical

conductivity and saturation velocity. Indeed, at energy scales high enough to excite

optical phonon modes, electron-phonon scattering acts as primary dissipative path-

way for electron energy and momentum [8]. Likewise, phonon-phonon interactions

dictate lattice thermal conductivity and lattice expansion with increasing tempera-

ture. That the origin of such macroscopic solid-state phenomena resides in quantum

mechanics underscores the need to account for quantum-mechanical and semiclassical

phenomena in deeply scaled transistor structures.

2.2.1 Microscopic Foundations

If we consider a lattice in which each lattice ion executes sufficiently small, har-

monic oscillations around its equilibrium position (i.e., assuming the harmonic ap-

proximation), then we can quantize the normal modes of lattice vibration in their

collective coordinates. These quantized modes of lattice vibration, called phonons,

then constitute a collection of simple harmonic oscillators. It can be shown that

7As noted above, the SHE has been truncated up to second order in this work.
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these phonons follow a Bose-Einstein distribution in equilibrium, thereby behaving

like bosonic particles. This approach not only serves as a microscopic model for lat-

tice heating but also provides a convenient and intuitive means of describing electron-

lattice interactions via an effective field theory.

For a three-dimensional lattice, the second-quantized phonon Hamiltonian in mo-

mentum space is given by

Hph =
∑
kλ

~ωkλ

(
b†kλbkλ +

1

2

)
, [bk1λ1 , b

†
k2λ2

] = δk1,k2δλ1,λ2 , (2.41)

where b†kλ and bkλ are respectively the creation and annihilation operators for phonons

of wave vector k in mode λ [32]. The displacement eigenmodes of Hph are

ukλ ≡ `kλ
1√
s

(
b†−kλ + bkλ

)
εkλ , `kλ ≡

√
~

Mωkλ

, (2.42)

where `kλ is the oscillator length, εkλ is the polarization of the vibrational mode, and

M is the mass of the lattice ion [32]. The branch index λ plays a similar role to the

band index for Bloch electron states and distinguishes between optical and acoustic

modes as well as labels the polarization. For n ions per unit cell, it can be shown

that of the 3n possible modes there 3 are acoustic modes and 3(n − 1) are optical

modes [8]. For a given wave vector, k, optical phonons possess an energy higher

than their respective acoustic phonons. The origin of this difference is related to the

relative displacements between neighboring ions. For acoustic modes, neighboring

ions are displacement slightly from one another, and the displacement vector ukλ

(2.42) maintains the same sign between neighboring sites. Conversely, for optical

phonons the displacement vector alternates signs between neighboring sites, and the

energy band never approaches zero. The properties of (2.41) have been used, among

other things, to explain the temperature dependence of the heat capacitance of solids

[33].

Similarly, we can describe the interaction between electron and phonon systems

in momentum space with the second-quantized operator
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Ve−ph =
1

V
∑
kσ

∑
qλ

∑
G

gq,G,λc
†
k+q+G,σck,σ

(
bq,λ + b†−q,λ

)
, (2.43)

where c† and c are respectively the fermion creation and annihilation operators for

the electron field, V is the crystal volume, σ denotes the electron spin, and G gives

the reciprocal lattice displacement with respect to the first Brillouin zone [32]. The

interaction coupling strength g is then given by

gq,G,λ = ie

√
N~

2Mωqλ

(q +G) · εqλVq+G (2.44)

(2.43) describes the scattering of electrons from some initial state |k, σ〉 to a final

state |k+q+G, σ〉 via the emission of a phonon in state |−q, λ〉 or the absorption of

a phonon in state |q, λ〉. Scattering process for which G = 0 are classified as normal

processes. They tend to dominate over the Umklapp processes, for which G 6= 0 [32].

For semiconductors at temperatures higher than the Debye temperature, electron

scattering is dominated by optical phonons, which decay into acoustic phonons via

the Klemen’s channel [38]. This decay pathway originates from the phonon-phonon in-

teraction, which involves the anharmonic terms in the phonon Hamiltonian discarded

in the harmonic approximation. Equivalently, these anharmonic terms contribute to

the renormalization of the phonon frequency, whereby optical phonon transition into

acoustic phonons [32]. The mutual interaction between phonons then accounts for

the finite lifetime of phonon modes, and the anharmonic terms are required to explain

thermodynamic crystal phenomena such as the thermal expansion of solids and the

lattice thermal conductivity.

Phonon dispersion curves help to elucidate the energetic properties of phonons,

as well as distinguish between optical and acoustic modes. Figure 2.2 shows the the-

oretically predicted phonon dispersion curves in the first Brillouin zone for silicon

compared against experimental values. From these dispersion curve, one can calcu-

late the density of states and the group velocity for each mode. In particular, we
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find that the higher-energy optical modes possess flatter, non-zero dispersion curves

compared to the acoustic modes, and this explains their nearly-zero group velocity.

The respective group velocities between acoustic and optical phonon modes, as well

as the disparity in their lifetimes is central to the phonon bottleneck and the its im-

plications for heat transport in aggressively scaled devices. We discuss this further in

the next section. 5.8 Experimental Determination of Phonon Dispersions 67
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Fig. 5.10. Theoretical (lines) and experimental (circles) phonon dispersions, and
density of states, in silicon, from [163]. Letters indicate the points of high symmetry
in the Brillouin zone defined in Fig. 4.4
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Fig. 5.11. Theoretical (lines) and experimental (circles) phonon dispersions, and
density of states, in gallium arsenide, from [163]. Letters indicate the points of high
symmetry in the Brillouin zone defined in Fig. 4.4

The results are in good agreement with theoretical predictions obtained
in [163] by first-principle calculations applying a density-functional theory
(DFT).4 In [163], the energy of a crystal and its gradient are obtained, via

4 Density functional theory. Given an ensemble of electrons subject to an external
potential V (r) and to their mutual interaction, Hohenberg and Kohn [191] have
shown that the expression that yields the electron density as a functional of
V (r) can be inverted. This means that two equal density functions cannot be the
result of different potentials and that all quantities of interest of a many-body
electron system may be obtained if the electron density is known. This is an
enormous simplification of the theoretical problem of finding the properties of a
many-body system, since the density is a function of only one r, and not of as
many positions as particles in the system. DFT has become particularly effective
after Kohn and Sham theorem [249]. According to this theorem, the solution of a
many-body problem, via DFT, can be obtained solving a one-particle Schrödinger
equation with a Hartree term and an (unknown) exchange-correlation term. The
correctness of the solution depends on the quality of the guess for this last term,

Figure 2.2: Phonon dispersion curves for silicon

2.2.2 Monte Carlo Simulation and Nonequilibrium Phonon Distributions

Monte Carlo methods provide an alternate approach to solving the BTE directly,

rather than solving a closed set of macroscopic moment equations derived from the

BTE. Thus one gains a more accurate simulation of sub-continuum phenomena at the

cost of computational efficiency. For modeling charge transport in semiconductors,

Monte Carlo methods simulate the motion of one or more charge carriers under the

action of electromagnetic fields and scattering events. The scattering events and the

free flight of the particle between these scattering events are selected stochastically

based on a generated sequence of random numbers. The trajectory of the particle

is then tracked through phase space over the course of the simulation, and then

a time averaging is used to generate the distribution function f [30]. Thus, Monte
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Carlo methods are better suited for determining the microscopic motion of the charge

carriers. However, the complexity of semiconductor device that one can simulate is

greatly limited by the high computational cost of the method [28, 29].

Much work has been done using Monte Carlo methods to model nonequilibrium

transport phenomena in highly scaled two-dimensional semiconductor structures [10,

9, 14, 15, 52]. In particular, Raleva, et al, have addressed the phonon bottleneck

problem by using a Monte Carlo algorithm to self-consistently solve the electron

BTE coupled to energy balance equations for acoustic and optical phonon modes

in a 2D fully-depleted SOI MOSFET with 25 nm gate length [9]. They found that

electron scattering near the drain generated a significant, localized build-up of optical

phonons, which caused a rise in the effective temperature of the device region. This

hot spot is highly dependent on the energy of scattered electrons and the mean free

path of the optical phonons. For gate and drain bias around 1.0 V, they found the

temperature of the hot spot to rise 100 K higher than the equilibrium temperature

of the device. Indeed these nonequilibrium phonon effects are not accounted for in

drift-diffusion and hydrodynamic models.

It is important to note that obtaining a direct solution to the coupled electron

and phonon BTEs, (2.19) and (2.20), even with Monte Carlo methods. Thus one

must often revert to employing a moment approximation to simplify the phonon

BTE (2.45): (
∂

∂t
+ vp(q) · ∇r

)
g(k, r, t) = C(g) (2.45)

The energy balance equations for acoustic and optical phonon modes can be found

by taking the second-order moments of the phonon BTE and applying the relaxation

time approximation [53]:

Cop
∂Top
∂t

=
3nkB

2

(
Te − Top
τe−op

)
− Cop

(
Top − Ta
τop−a

)
+
nm∗v2

d

2τe−op
(2.46)
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Ca
∂Ta
∂t

= ∇ · (κa∇Ta) +
3nkB

2

(
Te − TL

τe−L

)
+ Cop

(
Top − Ta
τop−a

)
(2.47)

where Top and Ta are the effective temperatures of the optical and acoustic phonon

modes, Cop and Ca are their respective heat capacities, TL is the lattice temperature,

which is often assumed equivalent to the acoustic phonon temperature. κa is the

thermal conductivity of the acoustic phonon system, and the τi−j are the relaxation

times for phonon/lattice interaction. Furthermore, n and m∗ are respectively the

electron density and effective mass. We have again assumed local equilibrium for

subregions of the device. This model constitutes both a semiclassical description of

the Klemens’ channel and an extension of the Fourier diffusion law typically employed

to describe heat generation in solids.

Calculating and storing phonon energy transfer and scattering data is very com-

putationally expensive when coupled with the BTE or moments of the BTE, such as

the hydrodynamic equations [10, 11, 12]. In this work, then, we are severely restricted

on the self-heating model we can employ. Thus, to obtain consistently converged so-

lutions in a reasonably time we have implemented an empirically modified Fourier

diffusion law that accounts for the heating of the lattice due to electron and hole

currents and recombination phenomena.

2.3 Negative Bias Temperature Instability and the Two-stage Model

NBTI is a dominant wearout mechanism in silicon-based pMOSFET structures,

originating from the build-up of positively charged defects within the SiO2 gate di-

electric and the creation of defect states at the Si/SiO2 interface while the device is

in inversion and at elevated temperatures. The aggressive scaling of device dimen-

sions has enhanced the degradative effect of NBTI on key device parameters, namely

threshold voltage Vth, drain saturation current Idsat and transconductance gm. Indeed,

the increase in the importance of NBTI as a reliability concern for scaled devices can
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be attributed to both the nonlinear increase in gate oxide electric fields and operat-

ing temperatures with respect to the device scale, as well as the introduction of new

materials such as dual workfunction polysilicon gates (to account for short channel

effects) and the use of nitrogen in the gate oxide (to control gate leakage current) [7].

NBTI is recognized as a distinct phenomena from other wearout mechanisms such

as TDDB because the build-up of positive charge in the gate dielectric is not due

to injection or tunneling processes. This is supported by the fact that the same

degree of NBTI damage has been measured in both thick and thin gate dielectrics at

similar electric fields. Indeed, the CMOS reliability community generally agrees that

NBTI is caused by the cumulative contribution of two mechanisms: the generation

of interface states caused by the breaking of hydrogen passivated Si-H bonds at the

Si/SiO2 interface and the generation/activation of positively charged defects in the

oxide due to the trapping of holes and/or the trapping of hydrogen that has diffused

into the bulk following interface bond breaking. The latter process of H diffusion is

referred to as the Reaction-Diffusion mechanism. Indeed, the formation of positively

charged defects in the bulk of the gate oxide has been a source of active debate and

disagreement. This is largely due to significant discrepancies in the experimental

literature concerning stress testing methodology and device structure and material

parameters [7]. This disagreement is further complicated by the recoverable nature

of NBTI degradation. Given sufficient time following an NBTI stress, one finds that

degraded device parameters such threshold voltage will show a gradual return to their

pre-stress values. This then requires a physical model that can consistently explain

both degradation and fractional recovery phenomena. More disagreement exists as

to whether recovery can be attributed to the detrapping of holes in the gate oxide or

the repassivation of dangling bonds due to the backward diffusion of hydrogen.

Grasser, et al, have proposed a two-stage model for NBTI based on the switching

behavior of neutral oxygen vacancies (E′-centers) at the Si/SiO2 interface and the
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formation of permanent, positively charged trap states (Pb-centers) [24]. This model

is phenomenologically motivated by the observation of a broad scalability in NBTI

data for large ranges of stress voltages and temperatures. In particular, they find that

data for threshold voltage degradation versus time for various stress configurations

and stress times, and for a variety of different device technologies, can be mapped

onto one another by multiplication of a simple scaling factor. Accordingly, this implies

that NBTI degradation is not the result of two independent dynamical processes, par-

ticularly the generation of interface states in the Reaction-Diffusion (RD) framework

and the trapping of holes via elastic tunneling, as conventionally thought but, rather,

by the existence of a two tightly coupled mechanisms. Indeed, they invalidate the

RD framework based on the claim that it cannot accurately account for the dynamics

and bias-dependence of NBTI recovery after stress. Likewise, the elastic tunneling of

holes into preexisting defects fails to capture the broad scalability of the experimental

data, as well as incorrectly assumes a linear dependence on the stress field and an

independence to temperature.

The two-stage NBTI model proposed by Grasser, et al, has been shown to over-

come these shortcomings [24]. This semi-empirical model is based microscopically

on the trapping of holes in deep level defects (E′- and Pb-centers) via multiphonon

emission (MPE) and multiphonon-field-assisted tunneling (MPFAT) processes ( non-

radiative capture processes). It accounts for the nonlinear-bias-field dependence and

the thermal activation of NBTI degradation, as well as provides a consistent way of

addressing the asymmetry between degradation and recovery times [24]. In particular,

the properties of the E′- and Pb-centers justify the central role played by nonradiative

capture processes in NBTI degradation.

The E′-center is a neutral oxygen vacancy (an Si-Si dimer) commonly found in

amorphous SiO2 and at Si/SiO2 interfaces due to lattice mismatching. Experimen-

tal evidence has demonstrated that the E′-center acts as a precursor state for hole
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trapping, which forms a positively charged E′γ-center after hole trapping and lattice

relaxation have occurred [35]. The defect energy level for the E′-center is typically

found around 1 eV below the Si valence band, classifying it as a deep level defect

state. The E′γ-center can also act as a recombination center, capturing an electron

and neutralizing the defect. That hole emission and electron capture are equivalent

processes points to the switching nature of the E′-center. Thus, holes can be trapped

and detrapped, and the intermediate neutral state following hole emission can relax

into the initial dimer precursor state. This behavior accounts for the recoverable as-

pect of NBTI phenomena. The two-stage model then elevates the role of the trapping

center from a purely parasitic component to the central dynamic state responsible for

NBTI [24]. After a considerable number of holes have been trapped, the accumula-

tion of positive charge enhances the creation of poorly recoverable Pb-centers via the

transfer of hydrogen used to passivate dangling bonds. (Pb-centers are dangling bonds

at the Si/SiO2 interface.) The formation of poorly recoverable defects then accounts

for the asymmetry between stress and recovery times. Thus, we can understand the

two stages of the NBTI model: The first stage is the recoverable component and

involves the trapping and detrapping of holes in neutral oxygen vacancies, while the

second stage is the permanent degradation component and involves the formation of

dangling bonds at the interface.

2.3.1 Microscopic Foundations: Defects and Nonradiative Capture Pro-
cesses

NBTI is a thermally activated and electric-field dependent phenomena. In order

to capture this dependence, a two-stage model for NBTI has been proposed based on

the dynamics of oxygen vacancies (E′-centers) at the Si/SiO2 interface [24]. Below we

review the theory of nonradiative charge capture by multiphonon emission (MPE) in

deep level defects (e.g. E′-centers), which is central to the two-stage NBTI model. For

simplicity, we discuss the case of electron capture, while hole capture can be treated
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in an analogous way.

It is generally recognized that electron capture by a defect can occur in four

ways: (1) the electron transitions to the defect state by emission of a photon (photon

capture), (2) inelastic electron-electron collisions cause one the electrons to lose energy

and fall into the defect state (Auger capture), (3) the electron transitions through a

series of closely spaced energy levels, emitting a phonon at each transition (Cascade

capture), and (4) the electron emits multiple phonons as it transitions directly to the

defect state (multiphonon emission capture - MPE). Capture processes (2), (3) and

(4) are referred to as nonradiative transitions, as no photons are emitted during the

process. For capture in deep level defects in the silicon bandgap, only multiphonon

emission agrees with current experimental data [56].

A nonradiative transition via MPE requires that a free or weakly bound electronic

state crosses with the bound electronic state of the defect (Figure 2.3). Such a crossing

can occur for sufficiently large displacements of the lattice, as the energy level of the

defect is largely dependent on the positions of its neighboring atoms in the lattice.

Following the work of Huang and Rhys, we can describe the relative position of the

defect level with respect to the free state with a single canonical lattice coordinate,

Q. The Hamiltonian for the interacting two-level electron-lattice system is given by

H = He +Hel +Hl , (2.48)

where He is the electronic Hamiltonian at Q = 0, Hel is the electron-phonon in-

teraction Hamiltonian, describing the change in the potential well depth at Q, and

Hl is the lattice Hamiltonian describing the vibrations of the lattice around Q = 0

[56]. Assuming linearity of the electron-phonon interaction and using s to label the

vibrational modes, we can write Hel as

Hel(x,Q) =
∑
s

us(x)Qs , (2.49)
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where us(x) is a linear coefficient describing the change in the potential-well depth

at Q for electronic coordinate, x. Likewise, we can write Hl in the harmonic approx-

imation as

Hl =
∑
s

1

2

(
− ~2 ∂2

∂Q2
s

+ ω2
sQ

2
s

)
, (2.50)

where ωs is the phonon frequency [56, 57, 58].






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 

Figure 2.3: Nonradiative MPE capture process coordinate diagram

Away from level crossings, we assume that the electronic states are well-separated

and, hence, follow the lattice adiabatically [56, 58]. That is, in light of the fact that

the lattice ions possess a much larger mass than the free electrons, we assume that

the electronic wave functions are unaffected by the motion of the lattice. Thus, we

employ the adiabatic approximation to address the coupling of the electronic system

to the lattice, writing the total wave function of the system as

φin(x,Q) = ϕi(x,Q)Xin(Q) , (2.51)

or alternatively in Dirac notation,

|in〉 = |i〉|n〉 , (2.52)
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where i denotes the electronic state and n denotes the vibrational state and vibrational

quantum number. Thus, ϕi is the electronic wave function and Xin is the vibrational

wave function respectively satisfying the following eigenfunction equations

[He(P, x) +Hel(x,Q)]ϕi(x,Q) = Wi(Q)ϕi(x,Q) (2.53)

[Hl(P,Q) +Wi(Q)]Xin(Q) = EinXin(Q) . (2.54)

Here, Wi(Q) acts as an additional potential seen by the lattice, accounting for the

effects of the electron-lattice interaction [57].

Note that the validity of adiabatic approximation requires that the energy of the

transition is large compared to the rate of change, or equivalently when kbT � ξ.

Henry and Lang have observed that this approximation breaks down near the level

crossing [56]. This can be understood conceptually by considering the behavior of

the transitions as the lattice approaches the crossing point, Q→ Qc. Above, we have

assumed that the coupling between free state and the bound defect state is infinitesi-

mal in order to treat the system perturbatively. However, near Qc the electronic wave

function must completely transition from a free state to a bound state within a small

fraction of vibrational period. This violates the assumption of infinitesimal coupling

between free and bound states. (Breakdown occurs at approximately ε ≈ 0.06 eV

away from the level crossing [56].) Indeed, this breakdown in the adiabatic approx-

imation near the level crossing is a signature of electron capture in the defect state

[60].

Our point of departure from treating a general distribution of phonon modes is

to assume that the electron-phonon interaction involves only a single frequency, ω0.

Then to linear order we can approximate Wi(Q) as

Wi(Q) = W 0
i −

∑
s

(ω2
0∆is)Qs , (2.55)

where ω2
0∆is can be obtained by first-order perturbation theory as [57]
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ω2
0∆is = −

ˆ
dx ϕ∗i (x)us(x)ϕ(x) (2.56)

Then, shifting the origin of Qs by ∆is, we introduce a change in coordinate Qis =

Qs −∆is, changing equation (2.54) to[
Wi +

∑
s

1

2

(
− ~2 ∂2

∂Q2
is

+ ω2
0Q

2
is

)]
Xin(Q) = EinXin(Q) . (2.57)

Here

Wi = W 0
i − Ei

LR and ELR =
∑
s

1

2
(ω0∆is)

2 = S~ω0 (2.58)

The new coordinate Qis then gives the shift in the lattice equilibrium point to ∆is,

representing the effects of lattice relaxation [57]. Note that the relaxation of the

lattice depends only on the electronic state i and reduces the energy of the system by

Ei
LR. Here S is the Huang-Rhys factor giving the number of phonons vibrating with

frequency ω0. Thus, the lattice relaxation energy is equivalent to the phonon energy.

That is, the energy lost by an electron captured in a deep level defect is carried away

by a distribution of phonons. That these phonons constitute a set of independent

harmonic oscillators allows us to write the eigenvalue Ein as

Ein = Wi +
∑
s

(
ns +

1

2

)
~ωs (2.59)

Now, implementing the Dirac notation ascribed in (2.52), we can calculate the

matrix element for the nonradiative transition as

〈jn′|H|in〉 =

ˆ
dxdQ ϕj(x,Q)Xjn′(Q)Hϕi(x,Q)Xin(Q) (2.60)

Based on this matrix element and using Fermi’s Golden Rule, we can calculate the

transition rate for electron capture with

Γ =
2π

~
Aνn
∑
n′

|〈jn′|H|in〉|2δ(Ejn′ − Ein) , (2.61)

where Aνn is a statistical average over the phonon distribution in some initial state

i, and the summation is performed over the final phonon states n′ [44, 45, 57] .
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Employing the adiabatic approximation from (2.51), we find

〈jn′|H|in〉 =

ˆ
dQXjn′(Q)Lji(Q)Xin(Q) , (2.62)

where

Lji(Q) =− ~2

2

∑
s

ˆ
dx ϕj(x,Q)

∂2

∂Q2
s

ϕi(x,Q)

− ~2
∑
s

( ˆ
dx ϕj(x,Q)

∂

∂Qs

ϕi(x,Q)

)
∂

∂Qs

(2.63)

is the nonadiabaticity operator [57, 58].

The zeroth order eigenvalue of He is given by a perturbative expansion as

Heϕ
0
i (x) = W 0

i ϕ
0
i (x) (2.64)

The ϕ0
i form a complete orthonormal basis |i〉 allowing us to separate diagonal and

nondiagonal terms in the electron-phonon Hamiltonian Hel by resolution of the iden-

tity [57]:

Hel =
∑
i,j

|i〉〈i|Hel|j〉〈j| =
∑
i

|i〉〈i|Hel|i〉〈i|+
∑
i

∑
j 6=i

|i〉〈i|Hel|j〉〈j|

= HelD +HelND (2.65)

Since HelD does not affect the zeroth order electronic wave function ϕ0
i , but rather is

simultaneously an eigenfunction of He +HelD with eigenvalue W 0
i + 〈i|Hel|i〉, we take

HelND as a perturbation to the electronic system. Thus, to first order we have

ϕi(x,Q) = ϕoi (x) +
∑
k

〈k|HelND|i〉
W ′
i (Q)−W ′

k(Q)
ϕok(x) , (2.66)

where

W ′
i (Q) = W 0

i + 〈i|Hel|i〉 . (2.67)

Henry and Lang have demonstrated an elegant relationship between the transition

rate for MPE electron capture and the line shape for radiative capture, and they use
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this to give an approximation for the capture cross section σc in the high temperature

limit [56]. The capture cross section is related to the transition rate Γ by

σc =
V
vth

Γ , (2.68)

where V is the crystal volume and vth is the thermal velocity. Near the level crossing,

they assume that the electronic states become independent of the lattice coordinate

Q. This allows them to define the transition rate Γ for electron capture as

Γ =
2π

~
|〈i|∆V |j〉|2

(
Aνn
∑
n′

|〈n′|n〉|2δ(Ejn′ − Ein)
)

(2.69)

where ∆V is a small perturbation to a stationary potential, accounting for the po-

tential V (x,Q) in the electronic Hamiltonian He:

V (x,Q) = V (x,Q0) + ∆V (x,Q) = V0 + ∆V (2.70)

They then consider, within the Condon approximation, the rate for a radiative capture

process through which light is radiated with an energy hν:

Γrad =
2π

~
ρrad|〈i|Hrad|j〉|2

(
Aνn
∑
n′

|〈n′|n〉|2δ(Ejn′ − Ein − hν)
)

(2.71)

Noting that ρrad|〈i|Hrad|j〉|2 ∼= (hν)3 and defining the line shape to be

f(hν) = Aνn
∑
n′

|〈n′|n〉|2δ(Ejn′ − Ein − hν) , (2.72)

they conclude that the transition rate for a nonradiative process is given by

Γ =
2π

~
|〈i|∆V |j〉|2f(0) . (2.73)

In the limit of large S, i.e., for a system with a large number of phonons, f(hν) can

be approximated by a Gaussian:

f(hν) ∼=

√
1

2πS(~ω)2(2n0 + 1)
exp

[
− (hν +Wi −Wj + S~ω)2

2S(~ω)2(2n0 + 1)

]
(2.74)

where

n0 = [e
~ω

kBT − 1]−1 (2.75)
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is the Bose-Einstein distribution for an equilibrium system of phonons. Then, for

high temperatures n0 → kBT/~ω, and we find that the transition rate becomes

Γ = Ae
− Eb

kbT , (2.76)

where

A =

√
4πEb
kBT

|〈i|∆V |j〉|2

~(Wi −Wj + S~ω)
(2.77)

and

Eb =
(Wj −Wi − S~ω)2

4S~ω
. (2.78)

Then, the capture cross section (2.68) is

σc =
V
vth

Ae
− Eb

kbT . (2.79)

Thus, we find a simple Arrhenius equation for the capture cross section of an MPE

process for high temperatures [56, 57, 58, 61]. This exponential form has important

implications for the two-stage NBTI model discussed in the next section. In partic-

ular, it accounts for the observed temperature activation of charge trapping and the

associated NBTI degradation.

Nonradiative MPE transitions can also be assisted by electric fields. This can un-

derstood physically by considering that the presence of an electric field can decrease

the relative separation between the conduction and defect energy levels, thereby low-

ering the barrier for charge capture. Ganichev, et al, have demonstrated that the

probability for such a transition has a similar Arrhenius form as in (2.76), while ac-

quiring a field-dependent factor exp(E2/E2
c ), where Ec is a characteristic field value

[62]. This extension of the MPE process is called the multiphonon-field-assisted tun-

neling (MPFAT) mechanism [24].
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2.3.2 Two-stage Negative Bias Temperature Instability: The E′/Pb Switch-
ing Trap Model

  
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 
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

Figure 2.4: Two-stage NBTI model [39]

As discussed in the introduction to this section, we can classify four states in-

volved in the two-stage NBTI model: (State 1) neutral oxygen vacancy, or Si-Si

dimer precursor, (State 2) positively charged E′γ-center following hole capture, (State

3) intermediate neutral defect following hole emission from State 2, and (State 4)

positively charged interface, or dangling bond, state following hydrogen transfer [24].

We can model the dynamics of this four-state system by considering a coupled set of

rate equations for the occupation probability fi for a state i = 1, 2, 3, 4:

∂f1

∂t
= −f1k12 + f3k31 (2.80)

∂f2

∂t
= f1k12 − f2k23 + f3k32 − f2k24 + f4k42 (2.81)

∂f3

∂t
= f2k23 − f3k32 − f3k31 (2.82)

∂f4

∂t
= f2k24 − f4k42 (2.83)
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Here the kij are the transition rates from state i to state j, and
∑

i fi = 1. The

transition rates kij for pairs of i, j = 1, 2, 3, with i 6= j, are proportional to the

capture cross sections σ from the nonradiative MPE and MPFAT processes in the

high temperature limit given above [56, 57]. Thus, we find a semi-empirical transition

rate for holes similar to the Shockley-Read-Hall equations given by

kcp = pvthp σpe
−x/xp,0e−β∆Eθ(EV T , e

−βEV T , 1)eF
2/F 2

c (2.84)

kep = pvthp σpe
−x/xp,0e−β∆Eθ(EV T , e

−βEV F , eβETF ) (2.85)

where p is the hole concentration, vthp =
√

8kbT/πm is the hole thermal velocity, x is

the distance away from the interface, xp,0 is a characteristic hole tunneling distance,

β = 1/kBT , ∆E is the MPE energy barrier, F is the applied electric field, and Fc

is the reference electric field for the MPFAT process [24]. Furthermore, we have

employed the notation Eij = Ei − Ej and

θ(E, µ, ν) =

{
µ E ≥ 0

ν E < 0
(2.86)

Then EF , EV , and EC are respectively the Fermi level in the channel, the valence band

at the interface, and the conduction band at the interface. For Si/SiO2, σp ≈ 3×1014

cm2, xp,0 ≈ 0.05 nm, and Fc ≈ 2.83 × 106 V/cm. Using the notation k(trap level,

MPE barrier ∆E, MPFAT reference field), we can then write the transition rates kij

between the states i, j = 1, 2, 3 as

k12 = kcp(ET ,∆EB, FC) (2.87)

k23 = kep(E
′
T ,∆EC , 0) (2.88)

k32 = kcp(E
′
T ,∆EC , FC) (2.89)

k31 = ν1e
−β∆EA (2.90)

where ν1 ≈ 1013 Hz is the attempt frequency for thermally-activated transitions over

energetic barriers [24]. ET is the energy level of the trap state 1, and E ′T is the energy

level for trap states 2 and 3, which is distinct from ET due to lattice relaxation.
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Furthermore, ∆EA, ∆EB, and ∆EC are the MPE barriers associated with state 3-1

transitions, state 1-2 transitions, and state 2-3 transitions respectively. We likewise

assume that transitions between states 2 and 4 are thermally activated and thus given

by the Arrhenius type equations:

k24 = ν2e
−β(∆ED−E2−γF ) (2.91)

k42 = ν2e
−β(∆ED−E4−γF ) (2.92)

Here ν2 ≈ 5.11× 1013 Hz is the attempt frequency and ∆ED is the MPE barrier for

state 2-4 transitions, E2 and E4 are the trap levels for states 2 and 4, respectively,

and γ ≈ 7.4× 10−8 cm/V.

In order to obtain macroscopic quantities of interest, in this case the number of

holes trapped at the interface Nit and in the oxide Nox as well as the total charge

trapped at the interface Qit and in the oxide Qox, we take moments of the state

occupation probabilities fi, in principle similar to the moments method employed in

deriving macroscopic equations from the BTE. Thus, we have

Nit(t) = 〈f4(t)〉 , (2.93)

Nox(t) = 1− 〈f1(t)〉 , (2.94)

Qit(t) = q〈f4(t)(1− fit(t)〉 , (2.95)

Qox(t) = q〈(1− x/tox)(f2(t) + f4(t))〉 , (2.96)

where the moment is defined as

〈f〉 = N

ˆ
dΩfg(Ω) . (2.97)

Here N is the number of defects, g(Ω) is a weight function giving the joint probability

density, and we have averaged over the set of random variables Ω:

Ω = (x,ET , E
′
T ,∆EA,∆EB,∆EC ,∆ED) . (2.98)

Each defect is then defined by a unique configuration of Ω [24]. The change in Qit

and Qox over time,
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∆Qµ(t) = Qµ(t)−Qµ(0) , (2.99)

gives the shift in threshold voltage over time ∆Vth(t) according to

∆Vth(t) = −∆Qox(t) + ∆Qit(t)

Cox

, (2.100)

where Cox is the capacitance of the gate oxide. Often one measures the change in the

drain current I with respect to a reference time tref to extract the shift in threshold

voltage [7]:

∆Vth(t) = −I(t)− I(tref)

gm(t)
, (2.101)

where gm(t) = ∂I/∂V is the transconductance extracted from I-V measurements.

This is the commonly employed on-the-fly method for NBTI measurements. We will

employ this method to calculate ∆Vth(t) from an NBTI simulation utilizing the two-

stage model.

2.3.3 The Reaction-Diffusion Framework and Unified Reliability Models

We have chosen the two-stage NBTI model over a reaction-diffusion model because

of its direct generalizability to more accurate phonon interactions and scattering

processes not available in a typical RD framework. Not only does the nonradiative

capture by MPE process serve as the foundation for two-stage NBTI, it also provides

a consistent framework for understating 1/f noise and, more recently, TDDB in high-

k gate dielectrics [42, 43]. Indeed, such an approach lends itself to a more unified way

of thinking about reliability phenomena and may provide an avenue for predictive

reliability analysis in novel nanostructures.

There are a few possible limitations to the two-stage model. According to Ma-

hapatra, et al, the long-time behavior of NBTI degradation has not been predicted

or verified with the two-stage model, nor with other, similar well-based models [21].

Indeed, it has been shown that long-time behavior of NBTI degradation is domi-
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nated by H diffusion in the dielectric, which the R-D framework accurately captures.

Furthermore, the two-stage model has failed to accurately reproduce experimental

signatures for the duty cycle and frequency dependence of NBTI degradation under

AC stress. This is due, in part, to the calibration of adjustable parameters in the

two-stage model, which the RD framework does not rely on. Finally, the inclusion

of the effects of process variability on NBTI degradation is not explicit for the two-

stage model, whereas the RD framework can phenomenologically accommodate such

effects. Nonetheless, it possible to incorporate the physics of hole trapping described

by the two-stage model into the R-D framework to understand the contributions of

deep-level defects and H diffusion during NBTI stress [21].

2.4 The Finite-Element Simulation Environment and Negative Bias Tem-
perature Instability Stressing

For this work, we have employed Sentaurus TCAD to solve a coupled set of hy-

drodynamic and thermodynamic device transport equations along with the two-stage

NBTI model for a two-dimensional and three-dimensional FinFET structure. In gen-

eral, TCAD simulation uses a finite element routine to solve a discretized set of de-

vice equations on a refined finite element mesh. In particular, the Senaturus TCAD

structure is multi-functional, and has been used to build the geometric structure of

the FinFET devices with prescribed material parameters, to generate an appropriate

mesh, and to solve for two separate transport equation sets accounting for NBTI. In

the following, we will give an overview of this simulation environment, emphasizing

the structure of the NBTI simulation.

The finite element mesh is generated by a Delaunay triangulation algorithm. This

algorithm is particularly suited to handling corners and material boundaries in device

structures. An example mesh is given in Figure 2.5 for the 2D FinFET structure will

consider in this work. Here, the mesh has been refined such that a high concentration

of nodes exists near material boundaries and at regions of high charge transport.
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Information about material parameters and boundaries is contained on the discrete

mesh, and continuous solutions are obtained by interpolation methods.

Figure 2.5: Example finite element mesh for 2D FinFET structure

SDevice is the primary simulation component of Sentaurus TCAD that has been

employed in this work, and provides a variety of numerical solvers based on the

discretized device structure. SDevice, then, is used to find self-consistent solutions

to a variety of device phenomena, including NBTI. For this work, we use SDevice to

solve, separately, the hydrodynamic and SHE models coupled to the two-stage NBTI

model and a self-heating equation. This heating equation is an empirically modified

Fourier diffusion equation that accounts for the increase in lattice temperature due

to electron and hole currents as well as generation and recombination phenomena.

The programs TecPlot and Inspect, which are part of the Sentaurus package, have

been used to render device images and data plots, respectively.
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2.4.1 Simulating Negative Bias Temperature Instability

The NBTI simulation consists of three parts run successively with SDevice. These

parts will be referred to as the prestress, the stress, and the relaxation phases of the

simulation. In the prestress phase, a quasistationary simulation8 is run in which the

gate and drain are ramped to their initial values, Vg = −0.3 V and Vd = −0.05 V, and

the initial density of precursor trap states (state 1) is set, N0 = 5.0 × 1012 cm−2. A

transient simulation is then run which characterizes the transconductance gm of the

device. A second transient simulation follows, which evolves the NBTI degradation

of the system for 10−3 s, and the data from this last step sets the initial conditions

for the stress phase.

During the stress phase, a quasistationary simulation ramps the gate and drain

biases and the ambient device temperature to their stress condition values. For this

work, we consider two stress configurations. The first is a symmetric stress, in which

the source is grounded, the drain is held at a low, near-zero negative voltage (i.e., the

prestress value), and the gate is set to a larger negative voltage. This is the standard

stress configuration for measuring NBTI degradation. The second configuration is

asymmetric, in which the drain is ramped to the same bias as the gate over the

course of the stress. This stress configuration is typical in analog ICs. Following the

quasitationary ramp, a transient simulation runs over the stress time and solves for

the two-stage NBTI trap states coupled to the device equations. Thus, the transient

simulation accounts for NBTI degradation of the device parameters. For this work,

we have considered the short-time behavior of NBTI degradation. Thus the transient

8Sentaurus TCAD distinguishes between two types of simulation which can be run under the
same command file. A quasistationary simulation solves the coupled device equations while iterating
through a virtual time parameter. During such a simulation, the device is brought to a steady-state
according to specified electrical and thermal boundary conditions. The quasistationary simulation
is often used to set the initial conditions of the second type of simulation, a transient simulation.
During a transient simulation, the state of the device is allowed to evolve with time for a given set
of boundary conditions. Thus, the simulation solves the coupled device equations while iterating
through real time.
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stress runs for 1 s. The transient simulation data is then read into the relaxation

phase of the NBTI simulation.

During the relaxation phase, the gate and drain are ramped back down to their

prestress values, and a transient simulation calculates the fractional recovery of NBTI

degradation as the trap states relax. This transient simulation is run for 103 s to cap-

ture the asymmetry in degradation and recovery times. A schematic representation

of this simulation flow is given in Figure 2.6.

© 2011 IBM Corporation4

NBTI Results

Simulation results include plots of Vt change over stress time 
(left) as well as during relaxation between stress pulses (right)

t0

tS
tR

Figure 2.6: Heuristic NBTI simulation steps

We implement two transport models: the hydrodynamic equations and the SHE

of the Boltzmann transport equation. These are coupled to the Poisson equation,

the thermodynamic self-heating equation, and the two-stage NBTI model. The SHE

serves as a better approximation to the high energy tail of the charge carrier dis-

tribution and has been calibrated for silicon against Monte Carlo simulation. Its

computational cost is far higher than that of the hydrodynamic equations, and thus

the SHE is only implemented for 2D devices. For 3D devices, we resort to the hydro-

dynamic model.

Each NBTI simulation records the steady-state and transient solutions to the

device equations as well as the occupation of the trap states. After each simulation,

the shift in threshold voltage Vth is determined by the on-the-fly method discussed

above. Thus, Vth(t) is calculated using the transconductance and the change in drain

current according to equation (2.101).
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Table 2.1: Comparison between hydrodynamic and SHE models

Strengths Weaknesses

SHE

• Better captures high energy • More computationally intensive
tail of hole distribution • Not yet compatible with 3D
(calibrated against Monte simulations
Carlo simulation)
• Directly compatible with
two-stage NBTI model
• Explicit spacial dependence

Hydrodynamic

• Less computationally • Assumes more approximate
intensive dynamics of charge transport
• Directly compatible with • Calibration cannot be as finely
two-stage NBTI model tuned

For the two-stage NBTI model, we need only specify the range for the independent

random variables characterizing the defect. The precursor state energy level ET and

the E′-center trap state energy level E ′T follow uniform distributions, with −1.14 ≤

ET ≤ −0.31 eV and 0.01 ≤ E ′T ≤ 0.3 eV. The Pb-center trap state energy level follows

a Fermi-Dirac distribution, with an average of 0.5 eV and a standard deviation of 0.44

eV. These are measured with respect to the valence band edge. For simplicity, we

take ∆EC � ∆EB and approximate ∆EA ≈ ∆EB, with 0.01 ≤ ∆EA ≤ 1.15 eV [39].
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CHAPTER 3

SIMULATIONS AND RESULTS

In the following, we examine three case structures: an idealized 2-dimensional

pFinFET with gate length Lg = 15 nm, a 3-dimensional pFinFET with Lg = 15

nm, and a 2-dimensional pMOSFET with Lg = 40 nm. In particular, we focus

on the 2D pFinFET for a primary qualitative characterization of NBTI and self-

heating behavior, using the 2D pMOSFET as a check for consistency. We then test

for the same NBTI and self-heating phenomena on the 3D pFinFET, again noting

the qualitative behavior and differences between each simulation. In most cases, we

have employed Dirichlet thermal boundary conditions, where the thermal boundaries

correspond to the electrical contacts of the device. Dirichlet boundary conditions

assume that heat is rapidly transported out of the device through the contacts, or

equivalently that the contacts have near-zero thermal resistance. For the 2D FinFET

case, we will also briefly examine the affects of Neumann conditions, where we allow

the contact temperature to change in response to self-heating.

Table 3.1: Simulation cases

Stress Configuration Thermal BCs Transport Model
Symmetric Asymmetric Dirichlet Neumann Hydrodynamic SHE

2D MOSFET X X X
2D FinFET X X X X X X
3D FinFET X X X

3.1 Case 1: 2D pFinFET

The 2D FinFET consists of a long, narrow p-doped, 〈100〉-oriented, Si channel

of length LC = 40 nm surrounded on both sides by aligned gates of length Lg = 15
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nm with an SiO2 gate dielectric of thickness tox = 2 nm. The gates are separated

from extended source and drain regions by oxynitride spacers. Thus, the 2D FinFET

constitutes a typical dual-gate structure. The basic TCAD structure with finite el-

ement mesh is shown in Figure Figure 3.1(a). We have applied a gaussian doping

concentration centered in the channel using boron as the dopant. This is shown in

Figure 3.1(b). Electrical contacts / thermal boundaries at source, drain, and gates are

indicated by the pink edges, the gate material itself has been removed and replaced

with the contact edge. This is a common feature of TCAD devices.

(a) Finite element mesh (b) Doping concentration

Figure 3.1: 2D FinFET structure

We present the results for two stress configurations for a range of gate voltages

Vg and ambient temperatures Text. The first stress configuration is symmetric, where

the source has been grounded, the drain is held at a near-zero bias (Vd ≈ −0.05 V),

and the gate is raised to a large negative bias. The second stress configuration is

asymmetric, where the source is grounded and the gate and drain are raised to the

same negative bias (Vg = Vd). This simulation employs an SHE model (as opposed to

a hydrodynamic model) as part of the system of transport equations used to describe

the operation of the device.
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3.1.1 Symmetric Stress Configuration

We examine the degradation of threshold voltage over time as the device is stressed

in the short-time regime (tstress = 1 s), which serves as the main indicator of NBTI

wearout in the device. In general, we test at combinations of ambient temperature

Text = {300, 325, 350, 375} K and gate voltage Vg = {-0.5, -0.75, -1.0, -1.25, -1.5, -1.75,

-2.0} V. First, we fix the gate voltage and vary the ambient temperature. The results

are shown in Figure 3.2, Figure 3.3, and Figure 3.4. We find that the rate of Vth

degradation increases monotonically with respect to increasing temperature, exhibit-

ing a logarithmic time dependence as expected in the short-time regime [24]. This

monotonic behavior is expected given the Arrhenius form of temperature dependence

for charge trapping associated with NBTI.
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Figure 3.2: Temperature variation of ∆Vth(t) during symmetric stress, Vg = −0.5 V

Next, we fix the ambient temperature and examine ∆Vth(t) for different gate

voltages. The results are shown in Figure 3.5 to Figure 3.13.
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Figure 3.3: Temperature variation of ∆Vth(t) during symmetric stress, Vg = −1.0 V
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Figure 3.4: Temperature variation of ∆Vth(t) during symmetric stress, Vg = −1.5 V
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We find that at lower temperatures the degradation again follows a logarithmic

time dependence as expected. However, the rate of Vth degradation with respect to

gate voltage no longer exhibits monotonically increasing behavior at lower temper-

atures. That is, for Text = 325, 350, 375, 400 K, the ∆Vth curves increase in slope

up to around −1.0 V, at which point the monotonic behavior is broken and the rate

of degradation either improves or oscillates. As the temperature is raised beyond

Text = 450 K, the monotonic behavior is restored, and the Vth curves begin to deviate

from a logarithmic time dependence. We summarize this broken monotonic behav-

ior for increasing gate voltage under symmetric stress in Figure 3.14. Furthermore,

we find that the monotonic behavior of the degradation rate is also restored under

asymmetric stress configurations. Figure 3.15 shows this for Text = 350 K, where

we observe that the range in the magnitude of Vth is much larger compared to the

symmetric stress configuration.
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Figure 3.5: Gate voltage variation of ∆Vth(t) during symmetric stress, Text = 325 K
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Figure 3.6: Gate voltage variation of ∆Vth(t) during symmetric stress, Text = 350 K
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Figure 3.7: Gate voltage variation of ∆Vth(t) during symmetric stress, Text = 375 K

58

















Figure 3.8: Gate voltage variation of ∆Vth(t) during symmetric stress, Text = 400 K
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Figure 3.9: Gate voltage variation of ∆Vth(t) during symmetric stress, Text = 450 K
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Figure 3.10: Gate voltage variation of ∆Vth(t) during symmetric stress, Text = 500 K
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Figure 3.11: Gate voltage variation of ∆Vth(t) during symmetric stress, Text = 550 K
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Figure 3.12: Gate voltage variation of ∆Vth(t) during symmetric stress, Text = 600 K
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Figure 3.13: Gate voltage variation of ∆Vth(t) during symmetric stress, Text = 650 K
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Figure 3.14: Variation of ∆Vth after 1 s symmetric stress for varying gate voltage and
temperature
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Figure 3.15: Gate voltage variation of ∆Vth(t) during asymmetric stress (Vg = Vd),
Text = 350 K
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For completeness, the recovery in Vth following NBTI stress is shown in Figure 3.16,

Figure 3.17, Figure 3.18, and Figure 3.19. The relaxation phase exhibits a longer re-

covery time compared to the degradation time during stressing, and the degradation

no longer depends logarithmically on time. This asymmetry between stress and re-

covery originates from the slow recoverability of the Pb-centers (trap state 4), and the

discrepancy in the probability for trap state 3 to relax back to trap state 1 compared

to the probability for hole recapture (trap state 3 to state 2).
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Figure 3.16: Recovery of Vth degradation following symmetric stress, Text = 325 K

Due to the complexity of competing mechanisms contributing to NBTI degrada-

tion, it is difficult to characterize the origin of broken monotonic behavior with respect

to gate voltage exhibited during stressing at lower temperatures. However, we can

gain some traction by considering the dynamics of the NBTI trap states 1-4 within

this temperature limit. First, we examine the shift in fi(t) curves for fixed gate bias

and varying temperature. This behavior is given in Figure 3.20 to Figure 3.31.

63
















Figure 3.17: Recovery of Vth degradation following symmetric stress, Text = 350 K
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Figure 3.18: Recovery of Vth degradation following symmetric stress, Text = 375 K
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Figure 3.19: Recovery of Vth degradation following symmetric stress, Text = 400 K

It is important to note the respective time windows for the Vth degradation plots

and the fi trap state plots. While the simulation data for the trap state plots begins

at t = 10−15 s, the data for Vth degradation does not begin until t = 10−3 s. Thus, the

relevant range to examine the occupation of the trap states is 10−3 ≤ t ≤ 1 s. Indeed,

the simulation time step quickly approaches this scale after a couple iterations. The

initial behavior of the trap states is indicative of noise in the discretized two-stage

NBTI model, and the simulation exhibits a particular sensitivity to the initial time

step.9

It is interesting to note that, within the appropriate time domain 10−3 ≤ t ≤ 1 s,

the slope and ordering of the trap state occupation curves f1, f3 and f4 at different

temperatures remain the same for increasing Vg. However, for trap state 2, we notice

a markedly different behavior. At Vg = −1.5 V, the slope and ordering reverse. If

9Indeed, it was discovered retroactively that convergence often improved when the initial time
step was increased, which is rather counterintuitive.
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Figure 3.20: Temperature variation of 〈f1〉 during symmetric stress, Vg = −0.5 V
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Figure 3.21: Temperature variation of 〈f1〉 during symmetric stress, Vg = −1.0 V
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Figure 3.22: Temperature variation of 〈f1〉 during symmetric stress, Vg = −1.5 V
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Figure 3.23: Temperature variation of 〈f2〉 during symmetric stress, Vg = −0.5 V
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Figure 3.24: Temperature variation of 〈f2〉 during symmetric stress, Vg = −1.0 V
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Figure 3.25: Temperature variation of 〈f2〉 during symmetric stress, Vg = −1.5 V
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Figure 3.26: Temperature variation of 〈f3〉 during symmetric stress, Vg = −0.5 V
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Figure 3.27: Temperature variation of 〈f3〉 during symmetric stress, Vg = −1.0 V
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Figure 3.28: Temperature variation of 〈f3〉 during symmetric stress, Vg = −1.5 V
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Figure 3.29: Temperature variation of 〈f4〉 during symmetric stress, Vg = −0.5 V
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Figure 3.30: Temperature variation of 〈f4〉 during symmetric stress, Vg = −1.0 V
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Figure 3.31: Temperature variation of 〈f4〉 during symmetric stress, Vg = −1.5 V

71



we consider the transition pathways for state 2, then the number of holes in states

3 and 4 should be correlated to this behavior. Indeed, we find that while trap state

3 saturates around 5 × 1012 cm−2, trap state 4 continues to increase in occupation

number. That trap state 3 can recover to the precursor state 1, which is then available

to transition to state 2, while state 4 has a low probability of recovery, accounts for

the change in the transient behavior of state 2. We thus find that the generation of

Pb-centers becomes the dominant transition pathway for state 2 at high gate bias,

and for higher stress times we should expect to see the number of Pb-center defects

exceed the number of E′γ-center defects. We should, then, expect a different long-time

behavior for NBTI degradation.

Nonetheless, if we examine the buildup of trapped charge in the oxide, we find

that the amount of trapped charge Q increases as expected with increasing gate bias

(Figure 3.32, Figure 3.33, and Figure 3.34). Furthermore, we find that these curves

retain their ordering and slope for increasing Vg. If the behavior of trap state 2

accounted for the non-monotonic behavior of ∆Vth(t), then we would find a similar

reordering or non-positive-definite behavior for Q(t). That this is not the case implies

that an external mechanism is responsible for the degradation in the Vth.

For completeness, we compare the behavior of trap states 1-4 and the total trapped

charge in the low and high temperature limits for fixed ambient temperature and

varying gate voltage (Figure 3.35 to Figure 3.44). We consider Text = 350 K for

the low temperature behavior and Text = 550 K for the high temperature behavior.

It is important to note that the time domain for the Text = 550 K plots begins at

t = 10−6 s. This change was made retroactively to improve numerical convergence,

as mentioned above.

Again, we find the behavior of states 1, 3, and 4 consistent with what has been

observed above. For trap state 2, we find that the slope of the curve becomes increas-

ingly negative for higher Vg in both case, while for Text = 550 K we note the crossing
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Figure 3.32: Temperature variation of Q during symmetric stress, Vg = −0.5 V
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Figure 3.33: Temperature variation of Q during symmetric stress, Vg = −1.0 V
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Figure 3.34: Temperature variation of Q during symmetric stress, Vg = −1.5 V

between curves of higher Vg. The latter is indicative of a saturation in the transition

rate from state 2 balanced with the availability of states 3 and 4. Nonetheless, the

dynamics of the trap states cannot explain the non-monotonic behavior of ∆Vth at

low temperatures and the restoration of monotonic behavior at high temperatures.

Thus, we must consider other competing mechanisms.

Below we present spatial distributions for hole velocity, electric field, hole density,

hole energy, hole current density, and lattice temperature for the channel region be-

tween the gates of the 2D FinFET device. These distributions represent the steady

state solutions to the transport equations during the stress simulation, and we have

found that these quantities reach this steady state quickly (within 2 to 3 time steps)

during the transient part of the simulation. If we consider the local maximum and

minimum values for these respective distributions, we find that there is steady in-

crease in these values for every quantity except the hole velocity. Rather, we find

that the maximum of the hole velocity for Vg = −1.5 V is less than the hole velocity
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Figure 3.35: Gate voltage variation of 〈f1〉 during symmetric stress, Text = 350 K
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Figure 3.36: Gate voltage variation of 〈f1〉 during symmetric stress, Text = 550 K
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Figure 3.37: Gate voltage variation of 〈f2〉 during symmetric stress, Text = 350 K
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Figure 3.38: Gate voltage variation of 〈f2〉 during symmetric stress, Text = 550 K
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Figure 3.39: Gate voltage variation of 〈f3〉 during symmetric stress, Text = 350 K
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Figure 3.40: Gate voltage variation of 〈f3〉 during symmetric stress, Text = 550 K
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Figure 3.41: Gate voltage variation of 〈f4〉 during symmetric stress, Text = 350 K




























Figure 3.42: Gate voltage variation of 〈f4〉 during symmetric stress, Text = 550 K
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Figure 3.43: Gate voltage variation of Q during symmetric stress, Text = 350 K
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Figure 3.44: Gate voltage variation of Q during symmetric stress, Text = 550 K
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for Vg = −0.5 V, while the range for this quantity becomes narrower (Figure 3.45).

(a) Vg = −0.5 V, Text = 350 K (b) Vg = −1.5 V, Text = 350 K

Figure 3.45: Hole velocity |vh| under symmetric stress

We note some general features of the electric field, hole density, hole energy, and

hole current density distributions. In Figure 3.46, we find that the electric field max-

ima become tightly localized near the gate and extend into the oxynitride spacers as

an effect of the corners. In Figure 3.47, the hole density exhibits similar qualitative

behavior, as more holes accumulate beneath the gates in response to the electric field,

leaving behind a depletion region in the center of the channel. The hole energy (Fig-

ure 3.48), on the other hand, exhibits a curious resonant behavior across the channel

that is more pronounced for higher Vg, and this is likely due to the mathematical

structure of the SHE approximation employed in the device transport equations. Fi-

nally, we notice that the hole current (Figure 3.49) is also highly localized beneath

the gates following the hole distribution, while the local maximum at the center of

the channel corresponds to a low vertical electric field and indicates the possibility

for quasi-ballistic transport through the center of the device.
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(a) Vg = −0.5 V, Text = 350 K (b) Vg = −1.0 V, Text = 350 K

(c) Vg = −1.5 V, Text = 350 K

Figure 3.46: Electric field |E| under symmetric stress

(a) Vg = −0.5 V, Text = 350 K (b) Vg = −1.0 V, Text = 350 K

(c) Vg = −1.5 V, Text = 350 K

Figure 3.47: Hole density nh under symmetric stress
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(a) Vg = −0.5 V, Text = 350 K (b) Vg = −1.0 V, Text = 350 K

(c) Vg = −1.5 V, Text = 350 K

Figure 3.48: Hole energy εh under symmetric stress

For symmetric stress configurations, we find that the lattice self-heating is not

significant, as the device maintains an average temperature close to the boundary

condition temperature with differences in the maximum and minimum temperatures

on the order of 0.1 K. This is, in large part, due to the Dirichlet thermal boundary

conditions imposed on the simulation. Indeed, we expect the formation of a hot spot

in the channel to be insignificant due to the low bias applied to the drain. Figure 3.50

shows the spatial distribution of lattice temperature for Text = 350 K. Qualitatively,

the hot spot becomes more localized for higher Vg, but again the temperature rise is

very little.
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(a) Vg = −0.5 V, Text = 350 K (b) Vg = −1.0 V, Text = 350 K

(c) Vg = −1.5 V, Text = 350 K

Figure 3.49: Hole current density |Jh| under symmetric stress

3.1.2 Asymmetric Stress Configuration

Under asymmetric stress conditions (Vd = Vg), we observe a strikingly different

behavior in the trap states for increasing Vg. We have kept Text = 350 K in order to

compare to the symmetric stress data. Plots for the dynamics of the occupation of

the trap states and the total trapped charge are provided in Figure 3.51, Figure 3.52,

Figure 3.53, Figure 3.54, and Figure 3.55. Note that the simulation failed to converge

for Vg = −1.75 V, hence its absence in the plots. In this asymmetric configuration,

we find a reordering of the fi(t) curves for different Vg, and a corresponding behavior

for Q(t). This interesting dynamic is likely driven by the the structure of the electric

field, the temperature gradient, and the deviation of the hole temperature away from

the lattice temperature, as we discuss below.

Figure 3.56 shows spatial distributions for the hole velocity for different Vg. These

distributions are structurally different than in the symmetric case, as the holes in the
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(a) Vg = −0.5 V, Text = 350 K

(b) Vg = −1.0 V, Text = 350 K

(c) Vg = −1.5 V, Text = 350 K

Figure 3.50: Lattice temperature TL under symmetric stress
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Figure 3.51: Gate voltage variation of 〈f1〉 during asymmetric stress, Text = 350 K

channel experience greater acceleration towards the drain due to the drain bias. The

fan-out in the structure is due to the fringing of the vertical electric field near the gate

caused by the corner, and this fan-out increases for greater Vg. As in the symmetric

case, we find that the maximum in the velocity distribution is lowered for increasing

Vg.

Examining the structure of the electric field in Figure 3.57, we find again that

the spatial distribution of the field becomes more uniform for increasing Vg, with the

maximum being found close to the gate, within the oxide. One notes the presence

of higher electric field near the drain compared to the symmetric case, as expected.

Similar to the hole velocity, the hole density distribution (Figure 3.58) exhibits a fan-

out structure due to greater charge accumulation near the source side of the channel.

This is, of course, correlated with the lower velocity in these regions. The hole energy

(Figure 3.59) reaches its peak value at the end of the gate toward the drain side in

the channel. It is at this point that the hole temperature has risen significantly above

the lattice temperature. Finally, we observe interesting behavior in the hole current
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Figure 3.52: Gate voltage variation of 〈f2〉 during asymmetric stress, Text = 350 K

density for increasing Vg (Figure 3.60). We find that the current density becomes

strongly peaked near the source-side corner of the gate, while remaining relatively

uniform throughout the rest of the channel (excepting the localized minima found for

Vg = −1.0 V).

Finally, for the asymmetric case, we observe much more pronounced heating of

the lattice, and this is attributed to the higher drain bias. The temperature profiles

for the standard three gate voltages are shown below (Figure 3.61). Again, we find a

hot spot towards the drain side of the channel, except in this case the maximum is on

the order of 10 to 30 K above the boundary temperature. That the temperature of

the hot spot is not higher is attributed to the Dirichlet thermal boundary conditions.

Furthermore, we find that, unlike in the symmetric case, the hot spot widens out for

higher Vg corresponding to greater hole scattering with the lattice.

We may again raise the question concerning the breaking in the monotonicity of

the Vth degradation rate observed for symmetric stresses at lower temperatures versus
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Figure 3.53: Gate voltage variation of 〈f3〉 during asymmetric stress, Text = 350 K

the monotonic behavior observed for asymmetric stresses and for symmetric stresses

at higher temperatures. The peculiar behavior of the trap states under asymmetric

stress implies the existence of one or more independent mechanism(s) competing with

the NBTI degradation. Indeed, because we observe a monotonic increase in ∆Vth(t)

despite the absence of this behavior for the total trapped charge Q, the degradation

in the drain current must be attributed to another mechanism. In particular, the

lowering of the maximum hole velocity in the channel and the spatial distribution of

the hole current density may indicate the additional source of drain current degra-

dation. The lowering of the maximum hole velocity for increasing Vg, or equivalently

for increasing electric field, is likely due to velocity overshoot in the channel and the

emergence of negative differential resistance [34]. In this case, the lifetime of the

charge carrier has exceeded the thermalization time. Indeed, that this velocity over-

shoot peaks around Vg = −1.0 V may explain the higher Vth degradation observed

at this bias compared to higher gate biases for symmetric stress configurations. Fur-
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Figure 3.54: Gate voltage variation of 〈f4〉 during asymmetric stress, Text = 350 K

thermore, it has been well-documented that the hydrodynamic and SHE models tend

to overestimate carrier velocities [24, 28, 29]. The apparent velocity overshoot may

be eliminated by employing a more accurate subcontinuum simulation based on the

BTE [17, 14, 15, 54]. Furthermore, that the maximum hole current density extends

across the channel in the symmetric stress configuration, while being highly local-

ized around the source-side edge of the gate in asymmetric stress configurations, may

account for the increasing drain current degradation (and hence Vth degradation) ob-

served under asymmetric stress but not found under symmetric stress. Indeed, the

increase in lattice temperature toward the drain provides further evidence for greater

drain current degradation under asymmetric stress. Thus, a combination of velocity

overshoot/misestimation and the structures of the hole current density and lattice

temperature profiles may contribute to the breaking of the monotonicity in ∆Vth.
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Figure 3.55: Gate voltage variation of Q during asymmetric stress, Text = 350 K

3.1.3 The Effect of Thermal Boundary Conditions

Appropriate boundary conditions are essential for more realistic device modeling,

so we consider here the effect of imposing Neumann thermal boundary conditions on

the device for a few specific stress cases.10 (Here, the boundary thermal resistance was

set to 0.001 (K·µm)/W). In general, we find very little difference between the distri-

butions for the hole velocity, density, and energy (Figure 3.62(a), Figure 3.63(a), and

Figure 3.64(a) respectively)11 for symmetric stress configurations. This is expected

given the very small amount of self-heating attributed to this stress. The situation

is different for asymmetric stress configurations. The hole velocity (Figure 3.62(b))

exhibits less fan-out, becoming more localized in the channel beneath the edge of

the gate near the drain side. The maximum in hole energy (Figure 3.64(b)) is more

spread out and possesses greater concavity. We find similar spreading behavior for

10Note that convergence was significantly better for Text = 375 K than for Text = 350 K.
11The current density distribution failed to render in TecPlot for this case, but we expect that

this too shows little to no change.
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(a) Vg = Vd = −0.5 V, Text = 350 K (b) Vg = Vd = −1.0 V, Text = 350 K

(c) Vg = Vd = −1.5 V, Text = 350 K

Figure 3.56: Hole velocity |vh| under asymmetric stress

the minimum region in the hole density (Figure 3.63(b)). For the current density

(Figure 3.65), we find that the minimum also becomes more spread out in the center

of the channel.

The changes in the characteristic hole distributions observed above follows from

the change in the temperature distribution of the lattice under Neumann boundary

conditions. Figure 3.66(a) shows the lattice temperature profile under symmetric

stress. While the shape of the distribution has changed to accommodate a non-zero

thermal resistance at the boundaries, we find that the average temperature of the

device rises by about 20 K from the initial 375 K. The difference between maximum

and minimum temperatures is again on the order of 0.1 K.
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(a) Vg = Vd = −0.5 V, Text = 350 K (b) Vg = Vd = −1.0 V, Text = 350 K

(c) Vg = Vd = −1.5 V, Text = 350 K

Figure 3.57: Electric field |E| under asymmetric stress

Figure 3.66(b) shows the lattice temperature profile for an asymmetric stress con-

figuration. In this case we find a more localized hot spot corresponding, again, to

the greater degree of charge scattering with the lattice toward the drain side of the

channel. However, we find a significant rise in the average temperature of the device

on the order of 750 K greater than the initial 375 K. Furthermore, we find that the

hot spot possesses a temperature roughly 100 K higher than the minimum tempera-

ture of the device. Neumann thermal boundary conditions thus allow for significant

increases in the FinFET lattice temperature since the temperature is not fixed at the

boundaries as it is for Dirichlet boundary conditions.

For completeness, we give a brief comparison between the SHE model and the hy-

drodynamic model in simulating the 2D FinFET. Figure 3.67 shows the difference in
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(a) Vg = Vd = −0.5 V, Text = 350 K (b) Vg = Vd = −1.0 V, Text = 350 K

(c) Vg = Vd = −1.5 V, Text = 350 K

Figure 3.58: Hole density nh under asymmetric stress

∆Vth following a symmetric NBTI stress for the SHE and hydrodynamic models. In

Figure 3.68(a), we find that the hole velocity is qualitatively similar to the SHE case

for symmetric stress, while Figure 3.68(b) does not account for the peak in velocity

near the drain under asymmetric stress. Figure 3.69 shows similar distributions for

the hole density computed by the SHE and hydrodynamic models for both the sym-

metric and asymmetric stress. For symmetric stress, we find that the hydrodynamic

model (Figure 3.70(a)) gives a very different result for the hole temperature (which is

equivalent to the hole energy computed by the SHE) than the SHE model, and this

points to the fundamental difference in the mathematical structure between the two

models. The SHE and hydrodynamic models show better agreement on hole tem-

perature for asymmetric stress (Figure 3.70(a)). Figure 3.71 shows the hole current
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(a) Vg = Vd = −0.5 V, Text = 350 K (b) Vg = Vd = −1.0 V, Text = 350 K

(c) Vg = Vd = −1.5 V, Text = 350 K

Figure 3.59: Hole energy εh under asymmetric stress

density for the hydrodynamic model with symmetric and asymmetric stress, and we

observe an exaggeration in the region of local minima compared to the SHE model

in both cases. Finally, we find similar lattice temperature profiles for symmetric and

asymmetric stresses (Figure 3.72), except that the hot spot in the hydrodynamic

model has spread further into the oxynitide spacers.

3.1.4 Simulation Convergence and Numerical Error

The numerical routine implemented by Sentaurus TCAD solves a coupled set of

discretized device equations self-consistently using the backward Euler (BE) method

as an implicit discretization scheme [77]. Thus, the equations are solved at a given

time ti with a given time step hi, and the simulation proceeds to the next point in
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(a) Vg = Vd = −0.5 V, Text = 350 K (b) Vg = Vd = −1.0 V, Text = 350 K

(c) Vg = Vd = −1.5 V, Text = 350 K

Figure 3.60: Hole current density |Jh| under asymmetric stress

time ti+1 = ti + hi and calculates a new time step hi+1 > hi if the solution converges.

If the simulation does not converge at a given time, the equations are solved for a

smaller time step hi := hi/2. If the simulation fails to converge for a minimum time

step, the loop will break, indicating that the run has failed. Thus, for a successfully

converged solution over the time domain, we find that the time step will increase as

the simulation loops through the solver.

While the time-stepping of the quasistationary and transient simulations is regu-

lated by a maximum number of iterations and a minimum time step hmin, the con-

vergence of the solution at each point in time ti is controlled by both absolute and

relative error criterion for each calculated quantity. A solution for the quantity fni+1

is converged at node n for an updated time ti+1 for

94



(a) Vg = Vd = −0.5 V, Text = 350 K

(b) Vg = Vd = −1.0 V, Text = 350 K

(c) Vg = Vd = −1.5 V, Text = 350 K

Figure 3.61: Lattice temeperature TL under asymmetric stress
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(a) Vg = −1.0 V, Text = 375 K (b) Vg = Vd = −1.0 V, Text = 375 K

Figure 3.62: Hole velocity |vh|: symmetric versus asymmetric stress with Neumann
boundary conditions

∣∣(fni+1 − fni )/λ
∣∣

εR
∣∣fni+1/λ

∣∣+ εA
< 1 , (3.1)

where fni is the quantity value at the previous time, λ is a scaling factor, εR is the

relative error, and εA is the absolute error for the specified quantity. The scaling factor

λ is determined by a reference value fref = λεA/εR for the calculation. The reference

value fref , or equivalently the scaling factor λ, is calibrated against simulation and

experimental data for silicon, and it serves to provide stability to the convergence

of the BE method. In this work, we used the default reference values and absolute

errors (εA ≤ 10−3) calibrated for Sentaurus TCAD for each calculated quantity. The

relative error εR is determined by the number of digits D, and thus the precision,

used in the solution: εR = 10−D. In this work, D = 6. Convergence of the simulation

for the set of device equations across the entire device is then given by an average

over the error measure at each node:

1

εRN

∑
n,ξ

∣∣fni+1(ξ)− fni (ξ)
∣∣∣∣fni+1(ξ)

∣∣+ fref

< 1 (3.2)

Here we have employed the notation fni (ξ) to denote the solution to equation ξ at

node n and iteration point i, and N is the total number of device equations multiplied
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(a) Vg = −1.0 V, Text = 375 K (b) Vg = Vd = −1.0 V, Text = 375 K

Figure 3.63: Hole density nh: symmetric versus asymmetric stress with Neumann
boundary conditions

by the total number of nodes for the finite element mesh of the device. This error

criterion requires the mutual convergence of each equation solution with respect to

the full set of device equations. For a converged solution using the BE method, the

next time step is calculated from the L2 norm of the error:

hi+1 =
hi√
r
, (3.3)

where

r =

√√√√ 1

εRN

∑
n,ξ

(∣∣fni+1(ξ)− fni (ξ)
∣∣∣∣fni+1(ξ)

∣∣+ fref

)2

. (3.4)

In Sentaurus TCAD, convergence data is only stored temporarily as required to

calculate the relative error in the Newtonian iteration, in order to reduce the memory

requirements of the simulation. However, we can measure the convergence quality of

the simulation by examining the quasistationary ramps of device parameters, and this

is typically done in practice for TCAD simulation. Figure 3.73(a) and Figure 3.73(b)

show the ramp of gate and drain biases during the quasistationary part of an asym-

metric stress simulation on the 2D FinFET. Here, the gate and drain biases are

ramped to −2.0 V at a low ambient temperature (300 K). This represents an extreme
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(a) Vg = −1.0 V, Text = 375 K (b) Vg = Vd = −1.0 V, Text = 375 K

Figure 3.64: Hole energy εh: symmetric verses asymmetric stress with Neumann
boundary conditions

Figure 3.65: Hole current density nh under asymmetric stress (Vg = Vd = −1.0 V,
Text = 375 K) with Neumann boundary conditions

case where mesh refinement was required to improve convergence. Figure 3.73(a)

shows an instance where the simulation has failed to converge, iterating over a vir-

tual time parameter 0 < ti < 1. The time separation between successive data points

decreases as the loop fails to find a converged solution. This is the typical case for

failed convergence in TCAD. Figure 3.73(b) shows an instance where the solution has

converged at each point in time, successfully ramping the gate and drain to −2.0 V.

The final result is converged to six digits as required by the relative error.

The BE discretization method approximates the time-evolution of the system up

to first order. For a general evolution equation,
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(a) Vg = −1.0 V, Text = 375 K

(b) Vg = Vd = −1.0 V, Text = 375 K

Figure 3.66: Lattice temperature TL: symmetric versus asymmetric stress with Neu-
mann conditions
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Figure 3.67: Relative ∆Vth(t) for SHE and Hydrodynamic simulations (Vg = −1.0 V,
Text = 325 K)

d

dt
f [q(t)] + g[q(t), t] = 0 , (3.5)

this discretization is written as

f(ti + hi) + hig(ti + hi) = f(ti) . (3.6)

Thus, there is an intrinsic error associated with the truncation of the approximation

and the subsequent time-stepping based on this approximation. While the error

criterion (3.2) regulates the numerical convergence of the Newton iterations during

the simulation, it does not account for this error in the time-stepping. Rather, the

time step is only controlled by the convergence of the solutions to the device equations.

This local truncation error is improved by using a more accurate discretization scheme,

such as the trapezoidal rule/backward differentiation formula (TRBDF), although at

the cost of simulation run-time.
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(a) Vg = −1.0 V, Text = 375 K (b) Vg = Vd = −1.0 V, Text = 375 K

Figure 3.68: Hole velocity |vh|: symmetric versus asymmetric stress with Hydrody-
namic model

The accuracy of the solutions to the device equations computed in TCAD de-

pends strongly on the finite element mesh used to emulate the device structure. In-

deed, highly localized or rapidly spatially-fluctuating phenomena pose a significant

challenge to proper finite element modeling. Sentaurus TCAD uses a Delaunay axis-

aligned meshing algorithm to generate a mesh refined for device region boundaries

and material interfaces [78]. Further refinement of the mesh improves the numerical

convergence of the simulation as it reduces the interpolation error between adjacent

nodes. In this work, the mesh was refined by including a higher number of nodes

along material boundaries and corners in order to improve the convergence of the

simulation. While this extends the total run-time of the simulation, fewer iterations

at each time step are required for a converged solution. In this work, we found that

half the iterations at each time step were required after mesh refinement than before.

The two-stage NBTI model possesses inherent statistical error, as the average

change in positive charge at the Si/SiO2 interface is determined using a random

sampling technique for each interface node. Indeed, the simulation creates Ns random

configurations for each interface node from the set of random variables (2.98), and

the average over each calculated quantity fi at each node is given generally by
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(a) Vg = −1.0 V, Text = 375 K (b) Vg = Vd = −1.0 V, Text = 375 K

Figure 3.69: Hole density nh: symmetric versus asymmetric stress with Hydrodynamic
model

〈f〉 =
1

Ns

Ns∑
i=1

fi (3.7)

In this work, Ns = 1000, and the {fi} are chosen according to the distribution of

each variable in (2.98). Often, we find that spatial averaging of the NBTI trap states

across the interfaces of the device require several reductions in the time step at each

iteration point in order to satisfy the convergence criterion (3.2). This is indicative of

statistical noise in the two-stage NBTI model, which dominates the initial transient

behavior of the trap states for t < 10−3 s (e.g., Figure 3.24). We found that increasing

the initial time step from 10−15 to 10−6 s effectively halved the number of iterations

required for convergence at each point in time. However, since the degradation in

threshold voltage is only computed for t > 10−3 s while the device is stressed, the

results for ∆Vth(t) are unaffected for smaller initial time steps as long as the solution

has converged.

Convergence is consistently better for symmetric stress configurations than for

asymmetric stress configurations. After refining the mesh, we found that between

symmetric and asymmetric configurations with the same external parameters (e.g.,

Text, Vg, initial trap precursor density), the calculated lattice and hole temperatures
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(a) Vg = −1.0 V, Text = 375 K (b) Vg = Vd = −1.0 V, Text = 375 K

Figure 3.70: Hole temperature Th: symmetric versus asymmetric stress with Hydro-
dynamic model

and hole current exhibited higher fluctuations for asymmetric configurations, and the

simulation required twice the number of iterations at each time step before converg-

ing according to (3.2). Indeed, this high degree of interaction between the lattice

and hole temperatures and the ramping of the gate and drain biases often requires

several iterations at each time point in order to satisfy the electrical and thermal

boundary conditions. Furthermore, we find that the absolute limit for convergence of

the asymmetric stress configuration is for Vg < −2.0 V and Text < 325 K. For sym-

metric configurations, on the other hand, this limit is relaxed to Vg < −2.25 V and

Text < 275 K. Nevertheless, our results are converged for external parameters within

the appropriately defined stress range and for both the symmetric and asymmetric

stress configurations by the criterion (3.2). That this is the case is demonstrated by

the fact that our transient simulation computes solutions to NBTI trap states for the

entire required run-time (tf = 1 s), since the Newtonian iterations would break and

end the simulation otherwise.

We find that numerical convergence is particularly sensitive to thermal boundary

conditions. We observed that the simulation converges faster and for a broader range

of stress conditions for Dirichlet thermal boundary conditions compared to Neumann
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(a) Vg = Vd = −1.0 V, Text = 375 K (b) Vg = Vd = −1.0 V, Text = 375 K

Figure 3.71: Hole current density |Jh|: symmetric versus asymmetric stress with
Hydrodynamic model

thermal boundary conditions. This can be attributed to the fact that Neumann

boundary conditions do not fix the temperature at the boundaries of the device,

requiring the simulation to solve for the temperature along the boundary and to

propagate the solution at each boundary node into the bulk of the device at each

iteration. In particular, we examined four test cases in order to characterize the effect

of the thermal boundary conditions on the convergence of the simulation after mesh

refinement. For a symmetric configuration with fixed gate voltage Vg = −1.5 V and

ambient temperature Text = 350, we ran the simulation first with Dirichlet boundary

conditions and then with Neumann boundary conditions with thermal resistances

of Rth = 0.1, 0.01, and 0.001 K·µm)/W. The simulation with Neumann boundary

conditions failed to converge for Rth = 0.1 K·µm)/W, while the number of iterations

required for convergence at each time step decreased whenRth was decreased from 0.01

to 0.001 K·µm)/W. Dirichlet boundary conditions showed a further improvement for

the number of iterations at each time step, requiring on average 33 % of the iterations

for Neumann boundary conditions with Rth = 0.001 K·µm)/W.

Furthermore, we found that convergence under a broader range of stress configura-

tions is improved for higher boundary temperatures for both Dirichlet and Neumann
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(a) Vg = −1.0 V, Text = 375 K

(b) Vg = Vd = −1.0 V, Text = 375 K

Figure 3.72: Lattice temperature TL: symmetric versus asymmetric stress with Hy-
drodynamic model
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
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(a) Failed convergence during quasistationary ramp


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

(b) Successful convergence of quasistationary ramp

Figure 3.73: Failed versus successful convergence during quasistationary ramp for 2D
FinFET NBTI stress simulations (Vg = −2.0 V)
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boundary conditions. Why this is the case remains an open question. For a sym-

metric stress configuration with Dirichlet boundary conditions, which represents the

best case scenario, we find that for low temperatures a high degree of fluctuation in

the solutions causes the simulation to reduce the time step at the same time point

until the simulation breaks. This often occurs early (i.e., for ti ≈ 10−5 s � tf ) in the

simulation. Thus, we have restricted ourselves to examining stress configurations for

Text ≥ 300 K. As Text is increased, the number of iterations required for convergence

at each time point decreases. For Text > 500 K, the simulation only iterates once at

each point in time.

In general, the stress and relaxation NBTI simulations for each simulation case (for

2D and 3D FinFETs and the 2D MOSFET) converge better for lower biases and higher

temperatures. More consistent convergence for a variety of boundary conditions and

model parameters can be achieved by refining and tightening the finite element mesh

(which is done by adding more node points along material boundaries and corners

and rerunning the meshing algorithm), although this often significantly increases the

simulation time due to the additional number of nodes. As we have noted above, due

to noise in the two-stage NBTI model, convergence is further improved by taking a

larger initial time step in the transient portion of the stress and relaxation simulations.

The symmetric stress configuration converges much faster than the asymmetric stress

configuration. Furthermore, the choice of thermal boundary conditions greatly affects

the convergence and run time of both conditions. The simulation will converge faster

and for a broader range of stress conditions for Dirichlet thermal boundary conditions

than for Neumann thermal boundary conditions. Again, for the results presented in

this work, each calculated quantity is converged to at least six digits as required by

3.2.
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3.2 Case 2: 2D pMOSFET

As a consistency check for the 2D FinFET case, we have run the NBTI simulation

on a 2D SOI pMOSFET structure with gate length Lg = 40 nm for symmetric stress

configurations at lower temperatures. The 2D structure with finite element mesh

and doping profile are shown in Figure 3.74. Again, electrical/thermal boundaries

are indicated by the pink edges, and the gate, source and drain regions have been

replaced by the contact edges. Furthermore, the orientation of source and drain are

reversed compared to the 2D FinFET structure, with the drain on the left and source

on the right. The results for threshold voltage degradation are given in Figure 3.75,

Figure 3.76, and Figure 3.77. Note that convergence failed for Text = 325 K. Further-

more, the solution for this 2D MOSFET case employs the SHE model in the device

equations.

Figure 3.74: Finite element mesh and doping concentration for 2D MOSFET structure

Again, we observe a break in the expected monotonicity of the rate of threshold

voltage degradation with increasing gate voltage. Furthermore, we find that the

separation between successive ∆Vth curves has increased compared to the 2D FinFET

case. An examination of the trap states 1-4 and the total trapped charge at Text = 375

K (Figure 3.78, Figure 3.79, Figure 3.80, Figure 3.81, and Figure 3.82) reveals regular
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behavior. Indeed, f2, f4 andQ increase with increasing Vg, while f1 and f3 respectively

decrease.


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Figure 3.75: Gate voltage variation of ∆Vth(t) during symmetric stress, Text = 300 K

It is worth noting that the hole velocity develops a maximum in the channel far

below the gate for high Vg (Figure 3.83(a)). The electric field exhibits similar corner

effects near the gate (Figure 3.83(b)) compared to the 2D FinFET. Furthermore, we

find a similar resonant-like distribution for the hole energy (Figure 3.83(d)) as found

in the 2D FinFET. Finally, we find a small hot spot in the lattice temperature near

the drain on the order 10 K higher than the boundary temperature.

3.3 Case 3: 3D pFinFET

Having built up our model for the 2D FinFET, we extend our analysis to a 3D

FinFET structure. This structure was supplied by IBM’s TCAD team and adapted

for compatibility with Sentaurus TCAD. We are, thus, restricted in the material and

device parameters we can supply for this structure, although it is generally analogous
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Figure 3.76: Gate voltage variation of ∆Vth(t) during symmetric stress, Text = 350 K
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Figure 3.77: Gate voltage variation of ∆Vth(t) during symmetric stress, Text = 375 K
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Figure 3.78: Gate voltage variation of 〈f1〉 during symmetric stress, Text = 375 K
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Figure 3.79: Gate voltage variation of 〈f2〉 during symmetric stress, Text = 375 K
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Figure 3.80: Gate voltage variation of 〈f3〉 during symmetric stress, Text = 375 K
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Figure 3.81: Gate voltage variation of 〈f4〉 during symmetric stress, Text = 375 K
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Figure 3.82: Gate voltage variation of Q during symmetric stress, Text = 375 K

to the 2D FinFET. The structure has a gate length of Lg = 15 nm and is given in

Figure 3.84(a), where we display the oxynitride spacers and the gate oxide surround-

ing the channel translucently. The finite element mesh for this structure is shown

in Figure 3.84 and was generated using the Sentaraus Delaunay mesh routine. We

consider both symmetric and asymmetric stress configurations for a couple gate volt-

ages and an ambient temperature of Text = 375 K. Due to the additional complexity

entailed by the three dimensions of the structure, we are limited to using the hydro-

dynamic model to simulate hole energy transport. In order to reduce computational

cost, we have taken advantage of the symmetry of the device structure and have only

simulated half of the full device. This is reflected in the TecPlot images displayed

below.

The degradation in threshold voltage for a couple symmetric and asymmetric

stress cases are displayed below (Figure 3.85, Figure 3.86, Figure 3.87). We find that
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(a) Hole velocity |vh| (b) Electric field |E|

(c) Hole density nh (d) Hole energy |εh|

(e) Hole current density |Jh| (f) Lattice temperature TL

Figure 3.83: 2D Planar MOSFET under symmetric stress (Vg = −1.5 V, Text = 375
K)
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(a) 3D FinFET structure (b) Finite element mesh

Figure 3.84: 3D FinFET structure with finite element mesh

the shift in Vth is lowered compared to the 2D FinFET case, and successive ∆Vth are

much closer together. Furthermore, the rate of Vth degradation again exhibits a break

from the expected monotonic behavior for increasing Vg. The monotonic behavior of

∆Vth is again restored for the asymmetric stress configuration, where again we find

that the range of Vth degradation is much larger compared to the symmetric stress

configuration.

Figure 3.88 to Figure 3.91 show the occupation of the trap states 1-4 under sym-

metric stress. Again, the time domain of interest for Vth degradation is 10−3 ≤ t ≤ 1

s. For states 1, 2 and 4, we observe normal decrease or increase, respectively, in

the occupation number for increasing Vg, except for the Vg = −1.0 V curve, which

consistently follows the −0.5 V curve. Furthermore, we observe an interesting sepa-

ration in the trap state 3 curve behavior with respect to increasing Vg, in which the

occupation number initially decreases up to −1.0 V and then increases beginning at

−1.25 V. The collective behavior of the trap state curves for Vg = −1.0 V indicates

that the relaxation of the lattice for trap state 3 dominates over the hole trapping

and interface state generation. This behavior is again reflected in the dynamics of

the total trapped charge (Figure 3.92).
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Figure 3.85: Gate voltage variation of ∆Vth(t) during symmetric stress, Text = 325 K
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Figure 3.86: Gate voltage variation of ∆Vth(t) during symmetric stress, Text = 375 K
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Figure 3.87: Gate voltage variation of ∆Vth(t) during asymmetric stress (Vg = Vd),
Text = 375 K
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Figure 3.88: Gate voltage variation of 〈f1〉 during symmetric stress, Text = 375 K
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Figure 3.89: Gate voltage variation of 〈f2〉 during symmetric stress, Text = 375 K
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Figure 3.90: Gate voltage variation of 〈f3〉 during symmetric stress, Text = 375 K
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Figure 3.91: Gate voltage variation of 〈f4〉 during symmetric stress, Text = 375 K
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Figure 3.92: Gate voltage variation of Q during symmetric stress, Text = 375 K
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Figure 3.93 to Figure 3.96 show the occupation of the trap states 1-4 under asym-

metric stress. The Vg = −1.0 V curves exhibit the same behavior as in the symmetric

stress configuration, while we find that the −2.0 V curves exhibit a complex crossing

behavior for each trap state not observed in the symmetric stress configuration. This

is further reflected in the total trapped charge Q shown in Figure 3.97. Comparing

the −2.0 V curves for states 2 and 3 to those of states 1 and 4 shows that hole trap-

ping and detrapping begins to dominate over interface state generation and lattice

relaxation.
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Figure 3.93: Gate voltage variation of 〈f1〉 during asymmetric stress, Text = 375 K

Below we display the spatial distributions for the hole velocity, electric field, hole

density, hole temperature, hole current density and lattice temperature for two gate

voltages, −1.0 and −1.5 V, under symmetric stress. For clarity, we give two views

of the distribution. The cross-sectional view shows the distribution across a vertical

plane through the channel dividing the device in half. The outer-channel view shows

the distribution on the outer plane of the channel where we have removed the gate
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Figure 3.94: Gate voltage variation of 〈f2〉 during asymmetric stress, Text = 375 K
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Figure 3.95: Gate voltage variation of 〈f3〉 during asymmetric stress, Text = 375 K
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Figure 3.96: Gate voltage variation of 〈f4〉 during asymmetric stress, Text = 375 K
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Figure 3.97: Gate voltage variation of Q during asymmetric stress, Text = 375 K
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oxide. The orientation of the device in the outer-channel view is rotated around the

vertical axis of the device compared to the cross-sectional view.

Figure 3.98 shows the distribution of hole velocity in the channel. We find that

the maximum is localized in the center of the channel, similar to the 2D FinFET,

while the spread of the maximum region decreases across the width of the channel for

higher Vg. In Figure 3.99, we find that the electric field is again highly localized near

the gate, through the gate dielectric. We observe in Figure 3.100 that the hole density

is minimal in the center of the channel under the gate, while the outer-channel views

show an increase in hole density near the corners of the channel for increasing Vg

(a) Vg = −1.0 V - Cross-sectional
view

(b) Vg = −1.0 V - Outer-channel
view

(c) Vg = −1.5 V - Cross-sectional
view

(d) Vg = −1.5 V - Outer-channel
view

Figure 3.98: Hole velocity |vh| under symmetric stress (Text = 375 K)

The maximum and minimum regions of hole temperature (which is the hydrody-

namic equivalent to the hole energy given in the SHE model) spread across the width

and height of the channel for higher Vg, as shown in Figure 3.101. Furthermore, we

observe a second temperature maximum develop in the channel near the source-side
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(a) Vg = −1.0 V - Cross-sectional
view

(b) Vg = −1.0 V - Outer-channel
view

(c) Vg = −1.5 V - Cross-sectional
view

(d) Vg = −1.5 V - Outer-channel
view

Figure 3.99: Electric field |E| under symmetric stress (Text = 375 K)

(a) Vg = −1.0 V - Cross-sectional
view

(b) Vg = −1.0 V - Outer-channel
view

(c) Vg = −1.5 V - Cross-sectional
view

(d) Vg = −1.5 V - Outer-channel
view

Figure 3.100: Hole density nh under symmetric stress (Text = 375 K)
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corner of the gate for Vg = −1.5 V (Figure 3.101(c)). In Figure 3.102, we find that the

hole current density is greatest at the channel surfaces beneath the gate and increases

for increasing Vg.

(a) Vg = −1.0 V - Cross-sectional
view

(b) Vg = −1.0 V - Outer-channel
view

(c) Vg = −1.5 V - Cross-sectional
view

(d) Vg = −1.5 V - Outer-channel
view

Figure 3.101: Hole temperature Th under symmetric stress (Text = 375 K)

The lattice temperature under symmetric stress and Dirichlet thermal boundary

conditions develops a small hot spot on the order of 10 K above the boundary temper-

ature in the drain side of the channel for both Vg = −1.0 and −1.5 V (Figure 3.103).

This hot spot spreads further across the width of the channel for higher Vg. Further-

more, we find that the center of the hot spot is closer to the SOI substrate than the

top of the gate, which follows from the relative proximities of these regions to the

thermally conductive boundaries.

If we consider the qualitative similarities between the hydrodynamic and SHE

solutions for the hole velocity and hole current density distributions, in particular

that the maximum in the hole current density does not extend across the channel in

125



(a) Vg = −1.0 V - Cross-sectional
view

(b) Vg = −1.0 V - Outer-channel
view

(c) Vg = −1.5 V - Cross-sectional
view

Figure 3.102: Hole current density |Jh| under symmetric stress (Text = 375 K)

(a) Vg = −1.0 V - Cross-sectional
view

(b) Vg = −1.0 V - Outer-channel
view

(c) Vg = −1.5 V - Cross-sectional
view

(d) Vg = −1.5 V - Outer-channel
view

Figure 3.103: Lattice temperature TL under symmetric stress (Text = 375 K)
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the asymmetric case as in the symmetric case, then we can take the 2D FinFET to be

a baseline for our analysis of the breaking of the monotonicity in the Vth degradation

rate under symmetric stress for the 3D FinFET. While in the 3D FinFET case, we

find an additional contribution to this ∆Vth behavior due to the dynamics of the trap

states at different Vg, the nature of the hole velocity and the hole current density may

also play a contributing role. This points the way to potential future work.
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CHAPTER 4

CONCLUSIONS

4.1 Research Results and Outlook

NBTI is expected to become an even greater reliability concern in deeply scaled

pMOSFETs. This is not only due to the implementation of new materials within

the transistor structure, but also to the presence of higher electric fields and more

significant heat generation in confined geometries [7, 41]. Being able to predict NBTI

degradation is crucial for the development and long-term success of novel transis-

tor structures, such as the FinFET. Thus, this work constitutes a first step toward

predictive NBTI modeling in FinFET structures, including contributions from self-

heating. In particular, we have chosen a two-stage NBTI model that allows us to

readily incorporate the electric field and temperature dependence as well as the re-

coverable component of NBTI degradation. This two-stage NBTI model hinges on

the dynamics of deep-level defects (the E′- and Pb-centers) in SiO2 and at Si/SiO2

interfaces.

Furthermore, we have provided a detailed overview of the theory underlying charge

transport simulation, self-heating phenomena, and the nonradiative capture of charge

by multiphonon emission that leads to two-stage NBTI. Through this discussion, we

have attempted to demonstrate the trade-offs that must be made between model ac-

curacy and computational efficiency in simulating complex semiconductor structures.

This work is characterized by the implementation of a hierarchy of approximations,

necessary to achieve proper convergence of our TCAD finite element device simu-

lation. This hierarchy is apparent in the derivation of the hydrodynamic equations

from the Boltzmann transport equation and the high-temperature limit of the capture

cross-sections for deep-level nonradiative transitions.
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In this work, then, we have analyzed the qualitative behavior of Vth shift for short

stress times due to NBTI degradation and self-heating by self-consistently solving a

coupled set of energy transport, temperature, and NBTI trap state equations with

TCAD simulation. We have considered two stress configurations and three device

structures: a 2D FinFET, a 2D MOSFET, and a 3D FinFET. Furthermore, we have

separately employed a spherical harmonic expansion model for the 2D cases and a

hydrodynamic model for the 3D FinFET, while comparing the differences in the two

for the 2D FinFET. We have also briefly considered the effect of thermal boundary

conditions on our results.

For the 2D FinFET, we observe a logarithmic time dependence for the shift in the

threshold voltage. Furthermore, we find that while Vth degradation is worsened for

increasing boundary temperatures, an improvement in this degradation occurs past

a certain bias for increasing Vg when the device is under symmetric stress and at

lower temperatures. This is contrary to the typically observed behavior of Vth shift

due to NBTI. In this case, we find that the 2D FinFET does not exhibit a mono-

tonic increase in the rate of Vth degradation, and we have attributed this breaking

of monotonic behavior to the complex interaction between the trap states and the

degradation of the drain current due to mechanisms independent from NBTI but

activated during NBTI stress. Additionally, we find that this monotonic behavior is

restored for higher boundary temperatures and for asymmetric stress configurations.

In particular, we have noted the potential contribution of velocity overshoot to drain

current degradation, as well as the effects of the hole current density distribution

in the device channel. The increase in lattice temperature during asymmetric stress

may also contribute to the degradation in the drain current. We have also observed

a similar ∆Vth behavior in the 2D MOSFET under symmetric stress, which indicates

that the presence of velocity overshoot and the distribution of the current density

may be intrinsically overestimated by the SHE and hydrodynamic models.
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For the 3D FinFET, we have likewise observed a similar breaking of monotonic

behavior in the Vth shift. We also find a strikingly different behavior of the NBTI

trap states, which to some degree contributes to degradation of the drain current.

Indeed, this case exhibits an intricate interaction between hole trapping and detrap-

ping, interface state formation, and lattice relaxation. Nonetheless, we expect similar

complications arising from velocity overshoot and the hole current density distribu-

tion.

For both the 2D and 3D FinFETs, the self-heating of the lattice due to hole

scattering is insignificant under symmetric stress with Dirichlet thermal boundary

conditions. Under asymmetric stress, we observe the emergence of a much more pro-

nounced hot spot near the drain. However, the self-heating model employed in these

cases does not treat momentum and energy transfer between the coupled hole, optical

phonon, and acoustic phonon systems. We thus expect the emergence of a hot spot

with much higher temperature due to the phonon bottleneck, which would require a

more accurate model to simulate. Nonetheless, this hot spot likely contributes to the

degradation in drain current during asymmetric stress.

Simulation convergence and computational requirements severely hinder the de-

gree to which we can account for the underlying physics of heat generation and NBTI

degradation. This problem is made more immediate by the increasingly smaller scales

of the transistor. For a FinFET with 15 nm gate length, we should expect the discrete

nature of the lattice and the wave nature of the charge carriers to play an increasingly

important role in transport and trapping phenomena. Indeed, it is very likely that the

non-monotonicity observed in the Vth shift will be alleviated by a more fundamental

model, by correcting for such phenomena as velocity overshoot and underestimated

hot spot temperatures. This is crucial if predictive reliability simulations are to be

accurate. An alternative to implementing new models is to calibrate the existing

ones against experimental data, although one then sacrifices the predictive nature of
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the simulation. In fact, it could be that calibrating the simulation parameters em-

ployed in this work could correct for the non-monotonic behavior in Vth shift. Since

this phenomena has not been experimentally observed in pMOSFETs, we may find

that calibration will push the conditions under which the non-monotonic phenomena

emerges outside the normal range of typical experiments.

4.2 Recommendations for Future Work

The results of this work point significantly to the need for model calibration against

experimental data and for the implementation of more accurate physical models in

device simulation [41]. Approximate models such as the hydrodynamic and SHE

models are quickly losing their physical validity for aggressively scaled semiconductor

devices such as the FinFET, and the problem will only become more apparent for

smaller device architectures. On these length scales, one should expect to approach

the limit to which these models can be empirically calibrated [16, 17]. Thus, we must

look toward new models to account for nanoscale phenomena.

A first step toward correcting the apparent velocity overshoot would be to include

more higher order moments of the BTE in the set of coupled device equations being

solved by finite elements. The six moments model has demonstrated this gain in

physical accuracy while still maintaining computational efficiency [63]. This model

should be immediately compatible with the two-stage NBTI model. However, it

effectively ignores the existence of different phonon modes and the nonequilbrium

states that can develop between them.

Direct solutions to the electron or hole BTE coupled with the energy balance

equations for acoustic and optical phonon modes or with the full phonon BTE can be

tractable using Monte Carlo methods in 2D [52, 53, 54, 55]. Open source codes, such as

MONET, are particularly adept at treating phonon scattering processes during charge

transport using a frozen-field approximation. However, implementing such Monte

Carlo methods in NBTI simulation would require one to generalize the two-stage
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NBTI model to couple with acoustic and optical phonon modes, or with an effective

phonon heat bath. Furthermore, obtaining real transient solutions to the charge

carrier and phonon distribution functions requires one to account for the mutual

interaction between the NBTI trap states and the charge carrier and phonon systems.

Thus, one would be required to self-consistently iterate the numerical solver over the

time evolution of the system, which may be too computationally expensive.

To account for quantum mechanical effects, one often employs a quantum correc-

tion in the form of an additional potential in the macroscopic device equations, or a

density matrix method [29, 70]. Currently, the two-stage NBTI model is not com-

patible with such quantum mechanical corrections. Nonequilbirium Green’s func-

tion (NEGF) methods readily account for quantum mechanical effects as well as

particle interactions [65]. Thus, one could in principle model quantum transport

through a nanoscale device including hole-phonon interactions using NEGF meth-

ods [64, 71, 72, 73, 74] . This approach has been implemented in modeling carbon

nanotubes and molecular systems [67, 68]. The NEGF approach is unfeasible for

a three-dimensional device such as the FinFET because the number of nodes re-

quired would make the computation time intractable. However, the implementation

of NEGF methods for one or two dimensions of the device could prove valuable

[69, 76]. One would again be faced with the problem of generalizing the two-stage

NBTI model.
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