
GEOMETRIC QUANTUM HYDRODYNAMICS AND BOSE-EINSTEIN CONDENSATES:

NON-HAMILTONIAN EVOLUTION OF VORTEX LINES

by

Scott A. Strong



A thesis submitted to the Faculty and the Board of Trustees of the Colorado School

of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy

(Applied Physics).

Golden, Colorado

Date

Signed:
Scott A. Strong

Signed:
Dr. Lincoln D. Carr

Thesis Advisor

Golden, Colorado

Date

Signed:
Dr. Uwe Greife

Professor and Head
Department of Physics

ii



ABSTRACT

Geometric quantum hydrodynamics merges geometric hydrodynamics with quantum

hydrodynamics to study the geometric properties of vortex structures in superfluid states

of matter. Here the vortex line acts as the fundamental building block and is a topological

defect of the fluid medium about which the otherwise irrotational fluid circulates. In this

thesis, we show that except for the simplest fluid flows, a vortex line seeks to decompose

localized regions of curvature into helical configurations. The simplest flow, known as the

local induction approximation, is also an integrable one. Integrability makes the transfer of

energy into helical modes impossible. In the following, we demonstrate that any arclength

conserving correction to this approximation defines a non-Hamiltonian evolution of the vortex

geometry, which is capable of supporting dissipative solitons and helical wavefronts. Quantum

turbulence in ultracold vortex tangles relies on energy transfer between helical or Kelvin

modes to decay. Thus, models of vortex lines beyond the lowest order integrable cases are

vitally important to our mathematical description of free decay of turbulent tangles. To

motivate the results of this thesis we connect our theory of vortex line dynamics to continuum

fluid mechanics.

The Navier-Stokes equations are a statement of momentum balance for a fluid whose

response to shear stress is proportional to the fluid’s velocity gradients. Building off of

Onsager’s rather obscure work in fluid turbulence, others have shown that solutions to

Navier-Stokes limit to Euler evolutions of distributional velocity profiles for large Reynolds

number. Using this as our context, we show that the Euler equation can be transformed, in

an inverse Madelung sense, to the Gross-Pitaevskii equation associated with the mean-field

quantum dynamics of a dilute Bose gas. This theory predicts that an irrotational fluid is

capable of circulating around regions of density depletion known as vortex lines. Furthermore,

if a vortex line is used as the ansatz for the Gross-Pitaevskii equation then it is possible to
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show that the Biot-Savart integral over the vortex source results. This connection between

the vortex line geometry and the induced velocity field provides the basis for the application

of geometric quantum hydrodynamics to Bose-Einstein condensates.

If the Biot-Savart integral is the basis of geometric quantum hydrodynamics, then

Hasimoto’s transformation is the structure built on top. The fundamental theorem of space

curves states that up to rotations and translations, a curve is defined by its curvature and

torsion. Through the Hasimoto transformation, it is possible to map flows defined by the

Biot-Savart integral to scalar partial differential equations evolving the curvature and torsion

of a vortex line. In this thesis, we conduct an asymptotic expansion of the Biot-Savart integral

and apply the Hasimoto transformation to show that vortex lines prefer to relax curved

abnormalities through the excitation of helical waves along the vortex. Thus, our model

predicts a geometric mechanism for the generation of Kelvin waves and corrects a nearly 50

year old result to include the dynamics expected in our most primitive states of fluid matter.

Our derivation begins with the Biot-Savart integral representation of the velocity field

induced by a vortex line. We derive an exact representation of the velocity field in terms

of the incomplete elliptic integrals by approximating local regions of vorticity with plane

circular arcs. The velocity field is shown to be a combination of three fields defining axial

flow, circulation and a binormal flow that appears in the presence of non-trivial curvature.

The latter flow explains why vortex rings of smaller diameter travel faster than larger rings.

Using known asymptotic formulae for the elliptic integrals allows us to move past the lowest

order local induction approximation. The asymptotic representations are valid for the regime

where the local curvature is small relative to the inverse of the vortex core size and are

applicable to vortex lines in Bose-Einstein condensates.

To understand the predictions stemming from our asymptotic representation of the local

velocity field, we compute two key quantities. First, we consider the expansion of the local

field in powers of curvature to define corrections to the flow when curvature becomes large.

Second, we consider the Hasimoto transformation of the general induced binormal flow. The
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result is a scalar evolution of the curvature and torsion for configurations of vortex lines

with significant bending. Moving past the local induction approximation causes Hasimoto’s

transformation to map the local flow onto a nonlinear integro-differential equation. Through

the use of our asymptotic expansion, this evolution reduces to a nonlinear partial differential

equation amenable to both symbolic and numerical analysis.

Our symbolic analysis shows that a specific nonlinear term in the partial differential

equation prohibits a Hamiltonian formulation of the problem. Using conservation laws

associated with the local induction approximation, we consider how the non-Hamiltonian term

gives rise to a dissipative mechanism allowing gain and loss of curvature in the vortex medium.

Additionally, we derive a nonlinear dispersion relation predicting that low wavenumber helical

modes jettison from locally curved regions. Consequently, curved regions seek to relax their

bending through the production of helical structures. If the curvature is created through

a vortex reconnection, then helical Kelvin waves couple the vortex to the Bose-Einstein

condensate for the purposes of phonon generation and are expected to be the route to decay

in free quantum turbulence.

We corroborate these predictions with simulations of corrections to initial states predicted

by the local induction approximation. Specifically, we simulate out of plane perturbations

of a vortex ring, along with soliton and breathing states. A detailed analysis of the soliton

state shows a transition to a log normal distribution where curvature disperses ahead of

the traveling wave. On the vortex, this appears as a helical wavefront propagating into an

otherwise straight line. The non-Hamiltonian gain mechanism acts to support Kelvin modes

as they travel and keeps the initial peak profile from completely eroding, a feature indicative

of a dissipative soliton. These dynamics were also seen in both the breathing and ring states.

Thus, geometric quantum hydrodynamics predicts that the simplest flow of curved regions

on a vortex line generates Kelvin waves providing a route to the anomalous dissipation first

predicted by Onsager.
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Square One

Had to find some higher ground

Had some fear to get around

You can’t say what you don’t know

Later on won’t work no more

Last time through I hid my tracks

So well I could not get back

Yeah my way was hard to find

Can’t sell your soul for piece of mind

Square one, my slate is clear

Rest your head on me, my dear

It took a world of trouble, a world of tears

Took a long time... to get back here

Try so hard to stand alone

Struggle to see past my nose

Always had more dogs than bones

I could never wear those clothes

It’s a dark victory

You won and you also lost

Told us you were satisfied

But it never came across

Square one, my slate is clear

Rest your head on me, my dear

It took a world of trouble, a world of tears

Took a long time... to get back here

Tom Petty - 2006
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CHAPTER 1

QUANTUM HYDRODYNAMICS, BOSE-EINSTEIN CONDENSATION, TURBULENCE

AND GEOMETRY

Geometric hydrodynamics is the application of differential geometry to fluid mechanics and

originates from a 1966 paper written by V. I. Arnold. [1] In this work, Arnold demonstrates

that the evolution of an incompressible and inviscid fluid defines a geodesic flow in the space of

invertible deformations of the fluid body. Through this abstraction, he provides a connection to

Euler’s rotation equations associated with rigid rotating bodies. This collaboration between

mathematical analysis and geometry has furthered our understanding of hydrodynamic

stability, as well as the relationship between Newton’s equations and Schrödinger evolutions. [2,

3] Quantum hydrodynamics is the study of a subset of fluid phenomena having quantum

characteristics. In abstraction, it applies to the fields of semiconductor devices, quantum

chemistry, superfluidity, astrophysical dynamics in neutron stars, and quark-gluon plasmas. [4]

We call the merger of these two distinct theories Geometric Quantum Hydrodynamics. A goal

of this theory is to understand the behavior of quantized vortices common to the previous

phenomena. In the field of quantum turbulence, the vortices provide a geometric structure to

the flow making a complete understanding of vortex line dynamics vitally important to the

field.

Geometric quantum hydrodynamics starts with the early 20th century work of Da Rios,

a student of Levi-Civita, who first demonstrated that points on a vortex line flowed in the

local binormal direction and at a speed proportional to the local curvature. [5] While the

result was repeatedly rediscovered throughout the 20th century [6, 7], it was the work of

Hasimoto in 1972 [8] which truly brought the study of line dynamics back to its roots in

differential geometry. In this framework, one can study how an ambient fluid flow affects

embedded vortex lines in terms of the line’s curvature and torsion. Hasimoto showed that
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the vortex geometry is evolved by a cubic focusing one-dimensional nonlinear Schrödinger

equation, which is both Hamiltonian and integrable. This connection to integrable dynamics

increased the type and number of tools that could be used to study the geometry of a

vortex line. However, between the incredible balance necessary to sustain integrability and

the lack of available experimental fluids adequately modeled by vortex lines, Hasimoto’s

work resulted mostly in symbolic analysis. Twenty-years of sophisticated experimentation

with Bose-Einstein condensation with a quantitatively correct mathematical model stands

to change all of this. Additionally, it is now known that Hasimoto’s transformation is a

manifestation of Madelung’s 1926 transformation between Schrödinger’s equation [9] and the

Newtonian momentum balance defined by the Euler evolution of a fluid continuum. [3] One

goal of this thesis is to connect these continuum principles to the Hamiltonian flow of vortex

lines.

In this thesis, we build on this line of research specifically as it relates to the dynamics

of vortices in Bose-Einstein condensates. Our ability to engineer and control the dynamics

of vortex states coupled to imaging the system through standard optical methods, and the

appropriateness of vortex line models, make Bose-Einstein condensates unlike any other

experimental fluid system. In brief, the body of this thesis generalizes the asymptotic theory

of binormal flow to derive a scalar partial differential equation that is capable of relaxing

localized regions of curvature into traveling packets of helical waves known as Kelvin waves.

In a quantum liquid, the reconnecting vortices provide moments where curvature can become

locally large. The generation of Kelvin waves from these events is a necessary ingredient

for the complete understanding of decay in quantum turbulence and is an example of the

anomalous dissipation of kinetic energy first conjectured by Onsager in 1949. [10] In this

introduction, we provide an impression of quantum hydrodynamics and its geometric tools.

We assume that the reader is a student of mathematics or physics and is starting their

advanced training in either discipline. Since many prospective readers may never have

studied fluid or quantum mechanics, we quickly provide some key features of the fields.
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After this, we discuss a mathematical model associated with Bose-Einstein condensation and

through a direct analogy with electromagnetism, we discuss geometric aspects of quantum

hydrodynamics. We conclude with how these results can be applied to quantum turbulence

and review the current status of experiments. After our conclusions, we present an outline of

the contents of this thesis.

1.1 Fluid Turbulence, Reynolds Number and Quantum Mechanics

Elements of fluid mechanics are present in a simple first order autonomous ordinary

differential equation modeling the free fall of a particle flowing through a fluid medium.

Newton’s second law gives

d

dt
(mv) = mg − γ1v − γ2v

2, m, g, γ1, γ2 ∈ R+, (1.1)

where v : R+ → R+
0 and γ1, γ2 are drag coefficients given by Einstein-Stokes [11] and Lord

Rayleigh [12], respectively. While it is interesting to note how the form of the solution is

significantly more complicated in the nonlinear case than the linear case, it is more important

for our purposes to non-dimensionalize the equation and pit the velocity terms against each

other. Doing so one finds that the nonlinear drag term dominates the dynamics when

Re ∝
γ2ṽ

γ1

=
ρCdAṽ

12πµr
� 1. (1.2)

In the numerator, we have the mass density of the fluid, ρ, the characteristic velocity of

the flow, ṽ, incident on a cross-sectional area, A and a non-dimensional drag coefficient, Cd,

which is experimentally tuned to the object and fluid. In the denominator, we have the

fluid viscosity, µ, and the Stokes radius, r, given by the size of a spherical particle used

to define the diffusivity within the fluid. This ratio defines the Reynolds number, Re. An

inspection of the dimensions shows that Reynolds number determines whether energy transfer

via momentum exchange or viscous drag dominates the flow dynamics. For large Reynolds

number, the fluid does little to oppose shear stress and, consequently, supports the creation
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of stagnation points and turbulent eddy formation. For small Reynolds number, the flow

around the falling object tends to be laminar forming smooth streamlines. The difference

between these two regimes may be understood through the classic skydiver problem. [13]

Prior to parachute deployment, the flow is mostly laminar. After the canopy is unfurled, the

fluid flow becomes highly turbulent. This thesis is concerned with fluids whose Reynolds

number is so large that it can be treated as formally infinite. Such fluids are created at low

temperatures where quantum mechanical effects are non-negligible.

A Bose-Einstein condensate is a state of matter, first predicted in 1924 [14, 15] and realized

in experiments roughly 70 years later. [16] It consists of a preparation of bosonic matter

cooled to a point where a large fraction of the particles occupies the lowest quantized energy

state. To understand the mathematical model of the condensate, one must be exposed to a

modicum of quantum mechanics, a topic often not covered in most mathematics sequences.

Consequently, we quickly build quantum mechanics from the perspective of a dynamical

system common to the undergraduate science curriculum.

Recall that the dynamics of an object of constant mass connected to a Hookean spring

which is subjected to neither drag nor an external force is given by mÿ + ky = 0 where

m, k ∈ R+ and y = y(t) measures the displacement of the mass from its equilibrium

position (y, ẏ) = (0, 0) in the phase space spanned by the y and ẏ vectors. Trajectories

in this phase space correspond to level curves of the Hamiltonian energy surface given by

H(y, ẏ) = mẏ2/2 + ky2/2, where the terms represent kinetic, T , and potential, V , energies,

H = T + V . Dissipation given by linear/laminar drag manifesting from the motion of the

mass relative to a fluid background, say through a shock absorber where a paddle is pushed

through a viscous fluid, continuously drains energy from the system and eventually returns it

to equilibrium.

The conservative problem can be reformulated by defining the subtraction of the kinetic

and potential energies and is known as the Lagrangian, L = T − V . This quantity then

defines an action functional, S(y, ẏ) =

∫ t1

t0

L(y, ẏ) dt, acting on the space of all possible
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trajectories connecting y(t0) and y(t1). The principle of least action asserts that the solution

to this mass spring problem is the function that minimizes the variation of this action. For

m = k = 1, one can quickly see that the two trajectories y1(t) = cos(t) and y2(t) = 1− 2t/π

give very different actions on the interval 0 ≤ t ≤ π with y1 being smaller. If we trust the

principle of least action, then our intuition over the mass spring system tells us that y1 is a

minimizer of the action. A more powerful perspective is found through the application of

the calculus of variations which states that the path minimizing the action functional must

also satisfy the Euler-Lagrange equations,
d

dt

(
∂L

∂ẏ

)
=
∂L

∂y
, which recovers Newton’s second

law,
d

dt
(mẏ) = −∇V where V = V (y). It is this modern perspective of mechanics which has

allowed inroads connecting quantum and classical physics.

Starting with the work of Dirac, Feynman realized that quantum mechanics could be

recovered from the Lagrangian formulation of classical mechanics. [17] He assumed that the

probability amplitude of a quantum process, also known as a wave function, ψ, was defined by

the contributions of all possible paths joining two points in configuration space and that each

path contributed to the wavefunction by an amount proportional to eiS/~, where Planck’s

constant, ~, is introduced to non-dimensionalize the exponent. Feynman began by summing

the individual contributions over all configurations and time evolved the wave function an

infinitesimal amount. Power expanding the wave function in the spatial variable and retaining

only linear terms in the time perturbation yields an evolution of the wave function given by

i~ψt = −~24ψ/2m+V ψ, which is Schrödinger’s equation, where 4 = ∂xx + ∂yy + ∂zz. While

the classical particle definitely takes a path that minimizes the action, the quantum particle

takes all paths and those with large action define highly oscillatory integrands that tend

to cancel themselves out when integrated over the configuration space. Consequently, the

square of the complex modulus of the Feynman’s probability amplitude defines a probability

density function dominated by those states whose action is small.

A typical example is to contrast the classical harmonic oscillator with its quantum analog,

i~ψt = Ĥψ = −~2ψxx/2m+mωx2ψ/2. [18, 19] Both cases model a dynamical point particle
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near a potential energy minimum. However, one finds that while the classical oscillator

can assume any energy from a continuously infinite spectrum bounded below by zero, the

quantum harmonic oscillator can only access a countably infinite set of non-trivial energies.

The concept of quantization of an observable with a well-defined lowest energy state has

useful analogs in the setting of quantum hydrodynamics. However, since a single particle is

far from a fluid state, we must consider a dilute Bose gas cooled to a point where quantum

effects manifest.

1.2 Mean-Field Dynamics and Quantum Hydrodynamics

The quantum many-body problem, defined by a vector Schrödinger equation, is intrinsically

a linear one and though it does not suffer from the same problems as classical chaos, realistic

interacting systems are generally intractable due to the large number of degrees of freedom.

For example, dilute Bose-Einstein condensates can have on the order of 106 particles, or

more, and bosonic stars have 1030. Both systems yield intractable symbolic and numerical

problems unless the particle interactions are turned off. The goal is to introduce interactions

in such a way that an effective evolution equation can be found. [20, 21] Specifically, a

system of N identical bosons with mass m are subjected to the external potential field V (x)

and permitted to undergo two-body interactions defined by point-like particle interactions.

The Born approximation provides an effective two-body interaction strength related to

the scattering length, which is constant in momentum space. The interaction potential in

configuration space is related by Fourier transform and is therefore given by a Dirac function.

The many-body Hamiltonian for such a system is given by,

H =
N∑
i=1

− ~2

2m
4xi

+ V (xi) +
U

2

∑
i 6=j

δ(xi − xj). (1.3)

The energy of the system is given by the quadratic form defined by the integration, E =∫
Ψ̄HΨdx1x2x3 . . . dxN , where Ψ̄ is the complex conjugate of the many-body eigenvector

associated with the operator equation HΨ = EΨ. If all bosons are in the condensed state,
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then the many-body wave function can be written as the product of normalized single-particle

wave functions, ψ,

Ψ(x1,x2,x3, . . . ,xN) =
N∏
i=1

ψ(xi),

∫
R3

dxψ(x) = 1. (1.4)

The normalized many-body wave function is then given by Ψ =
√
Nψ. Substituting this into

energy functional defined by the Hamiltonian operator gives

E =

∫
dxΨ̄

[
− ~2

2m
4+ V (x) +

U

2
|Ψ|2

]
Ψ. (1.5)

Minimizing the variation of this energy with respect to Ψ̄, subject to the normalization

constraint, defines a Lagrange multiplier problem, which is solved by requiring that

[
− ~2

2m
4+ V (x) +

U

2
|Ψ|2

]
Ψ = µΨ (1.6)

where µ is the thermodynamic quantity describing the change in energy associated with

particle occupancy number known as the chemical potential. Equation (1.6) defines the

time-independent Gross-Pitaevskii equation and the condensate wave function associated

with the eigenvalue µ describes a collection of bosons sharing the same chemical potential. In

analogy with Schrödinger evolutions, the time-dependent Gross-Pitaevskii equation is given

by

i~
∂Ψ

∂t
= − ~2

2m
4Ψ + V (x)Ψ +

U

2
|Ψ|2Ψ. (1.7)

The connection between the time-independent and time-dependent equations is found in

the relationship between the chemical potential and the phase factor associated with the

destruction of ground state particles in the large particle number limit. Additionally, it is

possible to derive the time-dependent Gross-Pitaevskii equation using the principle of least

action for a Lagrangian formulation where the energy density Hamiltonian is fourth order in
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the condensate wave function. Both cases are too technical for our needs. Instead, we note

that this equation is a Schrödinger equation where the external potential V is augmented

by a nonlinear term that averages the condensate field where the interaction energy felt

by an atom is replaced by the condensate density multiplying an effective interaction. For

the reasons above, Eq. (1.7) is defined as a mean-field equation and is accurate when the

condensate fraction is close to 100%.

In 1926 Erwin Madelung transformed the Schrödinger equation into a system of hydrody-

namic equations. [9] In doing so, he gave birth to the field of quantum hydrodynamics relating

the dynamics of a single quantum particle to a mass conserving inviscid flow. Here the

probability density field corresponds to the fluid mass density which is evolved by a velocity

field satisfying Euler’s equations. While a single point does not make a fluid, a collection

of bosons condensed into a gas evolved by the Gross-Pitaevskii equation does. Madelung’s

transformation begins by assuming that Ψ =
√
ρ eiφ and separates Eq. (1.7) into real and

imaginary parts yielding the following equations,

∂ρ

∂t
+∇ · (ρv) = 0 (1.8)

∂φ

∂t
+

1

2m
|∇φ|2 =

~2

2m

4√ρ
√
ρ
− ρ (1.9)

where v = ∇φ. Taking the gradient of Eq. (1.9) shows that the Madelung transformation

describes a Bose-Einstein condensate as an inviscid barotropic fluid whose evolution is given by

a mass conserving Euler equation. This flow is manifestly potential and therefore irrotational.

That is, if curl defines the axis of rotation at a point in the fluid, then a potential flow has

trivial vorticity on its domain, ω = ∇× v = ∇×∇φ = 0. That said, it is clear from both

experiments and simulations that turbulent states of this fluid exist and are structured about

its vorticity. If the system has trivial curl throughout, then what vorticity does this system

possess? To resolve this question, we mention a common problem posed to calculus students

which is focused on subtleties of the hypotheses of Stokes’ theorem. Here one finds that

manipulation of the fluid geometry allows for a vortex state to exist, manifesting as pure
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circulation. In the next section, we investigate this problem while utilizing a little bit of

electromagnetic theory to contextualize the result.

1.3 Geometric Aspects of Quantum Hydrodynamics

Assuming an undergraduate background in the physical sciences, we draw on an analogy

with electromagnetism to incorporate a discussion of the geometric elements of fluid mechanics.

Specifically, Maxwell’s equations define how the coupled electric and magnetic fields are

capable of inducing dynamics on each other. While this is not a fluid system, it is a

common one and provides an excellent analogy to the hydrodynamics discussed in this thesis.

Specifically, the Maxwell-Faraday equation tells us that the flux of a magnetic field can

induce a current along the boundary of a smooth orientable surface. From this mechanism of

action, one suspects that a steady current flowing along a one-dimensional curve can induce

a magnetic field. The Biot-Savart integral is the mathematical counterpart to this intuition

and, in principle, allows one to write down the magnetic field given the geometry of the

wire on which the current steadily flows. The connection between these statements and fluid

mechanics is provided by the abstraction of vector analysis, which is the language used to

describe both theories. In the setting of fluid mechanics, vorticity plays the role of current and

the field which it induces is not magnetic but, instead, the fluid velocity. A typical problem

in a multivariate calculus class is to demonstrate that the field F = − y

x2 + y2
ı̂ +

x

x2 + y2
̂

satisfies the condition ∇× F = 0 everywhere in the domain of F, but defines the circulation∮
C

F · dr = 2π, which is seemingly in contradiction with Stokes’ theorem. The problem is

resolved when one notices that F is not defined at the origin. This breaks down the simple

connectivity of the plane and not every closed path in R2 defines a region whose points lie in

the domain of the field F. The non-zero circulation about the singularity of the otherwise

irrotational field, F, leads one to interpret F as a simple source known as a point vortex. [22]

Moreover, the non-triviality of the fundamental group on this topological space leads to

the convention of calling this vortex a topological defect of R2. While this is not the most

interesting example, one can think of joining a continuum of these defects into a vortex line in

9



R3. As the analog of a steady line current, the Biot-Savart integral can be used to accumulate

the vorticity over the line source to recover the induced velocity field. For fluids, we find that

the circulatory field is capable of causing the vortex to flow through the ambient space while

altering its curvature and torsion.

The theorems of Kelvin and Helmholtz state that the motion of a vortex line is that of the

ambient fluid in which it is embedded. [23, 24] Vector analysis tells us that the incompressible

component of the velocity field induced by the vortex has a representation through the

Biot-Savart integral. [25] Generally, the autonomous flow generated by a planar vortex line

can be decomposed into three components representing the axial/tangential, circulatory and

binormal flows, the latter two vanishing if the vortex has trivial curvature. A rich and useful

theory can be constructed around the assumption that each segment of vorticity can be well

approximated by a planar vortex line. Specifically, by focusing our analysis on the fluid

flow manifesting from a curvature dependent binormal flow, one can define a class of wave

motions described by the geometric deformations along the vortex. In this thesis, we study

this theory and report on new results predicting that binormal motion endows the vortex

medium with dispersion and gain/loss mechanisms which are necessary to support helical

wave generation sourced by locally curved regions. This generation of Kelvin waves on a

vortex line is important to the decay mechanisms of quantum turbulence. [26, 27] Our key

point is that any amount of correction to the most primitive motion of a vortex line results in

the generation of Kelvin waves. As these Kelvin waves are important to our understanding

of quantum turbulence, models incorporating this dynamic are vital for future development

of the field. From the creation of the froth that tops our macchiato, to passing large

trucks while driving, our everyday experience provides many examples of classical turbulence.

Quantum turbulence is different enough to warrant a focused discussion. In the following,

we give an overview of the phenomenon and review the current status of experiments in

Bose-Einstein condensates.
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1.4 The Anatomy of a Vortex Line and Kelvin Waves

If the principal character of this thesis is a vortex line, then it makes sense to discuss

its features with an emphasis on its geometric properties. First, we consider the density

profile of a vortex line. Similar to a classical hydrodynamic vortex created by emptying a

column of water, a quantized vortex in a Bose-Einstein condensate is a region of low density.

However, a significant difference between the two is in how the density tends to zero as

we approach the vortex. In 2004 Berloff applied a Padé approximation to the nonlinear

Bessel equation defined by the radial component of the time-independent Gross-Pitaevskii

equation. Doing so, she arrived at an approximation to the density profile of a straight line

vortex in a uniform condensate. Aligning the vortex with the z-axis implies that every planar

cross-section perpendicular to this axis has the same density profile. Assuming that the

density vanishes at r = 0 in an arbitrary planar cross-section and that the density tends to

one as r →∞, defines a profile given in Figure 1.1a. The healing length or vortex core size is

defined by the characteristic length needed for the condensate to return to the bulk density,

In Figure 1.1b we plot the radial distance from the vortex line as a function of condensate

density. Though the far-field density profile changes considerably for trapped condensates,

our derivations assume that the condensate is so large that boundary conditions contribute

negligibly to the vortex density profile.

A general vortex line is a one dimensional topological defect of the condensate cloud

with a cross-sectional density profile as approximated in the work of Berloff. We consider

now how differential geometry describes the vortex. In Figure 1.2 we depict the vortex line,

its osculating plane, curvature profile and normal plane. The vortex line is a function of

arclength s and time t. At each point on the vortex there is a local orthogonal coordinate

system, known as the Frenet frame, consisting of the tangent (T), normal (N), and binormal

(B) vectors. Additionally, at each point, two scalar quantities are defined. The curvature, κ,

defines how the vortex fails to be straight, and the torsion, τ , describes how the vortex fails to

be planar. Differential geometry tells us that the linear system of non-autonomous ordinary
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(b)(a)

Figure 1.1: Vortex Line Density Profile. (a) The Padé approximation of the cross sectional
density profile of a straight line vortex in an uniform Bose-Einstein condensate. We see a
smooth return from the density depletion defining the vortex line at the radial origin to a
bulk value ρ(r)→ 1 as r →∞, in non-dimensional variables. (b) The radial distance as a
function of percentage of the bulk. This approximation predicts that it takes roughly 3.41636
non-dimensional radial units to return to 90% of the bulk value.

differential equations, known as the Frenet-Serret equations, recovers the local tangent vector

from the curvature and torsion. With this known, integration can be used to recover the

vortex line. In other words, a vortex line is described by the point to point changes given

by Frenet circles. The radius of this circle defines the reciprocal of curvature, R = κ−1.

Additionally, we depict the vortex core size, ξ, and associate the embellished girth given to

the vortex in the figure with the density profile given in Figure 1.1. The vortex line depicted

is such that τ = 1 and κ = 2 sech(s). This corresponds to a vortex line with a traveling kink.

Kelvin showed that a helical deformation of a vortex line propagates as a wave. In this thesis,

we show that curvature abnormalities on an otherwise straight vortex seek to decompose

themselves into propagating helical/Kelvin waves.

Kelvin waves are fundamental objects in hydrodynamic flows but have different behaviors

depending on the dimensionality of the system. This has a strong connection to turbulence,

which we explain here. A two dimensional Kelvin wave occurs at the geophysical level when

a warm water anomaly in the Pacific Ocean near the north coast of Australia is built by

the west moving trade winds. An upwelling of cold water near South America occurs to
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Figure 1.2: Vortex Line Geometry. This graphic appears in Chapter 5, as Figure 5.1. (a)
The local orthogonal frame, tangent (red, T), normal (blue, N) and binormal (green, B)
vectors, at the initial, middle and terminal points (brown) of the vortex line, γ(s, t), with
embellished width. At the reference point P we have a local description of the vortex given
by a blue semi-circle. Changes to the Frenet frame from point to point are described by the
curvature, κ, and torsion, τ . (b) View down the long axis of γ where we see the osculating
plane spanned by the tangent and normal vectors. The local geometry at P is defined by the
radius of curvature R, which is related to the curvature by κ = R−1. The angle θ sweeps
out an arclength from 0 to L providing a local parameterization to γ about P . The core
scale is defined as ξ; in Bose-Einstein condensates taken as the superfluid healing length. (c)
The curvature distribution associated with the vortex line in (a) with unit torsion. (d) The
normal plane is spanned by N and B, with observation point, r = (0, x2, x3), placed in this
plane and defined by the polar angle φ.

compensate for this. This structure is normally stationary and sits in positive feedback with

a circulatory atmospheric cycle of warm moist rainfall in the east and cool dry air in the west.

However, if the east to west moving trade winds loses their strength, then it is possible for

the warm water to diffuse into the cold region. When the balance is broken a global dynamic

is created where Rossby waves, gigantic undulations of the ocean water, transport the cold

water west. [28, 29] The warm water responds by traveling east, a motion further supported

by the Coriolis force causing the Equator to act as a waveguide. The non-dispersive region of

warm water steadily moving west forms an equatorial Kelvin wave. The large-scale release
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of warm water causes an El Niño, which brings strong rain systems to the Americas. This

Rossby-Kelvin interplay occurs generally and causes a strong delineation between circulatory

flows in the northern and southern hemisphere, which leads to concentration of persistent

surface structures. Specifically, vorticity in two dimensions tends to concentrate leading

to long-scale persistent structures, like the great Pacific garbage patches and the Great

Red Spot on Jupiter. [30] Specifically, in two dimensions vorticity injected into the system

at small scales is capable of consolidating rotational energy into larger structures. This

inverse cascade process is not present in three dimensions where the rotational energy of

large eddies cascades to smaller length scales so that dissipation manifesting from molecular

diffusion can relax the turbulent state. In Onsager’s only published paper on turbulence

theory, both cascade processes are discussed. [10] Interestingly, he conjectures a route to

dissipation expected to arise in systems with negligible viscosity. At this time, Kelvin waves

on a vortex line are expected to play a key role. In three dimensions, Kelvin showed that

waves could live on vortex media and that helical deformations of a line of vorticity propagate

along the vortex. [31] These helical distortions are fundamental modes of the hydrodynamic

phenomenon and instead of concentrating energy, in a Bose-Einstein condensate, they act

to excite acoustic waves traveling through the gas away from the vortex line in an effort to

relax turbulent states. The generation of these modes from localized curvature abnormalities

and their connection to continuum hydrodynamics is the focus of this thesis. In the next

section we describe the manifestation of vortex lines in Bose-Einstein condensates and their

subsequent turbulent state.

1.5 Quantum Turbulence and Experimental Bose-Einstein Condensates

In classical flows, turbulence is often contrasted with laminar flows. Laminar flows

are defined by layered flows where the velocity and pressure fields see minimal disruption

between these layers. Classical turbulence, instead, exhibits chaotic changes over the medium.

Fundamental to this phenomenon is the formation of vorticity within the fluid, which is

absent in the laminar regime as the flow lines are not permitted to circle back into themselves.
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The classic example here is the turbulent breakdown of a flow of a fluid past an obstacle.

As we move away from the laminar regime instabilities in the flow result in vortex shedding

downstream of the cylinder producing von Kármán vortices. [32] Experiments show that the

rotational energy of the vortices dissipates further downstream. In 1922 Lewis Richardson

characterized the energy cascade process through which the dissipation is achieved with the

following poem, “Big whirls have little whirls, that feed on their velocity, and little whirls

have lesser whirls and so on to viscosity.” [33] The life cycle of these vortices ends when they

have reached length scales small enough to allow for molecular diffusion permitting viscous

dissipation of angular momentum. If this is the characterization of classical hydrodynamic

turbulence, then what can be said about quantum turbulence? To answer this question, we

should first consider what a quantized vortex is and how one can achieve this state in the

laboratory.

While the hypothesized state of matter known as Bose-Einstein condensation (1924-1925)

predates the 1927 roll-out of the Model-A, Ford Motor Company’s successor to the Model-T,

experimental realization of this phenomenon did not occur until roughly 70 years later, June

5th, 1995. This also happened to be the sixteenth birthday of the author who was enjoying

his first solo drive as a new state of matter emerged on planet Earth. This achievement

was celebrated six years later with a Nobel Prize shared between Eric Cornell and Carl

Wieman, both affiliated with the University of Colorado at Boulder, and Wolfgang Ketterle

of the Massachusetts Institute of Technology. [16] Since that time there has been a sustained

interest in modeling, simulating and experimenting with what is essentially an extremely

primitive continuum fluid that is capable of possessing quantum mechanical effects existing

at macroscopic length scales.

A Bose-Einstein condensate is a dilute gas of atoms where the delocalized wave-like

nature of the particles, as characterized by the de Broglie wavelength, is larger than the

average interparticle spacing. In this case, the individual atoms collectively assume the

ground state wave function of the Gross-Pitaevskii equation, Eq. (1.7). Production of this
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degenerate gas begins with the collection of billions of atoms, or more, into a magneto-optical

trap. This trap consists of an anti-Helmholtz coil used to create an almost fixed magnetic

quadrupole field whose center is the focal point of counterpropagating lasers aligned along

the coordinate axes. Atoms at this focal point lose momentum through interacting with the

photons comprising the laser light and are thus cooled. As atoms move away from this focal

point, the magnetic field shifts the atoms back to the resonant frequency of the laser light

and they return to the slow-moving collection at the trap center. The subsequent free state

is known as optical molasses where the billions of atoms exist in a region of space on the

order of a cubic millimeter at temperatures around 10 milliKelvins. This slow collection of

atoms is then cooled further through evaporation which can decrease the temperature by

three orders of magnitude attaining the condensed state, while typically reducing the number

of atoms to 105 to 107 depending on the experiment. The trap is then raised and after the

hot particles thermalize with the cloud, the trap is lowered again to allow for evaporation.

The end result of this process is a cloud of atoms that are significantly cooler, typically

a few hundred nanoKelvin. While many of the atoms in the “molasses” are lost through

evaporation, an experimentally viable Bose-Einstein condensate is left behind. [34]

A prepared Bose-Einstein condensate, can be supplied with angular momentum through

rotation of the background potential. The resulting gaseous cloud of atoms roughly forms

an ellipsoid and using the Gross-Pitaevskii equation to define an energy functional, one

can numerically demonstrate that, away from the boundaries, the condensate will seek

to form a lattice of vortices whose inter-vortex spacing is defined so as to minimize the

system energy. Experimentally, it is observed that vortices will nucleate at the periphery of

the condensate, move towards the bulk and arrange themselves into the predicted lattice.

Such stable configurations of vortices were first proposed by Abrikosov in the setting of

superconductivity. [35] There are, of course, several other ways to nucleate the vortices,

e.g., wavefunction engineering, optical stirring, and synthetic magnetic fields that exploit

equivalence between the Lorentz force and the Coriolis force. [36, 37] In 2001 an optically
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stirred condensate produced a sample with 15 vortices [38] and just two years later rapidly

rotating magnetic traps were used to produce over 4 to 10 times the number of vortices. [39, 40]

The oblate cloud of atoms making up the Bose-Einstein condensate is roughly 100

micrometers tall and twice the width. A vortex inside this cloud has a core width that is

nearly two orders of magnitude smaller. [41] If the cloud was as wide as the Great Pyramid

of Giza, then the vortex would be as wide as a Volkswagen Beetle. In superfluid helium, the

system size is significantly larger by up to two orders of magnitude. If the condensate is

the Pyramid of Giza then the superfluid helium system is the deepest point in the Mariana

Trench. In superfluid helium, tracer particles are trapped inside the vortices and standard

imaging processes are used. Nevertheless, for the much smaller Bose-Einstein condensates

we have several avenues of quantitative imaging of the vortices. Most imaging techniques

involve destroying the condensate through optical absorption. This can be done either in

situ or during the expansion of the cloud after the trap has been turned off. In both cases

the cloud is probed with a laser tuned to be absorbed by the atoms. The light making it

through the cloud is imaged and the condensate features appear as a shadow which is recorded

with a CCD camera. Spontaneous emission from the atoms occurs after the probing and

eventually the system is destroyed through heating. Consequently, the condensate dynamics

must be recovered by averaging multiple experimental runs. While this is certainly different

than the ballistic expansion, true in situ images must be created through non-destructive

means. Dispersive imaging is a method where off-resonance laser light is scattered by the

cloud and analyzed separate from the incident light. The amount of heat deposited into the

cloud is roughly 300 times less than that given by an on resonance probe. This allows for

repeated imaging of the cloud dynamics that is far less destructive. [34, 42, 43] Additionally,

a stroboscopic technique can be employed that sends in a microwave pulse, which jostles 1%

to 10% of the atoms free from the condensate. As the dislodged atoms fall, the cloud they

form expands to a point where standard digital optical methods are used. [44, 45]
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A 2015 experiment in Trento, Italy, produced vortices in an oblate condensate comprised

of roughly 107 sodium atoms confined to a harmonic trap by cooling the system through the

Bose-Einstein condensate transition point to 200 nanokelvin, leveraging the Kibble-Zurek

mechanism. In this scenario an atomic gas is cooled to a point where low energy modes are

occupied before the gas undergoes the condensate phase transition. These high occupation

but low energy states act as large amplitude waves which have random phases consistent

with their still present thermal properties. The nodes of the superposition of these modes

form density depletions that persist in the form of vortices when the system is rapidly

quenched through the phase transition. [41, 46, 47] Using stroboscopic imaging techniques

the precession dynamics were observed, as well as interactions between the vortex lines. It

was found that the precession of a vortex about the trap center was minimally affected by

the presence of multiple vortices. To explain this the authors put forward the hypothesis that

either the vortices do not reconnect or a rapid double reconnection process ensues so that the

overall dynamics are relatively unaffected. In a later collaboration with members of the Joint

Quantum Centre in Newcastle, a similar condensate was prepared and compared against

numerical simulations. [48] In this experiment, double reconnections along with near crossing

rebound events for small relative velocities and ejection of vortices from the cloud were

observed. They concluded that these dynamics were result of the inhomogeneous confined

nature of the trapped cloud.

Two vortices do not make a vortex tangle, nor does an Abrikosov lattice of vortices

constitute turbulence. The first experiment designed to explore quantum turbulence in Bose-

Einstein condensates was a 2009 collaboration between researchers from the Universidade de

Saõ Paulo, Brazil, with members from Universita di Firenze, Italy. Together they condensed

roughly 105 rubidium atoms in a cigar-shaped trap in which vortices were nucleated by

both shaking and spinning the trap. [49, 50] Contrary to the energy minimizing lattice, a

disordered arrangement of vortices was observed through standard imaging techniques. A

second indication that the cloud had achieved a turbulent state was given by its atypical
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expansion that matched neither a quantum condensed state nor a thermalized state. More

recently, the same group working with a similar experimental apparatus further demonstrated

the ability to image quadrupolar modes, scissors modes, and ultimately vortices which evolved

into a tangle. [51] In a 2014 review article, the Newcastle group summarizes the current

state of turbulence in Bose-Einstein condensates and questions whether our experimental

realizations with a relatively limited number of atoms, 103 to 109, can sustain the number of

vortices needed to really become turbulent. [52] That year, the same authors reported on

numerical simulations supporting the notion that optically stirring a spherically symmetric

condensate with a Gaussian profiled laser provides an efficient means to generate a quantum

tangle in a condensate, while minimally affecting the net transfer of angular momentum into

the system. Establishing quantum turbulence in experimental Bose-Einstein condensates is

difficult due to the limited number of vortices the cloud can support, a problem not shared by

superfluid helium. [53] On the other hand, superfluid helium does not have a quantitatively

correct model that can be used in conjunction with experimental data, where condensates

have the Gross-Pitaevskii equation. The fundamental difference is in the nature of interactions.

The two-fluid picture of quantum hydrodynamics decomposes the liquid into superfluid and

normal states. While nearly 100% of the atoms in an experimental Bose-Einstein condensate

are in the superfluid state, only a few percent of liquid helium atoms are superfluid. The

Bogoliubov theory of excitations describes the momentum distribution of particles. The

prediction is that the superfluid fraction is large for dilute liquids, in the sense that the

length of interparticle spacing dominates the interaction length. This diluteness criterion

cannot be maintained in liquid helium. Consequently, the superfluid fraction in liquid helium

is depleted. [54] That said, simulations indicate that a vortex line model is an appropriate

building block in both physical contexts.

In a 2017 review article, Tsubota outlines three environments for the simulation of

quantum turbulence. [55] The first, and likely the oldest, is the vortex filament method, which

assumes a line source of vorticity in an incompressible fluid and evolves the vortex structure in
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accordance to its local flow expressed by either the Biot-Savart integral or approximations to it.

The second method is a direct simulation of the continuum model given by Gross-Pitaevskii,

which natively handles core-related phenomenon at the cost of simulating the entire fluid.

The third method is due to Hall, Vinen, Bekharevich, and Khalatnikov and is based on the

two-fluid model where a superfluid coexists with a normal Navier-Stokes like fluid. In this

model, the interaction of the two components introduces a dissipative mechanism. Tsubota

ends the article with open problems in numerical studies of quantum turbulence in both

atomic gases and helium. From this list of open problems, it is clear that there is no single

model can answer all of the questions that exist. A prominent question is the nature of energy

cascades in turbulent tangles, which is currently reliant on initial states comprised of bundles

of vortex lines forming the equivalent of a vortex tube. [56, 57] In simulations, these bundles

decompose into a tangle according to a reasonable script beginning with a classical story. [58]

Conceptually, quantum turbulence differs from classical turbulence through the constrained

nature of quantized vortex lines which are non-diffusive regions devoid of the superfluid. The

circulation they support is further restricted to take on values from a discrete rather than

continuous set and when this value is decided it remains the same along all vortex lines in

the quantum fluid. That is, whenever ρ 6= 0 in Eq. (1.7), the associated velocity field is

defined by a scalar potential and therefore irrotational, ∇×∇φ = 0. However, regions where

ρ = 0 may define a topological defect of the fluid space leading to a purely circulatory flow

about the vortex line. Quantization of the circulation is a consequence of the relationship

between the velocity and the phase of the mean-field wave function. Turbulent states can be

manufactured by spinning up the fluid so that a large circulation will prefer to decompose

itself into a lattice of vortex lines, each possessing a quantum of circulation. Once the transfer

of angular momentum into the system is stopped, any small deviations to this metastable

bundle will induce turbulence in the form of a quantum tangle.

As the collimated tube of vortices begins to decompose, smaller self-similar regions of

tubes may form which is indicative of a classical Richardson cascade. This cascade cannot last
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forever and the vortices will begin to interact. While they push and pull on one another, some

will naturally intersect with themselves or others forming the tangle. Vortex reconnections are

preceded by the creation of a cusp where the curvature becomes large. After the reconnection

event, a region of highly localized curvature remains. The vortex line proceeds to relax

this region through the excitation of helical modes along the vortex, which are a type of

Kelvin wave. The Kelvin waves allow the vortex line to couple to the quantum fluid so

that the turbulent energy can relax through the excitation of acoustic modes. This dynamic

is unique to the turbulent quantum tangle and hypothesized to resolve the conjecture by

Onsager who anticipated “a mechanism of dissipation in which the role of the viscosity is

altogether secondary.” In review, the biography of the tangle begins with an ordered lattice

that transitions to a self-similar state through a Richardson cascade transferring large scale

properties to finer scales. A quantum tangle is then born after the Richardson cascade, when

the large scale structure has been decomposed to the point where the tangle appears random.

This quantum turbulence is marked by repeated reconnections that drive Kelvin waves and

phonon emission in the quantum fluid. This continues until vortices live the majority of their

life in isolation, at which point the tangle is said to have relaxed and the turbulence abated.

Currently, there does not exist an analytic model that connects the local flow directly to the

vortex line geometry. The work in this thesis solves this outstanding problem.

Starting with the Biot-Savart integral, we derive a model that predicts the generation of

Kelvin waves from curved abnormalities on an isolated vortex line. This result is complemen-

tary to the body of work which models the kinetics of Kelvin waves that seek to understand

the statistical properties of a Kelvin wave cascade. [59] That being said, the techniques we

develop within this thesis are quite general and can be used whenever the dynamics of a

vortex tube are well approximated by the behavior of the vortex line at its center, i.e., if the

deformations of the vortex core are negligible. In Chapter 6 we conclude with an outlook of

the future utility of these methods.
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1.6 Thesis Organization

This thesis contains chapter material that is original work either published in or submitted

to peer-reviewed journals. In addition, to these chapters, we have provided an introduction

to the thesis in Chapter 1, and Chapter 2 provides preparatory material for understanding

Chapters 3 through 5. Chapter 2 focuses on the equations of fluid dynamics and their

connection to the Biot-Savart formalism in which the results of the main body are rooted.

Specifically, the continuum theory of viscous thermal fluids in the large Reynolds number

limit is reduced to the Biot-Savart integral through the use of two pre-existing results and

a scaling argument which we develop. Chapter 3 studies the velocity induced by a plane

circular arc of vorticity and derives an exact representation of the field in terms of incomplete

elliptic integrals. Chapter 4 is a review of the key results of a Hasimoto transformation of

the asymptotic analysis of the exact velocity field derived in Chapter 3. Specifically, we find

that the non-Hamiltonian evolution of the curvature and torsion drives the system to relax

regions of localized curvature into helical waves. In Chapter 5, we present the details of the

calculation justifying the previous results. We conclude the thesis with a summary and a

discussion of possible avenues of future research in Chapter 6.

In talks leading up to the defense of this dissertation, a mind map was used to outline

the interconnections between various topics unified by geometric quantum hydrodynamics.

We include this graphic in Figure 1.3 below. The embedded images are in the public domain

and a list of attributions appears in Appendix C. Additionally, a brief overview of the key

points in this thesis was provided in a handout disseminated at the defense. This handout is

reproduced in Appendix A.
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Figure 1.3: Geometric Quantum Hydrodynamics - Mind Map. In Chapter 2 we present the basis of Geometric Quantum
Hydrodynamics, which connects the Biot-Savart integral to Navier-Stokes evolution of potential flows in the high Reynolds
number limit. Chapter 3 is the reproduction of a paper where an exact representation of the velocity field induced by a plane
circular arc is derived. Chapters 4 and 5 present a detailed asymptotic analysis of the Biot-Savart representation of the induced
velocity field and its Hasimoto transformation. Additionally, these chapters discuss the nonlinear wave motions produced on the
vortex line in terms of symbolic predictions and numerical simulations. Lastly, 6 discusses various applications of the theory of
geometric quantum hydrodynamics. References for the images contained within this mind map are given in Appendix C.



CHAPTER 2

THE BASIS FOR GEOMETRIC QUANTUM HYDRODYNAMICS

The study of Kelvin waves on vortex lines in quantum liquids is currently undergoing a

renaissance. Recently several lines of theory and experiments have emerged which are focused

on addressing open questions concerning the energy spectra of wave motion on vortex lines

as it relates to turbulence and its conjectured decay. These avenues of research are currently

operating independently. The objective of this chapter is to weave them together to form a

basis for the analysis of Chapters 3, 4, and 5. Specifically, we review two results that allow

us to directly connect continuum fluid mechanics to the Biot-Savart integral, which is the

starting point in our derivation of Kelvin wave generation on a vortex line. To make this

connection, we will need to supply an intermediate step relating the Euler equations to the

Gross-Pitaevskii equation. Geometric quantum hydrodynamics is completed by joining the

continuum models of hydrodynamics to the geometric partial differential equations modeling

vortex motion through the dynamics of its curvature and torsion. This geometric description

comes about from the 1972 transformation of Hasimoto which maps the local flow of the

vortex line to a scalar partial differential equation evolving the curvature and torsion along

the vortex line. [8] This transformation was originally used by Madelung in 1926 to map

Schrödinger equation to Newton’s laws applied to continuum fluids. [9] This ever-growing

connection between Newton’s second law and the Schrödinger equation, first developed by

Arnold in 1966, plays a fundamental role in the generation of Kelvin waves and the energy

dissipation in our most primitive fluids. [1]

The mean-field theory of Bose-Einstein condensation predicts that a collection of weakly

interacting condensed bosonic matter obeys a nonlinear Schrödinger evolution known as the

Gross-Pitaevskii equation. This theory precludes internal rotation about anything other than

a region of depleted density forming a topological defect of the fluid continuum in accordance
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with the vortex filament theorems of Helmholtz. The statistical mechanics of indistinguishable

particles is achieved by cooling a collection of identical atoms to the ultracold Bose-condensed

regime. The quantum nature of the fluid is realized as a quantization of circulation about

any vortex state. This phenomenon is a consequence of a large fraction of the bosons

occupying the same averaged many-body wave function defined by the Gross-Pitaevskii

equation. Consequently, turbulence must be constrained to a non-diffusive one-dimensional

sub-structure of the ambient fluid and has a homogeneous circulation throughout. This

medium is capable of supporting scalar wave motions akin to those of elastic strings. It

is expected that the life cycle of turbulence begins with a Richardson cascade that takes

turbulent energy from the large-scale collection of vortex lines to smaller scales until the

vortices appear randomly configured. At this point, vortex-vortex interactions, occurring

when the inter-vortex spacing is commensurate with the core size, drives Kelvin wave motion

of the vortex lines coupling the vortex medium to the fluid allowing for the generation of

phonons. As the frequency of interactions decreases, the remaining vortices spend most of

their time in isolation and the turbulent tangle is said to have relaxed. Here the dissipation

of kinetic energy is achieved without the support of molecular diffusion consistent with the

1949 conjecture of Onsager. [10]

In a series of papers, [60], [61], and [62], we study the wave motions of an isolated vortex

line in an unbounded mean-field Bose-Einstein condensate. Starting with the Biot-Savart

integral, we derive an exact expression for the velocity field induced by a plane circular arc of

vorticity. This result can be simplified through the use of known asymptotic approximations

to the incomplete elliptic integrals near their logarithmic singularity. Using the cutoff defined

by Bustamante and Nazarenko [63], this representation is regularized so that only the first

order contributions of the vortex core are considered. Once this is done an expression for the

speed of the vortex in the binormal direction can be expanded in powers of curvature, with

the well known local induction approximation resulting as a linear approximation to this

speed. Using this expansion, it is possible to study the evolution of the curvature and torsion
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of a vortex line through the Hasimoto transformation. The result is a modified nonlinear

Schrödinger equation that gives rise to a non-Hamiltonian gain/loss mechanism and enhanced

dispersion along the vortex. [61] The theory predicts that soliton solutions arising from the

linear approximation of the binormal speed decompose themselves into packets of helical

waves, known as Kelvin waves. While this result provides useful insights into the generation

of Kelvin waves, we first discuss the relationship between the Biot-Savart integral and the

equations of continuum fluid mechanics.

The following discussion is organized as follows. In Sec. 2.1 we outline the derivation of

the Navier-Stokes equation from continuum mechanics. In Sec. 2.2 we review the Onsager

conjecture and recent progress in its theoretical implications that define a relationship

between the Navier-Stokes equation and Euler equations in the limit of large Reynolds

number. Section 2.3 states the conditions necessary to derive the Gross-Pitaevskii equation

from the Euler equation. After this, we review recent work that connects the Gross-Pitaevskii

equation to a regularization of the Biot-Savart integral that is consistent with Bose-Einstein

condensation. [63] Lastly, we summarize the results of this chapter and provide an outlook

on future avenues of work.

2.1 The Navier-Stokes Equation

The Navier-Stokes equations describe changes to the momentum at points in a fluid

continuum whose intensive properties like density, temperature, and pressure are well defined

on infinitesimal volumes, which are small with respect to system size but large compared

to the characteristic length scale of the molecular constituents comprising the fluid. This

assumption breaks down for a non-small Knudsen number, which is the ratio of the Mach

number and Reynolds number scaled by the heat capacity ratio. At this point, the average

distance traveled by a molecule between collisions becomes comparable to the system size,

signifying that continuum theories must give way to statistical methods. In the following, a

small Knudsen number is assumed and the Navier-Stokes equations for a continuum fluid are

derived. We include this derivation to make clear the connection between fluid continua and
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Newton’s second law. Those familiar with the derivation can proceed directly to Sec. 2.2

where literature discussing the connection between Navier-Stokes equations and the Euler

equations in the limit of large Reynolds number is summarized.

The Cauchy momentum equation describes the non-relativistic momentum transport in

an arbitrary continuum and derives from the application of Newton’s second law to a region

of fluid or fluid parcel. We let v : R3+1 → R3 be the velocity of the fluid at any point and

define Ω ⊂ R3 to be a parcel of fluid permitted to flow through the continuum. There are

two perspectives to take when considering the dynamics of this fluid parcel. If you move

along with the fluid parcel, for instance like a weather balloon in the atmosphere, then you

are describing the flow in a Lagrangian reference frame. A moving measurement is difficult to

achieve in a laboratory setting and one instead probes the field at a fixed location adopting

a Eulerian reference frame. In the setting of gravitation, the Eulerian perspective is that

of the vector field describing gravitational forces at points in space, while the Lagrangian

frame would specify the forces felt by a particle moving through this field. While the physical

field and outcomes are the same, the two mathematical descriptions are not the same as

a Lagrangian parcel would encounter many Eulerian probes as it travels. The only time

the two descriptions are the same as when the flow lines are steady and parallel. We would

like to understand changes experienced by the fluid parcel during its motion represented in

the laboratory coordinates, which is tantamount to connecting the Eulerian and Lagrangian

descriptions.

During the fluid parcel’s flow, it will encounter some Eulerian probe. We associate with

this probe a reference configuration which we denote with Ω0 = Ω(0). The flow that brings this

parcel to the Eulerian probe is defined as the one-to-one and invertible mapping χ : R3+1 → R3.

It can be shown that for such a mapping the reference configuration is arbitrary, which

is to say that we have total control over where we conduct our Eulerian measurements.

Consequently, to understand the dynamics of the fluid parcel in the laboratory frame, one

only needs information about the reference configuration, Ω0, the current configuration, Ω(t)
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and the flow, χ, joining them. In terms of our mapping, we have y = χ(x, t) where x ∈ Ω0 is

a point in the reference configuration that is mapped by the flow χ onto a point, y ∈ Ω(t),

in the current configuration. To get from x to y, the material point must move with speed

v = ∂χ/∂t.

If we define a scalar field on Ω(t), then we would like to know its dynamics when

accumulating over the fluid parcel in the current configuration. As the parcel may change

its shape during its movement, this calculation is difficult because of the explicit time

dependence in the domain of integration. However, if we could transform into the reference

configuration, then the domain would become static at the cost of explicit time variation

of the material trajectories inside the parcel. This transformation between Eulerian and

Lagrangian perspectives of the fluid parcel is known as the Reynolds transport theorem. It

can be thought of as a higher dimensional generalization of the Leibniz differentiation under

the integral, which itself is a manifestation of the fundamental theorem of calculus. The

derivation of the theorem is technical, requiring a few results from tensor analysis. However,

assuming a familiarity with linear algebra, we can minimize the amount of tensorial work

and notation.

In addition to the mapping between the reference and current configurations, we will

need the deformation gradient, which describes how the flow changes across the reference

configuration,

F = ∇χ, Fij =
∂χi
∂xj

. (2.1)

We also have the velocity gradient, which is the Jacobian matrix of the velocity field in the

current configuration,

Lij =
∂vi
∂yj

. (2.2)
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The Reynolds transport theorem considers time dynamics of the deformation gradient in the

current configuration as opposed to the reference configuration. We derive this relationship

and avoid tensorial notation by considering the element level description of the deformation

gradient,

∂Fij

∂t
=

∂

∂t

∂χi
∂xj

(2.3)

=
∂

∂t

∂χi
∂yk

∂yk
∂xj

(2.4)

=
∂

∂t

∂χi
∂yk

∂χk
∂xj

(2.5)

=
∂vi
∂yk

Fkj (2.6)

which implies that ∂tF = LF and L = (∂tF)F−1. We would like to now consider the dynamics

of the total momentum in our material body at the current configuration. To process this

integral, we convert to the reference configuration, so that the domain of integration is static

in time, which introduces a change of variables given by the deformation gradient. Taking

the time derivative of the integrand and applying the Jacobi formula, we transform back to

find the Cauchy momentum equation. In detail we have

d

dt

∫
Ω(t)

ρ(y, t)v(y, t) dy =

∫
Ω0

∂

∂t
[ρ(x, t)v(x, t) det (F(x, t))] dx (2.7)

=

∫
Ω0

[
det (F)

∂

∂t
(ρv) + ρv

∂

∂t
det (F)

]
dx (2.8)

=

∫
Ω0

[
∂

∂t
(ρv) + ρv tr

(
∂F

∂t
F−1

)]
det (F) dx (2.9)

=

∫
Ω(t)

[
∂

∂t
(ρv) + (∇ρv) · v + ρv tr (L)

]
dy (2.10)

=

∫
Ω(t)

[
∂

∂t
(ρv) + (∇ρv) · v + ρv (∇ · v)

]
dy (2.11)

=

∫
Ω(t)

[
∂

∂t
(ρv) +∇ · (ρvvt)

]
dy. (2.12)
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The last equality is given by the application of a tensor contraction formula which relates

the divergence of an outer product to standard vector calculus statements, ∇ · (abt) =

∇a ·b + a (∇ · b). The key to understanding this result is recognizing that we have a formula

for the momentum dynamics of the material body in terms of space-time changes to the

density and velocity fields in the Eulerian frame. Moreover, if the integral vanished, then upon

manipulation of the second term with the divergence theorem, we would find the sensible

result that momentum change inside the material body is related to the flux of momentum

through its boundary. Since the fluid parcel is arbitrary, this momentum balance over Ω,

under a continuum assumption, is true locally on all fluid material points. Thus, we define

the local momentum balance on material points as

D

Dt
(ρv) =

∂

∂t
(ρv) +∇ · (ρvvt) = s (2.13)

where s is a point source of momentum and D/Dt is called the material derivative. To

conceptualize the material derivative, suppose the material body is an elastic ball and that

it is impacting a solid body. The momentum changes observed as the body deforms are

given in terms of two features experienced by the material points. The first contribution is

due to changes in momentum and the second is due to deformations occurring relative to

a material point. The material derivative, therefore, defines the momentum change in the

reference configuration through the motion of its material points. We now consider sources

of momentum for the previous balance equation.

Momentum changes can arise from body forces acting over the material, such as gravity,

and surface forces acting on the geometry of the configuration. Specifically,

s = ∇ · σ + f (2.14)

where the surface forces are described by the Cauchy stress tenor σ, which can be further

decomposed into
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σij =

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 =

σxx + p τxy τxz
τyx σyy + p τyz
τzx τzy σzz + p

−
p 0 0

0 p 0
0 0 p

 = τ − pI (2.15)

where the components σij correspond to normal stresses and shear stresses, τ , both of which

act on the material volume. For example, σ12 = τxy represents the magnitude of the force

acting across one of the three principle faces of the characteristic volume orthogonal to the

local normal vector. Extracting the mechanical pressure, p, from the Cauchy stress tensor

leaves behind deviatoric stress tensor τ . The pressure acts normal to the principle faces. The

deviatoric stresses are only present when the material volume is in motion and describes the

tendency of the volume to distort. At this point our momentum balance law is,

D (ρv)

Dt
= −∇p+∇ · τ + f. (2.16)

A Newtonian fluid is one whose deviatoric stress tensor is invariant with respect to the direction

observed and is linearly proportional to the velocity gradients.1 This tensor characterizes

distortions of the body due to straining and changes in volume. Small displacements of

the fluid can be represented as the linear approximation to the velocity field given by the

Jacobian matrix of the velocity field. [64] The symmetric component of this matrix defines

the strain on the material volume. So that the deviatoric stress tensor is zero when the

fluid is static, is main diagonal is subtracted away. Specifically, if we have the Jacobian,

Jij = [∇v]ij = ∂vi/∂xj then the deviatoric stress tensor has the representation,

τ = µ(∇v + (∇v)t)− 2µ

3
(∇ · v) I + λ (∇ · v) I, (2.17)

where I is the three-by-three identity matrix. The shear viscosity, µ, is a parameter which

defines how the fluid opposes this deformation. The compressibility of the fluid may also alter

1 All fluids considered in this work are isotropic with observable volumes having with a linear response to
shear stress, i.e., they are all Newtonian fluids. Examples of non-Newtonian fluids are highly composite
materials in liquid suspension like cornstarch in water, blood, paint, ketchup and liquid polymers which
experience shear thinning and thickening.
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its response to shear stresses and comes about through both shear viscosity and bulk viscosity,

λ, which is related to the vibrational energy of molecular aggregates. Assuming that the

mass density is conserved, then application of the tensor contraction used in the derivation of

the Cauchy momentum equation provides the following reduction to the material derivative,

D

Dt
(ρv) =

∂ρ

∂t
v + ρ

∂v

∂t
+ v∇ · (ρv) + (ρv · ∇) v (2.18)

=

(
∂ρ

∂t
+∇ · (ρv)

)
v + ρ

∂v

∂t
+ (ρv · ∇) v (2.19)

= (ρv · ∇) v. (2.20)

Assuming conservation of mass, then we have the Navier-Stokes equations,

D

Dt
(ρv) = −∇p+∇ · [µ(∇v + (∇v)t)] +∇ ·

[(
λ− 2µ

3

)
(∇ · v) I

]
+ f. (2.21)

The left hand side is the change in momentum in an isotropic Newtonian fluid created by

pressure gradients, shear forces, compressibility effects, and body forces on the right hand

side, respectively. Standard tensor operations show that the incompressible shear viscosity

component reduces to µ4v, where 4 = ∂xx + ∂yy + ∂zz, bringing the equation to the most

common form of the Navier-Stokes equations. However, since the next section is about an

abstract relationship between this equation and the Euler equations where all viscous terms

are neglected, we omit the final reduction so no further tensor calculus is introduced.

2.2 Onsager’s Conjecture and the Dissipation Anomaly in Three-Dimensional
Turbulence

It is a well-established fact that the drag applied to an object moving through a fluid

derives from two terms. The first is associated with viscous drag imparted through a laminar

flow whose force is linear with respect to velocity. The second contribution is a quadratic

enhancement due to fluid turbulence and exists even in the absence of viscosity. [13] While

Lars Onsager’s publications in the field of hydrodynamic turbulence were limited to an

abstract [65], and a single publication [10] there existed considerable work in his private
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journals on fluid turbulence. [66] It has taken the scientific community roughly half of a

century to assimilate and further his work. Of particular interest is the conjectured dissipative

anomaly which was reported on in the second half of his 1949 paper. In this work, he states

that turbulent dissipation could take place without the “final assistance from viscosity” and

that “conservation of energy does not apply because the field does not remain differentiable.”

As compared to drag on moving bodies in high Reynolds number flows, dissipation of fluid

turbulence in the absence of viscosity is likely less than intuitive. In fact, researchers struggle

with understanding the mathematical structure and physical implications associated with the

relationship between the Navier-Stokes and Euler equations in the large Reynolds number

limit. While we do not speak to aspects of the mathematical analysis, we do put forward

the vortex line model as a suitable setting to investigate aspects of the dissipative anomaly

further. Specifically, we provide a context for his conjecture and review historical placement

of the formal statement before concluding with a review of the current status of the theory

and how it fits into geometric quantum hydrodynamics.

Following the publication of an abstract in 1945 that independently predicted the Kol-

mogorov 5/3 law, Onsager addressed the participants of the International Union of Pure

and Applied Physics conference on statistical mechanics in Florence, Italy in 1949. Here he

announced quantization of circulation in superfluids and a theory of energy dissipation for

turbulence in three dimensions that relies on the development of singularities in the Euler

equations. A review of Onsager’s presentation comments that it was elegant, spartan, deep,

and decidedly cryptic. [67] In this presentation and follow up paper Onsager states that

dissipation can remain even in the absence of viscosity. It is hypothesized that this work

remained underutilized by the community and a priority was given to the contemporary work

of Burgers and Kolmogorov. Consequently, it is the work of Kolmogorov that the community

associates with fluid turbulence. [68–70] This theory is the mathematical formulation of the

poetic description of turbulence offered by Richardson, who describes the generation of eddies

at decreasingly small scales until a Kolmogorov scale is reached where viscosity can dissipate
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turbulent kinetic energy into heat. Between the scale containing the largest eddies, where the

majority of kinetic energy resides, and the small scale where molecular diffusion dissipates

the system, Kolmogorov defines an inertial subrange. In the inertial subrange, neither the

direct forcing of the flow leading to large eddy formation nor the viscous dissipation caused

by molecular diffusion is apparent. Kolmogorov hypothesized that this intermediate range

well separated the large and small scales and defines a flow dominated by the unrestricted

nonlinear transfer of energy from large to small scales. Kolmogorov quantifies Richardson’s

qualitative description of turbulence by stating a universal form for the cascade of energy.

The energy of eddies in the intermediate range obey E(k) ∝ k−5/3 where k is the wavenumber

and can be thought of as the reciprocal of the eddy diameter. Thus, energy in the inertial

subrange is independent of viscosity and obeys a power law dependence such that eddies

of smaller diameter contain a decreasing amount of energy. The theory therefore says that

Richardson decay is a process where kinetic energy in large scale eddies is transported through

an intermediate scale where self-similar eddy formation breaks large scale energy into smaller

eddies so that viscous dissipation eventually heats the fluid. In this case, what did Onsager

mean when he said that this process could complete itself without a final assist from fluid

viscosity?

Before the formal statement and its current state in the literature, we note that both

experiments and simulations indicate that as Reynolds number increases, the energy dissipa-

tion rate asymptotically approaches a non-zero constant value. [71] Thus, the kinetic energy

present in the eddies formed at a large length scale cascading to smaller scales decays at

rate seemingly independent of viscosity. Onsager’s original conjecture [10] asserts that the

only way to permit kinetic energy dissipation as Re →∞ is to allow the velocity gradients

to become arbitrarily large. Moreover, his statement specifies a condition allowing for this

in terms of a loss of smoothness within the velocity field. In the following paragraph, we

describe the loss of smoothness in terms of Hölder regularity, corresponding to a Hölder

exponent of 1/3. In light of this, it makes sense that history favored Kolmogorov’s theory of
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fluid turbulence, which is a mathematically concise description of the energy decay envisioned

by Richardson. However, it obscures Onsager’s description. It is interesting to note that

if one considers the magnitude of velocity differences over separated field points to define

an energy spectrum, then Onsager’s Hölder exponent yields Kolmogorov’s universal scaling

relation. Knowing that Onsager’s result is consistent with Kolmogorov’s prediction, then

what does Onsager’s statement that a velocity field presenting with the dissipative anomaly

can have at most a “third of a derivative” mean?

Colloquially, a continuous function can be drawn without lifting up your writing utensil.

Such a function may fail to be differentiable at points and so a stronger condition for continuity

is Hölder continuity, where the closeness of the output variables is bounded by a power of

the closeness of the input variables. If the Hölder exponent is equal to one, then we say

the function is Lipschitz continuous and the implication is that it is differentiable almost

everywhere. When the Hölder exponent is reduced, the function is permitted to become

rougher. To picture the roughness, consider the absolute value function which is Lipschitz

continuous, but lacks a derivative at the cusp. Compare this to the rough paths traced out

by Brownian motion. The lower the Hölder exponent, the rougher the curve. As roughness

is introduced, one loses control of the derivative and so the most direct consequence of this

statement can be seen in the time dynamics of the kinetic energy. Specifically, the time

derivative of the global kinetic energy in the fluid is proportional to the integral of the velocity

gradients over the fluid. The proportionality constant in this relation is the fluid viscosity.

So, one expects that global energy becomes approximately conserved for large Reynolds

numbers, which is in contradiction to experimental and simulated data. However, if the

velocity gradients are permitted to diverge, then kinetic energy decay can persist even for

large Reynolds numbers, and the contradiction is avoided. Another way to think about this

is that if the problem could be resolved to an appropriate ordinary differential equation, then

the lack of Lipschitz continuity leaves open the possibility of non-unique solution trajectories.

In fact, the statistical analysis of direct numerical simulations of turbulence in the inertial
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range shows the mean squared distance between initially separated particle paths tends to t3

in the large time limit. [72] This result was known to Richardson in 1926 and characterizes

turbulence as an extremely effective mixer. In light of Onsager’s fractional Hölder exponent

and its contextualization in terms of differential equations, we see the that mixing through

the inertial range induces a particle forgetfulness. Thus the energy cascade is a process where

the past configuration of the large-scale eddies, and some of their energy, is forgotten. At

this point, we discuss the current status of the theory and conclude with an overview of the

role it plays in providing a base for geometric quantum hydrodynamics.

The most current result comes from a 2017 paper of Drivas and Eyink who have recast

the conjecture of Onsager in terms of the tools of modern analysis. [73] Specifically, they

prove that bounded solutions of Navier-Stokes exhibiting anomalous dissipation limit to

distributional or weak solutions of Euler equations that dissipate kinetic energy unless they

are above a certain degree of space-time regularity. Their work makes use of the Besov

spaces, which generalize the standard Sobolev and Hölder spaces. Suffice it to say that these

abstractions reduce to Onsager’s original 1/3 Hölder exponent, which was recently proven to

be sharp. [74] Their work is part of a trio of papers, with one focused on a generalization to

relativistic turbulence and another reporting on how the transition to distributional solutions

can be reinterpreted in terms of renormalization group theory. [75, 76] In the latter, the

divergence in the velocity gradients is thought of as an ultraviolet catastrophe. Proceeding

with a standard Wilson-Kadanoff renormalization they define a scale in the inertial range

where the divergence is regularized, and the flow obeys an effective course-grained Euler

equation, which is nothing more than a weak Euler equation.

The work of Drivas and Eyink has seen the most progress amongst several lines of research.

That said, the notion of a relationship between Navier-Stokes and weak Euler equations is

certainly not a unique one. [77, 78] Some intriguing remarks can be found in the works of

other researchers. In 1999 Shnirelman states that “The physical meaning of weak solutions of

the Euler equations is not quite clear.” At the same time in the 2006 Eyink and Sreenivasan
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review article of Onsager’s turbulence theory, the authors state that they “believe that

Onsager’s theoretical vision ... is a proper idealization for understanding high Reynolds

number flows.” Moreover, they conclude with, “The vindication of this belief, if it is true,

must come from a set of calculational tools for the zero-viscosity limit, which will make it, in

the end, a truly predictive device.”

While the recently published results have brought Onsager’s perspective of turbulence

somewhat out of the shadows, they are still very abstract. A key point in the assertions of

Eyink and Sreenivsan is that a deeper understanding of the theory will likely come from

inviscid fluids. While the secondary purpose of this section was to review aspects of modern

turbulence theory, the primary purpose was to state the connection between Navier-Stokes and

Euler evolutions provided by the dissipative anomaly and distributional velocity profiles. In

the following section, we derive the Gross-Pitaevskii equation description of mean-field Bose-

Einstein condensation from the Euler equations. However, looking forward to Sec. 2.4, we note

that the work of Bustamante and Nazarenko [63] defines a singular velocity profile associated

with a vortex line and a cutoff length that regularizes small wavelength contributions from

the vortex line to the velocity field. These techniques bring the ideas of Onsager closer to

the realm of calculation as they are the introductory steps of many simulation techniques.

Specifically, when connected to Chapters 3, 4, and 5 of this thesis, we find that corrections to

the simplest flows of a vortex line allow for the generation of Kelvin waves, which are the

proposed mechanism of decay in quantum turbulence.

2.3 Euler’s Equation and the Gross-Pitaevskii Equation

Bernoulli’s law is a result saying that the pressure function of an incompressible potential

flow can be expressed through the velocity potential, up to an arbitrary time factor. [79] It is

derived from Euler’s equation where the flow and the time factor arises from an integration

of the gradient used to define the velocity field from the potential function. In this derivation,

one typically assumes that the fluid has homogeneous density and can be interposed with

the gradient without restriction. The vortices of our work have well defined and significant
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spatial variation near the core. In a classical fluid, the transition in density to the vortex line

is an abrupt one. However, in a Bose-Einstein condensate, the transition is a smooth one.

For a rectilinear vortex, the density profile of an arbitrary cross-section looks something like

a sigmoid function. [80] Since the mass density is a smooth function decaying to zero on the

vortex line, the derivation of Bernoulli’s law is no longer straightforward. The consequence is

that in situations we would like to consider, the density profile has a spatial dependence and

the typical derivation must be altered since the density function cannot be trivially interposed

with the gradient. Ultimately, the spatial variation of the density will need to be bounded by

changes in the density field as measured by the velocity potential.

The last section tells us that in the inviscid limit, Navier-Stokes equations limit to Euler

equations which is defined by Eq. (2.21) in the absence of viscous effects, λ = µ = 0,

D (ρv)

Dt
+∇p− f = 0 (2.22)

Knowing that the hydrodynamic description of a Bose-Einstein condensate is predicted to be

irrotational and mass conserving, we assume a potential flow v = ∇φ to get,

ρ
∂∇φ
∂t

+ ρ (∇φ · ∇)∇φ+∇p− f = 0. (2.23)

If the density profile were constant in space, then the expression could easily be written in

terms of the gradient of a single function, which is the route to Bernoulli’s law. However, the

varying spatial density demands the use of a product rule,

∇
(
ρ

{
∂φ

∂t
+

1

2
||∇φ||2

})
= (∇ρ)

(
∂φ

∂t
+

1

2
||∇φ||2

)
+ ρ∇

(
∂φ

∂t
+

1

2
||∇φ||2

)
. (2.24)

If the density field were constant then the first term on the right-hand side of the previous

equation would vanish. As this is not the case, and since both terms of the previous equation

are not present in Eq. (2.23), we will have to assume that the following scaling relation is

satisfied,
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∇ρ
ρ
�
∇
(
∂φ

∂t
+

1

2
||∇φ||2

)
∂φ

∂t
+

1

2
||∇φ||2

, (2.25)

where ||∇φ|| is the magnitude of the vector quantity. We notice that these are logarithmic

derivatives and the scaling can be written instead as,

∇ ln (ρ)� ∇ ln

(
∂φ

∂t
+

1

2
||∇φ||2

)
, (2.26)

which implies that spatial variations of the density away from depletions, ρ 6= 0, must be well

controlled by the spatial variation of the Hamilton-Jacobi equation on the velocity potential.

In this case Eq. (2.23) can be approximated as

∇
(
ρ
∂φ

∂t
+ ρ

1

2
||∇φ||2 + p− V

)
= 0. (2.27)

where f = −∇V . Thus, up to a function of time, which we absorb into V , we have the

following equation on the velocity potential

ρ
∂φ

∂t
+ ρ

1

2
||∇φ||2 + p− V = 0 (2.28)

Adding Eq. (2.28) to the conservation of mass equation multiplied by i =
√
−1 yields the

following,

i

(
∂ρ

∂t
+∇ρ · ∇φ+ ρ∇ · ∇φ

)
− ρ∂φ

∂t
− ρ1

2
||∇φ||2 − p+ V = 0 (2.29)

Regrouping the terms gives,

i
∂ρ

∂t
− ρ∂φ

∂t
− p+ iρ4φ+ i∇ρ · ∇φ− ρ1

2
||∇φ||2 − V = 0 (2.30)

If we define the pressure as p = −4√ρ and body potential as V = 2V0ρ
2, after multiplication

by eiφ/2/2
√
ρ we can re-write Eq. (2.30) as
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iψt +
1

2
4ψ − V0|ψ|2ψ = 0 (2.31)

where ψ =
√
ρ eiφ/2. While we have assumed that ρ 6= 0 to arrive at Eq. (2.31), density

depletions associated with vortex lines, may be brought back into the solution space at the cost

of divergence in Eq. (2.28). In Sec. (2.4) we review recent results [63] showing that divergence

in kinetic energy can avoided by tempering the vortex singularity. Up to a space-time scaling

and introduction of a single particle energy, this is the Gross-Pitaevskii. That is if we require

the density be a function only of pressure (barotropic) and that the average two-particle

interactions provide a background potential field, then the Euler equation can be brought into

correspondence with the equation of motion for a Bose-Einstein condensate. Summarizing our

work up to this point, we now have a formal connection between continuum fluid mechanics

and the mean-field theory of dilute ultracold atomic gases. That is, given an Euler equation

for an inviscid fluid, which we now see as the equation of motion for a fluid system in the

high Reynolds number limit, a potential flow of a mass field can be expressed through a

Gross-Pitaevskii wave function whose amplitude defines the density and the phase defines a

velocity potential. This connection essentially the inversion of the Madelung transformation.

In what follows, we review a recent article that connects Eq. (2.31) to the Biot-Savart integral.

2.4 Gross-Pitaevskii Equation and the Biot-Savart Integral

The Biot-Savart integral is the left inverse of the curl and defines the incompressible,

rotational component of a three-dimensional vector field on R3 from its vorticity. It can be

derived from a Green’s function analysis on a stream reformulation of a partial differential

equation associated with the Helmholtz decomposition of v : R3 → R3 and is also sometimes

called the fundamental theorem of vector analysis.2 The Gross-Pitaevskii equation has a

Hamiltonian structure, and it is possible to extract the Biot-Savart integral from it. [63]

2 The generalization of Helmholtz’s decomposition theorem is known as the Helmholtz-Hodge decomposition,
which applies to differential forms on a Riemannian manifold as opposed to just vector fields on R3.[81]

40



The outcome is a Biot-Savart representation of the singular velocity field sourced by a

one-dimensional subregion of the fluid consistent with a vortex line in a Bose-Einstein

condensate. Moreover, it is also possible to rationally determine a scale at which physics

at small wavelengths must be regularized out of the model. In Chapter 5 we start with a

distribution of vorticity supported by a Dirac measure on a one-dimensional subregion, to

show that approximating this space curve with plane circular arcs leads to a generalization

of Hasimoto’s transform describing the wave motion through a non-Hamiltonian evolution

of the curvature and torsion along the vortex. This theory predicts a mechanism capable

of generating Kelvin wave excitations along a vortex line, which is the primitive component

of a Kelvin wave cascade. In this context, the discovery of Bustamante and Nazarenko

implies that our generation mechanism is consistent with vortex motion in a Bose-Einstein

condensate. As the goal of this chapter is define this physical context as a realization of the

Navier-Stokes equations in the limit of large Reynolds number, we take a moment to reflect

on the details of the connection we establish.

In Sec. 2.2 we reviewed a result asserting that bounded solutions of Navier-Stokes equation

exhibiting anomalous dissipation of kinetic energy must do so by inducing a singularity on the

velocity profile which is evolved by weak Euler equations. If the velocity field is potential away

from the singularity, then Sec. 2.3 defines the evolution of the flow through a Gross-Pitaevskii

equation. Results from vector analysis say that this can only be accomplished through a loss of

simple connectedness of cross-sections of the fluid domain that when continued form a vortex

line consistent with Gross-Pitaevskii vortex profiles and experimental observations. The body

of this thesis demonstrates that if the geometric dynamics of the curve are provided by an

arclength preserving Biot-Savart induced flow, then the vortex medium responds dispersively

and dissipatively to support the generation of helical wave fronts. These Kelvin waves are

expected to be the primary form of energy transport for turbulence in ultracold quantum

liquids as they couple the vortex substructure to the fluid field through the creation of long

wavelength collective excitations known as phonons. The implications of these connections
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are briefly discussed in the Chap. 6. This section will summarize the result of Bustamante

and Nazarenko. Specifically, when Eq. (2.31) corresponds to the mean-field model of a

Bose-Einstein condensate, then the Biot-Savart representation of a velocity field circulating

about its singularities reduces to a line integral whose regularization includes non-kinetic

information about the vortex core to first order.

The Gross-Pitaevskii equation models the condensation of a dilute preparation of bosonic

matter where the individual particles collectively obey an averaged many-body wave function.

The evolution is Hamiltonian and given by Bustamante and Nazarenko as

H =

∫ (
|∇ψ|2 +

1

2

(
|ψ|2 − 1

)2
)
dx, (2.32)

where ψ =
√
ρ eiη and the −1 accounts for their modification of Eq. (2.31) by a constant

potential. This wave function defines a Madelung transformation of the Gross-Pitaevskii

equation to a hydrodynamic form consistent with an inviscid gas. The Gross-Pitaevskii

Hamiltonian also has a hydrodynamic form,

H =
1

2

∫
dx

(
1

2
ρv2 + (ρ− 1)2 + 2|∇√ρ|2

)
, (2.33)

where v = 2∇η and η = φ/2 for the wavefunction in Eq. (2.31). For vortex lines whose

radius of curvature is much larger than the vortex core radius, we have that the kinetic terms

dominate over the energies associated with averaging over the two-particle interactions and

the quantum pressure. That is, the dynamics of nearly straight vortex lines are dominated

by the energy of the background velocity field and the introduction of bending is tantamount

to activating features of the vortex core.

Bustamante and Nazarenko specialize the results of Nemirovskii [82] to the case of a

vortex line in a Bose-Einstein condensate, which works by restricting the wave function to a

space curve prior to studying the Hamiltonian dynamics of the Gross-Pitaevskii equation.

Considering a rectilinear vortex, the Hamiltonian structure over the vortex line can be reduced
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to a point where vector identities can be used to re-write the wave function in the local frame.

When this is compared back to the Hamiltonian structure one can form a relation between

an expression of the local frame and the derivative structure of the vortex parameterization.

Consequently, the Lagrangian for the vortex line can be expressed as,

L =
Γ

6

∫
γt · (γ × dγ)−H, (2.34)

where Γ is the circulation about the vortex and H is the vortex Hamiltonian as defined below

by Eq. (2.36). From this point, the variation of action can be calculated and application of

the principle of least action requires that,

Γ

2
(γt × γs) =

δH

δγ
(2.35)

The body of Bustamante and Nazarenko’s work is spent deriving the variational derivative

of this Hamiltonian such that the typical ad hoc cutoff is rationally defined in terms of the

condensate features.

The derivation of Bustamante and Nazarenko is broken into six steps. In the first step,

the Hamiltonian structure associated with a vortex line is defined for the Gross-Pitaevskii

equation such that the kinetic terms dominate the first order contribution of the non-kinetic

terms. Motion due to the kinetics is assumed to be subsonic and the contributions from the

mean-field averaging and quantum pressure are used later to establish the regularization

cutoff length. The second step defines a re-scaling of the velocity field and considers a straight

line vortex to compute the kinetic and non-kinetic contributions to the Hamiltonian so that

an energy density due to the non-kinetic terms can be computed. The third step seeks to

localize the vortex cores to the healing length of the vortex. Specifically, the Helmholtz

theorem of fluid mechanics is applied to the field where the velocity singularity is assumed to

be mild. Furthermore, fluid compressibility is stated to be negligible, which is consistent to

working in a regime where curvatures are not large.
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It is this step which is key to understanding the Biot-Savart integral, Eq. (2.38). Specifically,

their localization procedure avoids the practice of localization of vorticity to a space curve

through the use of distributions. That said, key features are maintained. The velocity field is

strongly localized to the healing length, which is viewed as the core of the quantized vortex.

Additionally, the velocity field still diverges as one approaches the centerline. It is noted that

for a Pitaevskii vortex, the velocity singularity is mild enough to avoid a divergence in the

kinetic Hamiltonian.

The second half of the derivation starts by introducing an intermediate length scale

between the healing length and the radius of curvature used to split the kinetic Hamiltonian

into two contributions. One contribution comes from integrating on a domain inside the new

length scale and the other from contributions away from this scale. Once this is done the

non-kinetic Hamiltonian is added to the near field effects. In the fifth step, an asymptotic

approximation yields the effective Hamiltonian,

H =
Γ2

16π

∫
|γ−γ′|>c

dγ · dγ ′
|γ − γ ′| (2.36)

where the cutoff parameter c is not yet known. To calculate this value the final step relies on

numerical quadrature to compute a key intermediate function that acts as a smooth cutoff

associated with the Hamiltonian resulting from the localization of vorticity to the quantized

vortex core.

The final result is the merger of Eq. (2.36) and Eq. (2.35) and yields

γt × γs =
Γ

4π

∫ s1

s0

γs × [(γ ′ − γ)× dγ ′]
|γ ′ − γ|3 (2.37)

where s0 > c such that c is their cutoff parameter regularizing the integral over the vortex

structure. Through the use of the distributive property of the curl operator with a standard

identity [83] one can essentially undo the curl structure in the previous equation to arrive at

the Biot-Savart integral for the motion of the vortex line caused by the velocity field induced
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by a parametric region of vorticity from s0 to s1,

∂γ

∂t
=

Γ

4π

∫ s1

s0

(γ ′ − γ)× dγ ′
|γ ′ − γ|3 , (2.38)

where s0 > c. This equation is the starting point for our asymptotic analysis of the autonomous

dynamics of a vortex line.

In summary, the work of Bustamante and Nazarenko allows information from the Gross-

Pitaevskii evolution of the Bose-Einstein condensate to be provided to the Biot-Savart integral

for the purposes of modeling large-scale vortex dominated flows in the superfluid. In particular,

by retaining the leading order contributions of non-kinetic terms in the Hamiltonian, as it

applies to vortex lines, the mean-field averaging and quantum pressure define a velocity field

strongly localized to the vortex core, which is otherwise singular on the vortex line. This

inclusion establishes a cutoff parameter for the regularization of the Biot-Savart integral.

Using this regularization, it is possible to define a Biot-Savart integral representation of

the velocity field induced by an arbitrary parameterization of a vortex line modeling the

flow induced by both the geometric properties of the vortex in addition to a non-trivial

contribution from its vortex core. The body of this thesis shows that a vortex line seeks to

redistribute localized curvature abnormalities into helical Kelvin waves, which are required

for the decay of ultracold quantum turbulence and realization of Onsager’s conjecture.
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CHAPTER 3

GENERALIZED LOCAL INDUCTION EQUATION, ELLIPTIC ASYMPTOTICS, AND

SIMULATING SUPERFLUID TURBULENCE
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doi:10.1063/1.3696689.
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3.1 Abstract

We prove the generalized induction equation and the generalized local induction equation

(GLIE), which replaces the commonly used local induction approximation (LIA) to simulate

the dynamics of vortex lines and thus superfluid turbulence. We show that the LIA is,

without in fact any approximation at all, a general feature of the velocity field induced

by any length of a curved vortex filament. Specifically, the LIA states that the velocity

field induced by a curved vortex filament is asymmetric in the binormal direction. Up to a

potential term, the induced incompressible field is given by the Biot-Savart integral, where

we recall that there is a direct analogy between hydrodynamics and magnetostatics. Series

approximations to the Biot-Savart integrand indicate a logarithmic divergence of the local field

in the binormal direction. While this is qualitatively correct, LIA lacks metrics quantifying

its small parameters. Regardless, LIA is used in vortex filament methods simulating the

self-induced motion of quantized vortices. With numerics in mind, we represent the binormal

field in terms of incomplete elliptic integrals, which is valid for R3. From this and known

expansions we derive the GLIE, asymptotic for local field points. Like the LIA, generalized

induction shows a persistent binormal deviation in the local-field but unlike the LIA, the GLIE
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provides bounds on the truncated remainder. As an application, we adapt formulae from

vortex filament methods to the GLIE for future use in these methods. Other examples we

consider include vortex rings, relevant for both superfluid 4He and Bose-Einstein condensates.

3.2 Introduction

The term superfluid denotes a phase of matter whose dynamical flows can be described,

at finite non-zero temperature, by a two-component macroscopic field with well-defined

properties. [84–86] One component is a purely classical field, while what remains is called

the superfluid component. The superfluid is ideal in the sense that it is inviscid and has

infinite heat capacity provided by its lack of classical entropy. Rotation enters the superfluid

component in quantized vortex filaments[87, 88] that, for example in 4He, transmit thermal

information acoustically and are detected by this second-sound. [89] Superfluid dynamics can

be generated by the introduction of a small heat flux. [90] Conservation of mass requires that

the classical movement away from the heat flux be offset by a counterflow of the superfluid

component. If this heat flux is not small, then the quantized vortices tangle, indicating the

onset of superfluid turbulence.[91–96] For large heat fluxes, the superfluid transitions into

a purely classical phase. In classical turbulence, vorticity can concentrate into complicated

geometries. For this reason, large-scale simulation of classical vortex dominated flows is

computationally costly.

Vortex line structures are most appropriate to superfluid models of 4He where the quantized

filaments have radii of a few angstroms.[89, 97] These quantized vortices provide a coherent

structure for aggressive analytical and numerical study unavailable to classical fluids. Vortex

line structures can also be used to model atomic Bose-Einstein condensates, where there

has recently been a revival of interest in superfluid turbulence due in part to a series of

remarkable experiments in the Bagnato group.[98] Our study begins with simplifications to

the Biot-Savart representation of the field induced by a vortex line
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v(x) =
Γ

4π

∫
D⊂R3

(x− ω)× dω
|x− ω|3 =

Γ

4π

∫
D⊂R

(x− ξ)× dξ
|x− ξ|3 . (3.1)

The associated reduction of dimension aids analytic calculation and reduces numerical cost.

When such filaments are considered initial-data to the Navier-Stokes problem, then global

well-posedness results. [99, 100] The use of these data to approximate self-induced vortex

motion is the backbone of the vortex filament method.[101, 102] The question of numerical

convergence and accuracy of such vortex filament techniques has been addressed affirmatively

in the literature. [103] Vortex filament methods reduce the cost of large-scale simulations by

restricting analysis to the local field. Due to the complexity of classical vortical flows, interest

in these methods waned during the 1980s.[101, 102, 104–106] However, filament methods are

highly appropriate for the constrained vortex structure associated with a superfluid. Although

(3.1) provides a straightforward starting point for numerical computations, vortex filament

methods avoid numerical integration altogether by replacing (3.1) with a local induction

approximation.

The local induction approximation (LIA) is a result from classical fluid dynamics, which

states that a space-curve vortex defect of an incompressible fluid field with nontrivial curvature

generates a binormal asymmetry in the local velocity field. That is, the field local to a length

of curved vortex filament induces a flow, which generates filament dynamics. This result,

known by Tullio Levi-Civita and his student Luigi Sante Da Rios in the early 1900’s, [107]

was rediscovered by various post World-War II groups. [108–111] Together, Ricca [112] and

Hama [113] provide an excellent chronology of LIA, a topic now common in vortex dynamics

texts.[100, 114, 115] Exploration of LIA occurs in various settings including differential

geometry,[116–128] differential equations[108] and limits of matched asymptotic expansions

of vortex tubes. [109, 111, 129]

Our derivation avoids the complications of matched asymptotic expansions by treating

vorticity concentrated to an arc. Under this geometry Eq. (3.1) can be reduced to a canonical
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elliptic representation without the use of power-series approximation to the Biot-Savart

integrand.[110, 130] While Taylor approximation quickly reveals binormal flow as a dominant

feature of the induced field, it lacks error bounds and is often restricted to a two-dimensional

subspace of R3. This paper resolves both issues by recasting Eq. (3.1), for a vortex-arc, into

an elliptic form valid for all field points. Using this form, one can then use a known asymptotic

formula to represent the local field. We offer that this should be adopted, instead of LIA,

for use in vortex filament methods and Schwarz’s description of the Magnus force.[97, 131]

Specifically, we will prove the following results:

Theorem 1. Generalized Induction Equation

Let ω = ∇ × v be localized to an arbitrary arc with parameterization ξ = (R sin(θ), R −

R cos(θ), 0), where R ∈ R+ and θ ∈ DL = (−L,L] for some L ∈ (−π, π]. Then there exists

bounded functions V1, α1, α2, L± and k, of ε = |x|/R = κ|x|, such that the induced velocity

field is given by

v(x) = V1(ε)

(
α1(ε) [F (L+, k)− F (L−, k)] + α2(ε)

[
dF (L+, k)

dε
− dF (L−, k)

dε

])
(3.2)

where F is an incomplete elliptic integral of the first kind. Moreover, there exist constants

β1, β2, β3, β4 such that V1 can be written as

V1(ε) = εβ1t̂− εβ2n̂ + (εβ2 + εβ3 + β4) b̂ (3.3)

where t̂, n̂, b̂, are the tangent, normal and binormal vectors of the local coordinate system.

Theorem 2. Generalized Local Induction Equation

Under the same hypotheses of theorem 1 and for ε� 1 the induced velocity field is dominated

by the binormal flow,

vε(x) = 4κx2

(
α1(ε) [F (L+, k)− F (L−, k)] + α2(ε)

[
dF (L+, k)

dε
− dF (L−, k)

dε

])
b̂. (3.4)
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where x2 is a dimensionless angular component of the spherical decomposition of x and κ is

the curvature of the vortex arc. The limits ε→ 0 and L→ 0 imply that k → 1 and λ→ 0

and in this case the incomplete elliptic integral of the first kind admits the asymptotic relation

F ∼ F1 where

F1(λ, k) = ln

(√
1 + λ

1− λ

)
+

1

λ
ln

(
2

1 +
√

(1− k2λ2)/(1− λ2)

)
+

1− k2

8
ln

(
1 + λ

1− λ

)
.

(3.5)

Using this, along with standard differentiation formula for incomplete elliptic integrals of the

first kind, provides a first order asymptotic form for the local field given by

vε(x) ∼ −8κx2

9x2F1(λ, k)

2
− x2E(L, k)

(1− k2)k
−
k sin(2L)

[√
1 + k2 sin2(L) +

√
1− k2 sin2(L)

]
2(1− k2)

√
1− k4 sin4(L)

 b̂,

(3.6)

where E is an incomplete elliptic integral of the second kind.

In words, the first theorem expresses the velocity field generated by vortex arc in terms of

incomplete elliptic integrals of the first kind. Moreover, this field can be decomposed into three

fields controlling the tangential, circulatory and binormal flows. Of these fields, the binormal

contribution is O(1) while the remaining fields are O(ε). The second theorem considers the

remaining field in the limits of ε→ 0 and L→ 0. In this limit the incomplete elliptic integral

of the first kind admits an asymptotic form and consequently provides a representation for

the velocity field local to the vortex arc. This asymptotic form is comparable to LIA in

that the Biot-Savart integral has been ‘resolved’ and the binormal flow is represented by

elementary functions. This form is only valid for filaments of infinitesimal arclength and

consequently idealized. However, using the same asymptotic framework, one can construct

expansions valid for arcs of finite length. In fact, the remainder terms of such expansions

are known and thus the associated approximation error can be controlled. The necessary

asymptotic results are quoted in the appendix.
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The rest of this document will be organized as follows. In Section II we define the

geometry and derive the Biot-Savart representation of the induced velocity field. In Section

III we convert this representation into an elliptic form and prove the generalized induction

result (3.2)-(3.3). In Section IV we reduce this elliptic form into a sum of incomplete elliptic

integrals of the first kind. Lastly, using known asymptotic results, we derive an expression

for the local velocity field and prove the generalized local induction equation (GLIE) result

(3.6). We conclude with some discussion on adapting this result to vortex filament methods

and prospective avenues of future work.

3.3 Biot-Savart and Quantized Vortex Rings

It is well known that a vortex-defect with trivial curvature embedded into an incompressible

fluid does not induce autonomous dynamics. This is due to an angular symmetry in the

induced velocity field. This symmetry is no longer available for curved vortex elements. Using

a vortex ring, it is possible to introduce nontrivial curvature and avoid approximations to the

Biot-Savart integral. To be precise, we treat a vortex structure ω : R3 → R3 such that

ω(x) =

{
1, x ∈ ξ
0, x /∈ ξ (3.7)

where ξ : D → R3, D ⊂ R, is parameterized by the ring

ξ = R sin(θ)̂i + [R−R cos(θ)] ĵ, (3.8)

dξ =
[
R cos(θ)̂i +R sin(θ)̂j

]
dθ (3.9)

for κ−1 = R ∈ R+, DL = (−L,L] and L ∈ [0, π]. Thus, at the point x = (x̃1, x̃2, x̃3) we get

an element level description of the velocity field,

vi(x) =

∫
DL

εijk(x̃j − ξj)dξk
[|x|2 + |ξ|2 − 2(x̃1ξ1 + x̃2ξ2 + x̃3ξ3)]3/2

(3.10)

where we have used the Levi-Civita symbol, εijk, and employed Einstein-summation over

repeated indices. Noting that |ξ|2 = 2R2 − 2R2 cos(θ) provides the formulae
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v1 = −|x|κ2x3

∫
DL

sin(θ)

D3/2
dθ, (3.11)

v2 = |x|κ2x3

∫
DL

cos(θ)

D3/2
dθ, (3.12)

v3 = κ2|x|
∫
DL

x1 sin(θ)− x2 cos(θ)

D3/2
dθ + κ

∫
DL

cos(θ)− 1

D3/2
dθ (3.13)

where the denominator is given by

D = [c1 + c2 cos(θ) + c3 sin(θ)] (3.14)

and whose coefficients are

R2c1 = |x|2 + 2R2 − 2x̃2R, (3.15)

R2c2 = 2|x|x2R− 2R2, (3.16)

R2c3 = −2|x|x1R. (3.17)

For future limiting work, we have chosen a radial-representation for x = |x|(x1, x2, x3) where

xi is the ith dimensionless angular component of x.

3.4 Conversion to Elliptic Form

The previous integral representations for the velocity field can be cast into elliptic form.

To do this, we first reduce each integral into an elliptic integral by taking derivatives with

respect to internal parameters. Doing so gives

v1 = 2κx3ε
d

dc3

∫
DL

dθ√
D
, (3.18)

v2 = −2κx3ε
d

dc2

∫
DL

dθ√
D
, (3.19)

v3 =

[
2κεx2

d

dc2

− 2κεx1
d

dc3

+ 2κ
d

dc1

− 2κ
d

dc2

] ∫
DL

dθ√
D

(3.20)

where the parameter ε = |x|/R is the ratio of radial distance to the radius of curvature.

Application of the chain-rule gives the induced velocity field as
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v(x) = V1(ε)
d

dε

∫
DL

dθ√
D

(3.21)

where the vector V1 is given by

V1(ε) = 2εκx3
dc3

dε
î− 2εκx2

dc2

dε
ĵ +

[
2κεx2

dc2

dε
− 2κεx1

dc3

dε
+ 2κ

dc1

dε
− 2κ

dc2

dε

]
k̂ (3.22)

implying that the velocity field is determined by the derivative of an incomplete elliptic

integral. Moreover, this proves Eq. (3.3) from theorem 1 where

β1 = 2κx3
dc3

dε
, (3.23)

β2 = 2κx2
dc2

dε
, (3.24)

β3 = −2κx1
dc3

dε
, (3.25)

β4 = 2κ

(
dc1

dε
− dc2

dε

)
. (3.26)

For ε� 1 we find that the velocity field is dominated by

vε(x) = −8κx2
d

dε

∫
DL

dθ√
D

k̂. (3.27)

In Figure 3.1 we show the vortex configuration as well as the associated field and vortex

coordinate geometry. Using the depicted spherical decomposition of x we find that the

previous dimensionless parameter is given by x2 = sin(γ1) sin(γ2). Moreover, we observe that

the standard basis vector k̂ corresponds to the binormal vector b̂. These two facts show

that the velocity field, asymptotically close to the vortex arc, is asymmetric in the binormal

direction and that this effect is extremized for field-points on the normal-axis, which agrees

with standard results of induced binormal flow.
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Figure 3.1: Global and Local Coordinate Geometry. In subfigure (a) the vortex arc is
depicted in R3 where the circle parameterization, C, is composed of the solid line representing
the vortex filament and a dashed line representing a continuation of the parameterization.
These two regions are separated by the cut-off parameter L. This subfigure also shows the
spherical decomposition of the field point x where γ1 is the azimuthal angle and γ2 is the
polar angle associated with the spherical decomposition of x. Lastly, this subfigure shows
the configuration of the Serret-Frenet local basis vectors t̂, n̂, b̂, which, for ease of use, are
oriented to correspond to the standard global basis vectors for R3. In subfigure (b) the
projection of subfigure (a) onto the x–y plane is given and shows the polar decomposition of
the filament point ξ = (R sin(θ), R−R cos(θ), 0).
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3.5 Reduction of Elliptic Form to Canonical Elliptic Integrals

Before we construct the asymptotic representation of the velocity field, the previous

integrals are converted into canonical forms. The induced velocity field is controlled by an

integral of the form

∫
DL

dθ√
c1 + c2 cos(θ) + c3 sin(θ)

, (3.28)

which can be converted to a sum of incomplete integrals of the first kind. First, we introduce

a new angle defined by tan(φ) = c3/c2 and hypotenuse r2 = c2
2 + c2

3 to get

∫
DL

dθ√
c1 + c2 cos(θ) + c3 sin(θ)

=

∫ L

−L

dθ√
c1 + r cos(φ− θ)

. (3.29)

Now, introducing a change of variable 2ψ = φ− θ and the notation L± = (φ±L)/2 we apply

trigonometric formulae to get

∫ L

−L

dθ√
c1 + r cos(φ− θ)

=
2√
c1 + r

∫ L+

L−

dψ√
1− k2 sin2(ψ)

(3.30)

where k2 = 2r/(c1 + r). Lastly,

∫
DL

dθ√
c1 + c2 cos(θ) + c3 sin(θ)

=
2 [F (L+, k)− F (L−, k)]√

c1 + r
(3.31)

where F is the standard incomplete elliptic integral of the first kind,

F (ϕ, k) =

∫ ϕ

0

dψ√
1− k2 sin2(ψ)

=

∫ λ

0

dt√
1− t2

√
1− k2t2

(3.32)

such that λ = sin(ϕ).

3.6 Asymptotics for the Incomplete Elliptic Integral of the First Kind

Having reduced the Biot-Savart representation of the velocity field to a canonical form, we

can now make use of the known asymptotic formula of Karp and Sitnik,[132] which permits
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the study of (3.32) for all (λ, k) ∈ [0, 1]× [0, 1]. Specifically, they derive a series representation

and remainder term for F , which is asymptotic for k → 1. Their complete theorem is quoted

in the appendix, but we only require the first-order approximation

F1(λ, k) = ln

(√
1 + λ

1− λ

)
+

1

λ
ln

(
2

1 +
√

(1− k2λ2)/(1− λ2)

)
+

1− k2

8
ln

(
1 + λ

1− λ

)
.

(3.33)

which is asymptotic to F for λ → 0 and k → 1. This asymptotic formula is not suited

to differentiation. [133–136] Thus, we must first apply the differentiation formula, for the

incomplete elliptic integral of the first kind, prior to its asymptotic evaluation. Doing so gives

lengthy formulae and for these we introduce the constants

A =
x2c2 − x1c3

r
, (3.34)

A1 =
−4

(c1 + r)3/2
(ε− x2 + A), (3.35)

A2 =
2√
c1 + r

, (3.36)

A3 = −2
x2c3 + x1c2

r2
, (3.37)

A4 =

√
2r(x2 − ε)

(c1 + r)3/2
+

√
2

r

(
(c1 + r)3/2 − r√c1 + r

(c1 + r)2

)
A. (3.38)

Using these constants, find

d

dε

∫
DL

dθ√
D

= 2A1[F (L+, k)− F (L−, k)] + A2 [Ω(A3, A4, A5, k, L+)− Ω(A3, A4, A5, k, L−)]

(3.39)

where

Ω(A3, A4, A5, k, L) =
A3√

1− k2 sin2(L)
+
A4E(L, k)

1(1− k2)k
− A4F (L, k)

2k
− A42k sin(2L)

4(1− k2)
√

1− k2 sin2(L)
(3.40)

is given by differentiation formula for incomplete elliptic integrals of the first kind. Together

with Eq. (3.21), proves Eq. (3.2) of our first theorem where α1 = 2A1 and α2 = A2. From
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Eq. (3.27) we find that the local velocity field is given by

vε(x) = −8κx2 (2A1[F (L+, k)− F (L−, k)] + A2 [Ω(A3, A4, A5, k, L+)− Ω(A3, A4, A5, k, L−)]) .
(3.41)

At this point, the asymptotic formula (3.1) can now be applied to F (λ, k) where λ = sin(L±).

To compare these results to standard LIA we take ε→ 0 and L→ 0. In this case c1 = −c2 =

r ∼ 2, c3 ∼ 0 and the constants take the asymptotic forms

A =
x2c2 − x1c3

r
∼ −x2, (3.42)

A1 =
−4

(c1 + r)3/2
(ε− x2 + A) ∼ x2, (3.43)

A2 =
2√
c1 + r

∼ 1, (3.44)

A3 = −2
x2c3 + x1c2

r2
∼ x1, (3.45)

A4 =

√
2r(x2 − ε)

(c1 + r)3/2
+

√
2

r

(
(c1 + r)3/2 − r√c1 + r

(c1 + r)2

)
A ∼ −x2

2
. (3.46)

Together this gives the first-order asymptotic representation for the velocity field,

vε(x) ∼ −8κx2

9x2F1(λ, k)

2
− x2E(L, k)

(1− k2)k
−
k sin(2L)

[√
1 + k2 sin2(L) +

√
1− k2 sin2(L)

]
2(1− k2)

√
1− k4 sin4(L)

 b̂

(3.47)

for the limits ε→ 0, k → 1 and L→ 0, λ→ 0. This proves Eq. (3.6) of our GLIE. It should

be noted that the above formula is nonzero even for the extreme case of L = 1− k → 0. The

physical meaning of this statement is that the local field induced by an infinitesimal segment

of a vortex line is nonzero and asymmetric in the binormal direction.

3.7 Discussion and Conclusions

We have derived an asymptotic representation for the local velocity field induced by

a curved vortex filament. This derivation generalizes the previously known statements of

induced binormal flow, which play an important role in two-component superfluid simulation.
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In such simulations one must calculate the superfluid and normal fluid flows as well as

their mutual friction interaction. This mutual friction embodies the scattering of rotons

and phonons off of the vortex structures.[137–141] It is possible to calculate this interaction

in a manner self-consistent with Navier-Stokes and fully coupled to both components.[142]

The normal fluid is approximated through Navier-Stokes simulation techniques while the

kinematics of the superfluid make use of LIA. Though our focus is LIA dynamics we offer the

following references to the computational fluid dynamics literature, which has been used for

coupled two-component superfluid simulations. [143–145] While there has been progress in

these techniques, [146, 147] the recent growth of the highly adaptable discontinuous Galerkin

methods [148] and their application to nonlinear fluid flow and acoustic problems [149] is

especially provocative.

Mathematically, the kinematics of a vortex filament, ξ, are described by[89]

dξ

dt
= VS + VI + βξ′ × (VN −VS −VI)− β′ξ′ × [ξ′ × (VN −VS −VI)] . (3.48)

In a filament method, it is typical to prescribe the normal-fluid flow VN and neglect the

mutual friction terms involving β and β′. [97] This leaves only a potential flow VS and

induced flow VI . Of the remaining quantities, the computationally costly induced flow is

managed through the LIA,

VI(x) ≈ Vlocal(x) = κ ln

(
2
√
L+L−
|x|

)
b̂ (3.49)

where L± = (φ±L)/2 is related to the cutoff length L and angle φ. Vortex filament methods

avoid integration by application of this approximation to nodal points of the Lagrangian

computational mesh attached to the filament centerline. Alternatively, we could simply replace

LIA with GLIE (3.4)-(3.5) and write VI ≈ Vε and prescribe a field point x and arclength

s = 2RL. However, if the higher-order circulatory and binormal terms are desired, one could

use (3.2)-(3.3) and employ efficient numerical routines for the incomplete elliptic integrals.[150–

58



152] Either of these changes will then be applied to node points of a computational mesh

modeling the filament structure.

The use of piecewise linear interpolants, while prevalent in numerics, cause spurious effects

when applied to a vortex centerline. The interpolants themselves have zero local curvature

and their connections form cusps with undefined local curvature. Typically, local induction is

applied to higher-order interpolations. While one can use the generalized induction equation

or GLIE on this mesh, the natural vortex-arc construct has been adapted to efficient meshing

techniques. [153] Consequently, computational cusps are avoided and local curvature is

always well-defined when GLIE is applied to such vortex-arc meshes. Lastly, what remains is

re-meshing to allow for the experimentally witnessed vortex nucleation.[154, 155]

Meshing is the most difficult aspect of vortex filament implementations. Not only must

the mesh adapt to the vortex dynamics, it must be made to reconnect filament elements that

are not predicted by the Eurelian theory. [156] The most elementary reconnection algorithms

appeal to nonlinear Schödinger theory and force reconnection of filaments passing within a

few core widths of each other.[131, 157] The current theory of the reconnection process is not

satisfactory and efforts to avoid ad hoc simulated reconnection continue.[158–163]

Superfluid turbulence dominated by quantized vortex flows is an active area of analytic,

numerical and experimental research.[98, 164–174] Though local induction techniques will

play a part in continued numerical investigations, understanding geometric and topological

quantification of a tangled state is as important and still a work in progress. [175–178] Lastly,

the vortex line approximation, while useful and appropriate, must eventually be discarded

in favor of nontrivial core-structure. It is likely that the methods developed within this

paper can be adapted to current arguments used to study fields induced by vortex tubes.

[109, 109, 129]

That being said, this work makes it clear that binormal flow proportional to curvature

is a general feature of vortex filament dynamics. This means that the well-celebrated

transformation of Hasimoto[8], which connects the filament’s curvature and torsion variables
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to a wavefunction controlled by nonlinear Schrödinger evolution, is fundamental to vortex

filament dynamics. Consequently, even geometrically complicated filament dynamics are

rooted in integrable systems theory. This connection underpins efforts to predict allowed

filament geometrics from the associated integrable systems. [179–183]

The authors thank Paul Martin for useful discussions. This material is based in part upon

work supported by the National Science Foundation under grant numbers PHY-0547845 and

PHY-1067973. LDC acknowledges support from the Alexander von Humboldt foundation.

A.1 Appendix - Asymptotic Representation for Incomplete Elliptic Integrals of
the First Kind

The following theorem is one of the two major results proven in Karp and Sitnik. [132]

The second result gives a simpler expression but is not valid on the leftmost edge of the unit

square and therefore not used in our calculations.

Theorem 3. For all (λ, k) ∈ [0, 1]× [0, 1] and an integer N ≥ 1, the previous elliptic integral

admits the representation

F (λ, k) =
1

2
ln

(
1 + λ

1− λ

) N∑
j=0

(1/2)j(1/2)j
(j!)2

(1− k2)j+

+
1

2λ

N−1∑
n=0

(
1− λ2

−λ2

)n
sn

(
(1− k2)λ2

1− λ2

)
+RN(λ, k),

(3.1)

where sn(·) is given by the recurrence formulae
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sn+3 =
ansn+2(x),+bnsn+1(x) + cnsn(x) + hn

4(n+ 3)2
, (3.2)

an(x) = 8n2 + 36n+ 42− x(2n+ 5)2, (3.3)

bn(x) = 2x(4n2 + 14n+ 13)− (2n+ 3)2, (3.4)

cn(x) = −4x(n+ 1)2, (3.5)

hn(x) =
x(2n+ 5)(2n+ 4)2 + (n+ 3)(8n2 + 24n+ 17)

8(n+ 3)[(n+ 2)!]2
[(3/2)n]2(−x)n+2, (3.6)

s0(x) = −2 ln

(
1 +
√

1 + x

2

)
, (3.7)

s1(x) =
(x

2
− 1
)

ln

(
1 +
√

1 + x

2

)
− 1

2

√
1 + x+

1

2
+
x

2
, (3.8)

s2(x) =

(
− 9

32
x2 +

x

4
− 3

4

)
ln

(
1 +
√

1 + x

2

)
+

(
9

32
x− 7

16

)√
1 + x+

7

16
+

1

8
x− 21

64
x2

(3.9)

and the remainder term is negative and satisfies,

[(1/2)N+1]2(1− k2)N

2[(N + 1)!]2
fN+1(λ, k) ≤ −RN(λ, k) ≤ [(1/2)N+1]2(1− k2)N

2[(N + 1)!]2
fN(λ, k), (3.10)

where the positive function

fN(λ, k) =
1

1− α(1− k2)
·

·


ln

(√
1+(1−λ2)/[αλ2(1−k2)]+1√
1+(1−λ2)/[αλ2(1−k2)]−1

)
αλ
√

1 + (1− λ2)/[αλ2(1− k2)]
− (1− k2) ln

(
1 + λ

1− λ

)
|α=(N+1/2)2/(N+1)2

(3.11)

is bounded on every subset of E of the unit square, where

sup
k,λ∈E

1− k
1− λ <∞ (3.12)

and is monotonically decreasing in N .

From this theorem we denote its first-order approximation as
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F1(λ, k) = ln

(√
1 + λ

1− λ

)
+

1

λ
ln

(
2

1 +
√

(1− k2λ2)/(1− λ2)

)
+

1− k2

8
ln

(
1 + λ

1− λ

)
,

(3.13)

and note that this expression is asymptotic in the λ variable.
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4.1 Abstract

The dynamics of quantized vortices in weakly interacting superfluids are often modeled by

a nonlinear Schrödinger equation. In contrast, we show that quantized vortices in fact obey a

non-Hamiltonian evolution equation, which enhances dispersion along the vortex line while

introducing a gain mechanism. This allows the vortex medium to support a helical shock

front propagating ahead of a dissipative soliton. This dynamic relaxes localized curvature

events into Kelvin wave packets. Consequently, a beyond local induction model provides a

pathway for decay in low-temperature quantum turbulence.

4.2 Paper Body

Quantized vortices are slender, non-diffusive regions of low density about which the

superfluid bulk circulates at strengths defined by multiples of Planck’s constant scaled

by a characteristic mass [184]. A vortex line is modeled as a one-dimensional region of

the quantum liquid about which the irrotational fluid circulates. A quantum tangle is a

randomized configuration of quantized vortex lines that supports various cascade processes

which transfer energy between the spatial scales [185]. Unique to quantum fluids is the Kelvin
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wave cascade which relaxes high curvature cusps, formed through vortex interactions, to small

wavelength helical excitations along the vortex. These waves transport turbulent energy to the

boundaries [186]. In this Letter, we derive a relatively simple, but non-Hamiltonian evolution

of the geometric properties of a vortex defect under local induction models. This evolution

predicts that the vortex medium transforms a curvature soliton into a helical shock wave

where a dissipative soliton travels behind helical excitations. Gain mechanisms introduced

by the non-Hamiltonian structure result in an increase of mean curvature and signify the

emergence of the small-scale structures necessary for stimulating acoustic emission.

The Biot-Savart integral provides a representation of the velocity field by “un-curling”

the vorticity field. Locally induced evolutions are given by asymptotic approximations to

regularizations of this singular integral. There are several regularization techniques available

and all yield a lowest order local induction approximation (LIA). The LIA states that a

vortex flows at a speed proportional to its local curvature and in a direction defined by its

local binormal vector [6]. The Hasimoto transformation is a scalar version of Madelung’s

hydrodynamic transformation of the Schrödinger equation [3]. When applied to the LIA,

curvature and torsion of the vortex are found to obey a cubic focusing nonlinear Schrödinger

equation [8]. This theory predicts a bright curvature soliton defining a traveling kink on

the vortex line, which we call a Hasimoto vortex soliton, see Figure 4.1. This integrability

obstructs the transfer of energy between Kelvin waves and prohibits the cascade process [59].

Our non-Hamiltonian description overcomes the restrictions imposed by the integrable theory

by introducing a curvature gain/loss mechanism while enhancing dispersion on the vortex

medium. We call a cascade soliton the non-Hamiltonian evolution of Hasimoto’s vortex

soliton, which deforms a bright curvature soliton into a log-normal distribution. Represented

on the vortex line, the soliton kink decreases its amplitude while the curvature of the

straight background increases ahead of the disturbance. Furthermore, our non-Hamiltonian

dynamic predicts the existence of two qualitatively different dynamical regimes. For small

perturbations, the kink maintains its structure for longer times, a robustness that is indicative
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of a dissipative soliton. Increasing dispersion erodes the previously robust kink into a packet

of Kelvin waves generating a profile similar to a dispersive shock wave. This Letter introduces

a nonlinear integro-differential equation and uses it to approximate the non-Hamiltonian

dynamics of the Hasimoto vortex soliton from the integrable theory. Prior to simulations, we

consider the dynamics predicted by the emergent gain/loss mechanism in conjunction with

the changes to plane wave dispersion to understand the short-time behavior of a soliton.

Vortex filament methods simulate a quantum fluid by evolving its vortical skeleton

according to the Biot-Savart integral and are significantly more efficient than mean-field

methods for vortex dominated flows [55]. Recent simulations by Salman demonstrate that

evolutions given by the mean-field, Biot-Savart and induction models are consistent up to

the point where the smallest length scales dominate the physics, a known limitation of

filament methods [187]. Specifically, the LIA and Eulerian evolution of vortex lines conserves

their total length, preventing reconnection from occurring. At the same time, Bustamante

and Nazarenko have shown that the Biot-Savart integral manifests from Gross-Pitaevskii

mean–field dynamics and provides a self-consistent regularization procedure [63]. This allows

us to derive a non-Hamiltonian evolution consistent with a locally induced flow generated by

a region of vortex whose arc-length is on the order of the condensate healing length. Our

prediction of helical waves generated from a localized curvature event is consistent with

current models of energy transfer in the highly quantum turbulent regime [188].

As shown in Figure 4.1, we define ~γ ∈ R3 as the set of points in three-space corresponding

to a Hasimoto vortex soliton, i.e., a bright curvature soliton shown in the inset of Figure

4.1. The vortex is parameterized by an arc-length, s, and changes with time, t, so that

~γ = ~γ(s, t). Beginning with the Biot-Savart integral, our previous work derives the velocity

field induced by ~γ in terms of elliptic integrals [60]. The LIA is the first term in an asymptotic

approximation of this representation, where circulatory and axial velocities are neglected.

Symbolically, we have that this component of the velocity field generates a flow satisfying

the vector evolution law,
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∂~γ

∂t
= α

(
∂~γ

∂s
× ∂2~γ

∂s2

)
, (4.1)

where the cross-product ~γs×~γss = κb̂ is defined using the binormal vector of the Frenet-Serret

basis and κ = κ(s, t) is the local curvature. The Hasimoto vortex soliton is a prediction of

the LIA, given by Eq. (4.1) where α = 1, and forms a propagating curvature disturbance,

κ(s, t) = 2 sech(s− t), with constant torsion, τ = 1. To understand the transition to a cascade

soliton, we consider the case of non-constant α.

-2 0 2
0

1

2

Figure 4.1: Hasimoto’s Vortex Soliton. We depict the Frenet basis, t̂, n̂, b̂, for a hyperbolic
secant (inset) bright soliton, κ, τ = 1, from the integrable theory, 2iψt + 2ψss + |ψ|2ψ = 0,
corresponding to Hasimoto’s map applied to the LIA, ~γt = κb̂.

The condensate healing length, ξ, defines the vortex core size and its product with the

characteristic curvature, κ, yields the small parameter ε = ξκ � 1. The healing length,

in ratio with the characteristic system size, d, defines the parameter δ = d/ξ and is large

when the characteristic system size is taken to be the condensate width. The proportionality

constant in Eq. (4.1) is a function of the dimensionless parameters, α = α(δ, ε), and has a
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tidy representation given by the matched asymptotic expansion [189],

α(δ, ε) =
Γ

4π

[
ln

(
1

δ

)
+ ln

(√
1 +

ε2δ2

8

)]
, (4.2)

where Γ measures the strength of the condensate circulation about the vortex line. The LIA

retains only the curvature-independent logarithmic singularity and is defined as Eq. (4.1),

where α = α(δ, ε = 0). If we assume that ε is not formally zero, then the scale separation

ε� εδ � δ defines a regime where the linearization of Eq. (4.2), i.e. the LIA, is accurate. If a

parameterization is given, then the characteristic length, d, can be associated with the domain

of Biot-Savart integration. Parameterizing an arbitrary vortex element by a plane circular

arc gives a wide range for the non-dimensional parameter, δ ∈ (a, 100), where a = 0.3416293.

The lower bound of this interval is the Bustamante-Nazarenko regularization, while the upper

bound corresponds to an integration domain up to two orders of magnitude larger than the

healing length, d = 100ξ. While this approach maintains the scale separation of LIA, it is

less restrictive and permits the study of flows induced by arcs of vorticity with small central

angle such that εδ = O(ε).

Hasimoto’s transformation rotates the Frenet basis into C3 where the geometric wave

function, ψ(s, t) = κ(s, t) Exp
[
i
∫ s

0
ds′τ(s′, t)

]
, carries the curvature and torsion variables

of a vortex line satisfying LIA [8]. This transformation is robust and can be used to map

more general flows, often leading to complicated integro-differential equations [190, 191].

Restricting ourselves to binormal flows defined by Eq. (4.1) and applying an asymptotic

representation of α, we recast the corresponding integro-differential equation as a nonlinear

differential equation. The predicted state is a cascade soliton, which is a solitary wave

accompanied by helical excitations, and is depicted in Figure 4.2.

Throughout the following, t will refer to a non-dimensional time. If we scale this time by

t̃ = 4πγ̃/(κ̃Γa0(δ)), to define a laboratory time, then α(δ, 0) = 1. Application of the Hasimoto

transformation to the general case, α = α(δ, ε) yields a nonlinear integro-differential evolution

of the geometric variables,
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Gain
Dispersion

Figure 4.2: Non-Hamiltonian Cascade Soliton. An initial Hasimoto vortex soliton expe-
riences dispersion producing helical waves propagating ahead of the soliton kink. The
non-Hamiltonian gain mechanism supports both the kink and the helical excitations as the
localized curvature event is transitioned to a cascade process.

iψt + [αψ]ss +
α

2
|ψ|2ψ +

ψ

2

∫ s

|ψ|2αs′ ds′ = 0. (4.3)

This evolution maintains the Schrödinger structure seen for α = 1. However, it is difficult to

derive useful information from it. The small parameter ε � 1 provides an expansion of α

in powers of κ. From Eq. (4.2), we find that α(−κ) = α(κ). After truncating quartic and

higher terms we arrive at the simpler evolution,

iψt + ψss +
1

2
|ψ|2ψ + λ

([
|ψ|2ψ

]
ss

+
3

4
|ψ|4ψ

)
= 0, (4.4)

which we call the non-Hamiltonian vortex cascade equation (NVC). The correction parameter,

λ, depends on our dimensionless constants and is the ratio of the second and first coefficients

in the expansion of α. In the LIA λ = 0 and we have an integrable theory. If λ 6= 0, then

integrability is compromised so severely that nearly all underlying symmetries are broken.

With the exception of arc-length, a quantity conserved by the LIA, nothing typical, like

energy or momentum, is conserved by the NVC.
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To understand this loss of mathematical structure we inspect the fully nonlinear term

[|ψ|2ψ]ss. One can show that there does not exist a functional whose variational derivative

satisfies the necessary self-adjoint conditions and therefore the evolution cannot be written

as an infinite-dimensional Hamiltonian system [192, 193]. The system is invariant with

respect to arbitrary time and space translations. However, as the system is not Hamiltonian,

Noether’s theorem does not apply and our continuous symmetries need not correspond to

conserved densities. Application of the SYM symmetry software package [194] to Eq. (4.4)

found no additional continuous symmetries. Additionally, a Mathematica package that

symbolically calculates conservation laws found no low-order conserved densities [195]. While

the system does possess discrete parity and time symmetries, we consider non-symmetric,

time-irreversible dynamics of the nonlinear evolution.

Without [|ψ|2ψ]ss, the NVC is a complex quintic Ginzburg-Landau equation used in the

study of dissipative solitons [196]. Our real coefficients imply a Hamiltonian structure and a

nonlinear gain/loss mechanism must enter through other means. Madelung’s transformation

decomposes Schrödinger evolutions into real and imaginary parts [9]. Transforming the NVC

yields a system of first-order evolutions on the bending density, ρ = κ2 = |ψ|2 and torsion.

We find that the total bending across the vortex,

d

dt

∫ b

a

κ2 ds = −2λ

∫ b

a

ρsρτ ds, (4.5)

is no longer conserved in time. The density, ρτ , corresponds to the momentum density in the

condensate picture, and is also not conserved by the NCV. This non-Hamiltonian geometric

gain/loss mechanism provides a pathway for dissipative soliton dynamics. For example, if

the torsion is positive, then bending energy grows/decays over regions where curvature is

decreasing/increasing. Simulations indicate that this feature is robust against distortions

manifesting from plane wave dispersion.

A plane wave solution of the form ψ = Aei(ks−ωt) defines a single mode helix. According

to the NVC, plane waves obey the corrected nonlinear dispersion relation [197],
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ω(k,A, λ) = k2(1 + λA2)− A2

2
− 3λ

4
A4. (4.6)

The initial state, ψ = 2sech(s)eis, corresponds to a Hasimoto soliton, and defines a narrow-

band curvature packet with over 99% of its total initial bending captured between wave

numbers k ∈ [0, 5]. Relating the wave amplitude, A, to wavenumber via Fourier transform

allows us to plot the group velocity for the initial data, which is given in Figure 5.3. These

data show that increasing λ enhances the propagation speed of long wavelength curvature

modes. Enhancing dispersion of these modes causes the curvature function to distort.

Simulations indicate that the peak jettisons curvature, which causes the first moment of

the distribution to propagate faster, distorting the distribution into a log-normal form.

Additionally, the simulations depict a localized curvature peak that stays discernible under

considerable dispersion because of the support provided by the emergent gain/loss mechanism.

If total bending were conserved, then the dynamic would cause the peak amplitude to erode

completely into the vortex.

Our non-Hamiltonian vortex dynamics can be simulated through the vector evolution

equation, Eq. (4.1), on a mesh of points representing the vortex in R3, or by scalar evolution of

the geometric variables through the NVC. In this way the Hasimoto transformation effectively

separates the geometric evolution from its Frenet-Serret representation and is significantly

more efficient if vortex visualization is not required. It should be noted that the boundary

conditions for each problem are physically different. Specifically, for an arc-length variable

s ∈ [a, b], Dirichlet boundary conditions, ψ(a, t) = ψ(b, t) = 0, allow for moving endpoints

with zero curvature. In contrast, Dirichlet conditions on the vector evolution fix the endpoints,

~γ(a, t) = ~γa and ~γ(b, t) = ~γb where ~γa, ~γb ∈ R3. To suppresses differences manifesting from

the endpoint behavior, we simulate Hasimoto’s soliton under both the vector and scalar

evolutions on an arc-length domain an order of magnitude larger than the characteristic
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Figure 4.3: Dispersion of Hasimoto’s Soliton. The non-Hamiltonian evolution enhances to
group velocity of the long wavelength modes in an initial soliton state. The speed of the
curvature peak and first moment (inset) are increasing functions of λ until roughly λ = 0.19
where a majority of shape defining Fourier modes leave an eroding peak to bolster the first
moment.
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width of this curvature disturbance.3 This is consistent with the modeling context which

assumes a fluid of infinite extent implying that the geometric dynamics are isolated from the

physical boundary. The total bending was calculated for both methods and found to have

less than 1% squared relative error in the curvature across the lifetime of the simulation. Our

focus is on simulations where λ = 0.17, which displays both the dissipative soliton dynamic

and dispersive cascade of Kelvin waves predicted by the NVC.

The NVC predicts two qualitatively different dynamical regimes, one characterized by

the cascade soliton and the other by strong dispersion of this dissipative soliton. In Figure

4.4 we plot curvature as a density for λ = 0.17 and we see that the maximum amplitude is

strongly localized while the bending energy disperses in the direction of peak propagation. In

Figure 4.4a we plot the maximum value, first moment (red) and wave front (yellow), i.e., the

furthest point ahead of the peak were κ ≈ 2% of the initial peak value are fitted to linear

models with square residuals, 0.99999, 0.999198, 0.998574, respectively. Simulations also

show the presence of breathing oscillations, seen by the dark side bands to the peak appearing

twice. In Figure 4.4c the middle of a one breathing period can be seen as pinch in the

curvature function occurring at t = 15 and is plotted along with curvatures at t = 0, 5, 10, 25,

in the co–moving frame. Simulations omitting the [|ψ|2ψ]ss term exhibit a similar dynamic

and indicates that breathing is, in part, a consequence of the quintic nonlinearity. The

completion of two breathing oscillations was corroborated with a power–spectrum analysis of

the time data. In addition to this breathing, the gain/loss mechanism creates an asymmetry

in the curvature profile that when coupled to dispersion leads to a trailing helical wake of

low wavenumber curvature modes. The dissipative/cascade soliton corresponds to the peak

amplitude following the helical excitations. Additional simulations show that for λ < 0.17,

we see a similar dynamic but the peak is strongly maintained and less curvature is dispersed.

For λ > 0.17, the peak speed begins to decrease as low wavenumber modes shift the curvature

3 Our simulations utilize the NDSolve routine of Mathematica, set to work at 10 digits of internal precision
and interpolating at the order of the underlying method chosen to numerically integrate the system of
ordinary differential equations arrived at by application of the method of lines.
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distribution to a log-normal form. While the curvature peak is discernible, it is difficult to

spot immersed in a sea of Kelvin waves. Additionally, the breathing is abated on the simulated

time scale. If a condensate is punctured by a vortex defect with circulation 997×10−4µm · cm,

length 100µm and core size of 0.67µm, then for an vortex element whose radius of curvature

is 12µm, a reasonable size for a vortex ring, Eq. (4.2) yields a characteristic time scale

on the order of milliseconds, which is with the range of times considered in reconnection

studies [198, 199].

Understanding that the Biot-Savart integral is a manifestation of the mean-field Gross-

Pitaevskii dynamics of the condensate, our beyond local induction model self-consistently

describes the dynamics of isolated quantized vortices whose flow is induced at length scales

nearing the healing length. While this non-integrable and computationally inexpensive

result can be easily added to current filament models [200], it is also a useful symbolic

tool for investigation of post-reconnection dynamics where simulations of randomized initial

curvature configurations can provide statistical properties associated with the energy spectra

of Kelvin wave cascade. While deformations to the vortex profile, resulting in reconnection,

are not modeled by Eq. (4.1), one expects that reconnection generates regions of localized

curvature where NVC dynamics dominate. Such events are now witnessed in experimental

condensates with a few vortex defects [48]. Perhaps through minimally defected flows we can

gain greater insight into Onsager’s conjectured mechanism of anomalous dissipation, which

asserts that weak solutions of inviscid fluid dynamics are not necessarily conservative and

that the geometry itself is capable of relaxation by radiating turbulent energy toward the

fluid boundaries [67].

In conclusion, we derive a non-Hamiltonian evolution for the curvature and torsion of

a quantized vortex that breaks the integrability of the LIA and introduces a helical shock

wave on the vortex medium. Such a dynamic is necessary to support the cascade process

associated with low temperature quantum turbulence. The shock consists of a leading packet

of Kelvin waves dispersed from a dissipative vortex soliton, i.e., a non-Hamiltonian cascade
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Figure 4.4: Cascade Dynamics. (a) For moderate dispersion the cascade soliton has a well
defined peak as it breaths and disperses. The clearly defined peak is tracked along with the
first moment (red) and wave front (yellow) on a density plot of curvature. (b) Additionally, we
depict vortex configurations at t = 5 (orange), t = 15 (green) which illustrates the breathing
dynamic. (c) Lastly, a sequence of curvatures at five-second intervals are plotted against the
initial state, adjusted for translations, and show a clear asymmetry in the profile in addition
to the breathing.
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5.1 Abstract

Ultra-cold quantum turbulence is expected to decay through a cascade of Kelvin waves.

These helical excitations couple vorticity to the quantum fluid causing long wavelength

phonon fluctuations in a Bose-Einstein condensate. This interaction is hypothesized to be

the route to relaxation for turbulent tangles in quantum hydrodynamics. The local induction

approximation is the lowest order approximation to the Biot-Savart velocity field induced by

a vortex line and, because of its integrability, is thought to prohibit energy transfer by Kelvin

waves. Using the Biot-Savart description, we derive a generalization to the local induction

approximation which predicts that regions of large curvature can reconfigure themselves as

Kelvin wave packets. While this generalization preserves the arclength metric, a quantity

conserved under the Eulerian flow of vortex lines, it also introduces a non-Hamiltonian

structure on the geometric properties of the vortex line. It is this non-Hamiltonian evolution

of curvature and torsion which provides a resolution to the missing Kelvin wave motion. In

this work, we derive corrections to the local induction approximation in powers of curvature

and state them for utilization in vortex filament methods. Using the Hasimoto transformation,

we arrive at a nonlinear integro-differential equation which reduces to a modified nonlinear
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Schrödinger type evolution of the curvature and torsion on the vortex line. We show that

this modification seeks to disperse localized curvature profiles. At the same time, the non-

Hamiltonian break in integrability bolsters the deforming curvature profile and simulations

show that this dynamic results in Kelvin wave propagation along the dispersive vortex

medium.

5.2 Introduction

Quantized vortex lines provide the simplest scaffolding for three-dimensional fluid turbu-

lence. While vortex lines and filaments are fundamental to quantum fluids, they also appear

as the geometric primitives in a variety of hydrodynamic settings including atmospheric,

aerodynamic, oceanographic phenomenon and astrophysical plasmas. [201] Through an

analogy with the Euler elastica, the twist and writhe of filament structures appear in models

of biological soft-matter and are used to explain the dynamics of DNA supercoiling and self-

assembly of bacterial fibers. [202–204] Recent research utilizes filaments in less exotic settings

where a turbulent un-mixing provides motility to phytoplankton that simultaneously protects

them from predation and enhances their seasonal survival. [205, 206] In quantum liquids,

turbulent tangles of vorticity are known to undergo various changes of state. Transition to

the ultra-cold regime is marked by a subsiding Richardson cascade resulting in a randomized

tangle with no discernible large-scale structure. In this state, turbulent energy is driven by

vortex-vortex interactions where reconnection events trigger a cascade of wave motion along

the lines. When these interactions become infrequent, the turbulence begins to relax to a

configuration where the mobile vortices spend most of their time in isolation. In this paper, we

show that vortex lines in perfect barotropic fluids seek to transport bending along their length

in an effort to disperse localized regions of curvature. In mean-field Bose-Einstein condensates,

this dynamic predicts the generation of Kelvin waves which are capable of insonifying the

Bose gas, providing a pathway to relaxation of ultra-cold quantum turbulence. [186, 207]

Our result derives from the Hasimoto transformation of the Biot-Savart description of the

flow induced by a vortex line. We begin with a natural parameterization of the vortex about
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an arbitrary reference point. In this setting, the Biot-Savart integral (BSI) can be calculated

exactly, and asymptotic formulae may be applied to get an accurate description of the velocity

field in terms of elementary functions. In the analogous setting of electromagnetism, a steady

line current plays the role of vorticity and literally induces a field, in this case magnetic, which

has a representation given by the BSI. Our analysis yields an induced velocity field generating

a vortex dynamic that preserves the Hamiltonian structure associated with the Eulerian

flow of vortex lines. Additionally, the velocity field admits a Hasimoto transformation which

describes the evolution of vorticity through its curvature and torsion. The geometric dynamics

are provided by a nonlinear, non-local integro-differential equation of Schrödinger type that

can be reduced to a local differential equation, which is fully nonlinear in powers of curvature.

An analytic analysis assisted by symbolic computational tools indicates that higher order

contributions reinforce the changes described by the first correction to the lowest order

integrable structure. When simulated, we find that regions of localized curvature disperse,

causing the production of traveling Kelvin waves. In addition, a gain mechanism emerges

to support the dispersion process keeping the helical waves from being absorbed into an

otherwise straight vortex line.

The local induction approximation (LIA) is the lowest order truncation of BSI representa-

tions of the velocity field induced by a vortex line and is used to describe the local flow about

vortex points. The Hasimoto transformation (HT) shows that this is an integrable theory of

the curvature and torsion dynamics and, it is argued, incapable of modeling energy transfer

through Kelvin waves. It is expected that to elicit Kelvin waves models must undermine

or, at least, reallocate the conserved quantities of the flow. There are currently two distinct

ways to adapt the LIA to accommodate the study of Kelvin waves. One option is to consider

perturbations of the Hasimoto transformation which are known to introduce non-locality and

non-integrability into the geometric evolution. [191] This technique can study wave motion

on wavelengths much smaller than the radius of curvature and much larger than the core

thickness. Here the focus is on kink and hairpin formations in classical vortices capable of
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self-stretching. [208, 209] The second method is to consider approximations of the Hamiltonian

structure within the LIA and is capable of modeling resonant interactions between Kelvin

waves. Currently, there are two derivations of this result which predict cascade features and

time scalings arising from the kinetics of Kelvin waves. [59, 210, 211] While the exact source

of driven Kelvin wave motion is an open topic [212–214], there is little doubt that vortex

plucking through reconnection generates helical wave motion. [215] Our results do not seek

to model the inception of localized regions of curvature and are instead focused on how the

fluid responds to curved abnormalities on the vortex. Where LIA asserts that the curvature,

κ, and torsion, τ , obey a cubic focusing nonlinear Schrödinger equation, both Hamiltonian

and integrable, our generalization predicts that the function ψ = κExp[
∫ s

0
ds′τ ] obeys the

non-Hamiltonian evolution iψt + ψss + |ψ|2ψ/2 + [α̃ψ]ss + f(|ψ|)|ψ|2ψ = 0 where α̃ and f are

even functions of curvature with related coefficient structures. An evolution is Hamiltonian

if it corresponds to a flow induced by a highly structured vector field. For a completely

integrable evolution, one has the ability to utilize linearizations throughout the phase space

of solutions associated with a Hamiltonian evolution. The relationship between the flow

and the vector field inducing it demands that the operator of the Hamiltonian evolution

be self-adjoint. Our modified evolution is incapable of supporting such a structure and is,

consequently, non-Hamiltonian. Moreover, its fully nonlinear correction allows for energy

transfer between helical modes of the vortex line, which significantly alters the evolution of

the solitons predicted by the LIA.

The body of this paper is organized into three sections. First, in Sec. (5.3), we derive

an exact expression for the BSI representation of the velocity field induced by a vortex line

which requires the use of incomplete elliptic integrals. Application of asymptotic formulae

makes accessible an expansion of the field in powers of curvature. The coefficients in this

expansion depend on the characteristic arclength in ratio with the vortex core size and can

be tuned to numerical meshes used in vortex filament methods. Second, in Sec. (5.4), we

apply the Hasimoto transform to describe the effect of the vector evolution in terms of the
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curvature and torsion. We show that the corrected dynamic is non-Hamiltonian and allows

for helical wave dispersion supported by a gain mechanism. Lastly, we simulate the evolution

of soliton, breathing, and ring dynamics. Specifically, we consider the bright curvature soliton

that produces Hasimoto’s vortex soliton and find that at various degrees of non-Hamiltonian

correction the corrective terms seek to disperse bending in the form of helical wave generation

along the vortex line. After this we consider breathing and ring states to find that the

intuition given by changes to Hasimoto’s soliton carries over and that both cases breakdown

into helical wave motions. A notable example is that of a helically perturbed vortex ring

which experiences far less dispersive deformation and, in this way, appears stable under

simulation.

5.3 The Biot-Savart Integral and Local Induction Models

The special orthogonal group acts to transform real three-dimensional space by committing

rigid rotations about a specific axis which is given by the curl operator. [64] If we define the

instantaneous velocity of a fluid continuum over this spatial domain, then curl represents

the axis about which a fluid element rotates. Curves that are parallel to the vorticity vector

are called vortex lines. [83] A vortex filament is the idealization of a vortex tube whose

dynamics are characterized by the behavior of the vortex line. The Biot-Savart integral (BSI)

is frequently used to model line and filament dynamics which ignore transverse variations

to the vortex core. The BSI provides the unique velocity field such that ∇ × v = ω

defines the vorticity [216, 217] and can be thought of as the unique left-inverse of the curl

operator. [218, 219] In accordance with Helmholtz decomposition of R3, the BSI treats the

velocity field as being sourced by vortical elements convolved with Poisson’s formula for the

Green’s function of a stream reformulation of the hydrodynamic problem. [201, 220] If the

evolution of the vortex is given by the Euler equations, then it is known to be arclength

conserving Hamiltonian flow and, in this case, the Biot-Savart volume integral reduces to an

integral over the vortex line. [221] An isolated vortex line is depicted in Figure 5.1a and can

be defined distributionally for a vortex with homogeneous vorticity density, Ω,
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Figure 5.1: Vortex Line Geometry. (a) The local orthogonal frame, tangent (red, T), normal
(blue, N) and binormal (green, B) vectors, at the initial, middle and terminal points (brown)
of the vortex line, γ(s, t), with embellished width. At the reference point P we have a local
description of the vortex given by a blue semi-circle. Changes to the Frenet frame from point
to point are described by the curvature, κ, and torsion, τ . (b) View down the long axis of γ
where we see the osculating plane spanned by the tangent and normal vectors. The local
geometry at P is defined by the radius of curvature R, which is related to the curvature by
κ = R−1. The angle θ sweeps out an arclength from 0 to L providing a local parameterization
to γ about P . The core scale is defined as ξ; in Bose-Einstein condensates taken as the
superfluid healing length. (c) The curvature distribution associated with the vortex line in
(a) with unit torsion. (d) The normal plane is spanned by N and B, with observation point,
r = (0, x2, x3), placed in this plane and defined by the polar angle φ.

ω(r, t) = Ω

∫ L

0

δ(r− γ) dγ, (5.1)

where γ : (0, L)× R+ → R, is the dynamic parametric representation of the one-dimensional

sub-region on which the vorticity is supported. [201] Additionally, if γ = γ(s, t) is parameter-

ized in the natural gauge, then T = γs is the unit-tangent vector. [222] Such a distribution

of vorticity reduces the BSI to an integral over the vortex line,
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v(r, t) =
1

4π

∫∫∫
R3

ω(y, t)× (r− y)

|r− y|3 dy = − Γ

4π

∫ L

0

(r− γ)× dγ
|r− γ3| , (5.2)

where the circulation/strength Γ is the product of Ω and the characteristic volume resulting

from the ideal concentration of vorticity to γ, and r is the location at which the velocity field

is observed in the normal plane,Figure 5.1d. In the context of electromagnetism, the velocity

field plays the role of the magnetic field induced by a steady charge concentrated on the line,

γ. Analogous to problems in electromagnetism, the BSI diverges on the vortex line which

is an ideally localized source of the ambient velocity field. We seek to characterize the flow

predicted by Eq. (5.2). To arrive at a beyond leading order asymptotic representation of the

flow induced by the vortex, multiple layers of analytic work will be needed. To assist the

reader we provide an overview of the process.

The analysis which we apply to Eq. (5.2) is as follows. After stating a parameterization for

γ one must consider field points asymptotically close to the vortex line with |r| on the order

of vortex core size defined by ξ, see Figure 5.1b. Since the field diverges at the vortex source,

we must regularize the BSI which is tantamount to eliminating high frequency oscillations

along the vortex. The local induction approximation (LIA) is the reduction of BSI to its

logarithmic singularity. A classic treatment can be found in Batchelor [220] who derives

the result by formally setting the ratio of the observation point magnitude, |r|, with the

local radius of curvature, R, to zero. While this is the most expedient route to the lowest

order kinematics, it quickly loses accuracy at moments where the local curvature becomes

large, see Figure 5.2a. While our exact elliptic representation of the regularized BSI can

certainly resolve the field at moments of large curvature, they obstruct our understanding of

primitive wave motions along the vortex understood through Hasimoto’s transform. Thus, we

apply asymptotic approximations to the exact field to get simpler representations in powers

of curvature. Moments of large curvature are a consequence of vortex-vortex interactions

leading to tent/cusp like formations and, when pushed far enough, reconnection. In LIA
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the ratio of arclength to vortex core radius is required to be large, L � |r| ∼ ξ, which is

incompatible with reconnection where the vorticity local to the event drives the dynamics.

We now correct LIA so that we can describe the dynamics in this regime of interest.

The dynamics nearing reconnection remain unresolved by LIA, and we seek to rectify

this issue by retaining curvature dependence in the BSI integrand. While our approximation

recovers LIA in the standard limit, it also allows for an interplay between the characteristic

length scales of curvature, arclength and core size that is forbidden by LIA and allows for

accuracy in scenarios applicable to modeling wave motions post-reconnection. The end result

will be that the speed of the local velocity field is given by |v| ∝ α(κ), where

α(κ) =
∞∑
n=0

a2nκ
2n, (5.3)

such that restricting the series to a0 results in the LIA. Prior to regularization and asymptotic

approximation we extract the divergent component of BSI. First, we restrict the parameteri-

zation of the vortex line at an arbitrary point, P , in the osculating plane, see Figure 5.1b,

and consider only the binormal component of the local velocity field to get

v3(r) ∝
∫ L

0

ε3jk(xj − γj)dγk
|r− γ|3 = −x2

∫ L

0

γ′1
|r− γ|3 ds+

∫ L

0

γ2γ
′
1 − γ1γ

′
2

|r− γ|3 ds, (5.4)

where we have made use of the Levi-Civita permutation tensor, εijk, in conjunction with

the Einstein summation convention to compute the cross-product integrand in terms of the

components of the parameterization, γ = (γ1, γ2, 0) and their first partials with respect to

arclength, ∂sγ = (γ′1, γ
′
2, 0). Additionally, we may omit the first component in the location of

the observer, r = (0, x2, x3), who is restricted to the normal plane, see Figure 5.1d. A quick

computation of v2 reveals the circulatory counterpart to the x2 term of the velocity field.

Thus, the last term in Eq. (5.4) defines a non-circulatory binormal flow, which is understood

as a non-stretching dynamic capable of producing geometric alterations to the vortex line.
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To derive a locally induced flow from Eq. (5.4) one must consider field points asymptotically

close to the vortex line and also regularize the divergence by excising a portion of the vortex

line neighboring the reference point. The length of the excised domain of integration in

Eq. (5.4) is often decided in an ad hoc manner. [223] However, the recent work of Bustamante

and Nazarenko provides a regularization cutoff consistent with the mean field vortices of

a Bose-Einstein condensate. [63] To make use of this we specify a parameterization of the

vortex line local to the reference point and explicitly process the binormal flow in Eq. (5.4).

In generalization to Batchelor’s work [220], we consider a dynamic element of vorticity given

by γ(s, t) = (R sin(κs), R−R cos(κs), 0) where κ−1 = R = R(s, t) and κs = θ ∈ (−π, π), see

Figure 5.1b, whose quadratic approximation is consistent with the parameterization given

in [220]. In either case, the exact representation of the induced field is given in terms of

incomplete elliptic integrals. Since our derivation relies on differentiation of the integral with

respect to an internal parameter, elliptic integrals of both first and second kind appear. [60]

Integrating the final term in Eq. (5.4) over the angle θ, which is related to arclength by

s = Rθ, gives the following representation for the binormal flow induced by a plane circular

arc,

vB = −Γκ

4π

∫ L

0

cos(θ)− 1

(c1 + c2 cos(θ))3/2
dθ, c1 = ε2 − 2ε cos(φ) + 2, c2 = 2ε cos(φ)− 2, (5.5)

where φ is the polar angle of the field point in the normal plane, see Figure 5.1d, and ε = |r|κ

is the product of the distance of the field point and the local curvature. Except at moments

of reconnection where cusps form on the vortex line, this parameter is small, though not

formally zero as in Batchelor’s derivation. As was perhaps first witnessed with the theory

of boundary layers, the predictions in the asymptotic regime of ε → 0 differ significantly

from those stemming from ε = 0, which prohibits the existence of large curvatures. The

corresponding indefinite integral can be evaluated to the form

84



∫
cos(θ)− 1

(c1 + c2 cos(θ))3/2
dθ = F C− − E C+ +

c2 sin(θ)

c2(c1 − c2)
√
c1 + c2 cos(θ)

(5.6)

where

F = F

(
θ

2

∣∣∣∣ 2c2

c1 + c2

)
, (5.7)

E = E

(
θ

2

∣∣∣∣ 2c2

c1 + c2

)
, (5.8)

C∓ =
2(c1 ∓ c2)

√
c1 + c2 cos(θ)

c1 + c2

c2(c1 − c2)
√
c1 + c2 cos(θ)

. (5.9)

Here we have used the traditional notation for the elliptic integrals native to Mathematica,

which are related to the standard notations by F (z,m) = F (z|m2) and E(z,m) = E(z|m2) =∫ z
0

√
1−m2 sin2(t)dt. Of the terms in Eq. (5.6), only the first is divergent as ε→ 0. There

are various asymptotic formulae for elliptic integrals. [224] The result of Karp and Sitnik was

found to be more accurate than the prior result of Carlson and Gustafson, in the sense of

average absolute and relative errors, over a wider range of parameters. [225, 226] As ε→ 0,

the Karp and Sitnik representation of the divergent term in Eq. (5.6) is given by

F

(
θ

2

∣∣∣∣ 2c2

c1 + c2

)
C− ∼ A

[
ln

(
ε sin (θ/2)

sin(θ/2)
√
A3 +

√
A2

)
− 2A3√

A2 sin(θ/2)
ln

( √
4A1√
A1 + 2

)]
,

(5.10)

where

A1 = cos(θ) + 1, (5.11)

A2 = c2 cos(θ)− c1, (5.12)

A3 = 2c1 − ε2, (5.13)

D1 = A3(A3 − c1)/2, (5.14)

A =
A2

2D1A
3/2
3

. (5.15)
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Comparing this approximation to the elliptic form gives an average absolute and relative error

of less than 1.5% over the parameter domain (ε, θ) ∈ (0, 1)× (10−9, π), which gets significantly

better away from the boundaries in θ and away from the upper bound in ε. Noting that as

ε→ 0, c1 ∼ 2, c2 ∼ −2, A2 ∼ −2A1 and A3 ∼ 4, implies the divergence manifests from the

ln(ε) term in Eq. (5.10). However, discarding the remaining terms in Eq. (5.10) raises both

error measures to roughly 30%. Thus, our interest is in how terms other than ln(ε) temper

the divergence away from the singularityand how we can incorporate their effects into our

expansion of the field strength as a function of curvature given by Eq. (5.3). However, before

we proceed, we must regularize the integral by omitting a portion of vortex neighboring the

reference point.

Previously, regularization of the BSI for a vortex line were conducted ad hoc with cutoffs

tuned to experimental observation. [227] However, a recent derivation of BSI from the Gross-

Pitaevskii (GP) equation, which models mean–field Bose–Einstein condensates, provides

an a priori regularization of high-frequency spatial modes. [63] Adapting the results to our

parameterization defines a domain of integration, D = (aε, εδ), such that π > εδ = κL where

a ≈ 0.3416293 and L is the length of half of the symmetric vortex arc. It is important to

note that the cutoff parameter, a, of Bustamante and Nazarenko is not phenomenological

as in prior regularization techniques. Instead, by reformulating the Hamiltonian structure

of the Gross-Pitaevskii equation to be consistent with vortex lines, the authors were able

to numerically approximate a cutoff value under the assumption that density fluctuations

ceased far from the vortex. Interestingly, their derivation of a self-consistent cutoff relies

on incorporating the leading order contributions of quantum pressure and the mean-field

potential, in addition to the kinetic term of the Bose-Einstein condensate Hamiltonian. Thus,

our generated Kelvin waves arise from a regularization procedure that takes into account a

non-trivial portion of vortex core dynamics.

Assisted by Mathematica, we compute the coefficients of a power-series expansion of

Eq. (5.10) up through the first twenty terms. Due to the complicated dependence on ε,
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computation of higher order coefficients requires more sophisticated handling of system

memory. Restricting our field observation to the normal plane and averaging over φ, we find

that the first ten odd coefficients vanish, which is consistent with the symmetry properties

of known matched asymptotic expansion. [228] The two-parameter regime, 0 < ε < 0.35

and a < δ < 10, corresponds to vortex lines whose radius of curvature is up to 35% of the

core radius that is integrated from the Bustamante-Nazerenko cutoff through an order of

magnitude greater than the core radius. The following regularized two-term approximation

has an average absolute error that is roughly 3.1% different than the exact elliptic form,

α∗ =

∫ δε

aε

cos(θ)− 1

(c1 + c2 cos(θ))3/2
dθ ∼ a0 + a2ε

2, (5.16)

a0(δ, a) = g(a)− g(δ), (5.17)

a2(δ, a) =
h(a)

48
− h(δ)

48
+

(
3

4

)2

a0, (5.18)

where g(η) = arcsinh(η) and h(η) = (η5−12η3−11η)(1+η2)−3/2. We define α, from Eq. (5.3),

by normalizing all coefficients of Eq. (5.16) by a0. That is, α = α∗/a0.

Prior to taking Hasimoto’s transformation, we would like to make sure that our expansion

recovers LIA. Also, we would like to understand how well the beyond lowest order LIA

terms in Eq. (5.3) approximate the BSI defined by Eq. (5.5). Neglecting the quadratic

term and noting that arcsinh(δ) ∼ ln(δ) as δ → ∞ yields α∗ ∼ − ln(δ) + O(1) That is,

from Eq. (5.16) we recover the standard LIA with δ = L/|r|. In Figure 5.2a we depict

the absolute percent error, averaged over 0.1 < δ < 10 for the first, second and third

corrections as a function of ε. Specifically, α∗ ≈ a0 gives the LIA, while the higher order

corrections correspond to α∗ ≈ a0 + a2ε
2 (First correction), α∗ ≈ a0 + a2ε

2 + a4ε
4 (Second),

and α∗ ≈ a0 + a2ε
2 + a4ε

4 + a6ε
6 (Third). We see that the terms in Eq. (5.10) tempering the

logarithmic singularity significantly improves the lowest order approximation for regions with

larger curvature. In Figure 5.2b we provide a logarithmic plot of this error now as a function

of δ and averaged over 0.05 < ε < 1. We see that LIA is an inaccurate approximation of
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the binormal speed of the vortex when curvature is large. In Figure 5.2c and Figure 5.2d

we plot information about the coefficients in our expansion of the asymptotic representation

of the local velocity field. The Domb-Sykes plot [229, 230] in Figure 5.2d shows that we

expect a mean radius of convergence for the series of approximately ε = 0.94, which is

consistent with the assumptions of our approximation. Altogether, we find that the LIA

demands the lowest order term dominates the representation and requires the scale separation,

ε� εδ � δ = L/|r| In contrast, our generalized local induction equation permits the study

of flows where the scale separation is much less restrictive. Specifically, it requires that the

vortex arc has a small central angle, θ, and a radius of curvature bounded by vortex core size,

εδ<π, (5.19)

ε<1. (5.20)

For a barotropic inviscid fluid, Kelvin’s circulation theorem tells us that a vortex line

flows as if frozen into the ambient fluid flow. Thus, the contortions it undergoes result from

the flow which it induces. Furthermore, if the fluid is incompressible and of infinite extent,

then its autonomous dynamics are completely determined by the Biot-Savart integral, which

provides a representation of the ambient flow. Since the vortex line inherits the velocity of

the fluid background, we have the following evolution law for the vortex,

∂γ

∂t
=

Γa0

4π
α(κ)

∂γ

∂s
× ∂2γ

∂s2
, (5.21)

where α = α∗/a0, given by Eq. (5.16), is even in the curvature variable and γs×γss = B. The

local induction approximation is then the linear approximation to α, in κ, where a0 = ln(δ) and

the starting point of Hasimoto’s mapping. In the next section, we apply this transformation

to a generalization of Eq. (5.21) and show that higher order curvature effects break the fragile

integrability and allow the vortex medium to support a wider array of nonlinear waves.
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correction

(a) (b)

(d)(c)

Figure 5.2: Absolute errors and convergence analysis. (a) The average absolute error, EAbs,
of LIA and the first, second, and third corrections given by expanding the asymptotic
representation of the Biot-Savart integral in powers of curvature. The error is calculated
against numerical quadrature converged to six digits of accuracy. While the accuracy improves
with higher order corrections, what is noteworthy is how quickly LIA loses its accuracy for
large curvature. (b) The error as a function of δ shows that LIA is a generally inaccurate
approximation. (c) The first four non-trivial coefficients in our expansion correcting LIA as
a function of δ. (d) A Domb-Sykes plot where the data are given by a uniform sampling
of the coefficients over a + 0.01 < δ < 2 where a is the Bustamante-Nazarenko cutoff. We
see that a2/a1 varies the most over this sampling. The data for each δ in the sampling are
fitted to linear models with an average square residual of 0.98. The red curve depicts a line
whose vertical intercept and slope are given by averaging over the system of linear fits. The
resulting vertical intercept predicts a radius of convergence in ε of roughly 0.94.
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5.4 Hasimoto’s Transformation of Binormal Flows

A space curve is defined by how the local tangent, normal and binormal frame, (T,N,B),

changes between points, see Figure 5.1. The Frenet-Serret equations, in the natural arclength

parameterization, is a system of first-order skew-symmetric ordinary differential equations

that recovers the local frame based on how a curve fails to be straight (curvature, κ) and

planar (torsion, τ) along its arclength. [231] How Eq. (5.21) affects the global geometry is

described by the Hasimoto transformation. [8] The Hasimoto transform is a coordinate change

which decouples the evolution of the extrinsic shape defined by the parametric curve from its

intrinsic curvature and torsion, with the Frenet-Serret equations acting as the intermediary.

The modern perspective is that the Hasimoto transform is a scalar manifestation of the

Madelung transformation, which is the inversion of volume preserving mappings from the Euler

equation phase space to the projective space of non-vanishing complex functions. [3] In light

of Bustamante and Nazarenko’s work, the geometric analysis provided by Hasimoto transform

applied to BSI flows is formally a study of isolated vortex lines in Bose-Einstein condensates.

This analysis also describes Eulerian fluids whose phase space is made topologically distinct

from the isotropic state with trivial vorticity through the presence of vortex lines.

The Euler evolution of vortex lines is known to be a Hamiltonian flow of the arclength

metric. Shortly after Hasimoto’s discovery, it was recognized that the velocity fields defined by

LIA were Killing, or arclength preserving, on R3 and that Hasimoto transform connects them

to the sequence of commuting Hamiltonian flows of the integrable cubic focusing nonlinear

Schrödinger equation. [232, 233] The Hasimoto evolution complicates itself substantially when

perturbing off the Killing structure, leading to a quasilinear integro-differential equation

of Schrödinger type, it also produces other mixtures of Schrödinger and Korteweg-de Vries

hierarchies. [190, 191, 234] Generalizing LIA in powers of curvature maintains the Killing

structure and, consequently, the Hamiltonian of the Euler equations. The cost, however,

is that it introduces a non-Hamiltonian evolution to the geometric variables of curvature

and torsion. In other words, nonlinear curvature dependent binormal flow is an arclength
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preserving non-Hamiltonian flow on the vortex geometry that gives rise to the dispersive

bending generation along the vortex.

If the Madelung transformation [9] describes a mean-field Gross-Pitaevskii Bose-Einstein

condensate as a perfect and incompressible fluid in which rotation must manifest through

circulation about a topological defect known as a vortex line, then the Biot-Savart integral

provides its evolution, in the absence of boundary effects. We consider the Hasimoto

transformation on a perturbation of our Biot-Savart derived binormal flow, Eq. (5.21),

∂γ

∂t
= Aα(κ)κB + µν (5.22)

where A = Γa0/4π, ν ∈ R3 and µ� 1. Perturbations of this form were first considered by

Klein and Majda and will be a useful contrast to our result. [191] Specifically, we see that

arclength metric preserving modifications of LIA generally result in gain/loss mechanisms.

First, however, we express two key quantities in Hasimoto’s work that track the frame changes

from point to point and through time,

ℵ(s, t) = (N(s, t) + iB(s, t))eiφ(s,t), (5.23)

ψ(s, t) = κ(s, t) eiφ(s,t), (5.24)

which are written in in terms of the dimensionless phase, φ(s, t) =
∫ s

0
ds′τ(s′, t). The

Hasimoto frame, (T,ℵ, ℵ̄), constitutes an orthogonal coordinate system for R × C2 with

respect to the Hermitian inner-product. Our derivation is greatly simplified by using the

following modifications of the standard commutator and anti-commutator operators, [A,B] =

AB̄ − ĀB and {A,B} = AB̄ +BĀ, which takes into account the way complex conjugation,

ℵ̄ = (N− iB)e−iφ, appears in our adaptation of Hasimoto’s transformation. Additionally,

we will use subscript notation to denote partial differentiation, ∂sψ = ψs. The first notable

change to Hasimoto’s process occurs when trying to express the derivative of Eq. (5.22) in

terms of ℵ. In Sec. (5.5) we introduce the Frenet-Serret equations, Eq. (5.39). For now, we

note that Bs = −τN which, in conjunction with Eq. (5.22) and the relation (γt)s = Tt, gives
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Tt =
iA

2
[η,ℵ] + µνs, η =

∂

∂s
(αψ) = (αψ)s , (5.25)

where we have assumed continuity of the second order mixed space-time partial derivatives

so that ∂st = ∂ts. This alteration affects a critical step in the transformation where two

definitions of the mixed partial derivative of ℵ are equated. Specifically, we have the two

equations

ℵst = −ψtT− ψTt, (5.26)

ℵts = iRsℵ− i (Rψ + Aηs) T− iAη

2
{ψ,ℵ} , (5.27)

where the first expression derives from the definition of the frame coupled to Eq. (5.25) and

the second from the orthogonal decomposition of ℵt. Projecting out the coefficients using

the local tangent gives,

iψt + A(αψ)ss +Rψ + iψµ(ν ·T) = 0, (5.28)

while using the Hasimoto normal vector gives

Rs =
A

2
{ψ, η}+

iµ

2
[ψ,ℵ] · νs. (5.29)

Letting α = 1 implies that η = ψs and if µ = 0, we have Hasimoto’s original transformation

where the first-term becomes the exact derivative of A|ψ|2/2. However, after integrating by

parts to find R we have that, up to constants of integration, Eq. (5.28) is generally given

bythe integro-differential equation,

iψt + A(αψ)ss +
Aψ

2

∫ s

0

αs′|ψ|2ds′ + µ

{
i[(ℵ · νs)s − ψνs ·T] + ψ

∫ s

0

Im[ψℵ̄] · νs′ ds′
}

= 0.

(5.30)

As this evolution contains nonlinearities in the highest order derivative, it is fully nonlinear.

Additionally, we say that it is of Schrödinger type since α → 1 and µ → 0 produces the
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cubic focusing nonlinear Schrödinger equation consistent with LIA. The terms associated

with µ were found to model perturbations whose wavelength was small with respect to the

radius of curvature, but long compared to core thickness. Letting α = 1 and ν = µB reduces

Eq. (5.30) to a complex Ginzburg-Landau type equation with a torsion driven gain/loss

term and shows that even the simplest arclength preserving alteration to LIA is capable of

breaking its fragile integrability. Focusing now on ambient flows completely characterized by

Eq. (5.21), we let µ = 0 and expand α in powers of curvature to calculate the first integral in

Eq. (5.30) explicitly. Doing so, under an appropriate time rescaling, reduces Eq. (5.30) to the

fully nonlinear differential equation,

iψt + ψss +
1

2
|ψ|2ψ + (α̃ψ)ss + f(|ψ|)|ψ|2ψ = 0, (5.31)

such that α = 1 + α̃ and

f(|ψ|) =
∞∑
n=1

a2n
2n+ 1

2n+ 2
|ψ|2n, (5.32)

where an are the coefficients in the series Eq. (5.3) defined by the Taylor expansion of

Eq. (5.16). Thus, when α̃ = 0 we have the LIA, which is an integrable theory on the

geometric variables from the Frenet frame. As we will see, any amount of curvature correction

to the integrable theory yields a non-Hamiltonian evolution.

Our even expansions of α correct the cubic focusing nonlinear Schrödinger equation of

LIA, to fourth order in κ, in the following way

iψt + ψss +
1

2
|ψ|2ψ + a2

([
|ψ|2ψ

]
ss

+
3

4
|ψ|4ψ

)
+ a4

([
|ψ|4ψ

]
ss

+
5

6
|ψ|6ψ

)
= 0. (5.33)

While the nonlinearities due to powers of |ψ| can adapt to the typical Hamiltonian structure

of the integrable theory, the fully nonlinear derivative terms cannot. Specifically, the question

of whether the Hermitian inner-product on the Hilbert space of complex-valued square

integrable functions on the real line induces a symplectic form such that one can identify
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a self-adjoint Hamiltonian whose variational derivative defines a Hamiltonian vector field

consistent with Eq. (5.33) has a negative answer. [235] Consequently, Noether’s theorem

is inapplicable and known symmetries need not generate conserved quantities. [236] Our

inability to formulate Eq. (5.33) as an infinite-dimensional Hamiltonian flow is rooted to the

fully nonlinear derivative terms . Considering a smooth compactly supported perturbation,

εξ, of the fully nonlinear derivative term, (|ψ|2ψ)ss we find the linearization,

(
|ψ + εξ|2(ψ + εξ)

)
ss

=
(
|ψ|2ψ

)
ss

+ ε
(
2|ψ|2ξ + ξ̄ψ2

)
ss

+O(ε2). (5.34)

Assuming a smooth compactly supported perturbation and test function u the functional

given by the induced symplectic form yields [237]

∫
ū
[
2|ψ|2ξ + ξ̄ψ2

]
ss
ds =

∫
ξ̄
[
2|ψ|2uss + ūssψ

2
]
ds 6=

∫
ξ̄
[
2|ψ|2u+ ūψ2

]
ss
ds, (5.35)

implying that a formal self-adjointness condition cannot be satisfied. [192] It can be verified

that the linear derivative term and higher order power terms obey a Hamiltonian structure.

Thus, our break from Hamiltonian structure is due to the full nonlinearity. Though our

existing space-time symmetries do not yield the “total energy” and “total momentum”

conservation typically associated with Schrödinger evolutions, this does not preclude the

existence of conserved quantities nor additional non-obvious symmetries. However, application

of the SYM symmetry software package [194] to the a2 correction of Eq. (5.33) found no

additional continuous symmetries. Also, a Mathematica package that symbolically calculates

conservation laws found no low-order conserved densities. [195]

While this result speaks to the wholesale loss of Hamiltonian structure that appears as we

move away from LIA, it tells us nothing about the wave motions of the vortex line. A useful

perspective is given by decomposing the system into its real and imaginary components via

Madelung’s transformation to get,
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∂

∂t

[
ρ
τ

]
+

∂

∂s

[
2αρτ

(α
√
ρ)ss /

√
ρ+ f(ρ)ρ+ ρ/2− ατ 2

]
=

[
−2αsρτ

0

]
, (5.36)

where ρ = κ2 = |ψ|2, which we call the bending density. If α = 1, then a2 = 0 and we

recover the standard hydrodynamic reformulation of cubic focusing NLS, which asserts that

ρ is conserved and τ obeys an Euler equation. Furthermore, curves of constant torsion

define a Jacobian matrix whose spectrum reveals a single traveling wave solution which is

the Hasimoto soliton or its generalization to elliptic representations of soliton trains. [238]

The Jabcobian matrix in the general case, or for systems with non-constant torsion, are

too complicated to analyze directly and we cannot make an assertion of hyperbolicity for

the system. However, this reformulation does highlight the emergence of a source term in

the bending density for non-constant α. For compactly supported functions or those with

suitable decay, we can integrate the first equation to find that for a segment of vortex line,

parameterized by the arclength s0 < s < s1, the total bending obeys

d

dt

∫ s1

s0

κ2ds = −2

∫ s1

s0

αsρτds = −2

∫ s1

s0

(a2 + 2a4ρ+ 3a6ρ
2 + · · · )ρsρτds. (5.37)

Given that this non-conservation of the total norm can be traced back to the fully nonlinear

term in Eq. (5.33), the previous loss of Hamiltonian structure is, perhaps, not surprising. It

is interesting to note that if the coefficients an are non-negative, then higher order corrections

enter this formula additively and reinforce the gain/loss mechanism supplied by the first

correction to LIA. Hasimoto originally considered a class of solitons defined by traveling

curvature waves with constant torsion given by, κ = 2τsech(τ(s− ct)) with τ = c/2, which

we refer to Hasimoto vortex solitons. Setting τ = 1, we calculate the parenthesis of the last

integrand, αρ, in Eq. (5.37) and find it to be non-negative, see Figure 5.3a. This implies that,

at least initially, the higher order contributions reinforce the gain/loss emergent in the first

correction to LIA. Additionally, we plot the integrand, αsρτ , in Fig. (Figure 5.3a) and see that

the vortex line should experience curvature gain ahead and loss behind the soliton peak which
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is propagating in the positive s direction. If we consider the system as a scalar conservation

equation on ρ, for fixed τ , then one can state the approximate characteristic speed as

c = [2αρτ ]ρ = 2αρρτ + 2ατ . [239] For α = 1, we have the LIA and a predicted speed of c = 2

for the Hasimoto vortex soliton. Using our expansion for α provides the new approximate

speed, c = 2τ(1 + 2a2ρ+ 3a4ρ
2 + 4a6ρ

3 + . . . ). As with Eq. (5.37), we see an additive influence

of higher order corrections. In Sec. (5.5) we consider simulations of Hasimoto’s vortex soliton

under a first correction to LIA. We find that the curvature peak, κmax, has a strong linear

relationship with the first correction, κmax(a2) = 2.02810− 4.42020a2, with a square residual

of 0.9929. Using this and a first correction of c we find that the approximation quickly

loses its accuracy with greater than a 3% underestimation of the simulated peak speed for

a 1% correction strength. The implication is that the dynamics of gain/loss and torsion

non-trivially affect the speed of the peak. Additionally, we see that if κ ∝ sech(s), then

the approximate speed has a Gaussian-like profile which defines a non-convex/concave flux.

That is, if the speed of a point on the traveling curvature wave is dependent on the value of

curvature at that point, then the associated flux given by the first derivative of the speed

with respect to ρ shows that the speeds of points on the curvature distribution are neither

strictly increasing nor decreasing functions of curvature. If, for example, the waves were

strictly increasing with respect to curvature, then we would expect the soliton profile to

undergo a wave steepening dynamic but this is not our case. The simplest analog here is the

Buckley-Leverett equation [240] which predicts a shock front followed by a rarefaction wave.

In our simulations, one can see a wake of helicity behind the propagating curvature profile.

This structure is supported by the gain/loss mechanism which acts to evolve the soliton

curvature profile to a step. However, this shock formation is tempered by other dynamics. In

particular, there is a gross deformation of the curvature profile due to the nonlinear dispersion

of helical/Fourier modes.

A single mode helix, ψ = Aei(ks−ωt), which is a Fourier mode of the soliton state, initially

obeys the nonlinear dispersion relation [197] associated with Eq. (5.33),
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ω(k,A, λ) = k2(1 + a2A
2 + a4A

4 + a6A
6)− A2

2
− 3

4
a2A

4 − 5

6
a4A

6 − 7

8
a6A

8, (5.38)

where again we see the corrections alter the LIA dispersion relation additively. The Hasimoto

vortex soliton given by ψ = 2sech(s)eis contains 95% of its total Fourier energy contained

between wave numbers k ∈ [−2, 2]. In Figure 5.3b we plot the group velocity, where wave

amplitude, A, is related to wavenumber k via Fourier transform, for the second correction

to LIA. We find that these corrective terms seek to enhance the propagation speed of long

wavelength modes, which will cause the initial curvature profile to distort. Thus, together with

Eq. (5.37), the a4 and a6 corrections reinforce the gain/loss and dispersion mechanisms seen

in the a2 correction, a pattern which we checked holds for the first 10 nontrivial corrections.

As we reported in a previous work [61] for a perturbative correction, the original peak can

maintain localization even under the enhanced dispersion. Thus, when the kink is discernible,

it is reasonable to consider it a dissipative soliton. [196]

5.5 Simulating Binormal Vortex Motion

Together, continuum mechanics, vector analysis,and Helmholtz’s and Kelvin’s theorems

from fluid mechanics assert that the motion of a vortex line is prescribed by the flow of the

ambient field in which it is embedded. Past the lowest order approximation, the dynamics are

sufficiently complicated to necessitates the use of numerical tools. The previous sections imply

two distinct simulation procedures. The first is clear cut and relies on the approximation of

solutions to initial-boundary value problems evolved according to an approximation to the

vector evolution, Eq. (5.2). With the existence of efficient routines to evaluate incomplete

elliptic integrals [241] it appears possible to simulate the binormal evolution outright without

approximation, however, such an investigation has never been attempted. Instead people

work through the full BSI over an interpolated mesh or approximations via LIA at mesh

points. We call simulations stemming from Eq. (5.5), vector simulations and consider first

and second corrections to LIA given by Eq. (5.21).

97



(a) (b)

Figure 5.3: Non-Hamiltonian gain/loss and dispersion of helical modes. Corrections to
LIA increase/decrease line bending to right/left of a hyperbolic secant curvature profile
with higher order corrections reinforcing this effect additively. Also, long wavelength modes
propagate faster under correction causing a deformation of the initial curvature profile. (a)
The integrand of Eq. (5.37), up through the first ten coefficients, for Hasimoto’s vortex soliton
(black.) The thinner and lighter black curves indicate how the integrand changes as we
increase δ. As we accumulate more vorticity with the Biot-Savart integral, the amplitude
of the integrand increases while not distorting the basic shape. In addition, we plot the
contribution due to the αρρ expansion of the integrand and see that the quantity is strictly
positive. (b) The dispersion relation for helical modes of the initial state for the second
correction. We see that the low wavenumber modes experience an enhanced dispersion, which
grows as δ increases.

On the other hand, the Hasimoto transform works by separating the parameterization of

the vortex line from the evolution of its intrinsic geometric description given by the curvature

and torsion variables. We will call a simulation of the vortex through the geometric variables

a Hasimoto simulation. Naturally, this procedure introduces a post-processing step, which

reconstructs the curve through the Frenet-Serret equations. [242] Specifically, we must find

the tangent vector by solving the following non-autonomous linear system of equations

d

ds

T
N
B

 =

 0 κ 0
−κ 0 τ
0 −τ 0

T
N
B.

 (5.39)

From the tangent vector the curve’s parameterization is found. The coefficient matrix in

Eq. (5.39) is skew-symmetric and thus an infinitesimal generator of the rotations mapping
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the Frenet frame from one point on the vortex line to the next. More importantly, these

group elements of SO(3) have spinor representations in the general linear group of two-by-two

complex valued matrices under the isometric mapping, −2xk = Tr(Xσk), k = 1, 2, 3, where

X = i(x1σz − x2σy − x3σx) are defined through the standard Pauli spin matrices. In this

representation, the Frenet-Serret equations are implicitly defined by the lower dimensional

form,

dU

ds
= F (s)U, 2F (s) =

[
0 iψ/2

iψ̄/2 0

]
, (5.40)

where ψ = κExp
[∫ s

0
ds′τ

]
and U ∈ C2×2 such that Ū tU = I, which defines the spinor

tangent vector E1 = iU−1σzU . [222, 243] Interestingly, the spinor representation yields a

Frenet-Serret coefficient matrix where the curvature and torsion are cast into the form of

Hasimoto’s wave function. Thus, the second process is to simulate the evolution of vortex line

configurations through Eq. (5.33) and then recover the curve geometry by the application

of quadrature to the traced out tangent vector created by the numerical approximation of

Eq. (5.40). It is also possible to numerically differentiate rectified phase data to recover the

torsion, which can then be used in Eq. (5.39).

We consider the a2 correction to the evolution of a Hasimoto vortex soliton given by

the initial state ψ(s, 0) = 2sech(s)eis. To gain intuition over how a perturbation affects

the solitonic evolution, we consider three cases, a2 ∈ {0.11, 0.19, 0.23}. When a2 = 0.11 a

small number of low wavenumber curvature modes, 13.40% of the total Fourier energy, begin

to propagate faster than those modes responsible for 95% of the total initial bending. At

a2 = 0.19, 38.55% of the total Fourier energy is contained in the low wavenumber modes

propagating faster than the remaining modes. The final value is chosen so that 47.73% of the

initial bending is propagating faster than the remaining modes. Density plots of these three

cases are given in Figure 5.4. In each case, we see an asymmetric evolution consistent with the

gain/loss mechanism described in Sec. 5.4. We also see that dispersion of low wavenumber

modes smears the distribution out. Additionally, the non-Hamiltonian gain mechanism keeps
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the peak from being completely eroded by dispersion. For smaller corrections, there is a

breathing feature, which causes pockets of small curvature to form tightening the localization

of the curvature peak. This feature, which was confirmed with an analysis of the power

spectrum, is short-lived under strong dispersion. In Figure 5.5 we depict vortex lines produced

from this correction to LIA at t = 10. In Figure 5.5a through Figure 5.5c we depict vortex

lines corresponding to the density plots in Figure 5.4. The remaining two are the result of

higher order correction and we see that the Hasimoto vortex soliton decomposes itself into

helical excitations of the vortex line. In light of the way corrections appear additively in

speed, bending and dispersion calculations, it is reasonable that the evolution to a Kelvin

wave cascade is more profound at higher order.

Figure 5.4: Density plots of Hasimoto vortex soliton under first correction. The non-
Hamiltonian binormal evolution of the bright soliton state maintains the kink feature despite
dispersive deformations to the curvature distribution. (a) Evolution of the initial soliton
state for a2 = 0.11 produces a tightly confined peak with limited dispersion to the right. A
slight breathing fluctuation is present. (b) The first correction is now a2 = 0.19, and we
see increased dispersion and a less frequent but more pronounced breathing dynamic. (c)
Lastly, we have a2 = 0.23 and see that under strong dispersion the breathing abates but a
propagating peak, supported by the non-Hamiltonian gain mechanism, remains.

Prior to Hayder’s work of 2014 [187], a comparison between Hasimoto, vector, and

mean-field simulations had not been conducted. His work showed a qualitative agreement

between the methods, except at points of reconnection which the mean-field model handled

natively. In Figure 5.6) we depict the a2 correction to LIA, at various strengths, applied to
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Figure 5.5: Vortex configurations. Subplots (a)-(c) correspond to the evolutions in Figure 5.4
at t = 10. We see that the increased dispersion corresponds to Kelvin wave generation, the
largest in amplitude of which is an artifact of the original kink. (d) A Hasimoto soliton under
the second correction where the coefficients, a2 = 0.352625 and a4 = 0.213401, are chosen so
that δ → a, which represents the smallest length of regularized vortex permitted under the
Bustamante-Nazarenko cutoff. The quick decomposition of the soliton into a Kelvin wave
cascade pronounced. (e) Hasimoto soliton evolved with a2 = 0.402559 and a4 = 0.249431
which corresponds to δ = 1. We see a minimal change to the dynamics even though δ ≈ 3a
indicating the corrections to LIA imply a rapid cascade dynamic.

the Akhmediev breather considered in [187]. We see that the correction not only increases the

frequency of breathing, but the dispersion retards the relaxation to a non-peaked state. That

the peaks are still maintained through several cycles is due to the non-Hamiltonian gain/loss

mechanism. The appearance of small-scale structures, caused by wave interference across the

periodic boundary, resulted in inefficient simulations for larger corrections. Using the spinor

representation of the Frenet-Serret equations we were able to reconstruct the vortex line and

found results consistent with the Hasimoto vortex solitons applied to each loop formed by the

twisting and bending of the breathing dynamic. Specifically, the traveling curvature events,

emerging from one period of the breathing, jettison helical excitations cascading Kelvin waves

away from the regions of highly localized curvature making it impossible to achieve a full

exhalation, see Figure 5.6b.

Lastly, we conducted simulations on vortex rings perturbed by Kelvin waves and vortex

rings with initially localized out of plane perturbation to a vortex ring, similar to those seen
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Figure 5.6: Evolution of space-time periodic Akhmediev breather. (a) We plot the LIA
evolution of the breather first considered in [187]. (b) The first correction to LIA, where
a2 = 0.01, increases the frequency of breathing. (c) Increasing the strength of correction to
a2 = 0.05 sees two major changes. First, the frequency of breathing continues to increase
with correction strength. Second, the dispersion tends to erode the relatively flat period
occurring during one period of breathing.

after reconnection in classical hydrodynamics. Under LIA, perturbed rings oscillated about

the plane normal to their direction of motion as the perturbation releases its bending into the

ring in the form of smaller amplitude traveling helical waves. Initial testing indicates that

the perturbation creates two curvature disturbances that are similar to a Hasimoto soliton

traveling around the ring. However, these features were not true soltions and lost their shape

as they traveled, even under LIA. A first correction to LIA increased the speed of propagation

of the ring and helical decomposition of any kinks formed on the ring, see Figure 5.7. On the

other hand, the Kelvin rings which were tested appeared stable under LIA and corrected

LIA. Specifically, while the speed of rotation and propagation was enhanced, the shape was

relatively un-deformed when compared against LIA. While further testing is necessary, the

possible decomposition of perturbations into Kelvin rings may provide stability to closed

vortex structures propagating through mean-field simulated BEC.
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Figure 5.7: Perturbed Rings. (a) A non-planar perturbation on a vortex ring, whose height
is one-third of the ring radius, and its curvature profile. (b) Curvature profiles for the three
evolutions, LIA where a2 = 0, a2 = 0.01, and a2 = 0.05 at t = 0.0005 shows that the
perturbation jettisons curved regions away from the initial deformation. (c) Plots of the
initial vortex state under LIA and corrections. We see that the corrections greatly increases
the speed of the dynamic. For LIA we see the emergence of two curvature peaks propagating
away from the initial peak. The corrections produce a similar state in shorter time. Fast
moving waves vibrate the ring and cause noise in the curvature distributions. That said,
in the vortex shows the existence of two counter propagating kink formations. All of these
dynamics seek to distribute the bending along the vortex in a way similar to that which is
seen in interacting bubble rings in classical hydrodynamic settings.

5.6 Conclusions

In this paper we presented an integrability breaking modification to the local induction

approximation that maintains the arclength preserving Hamiltonian structure of the Eulerian

flow induced by a vortex line while enhancing dispersion and introducing a non-Hamiltonian

gain/loss mechanism affecting the geometric properties of the vortex medium. This correction

allows localized curvature distributions to decompose into Kelvin wave packets. In fact, we

derive a hierarchy of non-Hamiltonian vortex cascade evolutions, which limit to an integro-

differential equation resulting from the Hasimoto transformation of arbitrary curvature

dependent binormal flows defined by the Biot-Savart representation of the velocity field
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induced by a vortex line. While we are unable to prove positivity in the coefficient structure

of our expansion, which is an open and hard mathematical problem, the first ten non-trivial

coefficients do not contradict this conjecture and a Domb-Sykes analysis predicts a radius of

curvature for our expansion which is consistent with the assumptions of our derivation. If the

coefficients are positive to all orders, then the higher order terms in the asymptotic expansion

of the local field additively reinforce the emergent non-Hamiltonian dynamics given by the

first correction to the lowest order integrable theory. In other words, all curvature driven

non-stretching Eulerian evolutions of vortex lines seek to disperse locally bent regions by the

generation of helical waves.

The coefficient formulae depend on the characteristic length scales defined by arclength,

vortex core size and local curvature and are ready for integration into established vortex

filament methods. [200] These methods are used to simulate quantum fluids with a dense

arrangement of quantized vortices and gain efficiency by approximation of the Biot-Savart

integral with locally induced flows. They result in qualitatively similar dynamics for systems

where vortex-vortex and self-interaction is weak. [187] When these dynamics dominate the

flow, mean-field models that take into account additional physics of the vortex core must

be included. That said, our analysis is appropriate for flows induced by lengths of vorticity

nearing these scales and may represent as far a regulated Biot-Savart line integral can take

the model into a core structure. With the emergence of experiments at both larger4 and small

scales, focused on tangle behavior and primitive vortex interactions [48], the importance of

efficient multi-scale models for quantum turbulence is clear. [200]

Preliminary analysis and simulations show that local but non-integrable induction models

permit the excitation of Kelvin waves and indicate that a vortex line may attempt to find

stability by storing bending in helical coils arrived at by a curvature cascade. It is expected

that this energy transfer process couples to the fluid so that the bending can be relaxed

through long wavelength acoustic fluctuations of the mass density. Incorporation of this

4Mark Raizen, UT Austin, private communication (2017)
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effect into the geometric picture supports a connection between geometric hydrodynamics

and the analysis of anomalous dissipation conjectured by Onsager. [67, 244, 245] The current

understanding is that classical Navier-Stokes solutions exhibiting anomalous kinetic energy

dissipation in the inviscid limit correspond to weak Euler solutions, the singular fields defined

by vortex lines being one such example. [246] Furthermore, this mechanism is expected to

be non-existent above a certain degree of solution regularity. The Biot-Savart perspective

may be compatible with the regularity analysis associated with Onsager’s conjecture and

provide a geometric connection between anomalous dissipation and the relaxation of ultracold

quantum turbulence observable through the wave motion of the vortical substructure.

A less theoretical application can be found in the recent high-resolution imaging of vortex

ring breakdown where a self-similar decomposition of toroidal rings into vortex filaments

occurs and is very much in the spirit of the predictions of Richardson and da Vinci. High-speed

and high-resolution imagery [247] shows that interactions leading to tent formations [248, 249]

and the flattening of tubes leads to filament generation at fine scales. In other words, the

smoke we see as classical rings collide hides a discernible vortical skeleton comprised of bent

filaments. At the finest scales, vortex lines should be the most appropriate model for the

dynamics of the bent classical filaments and offer an opportunity to provide experimental

corroboration of line models. In a similar thread, recent experiments seek to induce vortex

line interactions in Bose-Einstein condensates whose vortical structure is not dense. [48] This

offers the clearest picture of vortex line dynamics, post tent formation and will certainly be

an important apparatus in understanding primitive vortex dynamics. As our understanding

of Kelvin wave generation on vortex lines and filaments is still in its early stages, such

theoretical/experimental crossovers will be important for the continued development of future

theories.
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CHAPTER 6

CONCLUSIONS AND OUTLOOK

In this thesis, we develop the geometric quantum hydrodynamic theory of vortex line

motion in a Bose-Einstein condensate. In particular, we model the dynamics of an isolated

vortex line capable of dispersing localized regions of curvature across the vortex in the form

of helical waves. This vortex line is an appropriate model for vortices in superfluid states

of matter where helical Kelvin waves are expected to be the generator of long wavelength

phonon fluctuations of the density field. For an ultracold turbulent superfluid state, the

vorticity forms a tangle of lines whose interactions eventually abate. Kelvin waves coupling

the vortex structure to the density field is the proposed agent of energy decay in the quantum

tangle. Before this work, the only analytic model for the wave motion on a vortex line was

an integrable model that restricted the behavior of helical modes through a rich structure

of conservation laws. In this thesis, we have derived a model that supports the transfer of

energy between helical modes. Additionally, we connect this geometric analysis into the

theoretical context of continuum fluid mechanics. In this way, the desire of a vortex to relax

curvature abnormalities into helical structures is seen as a clear and direct realization of

Onsager’s conjectured dissipation of kinetic energy in the absence of viscosity.

In a quantum tangle, regions of localized curvature manifest through vortex-vortex

interactions leading to reconnection which leaves the vortex line with a tented formation

and a cusp in the local curvature function. Our new model predicts that perturbations of

the simplest flows of a vortex line introduce a non-Hamiltonian gain mechanism working

in concert with dispersion to transfer curvature along the line. This mechanism generates

helical wavefronts traveling away from the curvature abnormality on the vortex line. Our

non-Hamiltonian model derives from a quadratic correction, in the curvature variable, to

the well known local induction approximation. This correction can be directly applied to
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vortex filament methods. Currently, one way to understand the energy spectrum associated

with decay in a quantum tangle is through simulations based on simplified local flows of

vortex lines. Another way is to study the statistical properties of Kelvin waves generated

by ensembles of random curvature abnormalities on straight vortex lines. The form of the

universal power law for a Kelvin wave cascade, similar to the Kolmogorov 5/3 law for the

inertial range of a Richardson’s cascade, is a topic of recent debate. Our new model is

capable of Kelvin wave generation sourced by curvature abnormalities resulting from vortex

reconnection and may shed some light on these issues.

In addition to our discovery of a Kelvin wave generation mechanism, we provide a sketch

of the connection between vortex line models and continuum fluid mechanics. Specifically, we

outline a sequence of results that connects the Navier-Stokes equations to the three-dimensional

Gross-Pitaevskii equation, modeling a fully condensed Bose gas, and the Biot-Savart integral

representing the velocity induced by a vortex line. To do this, we leverage two recent results.

The first stems from mathematical analysts who continue the study of Onsager’s conjectured

dissipation anomaly. Briefly, in the limit of large Reynolds number, solutions to the Navier-

Stokes equation limit to distributional solutions of Euler’s equation so that velocity gradients

may diverge allowing for dissipation of kinetic energy without the assistance of viscosity.

We then derive an inverse Madelung transformation of the Euler equation, resulting in the

Gross-Pitaevskii equation for fluids whose mass density spatial variation can be controlled

by the corresponding Hamilton-Jacobi equation on the velocity potential. When the body

forces and pressure are chosen to be consistent with mean-field averaging and barotropic

quantum pressure, then this Gross-Pitaevskii equation corresponds to the evolution of a

dilute Bose-Einstein condensate. Lastly, a recent result shows that a vortex line can be

mapped onto the Hamiltonian structure of the Gross-Pitaevskii equation resulting in the

Biot-Savart integral. The key result of this connection is that the Biot-Savart integral from

vector analysis provides the appropriate representation for a vortex line manifesting from a

singular velocity field. The velocity field is strongly localized to a core region and defined

107



single-term approximations to the potential energies associated with the quantum pressure

and the effective mean-field potential. Consequently, the generation of Kelvin waves should

be thought of as a connection between Onsager’s dissipative anomaly and phonon emission

in Bose-Einstein condensates.

In the next section, we provide a chapter by chapter overview of the details that lead to

this conclusion. The final section is devoted to four possible applications of the techniques in

geometric quantum hydrodynamics outlined in this thesis.

6.1 Conclusions

Chapter 1 began with a simple overview of laminar versus turbulent fluid flow and its

relationship to Reynolds number through the classic parachute problem modeled as an

ordinary differential equation. The mass-spring problem is then introduced in a Lagrangian

context leading to Feynman’s derivation of Schrödinger’s equation. Bose-Einstein conden-

sation is covered and related back to hydrodynamic phenomenon. A direct analogy with

electromagnetism is leveraged to conceptualize the geometric principles central to the study

of vorticity in this thesis. Before ending with a discussion of the contents of this thesis, we

review experimental Bose-Einstein condensates exhibiting vortex motion and conclude with a

description of a turbulent quantum tangle.

Chapter 2 provided a basis for geometric quantum hydrodynamics, which is the study of the

geometric evolution of the vortex line structures in a quantum fluid. In this chapter, we derived

the Navier-Stokes equations. After this we reviewed modern results in turbulence research

focused on Onsager’s 1949 work on the dissipative anomaly. Currently, the mathematical

analysis indicates that solutions to the Navier-Stokes equations limit to distributional solutions

to the Euler equations in the large Reynolds number limit. A scaling argument is then used

to derive what is essentially the inverse of Madelung’s transformation mapping the Euler

equations onto the Gross-Pitaevskii equation. Recent results [63] describing how the Gross-

Pitaevskii equation can be used to derive the Biot-Savart integral from a vortex solution are

outlined and discussed prior to our concluding statements. The remaining chapters described
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a derivation of the geometric evolution of isolated vortex lines consistent with an asymptotic

analysis of the Biot-Savart integral.

Chapter 3 reprints a paper published in the Journal of Mathematical Physics [60] presenting

a derivation of an exact representation of the velocity field induced by a plane circular arc of

vorticity in terms of the incomplete elliptic integrals. Additionally, we derived an asymptotic

formula for this velocity field for scalings where the core size is small relative to the radius of

curvature of the vortex at an arbitrary reference point. This result reduces to the standard

local induction approximation when truncated to lowest order, and manifests from the

logarithmic singularity present in the incomplete elliptic integral of the first kind. This local

representation of the velocity field associated with our Bose-Einstein condensate provides a

basis for the geometric analysis covered in the remaining chapters of the thesis body.

Chapter 4 reprints a manuscript under review in Physical Review Letters [61], which

outlined the key results associated with an asymptotic analysis of the Biot-Savart integral

and its subsequent transformation into a scalar evolution of the intrinsic geometric variables

of curvature and torsion on the vortex line. This chapter discussed the emergence of a non-

Hamiltonian gain/loss mechanism coupled to an enhanced dispersion relation from corrections

to the local induction approximation. Under correction, the evolution of the curvature and

torsion allows initially localized curvature distributions to decompose themselves into helical

waves along the vortex line. In addition to these analytic predictions, the results of simulations

are reported. The derivation of the analytic details and further results from simulations are

discussed in the following chapter.

Chapter 5 reprints a manuscript under review in Physical Review Fluids [62], which

reported on key details supporting the results of Chapter 4. Specifically, the elliptic forms of

Chapter 3 are reintroduced and an asymptotic analysis, aided by symbolic computational

tools, is conducted so that the local induction approximation can be corrected in powers

of curvature. This representation is then transformed into a scalar evolution of the vortex

geometry. The general result is a nonlinear integro-differential equation that reduces to a
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fully nonlinear non-Hamiltonian partial differential equation when corrections past local

induction are considered. Simulations of vortex solitons, breathing modes, and perturbed

vortex rings are considered and it is hypothesized that a vortex line seeks to reallocated

localized curvature disturbance into helical waves.

Chapter 6 concludes the thesis by summarizing its contents and reviewing several directions

for future work. First, we reintroduce the concept of anomalous dissipation and how the

results of this thesis may move what is currently a discussion of mathematical analysis to a

more differential geometric flavor. Additionally, we discuss a less technical question about

the nature of the helical wave motion. Then, we discuss how our results can be ported over

to preexisting vortex filament methods at minimal cost and avenues of understanding the

relationship between Kelvin waves and phonon excitations of the gas. Next, we discuss a

pathway to study relativistic superfluids that can be found in astrophysical settings such

as neutron stars. Lastly, we discuss a relation between the geometric evolution of vortex

filaments and the theory of thin elastic rods which appear in biological contexts.

6.2 Outlook

Geometric quantum hydrodynamics provides the basis for understanding the dynamics of

vortex lines and connects continuum hydrodynamics to the differential geometry of curves.

Consequently, it has a variety of future applications. We would like to briefly touch on four.

We have shown that in the limit of large Reynolds number, the Navier-Stokes equations

appear connected to a non-Hamiltonian Kelvin wave generation mechanism. If one were

to formalize the connections we have outlined here with the relevant function spaces, then

geometric principles could be included in the mathematical analysis of Onsager’s conjecture.

With this in place, quantum turbulence in a Bose-Einstein condensate could be seen as a

realization of Terence Tao’s belief in the existence of carefully prepared configurations of

Navier-Stokes equations leading to finite time blow up. [250–252] More importantly, this

scenario allows for a loss in regularity that would not require the introduction of additional

physics external to the models from continuum mechanics.

110



When viewing the helical decomposition of a region of localized curvature on an otherwise

straight vortex, e.g., Figure 5.5, we see a structure akin to a dispersive shock wave which is

a region of transition in a nonlinear wave that is bookended by a harmonic oscillation and

a solitary wave. The mathematical structure of the wave is described through Whitham’s

nonlinear averaging principle, which assumes the existence of an asymptotic representation

of a traveling wave whose amplitude, frequency and mean experience a slow modulation over

a region encompassing many oscillations. [253] Even though there is numerical evidence to

support the existence of dispersive shock waves in non-integrable systems, the theory can only

guarantee the evolution of discontinuous data into a shock when leveraging the heightened

structure found in integrable systems. Our structure is a helical wavefront followed by a

dissipative soliton predicted by a non-Hamiltonian evolution of the geometric properties of

the vortex line. As the Gross-Pitaevskii equation is known to admit dispersive shock waves,

there is a reason to think a vortex line manifestation is possible. However, to understand

whether the Kelvin wave decomposition of a region of localized curvature constitutes a

dispersive shock wave requires the application of Whitman’s theory to our geometric quantum

hydrodynamic formalism. Here there are two significant hurdles. The first is associated

with whether a curvature abnormality can be thought of as a Riemann step, which is the

starting point for discussions of shock waves in hyperbolic systems. The second is how

Whitman’s theory will adapt to the non-Hamiltonian terms latent in the generalized local

induction evolution. Connecting geometric quantum hydrodynamics to these concepts will

provide further characterization of the nonlinear wave motion of vortex lines in Bose-Einstein

condensates.

Simulations built on our non-Hamiltonian correction to the local induction approximation

allows for Kelvin wave motion and can be used to study the statistical properties of a

quantum tangle. Additionally, there is a second way to relate our model back to turbulence

theory. Specifically, one could consider statistical properties associated with the evolution

of a random configuration of curvature disturbances on an ensemble of vortex lines. Both
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analyses seek to understand the Kelvin wave cascade whose energy spectrum is a recently

debated topic. Additionally, it may be possible to use the connections of geometric quantum

hydrodynamics to explore the length scales where the Gross-Pitaevskii equation must be

employed to handle reconnection dynamics. Such knowledge would inform future multiscale

simulations involving vortex filament methods [200] with mean-field methods defined when

core structure dominates. Quantifying these terms through the hydrodynamic theory would

define regimes where the Gross-Pitaevskii equation must be employed to handle vortex core

dynamics that are central to reconnection processes.

Another avenue of understanding Kelvin wave cascades lies with the Bustamante and

Nazarenko connection. Specifically, quantization of the hydrodynamic Hamiltonian manifest-

ing from the Gross-Pitaevskii equations is a route to describing the phonon excitations of the

Bose-Einstein condensate. [254] The Biot-Savart integral is the result of deriving an effective

Hamiltonian for a vortex line consistent with the mean-field evolution. Thus, the first step

in connecting our geometric quantum hydrodynamic description to excitations of the Bose

gas is to determine a relationship between the Hamiltonian structure and our expansion

of the Biot-Savart integral in powers of curvature. This step, by itself, is compelling as a

relationship between vortex geometry and the potential terms given by quantum pressure

and mean-field averaging may be found and leveraged to understand vortex core structure.

After this, one could calculate the quantization of the effective Hamiltonian and attempt to

find a direct relationship between the Kelvin waves on the vortex line and phonon oscillations

of the condensate. Ultimately, such an extension of the theory would make clearer the role

geometric non-Hamiltonian gain/loss plays in the setting of the condensate properties.

Glitches in the periodic rotation in neutron stars are expected to occur when the quantized

vortices connecting the outer core to the crust undergo a catastrophic unpinning. This leads

to the generation of Kelvin waves exciting phonons supporting a rapid transfer of angular

momentum between the two layers. [255, 256] Since the neutron star is so dense, a Euclidean

space-time should not be assumed. The Biot-Savart integral has been applied to electro-
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magnetic problems in non-Euclidean settings [219], and it is reasonable to expect that local

flow approximations for fluid problems can be generalized as well. Understanding relaxation

dynamics of non-relativistic quantum tangles, if generalized to the relativistic settings, will

further our understanding of post-glitch recovery. Thus the relativistic generalization of the

approach used in this thesis is worth pursuing as a step toward understanding neutron star

dynamics.

Due to their geometric nature, the tools of Chapter 3 through 5 find application in a

variety of fields. In a 1999 work, Shi and Hearst derived a nonlinear Schrödinger equation

describing the static configurations of a Kirchhoff elastic rod that was then used to model the

supercoiling of DNA. [204] Such models also exist for actin filaments, cell flagella, polymeric

liquid crystals and, generally, stiff polymers where the nonlinear response is expected to be a

significant contribution to the dynamics. [202, 257–260] Our new non-Hamiltonian evolution

of bent vortex lines may prove useful in these settings as well.

113



REFERENCES CITED
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APPENDIX B

ATTRIBUTIONS FOR IMAGES IN MIND MAP

In Figure 1.3 we provide a mind map that was used at the defense of this dissertation. The

maps shows how the different topics and tools joins together to form geometric quantum

hydrodynamics. Additionally, the map also shows where these materials are discussed within

this thesis. Public domain graphics were used in the mind map and most request proper

attribution, which we outline here. The following list starts at the upper left and cites the

authors going from left to right and top to bottom.

• Silly Rabbit, Frenet Serret moving frame, Wikipedia, 2007

• Silly Rabbit, TNB frame momenta, Wikipedia, 2007

• NIST/JILA/CU-Boulder, A vortex structure emerges within a rotating Bose-Einstein

condensate, NIST, 1995

• NIST/JILA/CU-Boulder, Bose Einstein condensate, Wikipedia, 1995

• Sanpaz, Components stress tensor cartesian, Wikipedia, 2009

• C. Fukushima and J. Westerweel, color image of the far field of a submerged turbulent

jet, Wikipedia, 2007

• George Kenneth Lucey Jr. and Dr. D. Lyon (Army Research Laboratory), Frank

Dindl (Armament Research, Development and Engineering Center), Vortex Ring Gun

Schlierin, Wikipedia, 1997

• Jorge Stolfi, IrrotationalVortexFlow-anim-frame, Wikipedia, 2012

• A.C. Norman, Vortextangle, Wikipedia, 2009
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