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ABSTRACT

Emerging quantum simulator technologies provide a new challenge to quantum many

body theory. Quantifying the emergent order in and predicting the dynamics of such com-

plex quantum systems requires a new approach. We develop such an approach based on

complex network analysis of quantum mutual information. First, we establish the useful-

ness of quantum mutual information complex networks by reproducing the phase diagrams

of transverse Ising and Bose-Hubbard models. By quantifying the complexity of quan-

tum cellular automata we then demonstrate the applicability of complex network theory to

non-equilibrium quantum dynamics. We conclude with a study of student collaboration

networks, correlating a student’s role in a collaboration network with their grades. This

work thus initiates a quantitative theory of quantum complexity and provides a new tool for

physics education research.

We find that network density, clustering coefficient, disparity, and Pearson R correlation

show systematic finite size scaling towards critical points of the transverse Ising model and

the Bose-Hubbard model. Using matrix product state methods we are able to simulate

lattices of hundreds of qubits, allowing us to verify the critical point of the transverse Ising

model to within 0.001% of its known value. Furthermore, we find that complex network

analysis identifies the Berezinskii-Kosterlitz-Thouless critical point of the Bose-Hubbard to

within 3.6% of its accepted value. Finally, we identify the boundary separating the Mott

Insulator phase from a superfluid phase in the Bose-Hubbard model by extremizing network

density, clustering coefficient, and disparity.

After studying the static properties of quantum many body systems, we study the entan-

glement and complexity generated by Hamiltonian based quantum cellular automata. In

quantum cellular automata one defines a set of local rules that govern the evolution of the

quantum state. A site in a quantum lattice evolves if the set of sites around it are in certain
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configurations. Configurations are defined in terms of the number of sites in the “alive”

state about a site. We quantify entanglement in terms of the central bond entropy, and

complexity in terms of persistent fluctuations of the central bond entropy, complex network

measures of quantum mutual information networks far from their values for random/well

known quantum states, and robust dynamical features. These Hamiltonians are a gener-

alization of the Bleh, Calarco, Montangero Hamiltonian. Before beginning our study of the

entanglement and complexity generated by these Hamiltonians we first perform a conver-

gence analysis of the dynamics of the Bleh, Calarco, Montangero Hamiltonian using an open

source matrix product state code, Open Source Matrix Product States. We find that the

Bleh, Calarco, Montangero Hamiltonian rapidly saturates the entanglement cutoff of Open

Source Matrix Product States for all initial conditions studied and is thus not a viable nu-

merical method for studying the dynamics of quantum cellular automata. We conclude our

convergence study with a case study of an emergent quantum blinker pattern also observed

in exact simulation and a case study of a nearest neighbor quantum cellular automata. We

conclude that while for generic initial conditions Open Source Matrix Product States is un-

able to meet its internal convergence criteria, for particular initial conditions and quantum

cellular automata it is able to provide reliable estimates of entanglement and complexity

measures. The failure of OpenMPS to provide reliably converged quantum states leads us

to study our quantum cellular automata using a Trotter-based time evolution scheme.

We quantify the entanglement and complexity generated by 13 next-nearest neighbor

quantum cellular automata. We also define Goldilocks rules, rules that produce activity at

a site if there are exactly the right number of alive sites in the neighborhood of a site, not too

few, not too many. We identify a Goldilocks rule, rule 4, as the best complexity-generating

rule out of the 13 rules tested, verifying our hypothesis that only Goldilocks rules are com-

plexity generating. We also find that non-Goldilocks rules tend toward thermalization as

quantified by reduced fluctuations in the central bond entropy. We find that both highly

entangled quantum states and lowly entangled quantum states have complex structure in
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their quantum mutual information adjacency matrices.

Finally, in keeping with the strong physics education research focus at the Colorado

School of Mines, we apply complex network analysis to a key issue germane to the student

experience, namely student collaboration networks. We compute nodal centrality measures

on the collaboration networks of students enrolled in three upper-division physics courses at

the Colorado School of Mines. These are networks in which links between students indicate

assistance with homework. The courses included in the study are intermediate classical

mechanics, introductory quantum mechanics, and intermediate electromagnetism. We find

that almost all of the measures considered correlate with analytical homework grades. In

contrast only net out-strength correlates with exam grade. The benefits of collaboration

do not extend from homework to exams, and students who help more than they are helped

perform well on exams. Centrality measures between simultaneous collaboration networks

(analytical vs. numerical homework collaboration) composed of the same students correlate

with each other. Students take on similar roles in response to analytical vs. numerical

homework assignments. Changes in collaboration across semesters are also considered

as students transition from classical mechanics in the fall to quantum mechanics and elec-

tromagnetism in the spring. We find the most frequent transition is that students that

help many others and have high grades will continue to help many others and have high

grades. Students that help few more frequently transition from low grades to high grades

than students that help many.
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CHAPTER 1

INTRODUCTION

Complexity is a difficult concept to define. There are precise definitions of complexity.

For example, the authors of [1] adapt concepts from theoretical computer science in order

to provide a definition of complexity. However, much research now advocates identifying

features of complexity rather than trying to provide a single definition of the concept. Such

features include systems with a hierarchy of scales like the food webs of the Coachella Val-

ley [2], in which predator-prey relationships are modeled at multiple trophic levels. The

interconnections of the internet also have a hierarchical structure, with a global structure

connecting local networks [3]. Both of these systems consist of many interacting components

that are connected in intricate ways [4]. The interconnections and interdependencies of such

systems make them very difficult to predict and control, as described in [5, 6].

Conventional studies of single particle quantum mechanics typically assume that only a

few degrees of freedom interact. The success of this assumption for single particle quantum

systems has made quantum theory one of the most quantitative and predictive theories of

modern science [5]. For example the spectra of the Hydrogen atom can be accurately pre-

dicted by only considering the interaction between a single electron and a single proton, in

isolation from the rest of the universe. There have also been successful theories of quantum

many body physics, for example Heisenberg models describing antiferromagnetism. Heisen-

berg models describe interacting spins on a lattice in the presence of a magnetic field. The

spins of the Heisenberg model are all identical two-dimensional quantum systems. However,

generic quantum many body systems may involve the interactions of many different types

of atoms or molecules. There may also be no clear distinction between the system and its

environment. Furthermore, the structure of the interactions between particles need not be a

simple lattice and may instead take the form of a complex network [4, 7]. Already quantum
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simulator technologies based on ultracold molecules [8], trapped ions [9], and Rydberg gases

[10] have been developed that couple the degrees of freedom of hundreds of individual quan-

tum systems. As we move towards more and more complex quantum systems, involving a

hierarchy of scales, diverse interacting components, and a structured environment, we expect

to observe long-lived dynamical features, fat-tailed distributions, and other key identifiers

of complexity [11, 6, 12]. How are we to synthesize and understand the data from these

emerging complex quantum systems?

Systems like the food webs of the Coachella Valley and the internet are often studied

within the field of complex network theory. A network is any system that consists of a col-

lection of individual objects that have connections to each other. The individual objects are

termed nodes, and nodes are connected by links. The various species of the Coachella Valley

are the nodes of its corresponding network, and the predator-prey relationships are the links

between nodes. The internet can be represented as a network by considering individual com-

puters as nodes, and the wires connecting them as links. A useful representation of a network

is its adjacency matrix. In the adjacency matrix entries are numbered by the nodes in the

network and weighted according to the links between these nodes [4]. Complex network

theory quantifies the structure of complex networks via measures on the adjacency matrix.

Complex network measures like network density, clustering coefficient, and disparity have al-

lowed researchers to quantify the non-random structure of social networks and the existence

of backbone structures in chemical reaction networks [13, 14]. Complex networks have been

studied in the context of quantum systems [15, 16, 17, 18, 19]. For instance studies have

been conducted that “rewire” the couplings defining the Bose-Hubbard model and the trans-

verse Ising model, structuring the couplings in their Hamiltonians as small world networks

(as social networks are structured), and examining the modifications to finite temperature

and mean field quantum phase diagrams [20, 21, 22]. Our work focuses on utilizing and

developing complex network measures as new tools to quantify the emergence of complexity

in quantum many body systems. We identify quantum mutual information as an effective
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choice for the adjacency matrix of our studies. Quantum mutual information has been shown

to be a measure of the quantum and classical correlations present between two subsystems

[23], and is bounded from below by any possible two point correlator [24]. By computing

complex network measures on quantum mutual information networks we provide a succinct

description of the structure of correlations in quantum systems. Furthermore, classical mu-

tual information, the classical analog of quantum mutual information, is a well-established

and useful tool in complex network based diagnostics of the brain [25]. Finally, independently

of complex network theory, information theory forms the basis of many quantifications of

complexity [1, 12, 26].

Information is a measure of the average unexpectedness of measurement outcomes. For

instance, if one flips a fair coin, where the probabilities of heads and tails are equal, one is

maximally surprised by the result. Compare this to a biased coin where the probability of

heads is equal to 0.9, and the probability of tails is equal to 0.1. Most flips of this coin will

result in heads, which is the less surprising result, however occasionally the result will be

tails, the more surprising result. Another way to state this is that information quantifies

how much we learn on average by repeated measurements of random events. The definition

of information is very general, and so it is applicable to many different systems. Mutual

information is a measure of the correlations between events. It is defined in terms of the

shared information of independent systems. That is, one may compare the measurement

results of simultaneously flipping two coins and find that the result of one coin tends to

predict the result of the other. Both information and mutual information have been used as

complexity measures in classical complex systems, for instance [27] applies both to quantify

the complexity of classical cellular automata. Mutual information has also quantified the

correlation between voltages of different regions of the brain predicted by simulations as in

[25]. Furthermore information theory has been used to quantify complexity of arbitrary data,

for instance [26] defines complexity in terms of an entropy defined over the probability of

an epsilon machine being in a particular causal state. An epsilon machine predicts the data
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that it will observe in measurement via a model it constructs. This model consists of causal

states and transitions between these causal states. The transition between causal states of an

epsilon machine results in the emission of data. This data is the epsilon machine’s prediction

of the data it will observe in experiment. Other researchers have also defined complexity in

terms of entropies over ensembles of data [12].

Our work does not focus on providing a precise definition of complexity, rather we quan-

tify an important aspect of complexity, connectivity, by studying the structure of quantum

mutual information complex networks. Our complex network based approach does not define

a single scalar measure of complexity, rather different complex network measures characterize

different aspects of the structure of correlations of quantum mutual information networks.

Furthermore, by considering all two-point correlations simultaneously one can define order

parameters for non-translationally invariant systems, for example of the kind described in

[28]. This is particularly useful for studying simulations of quantum dynamics where the

entanglement may become clustered or localized to a particular region. Complex network

analysis thus gives a more complete description of quantum many body states than has been

studied previously.

In Chapter 4 we quantify the ability of complex network measures to detect emergent

phenomena in quantum systems by applying them to reproduce the known quantum phase

diagrams of the transverse Ising and Bose-Hubbard models. We emphasize that both these

models are studied heavily in quantum simulator experiments and are standard workhorses

of quantum many body physics [29, 8, 9, 30, 31]. Quantum phase transitions are collec-

tive phenomena, in which an entire quantum many body ground state undergoes an abrupt

change at a quantum critical point. In classical systems phase transitions are often driven

by temperature. For instance as temperature is increased ice melts into water and water

evaporates into steam. However quantum phase transitions occur at absolute zero tempera-

ture. Instead of temperature, the phase transition is induced by magnetic fields or quantum

mechanical tunneling of particles in optical lattices [32, 33]. The transverse Ising model is
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a model of 1-D ferromagnets like CoNb2O6 [32]. Moreover the emphasis in quantum phase

transitions is on second-order transitions, which exhibit an abrupt change in the correlation

structure: for instance, a correlation length may diverge at a critical point. The transverse

Ising model consists of interacting spins on a 1-D lattice in the presence of an external mag-

netic field. The spins minimize energy by aligning their spins with their nearest neighbors,

thus forming a ferromagnet. However as the external magnetic field grows in strength it

tends to align the spins perpendicularly to the axis of magnetization, disordering the spins

with respect to this axis due to the Heisenberg uncertainty principle. This disorder results

in a quantum phase transition from a ferromagnet to a quantum paramagnet at a particular

strength of the external field, with an accompanying change in correlation structure [34]. The

Bose-Hubbard model can be realized by atoms trapped in 1-D optical lattices [33]. These

lattices are standing waves of light. The troughs or peaks of these waves form potential wells

in which atoms are trapped. By tuning the properties of such lattices experimentalists can

change the depth of the potential well allowing atoms to tunnel between nearest neighboring

wells [35]. As the particles become more free to move about the 1-D lattice they undergo

a transition to a superfluid in which all atoms occupy the same delocalized single particle

state [35].

Conventionally quantum phase transitions are studied via an order parameter defined in

terms of local observables, or in terms of long range correlations. Recent work has shown

that entanglement measures like concurrence, von Neumann entropy, and quantum mutual

information can identify quantum phase transitions [36, 37, 38]. Note that we refer to

quantum mutual information as an entanglement measure since if the entire system is in

a pure quantum state non-zero quantum mutual information between any two subsystems

implies the pure quantum state is entangled. However, this does not necessarily imply

entanglement amongst the subsystems, since quantum mutual information quantifies both

quantum and classical correlation amongst subsystems [39]. Since entanglement measures

like quantum mutual information are non-local, they characterize the collective response of
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quantum systems to external perturbations. Furthermore, entanglement measures are not

defined in terms of any particular observable and so they have been used to identify quantum

phase transitions in both transverse Ising and extended Hubbard models. However, no work

has yet considered the quantum mutual information between all lattice sites simultaneously.

By studying quantum mutual information complex networks we summarize the collective

and emergent response of quantum many body systems as they undergo quantum phase

transitions.

Having established the ability of complex network measures to detect emergent phenom-

ena in quantum many body systems, in Chapter 6 we quantify the complexity generated by

Hamiltonian-based quantum cellular automata (QCA). These quantum cellular automata

are generalizations of the Bleh, Calarco, and Montangero (BCM) Hamiltonian introduced in

[40]. Quantum cellular automata are inspired by classical cellular automata like Conway’s

game of life [41], in which simple rules govern the evolution of a two-dimensional grid of cells.

Considering the possibility that simple quantum-mechanical rules could simulate arbitrary

quantum systems lead Feynman to propose the possibility of a universal quantum computer

in [42], initiating the field of quantum computation. The simple rules of Conway’s game of

life give rise to remarkably complex patterns, like blinkers that oscillate at a fixed position,

gliders that travel across the grid, and even universal computers [43]. Besides generating

complexity, classical cellular automata have also been developed to model phenomena as

diverse as surface growth, percolation, forest fires, Ising spin dynamics, traffic, and strings

[44]. Since simple rules give rise to complex dynamics in these classical automata, one may

expect that quantum cellular automata will also give rise to complex dynamics. We both

confirm and constrain this expectation in Chapter 6 by identifying multiple rules that give

rise to complexity. Complexity is quantified by robust emergent dynamics, quantum states

far from known/random states, and persistent fluctuations of the central bond entropy. In

[45], rule 6 (out of 16 reversible nearest-neighbor 1D rules) was identified as the only rule

that generated robust and complex dynamics as we quantify in chapter 6. Rule 6 belongs to
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a class of rules known as Goldilocks rules. Goldilocks rules are rules that produce dynamics

when there are just the right number of sites in the neighborhood of a site, not too few, and

not too many. Extending the work of [45] to Hamiltonian next-nearest neighbor QCA we

hypothesize that only Goldilocks rules will be complexity generating. Furthermore, we hy-

pothesize that non-Goldilocks rules tend towards thermalization as quantified by reductions

in entropy fluctuations. Unlike classical mechanics, in quantum mechanics entanglement

becomes possible. Therefore in Chapter 6 we also study the relationship between entangle-

ment and complexity, addressing the question, “Is complexity lowly, highly, or both lowly

and highly entangled?” Such questions of entanglement determine the ability to follow the

dynamics of such systems on classical computers: in other words, is a quantum computer

required to study quantum cellular automata in no, few, many, or all circumstances? They

also help us to understand how quantum complexity limits to classical complexity, as there

may be features of quantum complexity that are only present in highly entangled systems.

This work will make use of tensor network methods (different than complex network

methods) to efficiently simulate on a classical computer the exponentially large Hilbert spaces

that arise in the study of quantum many body systems. Tensor network methods rely on the

singular value decomposition as a method of data compression on the quantum state [46].

They allow us to find ground states and time evolved states under various Hamiltonians for

hundreds of lattice sites. Tensor network methods therefore go beyond exact diagonalization

methods which are only capable of simulating approximately thirty qubits due to the memory

required to store the quantum state. Such methods also allow for the efficient computation

of local observables and two-point correlators. An important limitation of tensor network

methods is that they are only able to efficiently represent quantum states that obey an

area law. These are quantum states that have entropy of subsystems proportional to the

boundary of those subsystems; in nature, we find such area laws for instance for black holes,

where entropy is contained on the surface, not in the interior [47]. Since the ground states of

many physical many body Hamiltonians obey an area law [48], we are able to conduct our
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study of quantum phase transitions in Chapter 4 using an open source matrix product state

code, Open Source Matrix Product States (OpenMPS) [49]. This code is formulated in terms

of tensor networks and is written and maintained by former and current group members of

the Carr Theoretical Physics Research Group (CTPRG). Using OpenMPS we compute both

local and non-local observables, as well as measures from quantum information theory like

quantum mutual information. Thus OpenMPS enables us to study systems consisting of

100’s of spins and 100’s of particles in Chapter 4.

While tensor network methods have been successful in the study of physically motivated

quantum states, like the ground states of transverse Ising and Bose-Hubbard Hamiltoni-

ans, before this thesis there have been no systematic convergence studies of the dynamics

generated by Hamiltonian-based quantum cellular automata using tensor network methods.

Therefore in Chapter 5 we test whether the BCM Hamiltonian (a quantum cellular automata)

can be efficiently simulated using OpenMPS. We demonstrate that OpenMPS is not capa-

ble of efficiently simulating the dynamics generated by the BCM Hamiltonian for arbitrary

initial states because for nearly all of the initial conditions we study the BCM Hamiltonian

generates too much entanglement. Since OpenMPS is not able to accurately represent these

highly entangled quantum states we study the entanglement dynamics of Hamiltonian-based

quantum cellular automata in Chapter 6 using a Trotter-Exact time evolution scheme. We

conclude Chapter 5 with two case studies. In a case study of a quantum blinker pattern

we find that OpenMPS is able to accurately compute complex network measures and the

frequency and amplitude of fluctuations of the central bond entropy. Although typical initial

conditions result in dynamics too highly entangled for OpenMPS to accurately simulate, this

single exceptional initial condition produces dynamics that OpenMPS is able to accurately

follow. Next in chapter 5 we perform a case study of a Hamiltonian version of rule 6 of [45].

We find that in contrast to the BCM Hamiltonian, the rule 6 Hamiltonian does not generate

highly entangled states, at least for a single initial condition. These two case studies set

the stage for the more detailed study of Chapter 6 where we quantify the complexity and
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entanglement generated by 13 Hamiltonian-based QCA.

Finally, Chapter 7 of this thesis applies complex network theory to student collabora-

tion networks (SCN), as an application of complex network methods to physics education

research, an important focus of the physics department at the Colorado School of Mines and

the CTPRG. Our study of SCN focuses on how the importance of a student to the structure

of SCN correlates with a student’s performance in coursework. Correlating nodal centrality

measures with student grades allows us to evaluate whether well-connected students have

good grades, and our attention to homework vs. exam grades allows us to study how col-

laboration impacts student grades when students are with and without their collaborators.

Furthermore, we quantify how students collaboration strategies change between semesters,

and observe how this relates to changes in the grades of students between semesters. Many

of these ideas seem straightforward, however hardly any work has been done to understand

the influence of student collaboration on student grade, we know of only one prior work [50].

By applying the new tool of complex network theory to student collaboration networks we

offer new

By applying complex theory to both static and dynamic quantum mutual information

networks we provide new tools for the analysis of complex quantum systems. Our proof of

principle study of the ground state properties of the transverse Ising and Bose-Hubbard mod-

els establishes the relevance of complex network theory to quantum systems. By quantifying

the complexity of quantum cellular automata we show that complex network analysis is also

an effective approach to analyzing equilibrium quantum dynamics. Our complex network

based approach also allows us to quantify how a student’s role in a student collaboration

network correlates with their grades. While the collaboration of students on quantum me-

chanics homework seems to have nothing to do with quantum mechanics itself, our work

demonstrates that complex network theory presents a common approach to studying such

disparate systems. Finally, in the appendix we provide a derivation suggesting a future

direction for research, continuous quantum games of life.
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CHAPTER 2

FROM INFORMATION THEORY TO TIME EVOLUTION METHODS:

THEORETICAL TOOLS

In this chapter we introduce the theoretical tools that will be used in the remaining chap-

ters. We start by defining the term information within the context of classical information

theory and show how this connects to quantum information theory via von Neumann en-

tropy. We also introduce complex network theory and demonstrate how it may used to study

networks of quantum mutual information. Next we provide a brief discussion of quantum

phase transitions and finite size scaling theory. We then provide definitions of both contin-

uous time Hamiltonian-based quantum cellular automata and discrete time unitary-based

quantum cellular automata. The chapter concludes by describing the numerical methods

behind Open Source Matrix Product States and the Suzuki-Trotter expansion used to evolve

Hamiltonian-based quantum cellular automata.

2.1 Classical Information Theory

The information to be gained by performing measurements on a discrete random variable

X with outcomes x is defined as [51]

S(X) = −
∑
x

p(x) log(p(x)). (2.1)

S is termed the information or entropy of the corresponding probability distribution p(x).

Entropy measures how random a probability distribution is. If there are N outcomes of the

random variable X and all are equally likely then S = log(N) as calculated in Eq. (2.2).

This is the connection of information to the entropy computed in statistical mechanics, where

S = kB log(Ω).

S = −
N∑
i=1

1

N
log

(
1

N

)
= −N

N
log

(
1

N

)
= log(N) . (2.2)
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The formula S = kB log(Ω) is therefore due to the assumption that every configuration of a

thermodynamic system is equally likely.

Another way to think of information is as the average number of questions one must

ask about the outcome of a random variable to uniquely identify the outcome using the

most effective line of questioning. If we set the base of the logarithm to 2 then the unit of

information is bits, and therefore our questions are all yes or no questions. For example,

given two biased coins one may find that the probability of the first coin landing tails and

the second landing tails is pTT = 0.5. Similarly one may find that the first coin lands heads

and the second coin lands heads with probability pHH = 0.5, so that pHT = pTH = 0.0.

The most effective question to determine the outcome uniquely is “Did the second coin land

heads?” This will uniquely determine the state of both coins and so one always requires 1

bit to uniquely identify the state of the coins. Computing the entropy we find that

S = −2
1

2
log2

(
1

2

)
= 1 . (2.3)

The entropy formula identifies the average number of questions one must ask to identify the

outcome of a random variable. Given two random variables X and Y , there may be corre-

lations between the measurement outcomes of X and the measurement outcomes of Y . For

instance, in the previous example the outcomes of the two coins are correlated. The coins

always land either HH or TT , but never HT or TH. The quantity that quantifies the cor-

relation between the measurement outcomes of two random variables is mutual information.

Mutual information is defined as

I(X, Y ) = S(Y )− S(Y |X) = S(X) + S(Y )− S(X, Y ) . (2.4)

Where S(Y |X) is the conditional entropy and is defined as [51]

S(Y |X) =
∑
x

p(x)S(Y |X = x) = −
∑
x

p(x)
∑
y

p(y|x) log(p(y|x)) . (2.5)

Where p(y|x) = p(y∩x)
p(x)

. The conditional entropy S(Y |X) is the average entropy of the random

variable Y upon reconditioning of its probability distribution on the outcomes of X. The
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mutual information between two random variables is maximized when S(Y |X) = 0. This

only occurs when each outcome of X uniquely identifies the outcome of Y . The mutual

information is minimized when S(Y |X) = S(Y ). This only occurs when the outcomes of X

do not modify the probability of outcomes of Y . Therefore the mutual information between

two random variables tells us how much measurements on one variable tell us about the

measurements of another variable. The two coins that always land either TT or HH have

1 bit of mutual information. To compute this we must first compute marginal probability

distributions of each coin. Both coins have pT = pTT +pTH = 0.5, and pH = pHH+pHT = 0.5.

If their measurement outcomes are considered independently each have entropy S = 1. The

mutual information between the two coins is

I(X, Y ) = 1 + pH
(
pT |H log(pT |H) + pH|H log(pH|H)

)
+ pT

(
pT |T log(pT |T ) + pH|T log(pH|T )

)
(2.6)

= 1 + 0 + 0 = 1 . (2.7)

Where 0 log(0) ≡ 0 since limx→0 x log(x) = 0. Mutual information quantifies the correlations

between measurement outcomes on two random variables. If a system consists of many

random variables with probability distribution pX1,X2,...,XN
, then one computes the mutual

information between any two random variables by computing the marginal probability dis-

tributions pXi,Xj
, pXi

, and pXj
, and computing SXi,Xj

, SXi
, and SXj

.

2.2 Quantum Information Theory

In quantum theory the state of a system is an element of a Hilbert space, |ψ〉 ∈ H. We

will always assume the Hilbert space can be written as a tensor product over local Hilbert

spaces H = ⊗Li=1Hi each spanned by a basis Bi and of dimension d = dim (Hi). These local

basis vectors correspond to the set of measurement outcomes on the local degrees of freedom.

When d = 2 the local state of site i is spanned by the states |0〉 and |1〉. The states |0〉 and

|1〉 form the standard basis for the local state space of dimension 2,

|ψ〉i = c0 |0〉+ c1 |1〉 . (2.8)
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Such an object is referred to as a qubit, short for quantum bit. The basis vectors of the full

quantum state are tensor products over the basis vectors of the local Hilbert spaces. As in

the classical case we will define an entropy that quantifies the randomness of measurement

outcomes. However in quantum mechanics the state of the system is quantified by a set of

complex probability amplitudes ci, not by a probability distribution,

|ψ〉 =
dL∑
i=1

ci |i〉 . (2.9)

However for any quantum state |ψ〉 there is a corresponding density matrix ρ̂ = |ψ〉 〈ψ| ∈

L(H). The density matrix is a positive semi-definite operator on the Hilbert space with

Tr(ρ̂) = 1. Thus the density matrix can be written as

ρ̂ =
∑
k

λk |ψk〉 〈ψk| . (2.10)

Where λk ∈ [0, 1], and
∑

k λk = 1. One can interpret λk as the probability that the system is

in the state |ψk〉. Interpreting the λk as probabilities one defines the von Neumann entropy

of a density matrix as the entropy of its eigenvalues,

S(ρ̂) = −
dL∑
k=1

λklogd (λk) . (2.11)

Note that for pure states ρ̂ = |ψ〉 〈ψ|, so that S(ρ̂) = 0. As in the classical case we want

to quantify the correlations between subsystems of the lattice. The state of a subsystem is

computed by computing the partial trace of ρ̂, tracing out the degrees of freedom outside

of the subsystem. The partial trace is analogous to the classical procedure of computing a

marginal probability distribution, it is defined linearly on L(H = HA ⊗HB),

TrB (|ai〉 〈aj| ⊗ |bi〉 〈bj|) = |ai〉 〈aj| 〈bi| |bj〉 . (2.12)

The subscript on Tr denotes the Hilbert space to be traced out, the resulting operator

|ai〉 〈aj| ∈ HA. The reduced density matrix associated with a single site i is defined as the

partial trace of ρ̂ over all sites except site i,

ρ̂i = Trk 6=iρ̂ . (2.13)
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Similarly we may compute the state of any two site subsystem by tracing out the degrees of

freedom of all sites except sites i and j,

ρ̂ij = Trk 6=i,j ρ̂ . (2.14)

The single-site von Neumann entropy is denoted as

Si = S(ρ̂i) , (2.15)

while the two-site von Neumann entropy is denoted as

Sij = S(ρ̂ij) . (2.16)

Finally, the reduced density matrix associated with the interval [1, L/2] is denoted by

ρ̂[1:L/2] = Trj>L/2 (ρ̂). We denote the entropy of ρ̂[1:L/2] by Sbond,

Sbond = S(ρ̂[1:L/2]) . (2.17)

Throughout the remainder of this thesis an S with a subscript indicates the von Neumann

entropy of a subsystem of a quantum lattice and not the classical entropy. In Sec. 2.6 we

introduce a rule numbering scheme for the quantum cellular automata we define and denote

rule numbers by the symbol S; this can always be distinguished from the von Neumann

entropy of a subsystem as it never has a subscript.

The quantum mutual information between any two sites i and j is defined in terms of

the entropies of the individual sites and the entropy of the sites jointly. In analogy with Eq.

(2.4)

Iij =
1

2
(Si + Sj − Sij) . (2.18)

The quantum mutual information is bounded from below by all equal time two point cor-

relators defined on the degrees of freedom of sites i and j [24]. These g(2) correlators are

measures of noise on top of the density measurement of a quantum state. For instance to

measure g(2) in experimental measurements of matter density of a condensate one subtracts

the local mean density to compute g(2) = 〈n̂in̂j〉 − 〈n̂i〉 〈n̂j〉 [52]. In this thesis we multiply

the quantum mutual information between any two sites by 1/2, so that 0 ≤ Iij ≤ 1. An
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interesting subtlety in the definition of quantum mutual information is that Eq. (2.4) can be

quantized in more than one way, this has led to the definition of quantum discord as defined

in [53].

2.3 Complex Network Theory

A Network a.k.a. Graph is a collection of nodes and links. A graph G is denoted as

follows

G = {V,E} . (2.19)

Where V is the set of nodes and E is the set of links connecting nodes. In the simplest case

a links is not directed, and it connects only two nodes to each other, we can summarize these

facts for a particular link E1 ∈ E by the following equation

E1 = (v1, v2) = (v2, v1) , (2.20)

where v1 and v2 are two nodes, that is v1, v2 ∈ V .

A less abstract description of a network than the set of nodes and links that it consists of

is the adjacency matrix of the graph. For each node in the network there is a corresponding

row in the adjacency matrix, adopting some ordering of the nodes v1, v2, ..., vn we define

Aij = 1 if Ek = (vi, vj) ∈ E, and Aij = 0 otherwise. Many real world situations can

be described by networks. For example the nodes in a network can correspond to people,

where the links summarize the pattern of friendship between them. In Chapter 7 we study

student collaboration networks, where a link corresponds to assistance. If one student assists

another student with homework a link is placed between these students. Note that this is

not a symmetric relation, i helps j does not imply j helps i. This is the defining feature of a

directed network, its connections are asymmetrical. Therefore, for directed networks one says

that a link goes from node i to node j to indicate the direction of the link. Perhaps each node

in a network represents a state of a situation ψ and each link represents the interconnection of

these states under the Hamiltonian H of that physical situation. Sometimes it makes sense to

say that a connection is stronger or weaker. For instance certain friendships may be weaker
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or stronger than others depending on how much two people like each other. To model this we

can introduce a weight to the links representing a friendship. These could be real numbers

between 0 and 1, with 0 corresponding to two people without a friendship and 1 corresponding

to connection between best friends. The quantum mutual information networks defined in

Sec. 2.4 are of this weighted form. There the weight of a connection is a summary of

the correlations between two sites. From our analysis of quantum mutual information we

would like to determine the location of quantum critical points and understand whether our

time evolution schemes generate a new physical class of states displaying high complexity

and non-random structure. Complex network theory is a natural tool for our study because

researchers have developed quantitative measures like the clustering coefficient to distinguish

between random and non-random networks.

One way to define a random network is as follows: take a set of n nodes and place a

link between any two of the nodes with probability p. The number of connections of a node

is termed the degree of the node and is denoted by k. The network resulting from placing

connections will have a Poissonian degree distribution as n → ∞. The degree distribution

of a network of n nodes is equal to [4]

pk =

(
n

k

)
pk (1− p)n−k ≈ zke−p(n−1)

k!
. (2.21)

This result helps quantify what researchers mean when they say that the connections in a

network are non-random. Often complex networks have more nodes of a higher degree than

would be expected by assuming that connections are formed at random. For example many

networks have degree distributions that follow a power-law for large values of k. However

measures like the clustering coefficient offer a more quantitative means of quantifying non-

random structure than comparing probability distributions.

An example of the usefulness of scalar measures like the clustering coefficient is the

development of small world networks by Watts and Strogatz. They demonstrated that their

small world parameterization of complex networks could explain the high clustering and
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low characteristic path length seen in social networks as compared to random networks

[13]. To construct a small world network one begins by initializing a network in which c

nearest neighbors are connected. One then rewires connections with a certain probability

by replacing each link with a link connecting two nodes chosen uniformly at random [3].

When this probability is equal to zero one recovers the initial condition of the network,

a state in which c nearest neighbors are connected. As this probability approaches 1 the

network becomes a random graph. By using measures like the clustering coefficient and

characteristic path length Watts and Strogatz were able to quantitatively show that many

real world networks have non-random structure. They also found that this structure held

implications for disease spreading and synchronization across nodes [13].

2.4 Quantum Mutual Information Networks

To understand the structure of correlations of quantum many body ground states we will

study the quantum mutual information between every pair of lattice sites in 1-D quantum

systems. For the systems under discussion we will always assume that ρ = |ψ〉 〈ψ|. The

quantum mutual information network I is a subtle quantity to interpret. Let us progress by

looking at examples.

2.4.1 Networks of two spins

The quantum state of two qubits can be written as

|ψ〉 = c00 |00〉+ c01 |01〉+ c10 |10〉+ c11 |11〉 . (2.22)

The most general state that will exhibit no correlation between two sites is

|ψ〉 = (c0 |0〉+ c1 |1〉) (d0 |0〉+ d1 |1〉) (2.23)

with all c, d ∈ C, and all |·〉 ∈ H. To construct the adjacency matrix describing the correla-

tions between two qubits we will compute the quantum mutual information between them.

All states that can be factorized into the form of Eq. (2.23) have quantum mutual informa-

tion between qubits of zero, that is Iij = 0 for all i, j. Pure states that can be factorized in
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this way are called product states. All other states are called entangled. Note that we set

Iii = 0 by convention, although Eq. (2.18) would result in Iii = Si+Si−Si = Si. That is one

learns as much about the state of the universe at position i as one would if they measured

the state of the universe at position i. In contrast to product states, the spin singlet is a

state of two qubits that features maximal entanglement between the two qubits. The spin

singlet is

|ψ〉 =
1√
2

(|01〉 − |10〉) . (2.24)

The density matrix ρ̂ of the spin singlet is therefore

ρ̂ ≡ |ψ〉 〈ψ| =
1

2
(|01〉 − |10〉) (〈01| − 〈10|) (2.25)

=
1

2
(|01〉 〈01| − |01〉 〈10| − |10〉 〈01|+ |10〉 〈10|) . (2.26)

The reduced density matrix for the first spin is

ρ̂1 = Tri=2ρ̂ =
1

2
(|0〉 〈0| 〈1| |1〉 − |0〉 〈1| 〈1| |0〉 − |1〉 〈0| 〈0| |1〉+ |1〉 〈1| 〈0| |0〉) (2.27)

=
1

2
(|0〉 〈0|+ |1〉 〈1|) , (2.28)

and the reduced density matrix for the second spin is

ρ̂2 = Tri=1ρ̂ =
1

2
(|1〉 〈1| 〈0| |0〉 − |1〉 〈0| 〈0| |1〉+ |0〉 〈1| 〈1| |0〉+ |0〉 〈0| 〈1| |1〉) (2.29)

=
1

2
(|0〉 〈0|+ |1〉 〈1|) . (2.30)

Using Eq. (2.18) we find that I12 = 1. Before the quantum mutual information is multiplied

by a normalization factor of 1
2

the singlet has quantum mutual information equal to 2 bits.

This indicates the non-classical correlation of this quantum state. Classically the mutual

information between two observed random bits is maximally 1. The difference in quantum

mechanics is that the combination of two subsystems with maximally random states does not

result in a maximally random state of the entire system. For the spin singlet the quantum
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state of the entire system is a single quantum state with entropy S(|ψ〉 〈ψ|) = 0. This feature

of quantum mechanics has no classical analogue and is due to quantum entanglement between

the two qubits. Completing the entries for the quantum mutual information adjacency matrix

we have I12 = I21 = 1 and I11 = I22 = 0. Our adjacency matrix for the spin singlet is thus

I =

(
0 1
1 0

)
. (2.31)

We generalize the spin singlet by parameterizing the relative weight between |01〉 and |10〉

by θ and allowing for a relative phase φ between the two states. The resulting state is

|ψ(θ)〉 = cos (θ) |01〉+ sin (θ) eiφ |10〉 , (2.32)

this has reduced density matrices ρ̂1 = ρ̂2, with

ρ̂1 = cos (θ)2 |0〉 〈0|+ sin (θ)2 |1〉 〈1| . (2.33)

The resulting von Neumann entropy is equal to

S1 = −cos (θ)2 log
(
cos (θ)2)− sin (θ)2 log

(
sin (θ)2) , (2.34)

so that the quantum mutual information between two such qubits is

I = −
(

0 S1

S1 0

)
. (2.35)

The quantum mutual information between the two qubits is maximized when θ = π/4, where

|ψ(π/4)〉 is the spin singlet state, and is minimized when θ = 0, π/2 where the quantum state

factorizes. In Fig. 2.1 we show how the quantum mutual information between the two qubits

changes as a function of θ.

In Sec. 2.4 we have studied the quantum mutual information networks of simple quantum

states. In Sec. 2.5 we provide a definition of quantum phase transitions. In Chapter 3 we

will define useful measures on quantum mutual information complex networks. Finally, in

Chapter 4 we will apply these techniques to find the critical points of two quantum many

body Hamiltonians.
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Fig. 2.1: Quantum mutual information between two qubits. The quantum mutual information
between two qubits is maximized when the states |01〉 and |10〉 are in equal superposition,
and minimized for either state alone.

2.5 Quantum Phase Transitions

A quantum phase transition is a non-analyticity in the ground state energy of an infi-

nite lattice system [34]. Near a quantum phase transition the length scale characterizing

correlations diverges according to a power law as defined in Eq. (2.36) [34]

ξ−1 ∼ Λ|g − gc|ν (2.36)

where g is some parameter of a model Hamiltonian. For example in the transverse Ising

model an external field g disorders spins in the z-direction. For small external field strength

spins spontaneously align along the z-direction. For large external field strengths the z

components of spins become disordered and the ground state enters a paramagnetic phase.

In the disordered phase, correlations decay exponentially as summarized in Eq. (2.37), while

in the ordered phase, the degrees of freedom become correlated across the entire system [34]

〈0| σ̂zi σ̂zj |0〉 ∼ e−|xi−xj |/ξ . (2.37)

For g < 1, the divergence in the length scale of correlations at the quantum critical point

of the transverse Ising model gives rise to a non-zero value of an order parameter as defined
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in Eq. (2.38)

lim
n→∞

〈0|σzi σzi+n |0〉 = (1− g2)1/4 . (2.38)

While for g > 1, limn→∞ 〈0|σzi σzi+n |0〉 = 0. The transverse Ising quantum phase transition is

a second order phase transition, therefore a divergence occurs in the derivative of the order

parameter, as shown in Eq. (2.39)

d

dg
lim
n→∞

〈0|σzi σzi+n |0〉 =
d

dg
(1− g2)1/4 =

−g
2

(1− g2)−3/4 . (2.39)

The divergence in the derivative of the infinite range correlations gives rise to a finite size

scaling law [54]. The effective critical point of a finite size system gc(L) is displaced from

the thermodynamic critical point gc according to the equation

gc(L) = gc + AL−1/ν . (2.40)

In Chapter 4 of this thesis we will apply finite size scaling analysis to complex network

measures applied to quantum mutual information adjacency matrices of finite systems in

order to estimate the location of quantum critical points in two model Hamiltonians, the

transverse Ising model and the Bose-Hubbard model. For the BKT transition studied in

Chapter 4 we use the same form for the scaling law

(J/U)c(L) = (J/U)c + AL−1/ν . (2.41)

However the BKT transition “does not yield a singularity in any derivative of the ther-

modynamic potential at the transition, and therefore is sometimes called an infinite order

transition.”[55] Therefore Eq. (2.41) is only an ansatz.

2.6 Quantum Cellular Automata

In this section we define two types of quantum cellular automata, Hamiltonian-based

quantum cellular automata and unitary-based quantum cellular automata. Inspired by Con-

way’s game of life Bleh, Montangero, and Calarco created the BCM Hamiltonian shown in

Eq. (2.42) [40]. A site can either be in the dead state |0〉 or the alive state |1〉. If a site has
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two or three neighbors in the alive state |1〉 then this site undergoes evolution according to

the term b̂i + b̂†i , otherwise the site remains static. The BCM Hamiltonian is defined as

Ĥ =
L∑
i=1

(
b̂i + b̂†i

)(
N̂ (2)
i + N̂ (3)

i

)
. (2.42)

Where N̂ (2)
i is the projector onto the subspace spanned by states in which site i has two

neighbors in the alive state and N̂ (3)
i is the projector onto the subspace spanned by states in

which site i has three neighbors in the alive state. The neighborhood of site i of the BCM

Hamiltonian is defined as all sites within two lattice spacings of site i, Ni ≡ {j : 0 < |i− j| ≤

2}. Note that
[
b̂i, b̂

†
j

]
= 0 for i 6= j, (b̂i)

2 = (b̂†i )
2 = 0, {bi, b†i} = 1, and n̂i ≡ b̂†i b̂i. The

operators N̂ (2)
i and N̂ (3)

i can be written in terms of number operators as

N̂ (2)
i =

∑
σ

ˆ̄nσ(i) ˆ̄nσ(i−1)n̂σ(i+1)n̂σ(i+2) , (2.43)

and

N̂ (3)
i =

∑
π

ˆ̄nπ(i)n̂π(i−1)n̂π(i+1)n̂π(i+2) (2.44)

where the sums over σ and π denote the sum over all permutations of the site indices and

where ˆ̄ni ≡ 1̂ − n̂i. This amounts to
(

4
2

)
= 12 terms for N̂ (2)

i , and
(

4
3

)
= 4 terms for N̂ (3)

i .

Generalizing the BCM Hamiltonian we study Hamiltonians of the form

Ĥ =
∑
i

(
b̂i + b̂†i

)
R̂i . (2.45)

We refer to b̂i + b̂†i as the main operator and R̂i as the rule operator of our Hamiltonian-

based QCA. The operator R̂i defines the conditions for activity at site i in terms of the

neighborhood of site i. The neighborhood of site i is defined as Ni ≡ {j : 0 < |i − j| ≤ r}.

The operator b̂i + b̂†i defines the action of the Hamiltonian at site i. It maps |0〉 → |1〉 and

|1〉 → |0〉. That is, it swaps |0〉 with |1〉 and no superposition is induced. In the standard

basis b̂i + b̂†i has matrix representation[
b̂i + b̂†i

]
Bi

=

(
0 1
1 0

)
. (2.46)

22



When the Hamiltonian is exponentiated to form the propagator b̂i+b̂
†
i induces a superposition

of |0〉 and |1〉 at site i if the conditions of the neighborhood are right as determined by the

rule operator. The operator R̂i is the rule operator defining the conditions for activity at

site i.

R̂i =
2r∑
j=0

cjN (j),r
i , (2.47)

with cj ∈ {0, 1}. The symbol N (j),r
i denotes the projector onto the subspace in which site

i has j neighbors in the alive state. If the number of neighbors of site i in state |1〉 is j

then N (j),r
i = 1̂, otherwise N (j),r

i = 0̂. The activity of a site is determined only by the total

number of living sites in the neighborhood of that site. If cj = 0 a site is inactive if there are

exactly j living sites in the neighborhood of site j. If cj = 1 a site is active if there are exactly

j living sites in the neighborhood of a site. Such rules are analogous to the classical totalistic

automata defined in [56]. However, the dynamics of our Hamiltonian-based quantum cellular

automata are different. Firstly, under continuous time evolution the main operator induces

local superposition between |0〉 and |1〉. Secondly, as the main operator of site i induces

superposition at site i the rule operators of site i+1 now sees a superposition at site i. Since

the different states composing the superposition will have different numbers of living sites

in the neighborhood of site i + 1, R̂i+1 may determine site i + 1 to be active in some and

inactive in others.

We enumerate our rules in terms of the binary expansion c2rc2r−1...c2...c1c0 of each rule,

R =
2r∑
i=0

ci2
i . (2.48)

For instance the BCM Hamiltonian has c0 = c1 = c4 = 0 and c2 = c3 = 1. Therefore its

binary expansion is c4c3c2c1c0 = 01100. Its resulting number is R = 12 = 0× 20 + 0× 21 +

1×22 +1×23 +0×24. The quantum state of Hamiltonian-based quantum cellular automata

evolves according to the Schrödinger equation, since our Hamiltonians are time independent

|ψ(t)〉 = e−iĤt |ψ(0)〉 . (2.49)
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Unitary-based quantum cellular automata are defined in a similar way to Hamiltonian-

based quantum cellular automata. In Hamiltonian-based quantum cellular automata we

define the conditions for activity at site i in terms of projectors defined on the neighborhood

of site i. In unitary-based quantum cellular automata we instead define the conditions

for application of the unitary operator V̂i to site i in terms of projectors defined on the

neighborhood of site i. Therefore V̂i is like the main operator of our Hamiltonian-based

QCA: it performs the action. We will refer to such operators as main operators in the

context of both Hamiltonian and unitary-based QCA. For nearest neighbor unitary-based

quantum cellular automata the rule defining the conditions for application of V̂i can be

encoded into a 2× 2 matrix S with elements smn ∈ {0, 1} [45]. The operator applied to sites

i− 1, i, i+ 1 to update the state of site i is

ÛS(V̂ )i ≡
1∑

m,n=0

|m〉 〈m|i−1 ⊗ V̂ mn
i ⊗ |n〉 〈n|i+1 , (2.50)

where V̂ mn
i is either V̂i or the identity operator as determined by smn,

V̂ mn
i = smnV̂i + (1− smn)1̂i . (2.51)

Instead of evolving the entire lattice simultaneously, in unitary-based quantum cellular au-

tomata the lattice is evolved by first evolving all even sites through an entire discrete time

step, and then evolving all odd sites through an entire discrete time step. This is referred to

as the alternate (ALT) mode of a quantum cellular automata [45]

|ψ(t+ 1)〉 =
∏
i∈ALT

ÛS(V̂ ) |ψ(t)〉 ≡
∏

i′%2=1

ÛS(V̂ )i′
∏
i%2=0

ÛS(V̂ )i |ψ(t)〉 . (2.52)

The unitary-based quantum cellular automata we study have a different enumeration

scheme than the Hamiltonian-based quantum cellular automata. The rule number of a

unitary-based quantum cellular automata is defined in terms of the matrix elements of S,

specifically [45]

S = s1123 + s1022 + s0121 + s0020 . (2.53)
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In Chapter 6 we will study the equilibrium entanglement properties of unitary-based QCA.

In contrast to Hamiltonian-based quantum cellular automata where the main operator is

b̂i + b̂†i , for unitary-based quantum cellular automata we will study the dynamics generated

with V̂i = ĤDP̂ (θ) as the main operator. The operator ĤD denotes the Hadamard gate.

The Hadamard gate maps |0〉 → 1/
√

2 (|0〉+ |1〉) and maps |1〉 → 1/
√

2 (|0〉 − |1〉), placing

states in equal superposition. In the standard basis ĤD has matrix representation

HD =
1√
2

(
1 1
1 −1

)
. (2.54)

The superposition induced by ĤD highlights an important difference between Hamiltonian-

based and unitary-based QCA. In Hamiltonian-based QCA the superposition results from

continuous time evolution, even for the main operator b̂i + b̂†i . For unitary-based QCA using

b̂i + b̂†i as the main operator does not result in superposition since b̂i + b̂†i just swaps |0〉 with

|1〉. The resulting time evolution is entirely classical. Therefore in unitary-based QCA it is

necessary to use operators like ĤD to induce superposition. The operator P̂ (θ) is a phase

shift gate with phase shift θ. It maps |0〉 → |0〉 and |1〉 → eiθ |1〉. Thus P̂ (θ) induces a

relative phase between |0〉 and |1〉. The phase shift gate has matrix representation

P (θ) =

(
1 0
0 eiθ

)
. (2.55)

2.7 OpenMPS vs. Trotter Exact Diagonalization

An arbitrary quantum state can be expressed in terms of dL complex numbers as described

in Eq. (2.9). A quantum state defined on a lattice of L sites generated uniformly random

under the Haar measure will have an average von Neumann entropy of a subset of sites I of

[48]

E[S(ρ̂I)] > |I|log2(d)− d2|I|−L

2
, (2.56)

where |I| is the number of sites in subsystem I. This result tells us that a random quantum

state has von Neumann entropy near its maximum value of |I|log2(d) for the entropy of

its subsystems as L → ∞. Thus asymptotically S(ρ̂I) ∝ |I| for random quantum states.
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Such states are highly entangled and are said to obey a volume law. It has been found that

the ground states of many physical Hamiltonians instead satisfy an area law in the entropy

of subsystems. In one dimension this implies the entropy is proportional to a constant

S(ρ̂I) ∝ O(1) [48]. States satisfying an area law have less entanglement between subsystems.

This limited entanglement allows these states to be efficiently represented as matrix product

states [48]. The matrix product state (MPS) representation of a quantum state is

|ψMPS〉 =
d∑

i1,...,iL=1

Tr
(
A[1]i1 ...A[L]iL

)
|i1...iL〉 (2.57)

where A[k]ik is a matrix of dimensions χk × χk+1 and χ = maxkχk [49]. Thus the number of

parameters necessary to describe an MPS is approximately O(dLχ2), that is polynomial in

the system size instead of exponential. Such states satisfy an area law by construction [48]

assuming χ is not function of L. The matrices in Eq. (2.57) are computed from singular value

decompositions computed on tensors formed from the coefficients of the quantum state. The

χk are the number of singular values that are kept in a singular value decomposition. Highly

entangled states require more singular values to be kept in order to accurately represent

them. Since the ground states of many physical Hamiltonians obey an area law, in Chapter

4 we use OpenMPS to variationally find the ground states of the transverse Ising and Bose-

Hubbard Hamiltonians. To find the ground state of quantum many body Hamiltonians

OpenMPS initializes the quantum state to an MPS form. OpenMPS then performs a series

of local minimizations of the energy by solving eigenvalue problems associated to sets of s

sites of the matrix product state A[j]...A[j+s−1] [49]. By sweeping over the lattice until the

variance of the energy of the MPS satisfies inequality (2.58)

〈Ĥ2 − 〈Ĥ〉2〉 < εv (2.58)

OpenMPS converges to the ground state of quantum many body Hamiltonians. In OpenMPS

the number of singular values that are kept in a decomposition is determined by two numbers,

ε and χmax. When the singular value decomposition is computed OpenMPS constructs a

vector of singular values ~σ. In determining how many of these to keep OpenMPS assures
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that inequality (2.59) is satisfied

χ∑
i=1

σ2
i

~σ · ~σ ≤ ε. (2.59)

Decreasing ε results in a better characterization of the true quantum state. However, since

there is no upper bound on χ the OpenMPS algorithm may increase χ without limit and run

out of memory. The χmax parameter assures that the algorithm will not increase χ without

limit.

In Chapter 5 we apply one of the latest MPS based time evolution algorithms to study the

dynamics of the BCM Hamiltonian, the Zaletel time evolution scheme [57]. The OpenMPS

variational ground state search algorithm and Zaletel time evolution scheme were imple-

mented by members of the CTPRG and are available at [58]. The main limitation of MPS

methods applied to dynamics is that the entanglement of quantum many body states evolved

under a global quench of a Hamiltonian parameter increases linearly in time, implying that χ

grows exponentially in time [49, 59]. Unlike statics, in dynamics there is no area law guaran-

teeing the success of the MPS ansatz. In Chapter 5 we find that the entanglement generated

by the BCM Hamiltonian quickly reaches χmax and OpenMPS is not able to accurately

compute the late-time entanglement properties of quantum many body states. Therefore in

Chapter 6 we conduct a study of quantum cellular automata generalizations of the BCM

Hamiltonian using a Trotter-based time evolution scheme. This scheme uses an exact rep-

resentation of the quantum state. We refer to this code as Trotter exact in Chapter 5. This

code was developed by L. Hillberry [45]. While the representation of the quantum state

is exact in the Trotter based code, the propagator is approximated via the Suzuki-Trotter

decomposition [60]

e(Â+B̂)∆t = eÂ∆t/2eB̂∆teÂ∆t/2 +O(∆t3) . (2.60)

For a quantum cellular automata in which the neighborhood of site i is Ni ≡ {j : 0 <

|i − j| ≤ r}, the corresponding Suzuki-Trotter decomposition of the propagator is given by

Eq. (2.63):
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Û(∆t) = e−iĤ∆t = e−i
∑

i Ĥi∆t (2.61)

= e−i
∑r′−1

j=0

∑
i%r′=j Ĥi∆t (2.62)

=
r′−2∏
j=0

e−i
∑

i%r′=j Ĥi∆t/2e−i
∑

i%r′=r′−1 Ĥi∆t

r′−2∏
j=0

e−i
∑

i%r′=j Ĥi∆t/2 +O(∆t3) ,

(2.63)

where r′ = 2r+1. Since the operators in the sum
∑

i%r′=j Ĥi are defined on non-overlapping

sites and since the off site commutation relations are all zero the exponential of such a term

factorizes exactly

e−i
∑

i%r′=j Ĥi∆t =
∏

i%r′=j

e−iĤi∆t . (2.64)

Thus the only error introduced by the Suzuki-Trotter expansion is O(∆t3). Finally, in

Chapter 5 we demonstrate the convergence of our Trotter exact code by comparing it to

exact diagonalization (ED) code that computes the propagator Û directly. The only error

made by the ED code is due to the finite precision with which the computers represent

floating-point numbers. The exact diagonalization code does not have the additional O(∆t3)

of the Trotter-based code. We consider the error made by the ED code to be negligible

throughout the entire thesis.

28



CHAPTER 3

COMPLEX NETWORK MEASURE DEVELOPMENT

In this chapter we provide definitions of our complex network measures, error analysis

of our network measures, and a study of our complex network measures applied to random

networks, random quantum states, and cluster states.

3.1 Definitions of Complex Network Measures

In this section we provide definitions of all complex network measures that appear in

this thesis. The complex network measures defined in this section are: out-strength, in-

strength, network density, disparity, clustering coefficient, local clustering coefficient, Pearson

R similarity, closeness centrality, harmonic centrality, and betweenness centrality [3, 61, 62].

These are well-established complex network measures which we review here for the reader’s

convenience. The present study uses a mixture of unweighted and weighted complex network

measures. The use of unweighted complex network measures for the analysis of our quantum

mutual information networks is formally justified by averaging over a hypothetical ensemble

of unweighted networks [63]. We emphasize that although we define our complex network

measures in terms of quantum mutual information adjacency matrices, they are well defined

for arbitrary matrices.

The out-strength of a node is the sum of its outgoing connections to other nodes. Strength

is defined as

sout
i =

L∑
j=1

Iij . (3.1)

A node can have high out-strength if it has connections to many other nodes, or if it has

strong connections to only a few other nodes. In Chapter 7 nodes with connections to

many other nodes correspond to students that collaborate with many other students. Nodes

with strong connections to only a few other nodes correspond to students that collaborate
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frequently with only a few other students. The in-strength is similarly defined and quantifies

the importance of a node by the number of incoming connections sin
i =

∑L
j=1 ITij .

Network density is the fraction of links that exist in a network compared to the total

number possible in a network with L nodes. In the case of weighted networks network

density measures not the density of connections, but the average strength of connection. For

quantum mutual information adjacency matrices, the average quantum mutual over all two

sites is equal to the network density

D ≡ 1

L(L− 1)

L∑
i,j=1

Iij . (3.2)

Network density has been shown to correlate with robustness of food-webs to random removal

of species [2]1. In a network in which most of the connections that can exist do exist

the removal of any given link becomes less important. In our study of quantum mutual

information networks network density measures the average level of correlation between

sites.

The disparity of a node’s connections is a measure of the non-uniformity of the connection

strengths. If a node has a single strong connection with all other connections being much

weaker, then that node has high disparity. If the connection strengths of a node are all of

approximately equal strength, then that node has a low disparity. Disparity is defined as

Yi ≡
1

(si)
2

L∑
j=1

(Iij)2 =

∑L
j=1 (Iij)2(∑L
j=1 Iij

)2 . (3.3)

We define the disparity of a network to be the average of disparity over all nodes in the

network

Y =
1

L

L∑
i=1

Yi . (3.4)

Observe that if the mutual information between lattice sites adopts a constant value Iij = a,

that Yi = a2 (L− 1) /a2 (L− 1)2 = 1/ (L− 1). If a node has relatively uniform weights

1Reference [2] uses the term connectance in place of density.

30



across its neighbors the disparity between nodes will be approximately 1/ (L− 1). On the

other hand, if a particular Iij takes on a dominant value b, then Yi ≈ b2/b2 = 1. Disparity

has been used to study metabolic networks in Escherichia coli: in these metabolic networks

a weighted link Wij is placed between a metabolite i and a chemical reaction j if metabolite

i is produced by reaction j. The weight of the link Wij is the mass of the metabolite i that

is produced by the chemical reaction [14]. Disparity enable these researchers to distinguish

between two different forms of organization of the metabolic network and allowed them to

quantify the presence of a backbone structure in which each metabolite has a dominant

source reaction. In Chapter 7 we refer to the disparity of a node as its out-disparity, since in

that chapter we are studying directed networks. The out-disparity of a node’s connections

is a measure of the non-uniformity of the outgoing connection strengths. Nodes with high

out-disparity correspond to students that collaborate with certain students much more often

than they collaborate with other students. Nodes with low disparity correspond to students

that collaborate equally with all students that they collaborate with. The network measure

in-disparity measures the non-uniformity of the incoming connection strengths. To compute

Y in
i one makes the substitution I → IT in Eq. (7.6).

The clustering coefficient is a measure of the transitivity of connections. That is, the

likelihood that a is connected to c, given that a is connected to b and b is connected to c.

The clustering coefficient is defined as

C ≡ Tr(I 3)∑L
j 6=i
∑L

i=1[I 2]ij
. (3.5)

The clustering coefficient C is 3 times the ratio of triangles (three mutually connected ver-

tices) to connected triples in an unweighted network. The clustering coefficient has been

used in studies of social networks. In that context a link Aij between two nodes i and j

corresponds to a social relationship between two people. Therefore in social networks clus-

tering measures the probability that the friend of a friend is also a friend [4]. It has been

found that social networks and many real world networks have larger clustering coefficients
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than random networks.

The local clustering coefficient is also a measure of the transitivity of connections. How-

ever unlike the clustering coefficient the local clustering coefficient quantifies the transitivity

of connections of individual nodes. The local clustering coefficient is defined as

cLi ≡
[I3]ii∑

j 6=ik 6=i IijIik
. (3.6)

That is, one divides the total number of triangles node i is in by the total number of connected

triples centered on node i.

Pearson R similarity is a measure of how similar two nodes in a network are. We also

refer to this measure as the Pearson correlation coefficient in Chapter 4. It is a linear

correlation computed on the link weights of the two nodes i and j. A large value for Pearson

R similarity means that two nodes share many of the same neighbors, and with approximately

equal connection strengths. The Pearson R similarity between two nodes is defined as

rij ≡
∑L

k=1 (Iik − 〈Ii〉) (Ijk − 〈Ij〉)√∑L
k=1 (Iik − 〈Ii〉)2

√∑L
k=1 (Ijk − 〈Ij〉)2

. (3.7)

In previous studies this quantity has been used to study the similarity of connections in

unweighted networks [3], in our study we compute the Pearson R similarity R to quantify

the similarity of connection strengths of two sites on a quantum lattice. In Chapter 4 we

compute

R ≡ rL/2,L/2+1 . (3.8)

to study the quantum phase transitions of the transverse Ising and Bose-Hubbard models.

In Chapter 7 we study weighted directed networks that summarize the patterns of collab-

oration between students in three physics courses. To analyze these networks we introduce

three additional network quantities implemented in NetworkX [62], closeness centrality, har-

monic centrality, and betweenness centrality.

Closeness centrality is a measure of how close a node is on average to other nodes when

one must travel along directed links in the direction of the link. The closeness centrality of
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node u is defined as

cC(u) =
n− 1

|A| − 1

∑
v 6=u

d(v, u), (3.9)

where d(u, v) is the shortest path distance between v and u, n is the number of nodes

reachable from u, and |A| is the number of nodes in the network [62, 64].

For unweighted networks the distance between two nodes is the number of links separating

the two nodes. In a weighted network one can also associate a distance between any pair

of nearest neighbor nodes. For our analysis we will define the distance between nearest

neighbors i and j to be the inverse of the weight connecting them, 1/wij. One then computes

the distance between any two nodes by summing over the inverse edge weights of the links

separating the two nodes. In the context of social networks, closeness centrality can be

thought of as a measure of independence as described in [64]. This is because a node with a

large closeness centrality does not have to rely on other nodes to transmit messages across

the network [64].

As an example of a shortest path between two nodes consider the paths in the network

shown in Fig. 3.1, where links are labeled by their corresponding distances. In traveling from

node 1 to node 4 in Fig. 3.1, if one travels along the path from node 1 to node 2, from node 2

to node 3, and from node 3 to node 4, one will have traveled a distance of 3. Similarly along

the path from 1 to 6, and from 6 to 4 one travels a distance of 3. However, along the path

from 1 to 5 and from 5 to 4 one travels a distance of 4. So there are two distinct shortest

paths from node 1 to node 4.

Harmonic centrality is also a measure of how close a node is to other nodes in the network

when one must travel along directed links in the direction of the link. The harmonic centrality

of node u is defined as

cH(u) =
∑
v 6=u

1

d(v, u)
, (3.10)

where d(v, u) is the shortest path distance between nodes v and u [62, 65]. A quantity termed

the efficiency of a network was the inspiration for the definition of harmonic centrality [65].
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Fig. 3.1: Directed network illustrating concept of multiple shortest paths. Multiple shortest
paths connect nodes 1 and 4. Links are labeled by their weight, and nodes are given an
integer label to distinguish them from other nodes. The length of a path connecting two
nodes is the sum of the weights of the links connecting them. Closeness centrality, harmonic
centrality, and betweenness centrality all quantify the importance of a node via its shortest
paths to other nodes.

The efficiency of a network has been used to characterize non random structure and fault

tolerance in the neural network of C. elegans and transportation networks [66].

Betweenness centrality is measure of how important a node is as a go-between for mes-

sage transmission between nodes in a network, assuming that information travels along the

shortest path connecting two nodes [3]. The betweenness centrality of node u is defined as

cB(u) =
∑
s,t∈V

σ(s, t|u)

σ(s, t)
, (3.11)

where σ(s, t|v) is the number of shortest paths between nodes s and t that pass through

node u and where σ(s, t) is the number of shortest paths between nodes s and t [62, 67]. For

example σ(1, 4|6) = 1 in Fig. 3.1 because there is exactly one shortest path from 1 to 4 that

passes through node 6. While σ(1, 4) = 2 since there are two distinct shortest paths between

nodes 1 and 4. Betweenness centrality has been used to study networks of film actors, where

a connection between two nodes in a network corresponds to two actors appearing in a film

together [3]. In Chapter 7 betweenness centrality is a measure of the importance of each

student to information transfer throughout the network.
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3.2 Error Analysis of Network Measures

The mathematical definitions of our network measures lead to some difficulties in imple-

menting them numerically as described in the following paragraph.

The value of disparity is not singly defined about the zero network. This can be seen

by the following argument. Given a constant number a and a quantum mutual information

adjacency matrix I the value of disparity does not change upon a multiplying I,

Yi ≡
1

(asi)
2

L∑
j=1

(aIij)2 =

∑L
j=1 (aIij)2(∑L
j=1 aIij

)2 =

∑L
j=1 (Iij)2(∑L
j=1 Iij

)2 . (3.12)

As we make a smaller we can change it continuously to zero. Given two distinct quantum

mutual information adjacency matrices I1 and I2 they may have different values for network

disparity, say y1 and y2. If we now consider the above procedure of continuously varying

a to zero for each of these matrices we see that this makes disparity multiply defined for

the adjacency matrix consisting of all zeros, this is the adjacency matrix for a network

consisting of all nodes disconnected from each other. Since disparity is multi-valued about

the zero network we impose a lower bound on our quantum mutual information adjacency

matrices; for our studies we have chosen this to be εI = 10−14. If a link is found to have

quantum mutual information less than 10−14 it is set equal to 10−14. In Fig. 3.2 we display

the results of a simulation with disparity computed using different values of εI . The details

of the simulations are unimportant; the important point is that disparity converges to a

well defined value as εI approaches 10−14. Finally, in our numerical implementation a small

imaginary part ≈ 10−16 is added to the denominator of disparity before taking the real part

of the resulting division.

3.3 Network Measures Applied to Random Networks and Random Quantum
States

In order to understand what our measures are telling us about the structure of complex

networks we applied our measures to random adjacency matrices with L nodes for L ∈ [3, 20].
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Fig. 3.2: Convergence of disparity as a function of εI. Horizontal axis is time, t. Disparity
converges to the curve with εI = 10−14 as we decrease εI . Our lower bound on quantum
mutual information makes disparity single valued about the zero network. The curves for
εI < 10−5 overlap with the curve with εI = 10−14 so we do not show them.
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To generate a random adjacency matrix we generate (L2 − L) /2 numbers uniformly sampled

from the interval [0, 1). We then set the matrix elements Iij with j > i to these values. Next

we then set the matrix elements Iij with j < i equal to the elements with j > i since

our networks are undirected. Random numbers are generated using the NumPy function

random.rand [68]. In Fig. 3.3 we see that the clustering coefficient asymptotically approaches

C = 0.5 as we increase L. Similarly for network density we find that as L is increased,
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Fig. 3.3: Network measures applied to random adjacency matrices. The clustering coefficient
asymptotically approaches C = 0.5 as L is increased, and has smaller fluctuations. Network
density approaches D = 0.5 as L is increased, consistent with Eq. (3.13). Random adja-
cency matrices minimize disparity as L is increased. We fit the curve 1.28

L−1
to Y , the fit has

normalized sum of squared residuals of R2 = 4×10−3. The scaling of disparity demonstrates
that random adjacency matrices tend to minimize disparity.

network density approaches D = 0.5 as shown in Fig. 3.3 and the standard deviation of the

data tends towards zero as shown in Fig. 3.4. Disparity displays much different behavior than

the clustering coefficient and network density. We remind the reader that the minimum value

of disparity is 1
L−1

. It appears that random networks minimize disparity since in Fig. 3.3 we

observe that disparity appears to decay approximately as 1.28
L−1

. The observation that random
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Fig. 3.4: Fluctuations of network density applied to random adjacency matrices. The stan-

dard deviation of network density decays as a function of L according to σD =
√

1
6

1
L2−L .

networks have Y ≈ 1
L−1

can be understood from observing that networks with Y ≈ 1 must

have nodes that have only one or a few strong connections. Suppose 0.9 < Iij ≤ 1, with all

other connections 0 < Iij ≤ 0.1. The probability of these connection strengths for a single

node is ( 1
10

)L. For the entire network of L nodes the probability of them all having a large

value for disparity is then ≈ ( 1
10

)L
2
. We can understand both the variance and the mean of

network density from the following derivation. We choose an ordering of the links so that we

may replace Iij with xi and we note that there are N = L2−L
2

links, all being independent

random variables. The average network density of random adjacency matrices is
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〈D(I)〉 =

∫
D(I)P (I)dI =

∫ 1

0

...

∫ 1

0

2

L(L− 1)

∑
i,j>i

Iij
∏
i,j>i

dIij (3.13)

=
1

N

∫ 1

0

...

∫ 1

0

N∑
i=1

xi

N∏
i=1

dxi (3.14)

=
1

N
N

∫ 1

0

...

∫ 1

0

x1

N∏
i=1

dxi (3.15)

=
1

N
N

∫ 1

0

...

∫ 1

0

1

2

N∏
i=2

dxi (3.16)

=
1

2
. (3.17)

Performing a similar calculation for the evaluation of 〈D(I)2〉 we get

〈D(I)2〉 =
1

4
+

1

6

1

L2 − L . (3.18)

This accounts for why the network density is always near 1
2

and for why the variance decreases

as a function of L. We observe that since Y ≈ 1/(L− 1) for random networks

σD ≈
Y

6L
. (3.19)

We confirm this in Fig. 3.5.

For comparison to random networks we also applied our network measures to 100 random

quantum states for system sizes L ∈ [3, 10] as shown in Fig. 3.6. A random quantum

state of L qubits is generated by generating 2L complex numbers with real and imaginary

parts distributed according the normal distribution. Random numbers are generated with

the numpy function random.randn [68]. We observe that network density and clustering

coefficient behave very differently than for random adjacency matrices. Network density

decays as a function of system size for random quantum states while it is constant for random

adjacency matrices. One explanation for this decay is that significant levels of correlation

for average quantum states only exist for higher level correlations than can be observed with

I. Similarly clustering also decays as a function of system size: generic quantum states have

low transitivity of connections. Finally, we observe that disparity decays as 1
L−1

for random
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Fig. 3.5: Relation between disparity and variance of network density for random adjacency
matrices. The average disparity of random networks normalized by system size is propor-
tional to the variance of network density. A line of best fit is shown Y/6L = 1.21σ2

D with an
R2 = 4× 10−6.
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Fig. 3.6: Network measures applied to adjacency matrices of random quantum states. Net-
work density, clustering coefficient, and disparity all decay as a function of L. Disparity is
fit by the curve 1.1

L−1
with R2 = 10−2, while network density and the clustering coefficient are

fit by 3× 2−L with R2 = 2× 10−3 and R2 = 10−2 respectively. These estimates allow us to
distinguish random quantum states from non-random quantum states in Chapter 6.
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adjacency matrices and random quantum states. This tells us that networks from random

adjacency matrices and random quantum states tend to have uniform connection strengths.

From inequality (2.56) we can estimate the average mutual information between any two

sites on a lattice of L qubits as

Iij =
1

2
(Si + Sj − Sij) ≈

1

2

(
2

(
log2(2)− 22−L

2

)
− 2log2(2) +

24−L

2

)
= 21−L . (3.20)

Since network density is equal to the average quantum mutual information between all two

sites in the lattice, we fit network density with functions of the form a2−L. We find that

network density is well fit by 3× 2−L as shown in Fig. 3.6. Since the clustering coefficient is

equal to network density within error for large system sizes we use the same fit to estimate the

clustering coefficient of networks of random quantum states. Using these fits we are able to

estimate the value of our complex network measures for arbitrary system sizes. In Chapter 6

this allows us to quantify non-random structure in the quantum mutual information networks

generated by Hamiltonian-based quantum cellular automata.

In Chapter 6 we also compare the quantum states generated by our QCA to well known

quantum states like the |W 〉 state, the |GHZ〉 state, and a cluster state |C〉. Cluster states

are also known as graph states as they can be described by the links of a graph. A node in

the graph corresponds to the degrees of freedom of a certain site. To prepare a cluster state

one initializes the quantum state to an equal superposition of all states in the standard basis,

ψ = 1/
√

2L |+ + ...+〉. One then applies a controlled phase gate between each pair of sites

in the lattice with an link in the corresponding graph. We choose to compare the quantum

states generated by our quantum cellular automata to the cluster state corresponding to

a network in which all nearest neighbors are connected. Since the controlled phase gate

between sites 1 and 2 performs the mapping |i1i2〉 → (−1)i1i2 |i1i2〉 [69] in the standard basis

we can express the cluster state as
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|C〉 =
1√
2L

1∑
i1,..iL=0

L−1∏
j=1

(−1)ijij+1 |i1i2...iL〉 . (3.21)

Computing the quantum mutual information adjacency matrices of |C〉 for L ∈ [2, 8] we find

that for L ≥ 4 the entries of the adjacency matrix are I12 = I21 = IL−1L = ILL−1 = 1
2
, with

all other entries being zero. This corresponds to the network with a link between sites 1 and

2, and a link between sites L − 1 and L. The quantum mutual information network of the

cluster state has

D =
2

L(L− 1)
, C = 0 , and Y = 4/L . (3.22)

There are only ever two links, so the network becomes more sparse as system size is increased.

Furthermore the links are always intransitive since there are no closed loops of length three.

The nodes at the boundaries have a single dominant connection to their nearest neighbor,

and all other nodes have zero disparity, resulting in disparity decaying as 1/L instead of

1/(L − 1) as for random quantum states. We also verified our calculation of the quantum

mutual information adjacency matrices of the cluster state by comparing to numerics as

shown in Fig. 3.7. We observe that the quantum mutual information adjacency matrices of

|C〉 are very similar to those of

|φ−〉 = |0〉⊗L/2−1 ⊗ 1√
2

(|00〉 − |11〉)⊗ |0〉⊗L/2−1 , (3.23)

a spin singlet centered on a lattice of L qubits. In [45] it was found that the network density,

clustering coefficient, and disparity of the network of the spin singlet centered on a lattice

of L qubits

D =
2

L(L− 1)
, C = 0 , and Y = 2/L . (3.24)
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Fig. 3.7: Network measures applied to adjacency matrices of cluster states. Numerical calcu-
lations of complex network measures computed on quantum mutual information matrices of
a cluster state are compared to analytic prediction. Unlike random quantum states, density
of the cluster state decays algebraically and the clustering coefficient is always exactly zero.
Finally disparity scales as 1/L for cluster states instead of 1/(L− 1) as observed for random
quantum states.
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L. Hillberry also derived formulas for the network density, clustering coefficient, and disparity

of

|S〉 =
1√
2L/2

(|01〉 − |10〉)⊗L/2 , (3.25)

an array of singlets. The quantum mutual information adjacency matrices of the singlet

array, |S〉, have

D =
1

L− 1
, C = 0 , and Y = 1 . (3.26)

It was also shown in [45] that the |GHZ〉 state,

|GHZ〉 =
1√
2

(
|0〉⊗L + |1〉⊗L

)
, (3.27)

has quantum mutual information adjacency matrices with

D =
1

2
, C =

1

2
, and Y =

1

L− 1
. (3.28)

Finally, by deriving the constant quantum mutual information adjacency matrix of the |W 〉

state

|W 〉 =
1√
L

(|10...0〉+ |010...0〉+ ...+ |0...01〉) , (3.29)

it was shown in [45] that the network density, clustering coefficient, and disparity of these

networks are

D = IW , C = IW , and Y =
1

L− 1
(3.30)

where IW = 1
L

+ 1
2
log2(L) + L−2

2L
log(L − 2) − L−1

L
log(L − 1). We have also computed the

central bond entropy, Sbond, of |C〉, |φ−〉, |GHZ〉, and |W 〉. We have found that they all have

Sbond = 1 independent of system size. The singlet array has Sbond = 1 for L ∈ {10, 14, 18}

and Sbond = 0 for L ∈ {12, 16, 20}. This is because for L ∈ {10, 14, 18} sites L/2 and L/2+1

are completely entangled while for L ∈ {12, 16, 20} sites L/2 and L/2 + 1 are not entangled.

45



In Chapter 6 this analysis allows us to differentiate the states produced by our QCA from

these well-known states.
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CHAPTER 4

COMPLEX NETWORK ANALYSIS OF QUANTUM PHASE TRANSITIONS

In this chapter we apply the complex network measures developed in Chapter 3 to study

quantum phase transitions in two models of quantum many body physics, the transverse Ising

and Bose-Hubbard models. We find that network density, clustering coefficient, disparity,

and Pearson R correlation all show systematic finite-size scaling towards the critical points

of these two models. Furthermore, we identify the boundary separating the Mott Insulator

phase from the superfluid phase in the Bose-Hubbard model by extremization of network

density, clustering coefficient, and disparity. By successfully identifying phase transitions in

models of distinct many body physics we show that complex network measures are able to

detect emergent phenomena in quantum many body systems. For the phase transitions we

consider we find that our complex network measures are low in one phase, higher in the other

phase, and intermediate at the quantum critical points of both models. This is similar to

the intermediate values of complex network measures observed in Chapter 6 where we find

that quantum cellular automata generate quantum states with complex network measures

intermediate between random states and well characterized quantum states. Intermediate

values are one of our quantifications of complexity, so that in some sense quantum critical

points have the highest complexity of all static ground states explored in the quantum phase

diagrams of these systems.

While complex networks have appeared in the context of quantum systems in previous

work [18, 70] our development of quantum mutual information complex network analysis is

an innovation. The authors of [18] provide a new theoretical scheme for the distribution

and transmission of quantum entanglement. The authors of [70] develop a transmission

scheme for photons in cavities. Our complex network approach is different. We focus on

quantifying the structure of quantum mutual information networks. We thereby provide a
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new tool to analyze data from the networked quantum systems proposed in [70]. While both

transverse Ising and Hubbard phase diagrams have been understood with more standard

approaches, we chose to study these models as a proof of principle for quantum mutual

information complex network analysis. We emphasize that in emerging quantum simulator

technologies identifying the relevant order parameter may be nontrivial. However, since

quantum mutual information is bounded from below by all possible two point correlations it

will always identify the relevant correlations in such systems [24]. Furthermore, such systems

may break translation invariance as described in [28]. Therefore the correlations in these

systems will likely not exhibit simple monotonic decay. In the absence of monotonic decay

of correlations there is no clear correlation length defining the system. Instead the order of

such systems may be characterized by patterns of two point correlations. We propose that

complex network measures are an ideal tool to quantify the patterned correlations that will

be observed in quantum simulators.

4.1 Transverse Ising and Bose-Hubbard Quantum Many-Body Hamiltonians

The Hamiltonian of the transverse Ising model is defined as

ĤI = −J
L−1∑
i=1

σ̂zi σ̂
z
i+1 − Jg

L∑
i=1

σ̂xi , (4.1)

where
[
σ̂αj , σ̂

β
k

]
= 2iδjkεαβγσ̂

γ
k . The first term of the Hamiltonian is the coupling between

nearest neighbors on the lattice. For J > 0 the spins interact ferromagnetically, minimizing

energy by aligning with each other. We set J = 1 in our study. The second term models

an external magnetic field in the x direction. The parameter g controls the strength of an

external magnetic field that the spins align with as g � 1. For small values of the external

magnetic field strength spins align in their ground state. For finite systems the ground state

respects the Z2 symmetry of the model forming a GHZ-like state as depicted in Fig. 4.1.

The external field disorders spins in the z direction and induces a quantum phase transition

from a ferromagnetic phase to a paramagnetic phase at the critical point gc = 1 in the
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thermodynamic limit [34].
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Fig. 4.1: Sketch of mutual information complex network. A chain of L quantum bits (qubits)
in a sinusoidal potential, for the transverse Ising model, the “fruit-fly” of quantum many
body physics. (a) Links originating from site 3 (red, I3j) and site 6 (black, I6j) for the
mutual information complex network Iij, corresponding to phases and critical point in (b).
In this weighted complex network, the height of the links in our sketch denotes their relative
strength; note descending vertical axes from left to right. The entire complex network is far
too dense to depict, so we show just two representative sites. (b) Sketch of ferromagnetic
phase (left), critical point (center), and paramagnetic phase (right). The sinusoidal potential
corresponds to an optical lattice for ultracold atoms or molecules. In the ferromagnetic case,
the dashed line indicates a superposition between the Z2 symmetric states all spin-up and
all spin-down.

The Hamiltonian of the Bose-Hubbard model is defined as

ĤB = −J
L−1∑
i=1

(b̂†i b̂i+1 + b̂ib̂
†
i+1) +

1

2
U

L∑
i=1

n̂i(n̂i − 1̂)− µ
L∑
i=1

n̂i , (4.2)

where
[
b̂i, b̂

†
j

]
= δij are bosonic annihilation and creation operators and n̂i = b̂†i b̂i. The

Bose-Hubbard Hamiltonian is a model for ultracold atoms in optical lattices. The first term

of the Hamiltonian models the tunneling of atoms between nearest neighbor wells of the

optical lattice. The parameter J sets the energy gained by atoms when they tunnel between

sites of the lattice. The second term models the interaction between particles occupying

the same well. The parameter U > 0 sets the strength of the repulsive on-site interaction

felt by atoms occupying the same site. When the normalized tunneling J/U is large, atoms

are free to tunnel between nearest neighbor sites and they delocalize across the lattice as

a superfluid (SF). When J/U is small the atoms become localized so that there are a well

defined number of particles on each site and the atoms enter the Mott insulator (MI) phase.
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The final term of the Bose-Hubbard model is a chemical potential term. The parameter µ

sets the energy to add a particle to the lattice. We study the Bose-Hubbard model in the

canonical ensemble, for which the total number of particles on the lattice is fixed. Therefore,

the third term of our Hamiltonian is a constant energy shift. The µ term in Fig. 4.3(a) and

(c) is calculated from the difference in the ground state energy between simulations that

have N particles and simulations that have N + 1 particles, µ(N) = E(N + 1)−E(N). The

Mott insulator phase is characterized by an integer density N/L. For small values of J/U

the energy required to add a particle or hole to the Mott insulator is large, characterizing the

gapped nature of the Mott phase. as J/U increases this gap closes forming the boundaries

of the Mott insulator phase in the (µ/U, J/U) plane. There are multiple Mott lobes in the

phase diagram of the Bose-Hubbard model, each characterized by its density. We study

the boundaries of the Mott lobe with unit filling N/L = 1. There are two kinds of phase

transitions of the Bose-Hubbard model. There is a mean field phase transition in which the

system transitions from integer to non-integer density as it enters the superfluid phase, this

is known as the commensurate to incommensurate phase transition. There is also a BKT

transition in which the system transitions from the Mott insulator phase to the superfluid

phase at constant density N/L = 1. The best estimate of the BKT transition point is

currently (J/U)c = 0.305 [71]. The authors of [71] compute this estimate via a scaling

ansatz for the single particle gap. They identify the critical point (J/U)c as the point for

which the rescaled gaps of all system sizes intersect.

4.2 Complex Network Analysis of Transverse Ising and Bose Hubbard Ground
States

We begin our analysis by computing the ground states of the transverse Ising and Bose-

Hubbard models using OpenMPS. We set χmax = 2000 and ε = 10−12. The energy variance of

our ground states always satisfies inequality (2.58) with εv = L×10−8. In order to accurately

converge our quantum ground states we have assured that inequality (2.58) is satisfied for

χ < χmax. Since OpenMPS is a variational algorithm, if two states have nearly degenerate
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energy levels the algorithm may converge to a superposition of these states, resulting in

incorrect quantum mutual information networks. In the transverse Ising model the first

excited state is nearly degenerate with the ground state for g < 1. We therefore add a

perturbative parity field, −∏i σ̂
z
i , to the transverse Ising model in order to separate these

two energy levels [72]. This term commutes with the Hamiltonian, and since the ground

state of the transverse Ising model is not degenerate it does not modify the ground state.

In our numerical simulations of the Bose-Hubbard model we allow up to 5 particles on

site, truncating the local dimension to d = 6. We chose d = 6 as in [73] it is noted that

simulations with d = 8 do not produce visible changes in entanglement measures computed

on the ground state of the Bose-Hubbard model for simulations with 0 < N/L < 2.5. For

the transverse Ising model we compute the ground states for 321 points evenly spaced in the

interval g ∈ [0, 2], for system sizes

L ∈ {20, 40, 60, 80, 100, 140, 160, 200, 240, 280, 320, 360, 500} .

We then compute network density, clustering coefficient, disparity, and Pearson R correlation

on the quantum mutual information adjacency matrices of each of these quantum states as

defined in Eqs. (3.2), (3.5) , (7.6), and (3.7) in Chapter 3. For the Bose-Hubbard model at

unit filling we compute these network measures at 81 points evenly spaced in the interval

J/U ∈ [0, 0.4] for system sizes

L ∈ {14, 18, 22, 26, 30, 34, 38, 42, 46, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150}

to study the BKT phase transition. We present these results in Fig. 4.2. To study the

commensurate to incommensurate phase transition of the Bose-Hubbard model we compute

the ground states of a lattice of length L = 42 for a total number of particles N ∈ [0, 63]

and for 81 points evenly spaced in the interval J/U ∈ [0, 0.4]. For each value of J/U we

compute µ(N) for all N ∈ [0, 63]. We then compute network density, clustering coefficient,
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and disparity for all values of (J/U, µ/U).

In the traditionally ordered (ferromagnetic) phase of the transverse Ising model corre-

lations span the entire lattice as the system is in a many body superposition of all spin

up and all spin down. If a measurement is made on any qubit of the lattice it collapses

the quantum state of the entire system, determining the state of every other qubit in the

lattice. This is an indication of the fragility of such states [74]. Since any two qubits in the

lattice have become correlated in such a state all qubits have large quantum mutual infor-

mation with all other qubits. Specifically, for the GHZ state Iij = 0.5 between all qubits.

For such networks all connections that can exist do exist, making the network density large

in the ferromagnetic phase. Clustering behaves similarly to network density except that it

develops a local minimum near the critical point of the transverse Ising model. This local

minimum is due to the average number of connected triples temporarily growing faster than

the transverse magnetic field strength for the average number of triangles. Physically this

could be because the length scale of correlations has become as long as one lattice spacing

but not two, resulting in a period of rapid increase in quantum mutual information between

nearest neighbors relative to second nearest neighbors. In contrast with network density

and clustering, disparity asymptotically approaches 1
L−1

in the ferromagnetic phase and is

thus governed by the size of the system. Disparity increases in the paramagnetic regime

where correlations decay exponentially. This is due to spins becoming more correlated with

their nearest neighbor relative to other qubits in the network. The Pearson correlation be-

tween the middle lattice sites, R, develops a non-analyticity near g = 1 as the system size

is increased, evidenced by the cusp developing in Fig. 4.2. Qualitatively, R is low in both

the ferromagnetic phase and paramagnetic phase due to the collapse of the data onto single

points in the
(
IL

2
, i, IL

2
+1, i

)
plane when g � 1 and when g & 2. In contrast near criticality

the weights display an approximately linear relationship. In this way R measures non-trivial

correlation that occurs near criticality. In the ferromagnetic phase the network is completely

connected. In the paramagnetic phase the network is completely unconnected. Both net-
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works are trivial to describe. In the paramagnetic phase there is negligible quantum mutual

information between sites that are not nearest neighbors. In the ferromagnetic phase there

is the other extreme; a completely connected network in some sense dual to the paramag-

netic network. Near criticality the pattern of connections contains more structure than it

does on either side of the critical point. Disparity and density both appear to approach

limiting curves as we increase our system size. Normalizing each quantity results in a set of

normalized curves (Ỹ and D̃) whose intersections approach gc = 1 according to a power law

as shown in Table 4.1. To normalize network density we divide it by its value at g = 0 for

L = 500. In contrast, for disparity we divide it by its value at g = 2 for L = 500.

The Bose-Hubbard model at unit filling displays similar behavior in network density,

clustering coefficient and disparity as is seen in the transverse Ising model. By increasing

the strength of the normalized tunneling J/U the system transitions from a phase with low

network density to a phase with high network density as the system enters the superfluid

phase. In the superfluid phase particles all occupy the same non-local single particle state,

and the system is spatially entangled. The quantum mutual information between lattice sites

may be due to the density-density correlations between particles in different lattice sites. In-

terestingly, as system size is increased the network density of the superfluid phase decreases,

in contrast to the entangled phase of the transverse Ising model where, for increasing sys-

tem size, the network density increases. This may be due to the different statistics of the

noise in these two models: as described in [52] the statistics of atomic noise measurements

determines whether they are observable in macroscopic systems. From the Pearson R cor-

relation we can also see that the networks of the superfluid in the Bose-Hubbard model are

structured differently than the networks of the GHZ-like states in the ferromagnetic phase

of the transverse Ising model. In the ferromagnetic phase of the transverse Ising model the

quantum mutual information between any two qubits approaches the same constant value;

in contrast the quantum mutual information between any two qubits decays as a function of

separation distance in the superfluid phase of the Bose-Hubbard model.
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Fig. 4.2: Complex network measures on the mutual information. (a) Transverse quantum
Ising model describing quantum spins (qubits). The clustering coefficient C (red) and density
D (dashed black) serve as order parameters for the ferromagnetic phase. The disparityY
(dot-dashed blue) identifies the short range correlations of the paramagnetic ground state.
The Pearson correlation coefficient R (dotted green) develops a cusp near the critical point
gc = 1, identifying a structured nature to correlations near criticality. (b) Bose Hubbard
model describing massive particles for commensurate lattice filling, with BKT crossover
occurring in the limit L→∞ at a ratio of tunneling J to interaction U of (J/U)BKT = 0.305;
for smaller system sizes, the effective critical point [73] can be as small as (J/U)BKT ' 0.2.
The density and clustering coefficient grow as spatial correlations develop in the superfluid
phase. The disparity is high in the Mott insulator phase where correlations are short-ranged.
Critical/crossover behavior is most evident in derivatives of these measures, see Fig. 4.3 and
Table 4.1. Note: all network measures have been self-normalized to unity for display on a
single plot.
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4.3 Finite Size Scaling

In order to estimate the location of the critical point of the transverse Ising model and

the BKT transition point of the Bose-Hubbard model we perform finite size scaling analysis.

We define the positions of the effective critical points gc(L) and (J/U)c(L) for these two

models as points of maximum first and second derivative of our complex network measures.

By tracking these effective critical points as a function of system size we are able to ex-

trapolate to the thermodynamic critical point. We also track other features of our complex

network measures like the maximum of the Pearson R correlation and the local minima of

the clustering coefficient shown in Fig. 4.2. For each system size we interpolate the data

shown in Fig. 4.2 with 5th order polynomials using the scipy function interpolate.splrep

[75]. We locate the position of maximum absolute value of the first and second derivative of

clustering coefficient, network density, and disparity by sampling this polynomial at 10000

times the resolution of the original data and selecting the value of the control parameter (g

for transverse Ising and J/U for Bose-Hubbard) that maximizes the absolute value of the

first or second derivative. Some measures have multiple maxima in the absolute value of

their first and second derivatives. To uniquely define the maximum we track we also impose

the following conditions:

d2D

dg2
,
d2C

dg2
> 0 , (4.3)

dC

dg
,
d2R

dg2
< 0 , (4.4)

d2D

d(J/U)2
,

dC

d(J/U)
,

d2C

d(J/U)2
,

d2Y

d(J/U)2
,

dR

d(J/U)
> 0 , (4.5)

and

d2R

d(J/U)2
< 0 . (4.6)

Even with these conditions imposed the maxima are not uniquely defined for the first and

second derivatives of the clustering coefficient of the Bose-Hubbard model at unit filling. We
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therefore also impose the condition (J/U)c(L) > 0.15 for the clustering coefficient of the

Bose-Hubbard model at unit filling. The inequality (J/U)c(L) > 0.15 assures that we do not

track a maximum at J/U ≈ 0.12 in the derivative of the clustering coefficient.

All estimates of critical points included in Table 4.1 are made by fitting the effective

critical points as a function of system size to power laws of the form defined in Eqs. (2.40) and

(2.41) using the SciPy function optimize.curve fit [75]. The p0 argument of this module

allows one to specify initial values for the parameters to be fit to. For the Bose-Hubbard

model at unit filling the initial estimates of (J/U)c, A, and 1/ν ′ are set to 0.272, -0.211, and

1.67 respectively. We use these initial values for all estimates of the BKT critical point. We

find that our complex network analysis estimates the critical point of the transverse Ising

model to within 0.01% of its known value gc = 1. Furthermore, we are able to estimate the

position of the BKT transition to within 3.6% of its accepted value of J/U = 0.305 with just

150 lattice sites.

By extremizing network density, clustering coefficient, and disparity on a lattice of 42 sites

as a function of each value of (J/U) we estimate the boundaries of the Mott lobe as shown

in Fig. 4.3. Minimization of density results in similar estimates as maximization of disparity.

However, minimization of the clustering coefficient leads to slightly worse estimates as shown

in Fig. 4.3. Note that we extremize the data above and below the Mott lobe separately.

4.4 Conclusions

In conclusion, we have shown that complex network measures built on taking the quantum

mutual information as a weighted adjacency matrix reliably estimate quantum critical points

for well-known quantum-many body models, in particular the transverse Ising and Bose-

Hubbard models. These models include three classes of phase transitions, Z2, mean field

superfluid/Mott insulator, and a BKT crossover; in each case we obtain rapidly converging

accuracy for critical point values. Our work sets the stage for application of a new set

of quantum measures to provide insight into the complexity of quantum systems where

traditional correlation measures are at best weakly applicable. In Chapters 5 and 6 we will
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Fig. 4.3: Finite-size scaling for the Bose-Hubbard model and transverse Ising model. (a)
BHM quantum phase diagram for fixed L = 42 showing superfluid and Mott Insulating
phases with mean field phase transition along the Mott lobe and a BKT transition at its
tip. (b) BHM BKT transition at unit filling. Scaling in 1/L places the critical point at
(J/U)BKT = 0.316 (clustering, solid red), 0.284 (disparity, blue dot-dashed) and 0.282 (den-
sity, black dashed), respectively. Compare to the best value to date [76, 71] of 0.305, or the
Luttinger liquid prediction of 0.328. (c) Approaching the BHM mean field superfluid/Mott
insulator transition for fixed (J/U) = 0.1. Maximum disparity (blue circles), minimum clus-
tering (red plus signs), and minimum density (black star) scale towards the commensurate-
incommensurate phase boundary and lie closely on top of each other. (d) Scaling of multiple
measures and their derivatives for the TIM, see also Table 4.1.
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Table 4.1: Quantitative finite-size scaling analysis of quantum critical points. Estimates for
the critical point gc and (J/U)BKT and scaling exponents ν, ν ′ for the transverse Ising and
Bose Hubbard models, respectively, based on three complex network measures on the mutual
information. We include in our analysis first and second derivatives (FD, SD) since bare
measures are often insufficient, an effect well-known from one-point entanglement measures
like von Neumann entropy. We also note three other features: the local minima (LM)
in the clustering coefficient C, the local maximum in Pearson R correlation (LMA), and
an intriguing point where normalized disparity is equal to normalized density (Ỹ = D̃).
Entries are left blank where no significant feature appears in the complex network curves.
Our complex network measures clearly perform as well or better than standard measures,
particularly for the still improving estimates for the BHM BKT point [76].

Fit Parameter Network Density D Disparity Y Clustering Coefficient C Pearson Correlation R Ỹ = D̃
FD SD FD SD LM FD SD LMA FD SD

gc
1.001
±0.001

1.001
±0.001

1.001
±0.002

0.999
±0.001

0.999
±0.001

1.001
±0.001

1.001
±0.001

1.02
±0.001

1.007
±0.001

1.002
±0.001

ν
1.07
±0.01

1.02
±0.03

1.2
±0.05

1.03
±0.02

0.36
±0.01

1.09
±0.01

1.05
±0.02

1.76
±0.16

1.82
±0.15

0.65
±0.01

(J/U)BKT
0.281
±0.001

0.282
±0.001

0.146
±0.001

0.284
±0.001

0.275
±0.001

0.316
±0.001

0.278
±0.001

0.291
±0.06

0.199
±0.001

0.272
±0.002

ν ′
2.27
±0.06

2.58
±0.04

0.933
±0.02

2.88
±0.17

0.79
±0.03

1.69
±0.01

2.07
±0.07

1.56
±0.06

1.25
±0.01

2.3
±0.1

apply our new methods to study the dynamics of quantum cellular automata [40, 77].
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CHAPTER 5

CONVERGENCE OF QUANTUM CELLULAR AUTOMATA

In Chapter 4 we implemented network-based complexity measures successfully in Open-

MPS simulations of quantum phase transitions. We now turn to quantum cellular automata

and far-from-equilibrium quantum many-body dynamics, and examine the applicability of

powerful OpenMPS codes to this new context, in particular to the network-based complexity

measures introduced in Chapter 3 and applied in Chapter 4. Specifically, we will evaluate

matrix product state code as a means of evolving quantum states under the BCM Hamil-

tonian and a Hamiltonian motivated by rule 6 of [45]. We find that OpenMPS simulations

of hundreds of random Fock states and local defect initial conditions abruptly reach the

entanglement cutoff imposed by convergence parameter χmax. This abrupt saturation of

χ implies that OpenMPS is not a viable numerical method to study the dynamics of the

BCM Hamiltonian for most initial conditions. We also perform a case study of the quantum

blinker reported in [40]. Despite using one of the latest forms of time evolution available for

OpenMPS methods [57] we are unable to reproduce the quantum blinker under the initial

conditions specified in [40]. We find that this initial condition instead rapidly equilibrates

to a highly entangled quantum state. However, under a different choice of initial condition

we find that OpenMPS is able to reproduce a quantum blinker pattern observed in exact

simulation. For this single exceptional initial condition OpenMPS is able to accurately com-

pute several measures of complexity. We conclude the chapter by studying the evolution of

a single initial condition under the rule 6 Hamiltonian. We find it produces lowly entan-

gled dynamics for this initial condition. This suggests OpenMPS may be able to efficiently

simulate the dynamics of the rule 6 Hamiltonian.
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5.1 OpenMPS Convergence Analysis of BCM Hamiltonian

In contrast to the many and well-known studies [78, 79, 80, 81, 82, 83, 84, 85] of the

dynamics of quantum quenches, in which the initial condition is a ground state, we instead

study the evolution of various non-stationary initial conditions under the BCM Hamiltonian

defined in Eq. (2.42). We begin our analysis of this Hamiltonian by performing a scaling

study in the convergence parameter χmax. As described in Chapter 2, χ is the number of

singular values that are kept in the singular value decomposition of a quantum state. As

such, χ is a measure of the many body entanglement of a quantum state. Matrix product

state methods can simulate larger lattices than can be simulated using exact diagonalization

because physically relevant quantum states often have singular values that decay exponen-

tially quickly [46]. This approach results in an optimized low-dimensional representation in

Hilbert space which is only polynomial, rather than exponential in the system size, effec-

tively circumventing quantum blow-up. Therefore in simulating quantum states with matrix

product state methods one may keep a small number of singular values and still achieve a

useful representation of the quantum state. In simulating quantum many body dynamics

OpenMPS increases χ in order to satisfy inequality (2.59) until χ = χmax. In inequality

(2.59), ε determines how many singular values are kept by OpenMPS as long as χ < χmax.

Once χmax is reached we no longer have a converged estimate of the quantum state. How-

ever, one may compute the Schmidt error εs of a simulation in order to estimate the error

made by OpenMPS. The Schmidt error is the sum of the singular values that are neglected

by OpenMPS during a simulation. We find that after saturation of χmax the Schmidt error

is approximately constant for a few units of time before rapidly increasing. By performing

analyses of χ, and ε we are able to quantify how many lattice sites our Hamiltonian is able

to reliably evolve and under what choice of initial condition.

To assess the performance of OpenMPS we selected two kinds of initial conditions to

evolve under the BCM Hamiltonian, defect initial conditions and random Fock state initial
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conditions. Defect initial conditions are defined as

|ψ〉 = |0〉⊗L
2
−n |1〉⊗2n |0〉⊗L

2
−n , (5.1)

for L even and

|ψ〉 = |0〉⊗
L−(2n+1)

2 |1〉⊗2n+1 |0〉⊗
L−(2n+1)

2 . (5.2)

for L odd. That is, for an even number of sites one initializes the quantum state with the 2n

most central qubits in the |1〉 state, and all other qubits are initialized to the |0〉 state, while

for an odd number of sites the 2n+1 most central qubits are initialized to the |1〉 state while

all others are initialized to the |0〉 state. The definition of defect initial conditions assures

they are left-right symmetric. Random Fock state initial conditions are generated using the

NumPy random number generator random.rand [68]. Each site i is initialized to the state

|1〉 with probability p, and is initialized to the state |0〉 with probability 1 − p, resulting in

L local states |ψi〉 for i ∈ [1, L]. We then form the tensor product of these L states to form

a random Fock state

|ψ〉 =
L⊗
i=1

|ψi〉 . (5.3)

The simulations we are capable of running using OpenMPS must have reasonable values for

χ because simulation time scales ≈ χ3 as shown in Fig. 5.1. The simulations of Fig. 5.1 have

final time tf = 10.0 and time step ∆t = 0.1.

Running simulations with χmax = 320 we found that for local defect initial conditions

with 1 ≤ n ≤ 12 all simulations reach χmax within 7 units of time, as shown in Fig. 5.2. Since

all terms in our Hamiltonian are of order 1, the natural time scale for interaction within a

single neighborhood is 1 unit of time.

Even with χmax = 320 imposed these simulations take more than 96 hours to run for

tf = 8. If we did not impose this limitation on χ simulations would take even longer to

complete. In Chapter 6, where we turn to Trotter-based time evolution, we will find that

lattices of 20 qubits typically require at least 50 units of time to reach a central bond entropy
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Fig. 5.1: Scaling of OpenMPS simulation time with convergence parameter χ. Here we show
that for 26 qubits simulation time scales as χ2.54.
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Fig. 5.2: Saturation of χmax for local defect initial conditions. All local defect initial condi-
tions with 1 ≤ n ≤ 12 reach χmax = 320 within 7 units of time when evolved under the BCM
Hamiltonian and some take as little as 3 to 4 time units.
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that is nearly constant. Since reaching this constant value takes longer for larger systems it is

clear that OpenMPS is not a viable numerical method to simulate generic initial conditions

over the relevant times scales of QCA.

We also studied the effect of the ε convergence parameter on the time to reach χmax. As

expected increasing ε increases the amount of time to reach χmax for random initial conditions

with p = 0.6 as shown in Fig. 5.3. We choose p = 0.6 to avoid the extremes of p = 0 and p = 1
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Fig. 5.3: Dependence of χ on ε for random initial conditions. Simulations with smaller
values of ε are more accurate. However these simulations also require more time to simulate
due to larger χ. Simulations with ε increased to 10−1 have large errors in network measures
computed on the quantum mutual information complex networks.

as well as half filling at p = 0.5, which sometimes has special properties in quantum many

body models, e.g. the Fermi Hubbard Hamiltonian [34]. We also spot-checked other values

besides p = 0.6 and found similar results. These simulations have χmax = 80. Increasing ε

could allow simulations to be run more quickly, and thus make OpenMPS a viable numerical

procedure. However, we find that increasing ε results in large errors of complex network

measures as shown in Fig. 5.3.

We have also included a study of the time to reach χmax for random Fock state initial

conditions with p ∈ [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] and as a function of the initial filling
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factor ρ = (1/L)
∑L

i=1 〈n̂i(0)〉. We display our results in Fig. 5.4 and Fig. 5.5. Both Fig. 5.4

and Fig. 5.5(a) demonstrate that for intermediate values of the filling factor the time to

reach χmax is reduced. Interestingly, for local defect initial conditions we find that the time
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Fig. 5.4: χmax saturation time of random Fock state initial conditions. Random Fock states
with an intermediate value of the probability of placing |1〉 at any particular site reach χmax

earlier.

to reach χmax changes linearly with density, with a slope that is different above and below

some critical filling factor. For small values of p there is an increase in the variance of the

time to reach χmax. We believe this is due to the proximity of |1〉 states to the boundaries

of the lattice. In order to test whether the proximity of |1〉 states to the boundaries changes

the time to reach χmax we ran simulations with the defect displaced from the center of the

lattice by j sites,

|ψ〉 = |0〉⊗L
2
−n−j |1〉⊗2n |0〉⊗L

2
−n+j . (5.4)

For small values of the displacement we found that the time to reach χmax is not modified

as shown in Fig. 5.5(b). For larger values of the displacement we found that the time to
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reach χmax increases rapidly, accounting for the variance of the data in Fig. 5.4. If the sites

initialized in the |1〉 state happen to be near a boundary then simulation time is increased.
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Fig. 5.5: χmax saturation time of local defect initial conditions and displaced local defect initial
conditions. A critical filling factor minimizes the time to reach χmax. Small displacements
of local defect initial conditions do not modify the time to reach χmax. Large displacements
place |1〉 states near the boundaries of the lattice and the time to reach χmax increases
rapidly.

Because we cannot provide converged estimates of the quantum state after saturation of

χmax we will conduct the analysis of Chapter 6 using a Trotter-based time evolution scheme

written by L. E. Hillberry [45]. This code uses a second order Suzuki-Trotter decomposition

to perform time evolution on the exact quantum state, and therefore entanglement does not

effect simulation time. The main source of error in this code is due to the non-commutativity

of operators in the Suzuki-Trotter decomposition, which approximates the matrix exponen-

tial of a sum of operators in terms of a product of exponentials of operators as described in

Chapter 2. To establish the accuracy of the Trotter exact code we compare our Trotter-based

simulations to simulations performed using exact diagonalization. As noted in Chapter 2

Sec. 2.7, exact diagonalization still contains numerical error due to the finite precision with

which the computer represents floating-point numbers. These simulations have tf = 0.1,

and ∆t = 0.1/2k for k ∈ [1, 8]. We define the error of our Trotter-based simulations for a
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time step of ∆t as the maximum difference in the 2-norm between the state produced using

Trotter-based simulation and exact simulation over the entire simulation time, that is

ε∞,∆t = max
t
|| |ψ(t)〉Trotter,∆t − |ψ(t)〉ED,∆t ||2 . (5.5)

Two versions of the Trotter-based code were implemented, a symmetric and an asymmetric

version. In the symmetric version the decomposition of the matrix exponential results in

an error that should be proportional to ∆t2. In the asymmetric version the decomposition

of the matrix exponential should result in an error that is proportional to ∆t. We confirm

the scaling behavior of the error of both the asymmetric and symmetric time evolution

schemes in Fig. 5.6. Fitting the error data on a log-log scale we find that the asymmetric
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Fig. 5.6: Error of Trotter time evolution schemes. The error of our Trotter-based time
evolution scheme is proportional to ∆t2 for the symmetric scheme and ∆t for the asymmetric
scheme. The slope of the asymmetric fit is 0.952 with a sum of squared residuals of 6×10−8.
The slope of the symmetric fit is 1.952 with a sum of squared residuals of 4× 10−12.

time evolution scheme has ε∞,∆t ∝ ∆t0.952, while the symmetric time evolution scheme has

ε∞,∆t ∝ ∆t1.952. Since the symmetric time evolution scheme is more accurate than the
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asymmetric time evolution scheme we use the symmetric time evolution scheme throughout

the case studies in the sections below and in Chapter 6.

5.2 Blinker Case Study

In [40] an emergent quantum blinker pattern was reported in the dynamics generated by

the BCM Hamiltonian simulated on a lattice of 32 qubits with χmax = 30 and ∆t = 0.01.

Such patterns are one of our criteria for complexity. Therefore the ability of the BCM

Hamiltonian to generate such an emergent feature suggests that it may support other complex

patterns and thus be useful as a complexity generating Hamiltonian. In figure 2 of [40] the

initial condition of the quantum blinker pattern is reported as “four alive sites separated by

two dead ones”. We take this to mean the initial condition |0〉⊗L−6
2 ⊗ |110011〉 ⊗ |0〉⊗L−6

2 .

In Figure 2 of [40] the resulting dynamics show localized oscillations of 〈n̂i〉 over the first 30

units of time evolution, and a blinker pattern in the discretized expectation value b〈n̂i〉+0.5c.

In figure 3 of [40] this pattern is described as oscillation between |11011〉 and |00000〉. In

Fig. 5.7 we display the results of our OpenMPS simulations for this initial condition over

100 units of time with χmax = 32 and ∆t = 0.1. We do not observe localized oscillations
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Fig. 5.7: OpenMPS simulation of BCM blinker initial condition. We do not observe localized
oscillations of 〈n̂i〉 or b〈n̂i〉+ 0.5c.

in 〈n̂i〉 or the pattern described in the discretized expectation value. There appears to be

67



a transient oscillation between |0110〉 and |1001〉 for 20 < t < 40, however this does not

correspond to the pattern described in [40]. While the BCM paper uses a smaller time step

we note that the pattern they describe in their paper has a period of approximately 10 units

of time, so that we should be able to observe the dynamics with ∆t = 0.1. Also note that our

simulations of the BCM blinker initial condition are left-right symmetric for t < 40, while

the data shown in Figure 2 of [40] is clearly not left right symmetric for t > 10. Furthermore,

we have also confirmed that this pattern does not appear in Trotter-based simulations of 20

qubits.

Although we do not observe a blinker pattern for the initial condition considered in

the BCM paper, we have found that the initial condition |0〉⊗L−3
2 ⊗ |101〉 ⊗ |0〉⊗L−3

2 does

produce a quantum blinker pattern that is also observed in exact simulations. We refer to

this initial condition as the blinker initial condition. Despite the abrupt saturation of χmax

we have observed that OpenMPS is able to simulate particular observables for the quantum

blinker with limited χmax as shown in Fig. 5.8 for L = 20, tf = 100, and ∆t = 0.1. We
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(a) χ = 128
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Fig. 5.8: OpenMPS simulation of a quantum blinker. OpenMPS is able to simulate the
blinker initial condition with χ = 128. Decreasing χ to 16 leads to a damping of oscillations
and a delocalization of the blinker pattern. The blinker is therefore not a mean-field object,
its dynamics are fundamentally entangled.

performed these simulations for χmax ∈ {16, 32, 64, 128}. However, we only display results for
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χmax ∈ {16, 128}. We hypothesize that the blinker can be simulated in OpenMPS because

it is a small compact object, soliton-like. However, it is not a mean-field type object since it

is clearly unstable as we reduce χ. It is a fundamentally entangled robust emergent feature.

In Fig. 5.9 we show the complex network measures and the central bond entropy of

OpenMPS simulations of the quantum blinker with χmax ∈ {16, 32, 64, 128} and a Trotter-

based simulation. In contrast to most initial conditions, the central bond entropy of the
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Fig. 5.9: Complexity and entanglement measures for OpenMPS simulations of blinker. Open-
MPS is able to accurately converge complex network measures to the values computed by a
Trotter-based simulation. OpenMPS is also able to reproduce the fluctuations of the central
bond entropy despite χ saturating.

blinker increases logarithmically with time in Trotter-based simulations as we will find in

Chapter 6. The small value of the central bond entropy of the blinker initial condition
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implies the eigenvalues of ρ̂[1:L/2] decay more quickly as a function of eigen index than the

eigenvalues of other initial conditions. This is because the entropy measures the uniformity

of the eigenvalues of the reduced density matrix. For example, highly entangled states have

nearly maximal central bond entropy since the eigenvalues of the reduced density matrix

are all approximately equal. The logarithmically slow increase in the central bond entropy

observed in Trotter exact simulations of the blinker initial condition thus suggests that it may

be possible to simulate this initial condition accurately over longer simulation times than

generic initial conditions. In Fig. 5.10 we demonstrate that OpenMPS calculations of 〈n̂i〉,

C, D, Y , and Sbond converge to the values computed using our Trotter-based time evolution

scheme as χmax is increased. The error in each measure is define as the absolute difference in

the measure between OpenMPS and Trotter-based simulations. Since OpenMPS simulations

always underestimate the entanglement of the quantum state the error in the central bond

entropy does not significantly decrease as χmax is increased.

Interestingly the dominant frequencies and scale of fluctuations of the central bond en-

tropy are the same for exact simulations and OpenMPS simulations as shown in Fig. 5.11. To

compute σSbond
we first identify the dominant frequency f0 of the oscillations of the central

bond entropy for the blinker initial condition simulated using Trotter exact code. We then

define the period of oscillation of the blinker as T = 1/f0. We then compute the standard

deviation of the central bond entropy for t− T < t′ < t for t ∈ [T, tf ] for Trotter exact and

OpenMPS simulations. This definition differs from the definition of fluctuations in Chapter

6, however both definitions predict persistent fluctuations of the central bond entropy for the

blinker initial condition. In Chapter 6 we argue that persistent fluctuations of the central

bond entropy and complex network measures far from known/random states are quantifiers

of complexity. Therefore, for the blinker initial condition OpenMPS accurately computes

the complexity of the quantum many body dynamics, but is not able to accurately compute

the entanglement of the quantum many body dynamics.
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Fig. 5.10: Error of complexity, entanglement, and local measures for OpenMPS simulations
of blinker. As χ is increased the absolute difference between complexity measures computed
by OpenMPS and Trotter-based code is reduced. OpenMPS simulations of the local observ-
able 〈n̂i〉 also converge to Trotter-based simulations as χmax is increased. The error in 〈n̂i〉 is
computed by averaging over the absolute error at each site. The error in Sbond is not signifi-
cantly reduced by increased χmax. Although OpenMPS is able to converge local observables
and complex network measures it does not provide reliable estimates of entanglement

71



0.0 0.1 0.2 0.3
f

10−3

10−2

10−1

100

F
(S

bo
nd

)

Trotter Exact
MPS χ = 128

20 40 60 80 100
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

σ
S
bo

nd

Trotter Exact
MPS χ = 128

Fig. 5.11: Power spectrum and fluctuations of blinker initial condition simulated with Open-
MPS and Trotter-based code. The dominant frequencies of the blinker initial condition simu-
lated with OpenMPS and Trotter exact code are the same despite OpenMPS not accurately
computing the central bond entropy. OpenMPS is able to compute the complexity of the
quantum many body dynamics despite being unable to compute its entanglement.

5.3 Rule 6 Case Study

In Fig. 5.10 we found that OpenMPS can reliably compute measures of complexity for

the blinker initial condition. However, it is not able to accurately compute the amount of

entanglement generated by the BCM Hamiltonian. An interesting question is therefore, does

a quantum game of life Hamiltonian exist for which OpenMPS is able to reliably compute

both the entanglement and the complexity generated? We investigate this question by

studying the evolution of the blinker initial condition for L = 20, tf = 100, and ∆t = 0.1

under another quantum cellular automata Hamiltonian, the rule 6 Hamiltonian. Rule 6 is

simpler than the BCM Hamiltonian: the rule 6 Hamiltonian is defined as

Ĥ =
∑
i

(
b̂i + b̂†i

)
N̂ (1),1
i . (5.6)

That is, if a site has exactly one neighbor in the alive state, then this site undergoes evolution

according to the term
(
b̂i + b̂†i

)
, otherwise the site remains static. Although we use the same

rule operators in our Hamiltonian version of rule 6, we use the main operator b̂i + b̂†i instead

of the ĤDP̂ (θ) used for unitary-based QCA. In Fig. 5.12 we find that rule 6 produces solitons
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that reflect from the boundaries of the lattice several times during the simulation. In Fig. 5.13
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Fig. 5.12: Spacetime plot of 〈n̂i〉 for OpenMPS simulation of rule 6 Rule 6 produces ex-
citations that travel to the boundaries of the lattice and then induce oscillations near the
boundaries. The existence of localized traveling solutions suggests the rule 6 Hamiltonian
may be a complexity generating Hamiltonian. We hypothesize that only Goldilocks rules are
complexity generating.

and Fig. 5.14 we find that OpenMPS is able to reliably compute the central bond entropy

and complex network measures of quantum mutual information networks. This suggests

that some quantum cellular automata can be simulated with OpenMPS while others can not.

However, it would be necessary to perform simulations over many more initial conditions

before concluding that the rule 6 Hamiltonian can be simulated with OpenMPS. In this

chapter we have studied two forms of convergence of our OpenMPS simulations. We found

that OpenMPS is not able to compute converged estimates of quantum states for any of the

initial conditions or Hamiltonians studied according to the internal convergence parameters

χmax and ε. However, for particular observables computed on the blinker initial condition we

found that OpenMPS is able to reliably converge to the results of our Trotter-based evolution

scheme. Finally, there is a third form of convergence that will be left to a future researcher,

evaluating the sensitivity of OpenMPS to perturbations in the definition of quantum cellular
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Fig. 5.13: Entanglement and complexity measures of OpenMPS simulation of rule 6. Open-
MPS is able to accurately compute both the entanglement and complexity of a quantum
state evolved under the rule 6 Hamiltonian. That is, OpenMPS accurately computes the
central bond entropy and complex network measures of quantum mutual information com-
plex networks when compared to a Trotter-based simulation.
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Fig. 5.14: Error of complexity measures and entanglement measures for OpenMPS simulation
of rule 6. Error in the complex network measures and the central bond entropy for an
OpenMPS simulation of an initial condition evolved under the rule 6 Hamiltonian.
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automata, for instance multiplying the rule operators by non binary coefficients. In Chapter

6 we will investigate the possibility that some quantum cellular automata can be simulated

with OpenMPS by studying the entanglement and complexity generated by 13 quantum

cellular automata for 13 initial conditions with Trotter-based time evolution.
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CHAPTER 6

COMPLEX DYNAMICS OF QUANTUM CELLULAR AUTOMATA

In this chapter we will study the question “is complexity typically lowly, highly, or both

lowly and highly entangled?” and quantify a new physical class of states that are produced

by our time evolution schemes displaying high complexity and non-random structure. We

also evaluate a set of hypotheses concerning Goldilocks rules. Intuitively these are rules

that produce activity if there are just the right number of sites in the alive state in the

neighborhood of a particular site, not too few, and not too many. For nearest-neighbor

unitary-based quantum cellular automata there is only one Goldilocks rule: rule S = 6 of

[45]. In [45] rule S = 6 was found to be the only rule that produced robust and complex

dynamics. In our study of next-nearest-neighbor Hamiltonians we focus on quantifying

the set of complexity generating rules as quantified by persistent entropy fluctuations with

many frequencies, robust dynamical features, and intermediate values of complex network

measures applied to quantum mutual information networks. Motivated by the findings of [45]

we hypothesize that only Goldilocks rules will be complexity generating. Furthermore, we

hypothesize that non-Goldilocks rules tend toward thermalization as quantified by reductions

in entropy fluctuations.

We start by introducing our measures of entanglement and complexity. We then study

the dynamics of local observables and identify an emergent quantum blinker pattern in the

dynamics of 〈n̂i〉 for multiple rules. By performing Fourier analysis of network density,

clustering coefficient, disparity, and the central bond entropy we quantify the complexity

of our dynamics in terms of the number of peaks above a red noise threshold. Next we

study the complexity and entanglement generated by our rules at late times by studying

late-time averages of the central bond entropy, fluctuations in the central bond entropy, and

complex network measures. We conclude with a case study of the long time evolution of a

77



quantum blinker pattern observed in rule 12. We study how the pattern responds to a linear

perturbation and we study the entanglement interactions of two blinker initial conditions.

6.1 Rules, Initial Conditions, and Measures

In this section we define the set of rules and initial conditions that we will study in the rest

of the chapter. In this chapter we study next-nearest neighbor (r = 2) Hamiltonian-based

quantum cellular automata, specifically rules

R ∈ {2, 3, 4, 6, 7, 10, 12, 14, 15, 17, 21, 23, 28}

where R is defined in Eq. (2.48) and the general form of R̂i is defined in Eq. (2.47) in

Chapter 2. Here we summarize the operators these rules correspond to

R̂i = N̂ (1)
i ⇔ R = 2 , (6.1)

R̂i = N̂ (0)
i + N̂ (1)

i ⇔ R = 3 , (6.2)

R̂i = N̂ (2)
i ⇔ R = 4 (6.3)

R̂i = N̂ (1)
i + N̂ (2)

i ⇔ R = 6 , (6.4)

R̂i = N̂ (0)
i + N̂ (1)

i + N̂ (2)
i ⇔ R = 7 , (6.5)

R̂i = N̂ (1)
i + N̂ (3)

i ⇔ R = 10 , (6.6)

R̂i = N̂ (2)
i + N̂ (3)

i ⇔ R = 12 , (6.7)

R̂i = N̂ (1)
i + N̂ (2)

i + N̂ (3)
i ⇔ R = 14 , (6.8)

R̂i = N̂ (0)
i + N̂ (1)

i + N̂ (2)
i + N̂ (3)

i ⇔ R = 15 , (6.9)

R̂i = N̂ (0)
i + N̂ (4)

i ⇔ R = 17 , (6.10)

R̂i = N̂ (0)
i + N̂ (2)

i + N̂ (4)
i ⇔ R = 21 , (6.11)

R̂i = N̂ (0)
i + N̂ (1)

i + N̂ (2)
i + N̂ (4)

i ⇔ R = 23 , (6.12)

R̂i = N̂ (2)
i + N̂ (3)

i + N̂ (4)
i ⇔ R = 28 . (6.13)

Since the Hamiltonian-based QCA we study in this chapter are all r = 2 (next-nearest-

neighbor) we write N̂ (j)
i instead of N (j),2

i as written in Eq. (2.47) in Chapter 2. A Goldilocks

rule is defined as a rule which produces activity if the number of sites in the state |1〉 is
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within an interval not including the maximum possible number of living sites, 2r, or the

least possible number of living sites, 0. Thus, of the rules we study, rules 2, 4, 6, 12, and 14

are Goldilocks rules, while rules 3, 7, 10, 15, 17, 21, 23, and 28 are non-Goldilocks rules. In

Fig. 6.1 we provide sketches of the rule operators defined in Eqs. (6.1)-(6.13) to illustrate

the difference between Goldilocks and non-Goldilocks rules.
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Fig. 6.1: Sketch of Goldilocks and Non-Goldilocks Rules. Goldilocks rules are rules that
produce activity if there are just the right number of neighbors in the alive state, |1〉, not
too few and not too many. A horizontal line at 1̂ from n to n + 1 indicates that a rule
produces activity if there are exactly n neighbors in the alive state, |1〉. A horizontal line
at 0̂ from n to n + 1 indicates that a rule does not produce activity if there are exactly n
neighbors in the alive state, |1〉. Rules 2, 4, 6, 12, and 14 are Goldilocks rules. Rules 3, 7,
10, 15, 17, 21, 23, and 28 are non-Goldilocks rules.

For most of this chapter we study the properties of next-nearest-neighbor Hamiltonian-

based QCA. However, in Sec. 6.5 we perform a follow up study of the nearest-neighbor

unitary-based QCA defined in [45] for rules S ∈ {1, 2, 6, 9, 10, 14}. The rule number, S, for

these nearest-neighbor unitary-based quantum cellular automata is defined in Eq. (2.53) in
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Chapter 2. While [45] studied bond entropy fluctuations for nearest-neighbor unitary-based

QCA, we study the scaling of the central bond entropy as a function of system size.

For our study of next-nearest-neighbor Hamiltonian-based QCA and our study of nearest-

neighbor unitary-based QCA we perform simulations for the following initial conditions:

|B〉 = |0...101...0〉 , (6.14)

|D2〉 = |0...0110...0〉 , (6.15)

|D3〉 = |0...01110...0〉 , (6.16)

|T1〉 = |0...0110110...0〉 , (6.17)

|T2〉 = |0...01100110...0〉 , (6.18)

|T3〉 = |0...011000110...0〉 , (6.19)

|T4〉 = |0...0110000110...0〉 , (6.20)

|φ+〉 = |0〉⊗L/2−1 ⊗ 1√
2

(|00〉+ |11〉)⊗ |0〉⊗L/2−1 , (6.21)

|φ−〉 = |0〉⊗L/2−1 ⊗ 1√
2

(|00〉 − |11〉)⊗ |0〉⊗L/2−1 , (6.22)

|S〉 =
1√
2L/2

(|01〉 − |10〉)⊗L/2 , (6.23)

|r3〉 , (6.24)

|R3〉 , (6.25)

|C〉 . (6.26)

The state |B〉 is the blinker initial condition, |Di〉 is a local defect initial condition with i

states in the alive state |1〉, |Ti〉 is the two defect initial condition with defects separated

by i sites, |φ±〉 are Bell states, |S〉 is an array of spin singlets, |ri〉 is a random quantum

state with normally distributed complex coefficients and random seed i, |Ri〉 is a random

Fock state with probability of placing |1〉 at any site of p = 0.5 and random seed i, and |C〉

is a cluster state with links between nearest neighbors on the lattice [69]. Although initial

condition |S〉 is an eigenstate of rule 17 we have decided to include it in our study as it is

one of the only initial conditions with non-trivial entanglement structure, and it is not a

stationary state of any other rule we consider.
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We quantify the amount of entanglement in simulations by the central bond entropy Sbond

defined in Eq. (2.17) of Chapter 2. This quantity is similar to the χ parameter of Chapter

5, for highly entangled simulations Sbond ≈ log2(χ). In Sec. 6.7 we study Sbond normalized

to its maximum value of Smax = L/2. We quantify the complexity of our simulations by

persistent fluctuations of the central bond entropy as well as complex network measures far

from their values for random/well known states. Fluctuations of the central bond entropy

are defined as the difference in the central bond entropy between times t and t− n∆t

∆S(t)n = Sbond(t)− Sbond(t− n∆t) . (6.27)

In Sec. 6.2 we study |∆S1| averaged over groups of τ = 20 time steps. We have also

considered averages with τ = 5, 10 however we find the same trends as for τ = 20. Analyses

of |∆Sn| for n ∈ [2, 5] make similar predictions for the complexity of dynamics as |∆S1| in

Sec. 6.4. Therefore we refer to ∆S1 as ∆S in this chapter. All simulations have a time step

of ∆t = 0.1 and final time of tf = 100 except for the long time simulation of the quantum

blinker, which has tf = 1000. We have assured the convergence of late-time averages in the

time step ∆t by comparing to simulations with ∆t = 0.1/23 as described in Sec. 6.4. All

measures are computed at each time step. In Sec. 6.4 we compute late-time averages of

all quantities, and denote the average by a bar over the measure. Late-time averages of a

measure are computed by averaging over the last Nlt values of that measure for a simulation

in order to discard transients. We have set Nlt = 100 throughout our study, however we have

also assured the convergence of our results in Nlt by comparing to analyses with Nlt = 500

as described in Sec. 6.4. We study lattices of lengths L ∈ {10, 12, 14, 16, 18, 20}.

6.2 Dynamics of Local Observables and Entanglement

In Fig. 6.2 and Fig. 6.3 we provide spacetime plots of the expectation value of the number

operator, 〈n̂i〉, and the single site von Neumann entropy Si. In each plot we show the

dynamics of initial condition |B〉 evolved under rules 2, 3, 4, 12, 17, and 23. In these

spacetime plots the vertical axis is time t and the horizontal axis is site i of our lattice. We
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do not observe robust dynamical features in 〈σ̂yi 〉 = i 〈b̂i − b̂†i〉 or 〈σ̂xi 〉 = 〈b̂i + b̂†i〉 that are not

already present in the dynamics of 〈n̂i〉. Although, interestingly only the cluster state initial

condition produces dynamics in 〈σ̂xi 〉 for our Hamiltonians. The dynamics of local observables

can identify localized solutions like the quantum blinker patterns shown in Fig. 6.2(c), (d),

and (f). These quantum blinker patterns are examples of the robust dynamical features we

expect to find in complexity generating rules. Such localized solutions often correspond to

simulations that are less highly entangled than simulations without localized solutions. While

the blinker structures of rules 12 and 28 are well localized and have a well defined period, the

oscillations of rule 4 appear to have additional frequencies. Rule 2 thermalizes to a state with

a Gaussian profile in 〈n̂i〉, while rule 3 thermalizes to a state with constant 〈n̂i〉 throughout

the lattice except near the boundaries. Rule 17 produces independently oscillating patterns

along the boundaries of the lattice, separated by 7 non-evolving sites. In Fig. 6.3(c) we find

that the rule 4 blinker has highly dynamic entanglement of the von Neumann entropy. This

contrasts with the blinkers of rules 12 and 28 which have entanglement that slowly diffuses

to the boundaries of the lattice. The boundaries of the diffusing entanglement can also be

observed in the spacetime plots of 〈n̂i〉 suggesting that the local observable 〈n̂i〉 correlates

with Si. We also find that the von Neumann entropy of rule 2 equilibrates to a similar

pattern as 〈n̂i〉, with entanglement in the center of the lattice and less entanglement at

the boundaries. Similarly, Si of rule 3 is lower where 〈n̂i〉 equilibrates to lower values, and

higher where it equilibrates to higher values. This relationship between a local observable

and an entanglement measure is reminiscent of the relation between number fluctuations

and von Neumann entropy derived in [86]. The spacetime plot of rule 17 shows that the

non-dynamical sites have no entanglement with other sites, implying that rule 17 produces

spatially factorized dynamics.

We have identified different behaviors of the late-time central bond entropy as a function

of system size, initial condition, and rule number. For some simulations the central bond

entropy approaches a constant value near L/2 as L is increased. These simulations have
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Fig. 6.2: Spacetime plots of 〈n̂i〉 for quantum cellular automata evolution of initial condition
|B〉. Rules 4, 12, and 28 have blinker-like patterns. Rule 2 thermalizes to a state with a
Gaussian profile in 〈n̂i〉. Rule 3 thermalizes to constant 〈n̂i〉 throughout the lattice except
for sites near the boundaries. Rule 17 produces two independent oscillating patterns.
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Fig. 6.3: Spacetime plots of Si for quantum cellular automata evolution of initial condition
|B〉. Entanglement propagates at different rates for the blinker structures of rules 4, 12, and
28. Rule 17 produces spatially factorized dynamics. Plots are asymmetric due to the lattice
having an even number of sites.
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small fluctuations of the central bond entropy as shown for rules 3 and 15 in Fig. 6.4.

In other simulations the central bond entropy approaches a constant value less than L/2

with larger fluctuations in the central bond entropy as shown for rules 2, 12, and 28 in

Fig. 6.4. The quantum blinker patterns of rules 12 and 28 have bond entropy that grows

very slowly. However, the average value of the central bond entropy keeps increasing for

the entire simulation as shown in Fig. 6.4. Finally, rule 4 produces dynamics whose average

value does not increase as a function of L for certain initial conditions. These simulations

have large fluctuations of the central bond entropy. We show an example in Fig. 6.4. Rule

17 often produces dynamics that spatially factorize and have zero central bond entropy.

However for initial condition |C〉 we have found that rule 17 generates dynamics that appear

to obey an area law. That is, Sbond is independent of system size and we do not observe

localized solutions in local observables like 〈n̂i〉 for initial condition |C〉 evolved under the

rule 17 Hamiltonian.

In Fig. 6.5 we present the results of computing |∆S(t)| averaged over τ = 20 time steps

for all initial conditions in Eqs. (6.14)-(6.26), all rules in Eqs. (6.1)-(6.13), and L ∈ {10, 20}.

For L = 10 it is difficult to differentiate rules that have persistent fluctuations of the central

bond entropy, however for L = 20 there are clear differences. The set of initial conditions

with average |∆S| ≈ 10−4 for the entire simulation correspond to the random initial condition

|r3〉. Certain rules have fluctuations that approach levels consistent with this random initial

condition, while other rules have fluctuations well above values consistent with the random

initial condition. While Fig. 6.5 displays the fluctuations of the central bond entropy for

all rules we also provided plots for rules 4 and 7 alone in Fig. 6.6(a) and (b) respectively.

Unlike the Goldilocks rule 4, the non-Goldilocks rule 7 has significantly reduced fluctuations

of the central bond entropy for all initial conditions. Most rule 7 simulations approach levels

consistent with the random initial condition, |r3〉. We say that rules with fluctuations above

levels consistent with the random initial condition have persistent fluctuations of the central

bond entropy. In Sec. 6.4 we quantify this notion more precisely.
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Fig. 6.4: Bond entropy time series for quantum cellular automata evolution of initial condi-
tion |B〉. For many rules Sbond increases nearly linearly before approaching a constant value
dependent on L. Rules producing a blinker-like pattern in 〈n̂i〉 have oscillations in Sbond.
Rule 4 produces dynamics of Sbond that fluctuate at a constant independent of L.
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Fig. 6.5: Fluctuations of the central bond entropy for quantum cellular automata for all
initial conditions and all rules. Lines are color coded by rule. The simulations with initial
fluctuations of the central bond entropy at ≈ 10−4 are simulations with a random initial
condition |r3〉. Many rules have a drastic reduction in fluctuations of the central bond
entropy as fluctuations approach levels consistent with a random initial condition. Other
rules maintain fluctuations of the central bond entropy for the entire simulation.
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Fig. 6.6: Fluctuations of the central bond entropy for rules 4 and 7 for all initial conditions.
The Goldilocks rule 4 maintains fluctuations at the level of 10−3 over the entire simulation
for most initial conditions. In contrast, the non-Goldilocks rule 7 has significantly reduced
fluctuations of the central bond entropy, thermalizing towards a state consistent with the
random initial condition |r3〉.

6.3 Fourier Analysis

In his Master’s thesis L. Hillberry introduced frequency analysis of complex network

measures to characterize entanglement dynamics [45]. He identified significant peaks by

computing a 95% confidence red noise spectrum and finding peaks in the power spectra of

complex network measures that are above this red noise spectrum [45]. Qualitatively, red

noise is noise that has a power spectrum that decreases as frequency is increased. In contrast

to white noise, which is uncorrelated in time, red noise is correlated in time. Such power

spectra are often observed in time series of complex systems, for example precipitation totals

from Earth’s atmosphere and solar flares from the Sun [87, 88]. Red noise can be generated

from white noise from the first order linear Markov process x(t) = rx(t−∆t) + y(t) where

y(t) is a white noise term added to the signal at each time step [87]. This is essentially a

random walk parameterized by the redness parameter r. If r = 0 the signal at time t does

not depend on the signal at time t−∆t and the signal is white noise. As r is increased the

signal at time t does depend on the signal at time t−∆t and so the signal will be correlated
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in time. The power spectrum of this model of red noise is [87]

Fr =
1− r2

1− 2rcos(2πf∆t) + r2
. (6.28)

The autocorrelation coefficient between times t and t−∆t is equal to the red noise parameter

for this model of red noise [87]. Therefore, under the null hypothesis that the time series of

our measures are due to such a red noise process we compute the autocorrelation coefficient

between times t and t − ∆t for each time series to estimate its redness parameter. We

then construct a normalized red noise spectrum Fr/|Fr| to compare to the normalized power

spectrum of the time series F/|F |. The norm of a power spectrum is defined as the sum of

the power spectrum over all frequencies. Next we multiply the Fr derived for each time series

by χ2 = 5.991 for the χ2
2 distribution with p = 0.05. This sets a 95% confidence level that

peaks found above the red noise spectrum are not due to random fluctuations. The peaks of

our spectra that are above their 95% confidence level red noise threshold we deem significant.

Our criterion for a significant peak in the power spectra of a measure is that it have a greater

amplitude than the power spectrum of its corresponding red noise signal. From analyses of

power spectra for different system sizes we have found that the power spectra for smaller

system sizes tend to be less smooth. The power spectra for larger system sizes typically have

the same set of important frequencies as smaller system sizes, however some peaks disappear

as the system size is increased. We interpret such disappearing peaks to represent finite-size

effects and therefore to be less universal than persistent peaks. Scaling studies up from

L = 10 reveal that the number of significant peaks decreases as system size is increased for

all rules. In Fig. 6.7 we provide an example of our red noise analysis for rules 14 and 21.

Rule 14 has hardly any significant peaks for any measure while rule 21 has many significant

peaks. The peaks of rule 21 above the 95% confidence level red noise threshold shown in

Fig. 6.7(b) indicate that its dynamics are not consistent with the red noise null hypothesis.

In our summary plots of the significant frequencies of our rules we only include peaks

for L = 20, as much of the data for L < 20 is redundant and exhibits finite size effects.

89



0.0 0.1 0.2 0.3 0.4 0.5 0.6
f

10−4

10−3

10−2

10−1

F
(S

bo
nd

)

(a) R = 14

0.0 0.1 0.2 0.3 0.4 0.5 0.6
f

10−4

10−3

10−2

10−1

F
(S

bo
nd

)

(b) R = 21

Fig. 6.7: Power spectra of the central bond entropy for evolution of initial condition |B〉
evolved under rules 14 and 21 on a lattice of 20 qubits. 95% confidence level red noise
threshold is indicated by a blue dashed line. The power spectra of the central bond entropy
are indicated by black circles. Lines are a guide to the eye. The peaks of rule 21 above this
threshold indicate its dynamics are not consistent with red noise. In contrast rule 14 has no
peaks above the red noise threshold indicating that its dynamics may be consistent with red
noise.

Many peaks are common amongst our various complex network measures. In Fig. 6.8(a)

we plot the frequency of significant peaks of the central bond entropy, complex network

measures, and the local observable 〈n̂L/2−1〉 for all initial conditions. In Fig. 6.8(a) we find

that clustering and density often have peaks at the same frequencies suggesting they identify

similar processes in the dynamics of our networks. Disparity also has similar frequencies for

many of its important peaks, however disparity also has many peaks at higher frequencies

than either clustering or density for many rules. In Fig. 6.8(b) we find that rules 10, 17,

and 21 have many significant peaks for all measures. We remind the reader that all rules

are depicted in Fig. 6.1. Rules 2, 3, 4, 6, and 23 also have many significant peaks in the

power spectra of complex network measures. Finally, rules 2, 4, 6, 10, 17, and 21 produce

more significant peaks in the power spectra of Sbond than all other rules. Despite the abrupt

thermalization of rule 21 observed in Fig. 6.5, this rule produces more significant peaks in

the power spectrum of the central bond entropy than all other rules. That is, despite the
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Fig. 6.8: Significant peaks in the power spectra of the central bond entropy, complex network
measures, and 〈n̂L/2−1〉 for all initial conditions and all rules. (a) The frequencies of peaks
above a red noise spectrum at a 95% confidence level. Different rules produce quantitatively
different dynamics in all measures as evidenced by the different frequencies of significant
peaks for different rules. (b) Rules 10, 17, and 21 produce many peaks above the red noise
threshold for all measures. This indicates the dynamics of these rules are not consistent with
red noise. Rules 2, 3, 4, 6 and 23 also have many significant peaks for complex network
measures. Rules 2, 4, 6, 10, 17, and 21 produce more significant peaks in the power spectra
of Sbond than all other rules. 91



reduced amplitude of fluctuations of the central bond entropy for rule 21, the amplitude of

the peaks in its power spectra are often above the red noise threshold. Rule 10, which also

thermalizes, has nearly as many significant peaks as rule 21. All other rules have less than 10

significant peaks in the power spectra of the central bond entropy. The significant number of

peaks in the power spectra of rule 17 appears to be due to the spatial factorization of rule 17

dynamics for many initial conditions. The spatial factorization produces isolated networks

that evolve independently of each other and thus do not interfere with each other. The

significant number of peaks in the power spectra of rule 21 are different. Rule 21 dynamics

of complex network measures do not exhibit coherent oscillations, they rapidly equilibrate.

The power spectra of rule 21 are more irregular. One explanation for this is that the system

equilibrates so quickly that it is generating white noise at equilibrium. This would also

explain why rules 10 and 21 have significant peaks at higher frequencies than most other

rules. Although our red noise analysis allows us to differentiate our dynamics from red noise,

it does not quantify the complexity of dynamics as significant peaks may be due to effects

of the kind observed in the dynamics of rules 10, 17, and 21. In the next section we study

the complexity and entanglement generated by our QCA at late times.

6.4 Late-Time Complexity and Entanglement

In order to understand whether our time evolution schemes generate a new physical

class of states displaying high complexity and non-random structure we study the late-time

averages of the central bond entropy and complex network measures applied to quantum

mutual information networks. In Chapter 3 we studied the quantum mutual information

networks of random quantum states and found D ≈ C ≈ 3 × 2−L, and Y ≈ 1.1
L−1

. These

formulas allow us to estimate the value of network density, clustering coefficient, and disparity

for arbitrary system sizes. To compute late-time averages we average over the last 100 time

steps. In Chapter 3 we also found that the central bond entropies of the well characterized

entangled states we consider are always equal to 1.
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In Fig. 6.9 and Fig. 6.10 we display the late-time averages of our complex network mea-

sures for all initial conditions, all system sizes, and all rules as defined in Sec. 6.1. The error

bars of the data shown in Fig. 6.9 and Fig. 6.10 are always at least one order of magnitude

less than the value of the late-time average. In Fig. 6.11 we study the same data. Instead

of averaging the data we now compute histograms. In Fig. 6.9, Fig. 6.10, and Fig. 6.11

we demonstrate that almost all of the quantum states produced by all of our Hamiltonians

have network density, clustering coefficient, and disparity above levels consistent with ran-

dom quantum states. We also find that the quantum states produced by our Hamiltonians

are typically highly entangled, with central bond entropy near its maximum. This implies

that these states are not like the well characterized entangled states we have considered, the

|GHZ〉, |W 〉, and |C〉 states, since they have central bond entropy equal to 1 independent

of system size. Furthermore, the complex network measures of the quantum states produced

by our automata are not consistent with well known quantum states. The values of complex

network measures computed on well known quantum state are listed in Eqs. (3.22), (3.24),

(3.26), (3.28), and (3.30). The cluster state, the singlet, and the singlet array all have C = 0,

while the |W 〉 and |GHZ〉 states have Y that consistent with random states. In Fig. 6.10

we note that Goldilocks rules 2 and 4 generate particularly dense and clustered networks for

many initial conditions. However, we also find that the non-Goldilocks rule 17 also produces

highly dense and clustered networks for many initial conditions. The outlying data for rule

15 in the C-D plane of Fig. 6.10 may be due to |S〉 being a near eigenstate of the correspond-

ing Hamiltonian. Inspection of the time series for |S〉 evolved under the rule 15 Hamiltonian

reveals that the clustering changes by less than 2×10−4 over the entire simulation. Similarly

the network density and disparity of this initial condition are near their initial values of

D = 1/(L− 1) and Y = 1 as described in Eq. (3.26) in Chapter 3. Finally, we do not show

outlying data with C ≈ 10−16 as these points are due to the singlet array being an eigenstate

of the rule 17 Hamiltonian. We also exclude a data point with Sbond ≈ 0.4. This data point

is due to a simulation in which rule 17 produces entangled dynamics between sites 9 and
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Fig. 6.9: Late-time averages of complex network measures and the central bond entropy for
all system sizes, all initial conditions and all rules color coded by system size. Prediction for
random states of all measures for a lattice of L = 10 (L = 20) sites are indicated by a dashed
(dot-dashed) line. Network density, clustering coefficient, and disparity are far from values
consistent with random/well known quantum states. Larger lattices have less clustered and
less dense networks. Most simulations are highly entangled at late times with central bond
entropy comparable random quantum states.
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Fig. 6.10: Late-time values of complex network measures and central bond entropy for all
system sizes, all initial conditions and all rules color coded by rule. Prediction for random
states of all measures for a lattice of L = 10 (L = 20) sites are indicated by a dashed (dot-
dashed) line. All rules have complex network measures far from their values for random/well
known quantum states. The spatially factorized dynamics of rule 17 produce highly clustered
states for most states. Rules 2, 3, and 4 produce highly dense and clustered quantum states.
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Fig. 6.11: Histograms of complex network measures and central bond entropy for all system
sizes, all initial conditions and all rules over the last 100 time steps of evolution. Prediction
for random states of all measures for a lattice of L = 10 (L = 20) sites are indicated by a
dashed (dot-dashed) line. Almost all simulations equilibrate to values of complex network
measures above values consistent with random states. These states are also often highly
entangled as quantified by the central bond entropy.
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10 on a lattice of 18 qubits. In summary, all rules produce quantum states with complex

network measures far from the their values for random/well-known quantum states.

In Chapter 5 we determined that matrix product state methods were not capable of

efficiently simulating the dynamics of the BCM Hamiltonian because the BCM Hamiltonian

produces too much entanglement and χmax is saturated within the first 7 units of simulation

time. We then performed a case study of a nearest-neighbor Hamiltonian motivated by rule

S = 6 of [45]. This case study suggested that it may be possible to simulate certain QCA

using OpenMPS. To understand which QCA can be simulated by OpenMPS and to quantify

the entanglement generated by our Hamiltonians we study the scaling properties of the late-

time central bond entropy Sbond. In Fig. 6.12 we display Sbond(L) for all rules (Eqs. (6.1)-

(6.13)). Lines connect simulations of the same initial condition. Most Hamiltonians produce
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Fig. 6.12: Scaling of Sbond for quantum cellular automata for all system sizes, all initial
conditions and all rules. Our Hamiltonian-based QCA typically generate highly entangled
quantum states since late-time central bond entropy increases linearly with system size.
However, the exceptional rule 4 produces simulations with Sbond independent of L for 5
initial conditions. Rule 17 produces simulations with Sbond independent of L for initial
condition |C〉. Thus rules 4 and 17 are candidates for simulation in OpenMPS.
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late-time bond entropy near the maximum possible value of L/2 for many initial conditions.

Rules 2, 3, and 4 have late-time bond entropy that increases linearly but with a smaller

slope than for many other rules. Rules 12 and 28 also have particular initial conditions for

which Sbond increases more slowly. These appear to correspond to simulations with blinker-

like structures, for which the central bond entropy increases slowly as a function of time.

Finally, we find that the Goldilocks rule 4, produces dynamics with Sbond independent of

system size for five initial conditions: |B〉, |D2〉, |D3〉, |φ+〉, and |φ−〉. Interestingly, rule

17, which produces spatially factorized dynamics for many Fock state initial conditions, has

dynamics that appear to obey an area law for the cluster state initial condition. This is

particularly interesting since rule 17 is the opposite of a Goldilocks rule: it produces activity

only when the number of states in the alive state is 0 or 4. The oscillating line for rule 17 is

due to |S〉 being an eigenstate of the rule 17 Hamiltonian.

To demonstrate the convergence of our late-time averages we compare a subset of our

simulations to the same simulations with ∆t = 0.1/23. Specifically we evolve initial condi-

tions {|B〉 , |D2〉 , |D3〉 , |T1〉 , |T2〉 , |T3〉 , |T4〉 , |φ+〉 , |φ−〉 , |S〉} with the BCM Hamiltonian for

system sizes L ∈ {10, 12, 14, 16}. We denote the absolute difference compared to simulations

with ∆t = 0.1/23 as ε. The late-time averages of simulations with ∆t = 0.1/23 are computed

by averaging over the same set of time steps as simulations with ∆t = 0.1. We find that the

error in late-time averages is always at least an order of magnitude smaller than the late-time

average itself as shown in Fig. 6.13. Furthermore, we find that simulations of larger lattices

typically have smaller errors suggesting that the results for lattices of 18 and 20 qubits also

have late-time errors at least one order of magnitude smaller than late-time averages. Fi-

nally, we also studied the effect of increasing Nlt on our late-time averages. We have assured

that the late-time averages of all measures are within a factor of 5 of the average computed

with Nlt = 100 for Nlt ∈ {200, 300, 400, 500}.

We also conducted a principal component analysis of our complex network measures over

the last 100 time steps for all simulations, we list the principal components in Eqs. (6.29)-
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(6.31). In our principle component analysis we normalize the elements of the covariance

matrix by the variances of the individual measures. We find that the first and second

principle components of our data set weight network density and disparity approximately

equally while clustering is less highly weighted. The third principle component lies almost

entirely along the clustering axis. The normalized covariance is greatest along v1 and v2.

Therefore an ideal set of variables distinguishing different quantum states in terms of complex

network measures would lie nearly parallel to the D-Y plane.

v1 = −0.684D − 0.379C − 0.624Y (6.29)

v2 = 0.724D − 0.249C − 0.642Y (6.30)

v3 = −0.0875D + 0.891C − 0.455Y (6.31)

6.5 Late-Time Entanglement of Unitary-Based Quantum Cellular Automata

In contrast to the studies of Sec. 6.4, in this section we will study nearest-neighbor

unitary-based quantum cellular automata. These automata are evolved in discrete time as

defined in Eq. (2.52) in Chapter 2. In order to quantify the similarities between continuous

time Hamiltonian-based QCA and discrete time unitary-based QCA we perform a scaling

of the central bond entropy for unitary-based QCA as shown in Fig. 6.14. Instead of the

main operator being b̂i + b̂†i as in Sec. 6.4, here the main operator is ĤDP̂ (θ). Where ĤD

is the Hadamard gate and P̂ (θ). Unitary-based QCA have an additional parameter in the

main operator controlling the dynamics of the simulations, the phase gate angle θ. The

phase gate angle allows unitary-based QCA to introduce phase to the quantum state over

time evolution. Therefore in Fig. 6.14 we also study the effect of θ on the late-time central

bond entropy. In [45] rule S = 6 was identified as generating the most complex and robust

dynamics of all the automata studied. The dynamics were stated to be complex because

they exhibited persistent fluctuations of the central bond entropy and robust because these

fluctuations were not sensitive to changes in phase gate angle [45]. We find that rule S = 6
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(c) S = 6
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Fig. 6.14: Scaling of Sbond for unitary-based QCA for all initial conditions. Rules S ∈
{6, 9, 14} were identified as complexity generating in [45]. We find that rules 2, 6, and 10
generate Sbond that is independent of L. Thus rules 2, 6, and 10 are candidates for simulation
with tensor network methods. The erratic lines in (a), (c), and (e) are from initial condition
|R3〉. 101



produces dynamics with Sbond independent of L for many initial conditions independent of

phase gate angle as shown in Fig. 6.12. Rule S = 2, which was not found to have persistent

bond entropy fluctuations in [45], also produces dynamics with Sbond independent of L for

certain initial conditions. The amount of entanglement is tunable by the phase gate angle as

shown in Fig. 6.14(b). Rule S = 1 produces a set of very lowly entangled simulations with

constant Sbond as a function of L, however most simulations have late-time central bond

entropy that increases linearly with system size. Although rules S = 9 and S = 14 were also

identified as complexity generating it was found that the fluctuations of the central bond

entropy of these rules was drastically reduced by small changes in the phase gate angle [45].

We find that both of these rules have Sbond that increases linearly with L. We also found

that the slope of Sbond(L)is significantly increased for simulations with non-zero phase gate

angle for rule S = 9.

6.6 Persistent Entropy Fluctuations of Hamiltonian-Based Quantum Cellular
Automata

We now return to our study of Hamiltonian-based QCA, studying fluctuations of the

central bond entropy at late times for the rules defined in Eqs. (6.1)-(6.13). To quantify

persistent fluctuations of the central bond entropy we evolve a random quantum state, |r3〉,

under all 13 of our Hamiltonians. We then compute the level of fluctuations of the central

bond entropy at late times for each of these simulations. We compute the average level of

fluctuations for the random initial condition ∆S(|r3〉) at late times by averaging over the

∆S of each of our Hamiltonians for initial condition |r3〉. We also compute the standard

deviation of the late-time averages σ(∆S(|r3〉)). We define any simulation with late-time

average fluctuations of the central bond entropy greater than ∆S(|r3〉) + σ(∆S(|r3〉)) as

displaying persistent fluctuations of the central bond entropy. In Fig. 6.15(a) we plot the

level of late-time fluctuations for each of our simulations of non-random initial conditions

organized by rule. From Fig. 6.15(a) we can see that there are two types of rules, rules

that generate late-time average fluctuations of the central bond entropy that span orders
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Fig. 6.15: Fluctuations of the central bond entropy at late times for a lattice of 20 qubits.
(a) The dashed line corresponds to ∆S for initial condition |r3〉 averaged over all rules plus
one standard deviation. Simulations with ∆S above this line exhibit persistent fluctuations
of the central bond entropy (b) Count of the number of simulations with fluctuations above
levels consistent with initial condition |r3〉 for each rule. Rules 2, 3, 4, 10, 12, 21, and 28
have persistent fluctuations of the central bond entropy for almost all initial conditions. This
indicates these rules may be complexity generating.

of magnitude with ∆S > 10−3 for at least one simulation (rules 2, 4, 12, 17, and 28) and

rules that do not (rules 3, 6, 7, 10, 14, 15, 21, and 23). Interestingly, this is not the same

as the set of rules that consistently generate dynamics above levels consistent with random

quantum states. In Fig. 6.15(b) we count the number of simulations displaying persistent

fluctuations of the central bond entropy for each rule. Rules 2, 3, 4, 10, 12, 21, and 28

generate dynamics above levels consistent with random quantum states for nearly all initial

conditions. Goldilocks rules 2 and 4 are particularly notable for producing dynamics with

fluctuations above 10−3 for many initial conditions. Because the dynamics of rule 17 often

spatially factorize it usually has fluctuations below levels consistent with random quantum

states. However rule 17 is still notable in terms of fluctuations of the central bond entropy;

specifically it generates persistent fluctuations of the central bond entropy for the cluster

state initial condition. In summary, we find that both Goldilocks and non-Goldilocks rules

produce simulations with persistent entropy fluctuations. We also find that both Goldilocks
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rules and non-Goldilocks rules produce entropy fluctuations at late times that span orders

of magnitude over different initial conditions. Finally, we find that Goldilocks rules 2 and

4 produce more dynamic entanglement in simulations than all other rules as quantified by

fluctuations of the central bond entropy greater than 10−3 for many simulations.

6.7 Blinker Case Study

In Sec. 6.2 we found that rules 4, 12, and 28 produce a quantum blinker pattern for

initial condition |B〉. This initial condition displayed persistent fluctuations in bond entropy

for all three rules, indicating that their dynamics exhibit a robust dynamical feature. In that

section we also noted that the blinker initial condition does not approach a constant value

of the central bond entropy for rules 12 and 28 with L = 20 and tf = 100. Its average value

continued to grow during the entire simulation. In this section we show that the blinker initial

condition evolved under rule 12 displays long term logarithmic growth of the central bond

entropy, we study how the dynamics of the blinker responds to a perturbing potential, and we

study the late-time central bond entropy as a function of the distance between two blinkers.

To assess whether the central bond entropy saturates over accessible time scales we simulated

the blinker initial condition with tf = 1000. The blinker initial condition clearly displays

long term logarithmic growth of the central bond entropy as shown in Fig. 6.16, logarithmic

growth of the central bond entropy is also found in models of many-body localization [89].

To assess the response of the blinker pattern to a perturbing potential we add a linear

perturbation to the rule 12 Hamiltonian,

H ′ = a
L∑
i=1

n̂ii . (6.32)

In Fig. 6.17(a) we show that as the slope of the perturbing potential is increased the bond

entropy transitions between coherent oscillations and simple fluctuations. A certain value

of the perturbing slope appears to maximize Sbond. We confirm this in Fig. 6.17(b). The

late-time bond entropy is maximized for a value of the perturbing slope a ≤ 0.2 for all system

sizes. The value of the perturbing slope that maximizes the central bond entropy decreases
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Fig. 6.16: Long time simulation of the quantum blinker of rule 12. Initial condition |B〉
displays long term logarithmic growth of the central bond entropy. This is different than all
other simulations, which either equilibrate to a constant value of the central bond entropy
within the first 100 units of time or fluctuate about a constant value of the central bond
entropy.
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Fig. 6.17: Response of the quantum blinker evolved under rule 12 on a lattice of 20 qubits to a
perturbing potential. (a) The unperturbed blinker displays coherent oscillations in the bond
entropy. For small values of the perturbation gradient the blinker initial condition no longer
displays coherent oscillations and saturates to a higher bond entropy. (b) The late-time
bond entropy is maximized for a value of the perturbing slope 0.1 . a . 0.2. Increasing the
slope past this point leads to an abrupt decrease in the late-time bond entropy and a return
to coherent oscillations in the bond entropy. As system size is increased the value of the
perturbing field maximizing the late-time bond entropy decreases. The subsequent decrease
of Sbond as a function of a is also more sudden for larger system sizes.
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as a function of system size, however the maximum value of the central bond entropy also

approaches the value of the unperturbed blinker. After this maximum is reached Sbond

rapidly decreases as a function of the perturbing slope. The decrease in Sbond is more

abrupt for larger system sizes. However, Fig. 6.16 suggests that these results would likely

change substantially for longer simulation times, at least for simulations exhibiting coherent

dynamics in Sbond.

Because we found that the entanglement properties of a single blinker can be tuned via

its interaction with an external perturbation we also study the interactions between two

blinkers in Fig. 6.18. Two blinker initial conditions are defined as

|...0101〉 ⊗ |0〉⊗n ⊗ |1010...〉 . (6.33)

That is, two blinkers are separated by n sites in the dead state |0〉. Two blinker initial
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Fig. 6.18: Late-time Entanglement and disparity of two blinker initial conditions evolved
under rule 12 on a lattice of 20 qubits. (a) The amount of entanglement can be tuned by
the initial condition, for blinkers separated by three sites Sbond is greater than 9, however for
blinkers separated by 10 sites the Sbond is reduced to 7. (b) Y quickly approaches a constant
value as the distance between two blinkers becomes greater than 6 sites and blinkers become
well localized.

conditions do not display fluctuations in the central bond entropy. Instead the central bond

entropy saturates near its maximum value when blinkers are separated by only three sites
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and near 0.7 when blinkers are separated by 10 sites. Unlike single blinker initial conditions,

two blinker initial conditions saturate to a constant bond entropy for t < 100. We found that

the late-time average values of network density, clustering coefficient, and disparity are not

consistent with random quantum states for any distance between two blinkers. Inspection

of the space-time plots of two blinker initial conditions (not shown) reveals that blinkers

stabilize into independently oscillating patterns when separated by 5 or more sites. This

together with the results on Y shown in Fig. 6.18 demonstrate that the effective size of

blinkers is about 7 sites.

In this chapter we have studied the 13 Hamiltonian-based quantum cellular automata de-

fined in Eqs. (6.1)-(6.13). From our different lines of analysis we find that rule 4 best meets

our definition of a complexity generating rule. It consistently produces persistent fluctuations

of the central bond entropy, has many significant peaks in the power spectra of the central

bond entropy, has complex network measures far from their values for random/well-known

quantum states, and exhibits a robust dynamical feature, the quantum blinker. We have

thus verified the hypothesis that only Goldilocks rules are complexity generating. Further-

more, we found that the 6 of the 8 non-Goldilocks rules studied have significantly reduced

fluctuations of the central bond entropy. This confirms our hypothesis that non-Goldilocks

rules tend toward thermalization. Finally, our of the scaling properties of Sbond revealed

that Hamiltonian-based QCA typically generate highly entangled quantum states. However

we also found exceptional initial conditions for which both Goldilocks and non-Goldilocks

rules generate Sbond that is independent of system size. In our study of nearest-neighbor

unitary-based QCA in Sec. 6.5 we also found that both the Goldilocks rule S = 6 and the

non-Goldilocks rules S = 2, 10 generate Sbond that is independent of system size. Combina-

tions of initial condition and rule that produce lowly entangled dynamics at late-times are

candidates for simulation with OpenMPS.
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CHAPTER 7

CORRELATION BETWEEN STUDENT COLLABORATION NETWORK

CENTRALITY AND ACADEMIC PERFORMANCE

In this chapter we present our complex network analysis of student collaboration networks

of upper-division physics students enrolled at the Colorado School of Mines. This work was

done in collaboration with Ariel Bridgmen2, David Schmidt3, and Pat Kohl4.

7.1 Introduction

Physics education research has enjoyed a great deal of success in identifying and clarifying

misconceptions about physics concepts, developing problem solving methods, and structuring

the knowledge that is taught to students [90, 91, 92, 93, 94]. Such studies have allowed

researchers to make quantitative statements about students’ misconceptions, in contrast to

traditional physics education that relied on anecdotal information [91]. A powerful tool

for analysis in the social sciences is complex network theory [95, 4]. Surprisingly, this tool

has almost entirely been overlooked in education research [96, 50]. Using complex network

theory we study how the collaboration of students evolves between semesters, and how nodal

centrality measures correlate with homework vs. exam grades. Furthermore, we compute

the differences in correlation strengths between our measures, allowing us to quantify which

measures are telling us the most about student grades. Finally, we also compare the network

centrality of students between the collaboration networks of different types of homework

assignments within a single course, allowing us to assess the similarity of roles adopted by

students in response to different assignments.

Complex network measures provide succinct summaries of the order present in complex

networks. Often such measures are aggregate summaries of the entire structure of a network

2Secondary researcher and Secondary author
3Secondary researcher and Secondary Author
4Secondary author
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and are useful because the structure of connectivity can determine the efficiency of processes

taking place on the network as observed in social, neural, communication, and transportation

networks [4, 66]. Furthermore, the nodal centrality measures we review in section 7.4 tell

us how well connected students are in the context of their homework collaboration networks

[67, 64]. A simple measure of how well connected a node is is encapsulated by the out-

strength of a node. Out-strength is simply the number of other students a students helps

with homework, and is thus a natural measure of the influence of student in a collaboration

network. Parallel to out-strength is in-strength, the number of students that help a particular

student with homework. While out-strength can be thought of as a coarse measure of the

influence of a student on the collaboration network, in-strength is a measure of how a student

gathers information from different parts of the network. A more sophisticated measure of

how well connected a node is is closeness centrality, which measures the average distance

of a student to all other students in the network. Thus, closeness centrality is a more

refined measure of how widely a student collaborates across the network, and measures a

student’s access to the reasoning of others. In contrast to closeness centrality, betweenness

centrality quantifies the importance of a student by their ability to control information

flow between other students, and not by their ability to influence the network directly. The

variety of complex network measures we consider provide us with different perspectives of the

students forming our collaboration networks. The correlation of each measure with student

grade indicates that a distinct form of optimal collaboration is linked to higher grades. The

aggregate correlation of our measures with student grade provides a clear picture of how

strongly and in what manner collaboration is central to the educational process.

We note only two previous studies utilizing complex network-based methods in education

research [96, 50], despite the thousands of applications in the areas of the physical, biological,

and social sciences [4]. In the first, the epistemic framework of students is analyzed [96]. In

the second, a preliminary baseline is established in introductory physics courses in Denmark:

collaboration amongst the general student population engaged in such courses correlates with
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their grades. In contrast, our study focuses on the discipline specific population endemic to

upper division physics courses [50]. Using a wide variety of complex network measures we

obtain detailed information about the role of different collaboration strategies in problem

sets, exams, and student performance trajectories over time. As social relationships are

integral to student collaboration, we encourage more research to be done on the collaborative

networks at other universities. This will provide additional context for such studies and help

us identify what forms of collaboration are universal predictors of grades, and which measures

are particular to certain networks.

At the most basic level we are trying to address the question: Do well-connected stu-

dents have good grades? Perhaps students with access to the reasoning of many of their

peers are better equipped to complete homework assignments, but then again it may be

that excessive participation in a collaboration network can stifle the ability of a student to

perform well on their own work. It seems intuitive that collaboration should improve student

performance on homework, but will the benefits of collaboration extend to exams, where a

student does not have access to their collaborators? Finally, how stable are these measures

in different contexts? That is, do students tend to take on different roles in response to

different types of assignments? Are student’s collaboration strategies static? Maybe they

are formed in response to a student’s performance, or maybe the collaboration network of a

student facilitates improvements in grades.

7.2 Data Collection

The Colorado School of Mines (Mines) is a public research university in Golden, Colorado.

The university, which has close to six thousand undergraduate and graduate students, focuses

on engineering and the applied sciences. Additionally, it is one of very few institutions that

awards more than 50 Physics Bachelors per year, and has averaged fifty five such degrees

between 2012 and 2014, placing it in the top ten of all Ph.D. granting departments in the

U.S. [97]. The physics department has research focus areas in condensed matter, subatomic,

optical, renewable energy, theoretical, and computational physics.

111



The data for our networks was collected over two semesters: Fall 2012 and Spring 2013.

Students in their junior year in engineering physics take classical mechanics during the Fall

semester and both quantum mechanics and electromagnetism during the Spring semester.

The course in classical mechanics covers Lagrangian and Hamiltonian mechanics. The course

in quantum mechanics introduces the formalism of quantum mechanics, the solutions of a

particle in a box, scattering from a potential well, etc.. We summarize the course information

for the three courses in Fig. Fig. 7.1. Prior to their junior year at Mines, physics majors are

encouraged to collaborate in a physics studio setting, a setting in which students work in

groups of three to complete homework-like assignments and labs. Additionally, the summer

before their junior year Mines physics majors participate in a physics field session in which

groups of ten students move between sections on computing, vacuum systems, machining,

and lasers. In all of these sections students are encouraged to collaborate, and in some of

them students are split into groups of three to complete assignments. Thus collaboration is

a strong part of Mines’ lower-division program already, and is strongly encouraged.

Classical Mechanics
75 Students

10 Analytical HWs

5 Numerical HWs
3 Written Exams

75 Students
14 Analytical HWs
4 Written Exams

Quantum Mechanics

76 Students
12 Analytical HWs
2 Written Exams

1 Oral Exam

Electromagnetism

70 Students

67 Students

69 Students

Fall 2012 Spring 2013

67 Students
in common

Fig. 7.1: Course information for classical mechanics, quantum mechanics, and electromag-
netism. Lines connecting two courses indicate the number of students common to both
courses. There were 67 students enrolled in all three courses.
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There were two forms of data collection: paper forms during Fall 2012 and electronic

spreadsheets during Spring 2013. In the paper form of data collection students were pro-

vided with a form for each assignment in which they were to list any students they helped

or received help from for each assigned problem. In the electronic form of data collection,

students provided the same data by entering the names of their collaborators into ques-

tion/answer boxes on Blackboard [98]. In both cases, students were required to complete

the surveys described above in order to receive credit for their homework assignments. This

policy incentivized survey completion and ensured a nearly complete set of data. Student

names were then immediately replaced with a set of randomly generated three letter codes

to anonymize the data prior to analysis.

The data from the surveys above was compared with student grades in the three courses.

The course in classical mechanics had ten analytical homework assignments, five numerical

homework assignments, and three written exams. For numerical assignments, students were

asked to simulate various physical scenarios using Mathematica. For the course in classical

mechanics, we computed three measures of a student’s performance: the sum of their ana-

lytical homework grades, the sum of their numerical homework grades, and the sum of their

exam grades. For the course in quantum mechanics we measured a student’s performance

by the sum of their homework grades and the sum of their exam grades, and for the course

in electromagnetism, we measured a student’s performance by the sum of their homework

grades and the sum of their exam grades. It is important to note that in classical mechanics

the teaching assistants grade exams with subsequent review by the instructor. In quan-

tum mechanics and electromagnetism the instructors graded all exams themselves. Finally,

the instructors of quantum mechanics and classical mechanics both applied curves to exam

grades, while the instructor of electromagnetism did not.

7.3 Methodology for Converting Data into Networks

From the data collected in the surveys above we constructed directed networks for each

homework assignment using the following procedure. A network is a collection of nodes and
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links. Nodes are any object that can be connected to any other object by some relation.

Links are the connections between nodes. In our networks, nodes correspond to students, and

a link corresponds to providing or receiving assistance. Note that this is not a symmetric

relation, as i helps j does not imply j helps i. This is the defining feature of a directed

network; its connections are asymmetrical. For directed networks, one says that a link goes

from node i to node j to indicate the direction of the link. For the kth network a link is

placed from node i to node j if and only if (iff) student i helped student j with homework

assignment k. Summarizing our network in terms of the entries of an adjacency matrix,

Akij =

{
1 iff student i helped student j with homework assignment k

0 otherwise.
(7.1)

However, we found that it was necessary to resolve discrepancies in the reports provided

by students. For example, student i may claim that they helped student j, but student j’s

survey indicates that they did not receive help from student i. These discrepancies may be

due to forgetfulness or conflicting perceptions of interactions. To resolve the discrepancies in

student reports, we employed a Maximal discrepancy resolving technique [99, 100]. Applying

an element wise logical OR to the adjacency matrices arrived at from each student’s survey to

arrive at a final network. That is, every reported interaction is considered to have happened

even if one student does not report it. Discrepancies can occur in either direction of an

interaction, and Aij is resolved separately from Aji. Other discrepancy sorting cases were

investigated but yielded quite sparse adjacency matrices [99, 100]. For each course, we then

compute a weighted adjacency matrix by summing the adjacency matrices corresponding to

the homework assignments in that course,

Aij =

NHW∑
k=1

Akij . (7.2)

Where NHW is the number of homework assignments in the relevant course. Thus if two

students i and j collaborated frequently on homework assignments they will have a heavily

weighted connection in one of the weighted networks depicted in Fig. Fig. 7.2. In Fig. Fig. 7.2
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nodes are indicated by circles and the links connecting nodes are indicated by the arrows be-

tween nodes. The direction of the arrow indicates the direction of assistance. For the course

in classical mechanics, we also construct networks for the numerical homework assignments

and the analytical homework assignments separately. This procedure results in two networks

for the course in classical mechanics: a network constructed from the collaboration networks

on analytical assignments ACM
A and a network constructed from the collaboration networks

on numerical assignments ACM
N . We denote the network for the course in quantum mechanics

by AQM, and the network for the course in electromagnetism as AEM.

7.4 Complex Network Analysis

Using NetworkX network analysis software [62], as well as some of our own independently

developed network analysis code, we study the networks described in the previous section by

computing various nodal centrality measures and other measures of the structure of a node’s

connections. We then compute the correlation between these measures and different estima-

tors of student performance. Nodal centrality measures are measures of a node’s importance

to the structure of the network. As they are quantitative measures of each student’s role

in the collaboration network, nodal centrality measures are ideal for our study. Our selec-

tion of standard complex network measures includes out-strength, in-strength, out-disparity,

in-disparity, local clustering, closeness centrality, harmonic centrality, and betweenness cen-

trality. The local clustering coefficient is only defined on undirected networks. Before com-

puting the local clustering coefficient we first convert our directed networks into undirected

networks as such that, Aundirected
ij = max (Aij, Aji).

The out-strength of a node is the sum of its outgoing connections to other nodes and is

defined as

sout
i =

L∑
j=1

Aij . (7.3)

A node can have high out-strength if it has outgoing connections to many other nodes, or if

it has strong connections to only a few other nodes. Stated simply, students who help many
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(a) Classical Mechanics Analytical As-
signments Network

(b) Classical Mechanics Numerical As-
signments Network

(c) Quantum Mechanics Assignments
Network

(d) Electromagnetism Assignments
Network

G
ra
d
e

100%

0%

25%

50%

75%

Fig. 7.2: Student collaboration networks for three upper level physics courses. Student collab-
oration networks constructed from surveys given to students in three upper-division courses,
classical mechanics, quantum mechanics, and electromagnetism. Nodes correspond to stu-
dents and the direction of each arrow indicates the direction of assistance on homework
assignments. The color of a node indicates the grade of a student on homework assignments.
Although we do not normalize grades in our analysis we present grades as a percentage here
to illustrate multiple courses simultaneously.
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of their peers and students who frequently help a smaller set of peers both can have a high

out-strength. The in-strength is similarly defined and distinguishes a node by the number

of incoming connections

sin
i =

L∑
j=1

ATij , (7.4)

or the number of instances in which a student received help. We also study the net out-

strength

snet
i = sout

i − sin
i . (7.5)

Students with high net out-strength correspond to students that help many other students

but are not helped by many students.

The out-disparity of a node’s connections is a measure of the non-uniformity of the

outgoing connection strengths. If a node has a single strong connection in addition to other,

much weaker connections, the node has high out-disparity. If the connection strengths of a

node are all approximately equal strength, then it has a low out-disparity. Out-disparity is

defined as [61, 14]

Y out
i ≡ 1

(sout
i )2

L∑
j=1

(Aij)
2 =

∑L
j=1 (Aij)

2(∑L
j=1Aij

)2 . (7.6)

Nodes with high disparity correspond to students that collaborate with certain nearest neigh-

bors much more often than they collaborate with other nearest neighbors. Nodes with low

disparity correspond to students that collaborate equally with all students that they collabo-

rate with. Analogously, in-disparity measures the non-uniformity of the incoming connection

strengths. To compute Y in
i one makes the substitution A→ AT in Eq. (7.6), resulting in

Y in
i ≡

1

(sin
i )

2

L∑
j=1

(
ATij
)2

=

∑L
j=1

(
ATij
)2(∑L

j=1A
T
ij

)2 . (7.7)

The Local Clustering Coefficient is a measure of the transitivity of connections of indi-

vidual nodes, that is, the likelihood that a is connected to c, given that a is connected to b
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and b is connected to c. The local clustering coefficient is defined as

cLi ≡
[A3]ii∑

j 6=i,k 6=iAijAik
. (7.8)

One divides the total number of triangles in which node i is a vertex by the total number

of connected triples centered on node i. Nodes with low local clustering correspond to

students whose collaborators do not tend to collaborate with each other. Nodes with high

local clustering correspond to students whose collaborators frequently collaborate with each

other, such as in tight-knit study groups.

In a weighted network one can define a distance between any pair of nearest-neighbor

nodes. For our analysis, we define the distance between nearest neighbors i and j to be the

inverse of the weight connecting them

Dij =
1

Aij
. (7.9)

If nodes i and j are not directly connected by a link then Dij = ∞. This definition of the

distance between nearest-neighbor nodes is then used to define the shortest-path distance

between any two nodes dij. A path connecting node i to node j is a sequence of links along

which one may walk to traverse the network from node i to node j when one walks along

links in the direction of the link. The shortest-path distance between two nodes is the sum

of the nearest-neighbor weights Dij along the shortest path connecting two nodes, that is,

dij = min
P

∑
(l,k)∈P

Dlk , (7.10)

where P is a path connecting node i to node j.

Closeness centrality is a measure of how close a node is on average to other nodes when

one must travel along directed links in the direction of the link. Closeness centrality is

defined as

cCi =
n− 1

|A| − 1

1∑
j 6=i dij

, (7.11)

where n is the number of nodes reachable from node i, and |A| is the number of nodes in the

network defined by the adjacency matrix A[62, 64]. Reachable means that one can travel
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from node i to node j by walking along links in the direction of the link. Any nodes that are

not reachable from node i are neglected in the sum of Eq. (7.11). In the context of social

networks, closeness centrality can be thought of as a measure of independence as described

in [64]. This is because a node with a large closeness centrality does not have to rely on other

nodes to transmit messages across the network [64]. In the context of student collaboration

networks closeness centrality is a measure of both the frequency with which a student assists

others and how widely a student collaborates.

Harmonic centrality is also a measure of how close a node is to other nodes in the network

when one must travel along directed links in the direction of the link. Harmonic centrality

is defined as

cHi =
∑
j 6=i

1

dij
, (7.12)

where d(i, j) is the shortest path distance from node i to j [62, 65]. Harmonic centrality has a

similar definition to closeness centrality, both being defined in terms of the inverse distances

between nodes. The intuition for the two measures is the same. Nodes that are close to

other nodes are more central as measured by closeness centrality and harmonic centrality.

However, when computing harmonic centrality, if node j is not reachable from node i, the

distance between the two nodes is set to dij =∞. The corresponding term in the sum is then

set to zero, 1/dij = 1/∞ ≡ 0. This may be preferable to the procedure used to calculate

closeness centrality as this procedure has been shown to introduce a bias towards nodes in

small components [65].

Betweenness centrality is measure of how important a node is as a go-between for message

transmission between nodes in a network, assuming that information travels along paths of

shortest distance[3]. Betweenness centrality is defined as

cBi =
∑
j,k∈V

σ(j, k|i)
σ(j, k)

, (7.13)

where σ(j, k|i) is the number of shortest paths from node j to node k that pass through node

i and where σ(j, k) is the number of shortest paths from node j to node k [62, 67]. Nodes with
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high betweenness centrality correspond to students with the most control over information

transfer throughout the network. Therefore, the weight of the links in our networks do not

modify betweenness centrality directly, but only indirectly through the path lengths they

contribute to.

7.5 Results

We now correlate each measure with students’ homework assignment or exam scores.

Note that before computing correlations we first drop from our data set any students that

missed an exam, did not submit a numerical assignment, or did not submit more than

2 analytical homework assignments. Such students typically correspond to students that

dropped the course. In Fig. Fig. 7.3 we display the results of these calculations.

The error bars of our measures indicate a 95% confidence level and are calculated via

bootstrap resampling with 10,000 resamplings of each correlation coefficient [105]. Most

measures correlate with analytical homework grades at about the same level to within error

for all courses as shown in Fig. Fig. 7.3. One consequence of this is that both out-strength

and in-strength have statistically compatible correlations with homework grades. Therefore,

getting and receiving help both correlate with improved performance equally well within our

measurement resolution. While many measures correlate with homework grades, in both

quantum mechanics and electromagnetism we find that only the net out-strength correlates

with exam grades. Thus collaborative benefits to grades appear to be limited to homework.

The exception is that students that help more frequently than they are helped perform well

on exams. While most measures correlate with grades, there are important exceptions. For

example, in-disparity does not correlate with analytical homework grades for any of our

courses. Thus receiving assistance from a subset of your collaborators more frequently than

others does not improve your grades. This adds nuance to the correlations of closeness

centrality, harmonic centrality, and out and in strength with analytical homework grade

which all suggest the maxim: collaborate widely and collaborate often. We also find that

betweenness centrality has weaker correlations with analytical homework grades than many
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(d) Electromagnetism Network

Fig. 7.3: Correlation of nodal centrality measures with student grades in three upper level
physics courses. Correlation of complex network measures with student grades for three
courses: classical mechanics, quantum mechanics, and electromagnetism. Correlations are
shown with 95% confidence intervals as 95% confidence intervals are the standard for statis-
tical quantities in social network analysis [101, 102, 103, 104]. Measures whose confidence
intervals do not overlap with zero are considered to correlate with student grade. Most com-
plex network measures correlate equally well with homework grades within their confidence
intervals. In both quantum mechanics and electromagnetism, only the net out-strength cor-
relates with exam grades. Students that help more than they are helped perform better on
exams.
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other measures. In contrast to other nodal centrality measures, betweenness is a more passive

measure of the importance of a node to the network. That is, a student has high betweenness

centrality from their ability to control the flow of information between other students. This

suggests that students that are more actively engaged in the collaborative process achieve

higher grades. In contrast, students that are not actively seeking out their collaboration

with other students, and mostly function as a go-between, will not achieve higher grades.

Going beyond cases of non-correlation, we also quantify the differences in the correla-

tion of out-strength with the correlations of clustering coefficient for both analytical and

numerical assignments in classical mechanics. Of the analytical network centrality mea-

sures, clustering coefficient seems to correlate best with analytical homework grades. While

amongst numerical network centrality measures, out-strength correlates well with numerical

homework grades. However, we find the differences in the correlation of out-strength and

clustering coefficient in both the numerical and the analytical cases are statistically com-

patible with zero. So, while it is tempting to draw further conclusions from the differences

in correlation between network measure, we find that these differences are not statistically

significant.

In our study, we have two simultaneous networks composed of the same students: the

analytical and numerical networks for classical mechanics. We take advantage of this by

correlating the centrality measures between the two networks, student to student. This

allows us to quantify the stability of the roles taken by students in response to different

types of homework assignments. We find that essentially all centrality measures correlate

between the two types of network. Thus the students engaged in one collaboration network

tend to be the same students that are engaged in another collaboration network, independent

of assignment type.

Finally, in Fig. Fig. 7.4 we summarize the performance trajectories of students in both

grades and collaboration strategy, specifically between low and high grades, and low and

high out-strength between the Fall and Spring semesters, over what is for most participants
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their junior year. A student with high out-strength (grades) is taken as at or above the

median out-strength (grades). Students with low out-strength (grades) are students below

the median. For our study this results in slightly more students with high out-strength

(grades) than low out-strength (grades). This allows us to separate each course into four

groups: group I has high grades and high out-strength; group II has high grades but low

out-strength; group III has low grades and low out-strength; and group IV has low grades

but high out-strength. We study the transitions of students between these groups from fall

2012 enrollment in classical mechanics to spring 2013 in electromagnetism and quantum

mechanics. We compute transitions for both analytical homework grades and exam grades.

We emphasize that the diagrams describing the transition to electromagnetism only per-

tain to the students enrolled in both electromagnetism and classical mechanics. Similarly

the diagrams describing the transition from classical mechanics to quantum mechanics only

pertain to the students enrolled in both classical mechanics and quantum mechanics. First,

we note that groups I and III, computed for analytical grades, start with more students than

groups II and IV. For example, group I starts with 17 students for the network pertaining

to students in common with electromagnetism and 15 students for quantum mechanics. In

comparison, group IV starts with only 10 students in electromagnetism and 8 students in

quantum mechanics. This reinforces our findings that out-strength correlates with student

homework grade. These groups also exhibit the most common transition we observe, namely

students who help many others and have high grades will continue to help many other and

have high grades in future semesters. For example, 15 of the 17 students that start with

high grades and high out-strength in classical mechanics maintain both in their transition

to electromagnetism, we highlight this dominant transition by a blue arrow in Fig. 7.4(a).

Depressingly, we also find that students who do not help many others and have low home-

work grades often maintain low homework grades and still help few in future semesters. We

highlight the self-transitions of groups I and III in other diagrams as they are consistently

greater than the self transitions observed in groups II and IV. For example, 9 of the 13
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students that start in group III in classical mechanics remain in this group in quantum me-

chanics. Next, for exams, we observe that while many students start in groups I and III in

classical mechanics, 15 for students in common with electromagnetism and 17 for students in

commmon with quantum, 8 transition away in students’ transition to electromagnetism and

9 transition away in quantum mechanics. This contrasts with the transitions for analytical

assignments where 15 of the 18 students in group I remain their in transition to electro-

magnetism and 12 of the 15 students in group I remain their in their transition to quantum

mechanics. helping to explain the differences in the level of correlations observed in classical

mechanics vs. quantum mechanics and electromagnetism.

Finally, considering the four transition networks in aggregate, the most consistent transi-

tion we observe between groups is the transition between groups III and II. When base-lined

against the transition from IV to I, we find that students more often make the transition from

III to II. We highlight this finding by the blue coloring of the arrows from groups III to II in

our diagrams. For example, in transitioning from classical mechanics to electromagnetism,

7 students transition from group III to group II, while only 2 students transition from group

IV to group I. Consistently helping few others seems to facilitate the transition from low to

high grades between semesters, as opposed to helping many others when one has low grades.

Combining this result with the consistent self-transitions of group I suggests that those we

help provide us with an inertia: helping many others when one has high grades results in

one maintaining high grades. Helping few others when one has low grades allows one to

make the transition to high grades. Such conclusions are preliminary due to the statistics,

< 18 for groups I-IV. The trajectory of collaboration strategy presents an excellent avenue

of future research to further refine our results. Additonally, the variable group size across

groups makes it difficult to establish meanigful baselines for our transitions.

For each of the networks studied in Fig. Fig. 7.3 we also computed principal components

of our network measures and correlated these with student grades. However, we found that

these did not correlate any better with student grade than the out-strength centrality. It
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Fig. 7.4: Changes in student grade and collaboration between semesters. Students in classical
mechanics fall into four groups: group I has high grades and high out-strength; group II has
high grades but low out-strength; group III has low grades and low out-strength; and group
IV has low grades and high out-strength. Arrows are transitions between groups from Fall
2012 to Spring 2013. Numbers indicate how many students transition between groups.
Transitions of only 1 or 2 students have dashed arrows. Most students start in groups I and
III, and remain there between semesters. We emphasize the self transitions of these groups
by blue coloring because they always occur more often than the self transitions of groups
II and IV. We highlight the fact that students consistently transition from low out-strength
to high grades at constant out-strength more often than students with high out-strength
by blue arrows from III to II in each diagram. Improved grades do not require changes to
collaboration strategies.
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is important to note that although network centrality measures correlate well with student

grade this does not imply that the role students play in collaboration networks causes stu-

dents to have higher grades. For example, it is not clear if helping many other students

improves a student’s grades, or if students who get good grades are more likely to be asked

for or offer their assistance.

7.6 Conclusion

We find that while many nodal centrality measures correlate with student grades, not

all do. The general picture painted by harmonic centrality, closeness centrality, and in/out

strength is that is is important to collaborate widely, and to collaborate often. The non-

correlation of disparity and betweenness centrality adds nuance to our understanding of

student collaboration networks. A student must be actively engaged with the collaboration

network in order to see benefits to their grades, and not just serve as a go-between for

homework help. Our study of the grade and out-strength transition of students between

semesters suggests there may be an inertia inherent in helping other students: those who

help many and have high grades maintain high grades. In contrast, if a student has low

grades, it is more beneficial to consistently help few others in order to transition to high

grades. However, the transitions often only consist of a few students, and so these results

could be due to fluctuations. The most clear trend in our data is that while many nodal

centrality measures correlate well with homework grades, the benefits of collaboration do

not extend to exams. In both quantum mechanics and electromagnetism we find the only

measure that correlates with exam grades is the net out-strength of a student. Students

who help more than they are helped do well on exams. Overall, our analysis suggests that

students should be encouraged to actively collaborate with other students on homework

assignments, and not passively occupy a position in the network.
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CHAPTER 8

SUMMARY AND OUTLOOK

In this chapter we summarize the results of our studies of connectivity in quantum phase

transitions, quantum cellular automata, and student collaboration networks. We also discuss

future research directions for each. Our work has taken a first step towards establishing a

quantitative theory of quantum complexity. Via complex network analysis of quantum mu-

tual information we were able to reproduce known properties of quantum statics, quantify the

complexity of quantum cellular automata, and identify the complexity-generating Goldilocks

rule 4. Such analysis goes beyond near-equilibrium quantum dynamics by identifying robust

dynamical features like the quantum blinker. Our analysis of student collaboration networks

revealed that some of the same network measures capable of identifying emergent features

in quantum systems when applied to quantum mutual information networks also correlate

with student grade when applied to student collaboration networks. Overall, our work on

quantum complexity not only provides a new theoretical tool for fundamental physics, but

also acts as a bridge between fundamental physics and complex systems research.

8.1 Connectivity in Quantum Phase Transitions, Quantum Cellular Automata,
and Student Collaboration Networks

In Chapter 4 we studied three quantum phase transitions, identifying critical points and

boundaries via complex network analysis of quantum mutual information complex networks.

We found that the ferromagnetic phase is characterized by networks with high network

density, high clustering, and low disparity. In the paramagnetic phase, as the ground state

approaches a product state, we found that disparity increases while network density and

clustering decrease. At the critical point of the transverse Ising model and the Berezinskii-

Kosterlitz-Thouless (BKT) transition point of the Bose-Hubbard model we found that our

complex network measures took on intermediate values between the extremes of either phase.
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This suggests that quantum mutual information networks are most complex near criticality as

the ground states of either model are well characterized in the strong and weak coupling limits

(g, (J/U)� 1, and g, (J/U)� 1). We found that the first derivative, second derivative, and

other features, of network density, clustering coefficient, disparity, and Pearson R correlation

show systematic finite size scaling towards the critical points of the transverse Ising and Bose-

Hubbard models. Using Open Source Matrix Product States (OpenMPS) [49] we were able

to simulate lattices of hundreds of qubits, allowing us to verify the critical point of the

transverse Ising model to within 0.001% of its known value. Furthermore, we found that

complex network analysis could identify the Berezinskii-Kosterlitz-Thouless critical point of

the Bose-Hubbard to within 3.6% of its accepted value. Finally, we found that by extremizing

complex network quantities we could identify the Mott lobe separating the Mott Insulator

phase from a superfluid phase in the Bose-Hubbard model. This was a proof of principle study

quantifying the ability of complex network analysis of quantum mutual information networks

to reproduce known quantum statics. Our complex network approach performs better than

methods based on the Bethe ansatz [106], the Luttinger liquid parameter [107], fidelity [108],

and 3rd order perturbation theory [109]. Thus Chapter 4 was a step in developing tools

that go beyond the analysis of the near-equilibrium quantum dynamics of the Kibble-Zurek

mechanism [110]. In Chapters 5 and 6 we applied these tools to non-equilibrium quantum

dynamics.

In Chapter 5 we performed a convergence study of the quantum many body dynamics

generated by the Bleh, Calarco, Montangero (BCM) Hamiltonian. We evolved hundreds of

random Fock state initial conditions and local-defect initial conditions under this Hamil-

tonian using one of the latest time evolution methods for OpenMPS [57]. We found that

OpenMPS was not able to compute converged estimates of quantum states for any of the

initial conditions studied according to the internal convergence parameters χmax and ε. We

found that χmax was quickly saturated for all simulations due to the rapid growth of entangle-

ment, even for lattices with as few as 26 qubits. Since after saturation of χmax we no longer
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have a converged estimate of the quantum state this represents the failure of OpenMPS to

accurately simulate the dynamics of the BCM Hamiltonian. We also studied the effect of less

stringent convergence criteria on the saturation of χmax by increasing ε. We found that while

increasing ε does lead to simulations that do not saturate χmax the OpenMPS estimates of

complex network quantities become unreliable. After our convergence study of the BCM

Hamiltonian we compared our simulation results to the simulations reported in the paper

defining the BCM Hamiltonian [40]. Specifically, in [40] a quantum blinker pattern was re-

ported in the dynamics of 〈n̂i〉. Such emergent features are important because they indicate

that the BCM Hamiltonian can generate complex dynamics. We found that our simula-

tion results do not agree with the results reported in [40]; specifically, we did not observe a

quantum blinker pattern for the initial condition specified in [40]. We noted that while the

blinker initial condition specified in [40] is symmetric, the resulting dynamics of the figure

in [40] are asymmetric. This contrasts with our results that maintain left-right symmetry

over much longer time scales. We then simulated the BCM blinker initial condition using

a Trotter-based time evolution method on a lattice of 20 qubits and still did not observe a

quantum blinker pattern. We concluded that the original BCM paper is in error, the initial

condition specified in [40] does not produce a quantum blinker. Although this initial con-

dition does not produce a quantum blinker, the qualitative idea in [40] is correct: we did

find an initial condition that does and termed it the blinker initial condition, |B〉. For the

blinker initial condition we found that OpenMPS is able to reliably converge network den-

sity, clustering coefficient, and disparity to the results of our Trotter-based evolution scheme.

However, OpenMPS was unable to converge the central bond entropy of that blinker initial

condition. Despite OpenMPS not accurately converging the central bond entropy of the

blinker initial condition it did accurately compute the amplitude and frequency of fluctu-

ations of the central bond entropy. This suggested that OpenMPS is able to compute the

complexity of quantum many body dynamics of local objects like blinkers, but not the en-

tanglement. Finally, we performed a case study of a Hamiltonian motivated by rule 6 of [45].
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We found that OpenMPS was able to accurately compute both the central bond entropy and

complex network measures for the blinker initial condition evolved under this Hamiltonian.

The results on the blinker initial condition evolved under the BCM Hamiltonian and the

rule 6 Hamiltonian suggest that the dynamics of a few Hamiltonian-based quantum cellular

automata (QCA) can be efficiently simulated with OpenMPS while the dynamics of most

others cannot. Hamiltonian-based QCA that generate too much entanglement cannot be

efficiently simulated in OpenMPS because they abruptly saturate χmax. These results thus

motivated the scaling study of the late-time entanglement properties of Hamiltonian-based

QCA performed in Chapter 6.

In Chapter 6 we studied the entanglement and complexity generated by 13 Hamiltonian-

based quantum cellular automata defined in (6.1)-(6.13) with bi+b
†
i as the main operator. We

quantified the complexity of their dynamics in terms of persistent fluctuations of the central

bond entropy, network measures far from their values for random/well known quantum states,

and significant peaks in the power spectra of the central bond entropy. We found that rules

4, 12, and 28 exhibit robust dynamical features in the dynamics of 〈n̂i〉, specifically quantum

blinkers. The quantum blinker of rule 4 can be considered robust if one considers rules 12

and 28 as perturbations of this rule, since the blinker pattern still appears in the dynamics

of these rules. Next we found that rules 10, 17, and 21 produced many peaks above the

red noise threshold for all measures. We also noted that rules 2, 3, 4, 6, and 23 produced

many significant peaks for complex network measures. We found that rules 2, 4, 6, 10, 17,

and 21 produced more significant peaks in the central bond entropy than all other rules.

Interestingly rules 12 and 28 do not have many significant peaks in the the power spectra

of entanglement or complexity measures. This may be due to the exact periodicity of the

blinker dominating the power spectrum. As discussed in [87], such exact periodicities can

reduce the effectiveness of the red noise fit at other frequencies. We found that rules 2, 4,

10, 12, 21, and 28 produce persistent fluctuations in the central bond entropy for almost all

initial conditions as quantified by the number of simulations with fluctuations above levels
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consistent with a random initial condition. Rules 2 and 4 produced particularly persistent

fluctuations of the central bond entropy, with Sbond ≈ 10−2 for many initial conditions. We

found that our Hamiltonian-based QCA typically generate highly entangled quantum states

with quantum mutual information networks that are not structured like random or well-

characterized quantum states. However, the Goldilocks rule 4 and non-Goldilocks rule 17

had exceptions to this typical behavior. Both rules generated quantum states with late-time

central bond entropy independent of system size for at least one initial condition. From

all of these different analyses it became clear that rule 4 best met all of our criteria for a

complexity generating rule. We illustrate which criteria for complexity each rule meet in the

Venn diagram presented in Fig. 8.1. This rule exhibited a robust dynamical feature, had

3 7 1415 23

4

12

28

17

6

2 21

10

Persistent entropy fluctuations

Robust dynamical feature Many significant frequencies

Fig. 8.1: Criteria for complexity generating rules. All rules generate quantum states with
complex network measures far from their values for random quantum states. Rule 4 best
meets the three other criteria for a complexity generating rule. It has a robust dynamical
feature, persistent entropy fluctuations, and these entropy fluctuations have many significant
frequencies.

persistent fluctuations in the central bond entropy, and had many significant peaks in the

power spectra of the central bond entropy. Since rule 4 is a Goldilocks rule we confirmed that

only Goldilocks rules are complexity generating for the initial conditions we have studied.

Furthermore, of the 8 non-Goldilocks rules we have studied we find that 6 of them, rules 3,

7, 10, 15, 21, and 23, display significantly reduced fluctuations of the central bond entropy

for all initial conditions. Therefore, our hypothesis on non-Goldilocks rules also appears to
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be correct: non-Goldilocks rules tend toward thermalization.

While almost all of the quantum states generated by our automata have are highly

entangled, for a few initial conditions rules 4 and 17 generate lowly entangled quantum states.

These states were lowly entangled but still had complex structure in their quantum mutual

information networks. We found that the highly entangled states generically produced by

our automata also had complex network structure. While we have very little data for lowly

entangled quantum states, it appears that a feature of classical complexity, complex network

structure, may exist in quantum systems across a range of entanglement. By quantifying

the relationship between complexity and entanglement we begin to understand what forms

of quantum complexity are accessible by classical simulation methods like tensor networks

and what forms are only accessible with a quantum computer. Since our Hamiltonian-based

QCA typically generate highly entangled quantum states, most Hamiltonian-based quantum

cellular automata can not be simulated with Open Source Matrix Product States for the

initial conditions we have studied and would require a quantum computer to simulate them.

We concluded Chapter 6 with a case study of the emergent quantum blinker pattern

of rule 12. Our case study of the quantum blinker pattern revealed that the entanglement

produced by quantum cellular automata can be tuned by the slope of a linear perturbation.

We also found that the late-time bond entropy is maximized for a particular value of the

perturbing slope and that this value decreases as a function of system size. We studied

two blinker initial conditions and found that we could tune the level of entanglement and

complexity of our simulations via the initial distance between blinkers and determined the

effective size of blinkers to be about 7 sites.

In Chapter 7 we studied the homework collaboration networks of students enrolled in

three courses at the Colorado School of Mines: classical mechanics, quantum mechanics, and

electromagnetism. We began our complex network analysis by correlating nodal measures

with homework and exam grades and found that most nodal centrality measures correlate

with students homework grades in these three courses. Measures like out-strength, close-
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ness centrality, and harmonic centrality quantified the importance of collaborating widely

and collaborating often on homework. Students that did so did well on homework. Not

all measures we studied correlated with grades. The lack of correlation of betweenness cen-

trality and in-disparity helped us understand the importance of being actively engaged in

the collaboration network. It is not enough to simply occupy an important position in the

collaboration network; successful students actively collaborate widely across the collabo-

ration network. Interestingly, we found that the benefits collaboration brings to student

grades on homework assignments do not transfer to exams, where students do not have

their collaborators available to them. The only measure that we found correlates with exam

grades in electromagnetism and quantum mechanics was out-strength. Students who help

more than they are helped perform well on exams. Comparing the networks formed from

the collaboration of students on different types of homework assignments we found most

measures correlate student to student between such networks. This suggests that students

adopt similar collaboration strategies in response to different types of assignments. Finally,

our analysis of the change in student collaboration strategies between semesters drew more

limited conclusions, due to the sparse statistics of our data set, once divided into groups of

high and low grades and high and low out-strength. Our most certain finding is that stu-

dents who help many others and have high grades will tend to continue to help many others

and have high grades. Similarly, those who have low grades and who help few others will

continue to in future semesters. In summary, our analysis of student collaboration networks

suggests students should actively collaborate with other students on homework assignments

instead of passively occupying a position in the network.

In Chapter 7 we correlated nodal centrality measures computed on student collaboration

networks with student course performance for students enrolled in three courses: classical

mechanics, quantum mechanics, and electromagnetism. We found that out-strength was

consistently the best performing network measure, correlating best with student grades in

all 3 courses. Students who collaborate widely have higher grades. We also found that both
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the in-strength and local clustering coefficient correlate well with student grades in all three

courses. We find that although harmonic centrality and closeness centrality have very similar

definitions, only closeness centrality correlates well with student grades on numerical assign-

ments and therefore suggest that the local clustering coefficient is the more reliable meaure,

even though closeness centrality sometimes outperforms the local clustering coefficient. We

also correlated student grades with principal components of our complex network measures,

however we found that these did not correlate as well with student grades as out-strength.

Finally, while our analysis does not imply that the collaborations of a student cause them

to have higher grades, we have demonstrated that collaboration is an important part of the

educational process. Course designers may consider conducting surveys of student program-

ming experience in physics courses emphasizing numerical methods. Instructors could then

consult with students with prior programming experience to learn about and clarify the mis-

conceptions of other students. Instructors can also emphasize our results on clustering in the

syllabi of their courses, encouraging students to join collaboration groups, as we have shown

that being in a clustered region of student collaboration networks correlates with having

good grades.

8.2 Future Work: Complex Networks in Quantum Information, Quantum Many
Body Dynamics, and Student Collaboration Networks

In this section we offer directions for future research for quantum mutual information

complex networks, quantum cellular automata, and student collaboration networks. Our

proposed directions for future research of quantum mutual information complex networks

explore the interface between complex network analysis and quantum information. In con-

trast, our future research directions for quantum cellular automata are focused on addressing

the limitations of our study in chapter 6. Finally, our future research directions for student

collaboration networks focus on extending the analysis of Chapter 7 with the existing data.

Future work studying quantum mutual information complex networks may consider us-

ing the measures defined in [111]. That work quantifies the importance of various weighted
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network motifs that may be appear in weighted networks. A direction for future research on

quantum mutual information networks is to study the space of three qubit quantum states.

According to [112] almost all tripartite pure states are uniquely determined by their two site

reduced density matrices. May complex network measures of quantum mutual information

networks offer a useful parameterization of this space? As is noted in [113], three qubits

can be entangled in two different ways. Can these different types of entanglement be distin-

guished via complex network analysis of quantum mutual information networks? Finally, in

connection with quantum information theory it is interesting to observe that cluster states

are parameterized by networks. Is there a simple connection between the network structure

defining a cluster state and the network structure induced in its entanglement?

While we have confirmed that rule 4 best meets our criteria for a complexity generating

rule other rules might have been classified as complexity generating if more initial condi-

tions were considered. For instance rule 21 meets all the criteria for a complexity generating

rule except that it does not exhibit a robust dynamical feature. Therefore a future research

direction is to gather more statistics by studying many more initial conditions than the 13

considered in Chapter 6. This is a generic feature of complex systems: they have astro-

nomically large probability spaces only a small fraction of which is ever explored. This work

considered many different classes of initial conditions: random Fock states, local defects, sin-

glets, singlet arrays, and cluster states. The cluster state evolved under rule 17 was notable

for producing Sbond independent of system size with no obvious localization occurring in

any local observable. In contrast to all other initial conditions studied this initial condition

has equal probability of being in any state of the measurement basis. Using such states as

initial conditions may produce less biased results in the dynamics of such automata since

cluster states will not produce factorized dynamics for any rule. Since cluster states are

known to have similar entanglement properties as the eigenstates of quantum many body

Hamiltonians [114] they may be more natural states to study using OpenMPS.
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In our study of the fluctuations of the central bond entropy at late times we quantified

the fluctuations of a typical random quantum state by averaging over the late-time fluctu-

ations produced by each of our Hamiltonians for a single random initial condition. A more

thorough study may consider averaging over the late-time fluctuations produced by many

random initial conditions. In our study of late-time values of complex network measures we

quantified randomness in terms of the values of our measures computed on random quan-

tum states. However, there are other definitions of randomness. For instance, instead of

generating random quantum states by generating random coefficients, one could evolve each

initial condition under a set of random Hermitian operators as the main operator of a QCA.

Therefore a future study may consider quantifying randomness by replacing the b̂i + b̂†i term

in our quantum cellular automata with a random Hermitian operator. Another direction to

consider for future research is to evaluate the sensitivity of OpenMPS to perturbations in

the definition of quantum cellular automata, for instance multiplying the rule operators by

non-binary coefficients.

In our Fourier analysis we found that rules with exact periodicities like the quantum

blinker have power spectra that are dominated by a single frequency, impairing the effec-

tiveness of the red noise fit. In [87] a “pre-whitening” procedure is mentioned as a means of

addressing such dominant frequencies of power spectra. Future work may consider employ-

ing such a procedure to improve the quality of the red-noise analysis of QCA. Finally, even

in simulations without dominant frequencies the simulation may be generating white noise.

Thus another important procedure to implement is to test simulations against a white noise

null hypothesis.

Finally, the long term logarithmic growth of the central bond entropy establishes a con-

nection between Hamiltonian-based quantum cellular automata and many body localization

[89]. We only observed long-term logarithmic growth of the central bond entropy for the

blinker initial condition evolved under the rule 12 Hamiltonian. This suggests that many

body localization may be rare for Hamiltonian-based QCA. A future study could explore the
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conditions under which many body localization occurs in Hamiltonian-based QCA. That is,

what combination of rules and initial conditions gives rise to many body localization? The

blinker like structures we observe are not likely due to the integrability of our systems as

they do not have any obvious conserved quantities. However, future studies may consider

studying the integrability of quantum cellular automata.

In Chapter 7 we analyzed weighted networks that summarized the collaboration of stu-

dents over an entire semester of homework assignments. We have data for each homework

assignment individually. Therefore one future direction for research is to study how students

collaboration habits evolve between assignments and semesters. Do students choose their

collaborators based on course performance? Another direction for study is to quantify the

correlation between student course performance and the performance of their closest peers,

that is, do collaborators of students that perform well also tend to perform well as quantified

by student grades?
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APPENDIX - CONTINUUM QUANTUM CELLULAR AUTOMATA

Directly below we place a derivation that allows us to rewrite the BCM Hamiltonian in

terms of the activity term
(
b̂i + b̂†i

)
, and sums of powers of the total number of sites in the

alive state in the neighborhood of site i, T̂i ≡
∑

j∈Ni
n̂j. Where Ni ≡ {i−2, i−1, i+1, i+2}.

The BCM Hamiltonian is defined as,

Ĥ =
L−2∑
i=3

(
b̂i + b̂†i

)(
N̂ (3)
i + N̂ (2)

i

)
. (A.1)

Where N̂ (2)
i is the projection operator onto the subspace spanned by number eigen-states in

which site i has two living neighbors. This is all permutations of |ψ[1:i−3]〉 ⊗ |0i−2〉 ⊗ |0i−1〉 ⊗

|1i+1〉 |1i+2〉⊗ |ψ[i+3:L]〉. Where we permute the placement of the living sites in order to treat

each site symmetrically. Similarly N̂ (3)
i is the projection operator onto the subspace spanned

by number eigen-states in which site i has three living neighbors. This is a projection on to

the space spanned by all permutations of |ψ[1:i−3]〉 ⊗ |0i−2〉 ⊗ |1i−1〉 ⊗ |1i+1〉 |1i+2〉 ⊗ |ψ[i+3:L]〉.

Note that site i is purposefuly not included in the above tensor products. Explicitly,

N̂ (2)
i =

∑
σ

ˆ̄nσ(i) ˆ̄nσ(i−1)n̂σ(i+1)n̂σ(i+2) (A.2)

and

N̂ (3)
i =

∑
π

ˆ̄nπ(i)n̂π(i−1)n̂π(i+1)n̂π(i+2) . (A.3)

The sums over σ and π denote the sum over all permutations of the site indices and where

ˆ̄ni = 1̂− n̂i. This amounts to
(

4
2

)
= 12 terms for N̂ (2)

i , and
(

4
3

)
= 4 terms for N̂ (3)

i . I observe

the remaining classical possibilities are zero, one, and four particles in the subset of sites

i− 2, i− 1, i+ 1, i+ 2, so that we may express the identity operator as
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1̂ = N̂ (0)
i + N̂ (1)

i + N̂ (2)
i + N̂ (3)

i + N̂ (4)
i (A.4)

⇒ N̂ (2)
i + N̂ (3)

i = 1̂− (N̂ (0)
i + N̂ (1)

i + N̂ (4)
i ) (A.5)

= 1̂− (ˆ̄ni−2 ˆ̄ni−1 ˆ̄ni+1n̂i+2 + ˆ̄ni−2 ˆ̄ni−1n̂i+1 ˆ̄ni+2+ (A.6)

ˆ̄ni−2n̂i−1 ˆ̄ni+1 ˆ̄ni+2 + n̂i−2 ˆ̄ni−1 ˆ̄ni+1 ˆ̄ni+2)− n̂i−2n̂i−1n̂i+1n̂i+2 (A.7)

Rewriting this solely in terms of the n̂ operators and noting that [n̂i, n̂j] = 0 results in,

N̂ (2)
i + N̂ (3)

i =
∑
k<j

∑
j∈Ni

n̂kn̂j − 2
∑
`<k

∑
k<j

∑
j∈Ni

n̂`n̂kn̂j + 2n̂i−2n̂i−1n̂i+1n̂i+2 (A.8)

Observing that n̂2
i = n̂i leads to the following equation

(n̂i + n̂j)
2 = n̂2

i + 2n̂in̂j + n̂2
j = n̂i + 2n̂in̂j + n̂j . (A.9)

This equation generalizes to(∑
j∈Ni

n̂j

)2

=
∑
j∈Ni

n̂2
i + 2

∑
k<j

∑
j∈Ni

n̂kn̂j =
∑
j∈Ni

n̂j + 2
∑
k<j

∑
j∈Ni

n̂kn̂j . (A.10)

This implies

∑
k<j

∑
j∈Ni

n̂kn̂j =
1

2

(∑
j∈Ni

n̂j

)2

−
∑
j∈Ni

n̂j

 . (A.11)

Furthermore, since

(∑
j∈Ni

n̂j

)3

=

(∑
j∈Ni

n̂j

)2

+

(
2
∑
k<j

∑
j∈Ni

n̂kn̂j

) ∑
j′∈Ni

n̂j′

 (A.12)

= 4
∑
k<j

∑
j∈Ni

n̂kn̂j + 6
∑
l<k

∑
k<j

∑
j∈Ni

n̂ln̂kn̂j . (A.13)

We have

∑
l<k

∑
k<j

∑
j∈Ni

n̂ln̂kn̂j =
1

6

(∑
j∈Ni

n̂j

)3

− 3

(∑
j∈Ni

n̂j

)2

+ 2
∑
j∈Ni

n̂j

 . (A.14)

Finally, a similar calculations lead to the following equation
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∑
m<l

∑
l<k

∑
k<j

∑
j∈Ni

n̂mn̂ln̂kn̂j = (A.15)

=
1

24

(∑
j∈Ni

n̂j

)4

− 6

(∑
j∈Ni

n̂j

)3

+ 11

(∑
j∈Ni

n̂j

)2

− 6
∑
j∈Ni

n̂j

 .

(A.16)

We define

T̂i ≡
∑
j∈Ni

n̂j , (A.17)

Di
2 ≡

∑
k<j

∑
j∈Ni

n̂kn̂j , (A.18)

Di
3 ≡

∑
l<k

∑
k<j

∑
j∈Ni

n̂ln̂kn̂j , (A.19)

and

Di
4 ≡

∑
m<l

∑
l<k

∑
k<j

∑
j∈Ni

n̂mn̂ln̂kn̂j . (A.20)

We can write a succint set of formulas

Di
2 =

1

2

(
T̂ 2
i − T̂i

)
, (A.21)

Di
3 =

1

6

(
T̂ 3
i − 3T̂ 2

i + 2T̂i

)
, (A.22)

Di
4 =

1

24

(
T̂ 4
i − 6T̂ 3

i + 11T̂ 2
i − 6T̂i

)
. (A.23)

This allows us to rewrite the quantum game of life Hamiltonian as

Ĥ =
1

3

L−2∑
i=3

(
b̂i + b̂†i

)[
−5T̂i +

29

4
T̂ 2
i −

5

2
T̂ 3
i +

1

4
T̂ 4
i

]
(A.24)

=
1

12

L−2∑
i=3

(
b̂i + b̂†i

)(
T̂i − 5

)(
T̂i − 4

)(
T̂i − 1

)
T̂i . (A.25)

This Hamiltonian naturally suggests the following generalized form

Ĥ =
L−2∑
i=3

(
b̂i + b̂†i

)
f(T̂i) . (A.26)
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as well as a simplification of the Hamiltonian that is more true to the game of life, namely the

polynomial t(1− t)(4− t). This rule treats a total number of particles equal to 2 differently

than it treats a total number of particles equal to 3. This may be one direction for future

study. The operators T̂i only have integer eigenvalues, λi ∈ {0, 1, 2, 3, 4}. However in Fig. A.1

we plot continuous polynomials as this suggests another direction for future study, continuous

QCA. One may consider writing down a set of non-linear Schrödinger type equations in a

mean field approximation. The function f described in Fig. A.1 refers to the polynomial of

Equation (A.24).
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Fig. A.1: Polynomial of quantum game of life rule. The operator T̂i has strictly integer
eigenvalues, all of which are smaller than five. None-the-less, the quantum game of life
Hamiltonian references outside of this interval implicitly in its definition, since we see that
one term in the Hamiltonian is of the form (T̂i − 5).
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