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ABSTRACT

Ultracold atoms have revolutionized the field of quantum many-body physics due

to excellent understanding of their microscopic dynamics and a high degree of control

over these dynamics with external fields. The next revolution in ultracold physics

promises to come with ultracold molecules, whose production lies at the cutting edge

of research. In this thesis we are concerned with how ultracold molecules trapped in

optical lattices may be used as resources for novel many-body physics.

There are six main parts to this thesis. The first part gives a general introduc-

tion to the topics covered in the thesis, and provides some technical details on the

derivation of many-body lattice models from few-body physics. In the second part,

we derive a low-energy Hamiltonian, the molecular Hubbard Hamiltonian, describing

ultracold heteronuclear bialkali dimer molecules loaded into an optical lattice and

elucidate its many-body properties. These molecules have large permanent electric

dipole moments which give rise to long range and anisotropic dipole-dipole interac-

tions in an electric field and allow access to the rich internal structure of rotational

and hyperfine states in an AC microwave field. Rather than focusing on simulat-

ing models relevant to condensed matter physics, we focus on the many-body physics

available to near-term experimental setups with the minimal tuning of external fields.

The third part of this thesis studies how fermions pair to make bosons in a discrete

context, via a two-channel model for a Feshbach resonance in the presence of an optical

lattice and possibly strong interchannel coupling. The two-body problem is solved

numerically using a scaling theory to extract the result for an infinite number of

Bloch bands. The bound states of a partitioned Hamiltonian, which we call dressed

molecules, are identified as the relevant short-range degrees of freedom at low density,

and are chosen so as to reproduce the two-body scattering length identically. From
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this two-body solution we derive a low-energy many-body Hamiltonian which takes

the form of a multichannel resonance model between unpaired fermions in the lowest

Bloch band and dressed molecules. This approach is valid for arbitrary two-body

scattering length and resonance width, and is systematically correctible to higher

relative scattering energy.

In the fourth part of this thesis we discuss matrix product states (MPSs), a class

of entanglement-restricted states which are useful for variational calculations in one

spatial dimension. This part begins with an overview of the theory of MPSs, with

special emphasis on intuitive notions of their use as variational ansätze. Algorithms

for finding eigenstates of 1D Hamiltonians, for time-evolution under a general time-

dependent 1D Hamiltonian, and for equilibrium properties at finite temperature are

presented. Furthermore, it is shown how MPS algorithms may be made generic by

the identification of a class of operators known as a matrix product operators and a

set of rules for constructing such operators.

The fifth part of this thesis deals with open source implementations of variational

MPS algorithms and educational materials designed to facilitate the use and under-

standing of these methods. The open source projects include a stand-alone open

source implementation of the time-evolving block decimation algorithm, open source

TEBD, and an implementation of time-evolving block decimation for the widely used

algorithms and libraries for physics simulations (ALPS) package, as part of the ALPS

international collaboration. In the final part of the thesis, we conclude, give sugges-

tions for future work, and provide appendices.
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CHAPTER 1

GENERAL INTRODUCTION

According to the postulates of quantum mechanics, a quantum system is com-

pletely specified by the state |ψ (t)⟩ whose evolution is provided by the Schrödinger

equation

i~
∂

∂t
|ψ (t)⟩ = Ĥ|ψ (t)⟩ . (1.1)

Here, Ĥ is the Hamiltonian describing the interactions of all of the microscopic de-

grees of freedom in the system under study. Unfortunately, the dimension of the

Hilbert space in which the state |ψ (t)⟩ lives grows exponentially with the number of

constituents in a many-body system, rendering Eq. (1.1) essentially useless for ex-

tracting physically relevant information from systems with more than a few particles.

Practical concerns aside, there is a more fundamental reason why Eq. (1.1) does not

enable us to answer all relevant questions in many-body physics. This reason is put

succinctly by P. W. Anderson in his now famous article “More is different” [1] when

he says that “The ability to reduce everything to simple fundamental laws does not

imply the ability to start from those laws and reconstruct the universe.” That is to

say, many-body systems can display very different, emergent, behavior from their mi-

croscopic constituents. In particular, the ground state of a many-body system need

not have the same symmetry as its governing Hamiltonian due to the phenomenon of

spontaneous symmetry breaking.

A powerful method for studying weakly-interacting1 many-body systems is pro-

vided by the principle of adiabatic continuity [2] which allows the eigenstates of the

1The precise sense in which we mean the system is weakly interacting is that it is not strongly
correlated, the latter of which will be defined below. In particular, by weakly interacting we do not
mean that the interactions lie within the radius of convergence of a perturbation series.
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interacting system to be connected to the eigenstates of the non-interacting system.

The key assumption of this notion is that levels do not change symmetry as inter-

actions are introduced, and so levels corresponding to the same symmetry have no

crossings with increasing interactions. Hence, the ordering of quantum numbers in

the interacting and non-interacting systems will be roughly the same. The most

prominent many-body theory resulting from adiabatic continuity is Landau’s Fermi

liquid theory, which applies to weakly interacting fermions in three dimensions. Here,

the elementary excitations of the interacting system are quasiparticles which stand

in one-to-one correspondence with those of a free Fermi gas, albeit with renormal-

ized physical parameters [3]. Adiabatic continuity clearly fails if the system changes

its symmetry, as it does near a point of non-analyticity known as a quantum phase

transition (QPT) [4]. We define the class of systems which cannot be adiabatically

connected to the non-interacting counterparts of their microscopic degrees of freedom

as being strongly correlated.

The degrees of freedom which are relevant to the low-energy theory of a strongly

correlated system may be difficult to identify, as we have no reference non-interacting

state to which they may be related. An example of this is the fractional quantum

Hall effect, in which the relevant degrees of freedom are quasiparticles which carry

rational fractions of the elementary charge [5] and also obey fractional exchange

statistics [6, 7]. The identification of the relevant macroscopic degrees of freedom in

a many-body system is provided, at least in principle, by the renormalization group

(RG) procedure [8]. An RG analysis involves studying the behavior of a system under

a scaling transformation in which some set of degrees of freedom are integrated out

to yield an effective description of the system in fewer variables. This procedure is

called coarse graining. The main classical focus of RG was in studying critical systems.

Critical systems have no length scales due to the diverging of the correlation length ξ

describing exponential decay of equal-time order parameter correlations in the ground
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state.2 Thus, provided that we have coarse grained to a scale large compared to the

microscopic scales, further coarse graining should not produce any significant effect

on our description of the system. That is, critical points represent fixed points of the

RG iteration. More generally, the fixed points of the RG iteration correspond to the

possible macroscopic states of the system. Here the remarkable feature of universality

naturally arises, in which microscopic details of the system are not relevant to its

macroscopic behavior.

However powerful the RG idea, one still must choose an appropriate coarse grain-

ing procedure. A particularly powerful procedure for one-dimensional (1D) systems

is White’s rule [9], which posits that the states which should be kept when coarse

graining a system in real space are those which have the largest weight in the re-

duced density matrix obtained by tracing out all degrees of freedom not being coarse

grained. The real-space RG procedure utilizing White’s rule is formulated algorith-

mically as the density-matrix renormalization group (DMRG), which has been the

method of choice for strongly correlated 1D systems for nearly 20 years. Theoretical

analysis of DMRG has revealed [10, 11] that it may be formulated as a variational

method within a class of quantum states known as matrix product states (MPSs).

This realization together with insights from quantum information theory, particu-

larly from entanglement theory, led to a generalization of the DMRG procedure to

time evolution for short-range interacting systems [12–14] and to the proper entan-

glement structure to describe states with periodic boundary conditions efficiently via

DMRG [15]. Also, research along these lines has led to proposals of real-space RG

schemes based on entanglement decimation in higher dimensions such as projected

entangled-pair states (PEPS)[16, 17] and the multiscale entanglement renormalization

algorithm (MERA) [18]; this is still an area of intense research activity.

2In the absence of exponential decay, the correlation length may be taken to be a length scale
on which correlations qualitatively shift to a long-distance behavior.
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Using MPSs as a variational ansatz builds upon a long history of variational

methods for strongly correlated systems. Many of the most successful methods in

many-body theory, for example the Bardeen-Cooper-Schrieffer (BCS) theory of su-

perconductivity [19], the theory of the quantum Hall effect [5], and density functional

theory (DFT) [20, 21], are all variational in nature. The availability of open source

packages for DFT, such as SIESTA [22], ABINIT [23], and OCTOPUS [24] have al-

lowed for great progress in materials physics. MPSs and their generalizations provide

the best hope of stimulating such progress for strongly correlated systems. Hence, one

of the goals of this thesis is to provide flexible MPS algorithms which are applicable to

a wide array of systems, and open source implementations of MPS algorithms which

are simultaneously high performance and easily modified to meet user’s needs.

In addition to the theoretical hurdles to studying strongly correlated systems, it

is difficult in a condensed matter setting to predict which systems will be strongly

correlated. Even when a strongly correlated system has been discovered, often its

parameters are difficult to control, and its microscopic dynamics may be too fast to

be reliably studied. The crossover of atomic physics into the field of strongly cor-

related condensed matter began circa 1995 when advances in laser cooling [25] and

evaporative cooling [26, 27] led to the creation of Bose-Einstein condensates (BEC) of

the alkali metal species Rb [28], Na [29], and Li [30, 31]. As opposed to liquid Helium,

the only other known elemental quantum liquid at the time, the interactions in these

highly dilute gases were weak, enabling more detailed analysis both theoretically and

experimentally. Following the success of bosonic atoms, fermionic atoms were also

brought to quantum degeneracy [32–34]. While Pauli exclusion prevents fermions in

the same internal state from interacting through s-wave interactions and hence dras-

tically slows evaporative cooling at low temperatures [35], Fermi gases may be cooled

either through sympathetic cooling of the gas with a BEC or through evaporative

cooling when multiple species of fermions are present.
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Ultracold3 atomic gases have many advantages over traditional condensed matter

systems for studying many-body physics. For one, the timescales which are relevant

to an atomic many-body system are on the order of milliseconds to minutes, several

orders of magnitude longer than typical timescales of condensed matter experiments.

This has enabled for the study of slow many-body dynamics of a quantum phase tran-

sition [36] and the collapse and revival of matter wave coherence [37]. Additionally,

ultracold atoms are extremely well isolated from their environment, and sources of

decoherence such as spontaneous emission events can be controlled such that lifetimes

are on the order of seconds to more than a minute. Finally, using tools such as op-

tically or magnetically tunable Feshbach resonances [38] allows for precise tunability

of the interactions in ultracold gases. We will discuss Feshbach resonances in more

detail in Sec. 1.1.

Another essential tool for strongly correlated many-body physics with ultracold

atoms is provided by optical lattices. An optical lattice [39] is a standing wave array

of light formed by counter-propagating laser beams in three dimensions. The light

couples to the dynamical polarizability of the object, and the resulting AC Stark

shift induces a periodic trapping potential. By altering the geometry or phase of the

beams forming the lattice, one can induce a wide variety of geometries [40], including

confinement to a quasi-1D geometry [41, 42], as well as time-dependence [43]. Such a

lattice mimics the effects of the lattices common in solid state systems, but without

the difficulties provided by disorder and phonons which are inevitable in solid state

systems at finite temperature. A major avenue of research stemming from this capa-

bility is in tuning the parameters of an atomic gas trapped in an optical lattice such

that the governing Hamiltonian reproduces a model relevant to condensed matter

physics. Such specialized experimental systems represent quantum simulators [44],

which are essentially single-program quantum computers first envisioned by Feyn-

3By ultracold, we mean temperatures less than 1 microKelvin.
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man [45]. The first quantum simulator both to be proposed [46] and built [36] was

the Bose-Hubbard model [47]

Ĥ = −t
∑
⟨i,j⟩

[
b̂†i b̂j + h.c.

]
+
U

2

∑
i

n̂i (n̂i − 1) . (1.2)

Here i and j label sites in a lattice, ⟨i, j⟩ denotes all pairs which are nearest-neighbors

in the lattice, b̂i destroys a bosonic particle at site i, and n̂i = b̂†i b̂i counts the number

of bosonic particles on site i. The first term represents quantum mechanical tunneling

of bosons between neighboring sites with an associated tunneling energy t, and the

latter term is an energetic penalty for two or more bosons to occupy the same site

due to interactions. While it is remarkable that ultracold atoms are able to realize a

model of great relevance to condensed matter physics, Eq. (1.2) is also important in

that it represents a minimal, natural Hamiltonian for ultracold atoms in an optical

lattice. That is, if one were to load an ultracold bosonic alkali gas into an optical

lattice without fine tuning of fields, Eq. (1.2) would govern its properties. A topic

which forms much of the bulk of this thesis is determining the corresponding natural

Hamiltonian for molecules, which have more a complex internal structure than atoms.

We will discuss the microscopic derivation of Hamiltonians such as Eq. (1.2) in further

detail in Chapter 2.

The remainder of the introduction is organized as follows. In Sec. 1.1 we review

Feshbach resonances, an indispensable experimental tool for tuning the interactions

of ultracold atomic gases and the production of ultracold molecules. In Sec. 1.2

we discuss experimental production of ultracold molecules. In Sec. 1.3 we provide

a basic review of the structure and few-body properties of the molecules relevant

to this thesis. In Sec. 1.4 we present a digest of modern numerical techniques for

the quantum many-body problem, with a focus on methods applicable to strongly

correlated systems. In Sec. 1.5 we overview work by other groups which is related to

the results of this thesis. Finally, in Sec. 1.6, we outline the layout of the body of the
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thesis.

1.1 Feshbach Resonances

Feshbach resonances [38, 48] are an essential component both of the tunability of

interactions in ultracold atomic gases and of the production of ultracold molecules.

The basic physics of a Feshbach resonance can be explained through a two-channel

model. In this model, we partition our Hilbert space into open and (energetically)

closed channels, with the asymptotic limit of the open channel potential corresponding

to two free atoms. The closed channel potential is assumed to support a bound

molecular state near the threshold of the open channel potential. In the presence of

a phenomenological interchannel coupling g, the bound state of the closed channel

is no longer a true bound state but becomes a resonance due to its mixing with the

open channel.4 Now, a Feshbach resonance occurs when one of the bound states in

the closed channel becomes near degenerate with the scattering state in the open

channel. Even a weak coupling g is sufficient to cause strong mixing of the two

channels when these energies nearly coincide, and this causes a drastic change in the

scattering properties. Expressed in terms of the detuning ν between the open and

closed channels, the two-channel scatting amplitude is [49]

f (k) = − 2µ

4π~2
g2

ϵk − ν + µg2

2π~2 ik
, (1.3)

where µ is the reduced mass, k the incident momentum, and ϵk the incident energy.

We may write this scattering amplitude as

f (k) = − 1

1/as + ik + rbk2
, (1.4)

4This is what differentiates a Feshbach resonance from a shape resonance. In the latter no bound
state exists in the absence of the coupling.
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by identifying the s-wave scattering length as = −2µg2/4π~2ν and the effective range

rB = π~4/µ2g2, both of which are experimentally measurable. Although this is the

asymptotic form of the scattering amplitude arising from scattering of low-momentum

particles with k |rB| ≪ 1[50], this form is form is exact for the two-channel model.5

Hence, at higher relative energy the two-channel model breaks down in its ability to

describe the full momentum dependence of the scattering amplitude.

Feshbach resonances in ultracold gases are most frequently provided by hyperfine

couplings between atoms whose valence electrons reside in singlet and triplet config-

urations.6 The singlet potential is generally much deeper than the triplet potential,

and also generally appears above the threshold of the triplet potential. Hence, the

singlet forms the energetically closed channel. Because of the difference in magnetic

moment between the singlet and triplet states, the energetic difference between their

scattering thresholds may be tuned with a magnetic field. Denoting the detuning

ν between a bound state of the closed channel and the scattering threshold of the

open channel in terms of the difference in magnetic moment δµ ≡ µclosed − µopen,

the magnetic field strength B, and the critical magnetic field strength Bc where the

detuning vanishes,

ν (B) = δµ (B −Bc) , (1.5)

we may parameterize the dependence of the s-wave scattering length on B as [38]

as (B) = abg

(
1− ∆

B −B0

)
. (1.6)

Here, ∆ = Γ0/δµ with Γ0 defining the strength of the resonance, B0 = Bc + δB

where δB = δE/δµ is an interchannel interaction-induced shift, abg is the background

5Note that the effective range given in the context of scattering of slow particles, r⋆, is related
to the effective range defined here as r⋆ = −2rb.

6The spin states of real atoms are never purely singlet or triplet, but rather singlet-dominated
or triplet-dominated.
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scattering length the open channel would have in the absence of the closed channel

bound state, and we have neglected any inelastic processes.

A common parameterization of the interactions in dilute atomic gases is provided

by the regularized s-wave pseudopotential [51, 52]

U (r) =
2π~2as
µ

δ (r) ∂rr . (1.7)

This pseudopotential is exact in the low-energy limit E → 0, and provides an excellent

approximation provided that k |as| ≪ 1 and krB ≪ 1 [38]. Hence, the controllability

of the scattering length translates quite readily into controllability of the two-body

interactions of the gas. We will return to this parameterization in Chapter 2, when

we discuss Hubbard models.

1.2 Production of Ultracold Molecules

Molecules have a complex internal structure of vibrational and rotational energy

levels which has no counterpart in alkali atoms.7 Transitions between the internal

states of a molecule are not typically governed by strict selection rules as in atoms, but

rather by the square modulus of the wave function overlap between the states in ques-

tion. These overlaps are known as Franck-Condon factors. This complicated internal

structure makes direct laser cooling of a molecule challenging, as it is very difficult

to devise a closed pumping cycle. Several laser cooling schemes have been proposed

for specific molecules [53–56], and enhancement of laser cooling has been predicted

when molecules are placed within an optical resonator cavity [57–59], with laser-

cooled ions [60], or with atoms in Rydberg states [61, 62]. Experimental progress in

direct laser cooling of molecules has been made in rare cases, most notably Strontium

Fluoride [63]. Other direct methods of cooling which start from preformed molecules

and attempt to extract energy from them include buffer gas cooling [64] and deceler-

7An overview of molecular degrees of freedom is provided in Sec. 1.3.
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ation [65] by means of electric [66–68], magnetic [69, 70], or optical [71–73] fields. In

the buffer gas cooling technique, hot molecules of the desired species are loaded into

a chamber containing a cryogenic noble gas, most commonly Helium or Neon, and

allowed to equilibrate. The latter technique amounts to essentially running a particle

accelerator in reverse. That is, translational energy is extracted by imposing a field

gradient on the molecule. The advantage of direct means such as buffer gas cooling

or deceleration is that they are applicable to a wide array of species. However, direct

methods to date have only produced molecules in the cold regime of temperatures

T ∼10mK-1K which does not allow access to the fully quantum degenerate regime.

The most successful methods for producing ultracold, high-density samples of

molecules have been indirect methods which form molecules from atoms which have

themselves been cooled to ultracold temperatures. Because of the large effort in

cooling alkali atoms [28–30], most of the molecules formed in this fashion are bial-

kali molecules. Early attempts at the indirect production of molecules focused on

photo-associating two atoms scattering in S states into a bound state of the S+P

excited potential [74, 75]. Molecules can transition to the ground (electronic) state

by spontaneous decay [76, 77]. However, the most successful method for creating

ultracold molecular samples in very deeply bound levels is by magneto-association of

ultracold atoms into bound Feshbach molecules [38, 78] by sweeping across a Fesh-

bach resonance. Generally, the magneto-association process creates molecules which

are weakly bound but translationally ultracold, and the processes has been opti-

mized so as to have nearly unit efficiency. Magneto-association has been achieved

for heteronuclear species [79–86] as well as two-component fermionic species [87–93]

and single-component bosons [94, 95]. In the latter two cases, these molecules have

been observed to condense and form a molecular BEC. This tunability enables the

study [91–93, 96–98] of the crossover from a BEC of diatomic molecules to a Cooper

paired dilute Fermi gas, a phenomenon known as the BEC-BCS crossover [99–103].
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Part III of this thesis focuses on solving the crossover problem in an optical lat-

tice at the two-particle level using numerically exact techniques, and then using this

numerical solution to derive an effective many-body model for the crossover in the

lattice. Although the continuum limit of the BEC-BCS crossover problem has been

solved, the lattice problem has been the subject of considerable debate. The low-

energy effective theory describing a two-channel model in the lattice takes the form

of a multi-channel model between unpaired atoms in the lowest band and a set of

dressed molecules which form an effective closed channel. However, as with the rel-

evant degrees of freedom of the other strongly correlated systems mentioned in the

introductory paragraphs, the effective closed channel bears little resemblance to the

microscopic closed channel, instead consisting of an infinite summation over Bloch

bands from both the open and closed microscopic channels.

While the molecules which are produced through Feshbach association are transla-

tionally ultracold, they are often very highly internally excited. For ultracold atoms,

the presence of excitations in the internal degrees of freedom do not cause concern,

as these degrees of freedom are either hyperfine states which can be manipulated

via optical pumping or electronic excitations which are so large in energy as to be

effectively frozen out. For molecules, the presence of a rich internal structure of ro-

tational and vibrational levels, together with the absence of strict selection rules for

transitions, makes the isolation of a single molecular state a more daunting task. Re-

markable progress has been made in transferring a collection of Feshbach molecules

to a low-lying internal state via the stimulated Raman adiabatic passage (STIRAP)

procedure [82, 86, 95, 104–107]. In this procedure, Feshbach molecules are transferred

coherently to a much more deeply bound state via a two-photon process chosen such

that the Franck-Condon factors of the intermediate state with both the target deeply

bound state and the Feshbach molecular state are large. This process has been demon-

strated to have 90% one-way efficiency in the case of KRb [106]. Finally, by using the
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mixing of hyperfine and rotational states induced by a nuclear quadrupole coupling,

one can transfer the molecules into the lowest hyperfine state at a given magnetic

field, resulting in absolute ground state molecules [108].

1.3 Classifications and Few-Body Physics of Ultracold Molecules

STIRAP has been the most successful method for producing ultracold, high

phase-space density samples of molecules. Because STIRAP requires that the con-

stituent atoms are already ultracold before they are assembled into molecules, ultra-

cold molecules to date have been mostly alkali metal dimers [82, 85, 86, 109, 110],

with mixed alkali metal-alkaline earth molecules on the horizon. The natural energy

scales governing the various degrees of freedom of an alkali metal dimer molecule

span nearly twelve orders of magnitude, and can be classified as in Figure 1.1. The

largest energy scales are set by the electronic degrees of freedom and are of order a

few electron-volts. The electronic degrees of freedom are involved in the coupling of

the molecule to the optical lattice via the polarizability tensor [111], but these fields

are far detuned from any resonances so that the molecule remains in its electronic

ground state. The molecular term symbol denoting the electronic state is of the form

Q2S+1Λ±, where S is the total electronic spin, Λ is the absolute value of the projection

of the total orbital angular momentum along the internuclear axis, and ± denotes

the parity under reflections in a plane containing the internuclear axis [50]. The term

Q = X for the ground electronic potential and then A,B,C, . . . in energetically as-

cending order for excited electronic potentials of the same S,Λ multiplicity as the

ground state and a, b, c, . . . for excited electronic potentials of different multiplicity.

When convenient, we will leave off Q to discuss the multiplet structure of a particular

level without specifying how it is ordered with respect to the others. In this thesis

we focus on molecules with 1Σ ground states.

The next largest degrees of freedom are the vibrational degrees of freedom, which

are classified by a quantum number v. The spacings between vibrational energy
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levels are of order a few THz, and can be neglected at ultracold temperatures. The

next relevant degrees of freedom are the rotational modes of the molecule which have

spacings on the order of a GHz. The rotational modes will be of particular interest

for us because they are the energetically lowest-lying dipole-accessible excitations of

1Σ molecules. We denote the operator of rotational angular momentum as N̂, with

eigenkets N̂2|NMN⟩ = N(N + 1)|NMN⟩. Here MN is the projection of N along

the space-fixed z-axis. In the presence of a DC electric field N is no longer a good

quantum number, but the eigenstates are adiabatically connected to states in zero

field. Hence, we use the notation N̄ to represent the eigenstate in a DC field which

is adiabatically connected to rotational state N in zero field. Finally, at the bottom

of the energy hierarchy are the nuclear spins given by the operators Î1 and Î2 with

projections M1 and M2 along the space-fixed z axis. Here, 1 and 2 refer to the

constituents of the molecule in the order that the molecule is named, e. g. Rb is 1

and Cs 2 for RbCs. The interactions governing the nuclear spins are of order 100Hz-

1kHz. In terms of temperature, 1kHz corresponds to roughly 50 nanoKelvin, and so

hyperfine structure is typically thermally populated while the other internal structure

is not. While these energies are small compared to the other scales of the problem,

the precise, state-selective nature of the STIRAP process requires us to take into

account the hyperfine structure of the molecules [108].

Explicitly, a 1Σ alkali dimer molecule may be characterized by the parameters

displayed in Table 1.1 [108, 111–113]. The numerical values of these parameters

for the three most experimentally relevant species at the time of the writing of this

thesis [82, 109, 110] are also collected in Table 1.1.8 The physical origins of these

terms and their role in the microscopic Hamiltonian are given in Chapters 3 and 4.

8The dynamic polarizability of LiCs has not yet been calculated, to our knowledge. We estimate
that the ratio of the perpendicular and parallel polarizabilities will be similar to that of KRb and
RbCs.
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Figure 1.1: Intrinsic energy scales of alkali metal dimers. In descending order,
the energy scales of a 1Σ diatomic molecule are excitations of the electronic state,
vibrational modes of the nuclei about the equilibrium internuclear separation, rotation
of the molecule about its center of mass, and couplings between the nuclear spins and
the other angular momenta of the molecule. These energy scales span nearly twelve
orders of magnitude.
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Table 1.1: Coupling constants defining a 1Σ molecular species. Most of the values
in this table have been obtained by DFT or other ab-initio theoretical means [111–
113] and have not yet been verified by experiment. The exceptions are the rotational
constant, dipole moment, and nuclear quadrupole couplings for KRb [108].

Description Symbol 87Rb133Cs 40K87Rb 7Li133Cs
Rotational constant BN(GHz) 0.488 1.1139 5.636

Permanent dipole moment d(Debye) 1.25 0.566 5.52
Nuclear spin 1 I1 3/2 4 3/2
Nuclear spin 2 I2 7/2 3/2 7/2

Nuclear g-factor 1 g1 1.834 -0.324 2.171
Nuclear g-factor 2 g2 0.738 1.834 0.738

Nuclear quadrupole (eqQ)1(MHz) -0.872 0.45 0.0185
coupling 1

Nuclear quadrupole (eqQ)2(MHz) 0.051 -1.41 0.188
coupling 2

Rotation-nuclear spin c1(Hz) 98.4 -24.1 32
coupling 1

Rotation-nuclear spin c2(Hz) 194.1 420.1 3014
coupling 2

Tensor nuclear c3(Hz) 192.4 -48.2 140
spin-spin coupling

Scalar nuclear c4(Hz) 17345.4 -2030.4 1610
spin-spin coupling
Rotational g-factor gr 0.0062 0.014 0.0106
Nuclear shielding σ1(ppm) 3531 1321 108.2

factor 1
Nuclear shielding σ2(ppm) 6367 3469 6242.5

factor 2
Parallel polarizability α∥(au) 3033.97215 2116.77398 ?

Perpendicular Polarizability α⊥(au) 675.962926 471.613009 ∼0.222798α∥
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What are the new features of ultracold molecules relevant to many-body physics?

The dipole-dipole interaction

ĤDD (R) =
d̂ · d̂− 3

(
d̂ · eR

)(
eR · d̂

)
R3

, (1.8)

where R is the vector connecting the two dipoles, is the source of much interest in

polar molecules as it provides interactions which are both long range and anisotropic.

The anisotropy has been observed in studying the stereodynamics of ultracold col-

lisions [114, 115]. In addition, because of the anisotropy, angular momentum is not

conserved during low-energy scattering. This adds a short-range contribution in the

s-wave channel [116–118] which gives rise to a weak shape resonance in all even-ℓ

channels. The given form of the dipole-dipole potential breaks down at short dis-

tances where dispersion and chemical effects become relevant. We account for this

by imposing a short distance cutoff b of order rvdW, the van der Waals length, on

the dipole-dipole potential and account for the short-distance behavior by adding a

contribution [119, 120]

4π~2a (d)

m
δ (r) (1.9)

to the short-range pseudopotential. Here a (d) is the dipole-dependent scattering

length which is provided by the low-energy limit of the scattering matrix. Such a

pseudopotential has been shown [119] to reproduce the correct physics away from

any shape resonances.

In addition to the dipole-dipole interaction, molecules have a rich internal state

space which can be tunably accessed using AC microwave fields. Thus, in addition to

the ability to fine-tune fields to produce spin-like models for quantum simulation [121,

122], one can also access regimes where a large number of internal degrees of freedom

are interacting over a disparate range of timescales and thus build a simulator of a
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quantum complex system [123]. The means by which one can tune the internal state

space using external fields will be covered in Chapters 3 and 4.

Molecules also display complex short-range physics due both to the large number

of internal states and large energy scales at short range [124] and the possibility of

chemical reactions [125, 126]. In order to discuss short range physics, we first clarify

the scales which classify processes as being either short or long range. We define the

dipole length rd = (md2/~2) as the separation where the dipolar energy of two parti-

cles is comparable to the relative collision energy of two particles with a wavelength

of rd. We also define the van der Waals length rvdW =
[
2π/Γ (1/4)2

]
(2µC6/~2)

1/4
,

where C6 is the coefficient of the 1/R6 dispersion potential with R the intermolecular

separation, µ = M/2 the reduced mass of two molecules of mass M , and Γ (x) is the

Gamma function, as the separation where the dipolar interaction becomes compara-

ble to the short-range dispersive interaction [38, 127]. The scale at which chemical

reactions become relevant is Re, the bond length, which is smaller than 1nm for the

species considered here [128]. The associated energy scale is on the order of 100THz,

the chemical bond scale. The van der Waals length rvdW is the next relevant length

scale, ranging from 6nm for KRb to 30 and 50nm for LiCs and RbCs, respectively.

The dipole length is very large compared to all of these, and increases with increasing

dipole moment. The short-range region where chemical and state-changing collisions

become relevant corresponds to R < rvdW.

A complete picture of low-energy scattering for these molecules is provided by

multichannel quantum defect theory (MCQDT) [129] which uses the large separation

of scales to define dimensionless parameters s and y which characterize the short range

phase shift and chemical reactivity [130]. LiCs and KRb are both highly reactive [131];

there is unit probability of loss at short range. Thus, the collision rates, both elastic

and inelastic, depend only on the long range potential and there can be no scattering

resonances. Universal formulae exist for such species [131–133] and agree well with
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experimental measurements of molecular lifetimes [125]. Also, hyperfine spin appears

not to be relevant in the scattering of highly reactive molecules [125, 131]. For non-

reactive species such as RbCs and NaK, the collisions are non-universal, and may

have electric field dependent scattering resonances [134].

Recent work has shown that the short-range physics, both inelastic and elastic,

also depends strongly on an applied electric field [114, 133, 135, 136]. In particular,

it has been well established that the stability of a molecular ensemble increases with

increasing dipole moment in quasi-2D traps [133, 137]. Somewhat surprisingly, the

electric field does not appear to be relevant to the stability of a molecular gas in

a 3D optical lattice [126]. The detailed description of the short range scattering is

outside the scope of this work. We characterize the short range physics by a complex

scattering length as describing both elastic and inelastic scattering, which can be

computed using MCQDT. We note that large real or imaginary parts of as lead to an

effective hard-core condition in an optical lattice where only one molecule can exist

per lattice site due to strong resonant interactions or the continuous quantum Zeno

effect [138], respectively.

1.4 Simulation Methods

Analytical solutions of the many-particle Schrödinger equation are rare, and so

often one resorts to numerical techniques. One of the most successful methods for

the quantum many-body problem is density functional theory (DFT), which relies

on the fact that the ground state energy is a unique functional of the ground state

density [20, 21]. However, this energy functional is only known exactly for a free

electron gas, and so approximate functionals are used for interacting systems. The

computational procedure of DFT consists of minimizing the energy generated from

an approximate functional by changing the density. The density corresponding to

the minimum energy is expected to most closely represent the true ground state

density. While in principle the many-body wave function of the ground state is
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itself also a functional of the ground state density, this functional is not known,

and so the predictive power of DFT is limited to observables which depend only on

the density. Hence, DFT is not generically useful for detecting order in strongly

correlated systems, which generally requires two-point correlation functions such as

the density-density correlation function ⟨n̂in̂j⟩. Also, approximate functionals are

only available for Coulomb-interacting electronic systems, and so DFT is not an

appropriate starting point for systems which interact through different potentials

such as molecules interacting through the dipole-dipole potential. Finally, we note

that no improvements made to DFT can turn it into a “black box” method applicable

to any interacting electronic system, even in principle, as the existence of an efficient

approximation to the universal functionals relevant to electronic systems would imply

that the hardest problems for quantum computers to solve would be efficiently solvable

by classical computers [139].9 This is thought to be impossible, although no formal

proof has yet been provided.

The simplest method to solve the many-body Schrödinger equation is to form

a matrix representation of the Hamiltonian operator and numerically diagonalize

it. This method is referred to as exact diagonalization. The fact that the Hilbert

space of a many-body system grows exponentially with the number of constituents

in the system implies that this procedure is only practical for systems with very

few constituents. Some improvement can be made by considering sparse eigensolver

methods such as the Lanczos [140] or Davidson [141] algorithms which use only a

procedure applying the Hamiltonian to a given vector to find solutions corresponding

to extremal eigenvalues. By carefully accounting for all symmetries of the system,

for example point group symmetries of the lattice, U(1) symmetry corresponding to

conservation of number of particles, or SU(2) spin symmetry, the non-zero values of

9Explicitly, it would imply that a Quantum Merlin-Arthur (QMA)-complete problem lies in P,
where P is the class of problems which can be solved in polynomial time by a deterministic Turing
machine. QMA is the quantum analog to the classical complexity class NP.
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the Hamiltonian can be codified and calculated on-the-fly to optimize performance.

Even with all of these optimizations, the cutting edge of modern exact diagonalization

is limited to roughly 40 two-component spins, or qubits, or a half-filled electronic

system on a square lattice with 20 sites.

Another popular class of methods for the many-body problem are Quantum Monte

Carlo (QMC) methods. Path-integral QMC methods use the worldline mapping from

a d dimensional quantum system to a d + 1 dimensional classical system [4, 142]

and then use the classical Metropolis algorithm [143] to generate the equilibrium

expectations of observables by sampling worldline configurations. The most common

path integral QMC methods for strongly correlated systems are loop QMC [144] and

the worm algorithm [145]. Modern implementations of these algorithms can simulate

millions of particles at low temperatures, even when strongly correlated. However,

path integral QMC suffers from the sign problem for interacting fermionic systems in

dimensions greater than one or frustrated systems which have an extensive classical

ground state degeneracy. In these systems, there exist configuration updates of the

worldlines which amount to negative probabilities in the classical Monte Carlo scheme,

and so Monte Carlo can no longer be applied. If the sign is ignored in the update

procedure, an exponentially growing cancellation in the sign expectation leads to an

exponential growth of errors rather than a statistically limited behavior of errors as

in convergent Monte Carlo [146]. A similar phase problem exists when applying QMC

to the unitary dynamics of a many-body system. There also exist variational QMC

methods such as diffusion Monte Carlo [147] or variational Monte Carlo [148] in which

a trial wavefunction is optimized using a Monte Carlo procedure. These algorithms

suffer from bias in the choice of the variational ansatz, and also are not generally

applicable to dynamics. Diagrammatic Monte Carlo [149] samples terms10 in a series

rather than configuration updates. If the series is a perturbation series, the associated

10Series expansions often employ a diagrammatic notation for the terms in the series, hence the
name diagrammatic Monte Carlo.
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diagrams are Feynman diagrams. Bold-line diagrammatic Monte Carlo [150–152] uses

re-summation techniques [153] over subsets of diagrams to improve the efficiency, and

do not suffer from sign problem in some cases. Such methods may also be applicable

to real-time dynamics [154].

A more recent method for strongly correlated systems is Dynamical mean-field

theory (DMFT) [155–159], in which the full many-body problem is mapped onto an

effective impurity problem for one of the constituents with a self-consistently defined

bath describing the coupling of this impurity to the surrounding system. The sign

problem in the associated impurity problem can be better controlled due to the small

size of the impurity, and the mean-field approximation can be assuaged by considering

clusters of sites rather than single-site impurities and extrapolating in the size of

the cluster. DMFT is most useful in dimensions D > 2, and becomes exact in

the limit that D → ∞. DMFT requires the analytical mapping from the original

many-body problem to the impurity problem, and so has only been formulated for

specific interaction potentials such as the those appearing in the Bose-Hubbard [160]

and Fermi-Hubbard [156] models or for Bose-Fermi mixtures [159]. Hence, at present,

generic applications in DMFT require new development on a case-by-case basis. Both

DMFT and most flavors of QMC have the advantage that they incorporate finite

temperature naturally.

The simulation methods that we apply for many-body studies in this thesis are

variational methods based on matrix product states (MPSs), which are covered in

detail in Part IV of this thesis. MPSs are a class of states which are generated

through the process of a real-space renormalization group procedure known as the

density-matrix renormalization group. The main convergence parameter χ used in

an MPS simulation is a cutoff in the entanglement between any two complementary

subsections. One of the greatest advantages of MPS methods is that, like exact diag-

onalization, MPS methods produce wavefunctions, and so a vast array of properties
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may be computed. Furthermore, MPS methods can be formulated for any micro-

scopic degrees of freedom and for any interactions, making them suitable for generic

implementation. Finally, one can devise efficient variational MPS algorithms for the

dynamics of systems. The flexibility of MPS algorithms to adapt to different degrees

of freedom, a variety of interactions, and simulation of time evolution makes them

best suited for our purposes. The main drawback of MPS methods is that they work

best in 1D and at zero temperature. Higher dimensional generalizations of MPS al-

gorithms exist, but their numerical conditioning is much worse than that of MPS

algorithms at present. Additionally, generalizations to finite temperature exist, but

they also scale worse than their zero-temperature counterparts [161–164].

With MPS methods having been used successfully for nearly 20 years, why do

molecules necessitate new code and algorithm development? The first reason is that

Hubbard models for dipolar molecules have long-range interactions as discussed in

Chapter 2. While DMRG-type methods have been devised for long-range interacting

systems [163, 165], these methods are often Hamiltonian-specialized and inefficient.

A relatively new characterization of Hamiltonians based on matrix product opera-

tors [166–168] (MPOs) enables for long-range interactions to be accommodated effi-

ciently. Furthermore, as discussed in Chapter 7, by using a small set of finite state

automaton rules for the construction of Hamiltonian terms from local operators, a

wide array of Hamiltonians can be provided as input in a consistent form to an MPS

program. This completely eradicates the need for Hamiltonian-specialized implemen-

tation. The need for flexibility in an MPS program is vital for studying molecules;

as more complex molecules become cooled to quantum degeneracy a wider array of

more complex many-body models are expected. Hence, flexible code prevents the

need to “reinvent the wheel” as new many-body models become relevant. The MPS

algorithms presented in this thesis make no reference to the microscopic constituents

of the model under study or to the range or nature of their interactions. Rather, the
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only requirements are that the system be quasi one-dimensional and the Hamiltonian

be expressed as an MPO.

Long-range interactions allow for more complex translation-breaking orders than

finite-range interactions. An example of this is the “devil’s staircase” of insulating

phases at rational fillings of bosons interacting with 1/r3 interactions [169, 170].

The insulating states can be true long-range ordered crystals in 1D as opposed to

e. g. superfluids in 1D which are prevented from long range ordering by the Mermin-

Wagner theorem [171, 172]. Broken translational order causes special difficulties for

MPS algorithms, as these algorithms are stated most naturally for open boundary

conditions. For a system with true long-range translational order, the presence of open

boundaries strongly affects the bulk behavior of the system even several hundreds of

sites away from the boundaries. To avoid this difficulty, it is necessary to work directly

in the limit of an infinite lattice, in which we assume that the many-body state has

a periodically repeating unit cell. An algorithm for variationally finding the unit cell

of the ground state of an infinite system is provided in Chapter 8.

Finally, even for the simplest diatomic molecules with 1Σ ground states the internal

state space which is accessible can be significant due to a large hyperfine manifold. A

powerful way of breaking a large Hilbert space into its smaller relevant components

is through the explicit conservation of symmetries. In Chapter 6 the structure of

symmetry-adapted MPSs is elucidated for the simplest case of Abelian symmetries,

in which all of the irreducible representations are one-dimensional. Remarkably, the

conservation of Abelian symmetries can be implemented in a completely generic way,

and an arbitrary number of such symmetries may be simultaneously conserved. The

only place in which the particular symmetry group is relevant is in determining how

two quantum numbers transform under the group operation. Implementation details

are provided in Chapter 6.
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1.5 Related Work by Other Groups

The strongest connection of our work on polar molecules to other groups is the

dipole-dipole interaction. The most detailed many-body studies of dipole-dipole in-

teractions in ultracold atomic systems have focused on strongly magnetic atoms such

as Chromium, Erbium, Europium, and Dysprosium. Chromium was the first of these

atoms to be Bose-condensed [173, 174], with Dysprosium [175] and Erbium [176] only

having been Bose-condensed very recently. Fermionic isotopes of Dysprosium have

also been brought to quantum degeneracy [177]. The dipolar interaction of Chromium

is about one-sixth its short range interaction, and so the dipolar effects are gener-

ally perturbative in nature. Still, clear signatures of the dipole-dipole interaction

have been observed, such as d-wave expansion following the collapse of a Chromium

BEC [178]. For broad reviews on the physics of dipolar gases, we refer the reader to

Refs. [179, 180].

More closely related to our work are studies of dipolar particles in harmonic

traps [119, 120, 181–186] and lattices [170, 187–193]. Most of the work done in

harmonic traps is based on the mean-field Gross-Pitaevskii formalism which assumes

the presence of a condensate. In the lattice commensurability effects can drive the

system out of a condensed phase and into an insulating phase with a periodicity com-

mensurate with the lattice. Thus, a variety of techniques have been brought to bear

on the lattice problem. The quantum phases of bosonic dipoles in optical lattices

have been investigated for various 2D geometries, including on the square lattice us-

ing mean field techniques [189, 191] and via QMC on the square [170] and triangular

lattices [192]. A wide variety of quantum phases are possible including checkerboard

solid and supersolid phases in addition to the superfluid and Mott insulator phases

present for short-range interacting bosons. Supersolids are characterized by coexist-

ing translational and phase order, and have been the subject of intense study [194].

Studies beyond the ground state properties include the characterization and stabil-
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ity properties of metastable states [187, 188]. The presence of a lattice has also

been proposed to enhance the production of molecules through indirect means [190].

The scattering properties of a dipolar gas strongly confined in two dimensions but

free to move along the third have been studied [183], paralleling investigations of

confinement-induced resonances appearing in the short range case [195]. Finally, the

parameters of a Luttinger liquid theory have been postulated for general power-law

interactions in 1D [169], including an analysis of the Berezinskii-Kosterlitz-Thouless

transition to pinned phases in the presence of a weak lattice.

The dipole-dipole interaction is not the only interesting feature of polar molecules.

The presence of a permanent electric dipole moment allows for transitions between

rotational states in an AC microwave field. An early suggestion based on this ob-

servation was provided by Demille [196] who proposed that polar molecules in a

one-dimensional trap could be used for quantum computation. Many other groups

have proposed using the internal structure to build quantum simulators of spin mod-

els [197, 198] or to study other condensed matter phenomena such as the Holstein

model [199], exciton physics [200, 201], the physics of liquid crystals [202, 203], and

string orders related to the Haldane phase of the antiferromagnetic spin-1 Heisenberg

model [204, 205]. The internal structure can also be tuned through external fields

in order to produce a desired interaction potential for a specific molecular state in a

dressed-state picture [206–208]. More exotic proposals involve loading atoms into self-

assembled lattices of dipolar molecules [209, 210] or tuning three-body interactions via

external fields [211, 212]. A great deal of recent interest has been garnered for dipolar

molecules in bilayer geometries where the dipolar interaction within a layer is repul-

sive, stabilizing the gases within the layers, but the interaction between molecules in

different layers is attractive. This can induce exotic interlayer pairing [213, 214] and

induce soliton filaments in a stack of such layers [215].
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The most closely related works to our own are those which simulate quantum

magnetism, particularly a long-range generalization of the t-J model, using the in-

ternal structure of polar molecules [121, 122, 216]. These works have an approach

similar to ours, in which the properties of the many-body models are related to those

of the few-body physics through microscopic analysis. The main difference between

these works and ours is motivation. The t-J work specifically fine-tunes the external

fields in order to achieve a quantum simulator of a known model. Our work, on the

other hand, begins from a near-term experimental setup and asks what the naturally

arising many-body Hamiltonian is and what its many-body features are.

There is also a body of work by other authors focusing on the problem addressed

by the Fermi resonance Hamiltonian (FRH) which is the topic of Part III. The FRH

maps a resonance model in the continuum onto a resonance model in the lattice by

identifying a set of dressed molecules which form the effective closed channel in the

lattice. To our knowledge the first time that an effective closed channel was used for

a many-body model in a cold atoms context was in Ref. [217], although such terms

had been used phenomenologically in the study of high-Tc superconductivity for many

years prior [218–220]. The analogous high-Tc model, known as the “cooperon model,”

is still a subject of current research [221].

A proper description of the physics of the two-channel model requires a renormal-

ization of the theory to remove divergences associated with a point-like boson [222,

223]. The exact solution for two particles interacting via a Feshbach resonance in a

(possibly anisotropic) harmonic trap was obtained in Ref. [224]. The importance of

intra- as well as inter-band coupling terms was stressed, and the theory was properly

renormalized to remove divergences from using a point-like boson. The authors of

Ref. [225] consider a lattice two-channel model, and determine the properties of the

dressed molecule by considering deep lattices and replacing the lattice with a single

harmonic well. The harmonic trap approximation both artificially leads to separabil-
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ity of the center of mass motion from both the relative motion and internal structure

and underestimates the extent of Wannier functions, often by an order of magnitude.

This implies that qualitative properties of the tunneling, as well as its general or-

der of magnitude, cannot be accounted for using this approach. Duan has derived

effective two-channel models using both a projection operator formalism [226] and

general symmetry considerations [227]. He considers the dressed molecule to be the

exact solution of an on-site Schrödinger equation, and then couples in many-body

physics using atom-molecule couplings between neighboring sites. He then considers

the case where one of the on-site eigenstates is close to the scattering continuum of

two particles in a specific band n, and then projects the Hamiltonian onto the Hilbert

space of empty sites, singly occupied sites with a fermion in band n, and doubly

occupied sites containing a dressed molecule. Such a Hamiltonian cannot describe

the full BEC-BCS crossover, as it restricts the dressed molecules to behave as hard-

core bosons whereas deep in the BEC side the molecules are tightly bound, weakly

interacting bosons. This work also does not give a prescription for solving the on-

site problem, but references the exact solution in the harmonic trap. More recent

work [228] uses the numerical solution from a double-well potential to avoid some of

the shortcomings of the harmonic oscillator approximation. While this work captures

some of the physics of the lattice at the nearest-neighbor level, it does not capture

the full quasimomentum dependence of the lattice Hamiltonian.

Büchler was the first to give the exact solution for two fermions interacting through

a zero-range Feshbach resonance in an optical lattice, properly accounting for the ef-

fects of higher bands and renormalization [229]. He then showed that when the inter-

action term U of the single-band Hubbard model was determined from the scattering

properties of this exact two-body solution self-consistently, the Hubbard model still

failed to reproduce the correct physics even for moderate s-wave scattering length,

or very far from the actual pole of the Feshbach resonance. This has motivated our
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approach of using a two-channel model instead of a single-channel model such as the

Hubbard model. His discussion of the two-body solution focused on states with zero

total quasimomentum, although the theory encompasses states with arbitrary total

quasimomentum.

Very recent work by von Stecher et. al. [230] focuses on an effective two-channel

model near a lattice resonance. Instead of solving the on-site problem exactly they

project the two-body Hamiltonian outside of the scattering continuum of two fermions

in bands n and m which gives rise to the resonance, solve this projected Hamiltonian

exactly, and then use the eigenstates of this projected Hamiltonian as a dressed closed

channel. This is approach is very similar in spirit to ours. In contrast to our work, low

dimensionality is assumed from the outset and so this approach breaks down when

the energy associated with the Feshbach coupling becomes larger than the energy

associated with the transverse confinement. Instead, our model treats the population

in transverse excited state as being fixed by the two-body solution and thus part of

the dressed molecule. This allows any imposed conditions of reduced dimensionality

to be controlled only by the transverse tunneling and coupling rates of the dressed

molecules.

Finally, with regards to the open source work, an open source version of DMRG

exists as a part of the Algorithms and Libraries for Physics Simulations project

(ALPS) [231–233]. Open source versions of 1D time dependent DMRG also ex-

ist [234, 235]. To the best of our knowledge, the two open source coding projects

described in this thesis, open source time-evolving block decimation [236] and the

time-evolving block decimation routines included as part of the ALPS package, are

the only open source codes which work directly on matrix product states.

1.6 Outline

The present thesis is divided broadly into six parts. Each chapter within a part

represents either a publication, in which case the chapter begins with an abstract,
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or material which places the publications in context and provide background infor-

mation. Materials relevant to the open source coding projects or educational devel-

opment discussed in Part V are placed in appendices to avoid interrupting the flow

of the thesis. Part I is an introduction to the topics of this thesis, and includes the

present chapter. This part continues in Chapter 2, which discusses the general route

from a few-body Hamiltonian to a many-body Hamiltonian appropriate for describing

strongly interacting particles in a lattice.

Part II of this thesis is devoted to the molecular Hubbard Hamiltonian, a model

for the low-energy physics of 1Σ alkali dimer molecules loaded into an optical lattice.

Chapter 3 describes the first attempt at deriving such a Hamiltonian by considering

only the rotational degrees of freedom. Special focus was put on describing the

dynamics of molecules following a sudden turning on of a microwave AC field coupling

the lowest rotational level to higher rotational levels. Using time-dependent matrix

product state methods, it was found that coherent Rabi oscillations between two

internal states driven at a single-molecule resonance were exponentially damped with

an emergent timescale. This effect was termed quantum dephasing. As experiments

began to produce ultracold molecules in the absolute vibrational, rotational, and

hyperfine ground state, this model was revised to include the hyperfine structure

of the molecules. We refer to the resulting Hamiltonian as the hyperfine molecular

Hubbard Hamiltonian, which is discussed in Chapter 4. Chapter 4 studies the strong

static electric and magnetic field limit of this Hamiltonian.

In Part III of this thesis we study the problem of the pairing of two-component

fermionic atoms via a Feshbach resonance in an optical lattice. As the scattering

length for two particles in the open channel diverges near resonance, the pseudopo-

tential model for interactions, amounting to integrating out the closed channel, breaks

down. Furthermore, as the strength of the pairing interaction g becomes stronger than

the band gap, the restriction of the open channel to the lowest band is no longer ap-

31



propriate at short distances. Hence, the Hubbard model [237] involving tunneling

of two-component fermions in the lowest band with on-site s-wave inter-component

interactions fails to correctly describe the system.

In our approach, we project the complete two-channel model into the basis of

Bloch functions appropriate to the lattice problem. A scaling analysis enables us to

extract the bound state properties of two particles to the limit of an infinite number

of bands. By carefully partitioning the Hilbert space into low-energy and high-energy

sectors and performing this numerically exact two-particle analysis on the high-energy

sector, we derive the Fermi resonance Hamiltonian (FRH), a lattice model which is

applicable to resonances of any width and any scattering length. The FRH takes the

form of a multichannel resonance model between fermions in the lowest band of the

open channel and a closed channel consisting of “dressed molecules.” The use of the

full lattice solution, the extrapolation to an infinite number of bands, and the proper

regularization of the Feshbach coupling are all vital to the proper quantitative and

qualitative description of the physics.

Part IV of the present thesis is devoted to matrix product states (MPSs) and

variational algorithms associated with them. Chapter 6 gives an overview of MPSs.

While this chapter is largely conceptual, it also contains details on symmetry adapted

MPSs. Chapter 7 provides a thorough overview of algorithms using MPSs as vari-

ational ansätze for the eigenstates of arbitrary 1D Hamiltonians on finite lattices.

Furthermore, it presents algorithms for simulating the dynamics of arbitrary time-

dependent Hamiltonians whose error bounds do not depend on the smoothness prop-

erties of the Hamiltonian in question and do not require any Hamiltonian-specialized

implementation. Chapter 8 discusses a variational algorithm for finding the ground

state of an infinite system variationally using a translationally invariant MPS ansatz.

Chapter 9 discusses how algorithms for time evolution of MPSs may be used to sim-

ulate MPSs as finite temperature, either through entangling MPSs to a fictitious
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reservoir or through sampling the characteristic states which arise at finite temper-

ature. This chapter also provides information on how to formulate MPS algorithms

for periodic boundary conditions which correctly describe the entanglement structure

of periodic states.

In Part V of the thesis we discuss open source coding projects and educational

materials. The open source coding projects include open source time-evolving block

decimation [236], a stand-alone implementation of time-evolving block decimation, as

well as an implementation of time-evolving block decimation as part of the ALPS open

source package [231–233]. The educational materials include tutorials on the open

source codes which are aimed at the level of graduate students performing research in

strongly correlated physics and documents intended for use within the Carr theoretical

physics research group for students who may have very little background in quantum

mechanics or numerical methods. The manuals and documentation for the open

source codes, as well as the educational materials, are reprinted in the appendices.

Finally, the thesis concludes in Chapter 12 with suggestions for future work. This

chapter together with the appendices form Part VI of the thesis. All of the code used

to generate the numerical data in this thesis, including the most recent versions of the

open source codes in both ALPS and stand-alone open source TEBD, are included

as a CD with the thesis. The contents of this CD, as well as implementation details

for the included codes, are provided in Appendix A.

The publications included in this thesis are

1. Chapter 3. Emergent Timescales in Entangled Quantum Dynamics of Ultracold

Molecules in Optical Lattices, M. L. Wall and L. D. Carr, New J. Phys. 11

055027 (2009), doi:10.1088/1367-2630/11/5/055027. Permission is provided by

the Creative Commons Attribution-Non-Commercial-ShareAlike 3.0 license ac-

cording to the New Journal of Physics copyright statement.
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2. Chapter 4. Hyperfine molecular Hubbard Hamiltonian, M. L. Wall and L. D.

Carr, Physical Review A 82, 013611 (2010), doi:10.1103/PhysRevA.82.013611.

Copyright (2010) by the American Physical Society. Permission is provided by

the American Physical Society according to the APS copyright policy.

3. Chapter 5. Microscopic Model for Feshbach Interacting Fermions in an Optical

Lattice with Arbitrary Scattering Length and Resonance Width, M. L. Wall and

L. D. Carr, Phys. Rev. Lett. 109, 055302 (2012),

doi:10.1103/PhysRevLett.109.055302. Copyright (2012) by the American Phys-

ical Society. Permission is provided by the American Physical Society according

to the APS copyright policy.

4. Chapter 7. Out of equilibrium dynamics with Matrix Product States, M. L. Wall

and L. D. Carr, New J. Physics, under review, arXiv:1205.1020v1. Permission

is provided by the Creative Commons Attribution-Non-Commercial-ShareAlike

3.0 license according to the New Journal of Physics copyright statement.

5. Chapter 9. Finite Temperature Matrix Product State Algorithms and Appli-

cations, M. L. Wall and L. D. Carr, Chapter in ”Quantum Gases: Finite

Temperature and Non-Equilibrium Dynamics” (Vol. 1 Cold Atoms Series),

N. P. Proukakis, S. A. Gardiner, M. J. Davis and M. H. Szymanska, eds. (Im-

perial College Press, 2012), arXiv:1008.4303v1. Permission is provided by the

Creative Commons Attribution-Non-Commercial-ShareAlike 3.0 license accord-

ing to the arXiv copyright statement.

6. Material appearing in Appendix C first appeared on the wiki pages for the ALPS

collaboration hosted at http://alps.comp-phys.org and was written solely by the

author of the present thesis. Permission to reprint these materials is provided

by the ALPS collaboration.
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CHAPTER 2

MODELS FOR STRONGLY CORRELATED LATTICE PHYSICS

In this chapter we outline the general procedure of deriving an effective low-energy

many-body lattice model appropriate for strong correlations from few-body physics.

The replacement of the full many-body Hamiltonian with an effective model can be

justified as the result of a renormalization group iteration [1]. Using a renormalization

group analysis, a Hamiltonian can be projected into a suitably chosen low-energy

subspace and the high-energy modes integrated out, resulting in an effective model for

only the low-energy modes. Under this renormalization procedure, certain irrelevant

interactions are suppressed relative to those which grow or stay constant.11 The

hope is that the renormalized theory contains fewer relevant single particle states

or simpler interactions. Additionally, rather than integrating out the high-energy

degrees of freedom, one can also dress them with interactions such that the new

dressed high-energy degrees of freedom have a more easily understood structure or

simpler couplings to the relevant low-energy degrees of freedom. This dressing is

the main idea underlying Feynman diagram re-summation techniques such as the

random phase approximation [2], and is also the key idea in the derivation of the

Fermi resonance Hamiltonian discussed in Part III.

Generally, a renormalization group analysis of an interacting many-body system is

difficult. For particles in deep lattices,12 the presence of a band gap provides an energy

scale which naturally separates the low-energy and high-energy degrees of freedom. If

all other energy scales, e.g., temperature, interactions, etc., are smaller than this band

gap, then the particles will remain in the lowest Bloch band, drastically simplifying

11Interactions that grow and remain constant are called relevant and marginal, respectively.
12Deep in this context means that the strength of the lattice is comparable to or larger than the

kinetic energy. For ultracold gases with lattice potential V (x) = V0 sin
2 (πx/a), a lattice may be

considered deep in typical cases for V0/ER ≥ 2, with ER = ~2π2/2ma2 the recoil energy.
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the structure of the theory without the need for a more complex renormalization

group analysis. Lattice Hamiltonians obtained under these assumptions are known

as Hubbard models [3, 4], in analogy with the lattice model proposed by Hubbard

Ĥ = −t
∑
⟨i,j⟩

∑
σ∈{↑,↓}

[
â†iσâjσ + h.c.

]
+ U

∑
i

n̂i↑n̂i↓ . (2.1)

The first term represents tunneling of fermions with spin projection σ between nearest-

neighbor lattice sites i and j with associated energy t. The latter term represents

interactions between spin-up and spin-down fermions which occur only when two

particles occupy the same lattice site. For electrons in solids which interact via a

screened Coulomb potential, the reduction of the interactions to a single on-site term

is a drastic oversimplification, and so the Hubbard model represents a toy model which

is not expected to capture the microscopic physics.13 Additionally, the restriction

to only the lowest Bloch band of the lattice does not hold for f -electron metals

in which the interaction parameters are generally greater than the band splitting.

However, for neutral ultracold gases in optical lattices, the interactions can be well-

modeled by a contact pseudopotential in many cases, and so Eq. (2.1) may represent

an accurate microscopic many-body Hamiltonian. The remaining issue is to identify

the parameters t and U from few-body physics.

2.1 The Single-Particle Problem: Bloch States and Wannier Functions

Let us consider a general many-body Hamiltonian consisting of a single-particle

Hamiltonian Ĥ1 and two-body interactions Ĥ2, written in second quantization as

Ĥ =

∫
drψ̂† (r) Ĥ1ψ̂ (r) +

1

2

∫
dr

∫
dr′ψ̂† (r) ψ̂† (r′) Ĥ2ψ̂ (r′) ψ̂ (r) . (2.2)

For systems which include a lattice potential, we may write Ĥ1 as

13For a detailed exposition of the assumptions leading to the Hubbard model in solid state systems,
see Ref. [4]

62



Ĥ1 = Ĥkin + Ĥlatt + Ĥinternal , (2.3)

where Ĥkin is the kinetic energy operator, Ĥlatt is the coupling of a particle to the

lattice, and Ĥinternal is the Hamiltonian describing the internal degrees of freedom in

free space. We furthermore assume that all terms appearing in Ĥinternal have no spatial

dependence on the lattice scale. When this is the case then the basis diagonalizing

this Hamiltonian is spatially independent, depending only on the internal degrees of

freedom of a single particle in free space. We will refer to the basis diagonalizing this

Hamiltonian as |σ⟩: Ĥinternal|σ⟩ = Eσ
internal|σ⟩.

The coupling to the lattice is provided by the dynamical polarizability tensor α̃ of

the particle in question [5]. This tensor has nine operator-valued elements which can

be indexed by pairs (p, p′) with p and p′ running over a space fixed basis {x, y, z}.14

Using the states |σ⟩ we can find a representation of α̃ within the eigenspace of Ĥinternal.

We assume that the optical lattice consists of three independent retro-reflected15

laser beams, each monochromatic with linear frequency ν, arranged in a simple cubic

structure:

Eopt (r, t) = 2e2πiνt [Exϵ
x sin (klx) + Eyϵ

y sin (kly) + Ezϵ
z sin (klz)] . (2.4)

Here kl = π/a with a = λ/2 the lattice spacing and λ the wavelength of the optical

field. In addition to the intensities Ix = E2
x etc. along each spatial direction, this

optical field is also described by three complex vectors ϵν , ν = x, y, z giving the po-

larization of the x, y, and z fields, respectively. If we use the spherical representation

of the polarization vectors ϵν we have the Stark shift

14Equivalently, a spherical basis {−1, 0, 1}.
15This accounts for the factors of 2 in front of the field strengths.
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Vσ′σ (r) ≡ ⟨σ′|Ĥlatt (r) |σ⟩ = −
∑

ν=x,y,z

∑
qνqν′

|Eν |2 ϵν⋆qν ⟨σ
′|α̃qνq′ν |σ⟩ϵ

ν
q′ν

sin2 (klxν) . (2.5)

This shift is what provides the lattice potential for ultracold gases.

For anisotropic systems such as rotating molecules, Eq. (2.5) is not generally

diagonal in the internal degrees of freedom. This is discussed for rotational eigenstates

in Chapter 3, and will be discussed in full generality in a forthcoming paper [6]. In

this case, the problem is complicated by the fact that the three independent beams

forming Eopt generally compete for ordering of the internal state |σ⟩. Thus, the lattice

formed from three independent beams becomes non-separable due to the fact that

the beams couple differently to the internal state. For simplicity, in the remainder of

the present discussion we will assume that the matrix Eq. (2.5) is diagonal. In this

case two simplifications occur. The first is that each |σ⟩ obeys a Schrödinger equation

which is decoupled from all other internal states. The second is that the lattice is

separable in real space, and so we can solve each Cartesian direction separately.

As the single-particle Hamiltonian Eq. (2.3) is invariant under translations by

a Bravais lattice vector, its eigenfunctions can be written in Bloch form [7]. We

thus write the solutions of Ĥ1 in the form ψσnq (r). Here, the quasimomentum q

whose components qσ lie within the first Brillouin zone (BZ) [−kl, kl) denote how

this eigenfunction transforms under translations, and the band index n distinguishes

solutions with the same translational symmetry which differ in energy. Due to the

separability of the lattice potential, we may write this solution as a product

ψσnq (r) =
∏

ν=x,y,z

ψσnνqν (rν) , (2.6)

where the ψσnνqν (rν) satisfy the 1D Schrödinger equations

[
p̂2ν
2m

+ Vσσ (rν)

]
ψσnνqν (xν) = Eσqνnνψσnνqν (rν) . (2.7)
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Here and throughout, we will use boldface to denote three-component vectors and

ordinary type to denote scalar quantities, e. g. q refers to a 3D quasimomentum

and q a 1D quasimomentum. Also, we will leave off the ν subscripts when they are

unnecessary, writing instead e. g. ψσnq (x) for a 1D Bloch function.

We now turn to the solution of the equations governing the 1D Bloch functions

Eq. (2.7). As is well known [7], Bloch functions may be written in the form

ψσnq (x) =
1√
La

eiqxuσnq (x) , (2.8)

where L is the number of (1D) unit cells and uσnq (x) has the same periodicity as the

potential. Because of this periodicity, these functions may be expanded in a Fourier

series

uσnq (x) = lim
ℓ→∞

ℓ∑
p=−ℓ

cpσnqe
2πpix/a . (2.9)

Here ℓ is a finite Fourier cutoff used in numerics. A cutoff of a few tens captures

the lowest few bands to machine precision. Inserting this expansion into the 1D

Schrödinger equation yields the finite eigenvalue equation for the coefficients cpσnq:

lim
ℓ→∞

ℓ∑
p′=−ℓ

Hpp′c
p′

σnq = Eσnqc
p
σnq , (2.10)

Hpp′ =

[
(2p+ q/kl)

2ER +
V

2

]
δpp′ −

V

4
(δp,p′+1 + δp,p′−1) , (2.11)

where we have defined the recoil energy ER ≡ ~2k2l /2m and V is the coefficient of

sin2 (klν) along the particular 1D direction. Numerically, this amounts to solving a

real symmetric tridiagonal eigenproblem.

Bloch functions represent simultaneous eigenfunctions of translation and the single-

particle Hamiltonian, and are hence highly delocalized. Typical interactions in strongly

correlated systems, on the other hand, are often spatially local and so Bloch functions
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represent an inadequate basis for describing strong interactions. A more suitable basis

is provided by Wannier functions, which are the quasimomentum Fourier transform

conjugates to the Bloch functions

wσn (r− ri) =
1√
L

∑
q∈BZ

e−iq·riψσnq (r) , (2.12)

where ri represents the position of site i in the lattice. These functions are highly

localized,16 and represent a more appropriate basis in which to expand strongly in-

teracting models. As is apparent from the notation of Eq. (2.12), a Wannier function

centered around a particular lattice site ri depends only on the distance from that site.

We will also use the shorthand wσni (r) ≡ wσn (r− ri) to simplify some expressions.

The general route to a Hubbard model is to expand the field operator ψ̂ (r) in

terms of the single-particle Wannier basis, resulting in a Hamiltonian of the form

Ĥ =
∑
i,j

∑
σn

â†iσn⟨iσn|Ĥ1|jσn⟩âjσn (2.13)

+
1

2

∑
i1i2i′1i

′
2

∑
n1n2n′

1n
′
2

∑
σ1σ2σ′

1σ
′
2

⟨i1σ1n1; i2σ2n2|Ĥ2|i′1σ′
1n

′
1; i

′
2σ

′
2n

′
2⟩

× â†i1σin1
â†i2σ2n2

âi′2σ′
2n

′
2
âi′1σ′

1n
′
1
,

where â†iσn creates a particle in Wannier state wσn (r− ri). The overlap integrals

⟨iσn|Ĥ1|jσn⟩ and ⟨i1σ1n1; i2σ2n2|Ĥ2|i′1σ′
1n

′
1; i

′
2σ

′
2n

′
2⟩ are called Hubbard parameters,

and are the point of contact between the microscopic, few-body physics and the many-

body physics. In order for this transformation to be useful, we must truncate the sums

appearing in Eq. (2.13) in some form. Often, the sums over the band indices n and

internal states σ are set by selection rules and energetics from the few-body physics.

For example, for transitions in an AC microwave field with circular polarization q, only

16More precisely, these functions can be made exponentially localized when subject to a one-
dimensional inversion symmetric potential by an appropriate choice of phases on the Bloch func-
tions [8]. The Wannier functions produced by this procedure are called maximally localized Wannier
functions, and are used exclusively in this thesis unless indicated otherwise.
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internal states for which ⟨σ′|d̂q|σ⟩ is nonzero will contribute, with dq the projection

of the dipole operator along the space-fixed spherical basis direction q. Similarly,

interactions which transfer particles between bands on-site must preserve the parity

of the bands, that is (−1)n1+n2 = (−1)n
′
1+n

′
2 . Additionally, it is most often assumed

that the temperature, interaction scales, and all other scales of the problem are small

compared to the band gap between the lowest two bands. This restricts all particles

to remain in the lowest band, and so the summations over band indices vanish. To

avoid overly cumbersome notation, we will leave off band indices when we discuss

the two-particle interactions. We will also discuss the truncation of spatial sums

separately for single-particle and short and long ranged two particle interactions.

2.1.1 Single-Particle Hubbard Parameters

The Hubbard parameters arising from the single-particle piece take the form

ti,jσn ≡ −
∫
drw⋆σn (r− ri)

[
Ĥkin + Ĥinternal + Ĥlatt (r)

]
wσn (r− rj) (2.14)

= − 1

L3

∑
qq′

∫
dreiq·riψ⋆σnq (r)

[
Ĥkin + Ĥinternal + Ĥlatt (r)

]
eiq

′·rjψσnq′ (r) (2.15)

= − 1

L3

∑
qq′

ei(q·ri−q′·rj)Eσnqδqq′ (2.16)

= − 1

L3

∑
q

eiq(ri−rj)Eσnq . (2.17)

The third line used the fact that the Bloch functions diagonalize the single-particle

Hamiltonian and the orthonormality of the Bloch functions. This orthogonality is also

why the parameters ti,jσn are diagonal in σ and n. The parameters ti,jσn with i ̸= j are

called tunneling or hopping parameters, as they are interpreted as a particle quantum

mechanically tunneling through the lattice from site i to site j. These parameters

take the simple form of a quasimomentum Fourier transform of the band structure in

the relative coordinate. Their contribution to the Hamiltonian is
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Ĥtunneling = −
∑
σn

∑
i̸=j

ti,jσnâ
†
iσnâjσn . (2.18)

The minus sign in this definition is customary and accounts for the minus sign in the

definition of ti,jσn. It arises because the nearest-neighbor tunneling coefficient defined

as such is positive. For i = j, ti,iσn is minus the energy of a particle in band n and

internal state σ, and so it is customary to reverse the sign and define

Eσn =
1

L3

∑
q

Eσnq . (2.19)

This parameter is simply the average of the band structure for fixed band number n

and internal state σ. The complete single-particle Hubbard Hamiltonian is thus

ĤHsp =
∑
σn

Eσn
∑
i

n̂iσn −
∑
σn

∑
i̸=j

ti,jσnâ
†
iσnâjσn , (2.20)

where n̂iσn ≡ â†iσnâiσn is the number operator on site i for band n and internal state σ.

Noting that â†jσnâiσn is the Hermitian conjugate of â†iσnâjσn, we must have tj,iσn = ti,jσn

for a Hermitian Hamiltonian.17 This allows us to write

ĤHsp =
∑
σn

Eσn
∑
i

n̂iσn −
∑
σn

∑
j>i

ti,jσn

[
â†iσnâjσn + h.c.

]
. (2.21)

For a 1D lattice of the form V (x) = V0 sin2 (πx/a), we can parameterize the

dependence of the lowest band tunneling on the lattice height V0 as [9]

tij/ER = A

(
V0
ER

)B
exp

(
−C
√
V0/ER

)
, (2.22)

which is motivated by the large V0/ER limit of the tunneling computed using Mathieu

functions [10]. A fit to numerically generated data is found to be quantitatively valid

17Strictly speaking, this implies that tj,iσn = ti,jσn
⋆
, but for time-reversal invariant single-particle

Hamiltonians we can always choose the eigenvalues, and thus the tunnelings, to be real.
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in the range V0/ER > 2. The results are summarized in Table 2.1. These expressions

can be used to determine a consistent order of approximation when truncating long-

range interactions.

Table 2.1: Fit parameters for the tunneling at the nearest, next-nearest, and third
nearest neighbor distances together with their asymptotic standard errors.

Term A B C
ti,i+1 1.363±0.0004 1.057±0.0005 2.117±0.0004
−ti,i+2 2.491±0.0023 1.957±0.0011 4.361±0.0012
ti,i+3 7.294±0.011 2.767±0.0015 6.534±0.0018

2.2 Two-Particle Hubbard Parameters

We now turn to determining the Hubbard parameters for the two-particle inter-

action. Interactions can be broadly classified into short range and long range terms,

where short range terms are those which are well modeled by a pseudopotential of

the form U (r) = gδ (r) and long-range terms have nonlocal r dependence. We begin

with an exposition of the short range terms.

2.2.1 Short-Range Interactions

The quantum-mechanical scattering from a spherically symmetric potential can be

codified in terms of partial waves ℓ, where ℓ is the relative orbital angular momentum

of the scattering particles. At low energies, the dominant partial waves are the s- and

p-waves, corresponding to ℓ = 0 and ℓ = 1, respectively. For short range potentials,

the contributions from these partial waves at low energies can be captured by pseu-

dopotentials that depend only on a single parameter, the (s- or p-wave) scattering

length. This is a readily calculated and measured quantity. The regularized s-wave

pseudopotential is [11, 12]

U (r) =
4π~2as
m

δ (r) ∂rr , (2.23)
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where as is the s-wave scattering length. The term ∂rr is a regularization opera-

tor which incorporates boundary conditions on the spherically symmetric scattering

problem, but is inconvenient for the lattice problem which is not naturally stated

in spherical coordinates. In Cartesian coordinates, which are most natural for our

simple cubic lattice, we have

U (r) =
4π~2as
m

δ (x) δ (y) δ (z) [(x∂x + y∂y + z∂z) + 1] . (2.24)

Thus, provided that our functions have sufficiently regular derivatives at r → 0, the

first term in brackets vanishes in this same limit. The regularity of the Wannier

functions is assured by the fact that they are band-limited periodic functions, and so

the pseudopotential becomes

U (r) =
4π~2as
m

δ (r) . (2.25)

That is, we can neglect the regularization operator.

Using this pseudopotential in the second-quantized many-body Hamiltonian and

expanding in terms of lowest band Wannier functions, we have

Ĥs−wave =
2π~2

m

∫
dr

∫
dr′ψ̂† (r) ψ̂† (r′) asδ (r− r′) ψ̂ (r′) ψ̂ (r) (2.26)

=
2π~2

m

∑
i1i2i′1i

′
2

∑
σ1σ2σ′

1σ
′
2

aσ
′
1σ

′
2

s â†i1σ1 â
†
i2σ′

2
âi′2σ′

2
âi′1σ′

1

×
∫
drw⋆i1σ1 (r)w⋆i2σ2 (r)wi′2σ′

2
(r)wi′1σ1 (r) , (2.27)

where aσσ
′

s is now the s-wave scattering length for particles in internal states σ and σ′.

Note that this does not depend on the band or site indices, as it is a quantity calculated

in free 3D space. All of the lattice physics is encapsulated in the Wannier overlap

integral, which is essentially a geometrical factor. Each term in the summation can

be interpreted as a scattering process where particles in states σ′
1 and σ′

2 at positions
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i′1 and i′2 scatter via the s-wave pseudopotential into internal states σ1 and σ2 at

positions i1 and i2, respectively. We will call the primed indices incoming and the

unprimed indices outgoing. Because of the localization of the Wannier functions,

terms with i1 ̸= i2 ̸= i′1 ̸= i′2 are exponentially suppressed, and so the most common

approximation is to keep only the i1 = i2 = i′1 = i′2 term. In the case of a single

internal state, this leads to

Ĥs−wave =
2π~2as
m

∫
dr |w0 (r)|4

∑
i

n̂i (n̂i − 1) , (2.28)

from which we can immediately read off the value of U appearing in the Bose-Hubbard

model Eq. (1.2). It is important to note that the lattice affects the strength of

the interactions through the overlap of the Wannier functions. Hence, for a fixed

scattering length the interactions can be increased by making the lattice deeper.

By replacing a single lattice site with a harmonic oscillator with oscillator length

ah.o. = a/π(V0/ER)1/4 and thus approximating the Wannier functions with harmonic

oscillator eigenstates,18 we find that these integrals all grow as roughly (V0/ER)1/4

with the lattice depth V0. Finally, in the case where the lattice potential is separable,

the Wannier function overlaps also separate into three independent 1D integrals, and

so can be computed numerically with high efficiency.

The situation is similar for p-wave interactions. The regularized p-wave pseudopo-

tential is [12]

U (r) =
π~2a31
µ

←−
∇δ (r)

−→
∇r∂rrrr2 , (2.29)

where the arrows indicate the action of the gradient operators. Using the Leibnitz

formula we have

18The on-site interaction coefficient for delta-function interactions in the deep lattice limit is the
only place that this approximation has any credence. For off-site interactions or tunneling parame-
ters, the use of the approximation leads not only to quantitative errors of an order of magnitude or
more, but also qualitative errors in the symmetries of the Hubbard parameters, see Chapter 5.
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∂rrr
(
r2f
)

=
(
6∂r + 6r∂rr + r2∂rrr

)
f , (2.30)

and so the only term which possibly doesn’t vanish as r → 0 for sufficiently regular

functions f is the first. We will denote all such terms which vanish as r → 0 as

van.terms. We have

−→
∇r∂rrr

(
r2f
)

= 6
−→
∇ [x∂x + y∂y + z∂z] f + van.terms , (2.31)

= 6
−→
∇f + van.terms , (2.32)

and so the regularized potential for our sufficiently regular Wannier functions becomes

U (r) =
6π~2a31
µ

←−
∇δ (r)

−→
∇ . (2.33)

Expanding the second quantized Hamiltonian as above, we have

Ĥp−wave =
3π~2

µ

∫
dr

∫
dr′ψ̂† (r) ψ̂† (r′) a31

←−
∇δ (r− r′)

−→
∇ψ̂ (r′) ψ̂ (r) , (2.34)

=
3π~2

µ

∑
i1i2i′2i

′
1

∑
σ1σ2σ′

2σ
′
1

(
a
σ′
1σ

′
2

1

)3
â†i1σ1 â

†
i2σ2

âi′2σ′
2
âi′1σ′

1

∫
dr

×
∫
dr′w⋆i1σ1 (r)w⋆i2σ2 (r′)

←−
∇r−r′δ (r− r′)

−→
∇r−r′wi′2σ′

2
(r′)wi′1σ′

1
(r) , (2.35)

=
6π~2

m

∑
i1i2i′2i

′
1

∑
σ1σ2σ′

2σ
′
1

(
a
σ′
1σ

′
2

1

)3
â†i1σ1 â

†
i2σ2

âi′2σ′
2
âi1σ′

1

∫
dr

×
∫
dr
[(
∇w⋆i1σ1 (r)

)
w⋆i2σ2 (r)− w⋆i1σ1 (r)

(
∇w⋆i2σ2 (r)

)]
×
[(
∇wi′1σ′

1
(r)
)
wi′2σ′

2
(r)− wi′1σ′

1
(r)
(
∇wi′2σ′

2
(r)
)]
. (2.36)

Here aσσ
′

1 is the p-wave scattering length for internal states σ and σ′. We note that the

derivatives can be rigorously taken, i.e., without any discretization error, using the

Fourier representation of the Bloch functions, Eq. (2.9). Also, note that this integral

vanishes identically if all of the incoming or outgoing indices are the same. That is
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to say, there is no on-site p-wave interaction between identical particles.19

2.2.2 Long-Range Interactions

For alkali atoms, the dominant interaction is provided by a 1/R6 dispersive po-

tential [13] and hence interactions are well modeled by a short-range pseudopotential.

We now turn our attention to long-ranged interactions arising from the dipole-dipole

interaction Eq. (1.8) which are relevant for molecules. We can recast the interaction

Eq. (1.8) as the contraction of two rank-two spherical tensors as

ĤDD (R) = −
√

6

R3
C(2) (R) ·

[
d̂1 ⊗ d̂2

](2)
, (2.37)

where

[
d̂1 ⊗ d̂2

](2)
q

=
∑
m

⟨1,m, 1, q −m|2, q⟩ (d1)m (d2)q−m , (2.38)

⟨j1m1j2m2|jm⟩ is a Clebsch-Gordan coefficient, (dj)m represents the mth component

of the jth dipole in a space-fixed spherical basis, and C
(2)
m (R) is an unnormalized

spherical harmonic in the polar coordinates defined by the relative coordinate. We

compute Hubbard parameters in the usual way by expanding the field operators in

terms of Wannier functions, which yields the general terms

1

2

∫
dr

∫
dr′ψ̂† (r) ψ̂† (r′) ĤDD (r− r′) ψ̂ (r′) ψ̂ (r) (2.39)

=
1

2

∑
σ1σ2σ′

2σ
′
1

∑
i1i2i′2i

′
1

V
σ1σ2σ′

2σ
′
1

i1i2i′2i
′
1
â†i1σ1 â

†
i2σ2

âi′2σ′
2
âi′1σ′

1
,

V
σ1σ2σ′

2σ
′
1

i1i2i′2i
′
1

=
∑
q

Dσ′
1σ

′
2

q;σ1σ2
W

σ1σ2σ′
2σ

′
1

q;i1i2i′2i
′
1
,

Dσ′
1σ

′
2

q;σ1σ2
=
√

6 (−1)q ⟨σ1σ2|
[
d̂1 ⊗ d̂2

](2)
q
|σ′

1σ
′
2⟩ , (2.40)

19This is also apparent in that the p-wave scattering length vanishes identically for identical
particles.
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W
σ1σ2σ′

2σ
′
1

q;i1i2i′2i
′
1

= −
∫
drF

σ1σ′
1

i1i′1
(r)

∫
dr′

C
(2)
−q (r′ − r)

|r′ − r|3
F
σ2σ′

2

i2i′2
(r′) . (2.41)

In the last line we have defined F σσ′
ij (r) ≡ w⋆iσ (r)wjσ′ (r).

Our evaluation of the Hubbard parameters now breaks into two pieces, one dealing

only with the dipole moments’ dependence on the internal state and the other with the

spatial distribution of the Wannier functions. Here we focus only on the geometrical

part of the integral. For convenience, however, we will anticipate the result that only

the q = 0 terms are relevant for molecules, take a single internal state σ and define

Wi1i2i′2i
′
1
≡W σσσσ

0;i1i2i′2i
′
1
, (2.42)

Fij (r) ≡ F σσ
ij (r) , (2.43)

D ≡ Dσσ
0;σσ . (2.44)

The integral in question,

Wi1i2i′2i
′
1

= −
∫
drFi1i′1 (r)

∫
dr′

C
(2)
0 (r′ − r)

|r′ − r|3
Fi2i′2 (r′) , (2.45)

is naively six-dimensional integral. However, noting that

−
∫
dr′

C
(2)
0 (r′ − r)

|r′ − r|3
Fi2i′2 (r′) (2.46)

is the convolution of the dipole-dipole potential with the function Fi2i′2 (r′), we can

use the convolution theorem to find

Wi1i2i′2i
′
1

=

∫
drFi1i′1 (r)F−1

[
F

[
−C

(2)
0 (r)

|r|3

]
(k)F

[
Fi2i′2 (r)

]
(k)

]
(r) , (2.47)

where F [g (r)] (k) is the Fourier transform of g (r). The integral is now a series

of two 3D Fourier transforms followed by an 3D integral in real space. The Fourier

transform approach to compute dipolar integrals has also been used for dipolar Gross-
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Pitaevskii equations [14, 15]. Using the expansion of a plane wave in terms of spherical

harmonics [16]

e−ik·r = 4π
∞∑
ℓ=0

ℓ∑
m=−ℓ

(−i)ℓ jℓ (kr)Y ℓ
m

⋆
(θr, ϕr)Y

ℓ
m (θk, ϕk) , (2.48)

with jℓ (x) the spherical Bessel function of order ℓ and (θx, ϕx) the spherical angles

in the x coordinate system defined with respect to the quantization axis, we find the

Fourier transform of the dipole-dipole potential to be

F
[
−2

C2
0 (r)

r3

]
(k) = F

[
1− 3 cos2 θ

r3

]
(k) =

4π

3

(
cos2 θk − 1

)
, (2.49)

with θk the polar angle in k-space. We note that the introduction of a spherical cutoff

b on the lower limit of the r integration results in the function

4π
(
cos2 θk − 1

) [sin kb

(kb3)
− cos kb

(kb)2

]
. (2.50)

The corrections to Eq. (2.49) scale as (kb)2, and so are negligible for small b and k in

the range we typically consider. We can thus safely take b → 0 in computing these

integrals and work with Eq. (2.49).

Numerically, the Fourier transforms can be performed in O (N3 logN) time using

the fast Fourier transform (FFT) algorithm, where N is the number of grid points

discretizing each 1D domain. More precisely, consider each 1D domain to be a sym-

metric finite interval [−L/2, L/2] and then let ng − 1 be even, with ng the number of

grid points. We then introduce the points

xk = −L
2

+
(k − 1)L

ng − 1
, (2.51)

where k runs from 1 to ng and x1 ≡ xng because of the periodicity of the domain.

The discrete Fourier domain of the ng−1 points x1 . . . xng−1 is represented by the val-
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ues 2π
L

[
0, 1, . . . , ng−1

2
− 1, ng−1

2
,−ng−1

2
+ 1, . . . ,−2,−1

]
. Hence, the spacing in Fourier

space is controlled by L, the length of the domain in real space, and the extent of

the domain in Fourier space is controlled by ng/L, the inverse step size. Because

the Wannier functions w(x) on a finite domain are periodic and band-limited, their

discrete and continuous Fourier transforms are related by a scaling constant provided

we sample the entire domain at a frequency of at least twice the largest frequency

component of w(x) [17]. This prevents us from having to consider the more advanced

interpolation schemes required for Fourier integrals of general functions [18]. Further-

more, as is known for spectral methods, the calculation in Fourier space converges

exponentially fast in L provided that ng/L is large enough to capture the full support

of the function in Fourier space.20 Let us define g to be the extent of the function

in the discrete Fourier space. We can then choose ng = 2 ∗ g ∗ L + 1 to satisfy

all of the above considerations. We find that for typical g ∼ 5 − 7 which satisfy

the Nyquist condition, the real space integration is of acceptable precision using a

high-order Simpson integrator [18].

As the proposed calculation scales as O (L3), we would like to determine the

smallest L such that we obtain the value of the Hubbard parameter in the limit as

L → ∞ to within a desired tolerance. Consider computing W0dd0 on a domain of

length L. There is a size-independent contribution to the dipole-dipole parameter

which scales as ∼ 1/dp, where p is some power, but there is another contribution

which scales as ∼ 1/|L−d|p2 coming from the periodic boundary conditions. Because

of the slow power law decay, this term can be quite sizable, especially when d itself

is large. The solution is to compute the integral for a few L and then fit to the form

I (L) = a+
b

|L− d|p
. (2.52)

20The support of the function in Fourier space can be determined by using Parseval’s theorem
on finite Fourier subintervals to determine that the norm is unity to a desired tolerance.
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a gives the true dipole-dipole parameter in the limit as L→∞. Practical experience

shows that taking 4 values of L starting at roughly 4d21 produces an excellent fit.

Naively, it may be surprising that the integration over the dipole-dipole potential

with its 1/r3 behavior yields convergent results. The key point is that the dipole-

dipole potential is also proportional to a rank-two spherical harmonic, and so picks

out the components of the Wannier function product with d-wave symmetry. This

component necessarily vanishes at the origin, and so there is no actual divergence

in the integrand. Additionally, because of the strong anisotropy of the spherical

harmonic, this Hubbard parameter is quite sensitive to transverse confinement. Con-

finement modifies not only the strength of the potential as in the short-range case,

but also the power p of the potential. This result will be explored in greater detail in

an upcoming publication [19].

Thus, the result of expanding the dipole-dipole interaction in terms of Wannier

functions is a term

Ĥ =
∑
i<j

U i,jn̂in̂j , (2.53)

where U i,j exhibits power-law behavior at large separations |i− j| and is sensitive to

transverse confinement. That is, Hubbard models for molecules involve long-ranged

interactions, as opposed to models for atoms. For molecules with multiple internal

states which have dipole-allowed transitions, the dipole-dipole potential also gives

rise to an “exchange” contribution which describes the long-ranged propagation of a

rotational quantum through the system [20–22].

The general procedure outlined in this chapter is used in Part II to derive effective

models for heteronuclear bialkali molecules in optical lattices. However, the proce-

dure here is not the only way in which a Hubbard model can be derived. Part III

214 was chosen by assuming that the decay was purely dipolar and then determining the L such
that 1/d3 > x/(L− d)3 for some scaling factor x. Taking x ∼ 100 gives an estimate of L ∼ 4d.
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uses a different technique, in which the relevant Wannier functions are formed from

bound states of a two-particle Hamiltonian. These two-particle bound states are then

coupled to fermions in the lowest Bloch band through a Wannier function overlap of

a pairing Hamiltonian. In this way, higher bands are included in the Hubbard model,

but only in the configurations which are determined to be physically relevant from

few-body physics.
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CHAPTER 3

EMERGENT TIMESCALES IN ENTANGLED QUANTUM DYNAMICS OF

ULTRACOLD MOLECULES IN OPTICAL LATTICES

Abstract:22 We derive a novel lattice Hamiltonian, the Molecular Hubbard Hamil-

tonian, which describes the essential many-body physics of closed-shell ultracold het-

eronuclear molecules in their absolute ground state in a quasi-one- dimensional opti-

cal lattice. The molecular Hubbard Hamiltonian is explicitly time dependent, mak-

ing a dynamic generalization of the concept of quantum phase transitions necessary.

Using the time-evolving block decimation algorithm to study entangled dynamics,

we demonstrate that, in the case of hard-core bosonic molecules at half-filling, the

molecular Hubbard Hamiltonian exhibits emergent timescales over which spatial en-

tanglement grows, crystalline order appears and oscillations between rotational states

self-damp into an asymptotic superposition. We show that these timescales are non-

monotonic functions of the physical parameters describing the lattice.

3.1 Introduction

In recent years, ultracold atomic gases have provided near perfect realizations of

condensed matter Hamiltonians, acting as quantum simulators [1, 2] that allow the

study of complex condensed matter phenomena in a clean and highly controllable

environment. Ultracold polar molecular gases, which have recently been brought to

the edge of quantum degeneracy in their absolute ground state [3, 4], offer additional

features over atomic gases, such as a large internal Hilbert space and a greater suscep-

tibility to external fields via a permanent electric dipole. There have been a number of

proposals on how to use ultracold molecular gases for mimicking well-known Hamilto-

22Published previously as Emergent Timescales in Entangled Quantum Dynamics of Ultracold
Molecules in Optical Lattices, M. L. Wall and L. D. Carr, New J. Phys. 11 055027 (2009).
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nians such as spin-1 lattice models [5]. Ultracold molecules have also been suggested

as a model system for the study of strongly correlated 2D quantum phases [6] or for

quantum information processing schemes [7–9]. However, these proposals frequently

involve complex and yet-to-be implemented experimental techniques. In this article,

we instead focus on the completely new quantum many body physics which results

naturally from the simplest quantum lattice experiments that can be performed in the

immediate future with established techniques in ultracold molecular quantum gases.

Towards this end we derive a novel lattice Hamiltonian, which we refer to as

the Molecular Hubbard Hamiltonian (MHH). The MHH describes the physics of an

ultracold polar molecular gas in a 1D optical lattice that is oriented using a DC elec-

tric field, giving rise to a resonant dipole-dipole interaction, and is driven between

rotational levels using a microwave AC field. In particular, new aspects of our deriva-

tion include explicit dependence of hopping energy on the molecular polarizability

tensor. This in turn allows a determination of the tensor elements, an outstanding

experimental issue, from the borders of the static phase diagram of the MHH, which

are identical to those of the extended Bose-Hubbard Hamiltonian [10] when a single

molecular rotational level is occupied.

Beyond the statics, the MHH naturally has a dynamical component due to the

AC driving fields, as well as an internal structure in terms of rotational modes which

is inherently different from spinor atomic systems [11, 12]. We study this dynamical

aspect with Time-Evolving Block Decimation (TEBD) [13, 14], a newly developed

entangled quantum dynamics algorithm which takes spatial entanglement (specifi-

cally, Schmidt number [15]) as a cut-off. We find two emergent timescales in the case

of half-filling for hard core bosonic molecules. We emphasize that a quantum lattice

model requires low filling (average number of particles per site), in contrast to a mean

field lattice model, for which the filling would typically be quite high. Thus, although

experiments can most easily access the mean field regime of hundreds of molecules
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per site with a single pair of counter-propagating laser beams, we look slightly ahead

to the quantum regime, which will require two pairs of such beams in order to create

an array of quasi-1D “tubes.” A third pair is then used to create the lattice in each

tube. This technique is already well established for ultracold atoms [16].

Dynamical aspects of quantum phase transitions are just beginning to be consid-

ered [17, 18], and have so far been a limited area of study restricted to mean field

considerations, due to lack of numerical tools. With the recent advent of entangled

quantum dynamics algorithms, namely TEBD, dynamical properties of many-body

systems are becoming amenable to numerical study. For example, TEBD has been

used to address key questions such as the dynamics of a quantum quench [19, 20] or

the speed at which correlations propagate in a lattice [21]; these are not issues which

can be studied with other dynamical methods such as dynamical mean field theory

(DMFT).23 We give a brief review of TEBD in Sec. 3.3.1. The reader interested in

computational details can find them in Ref. [23].

The first main contribution of this paper is to present a careful derivation of the

Molecular Hubbard Hamiltonian. This is done in Sec. 3.2, with some previously

known aspects of molecular physics relegated to appendix 3.6. The second main

contribution is to present emergent timescales for half filling; although we treat the

case of hard core bosons, the MHH can also be applied to fermionic molecules. To

this end, in Sec. 3.3 we first give a brief explanation of TEBD and the quantum

measures we use. Then, in Sec. 3.4 we present and analyze our simulations, with an

accompanying convergence study in appendix 3.7. Finally, in Sec. 3.5 we summarize.

3.2 The Molecular Hubbard Hamiltonian

The Molecular Hubbard Hamiltonian (MHH) is

23Time-dependent Density Functional Theory (TDFT) may be able to succeed in a partial analysis
of entangled dynamics, which might even be complementary to methods such as TEBD, but this is
not yet at all clear in the literature [22].
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Ĥ = −
∑
JJ ′M

tJJ ′M

∑
⟨i,i′⟩

(
â†i′,J ′M âiJM + h.c.

)
+
∑
JM

EJM
∑
i

n̂iJM − π sin (ωt)
∑
JM

ΩJM

∑
i

(
â†iJ,M âiJ+1,M + h.c.

)
+

1

2

∑
J1, J

′
1, J2, J

′
2

M,M′

U
J1, J

′
1, J2, J

′
2

M,M′

dd

∑
⟨i,i′⟩

â†iJ1M âiJ ′
1M
â†i′J2M ′ âi′J ′

2M
′ . , (3.1)

where âiJM destroys a bosonic or fermionic molecule in the |E ; JM⟩ state (defined

below) on the ith lattice site, and the bracket notation ⟨. . . ⟩ denotes that the sum

is taken over nearest neighbors. The first term in Eq. (3.1) corresponds to hopping

both between sites and molecular rotational states with quantum numbers J , M . The

second term represents the rotational energy along with rotational state-dependent

energy differences due to a DC electric field. The third term corresponds to an AC

electric field, making this a driven system. The fourth term corresponds to electric

dipole-dipole interactions. In the following subsections and appendix 3.6 we justify

Eq. (3.1) with a careful derivation and present the energy scales of each term.

3.2.1 Derivation of the Molecular Hubbard Hamiltonian

The full molecular Hamiltonian in second quantization is

Ĥ =

∫
d3r ψ̂† (r)

[
Ĥkin + Ĥrot + ĤDC + ĤAC (t) + Ĥopt (r)

]
ψ̂ (r)

+

∫
d3rd3r′ ψ̂† (r) ψ̂† (r′) Ĥdd (|r− r′|) ψ̂ (r′) ψ̂ (r) . (3.2)

The terms on the first line correspond to single-molecule effects: kinetic energy, ro-

tation, the DC electric field which orients the dipole, the AC microwave field which

drives transitions between rotational levels, and the far off-resonant optical lattice

potential, respectively. The second line is the two-molecule resonant dipolar energy.

The field operators ψ̂ can be either bosonic or fermionic. We focus on the bosonic

case for brevity. There are five key assumptions underlying our derivation, as fol-
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lows. We consider all five assumptions to be reasonable for present and near-future

experiments.

1. We consider ultracold closed-shell polar heteronuclear diatomic molecules, char-

acterized by permanent dipole moment d and rotational constant B. The most

experimentally relevant bosonic species in this category are SrO, RbCs, and

LiCs [6]. The individual molecules are assumed to be in their electronic and vi-

brational ground states, and it is assumed that none of these degrees of freedom

can be excited at the large intermolecular separations and low temperatures/rel-

ative energies that we consider.

2. The molecule is assumed to have a 1Σ ground state. The characteristic trapping

potential length is chosen large enough compared to the internuclear axis to

assume spherical symmetry, i.e. a locally constant potential.

3. We neglect any intramolecular interactions (e.g., hyperfine structure), as they

are typically very small for 1Σ molecules [24].

4. We consider only the lowest three rotational levels. All AC fields will be suffi-

ciently weak to allow this assumption.

5. We work in the hard-core limit where at most one molecule is allowed per

site. This is enforced by strong dipole-dipole interactions on-site. We consider

the lattice spacing large enough to include only nearest-neighbor dipole-dipole

interactions. Other short-range interactions such as exchange or chemical reac-

tions or long range interactions such as dispersion and quadrupole-quadrupole

interactions are not considered.

We proceed to follow the usual procedure [2] of expanding the field operators of our

second-quantized Hamiltonian in a Wannier basis of single-molecule states centered

at a particular discrete position ri:
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ψ̂ =
∑

i âiw (r− ri) , (3.3)

where i is a site index and the sum is over all lattice sites. For our Wannier Basis

we choose the single-molecule basis that diagonalizes the rotational and DC electric

field Hamiltonians, spanned by kets |E ; JM⟩. In this basis, which we refer to as the

“dressed basis” (the DC field “dresses” the rotational basis) we have the field operator

expansion

ψ̂JM =
∑

i âiJMwJM (r− ri) ≡
∑

i âiJM |E ; JM⟩i . (3.4)

We note that such a basis, while highly efficient for the hard core limit we consider,

becomes progressively worse for higher filling factors, till in the mean field limit

the single-molecule basis, whether dressed or not, is so poor that many bands must

be considered. Here we do not include a band index for simplicity, although the

generalization of Eq. (3.1) to include multiple bands is straightforward.

This choice of Wannier basis associates the terms in Eq. (3.1) to the terms in

Eq. (3.2) as follows:

tJ,J ′,M ≡−
∫
drw⋆JM (r− ri) [Hkin +Hopt]wJ ′M (r− ri+1) , (3.5)

EJM ≡
∫
drw⋆JM (r− ri) [Hrot +HDC]wJM (r− ri) , (3.6)

−πΩJM sin (ωt) ≡
∫
drw⋆JM (r− ri) [HAC]wJ+1,M (r− ri) , (3.7)

U
J1, J

′
1, J2, J

′
2

M,M′

dd ≡
∫
drdr′w⋆J ′

1M
(r− ri)w

⋆
J ′
2M

′ (r′ − ri+1) (3.8)

×Hdd (r− r′)wJ1M (r− ri)wJ2M ′ (r′ − ri+1) ,

where the operators Hkin, Hopt, etc., are taken to be in position space representation.

For the derivation of the single-molecule terms (rotational, DC electric field, and AC

electric field) and discussion of the properties of our Wannier basis we refer the reader
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to appendix 3.6. In the following sections we present the derivation of the tunneling

(hopping) and dipole-dipole terms, which have new aspects not heretofore appearing

in the literature [25].

3.2.2 Tunneling

The tunneling term represents the sum of the molecular kinetic energy with the

potential energy of the lattice. After expanding in the Wannier basis of Eq. (3.4), we

find the effective tunneling Hamiltonian

Ĥeff
t = −

∑
J,J ′,M tJJ ′M

∑
⟨i,i′⟩

(
â†i,J ′M âi′,JM + h.c.

)
(3.9)

where tJ,J ′,M was defined in Eq. (3.5). To understand why this operator mixes states

of different J , we note that the kinetic energy and (far off-resonant) optical lattice

potential do not mix rotational eigenstates. Because our Wannier basis states are

dressed and therefore superpositions of rotational eigenstates with different J , the

tunneling operator in the dressed basis will mix J . Although the dressed basis makes

the tunneling more complex to analyze, it simplifies other terms in the MHH, such

as the DC term, and is in any case a more standard basis for analysis of the diatomic

molecules we study here. Comparable basis changes are sometimes made in other

quantum many body systems, where, for instance, particles and holes are mixed, or

particles are paired. Note that, because we assume z-polarized fields, M is still a

good quantum number. To discuss the actual form of the tunneling energies {tJ,J ′,M}

we must first examine the interaction of a diatomic molecule with the optical lattice.

3.2.3 Interaction with an Optical Lattice

The charge redistribution that occurs when a molecule is subjected to a static, spa-

tially uniform electric field E is reflected in its dipole moment d via the polarizability

series
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dj = d
(0)
j + αjkEk + 1

2!
βjklEkEl + 1

3!
ΓjklmEkElEm + . . . (3.10)

where the first, second, and third order coefficients αjk, βjkl, and Γjklm are elements of

the polarizability, hyperpolarizability, and second hyperpolarizability tensors, respec-

tively. The polarizability tensor is a symmetric rank-two tensor with no more than

six independent elements (less if molecular symmetry is greater), and characterizes

the lowest order dipole moment induced by an applied electric field. From this tensor

we can form the scalar invariants

ᾱ ≡ 1
3
Trα̃ , (3.11)

(∆α)2 ≡ 1
2

[
3Tr(α̃2)− (Trα̃)2

]
, (3.12)

referred to as the polarizability and the polarizability anisotropy, respectively. Note

that we use the tilde to clarify that α̃ with elements αjk is a tensor, not a scalar –

we reserve the accent circumflex (the “hat” symbol) for quantum operators. In linear

molecules, such as diatomic molecules, the presence of only two distinct moments of

inertia allows for the classification of α̃ according to its components along and per-

pendicular to the internuclear axis, denoted α∥ and α⊥, respectively. In the presence

of AC electric fields with frequency ω we speak of the dynamic polarizability tensor

α̃ (ω), with the series of Eq. (3.10) being the zero frequency limit. The tensor α̃ (ω) is,

in general, complex, with the real part inducing a dipole moment and the imaginary

part accounting for power absorption by the dipole and out-of-phase dipole oscilla-

tion. In the case of Σ diatomic molecules in their electronic and vibrational ground

states [25]

α̃ (ω) ≡ α∥ (ω) e′0 ⊗ e′0 + α⊥ (ω)
∑

Λ=±1 (−1)Λ e′Λ ⊗ e′−Λ , (3.13)
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where the e′q are molecule-fixed spherical basis vectors. The parallel and perpendicular

dynamic polarizabilities are

α∥ =
∑

±
∑

ν,v

|dνΣ(v)−XΣ(0)|2
EνΣ(v)−EXΣ(0)∓~ω , (3.14)

α⊥ =
∑

±
∑

ν,v

|dνΠ(v)−XΣ(0)|2
EνΠ(v)−EXΣ(0)∓~ω , (3.15)

respectively. In these expressions dνΛ(v)−XΣ(0) is the transition dipole moment from

the ground state to the νΛ (v) state (following the usual diatomic molecular notation,

Λ ∈ {Σ,Π} ≡ {0, 1} is the quantum number associated with the projection of the

total electronic orbital angular momentum along the internuclear axis, i.e., in the

molecule-fixed basis) and the sum over ∓ accounts for the near-resonant and typically

far off-resonant terms.

Transforming α̃ from the molecule-fixed basis to the space-fixed basis using the

transformation discussed in appendix 3.6, we find

α̃′ (ωL) =
∑
p1p2

∑
j=0,2

j∑
m=−j

(2j + 1)

(
1 1 j
p1 p2 m

)√
1

(2− j)! (3 + j)!

×
[
α∥ (j + 2) (j − 1)− 4α⊥

]
C(j)
m ep1 ⊗ ep2 , (3.16)

where C
(j)
m is an unnormalized spherical harmonic, (. . . ) denotes the Wigner 3-j

coefficient [26], and the ep are space-fixed spherical basis vectors.

The interaction of the lattice with the molecule is represented by the Hamiltonian

Hopt (x) = −E⋆
opt (r) · α̃′ (ωL) · Eopt (r) , (3.17)

where Eopt (r) is the electric field of the optical lattice. If the electric field has polar-

ization p in the space-fixed spherical basis then we find
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Hopt (x) =− |Eopt (r)|2

3

[ (
α∥ + 2α⊥

)
C

(0)
0 (3.18)

+ (−1)p
2

(1− p)! (1 + p)!

(
α∥ − α⊥

)
C

(2)
0

]
.

For light linearly polarized in the x̂-direction we obtain

Hopt = −|Eopt (r)|2

6

[
2
(
α∥ + 2α⊥

)
C

(0)
0

+
(
α∥ − α⊥

) (√
6C

(2)
−2 − 2C

(2)
0 +

√
6C

(2)
2

) ]
, (3.19)

whereas for light linearly polarized in the ŷ-direction we find

Hopt =
|Eopt (r)|2

6

[
− 2

(
α∥ + 2α⊥

)
C

(0)
0

+
(
α∥ − α⊥

) (√
6C

(2)
−2 + 2C

(2)
0 +

√
6C

(2)
2

) ]
. (3.20)

Since C
(0)
0 = 1, these terms give a state-independent energy shift. The C

(2)
q terms

produce a tensor shift. Because the depth (in energy) of a typical optical lattice is

much smaller than the energy of transitions between rotational levels (of order B, as

defined in 3.6.2), we can ignore far off-resonant Raman coupling between different J

manifolds and use only the diagonal matrix elements. The C
(2)
2 term and the C

(2)
−2

will both mix M in the J ≥ 2 manifolds, but do not affect the lowest two rotational

levels, again, because we neglect Raman couplings. Thus x, y, and z polarizations

all have the same Hamiltonian in this approximation. We can calculate the matrix

elements of C
(2)
0 in the field free basis using the Wigner-Eckart theorem to find

⟨J ′M ′|Hopt (r) |JM⟩ =− |Eopt (r)|2

3
δJJ ′δMM ′

[ (
α∥ + 2α⊥

)
(3.21)

+ (−1)p
2

(1− p)! (1 + p)!

(
α∥ − α⊥

) J (J + 1)− 3M2

(2J − 1) (2J + 3)

]
.
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In our effective Hamiltonian we choose right circular polarization for the z lattice, x

polarization for the x lattice, and y polarization for the y lattice, where each lattice

refers to a pair of counter-propagating laser beams used to create a standing wave.

Other choices are of course also possible, and the mathematical derivation leads to

a Hamiltonian similar in form to that of equation (3.1). However, it is possible for

hopping to depend on two M indices, e.g. tJJ ′MM ′ .

We consider the fields making up the optical lattice to have sinusoidal spatial

profiles, resulting in sine-squared intensity profiles. In addition, we assume that the

y and z lattices are tight, meaning that the molecules are strongly confined at the

potential minimum (for a red-detuned trap). This tight confinement allows us to

approximate them via a Taylor series, e.g., sin2 (kzz) ≃ k2zz
2 in the vicinity of the

molecule. Using the above results, the matrix elements of the Hamiltonian for the

optical lattice can be written

⟨J ′M ′|Hopt (r) |JM⟩

=−
|Eopt (y)|2 k2yy2 + |Eopt (x)|2 sin2 (kxx)

3

[
ᾱ + 2∆α

J (J + 1)− 3M2

(2J − 1) (2J + 3)

]
δJJ ′δMM ′

− |Eopt (z)|2 k2zz2

3

[
ᾱ−∆α

J (J + 1)− 3M2

(2J − 1) (2J + 3)

]
δJJ ′δMM ′ (3.22)

or, more compactly, as

⟨J ′M ′|Hopt (r) |JM⟩ =
[
−α(t)

JM |Eopt (y)|2 k2yy2 − α
(t)
JM |Eopt (x)|2 sin2 (kxx)

]
δJJ ′δMM ′

− |Eopt (z)|2 α(z)
JMk

2
zz

2δJJ ′δMM ′ (3.23)

by defining

α
(t)
JM ≡ 1

3

[
ᾱ + 2∆α

J (J + 1)− 3M2

(2J − 1) (2J + 3)

]
, (3.24)

α
(z)
JM ≡ 1

3

[
ᾱ−∆α

J (J + 1)− 3M2

(2J − 1) (2J + 3)

]
. (3.25)
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We now define, as is customary, the “lattice heights” in the x, y, and z directions,

respectively, as

V (JM)
x ≡ − |Eopt (x)|2 α(t)

JM , (3.26)

V (JM)
y ≡ − |Eopt (y)|2 α(t)

JM , (3.27)

V (JM)
z ≡ − |Eopt (z)|2 α(z)

JM . (3.28)

The tight confinement in the transverse (y and z) directions strongly suppresses tun-

neling in these directions, making the overall lattice effectively 1D along x.

From Eqs. (3.24)-(3.25), it is apparent that different rotational levels experience

different trapping frequencies and different tunneling energies. To make this clearer,

we parse our full field-free tunneling matrix element as

tJM ≡ −
∫
drw⋆JM (r− ri) [Hkin +Hopt]wJM (r− ri+1)

=

∫
drw⋆JM (r− ri)

[
−Hkin + V (JM)

x sin2
(
kxx

2
)]
wJM (r− ri+1)

+

∫
drw⋆JM (r− ri)

[
V (JM)
y k2yy

2 + V (JM)
z k2zz

2
]
wJM (r− ri+1) . (3.29)

Because we consider tight traps such that the lattice heights in the y- and z-directions

are much greater than the lattice height in thex-direction, V
(JM)
y ∼ V

(JM)
z ≫ V

(JM)
x ,

the contributions from the V
(JM)
y and V

(JM)
z terms are exponentially suppressed com-

pared to the V
(JM)
z and Hkin terms, and so we neglect them. This is equivalent to

the array of tubes we discussed in section 1, where each tube is isolated from its

neighbors. The matrix element becomes

tJM ≈
∫
drw⋆JM (r− ri)

[
−Hkin + V (JM)

x sin2
(
kxx

2
)]
wJM (r− ri+1) . (3.30)

In the evaluation of the integral, Eq. (3.30) we assume that the Bloch function of

a molecule in the sinusoidal optical lattice is a Mathieu function along x. This may

seem to contradict our assumption of spherical symmetry in the above derivation.
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Table 3.1: Values of the polarizabilities for LiCs in different rotational states |JM⟩.

|JM⟩ 3α
(t)
JM/ᾱ 3α

(z)
JM/ᾱ

|00⟩ 1 1
|10⟩ 1.715 0.642
|1± 1⟩ 0.642 1.178
|20⟩ 1.511 0.744
|2± 1⟩ 1.255 0.872
|2± 2⟩ 0.488 1.255

However, the assumption of spherical symmetry (i.e. a locally constant potential)

need only hold on the order of an internuclear axis (∼ 5Å) near the molecule. In

contrast, on the order of the characteristic lattice length
√

~/µωopt the rigid-rotor

molecule is indistinguishable from a point particle (such as an alkali atom), and so

spherical symmetry is not required. With this understanding, we recognize t
(0)
JM as

the expression for the hopping energy for point particles in optical lattices [27] with

the additional feature that the lattice height along the quasi-1D direction V0 = V
(JM)
x

is dependent on J through the polarizability tensor. Thus, altering the expression

from the theory of point particles in optical lattices, we obtain the result

t
(0)
JM

ER
≈ A

(
V

(JM)
x

ER

)B

exp

−C
√
V

(JM)
x

ER

 , (3.31)

where A = 1.397, B = 1.051, C = 2.121, and

ER ≡ ~2k2x/2m (3.32)

is the recoil energy.

Using tabulated values of the polarizabilities for LiCs[28] as given in Table 3.1,

we find that, for a reasonable lattice height V
(00)
x /ER ≃ 10, the tunneling term for

the |11⟩ state is only about 20% of that in the |00⟩ state, as shown in Figure 3.1.

For LiCs in a red-detuned optical lattice of wavelength λ = 985nm, ER = 2π× 1.46~

kHZ. Typical values of the lattice heights are Vx ∼ 10ER, Vy, Vz ∼ 25ER [29].
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Figure 3.1: Dependence of the field-free tunneling (hopping) coefficient on rotational
state and lattice height.

We reiterate that the above matrix elements and tunneling energies {tJM} have

been computed in the field-free basis for simplicity. To transform to the dressed basis,

we use the unitary matrix with dressed eigenvectors as columns, recovering Eq. (3.9),

where the tunneling matrix element is no longer diagonal in J .

3.2.4 Dipole-Dipole Interactions

The induced dipoles from the DC field give rise to a resonant dipole-dipole inter-

action. The Hamiltonian for this interaction in the two-site dressed basis spanned by

|E ; J1M1J2M2⟩ is

Ĥdd = 1
2

∑
J1, J

′
1, J2, J

′
2

M,M′
U

J1, J
′
1, J2, J

′
2

M,M′

dd

∑
⟨i,i′⟩ â

†
iJ1M

âiJ ′
1M
â†i′J2M ′ âi′J ′

2M
′ , (3.33)

where we have defined

U
J1, J

′
1, J2, J

′
2

M,M′

dd ≡
∫
drdr′w⋆J ′

1M
(r− ri)w

⋆
J ′
2M

′ (r′ − ri+1) (3.34)

×Hdd (r− r′)wJ1M (r− ri)wJ2M ′ (r′ − ri+1) ,
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and for notational simplicity we have suppressed the E subscripts. Note that because

of our choice of polarizations of the optical lattice and AC and DC electric fields,

M1 = M2 ≡M and M ′
1 = M ′

2 ≡M ′.

The resonant dipole-dipole interaction between two permanent dipoles d1 and d2

whose respective centers of mass are separated by a vector R in the space-fixed frame

is

Ĥdd =
d̂1·d̂2−3(eR·d̂1)(d̂2·eR)

R3 , (3.35)

where eR is a unit vector in the direction of R. Using standard angular momentum

recoupling we recast this in spherical tensor notation as

Hdd = −
√

6

R3

∑
µ

(−1)µC
(2)
−µ (R)

[
d̂1 ⊗ d̂2

](2)
µ

, (3.36)

where (T )(k)q denotes the component of the rank-k spherical tensor T that has pro-

jection q along R, C
(j)
m (R) is an unnormalized spherical harmonic in the polar co-

ordinates defined with respect to R, and we have defined the tensor product of the

vector operators d̂1 and d̂2 as

[
d̂1 ⊗ d̂2

](k)
q
≡
∑
m

⟨1,m, 1, q −m|kq⟩
(
d̂1

)(1)
m

(
d̂2

)(1)
q−m

. (3.37)

In the last line, ⟨j1,m1, j2,m2|J,M⟩ is a Clebsch-Gordan coefficient. We now take

matrix elements of Eq. (3.36) in the two dressed-molecule basis |E ; J1M1, J2M2⟩, where

molecule 1 is on site i and molecule 2 is on site i+ 1, yielding

⟨E ; J ′
1M

′
1, J

′
2M

′
2|Ĥdd|E ; J1M1, J2M2⟩ = −

√
6

R3

∑
µ

(−1)µC
(2)
−µ (R)

∑
m

⟨1,m, 1, µ−m|2µ⟩

× ⟨E ; J ′
1M

′
1|
(
d̂1

)(1)
m
|E ; J1M1⟩⟨E ; J ′

2M
′
2|
(
d̂2

)(1)
µ−m
|E ; J2M2⟩ . (3.38)
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Because our DC field is polarized along z, only (d̂1)
(1)
0 and (d̂2)

(1)
0 matrix elements

are nonzero, enforcing µ = 0, m = 0. With this in mind, the interaction takes the

particularly simple form

⟨E ; J ′
1M

′
1, J

′
2M

′
2|Ĥdd|E ; J1M1, J2M2⟩ = −

√
6

R3C
(2)
0 (R)

×⟨1, 0, 1, 0|20⟩⟨E ; J ′
1M1|

(
d̂1

)(1)
0
|E ; J1M1⟩⟨E ; J ′

2M2|
(
d̂2

)(1)
0
|E ; J2M2⟩ (3.39)

= ⟨E ; J ′
1M1|

(
d̂1

)(1)
0
|E ; J1M1⟩⟨E ; J ′

2M2|
(
d̂2

)(1)
0
|E ; J2M2⟩

(
1−3 cos2 θ

R3

)
. (3.40)

The intermolecular axis plays a crucial role in the sign of the interaction. Two

molecules oriented along the intermolecular axis attract if their dipoles are paral-

lel and repel if their dipoles are antiparallel. Two molecules oriented perpendicular

to the intermolecular axis, on the other hand, repel if their dipoles are parallel and

attract if their dipoles are antiparallel. The DC field that orients the molecules in

our setup is polarized along z, perpendicular to the intermolecular quasi-1D axis x.

This gives rise to repulsive interactions for positive dipole matrix elements. With this

geometry the dipole potential becomes

⟨E ; J ′
1M

′
1, J

′
2M

′
2|Ĥdd|E ; J1M1, J2M2⟩

=
1

R3
⟨E ; J ′

1M1|
(
d̂1

)(1)
0
|E ; J1M1⟩⟨E ; J ′

2M2|
(
d̂2

)(1)
0
|E ; J2M2⟩ , (3.41)

yielding

U
J1, J

′
1, J2, J

′
2

M,M′

dd =
8

λ3
⟨E ; J ′

1M1|
(
d̂1

)(1)
0
|E ; J1M1⟩⟨E ; J ′

2M2|
(
d̂2

)(1)
0
|E ; J2M2⟩ , (3.42)

where λ is the wavelength of the optical lattice.

3.2.5 Energy Scales

We proceed to clarify the energy scales associated with each term in Eq. (3.1).

Between previous discussion in Sec. 3.2 and that of appendix 3.6, all terms in Eq. (3.1)
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are now clearly defined. The energy scales of the dressed basis are B, the rotational

constant, which is roughly 60~ GHz, and dEDC, which is of order 1 − 10B. The DC

term has no length scale associated with it because the field is uniform, and the length

scale of the rotational term is the internuclear separation, on the order of angstroms.

The relative contribution of the DC electric field and rotational terms in Eq. (3.1)

are expressed through the dimensionless parameter

βDC ≡ dEDC/B, (3.43)

the ratio of the DC field energy to the rotational level splitting.

The energy scales of the AC term are ~ω, where ω is the angular frequency of the

driving field, and dEAC. The scale ~ω is of order 2B for small βDC ≪ 1, and of order

B
√
βDC for large βDC ≫ 1. The AC field energy dEAC is of order 0.5~ω. The single-

molecule timescale associated with dEAC is the Rabi period, the time it takes for the

population of a two-level system to cycle once, as seen in Figure Figure 3.10(a). In

real time, this is on the order of 10ps for the parameters in the preceding paragraph.

The timescale associated with ω is the timescale on which the small oscillations in

Figure Figure 3.10(a) occur, of order 0.5ps. The length scale of the AC field is on the

order of centimeters, and so we can neglect this in light of the micron length scale of

the trap.

The tunneling term has several scales. The optical lattice near the point of con-

finement has a length scale given by the harmonic oscillator length l
(00)
ho,x ∼100nm and

an energy scale of ER ≈1.4~ kHz. The energy scales of the tunneling operator proper

are given by the {tJJ ′M} which are of order 10−1-10−2ER ∼100~ Hz for the given

recoil energy.

There are also many scales for the dipole term. For the B and d specified in the

first paragraph of this section and βDC = 1.9, the characteristic length scale where

the dipole-dipole energy becomes comparable to the rotational energy is
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rB ≡
(∣∣∣⟨E ; 00|d̂|E ; 00⟩

∣∣∣2 /B) 1
3

, (3.44)

approximately 348 Bohr radii (18.4nm). Outside this region the Born-Oppenheimer

adiabatic approximation is easily fulfilled [6]. Since the length scale of our optical

lattice is of order µm, we are justified in working within the Born-Oppenheimer

framework. For the same parameters, the length scale where the off-resonant van

der Waals potential C6/r
6 ≈ −d4/(6Br6) becomes comparable to the dipole-dipole

interaction is

rvdW ≡ (2 |C6| /
∣∣∣⟨E ; 00|d̂|E ; 00⟩

∣∣∣2) 1
3 . (3.45)

This length is very small, on the order of tens to hundreds of Bohr radii. Outside

of this region the resonant dipole potential dominates and the intermolecular force

is repulsive. This repulsion enforces the hard-core limit. The energy scale of the

dipole-dipole force is
∣∣∣⟨E ; 00|d̂|E ; 00⟩

∣∣∣2 /λ3 ∼1.2~ kHz, with higher J being an order

of magnitude or so lower for small βDC, and of the same order for large βDC (see

Figure 3.8(a)).

To summarize, the scales of the problem are shown in Table 3.2.

3.2.6 Novel Features of the Molecular Hubbard Hamiltonian

The MHH, Eq. (3.1), has a number of novel features which distinguish it from

typical Hubbard and extended Hubbard models [2, 30]. First, the tunneling energies

{tJ,J ′M} not only depend on the rotational level J,M but even change rotational states

from J to J ′. This is due both to the polarizability tensor’s dependence on rotational

level, and to the dressed basis. This differs from other Hubbard models which consider

spin degrees of freedom, as tunneling does not occur between spin states – hopping

does not cause spin transitions. If we consider populating a single mode (e.g. J = 0,
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Table 3.2: Comparison of energy and length scales for the Molecular Hubbard Hamil-
tonian of Eq. (3.1).

Term Length scale Energy scale

Rotation internuclear distance ∼ 1 Å B ∼ 60~ GHz ≈ 2cm−1

DC field N/A, uniform dEDC ∼ 120~ GHz ≈ 4cm−1

AC field 2πc/ω ∼ 1cm ~ω ∼ 30~ GHz ≈ 1cm−1

Kinetic l
(00)
ho,x ∼ 100nm ER ∼ 1.46~ kHz

Tunneling Lattice spacing∼ 1µm {tJ ′JM} ∼ 100~ Hz

Resonant energy comparable to B
∣∣∣⟨E ; 00|d̂|E ; 00⟩

∣∣∣2 / (1µm)3 ∼ 1.2~ kHz

Dipole-Dipole at rB ≃ 348 Bohr radii for nearest neighbors

M = 0) in the Ω → 0 limit, then Eq. (3.1) becomes the extended Bose-Hubbard

Hamiltonian, and the phase diagram is known [10, 31]. This gives ideas of how to

characterize the static phases of the MHH. However, because the tunneling energy

depends on J , the borders of the phase diagram will depend on the rotational state

of the system. We will discuss this property and provide an application in Sec. 3.4.

Second, the Hamiltonian is fundamentally time-dependent because it is a driven

system. This allows for the study of dynamic quantum phases, requiring the con-

cept of a quantum phase diagram to be generalized to an inherently time-dependent

picture. In a case study for hard core bosonic molecules at half filling presented in

Sec. 3.4, we show that the MHH has emergent timescales.

3.3 Methods

3.3.1 Time-Evolving Block Decimation

The Time-evolving Block Decimation algorithm (TEBD) is a new method [13, 14]

designed to study the dynamics of entangled quantum systems. The essential idea of

TEBD is to provide a moving “spotlight” in Hilbert space which tracks a dynamical

system. The portion of the Hilbert space so illuminated is an exponentially small
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fraction of the full Hilbert space; this is justified by the fact that real, physical

quantum many body systems, especially in real materials, typically explore only a

small, lowly-entangled part of the total Hilbert space.

In fact, TEBD moves the full quantum many-body problem from the NP-complete

complexity class to the P class through an exponential reduction in the number of pa-

rameters needed to represent the many body state. We can understand the possibility

of this reduction through an analogy to image compression. Present digital cameras

are capable of producing a roughly 3000 × 3000 array of pixels. Downloading the im-

ages from such a camera, one notices that there are far less than 10 Megapixels worth

of data per image. Image compression algorithms such as JPEG produce images of

remarkable quality with only a small fraction of the raw data. The reason that these

algorithms are so effective is that a physical image, as opposed to a random 2D pixel

array, is not the “most common” or most probable image; it contains a great deal of

structure and regularity. In the same way, physical states in Hilbert space tend to

be lowly entangled (by some entanglement measure), even though a general state in

Hilbert space has a much larger probability of being highly entangled. There is no

general proof of this fact, just as there is no guarantee that an image will come out

perfectly crisp after JPEG compression; it is simply a trend observed in many-body

quantum systems.

To be slightly more specific, TEBD performs a partial trace over a particular

bipartite splitting of the lattice, and then keeps the χ largest eigenvalues of the

resulting reduced density matrix. The cut-off parameter χ is based on the Schmidt

measure [15], and so it also serves as a measure of the degree of spatial entanglement.

This idea is not unique to TEBD. In fact, the density matrix renormalization group

(DMRG) method first proposed by White [32] did something analogous years before.

The innovation of TEBD is that at each time step it re-optimizes the truncated basis

(thus the “moving spotlight”). The Schmidt number is just the number of non-
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zero eigenvalues in the reduced density matrix, and so is an entanglement measure

natural to quantum many body systems. The parameter χ is the number of non-

zero eigenvalues in the reduced density matrix that TEBD retains. It is the principal

convergence parameter of the algorithm, both in entanglement and in time. Although

the time-propagation method we use is Trotter-Suzuki [33], it turns out that, due to

a normalization drift, χ controls convergence at long times.

With χ interpreted as an entanglement measure, we can say that TEBD treats

the system not as a wavefunction in a dL-dimensional Hilbert space (L is the number

of lattice sites), but as a collection of wavefunctions in d2-dimensional two-site spaces

that are weakly entangled with the environment created by the rest of the system.

To facilitate this viewpoint, we replace the dL coefficients of the full many-body

wavefunction with L sets of (dχ2 + χ) coefficients corresponding to the wavefunctions

of each bipartite splitting. The most computationally expensive portion of the TEBD

algorithm is typically the diagonalization of these local coefficient matrices at a cost

of O (d3χ3). Looping over all L − 1 bipartite splittings and evolving the system

for a total time tf in time steps of length δt, one obtains an asymptotic scaling of

O
(
L
tf
δt
d3χ3

)
.

This scaling can be greatly improved by the presence of conserved quantities.

When a conserved quantity exists in the system we are able to diagonalize reduced

density matrices corresponding to distinct values of this conserved quantity indepen-

dently, which can result in significantly smaller reduced density matrices to diagonal-

ize. Implementing this idea, scalings of O (χ2) have been reported for fixed d [34]. In

addition, conserved quantities in the presence of selection rules can reduce the local

dimension. For example, in the case of the MHH, z-polarized electric fields disallow

transitions from a particular M to any other. If we begin with all molecules in a

particular M state, this allows us to restrict our attention only to states with this M .

In our numerics we conserve both the projection M , and the total number N . Fur-

103



thermore, to match our hard core requirement, we allow only zero or one molecules

per site, so that the local dimension is d ≤ Jmax + 1, Jmax being the magnitude of

the greatest angular momentum that we consider (note that the local dimension d,

mentioned only here in Sec. 3.3.1, bears no relation to the permanent electric dipole

moment d used throughout the rest of our treatment).

A more detailed description of TEBD can be found in Ref. [23]. We also recom-

mend Ref. [35], besides Vidal’s original papers [13, 14].

3.3.2 Quantum Measures

We use a suite of quantum measures to characterize the reduced MHH, Eq. (3.50)

below. The few-body measures we use are ⟨n̂Ji ⟩, the number in the J th rotational state

on the ith site, E ≡ ⟨Ĥ⟩, the expectation of the energy, and 1
L
⟨n̂J⟩, the average number

in the J th rotational state per site (L is the number of lattice sites). The latter is a J-

dependent filling factor. The many body measures we use include the density-density

correlation between rotational modes J1 and J2 evaluated at the middle site

g
(J1J2)
2

(
⌊L

2
⌋, i
)
≡ ⟨n̂(J1)

⌊L
2
⌋n̂

(J2)
i ⟩ − ⟨n̂

(J1)

⌊L
2
⌋⟩⟨n̂

(J2)
i ⟩, (3.46)

where ⌊q⌋ is the floor function, defined as the greatest integer less than or equal to q.

As an entanglement measure we use the Meyer Q-measure [36–38]

Q ≡ d
d−1

[
1− 1

L

∑L
k=1 Tr

(
ρ̂(k)
)2]

, (3.47)

where ρ̂(k) is the single-site density matrix obtained by tracing over all but the kth

lattice site, and the factor outside of the bracket is a normalization factor (d is the

on-site dimension). This gives an average measure of the entanglement of a single site

with the rest of the system. The Q-measure can also be interpreted as the average

local impurity (recall that the Tr(ρ̂2) = 1 if and only if ρ̂ is a pure state).
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To determine what measures we can use to ascertain the static phases of our model

we reason by analogy with the extended Bose-Hubbard Hamiltonian where we know

that the possible static phases are charge density wave, superfluid, supersolid, and

Bose metal [10]. The charge density wave is an insulating phase appearing at half

integer fillings which has a wavelength of two sites. Like the Mott insulating phase,

it has an excitation gap and is incompressible. While the extended Bose-Hubbard

Hamiltonian has only one charge density wave phase due to the presence of only one

species, the MHH has the possibility of admitting several charge density wave phases

due to the presence of multiple rotational states. As such, we define the structure

factor

S(J1J2)
π = 1

N

∑
ij (−1)|i−j| ⟨n̂(J1)

i n̂
(J2)
j ⟩ , (3.48)

where N is the total number of molecules. We recognize this object as the spatial

Fourier transform of the equal-time density-density correlation function between ro-

tational states J1 and J2, evaluated at the edge of the Brillouin zone. This measure

is of experimental interest because it is proportional to the intensity in many scat-

tering experiments, e.g. neutron scattering [39]. Crystalline order between rotational

states J1 and J2 is characterized by a nonzero structure factor S
(J1J2)
π . The charge

density wave is the phase with crystalline order but no off-diagonal long-range order

as quantified by the superfluid stiffness of rotational state J

ρ(J)s = lim
ϕ→0

L
∂2E(J) (ϕ, L)

∂ϕ2
(3.49)

(note that ρs bears no relation to the density matrix ρ̂). If both the structure factor

and the superfluid stiffness are nonzero, the phase is called supersolid. If both the

structure factor and the superfluid stiffness are zero, the phase is called Bose Metal.

Finally, if the structure factor is zero and the superfluid stiffness is nonzero, the phase
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is superfluid. In 1D systems with short-range interactions the structure factor is zero

in the thermodynamic limit and the entire superfluid phase is critical, thus there are

formally no order parameters [10]. Superfluidity is instead signaled by a diverging

correlation length and solid order by slow power law decay of the density-density

correlator.

3.4 Case Study: Hard Core Bosonic Molecules at Half Filling

In the following, we consider a particular case of Eq. (3.1) for dynamical study.

We choose the hard core case, which can occur naturally due to strong on-site dipole-

dipole interactions, and half filling, which is an interesting point in a number of

models, including the repulsive Fermi-Hubbard Hamiltonian and the extended Bose-

Hubbard Hamiltonian discussed in Sec. 3.3.2. For example, in the latter case, the

charge-density-wave phase requires a minimum of half-filling [10].

If we assume that our system begins in its ground state (J = 0, M = 0) we

need only include states which have a dipole coupling to this state. For z-polarized

DC and AC fields, this means we only consider M = 0 states, yielding the reduced

Hamiltonian

Ĥ =−
∑
JJ ′

tJJ ′

∑
⟨i,i′⟩

(
â†i′,J ′ âiJ + h.c.

)
+
∑
J

EJ
∑
i

n̂iJ

− π sin (ωt)
∑
J

ΩJ

∑
i

(
â†iJ âiJ+1 + h.c.

)
+

1

2

∑
J1,J ′

1,J2,J
′
2

U
J1,J ′

1,J2,J
′
2

dd

∑
⟨i,i′⟩

â†iJ1 âiJ ′
1
â†i′J2 âi′J ′

2
. (3.50)

This is the specific case of the MHH that we study using TEBD.

A matter of practical concern, as apparent in Table 3.2, is the large disparity

between the timescales of the first three (Rotational, DC, and AC) and the last three

(kinetic, tunneling, and Dipole-Dipole) terms. The accumulation of error resulting

from truncating the Hilbert space at each TEBD timestep causes the algorithm to
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eventually fail after a certain “runaway time,” making studies over long times in-

tractable [40]. This invites a multiscale approach in the future [41, 42]. In our

current numerics we artificially increase the recoil energy and dipole-dipole potential

to be of the order of the rotational constant in order to study Eq. (3.50) using TEBD.

In particular, we take

U
J1,J ′

1,J2,J
′
2

dd = 10B
d2
⟨E ; J ′

1|d̂|E ; J1⟩⟨E ; J ′
2|d̂|E ; J2⟩ , (3.51)

tJ = 10B
[
η
(

1 + 2∆α
ᾱ

J(J+1)
(2J+1)(2J+3)

)]1.051
× exp

[
−2.121

√
η
(

1 + 2∆α
ᾱ

J(J+1)
(2J+1)(2J+3)

)]
, (3.52)

where the dimensionless variable η becomes an ersatz “lattice height.” To see the

scaling more explicitly, we compare the above with the actual expressions for the

MHH parameters

U
J1,J ′

1,J2,J
′
2

dd = 8
λ3
⟨E ; J ′

1|d̂|E ; J1⟩⟨E ; J ′
2|d̂|E ; J2⟩ (3.53)

=
(

2mERd
4/3

~2π2

) 3
2 ⟨E ; J ′

1|d̂|E ; J1⟩⟨E ; J ′
2|d̂|E ; J2⟩/d2 , (3.54)

tJM ≈ 1.397ER

(
|Eopt|2ᾱ
3ER

[
1 + 2∆α

ᾱ
J(J+1)−3M2

(2J−1)(2J+3)

])1.051
(3.55)

× exp

(
−2.121

√
|Eopt|2ᾱ
3ER

[
1 + 2∆α

ᾱ
J(J+1)−3M2

(2J−1)(2J+3)

])
. (3.56)

If we now scale ER to be 10B/1.397 and set d such that
[
2mERd

4/3/ (~2π2)
] 3

2 = 10B

for this ER, we recover Eqs. (3.51) and (3.52) provided we make the definition

η ≡ − |Eopt (x)|2 ᾱ/ (3ER) = V
(JM)
x ᾱ/

(
3ERα

(t)
JM

)
. (3.57)

Since this dimensionless parameter plays the same role as the quasi-1D lattice height

scaled to the recoil energy did in the actual MHH, we refer to it as the lattice

height. For the polarizability tensor, we choose ∆α/ᾱ = 165.8/237, correspond-
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ing to LiCs [28]. This rescaling does not change the qualitative static and dynamical

features of Eq. (3.50); it only makes Eq. (3.50) treatable directly by TEBD, without

multiscale methods. In the future, we plan to apply multiscale methods to determine

the emergent timescales for experimentally relevant parameters.

First, we point out that if we consider populating a single rotational state (e.g. J =

0, M = 0) in the Ω → 0 limit, then Eq. (3.50) becomes the extended Bose-Hubbard

Hamiltonian, and the phase diagram is known [10, 31]. Because the tunneling energy

is different for different rotational states (see Eq. (3.31)) and this difference depends

only on the properties of the polarizability tensor, we can relate the borders of the

phase diagram for different rotational states to properties of the polarizability tensor.

The MHH thus gives a means to measure the polarizability tensor, a standing issue

in experiments [43]. Our calculations in Sec. 3.2 can be used to compare directly to

the phase diagram from the literature [10, 31]. In fact, this aspect of our work, unlike

the simulations below, is not restricted to 1D.

However, our main focus at present is on the dynamics of the MHH. In the follow-

ing numerical study, we explore dynamics as a function of the physical characteristics

of the lattice, namely, number of sites L and effective lattice height η. Specifically,

we study L = 9, 10, and 21 lattice sites with N=4, 5, and 10 molecules, respectively,

and η ranging from 1 to 10. We fix the dipole-dipole term as in Eq. (3.51), and fix

the DC field parameter to be βDC = 1.9. While βDC = 1.9 may not correspond to a

physically realizable situation, its exploration provides insight into the MHH.

The Rabi oscillations between the J = 0 and the J = 1 states damp out exponen-

tially in the rotational time tr ≡ Bt/~ as

⟨n̂0⟩ = a0 − b0 e−tr/τ cos (c0tr) , (3.58)

⟨n̂1⟩ = a1 − b1 e−tr/τ cos (c1tr) , (3.59)
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Figure 3.2: Dependence of site-averaged number on lattice size L. For this set of
parameters, the site-averaged J = 0 and J = 1 populations appear to asymptotically
approach quarter filling. The J = 2 mode is populated slightly by off resonant AC
couplings. The peak near the left side of the Fourier transform plots is the Rabi
frequency Ω00, denoted by an arrow. (a) Site-averaged population vs. rotational time
for 9 sites. Note the general theme; a gradual decrease (increase) of the maxima
(minima) of oscillations. (b) Squared modulus of Fourier transform of site-averaged
J = 0 population vs. rotationally scaled frequency for L = 9 sites. The arrow
denotes the Rabi frequency Ω00. (c) Site-averaged population vs. rotational time
for 10 sites. Note that there is no significant difference between an odd and even
number of sites. (d) Squared modulus of Fourier transform of site-averaged J =
0 population vs. rotationally scaled frequency for L = 10 sites. (e) Site-averaged
population vs. rotational time for 21 sites. Note that there is no significant difference
between this and the smaller system sizes. (f) Squared modulus of Fourier transform
of site-averaged J = 0 population vs. rotationally scaled frequency for L = 21 sites.
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Figure 3.3: Dependence of structure factors within and between rotational states J
on the number of lattice sites. We do not consider the off-resonant J = 2 and higher
rotational states because they have a very small occupation; J = 2 is shown explicitly
in Figure 3.2. (a) Structure factors vs. rotational time for 9 sites. Note the similar
asymptotic behavior to the populations in Figure 3.2(a). (b) Squared modulus of

Fourier transform of S
(00)
π vs. rotationally scaled frequency for L = 9 sites. Note the

similarity with Figure 3.2(b) above. (c) Structure factors vs. rotational time for 10

sites. There is no significant difference in the S
(00)
π and S

(11)
π between even and odd

L. For the difference in S
(01)
π , see Figure 3.3(f). (d) Squared modulus of Fourier

transform of S
(10)
π vs. rotationally scaled frequency for L = 9 sites. Note the absence

of the Rabi frequency. (e) Structure factors vs. rotational time for 21 sites. Note the
lack of significant difference with the smaller odd system size. (f) Comparison of the

S
(01)
π correlation structure factor for odd and even numbers of sites. Note that the

even site (exactly half filling) structure factor grows faster and larger than the odd
site (slightly less than half filling) structure factor.
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Figure 3.4: Dependence of the asymptotic behavior of rotational state populations on
the lattice height η. (a) Site-averaged population vs. rotational time for 21 sites with
η = 5. Note that the J = 0 and J = 1 states now appear to converge to different
fillings. (b) Squared modulus of Fourier transform of ⟨n̂00⟩ vs. rotationally scaled
frequency for L = 21 sites and η = 5. Note the presence of several new frequencies
not observed in the η = 1 case (Figure 3.2(f)). In particular, Ω00, 2Ω00, and 3Ω00, are
denoted by arrows. (c) Site-averaged population vs. rotational time for 21 sites with
η = 10. Note the similarity to the η = 1 case (Figure 3.2(e)) and the difference from
the η = 5 case (Figure 3.4(a))–the asymptotic behavior is not a monotonic function of
the lattice height. (d) Squared modulus of Fourier transform of ⟨n̂00⟩ vs. rotationally
scaled frequency for L = 21 sites and η = 10. Note that the frequencies that emerged
during η = 5 have persisted.
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Figure 3.5: Dependence of the asymptotic behavior of structure factors on the lattice
height η. (a) Structure factors vs. rotational time for 21 sites with η = 5. (b)

Correlation structure factor S
(01)
π vs. rotational time for 21 sites with η = 5, 10. (c)

Structure factors vs. rotational time for 21 sites with η = 10. Note the similarity
of S

(00)
π and S

(11)
π to the η = 1 case (Figure 3.3(e)). Note also that S

(01)
π is now

nonzero, and is periodic with the Rabi frequency Ω00 at short times and twice the
Rabi frequency at long times (see also Figure 3.5(d) and Figure 3.5(b)). (d) Squared

modulus of Fourier transform of S
(10)
π vs. rotationally scaled frequency for L = 21

sites and η = 10. Many new frequencies appear, in particular the Rabi frequency and
double the Rabi frequency, denoted with arrows.
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Table 3.3: Emergent timescales τ and τQ and their fit asymptotic standard errors for
various lattice heights and system sizes.

L η τB/~ Asymp. S.E. (%) τQB/~ Asymp. S.E. (%)
9 1 414.04 0.72 398.4 0.51
9 2 224.32 1.79 149.9 1.36
9 3 117.5 1.86 126.7 1.03
9 10 613.00 1.07 1079.66 14.09
10 1 259.96 0.76 240 0.6454
10 4 140.70 1.19 72.04 0.60
10 10 526.21 0.88 396.46 1.018
21 1 756.18 3.13 110.68 0.96
21 5 177.53 1.62 75.18 0.902
21 10 716.21 2.96 244.09 2.82

with some characteristic timescale τ , as seen in Figure 3.2. We note that an expo-

nential fit has a lower reduced chi-squared than a power-law, or algebraic fit. We also

tried fit functions where the oscillations do not decay to zero, but rather persist with

some asymptotic nonzero amplitude. We find that the fit functions Eqs. (3.58) and

(3.59) above fit the data better as quantified by the convergence properties of the

algorithms used, as discussed in appendix 3.7.

The timescale τ also describes the decay of physically measurable quantities, for

example the structure factors as defined in Eq. (3.48) and illustrated in Figure 3.3.

We show the emergent timescale τ for various lattice heights and systems sizes in

Table 3.3.

Examining Figure 3.2, one observes that the driven system approaches a dynamical

equilibrium that is a mixture of rotational levels. The timescale with which the

system relaxes to this equilibrium, τ , cannot be determined from the single-molecule

physics, and so we refer to τ as an emergent timescale. For the low lattice height

η = 1, the populations of the first two rotational states appear to oscillate around

and asymptotically converge to roughly quarter filling, with J = 1 being lower due to

contributing to population of J = 2 via an off-resonant AC coupling (Figure 3.2(a)).
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For η = 5, the asymptotic equilibrium is an uneven mixture of rotational states that

favors occupation of the J = 0 state (Figure 3.4(a)), and the emergent timescale for

reaching this equilibrium is shorter than it was for η = 1 by roughly a factor of four.

As the lattice height is then increased to η = 10, the populations return to the trend

of η = 1, again converging to quarter filling with a timescale comparable to that of

η = 1 (Figure 3.4(c)). This illustrates the fact that the emergent timescale τ is not,

in general, a monotonic function of the parameters of the lattice.

While the dynamics of the site-averaged rotational state populations are superfi-

cially similar for η = 1 and η = 10, the underlying physics is not identical, as can

be seen by comparing Figure 3.2(f), Figure 3.4(b), and Figure 3.4(d). These figures

display the squared modulus of the Fourier transform of the site-averaged number

in the J = 0 state. The only significant frequency observed for η = 1 is the Rabi

frequency Ω ∼ 0.064B/~. In contrast, the η = 5 case has numerous other character-

istic frequencies. As we raise the lattice height to η = 10, the frequencies that arose

for η = 5 remain, even though the overall visual trend of the site-averaged number

reflects that of the single-frequency η = 1 behavior. While we do not explicitly see the

new frequencies in the site-averaged number, we do see them in the structure factors.

An example is Figure 3.5(b), which clearly displays the 2Ω frequency behavior of the

correlation structure factor S
(01)
π for η = 10. This frequency, which we easily pick

out in the site-averaged number’s Fourier transform, can also be seen in the Fourier

transform of S
(01)
π , see Figure 3.5(d).

We find that the emergent timescale τ does not depend strongly on the size of the

system L, even though the distribution of molecules on the lattice is, in general, quite

different for different numbers of sites, as can be seen by comparing Figure 3.2(a)

and Figure 3.2(e). Examining Figure 3.2(c) and Table 3.3, the L = 10 case has a

smaller τ than either of the odd L cases. We think this has to do with the filling

being exactly 1/2 and not, strictly speaking, with the number of lattice sites, as the
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L = 9 and L = 21 cases have fillings less than 1/2. We see this clearly by comparing

Figure 3.6(a) with Figure 3.2(a), Figure 3.2(c), and Figure 3.2(e). Figure 3.6(a)

displays ⟨n̂00⟩/N , a quantity which is independent of filling but dependent, in general,

on the number of lattice sites. There is a weak dependence on the number of lattice

sites. On the other hand, Figure 3.2(a), Figure 3.2(c), and Figure 3.2(e) display

⟨n̂00⟩/L, a quantity which is independent of the number of lattice sites but dependent,

in general, on the filling. There is a marked difference between L = 10, which has

filling of 5/10 = 1/2 and the others, which have fillings< 1/2, but there is not a

significant difference between L = 9 and L = 21, which have fillings of 4/9 and

10/21, respectively.

The dependence of τ on the filling is also evidenced by the correlation structure

factor S
(01)
π in Figure 3.3(f), which shows that there is a stronger correlation between

the J = 0 and J = 1 states for exactly half filling than for fillings less than half,

regardless of the system size. Half filling is known to be important in the extended

Bose Hubbard model, where it marks the introduction of the charge density wave

phase. We thus interpret this greater correlation structure factor as the appearance

of a dynamic charge density wave phase between rotational states at half filling.

This is in contrast to the usual behavior, where the structure factors S
(00)
π and

S
(11)
π are nonzero whenever there is nonzero occupation of the particular rotational

state and the structure factor S
(01)
π is much smaller–essentially zero, see Figure 3.3(a)

and Figure 3.3(e). These results for the structure factors means that the J = 0 and

J = 1 states tend to lie on top of one another, and not to “checkerboard” with a

different rotational state occupying alternating sites. This is due to the fact that the

Rabi flopping timescale is much shorter than the dipole-dipole timescale, meaning that

the population cycles before there is sufficient time for the molecules to rearrange to a

configuration which is energetically favorable with respect to the dipole-dipole term.

However, because the population in each rotational level asymptotically reaches some
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nonzero value, we do see a small amount of rearrangement after many Rabi periods

for any filling, corresponding to a nonzero S
(01)
π . Note that this rearrangement does

not affect the site-averaged numbers, but rather the distribution of rotational states

among the lattice sites. This asymptotic distribution emerges on timescales longer

than we have considered, and is more prone to finite size effects than the site-averaged

quantities, so we do not make a conjecture about it here.

We find that the Q-measure saturates as

Q = Qmax −∆Qe−tr/τQ , (3.60)

with a different timescale τQ, see Figure 3.7(a) and Table 3.3. We also find that the

saturation timescale of the Q-measure is not, in general, a monotonic function of the

lattice height η, as shown in Figure 3.7(a).

This timescale is different from the timescale τ at which the populations approach

an asymptotic equilibrium, though both timescales respond similarly to changes in the

Hamiltonian parameter, see Table 3.3. For example, if τQ gets larger as a parameter

is changed then τ also gets larger, as illustrated in Figure 3.7(a) and Figure 3.7(b).

The timescale τQ displays a stronger dependence on the number of lattice sites L than

τ , as can be seen in Figure 3.6(b) and Figure 3.6(a). This is because τ describes a

quantity that has been averaged over sites, while τQ does not.

3.5 Conclusions

We have presented and derived a novel lattice Hamiltonian, the MHH. The MHH is

a natural Hamiltonian for connecting theoretical studies of the dynamics of quantum

phase transitions to near-term experimental setups using ultracold molecular gases.

We presented a case study of this new Hamiltonian for hard core bosonic molecules

at half filling. Starting from an initial condition of half filling in the J = 0, M = 0

state, we found that initial large oscillations in the system self-damp to an asymptotic
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Figure 3.6: Dependence of emergent time scales on number of lattice sites.
(a)Dependence of the population damping timescale τ on the number of lattice sites.
When we remove the dependence on the filling by dividing through by the total
number, we see that there is little difference in the timescales with which systems of
different size approach dynamic equilibrium. Contrast Figure 3.2(a), Figure 3.2(c),
and Figure 3.2(e), which display a profound dependence on filling when the depen-
dence on lattice sites has been removed. (b) Dependence of spatial entanglement on
number of lattice sites. We see that systems of different size have different spatial
entanglement in their static ground state. The timescale of the Q-measure saturation,
τQ, is shorter for L = 10 than it is for the odd L cases. This follows the general trend
of τ and τQ responding correspondingly to changes in the Hamiltonian parameters,
and so we associate this shorter timescale partially with the filling, not entirely with
the system size.
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Figure 3.7: Dependence of emergent timescales on lattice height. (a) Dependence
of spatial entanglement on lattice height. Note that the spatial entanglement and
its associated timescale are not monotonic functions of the lattice height. Note also
that the entanglement of the static ground state appears to be largely insensitive to
the lattice height. (b) Dependence of the site-averaged number on the lattice height.
Note that the emergent timescale τ is not a monotonic function of the lattice height.
Note also that τ responds in the same way that τQ does to changes in the lattice
height.
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equilibrium which consists of a lattice height and filling-dependent spatially entangled

superposition of dressed states. This occurs on an emergent timescale τ which can

not be predicted from the single molecule theory. We showed that τ depends non-

monotonically on lattice height, weakly on lattice size, and strongly on filling (as

apparent in simulations with odd and even numbers of sites). We also discovered a

separate emergent timescale τQ which describes how quickly the many body spatial

entanglement saturates. We demonstrated that τQ and τ respond similarly to changes

in the Hamiltonian parameters and that τQ depends on the filling, the lattice size, and,

non-monotonically, on the lattice height. In addition to these emergent timescales,

we studied the time-dependent structure factors and their frequency-domain Fourier

transforms.

In future studies we will consider different filling factors, DC field strength to

rotation ratios βDC, and initial conditions, as well as polarized and unpolarized spin-

1/2 fermionic molecules. In addition, we will use multiscale methods to study how

the emergent timescale demonstrated above compares to experimental timescales for

physical systems, and thereby make quantitative predictions for experiments.

We acknowledge useful discussions with Deborah Jin, Heather Lewandowski, and

Jun Ye. This work was supported by the National Science Foundation under Grant

PHY-0547845 as part of the NSF CAREER program.

3.6 Single Molecule Physics

3.6.1 Relationship Between Operators in Space-Fixed andMolecule-Fixed
Coordinate Systems

It is well known that the representation of the angular momentum operators

in a molecule-fixed coordinate frame lead to the anomalous commutation relations

[Ji, Jj] = −i~ϵijkJk [44]. The simplest way to avoid this trouble is to transform all

expressions into the space-fixed frame where the angular momentum operators satisfy

the normal commutation relations [Ji, Jk] = i~ϵijkJk [45]. If the molecule-fixed axes
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are obtained by rotation of the space-fixed axes through the Euler angles {ϕ, θ, χ} [26]

(which we collectively abbreviate as (R)), then the component of a kth-rank spherical

tensor T that has projection p along the space-fixed z axis, denoted (T )(k)p , can be

expressed in terms of the molecule fixed components as

(T )(k)p =
∑

q D
(k)
pq (R)⋆ (T )(k)q , (3.61)

where D(k)
pq (R)⋆ is the complex conjugate of the pq element of the kth-rank rota-

tion matrix (Wigner D-matrix). To avoid confusion, we will label all space-fixed

components with the letter p and all molecule-fixed components with q. From the

orthogonality of the rotation matrices we have the inverse relationship

(T )(k)q =
∑

pD
(k)
pq (R) (T )(k)p (3.62)

=
∑

p (−1)p−q D(k)
−p,−q (R)⋆ (T )kp . (3.63)

3.6.2 Rotational Hamiltonian

In the rigid rotor approximation the rotational Hamiltonian is simply

Ĥrot = BĴ2 , (3.64)

where we have defined the rotational constant B ≡ 1/2µr2e , with µ the molecule’s

reduced mass and re its equilibrium internuclear separation. Typical values of B are

∼ 60~ GHz [46]. This Hamiltonian has eigenvalues BJ (J + 1) and eigenstates |JM⟩,

with J the total angular momentum and M its projection along the internuclear axis.

3.6.3 DC Field Term

The dipole moment of a polar molecule in a rotational eigenstate is zero in an

average sense due to the spherical symmetry of the rotational Hamiltonian. We

break this symmetry by introducing a DC electric field along the space-fixed z axis,

with Hamiltonian
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ĤDC = −d̂ · EDC , (3.65)

where EDC is the electric field amplitude. The field defines the spherical space-fixed

axis p = 0, and the molecule-fixed internuclear axis defines q = 0. We transform

between them using a first-rank rotation matrix as outlined above:

ĤDC = −
(
d̂
)(1)
0
EDC. (3.66)

The matrix elements of the DC Hamiltonian in the basis which diagonalize the rota-

tional Hamiltonian Eq. (3.65) are

⟨J ′,M ′|ĤDC|J,M⟩ = −dEDC

√
(2J + 1) (2J ′ + 1) (−1)M (3.67)

×
(

J 1 J ′

−M 0 M ′

)(
J 1 J ′

0 0 0

)
where we use the notation (. . . ) for the Wigner 3-j symbol [26]. Note that the symbol

d refers to the permanent dipole moment of a molecule, and is not to be confused

with the dipole operator denoted by d̂. We refer to the basis which simultaneously

diagonalizes the Rotational and DC Hamiltonians as the “dressed basis,” and we

denote the kets that span this basis by |E ; JM⟩, where the labels J and M are the

zero field values of the corresponding quantum number and the symbol E is a reminder

that these kets are superpositions of field free rotational states and DC field.

The effects of the DC field can be clearly seen by considering the dressed state

wavefunctions, energies, and dipole moments to lowest order in perturbation theory

in the dimensionless parameter βDC ≡ dEDC/B, the ratio of the field energy to the

rotational level splitting:

|E ; J,M⟩ =|J,M⟩ − βDC

2J

√
J2 −M2

4J2 − 1
|J − 1,M⟩+

βDC

2 (J + 1)

√
(J + 1)2 −M2

4 (J + 1)2 − 1
|J + 1,M⟩ ,

(3.68)
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∆E
(2)
JM =

d2E2DC

2B

[
J (J + 1)− 3M2

J (J + 1) (2J − 1) (2J + 3)

]
, (3.69)

⟨E ; JM |d̂|E ; JM⟩/d =− ∂EJM
∂βDC

= βDC
3M2/J (J + 1)− 1

(2J − 1) (2J + 3)
, (3.70)

where ∆E
(2)
JM is the lowest non-zero shift in the energy.

The DC field mixes states of different J , breaking the (2J + 1)-fold degeneracy of

the rotational Hamiltonian, and so J is no longer a good quantum number. In the

case of a z-polarized field, M remains a good quantum number, and a degeneracy

persists for all states with the same |M |. This mixing aligns the molecule with the

field, inducing a nonzero dipole moment. This means of orienting polar molecules,

known as “brute force” orientation, works well for molecules that both have a large

dipole moment and can be efficiently rotationally cooled [47]. While more effective

means of orienting molecules using intense laser fields are known [48], they complicate

the theoretical discussion and the experimental setup, and so we do not consider them

here.

In larger fields the rotational levels become deeply mixed, which allows states that

are weak-field seeking in low fields to become high-field seeking in high fields [49]. The

actual mixing of rotational levels vs. βDC is depicted in Figure 3.9 for the lowest three

dressed levels. We note that there always exists a field ER such that the lowest

R dressed states’ dipole moments are all positive, as this is important to ensure

the stability of a collection of dipoles. The universal curve of the induced dipole

moments (in units of d) vs. βDC of the first two dressed rotational manifolds are

shown in Figure Figure 3.8(a). The universal curve of the dressed state energies

energies (in units of B) vs. βDC is shown in Figure Figure 3.8(b). For reference,

βDC = 1 corresponds to a field of roughly 1.93kV
cm for B ∼ 60~ GHz and d ∼ 9 D.

Expanding the field operators in Eq. (3.1) in a Wannier basis of dressed states

centered at a particular discrete position ri as described in Eq. (3.4), we find
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Figure 3.8: Dressed state dipole moments and energies. Note that the J = 1,M =
0 resonant dipole moment changes from weak-field seeking to high-field seeking at
βDC ≈ 5. All rotational states have a field where this transition occurs, and the dipole
tends monotonically towards unity after this field. The ⟨10|d̂|00⟩ dipole moment
(and all transition dipole moments, generically) tends towards zero monotonically as
βDC increases. Note also that the energetic differences between rotational levels are
smallest at zero field and grow monotonically thereafter. (a) Scaled induced dipole
moments vs. scaled DC field energy. (b) Scaled dressed energies vs. scaled DC field
energy.
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Figure 3.9: Compositions of dressed states vs. scaled rotational energy. The states
become deeply mixed in large fields, and that the dressed state |E ; JM⟩ whose zero
field value is |JM⟩ does not always have the greatest overlap with |JM⟩ for all βDC.
The field strength where the first dressed state changes from weak-field to high-field
seeking, βDC = 5, is also roughly the place where its overlap with the |00⟩ field-free
level is greater than the overlaps with all other field-free levels. (a) Composition of 1st

dressed state. (b) Composition of 2nd dressed state. (c) Composition of 3rd dressed
state.
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Ĥrot + ĤDC =
∑

J

∑J
M=−J EJ,M n̂E,JM , (3.71)

where EJM is the energy of the |E ; J,M⟩ dressed state (see Figure 3.9(a)) and n̂E,JM

is the number operator associated with this same state.

If the DC field were aligned at a small angle θa to the z field of the trap (say,

in the xz plane), then small dipole moments mixing M ′ = M ± 1 states would arise

and the M ′ = M dipoles would decrease slightly (we can view them as being in an

effective field of Eeff = cos θaEDC). Treating the new contribution perturbatively in

the small parameter sin θaβDC, we find the lowest order couplings to the ground state

⟨E ; 00|ĤDC|E ; 1± 1⟩ ≃ sin θadE√
6

(
1− 49 sin2 θa

1440
β2
DC

)
, (3.72)

and associated timescale τθa for occupation of M ̸= 0 states from the ground state,

τθa =

√
6~

sin θadE
(

1− 49 sin2 θa
1440

β2
DC

) ∼ √
6

βDC sin θa

~
B
. (3.73)

3.6.4 AC Field Term

An AC microwave field of frequency ω resonantly drives transitions between two

DC dressed states |E ; J ′M ′⟩ and |E ; JM⟩ with energy difference (EJ ′M ′ − EJM) /~ ≈

ω provided the induced dipole moment ⟨E ; J ′M ′|d̂|E ; JM⟩ is nonzero. Two states

separated by an energy difference ∆E that is off-resonant from the driving field (i.e.

∆E ≫ ω) will also be coupled, albeit much more weakly. In our system we resonantly

couple the lowest two dressed rotational levels, |E ; 10⟩ and |E ; 00⟩. We consider the

case of z polarization, in which the effective Hamiltonian in the dressed Wannier basis

is

ĤAC (t) = −π sin (ωt)
∑

JM ΩJM

(
â†E;J,M âE;J+1,M + h.c

)
, (3.74)
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where

ΩJM ≡ EAC⟨E ; J,M |d̂|E ; J + 1,M⟩/~ . (3.75)

is the Rabi frequency. This is the frequency with which the populations of a two-level

system cycles. In experiments, the AC field has spatial curvature on the order of cm

which is negligible on the µm system size scale.

In the absence of couplings between sites, the physics of the system is determined

by the on-site, single-molecule physics. The percentage population of each compo-

nent in both the |E ; J,M⟩ dressed and |JM⟩ field-free bases are shown below for one

Rabi period. In these plots only the |E ; 10⟩ and |E ; 00⟩ dressed states are considered,

which is close to the actual behavior when all other states are far off-resonant. Each

site undergoes Rabi flopping independently of the others. Figure 3.10(a) and Fig-

ure 3.10(b) show this behavior for βDC = 1.900 and βAC ≡ dEAC/B = 0.200, giving a

Rabi period of 2π/Ω00 = 36.5~/B.
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Figure 3.10: Resonant AC field induced population cycling in the dressed and field-
free bases. (a) Populations of the dressed states vs. rotational time. The small
amplitude rapid oscillations occur on the timescale 1/ω, and are often averaged away
via the rotating wave approximation. The large amplitude oscillations occuring on the
timescale 1/Ω00 that periodically transfer the population between |E ; 00⟩ and |E ; 10⟩
are the characteristic “Rabi oscillations” of a driven two-level system. (b) Populations
of the field-free states vs. rotational time. The |20⟩ state is occupied because both
|E ; 00⟩ and |E ; 10⟩ have a nonzero projection with this state due to the mixing from
the DC field, see Figure 3.9. It is apparent from comparison with Figure 3.10(a) that
the dressed basis greatly simplifies the AC term in the Hamiltonian.
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3.7 Convergence

3.7.1 Single Molecule Considerations

Each dressed state |E ; J,M⟩ is, in principle, an infinite linear combination of field

free states

|E ; J,M⟩ =
∑∞

J ′=0 cJ ′|J ′,M⟩. (3.76)

Numerically, we must have a finite upper bound to the sum in Eq. (3.76), which we

call Jcut. This does not cause difficulty in practice, as the overlap of a dressed state

|E ; JM⟩ with a field-free state |J ′M⟩ diminishes rapidly as J ′ differs more greatly

from J . We find the coefficients in Eq. (3.76), as well as the dressed state energies

and dipole moments by simultaneously diagonalizing the rotational and DC field

Hamiltonians in a basis consisting of the first Jcut rotational levels. Because TEBD

scales poorly with the on-site dimension, we form as small an on-site basis as possible

by keeping the eigenvectors corresponding to the R lowest dressed levels. To form

a proper basis, we must renormalize these eigenvectors (which, for z-polarized field,

does not change their orthogonality). We now demonstrate the convergence of these

two procedures

To show convergence of the first procedure, we plot the difference between the

energy of the J th rotational state calculated for a particular value of Jcut = i and

one higher value, ∆EJ (i) as a function of i. The results for various field strengths

are shown in Figure 3.11(a)-Figure 3.11(b). We see very fast convergence for the low

fields (e.g. βDC = 1.9) of interest. In our numerics we use Jcut = 25, which ensures

convergence for any of the βDC considered.

To determine convergence with respect to the second procedure, examine Fig-

ure 3.9(a)-Figure 3.9(b), which show

P
(Jmax)
J ≡ 1−

∑Jmax−1
i=0 |⟨E ; J0|i0⟩|2 , (3.77)
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Figure 3.11: Convergence with respect to DC dressing rotational state cutoff. As
few as 7 field-free levels are needed for the weak field βDC = 1.9 to have the dressed
state energies of interest converge to machine precision (left panel), and even a large
DC field βDC = 20 requires only 12 field-free levels for the energy to converge (right
panel).

the amount of the total dressed wave function norm |⟨E ; J0|E ; J0⟩|2 that lies outside of

the first Jmax field-free rotational levels for Jmax = 3 and 4, respectively. For Jmax = 4

the renormalization of the first three rotational levels is a very small effect for the βDC

we consider, and the fourth level is not populated to any appreciable extent during

time evolution for any βDC (see Fig.Figure 3.10(a)), so we expect that keeping the

Jmax = 4 lowest levels will give sufficient accuracy. By direct simulation, we find six

digit accuracy in the suite of quantum measures defined in Sec. 3.3.2; specifically, we

compare Jmax = 3 and 4.

3.7.2 Many Body Considerations

There are also convergence issues that are inherent to the TEBD algorithm. The

first, called the Schmidt error, is the error that arises from truncating the Hilbert

space at each time step. We can parameterize the error per step in terms of the

entanglement cutoff parameter χ as

τSl = 1−
∑χ

αl=1

(
λ
[l]
αl

)2
(3.78)
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Figure 3.12: Convergence with respect to local dimension cutoff. Dressed states with
greater J lose more of their norm in truncation, as mixing occurs most strongly with
adjacent J . Also, as the field is increased, the states become more deeply mixed, and
so all states lose more of their norm. Truncating the local basis at the J = 3 dressed
level incurs at most a 1% loss of norm for any of the states that are appreciably
populated during time evolution (right panel).

where λ[l] is a vector containing the eigenvalues of the reduced density matrix obtained

by tracing over all sites but l, and αl is the local index that entangles the site l with the

rest of the system, with smaller αl states having greater weight. We find that, among

the measures we use, the one that is the most sensitive to χ is the Q-measure, which

we plot for four values of χ in Figure 3.13. Increasing χ improves the accuracy over

longer times, but there is always a time after which the measure begins to deviate.

This is the normalization drift alluded to in Sec. 3.3.1. The χ-dependent time after

which the Schmidt error dominates is referred to as the runaway time [40]. In the

case study of Sec. 3.4, we used χ = 50 for all simulations, which gives the Q-measure

accurately to within four decimal places over the timescales considered.

The second intrinsic source of error in TEBD is due to the Trotter-Suzuki expan-

sion of the propagator [33]. We parameterize this error in terms of δt, the time step.

When we halve the time step from that used in the simulations above (= 2π/(133ω)),

we find no change in the measures to the ninth digit. It is clear that the Schmidt

error discussed above is the chief source of error in our simulations.
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Figure 3.13: Convergence with respect to entanglement cutoff parameter. The left
figure shows the spatial entanglement measure Q for various values of the TEBD
entanglement cutoff parameter χ. As χ is increased, Q remains close to its true value
for longer. In the right figure we plot the log of the absolute difference in Q for two
values of χ divided by its arithmetic mean. We see at least four-digit accuracy for
the largest values of χ we consider. Note also that even small values of χ are accurate
for short times.

To extract the emergent timescales defined in Eqs. (3.58) and (3.60), we used two

different methods. The first is the nonlinear curve fitting routine “fit” in gnuplot. The

second is the “NonlinearRegression” package in Mathematica 6.0. Both methods use

nonlinear regression, which fits the data to a specified nonlinear function of the model

parameters. The goodness of the fit is quantified by the asymptotic standard errors of

the model parameters, which gives the standard deviation of each parameter. A low

percent asymptotic error means that the model parameters cannot be adjusted very

far without noticeably changing the goodness-of-fit. Both gnuplot and Mathematica

returned the same values for the emergent timescales to within the stated asymptotic

standard error.
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[20] Corinna Kollath, Andreas M. Läuchli, and Ehud Altman. Quench Dynamics and
Nonequilibrium Phase Diagram of the Bose-Hubbard Model. Phys. Rev. Lett.,
98:180601, 2007.
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CHAPTER 4

HYPERFINE MOLECULAR HUBBARD HAMILTONIAN

Abstract:24 An ultracold gas of heteronuclear alkali dimer molecules with hyperfine

structure loaded into a one-dimensional optical lattice is investigated. The hyperfine

molecular Hubbard Hamiltonian (HMHH), an effective low-energy lattice Hamilto-

nian, is derived from first principles. The large permanent electric dipole moment of

these molecules gives rise to long range dipole-dipole forces in a dc electric field and

allows for transitions between rotational states in an ac microwave field. Addition-

ally, a strong magnetic field can be used to control the hyperfine degrees of freedom

independently of the rotational degrees of freedom. By tuning the angle between

the dc electric and magnetic fields and the strength of the ac field it is possible to

control the number of internal states involved in the dynamics as well as the degree of

correlation between the spatial and internal degrees of freedom. The HMHH’s unique

features have direct experimental consequences such as quantum dephasing, tunable

complexity, and the dependence of the phase diagram on the molecular state.

4.1 Introduction

Ultracold molecular gases are of interest in many subfields of science ranging

from precision science to quantum simulation of many-body Hamiltonians [1]. Recent

success using the stimulated Raman adiabatic passage (STIRAP) method has allowed

experimentalists to produce a gas of KRb molecules close to Fermi degeneracy, in the

ground rovibrational state, and in a specific hyperfine level [2, 3]. Rovibonic ground

state molecules have also been formed for polar LiCs[4] as well as nonpolar Cs2[5] and

Rb2[6], with studies on other species currently underway[7, 8]. To reach the quantum

24Published previously as Hyperfine molecular Hubbard Hamiltonian, M. L. Wall and L. D. Carr,
Physical Review A 82, 013611 (2010).
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degenerate regime one must have all molecules in the same quantum state, a task

which is complicated by the rich hyperfine structure of alkali dimer molecules. Thus,

a number of recent works [9–11] have investigated the single-molecule microwave

spectra to find a route by which all molecules are transferred to the lowest hyperfine

state, yielding a gas of absolute ground state molecules.

From the condensed matter perspective, ultracold gases are enticing in their ca-

pacity to act as quantum simulators [12, 13]. Such specialized quantum computers

allow for the study of complex many-body Hamiltonians in a setting where many

parameters are amenable to experimental control. From this point of view, it is nat-

ural to ask how the various degrees of freedom in the quantum simulator may be

controlled and used as resources. Theoretical proposals for many-body physics using

ultracold molecules have so far focused only on the rotational degrees of freedom

in 1Σ molecules with external fields [14, 15] or on the hyperfine degree of freedom

in 2Σ molecules without external fields [16]. In this work we study 1Σ molecules in

strong fields including the effects of hyperfine structure and discuss how the hyperfine

degrees of freedom may be controllably accessed and manipulated as a resource for

generating complex quantum dynamics.

For 1Σ molecules it has been shown that the interaction of the rotational de-

grees of freedom with external electric fields allows for the tuning of the strength

and range of the two-molecule interaction potential [14]. Many of these results also

hold for molecules with hyperfine structure, as the rotational and nuclear spin de-

grees are only weakly coupled in strong fields. In particular, the application of a dc

field and an optical trapping potential gives rise to a purely repulsive dipole-dipole

interaction between molecules in reduced geometries. Also, it has been shown that

the combination of a strong uniform magnetic field and a suitably chosen microwave

field allows for transitions between particular hyperfine single-molecule states, and

that this may be used to transfer a collection of molecules that have been cooled
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to the rovibrational ground state but an excited hyperfine state to their hyperfine

ground state [9–11]. This idea also works in reverse: one can select the states which

are involved in many-body dynamics with the ground state by judicious choice of

the field strengths and geometries. The hyperfine molecular Hubbard Hamiltonian

(HMHH) reflects this fact; not only the parameters of the Hamiltonian but also the

dimensionality and character of the basis are suited to experimental control.

This article is organized as follows. In Sec. 4.2 we introduce the HMHH, define

its parameters, and discuss its interesting experimental consequences. This section

contains the main results of the paper. In Sec. 4.2.3 we derive the HMHH from first

principles and state the key assumptions underlying its derivation. Finally, in Sec. 4.4,

we conclude. Some details concerning the single molecule physics are provided in the

appendices in the interest of completeness.

4.2 Statement of the Hamiltonian and Experimental Consequences

The hyperfine molecular Hubbard Hamiltonian is

Ĥ =
∑
σ

∆σ

∑
i

n̂iσ −
∑
σ

tσ
∑
⟨i,j⟩

[
â†iσâjσ + h.c.

]
+

1

2

∑
σ,σ′

Uσσ′

∑
⟨i,j⟩

n̂iσn̂jσ′

− 1

2

∑
σσ′

dσσ′Eac

∑
i

[
â†iσâiσ′ + h.c.

]
, (4.1)

where âiσ destroys a bosonic or fermionic molecule in state |σ⟩ on the ith lattice site,

and the bracket notation ⟨. . . ⟩ denotes that the sum is taken over nearest neigh-

bors. The single-molecule basis {|σ⟩} takes into account the hyperfine interactions

(Appendix 4.5) and static fields (Appendix 4.6) and the quantum number σ is a

composite index referring to both rotational and nuclear spin degrees of freedom.

The properties and dimensionality of this basis can be modified by the geometry and

strength of the external fields, as will be discussed in more detail below.
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Table 4.1: Table of energy scales of the hyperfine molecular Hubbard Hamiltonian.
From top to bottom: energy ∆σ of internal state |σ⟩, relative to the ground state;
tunneling tσ; dipole-dipole interaction Uσσ′ ; transition dipole moment dσσ′ due to the
ac electric drive Eac.

Term Energy scale
∆σ ∼ 1− 100 kHz (depends on static field strengths)
tσ ∼ 1 kHz
Uσσ′ ∼250 Hz

dσσ′Eac ∼ 1− 50 kHz

The first term in the HMHH represents the energy offset of a molecule in state |σ⟩

from a reference ground state. The second term describes the tunneling of molecules

between lattice sites and depends on the rotational state. The third term describes

resonant dipole-dipole interactions between molecules on neighboring sites. The fi-

nal term corresponds to transitions driven between states |σ⟩ and |σ′⟩ by an ac mi-

crowave field. Here the transition dipole moment between two states |σ⟩, |σ′⟩ is

dσσ′ ≡ ⟨σ|d̂1|σ′⟩, where d̂1 ≡ d̂ · e1 is the projection of the dipole operator along the

space-fixed spherical basis direction e1 = − (ex + iey) /
√

2.

For 40K87Rb, which is the most experimentally relevant species, the energy scales

of the various terms are summarized in Table 4.1. The detunings ∆σ are determined

chiefly by the linear Zeeman effect, and so are tunable by the dc magnetic field, and

will be similar for other molecular species. The tunneling energy scale tσ is set by the

recoil energy, and so will be similar for other alkali dimers. The dipole-dipole energy

scale Uσσ′ is fixed by the permanent dipole moment, and so will change with the

molecular species. For example, LiCs has a dipole moment roughly 10 times larger

than that of KRb, and so Uσσ′ will be of order 25 kHz. The scale of the ac term is

determined by the power of the microwave field Eac, which is readily tunable. The

range of energies we have quoted represents the most interesting regime where the

basic assumptions of our derivation hold.
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In the following sections we will justify the HMHH and list the essential assump-

tions underlying its derivation, but we first pause to note some of its unusual prop-

erties.

4.2.1 Quantum Dephasing

The first property, which we call quantum dephasing, was investigated previ-

ously for a molecular Hubbard Hamiltonian involving only rotational degrees of free-

dom [15]. The effect, which is purely many-body in nature, may be summarized in

this context as the destruction of coherent Rabi flopping due to the population of

many spatial degrees of freedom in a many-body system driven at a single-molecule

resonance. This effect is also of interest in the more general context of oscillations

in a many-body system that are damped by some intrinsic mechanism following a

quench [17, 18].

Dephasing is strongest when the Rabi frequency is on the order of the tunneling

energies and the difference in tunneling energies for the two internal modes is also

comparable to these two scales. For a system with two single-particle levels 0 and

1 and tunneling energies t0 and t1, respectively, this gives the condition Ω ∼ t0 ∼

t1 ∼ |t0 − t1|, which can be achieved with the HMHH for reasonable parameter values.

The Rabi oscillations between the two internal states connected by the single molecule

resonance damp out exponentially in time with an emergent time scale τ which can be

measured experimentally, see Figure 4.1. Dephasing can be observed in the structure

factors

Sσσ
′

π =
1

L

L∑
i,j=1

(−1)i−j ⟨n̂iσn̂jσ′⟩ , (4.2)

where L is the number of lattice sites; Sσσ
′

π can be measured in scattering experi-

ments [19].
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Figure 4.1: (Color online) Quantum dephasing in the HMHH. The plot shows the
behavior of the total number in state 0: ⟨n̂0⟩ ≡ ⟨

∑
i n̂i0⟩ when the system evolves

under the Hamiltonian (4.1). Quantum dephasing produces an emergent exponential
envelope on the Rabi oscillation pattern between states 0 and 1. Only the number of
state 0 is shown for clarity. The dashed red curve is an exponential envelope fit to
N exp (−t/τ) with τ = 1441.17ms. The nonexponential behavior near t = 200 is due
to the finite size of the lattice.

4.2.2 Internal State Dependence of Phase Diagram

The dependence of the tunneling energy tσ on the internal state σ makes the

borders of the phase diagram shift strongly (e.g. by a factor of 2). This dependence is

shown explicitly in Figure 4.2. Thus, by preparing a collection of molecules in multiple

internal states one can study interactions of many-body systems in different quantum

phases and possibly far from equilibrium. Possibilities for quantum statics include

studying the properties of phase equilibria as a function of population imbalance and

effective mass (as determined by the tunneling energy) [21]. Also, as the difference

in tunneling energy between different modes depends only on the elements of the

molecular polarizability tensor, measuring the borders of the static phase diagram for

different internal states also provides a means to measure this tensor. Possibilities for

quantum dynamics include the study of quench phenomena for interacting many-body
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Figure 4.2: (Color online) Tunneling matrix elements in a dc electric field. Tun-
neling energies (in kHz) of the N = 0 (solid blue line) and N = 1 (dashed
green line) rotational states and their difference divided by their arithmetic mean,
2 (t1 − t0) / (t1 + t0), (dash-dotted red line) for KRb in a field of 10 kV/cm as a func-
tion of the effective isotropic lattice height η ≡ ᾱ |Eopt|2 (in recoil energy units). The
values of the polarizability tensor are taken from Ref. [20].

systems in different quantum phases.

4.2.3 Tunable Complexity

A final noteworthy property which was not present in the molecular Hubbard

Hamiltonians previously studied is the possibility of tunable complexity. By complex-

ity we mean that the system is comprised of many interacting degrees of freedom and

displays emergent behavior such as the dephasing discussed above. Tunability refers

to the fact that we may alter the number of internal degrees of freedom that are

accessed dynamically as well as the timescale of their relative interactions. The key

point for tunability is that the electric and magnetic fields affect different degrees of

freedom: the electric dipole moment and nuclear spins, respectively. We illustrate this

concept, and the corresponding geometries and polarizations needed for experiments,

in Figure 4.3.
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Figure 4.3: (Color online) Geometry of the HMHH. Counter-propagating laser beams
along the y and z directions create an array of 1D tubes, and an additional pair of laser
beams along x creates a lattice potential. A strong dc field orients the dipoles along
the direction perpendicular to motion, and a magnetic field orients the nuclear spins.
An ac field of circular space-fixed polarization drives transitions between internal
levels.

In slightly more detail, tunability is achieved as follows. In the presence of an

electric field aligned along the z direction, dipole moments are induced between states

having the same nuclear spin projection along the field. The introduction of a strong

magnetic field defines an effective axis of quantization for the nuclear spins while

leaving the rotational structure unchanged because of the strong nuclear Zeeman

effect, the weak rotational Zeeman effect, and the presence of only weak (quadrupole)

coupling between the rotational and nuclear spin degrees of freedom. In the presence

of a strong magnetic field that is not collinear with the electric field it is therefore

possible to induce dipole moments between states with different hyperfine quantum

numbers.
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Thus, by changing the relative angle between the electric and magnetic fields one

can control the number of states accessible from a particular state. The power of the

applied ac field determines the interaction scale and the Rabi frequency of these dipole

couplings, and the strength of the magnetic field determines the energetic splittings

between states, in turn determining the relative rates of internal state population. The

HMHH may therefore be used as a quantum simulator of a quantum complex system

where the number and timescale of the internal components may be dynamically

altered. Precise measures of complexity and simulations displaying characteristic

behavior in various regimes will be discussed in future work [22].

4.3 Derivation of the Hyperfine Molecular Hubbard Hamiltonian

We consider the experimental setup shown schematically in Figure 4.3. Counter-

propagating laser beams along the y and z directions create a series of 1D optical

lattice “tubes.” The intensity of these beams is such that the tubes are isolated from

one another, and the lattice spacing is chosen (e.g. by crossed beams) such that

the dipole-dipole interaction along y and z is negligible on experimental timescales.

An additional pair of beams creates a lattice potential along the x-direction. The

experimental techniques required to create this setup have been well established for

ultracold atoms [23–25]. In addition to the lattice potential there is a uniform dc

electric field along the z direction, a uniform magnetic field which lies in the xz

plane, and an ac microwave field propagating in z which is assumed to have circular

polarization q = 1 in the space-fixed spherical basis.

In the lattice is an ultracold quantum degenerate gas of 1Σ heteronuclear molecules

characterized by permanent electric dipole moment d, rotational constant BN , rota-

tional angular momentum N 25, and nuclear spins I1 and I2. Both nuclear spins are

taken to be greater than one-half, so that both nuclei have nonzero electric quadrupole

moments. In second quantization the full low-energy Hamiltonian for this setup is

25We reserve J for future studies involving nonzero orbital or electronic spin angular momentum.
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Ĥ =

∫
dr ψ̂†(r)

[
Ĥin + ĤF + Ĥac + Ĥkin + Ĥopt

]
ψ̂(r)

+
1

2

∫
drdr′ ψ̂†(r) ψ̂†(r′) ĤDD(|r− r′|) ψ̂(r′) ψ̂(r), (4.3)

where

Ĥin =Ĥrot + Ĥscal + Ĥtens + Ĥr−s + Ĥquad (4.4)

=BNN̂
2 + c4Î1 · Î2 + c3Î1 · T̃ · Î2 +

2∑
i=1

ciN̂ · Îi

+
2∑
i=1

ˆ̃Vi · ˆ̃Qi ,

ĤF =− grµNN̂ ·B−
2∑
i=1

giµN (1− σi) Îi ·B (4.5)

− Edc · d̂ ,
Ĥac =− Eac · d̂ , (4.6)

Ĥkin =
p̂2

2m
, (4.7)

Ĥopt =− E⋆
opt · ˆ̃α (ωopt) · Eopt , (4.8)

ĤDD (R) =
d̂1 · d̂2 − 3

(
d̂1 · eR

)(
eR · d̂2

)
R3

. (4.9)

The first line of Eq. (4.3) is comprised of single-molecule terms. In order, these

are Ĥin, the Hamiltonian governing the internal rotational and nuclear spin degrees

of freedom; ĤF, the interaction of the molecule with externally applied dc electric

and magnetic fields; Ĥac, the interaction of the molecule with an ac microwave field;

Ĥkin, the kinetic energy of the molecule; and Ĥopt, the interaction of the molecule

with the optical lattice potential. The second line of Eq. (4.3) is the two-molecule

resonant dipole-dipole force. The main assumptions underlying this Hamiltonian and

our subsequent analysis are the following.

First, the individual molecules are assumed to be in their electronic and vibrational

ground states, and it is assumed that none of these degrees of freedom can be excited
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at the large intermolecular separations and low temperatures/relative energies that

we consider.

Second, the characteristic trapping potential length is chosen large enough com-

pared to the internuclear axis to assume spherical symmetry, i.e. a locally constant

potential.

Third, we consider only the lowest two rotational levels. All ac fields will be

sufficiently weak to allow this assumption. We also work in the rotating wave ap-

proximation, which requires that the detuning be small compared to the driving

frequency.

Fourth, we consider all molecules to be in the lowest Bloch band. The ac Rabi fre-

quencies are chosen to be small (∼1-50 kHz) in comparison with the lattice bandwidth

(∼10ER ∼100 kHz) to ensure this assumption.

Fifth, we work in the “hard-core” limit where at most one molecule is allowed per

site. This is enforced by strongly repulsive dipole-dipole interactions on-site, caused

by our z-alignment of the electric field, as sketched in Figure 4.3. We consider the

lattice spacing large enough to include only nearest-neighbor dipole-dipole interac-

tions. We neglect the effects of chemical reactions or hyperfine changing collisions

which occur at very short range.

Sixth, we neglect dipole-dipole interactions between molecules in different 1D

“tubes.” For a consistent level of approximation this requires the tubes to be sep-

arated by twice the lattice spacing. This can be achieved in principle using crossed

beams to create larger lattice spacings.

Seventh, we consider only pairwise interactions of the molecules, neglecting three

and higher-body interactions. This is valid for KRb because the permanent dipole

moment d = 0.566D is rather small. For molecules such as LiCs with larger permanent

dipole moments, the three-body interaction can play a significant role [26].
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To derive a Hamiltonian of Hubbard type from Eq. (4.3) we follow the standard

prescription [13] of expanding the field operators of our second-quantized Hamiltonian

in a Wannier basis of single-molecule states centered at a particular discrete position

ri:

ψ̂ =
∑

i

∑
σ âiσwσ (r− ri) , (4.10)

where i is a site index and σ an index denoting the internal state of the molecule.

The Wannier basis we use is the basis which diagonalizes the internal plus static field

Hamiltonians Ĥin + ĤF and in which all states with N = 1 rotate with frequency

ω, where ω is the frequency of the applied ac electric field. With the field operator

written in this manner, we find the Hubbard parameters

tσ ≡ −
∫
drw⋆σ (r− ri)

[
Ĥkin + Ĥopt

]
wσ (r− ri+1) , (4.11)

∆σ ≡
∫
drw⋆σ (r− ri)

[
Ĥin + ĤF

]
wσ (r− ri) , (4.12)

and

−dσσ′Eac ≡
∫
drw⋆σ (r− ri) Ĥacwσ′ (r− ri) , (4.13)

Uσσ′ ≡
∫
drdr′w⋆σ (r− ri)w

⋆
σ′ (r′ − ri+1) (4.14)

×HDD (r− r′)wσ (r− ri)wσ′ (r′ − ri+1) .

The detunings ∆σ are determined by the single-molecule spectra, which are well-

known [9, 27]. In the interest of the present article’s completeness, we have included

appendices reviewing the basic results and explaining them in the context of the

present problem. In the following sections we discuss the remaining Hubbard param-

eters.
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4.3.1 Tunneling Energies

A key component of the realization of many-body Hamiltonians using ultracold

molecules is the presence of a far off-resonant optical lattice which confines the

molecules in a reduced geometry. The Hamiltonian of this interaction is

Ĥopt = −E⋆
opt (r, ωopt) · ˆ̃α (ωopt) · Eopt (r, ωopt) , (4.15)

where Eopt (r, ωopt) is the optical lattice field and ˆ̃α (ωopt) is the polarizability ten-

sor operator of the molecule, evaluated at the optical lattice frequency ωopt. In our

notation, the circumflex accent (the ‘hat’) denotes an operator, the tilde denotes a

rank 2 tensor, and boldface denotes a rank 1 tensor, or vector. This optical poten-

tial couples to the electronic degrees of freedom and is detuned from resonance by

an amount several orders of magnitude larger than any hyperfine splittings. Thus

dependence on the hyperfine quantum numbers in negligible. For tight optical traps,

the optical trap potential at each well is close to that of a harmonic trap plus a small

state-dependent tensor shift of the trap frequency affecting levels with N > 0 due to

the polarizability anisotropy [15].

When the optical potential is combined with the kinetic portion of the Hamil-

tonian and evaluated in the Wannier basis one obtains the tunneling energies. As

the tunneling energies are independent of the hyperfine quantum numbers, we can

use results obtained in the case of only rotational degrees of freedom, derived in our

earlier work [15]. Then the tunneling energies in the eigenbasis of Ĥrot, |NMN⟩, are

given by

t̃NMN

ER
= A

(
VNMN

ER

)B
exp

(
−C
√
VNMN

ER

)
(4.16)

where A = 1.397, B = 1.051, and C = 2.121 are fit parameters [28], ER the recoil

energy, and

145



VNMN
= |Eopt|2

[
ᾱ +

2∆α

3

N (N + 1)− 3M2
N

(2N − 1) (2N + 3)

]
(4.17)

is the effective lattice height for the |NMN⟩ level. Here ᾱ is the average polarizability

and ∆α the polarizability anisotropy.

In the presence of a dc field the rotational levels become mixed, leading to new

effective tunneling energies which we denote as tNMN
, with N and MN the corre-

sponding zero field values. This hybridization of rotational levels in principle also

allows tunneling events which change the rotational state of the molecule, but we

can ignore such events because the rotational level separation is much larger than the

tunneling energies. The effective tunneling for the N = 0 and N = 1, MN = ±1 levels

is shown in Figure 4.2. The scale is set by the recoil energy, which is 2π × 1.44 kHz

for KRb in a 1054-nm optical lattice.

4.3.2 Two-Molecule Interactions

Heteronuclear 1Σ molecules posses permanent dipole moments, and thus interact

via a dipole-dipole interaction

ĤDD (R) =
d̂1 · d̂2 − 3

(
d̂1 · eR

)(
eR · d̂2

)
R3

, (4.18)

where R ≡ r2 − r1, eR is a unit vector in the direction of R, and d̂i is the vector

dipole operator of the ith molecule. In the absence of external fields, this interaction

is off-resonant, leading to a van der Waals interaction ĤDD (R) ∼ R−6, but in the

presence of electric fields resonant dipoles are induced and the interaction displays a

resonant R−3 behavior in addition to the R−6 behavior.

The anisotropic nature of the dipole-dipole force has been experimentally shown to

dominate the rethermalization behavior of a molecular gas via inelastic collisions [29].

This is because a “head-to-tail” arrangement of molecules leads to an attractive po-
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tential, whereas “side-to-side” interactions are repulsive. To ensure the stability of

an ultracold molecular ensemble and to prevent losses from inelastic collisions it is

crucial therefore not only to orient the dipoles using a dc field, but also to confine

the molecules in a reduced geometry. A thorough discussion of the nature of the two-

molecule spectra for 1Σ molecules without hyperfine structure and its implications for

stability in two dimensions is presented in Ref. [14]. Diagonalization of the full two-

molecule Hamiltonian is impractical when hyperfine structure is included due to the

very large matrices that result. Instead, we argue based on comparisons of length and

energy scales that the hyperfine structure is negligible during the collisional processes

which occur in our proposed setup.

Our reduced geometry is imposed by the optical lattice described earlier. Namely,

we consider the case where the molecules are confined to move only along the x

direction and a dc field polarized along the z direction orients the dipoles such that all

collisions are side-to-side and repulsive. The dipole-dipole interaction in this geometry

reduces to

ĤDD =
1

R3

[
d̂0 ⊗ d̂0 +

1

2

(
d̂−1 ⊗ d̂1 + d̂1 ⊗ d̂−1

)
− 3

(
d̂−1 ⊗ d̂−1 + d̂1 ⊗ d̂1

) ]
, (4.19)

where d̂q ≡ d̂ · eq is the component of the dipole operator along the q direction

in the space-fixed spherical basis. For z-polarized electric field, the only diagonal

components are those involving d0. The components of the interaction involving d±1

couple states with ∆MN = ±1 that are separated in energy by an amount of order

the rotational constant for the dc fields we consider (see Figure 4.5). Contributions

from these components are suppressed at distances greater than rB ≡ (d2/B)
1/3

, of

order a few nanometers. Thus, at the nearest-neighbor distance in a 1054-nm optical

lattice we consider only the diagonal elements of the dipole-dipole interaction. This

restriction gives rise to the two-body term
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ĤDD =
1

2

∑
σσ′

Uσσ′

∑
⟨i,j⟩

n̂iσn̂jσ′ , (4.20)

where

Uσσ′ =
dσdσ′

(λ/2)3
. (4.21)

In Eq. (4.21) dσ is the resonant dipole moment of state |σ⟩ and λ is the wavelength

of the optical lattice. We assume that the long-range repulsive diagonal d0 portion of

the dipole-dipole interaction is strong enough to prevent both the occupation of any

one lattice site by more than one molecule and access to the region where hyperfine-

changing collisions involving the d±1 dipole moments occur.

4.3.3 Interactions with Static External Fields

The spectral properties of 1Σ molecules in collinear dc electric and magnetic fields

have been elucidated elsewhere in the literature [9, 10, 27], and the basic results of

the analysis are given in Appendix 4.6 for the reader’s convenience. In this section,

we focus on the properties of such molecules in noncollinear fields, in particular on

the dipole moments.

The behavior of the molecular dipole moments are controlled by an external dc

electric field which mixes rotational levels of opposite parity and thus orients the

molecule. However, a dc field does not couple to the nuclear spins. So for a z-polarized

field the selection rules ∆M1 = 0, ∆M2 = 0 are enforced, where M1 and M2 are the

nuclear spin projections along the field direction. In contrast, a magnetic field couples

strongly to the nuclear spins but only weakly to the rotational angular momentum

due to the relative sizes of the g factors [27]. The magnetic field Hamiltonian thus

has eigenstates which are energetically distinct nuclear spin states with a quantization

axis given by the field direction. It is in this sense that we say the magnetic field
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Figure 4.4: (Color online) Distribution of dipolar character. The colorbar shows
the logarithm of the transition dipole moment with the ground state, log⟨g.s.|d̂1|i⟩,
as a function of the angle between the magnetic and electric fields θB and the state
index(ordered by energy). Changing the angle between the electric and magnetic
fields breaks the nuclear spin projection selection rule and allows for transition dipole
moments between many states. Only dipole moments greater than 10−7 are displayed.

defines an effective axis of quantization for the nuclear spins. Thus, in the absence

of internal couplings of the rotational and hyperfine degrees of freedom they may be

manipulated independently: the rotational angular momentum with an electric field

and the nuclear spin angular momenta with a magnetic field.

The presence of nuclear quadrupole couplings in alkali dimer molecules couples

states with the same total angular momentum projection MF but different rotational

and nuclear spin projections. For example, in KRb, the interaction couples |σ⟩ =

|N = 1,MN = 0,MK,MRb±1⟩ to |σ′⟩ = |N = 1,MN = ±1,MK,MRb⟩ with the latter

accounting for ∼ 10% of the state in the absence of fields.26 Clearly, since the N = 0

state has only one projection MN = 0, the nuclear quadrupole interaction leaves this

level unaffected. In a dc electric field where the rotational levels become mixed, the

states correlating with the N = 0 levels and N = 1 levels both display quadrupole

26The interaction also couples theMK±1 states, but the coupling constant (eqQ)K is significantly
smaller than (eqQ)Rb and so the mixing is negligible in comparison [11].
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effects, but these effects are still not identical. In strong fields the Zeeman effect

dominates over the quadrupole coupling, allowing control over the nuclear spins that

displays a weak dependence on the rotational level.

Thus, a strong magnetic field defines an effective axis of quantization for the

nuclear spins, resulting in nuclear spin states which are superpositions of states in the

basis with the axis of quantization along the electric field axis. This implies that by

changing the angle of the magnetic field with respect to the electric field, it is possible

to change the number of states which are coupled by transition dipole moments. This

is illustrated in Figure 4.4, which shows the logarithm of the transition dipole moment

with the ground state as a function of the angle between the dc and magnetic fields

θB and a state index (ordered by energy). The lowest state index denotes the lowest

energy state in the N = 1 manifold. When the fields are collinear, one state dominates

the dipole spectrum. As the angle changes the dipolar character becomes spread over

many states. These transition dipole moments allow the states to couple in an ac

microwave field and generate complex dynamics.

4.3.4 Interaction with an ac Microwave Field

The introduction of an ac microwave field contributes to the Hamiltonian in a sim-

ilar way to a dc field. In addition, the inherent time dependence allows for circular

and linear polarization as well as the possibility of driving transitions between inter-

nal states. In the absence of hyperfine structure, an ac field of spherical polarization

q couples the |N = 0,MN = 0⟩ and |N = 1,MN = q⟩ levels, leading to an effective

two-level system in the Floquet picture [14]. In the presence of hyperfine structure,

states with different total angular momentum projections MF in the N ≥ 1 manifolds

become mixed due to the electric quadrupole interaction. Thus no rigorous selection

rules can be established. This complicates the issue of addressing single hyperfine

states using microwave fields, but it also allows the hyperfine state to be changed

using microwave fields. Addressing a single hyperfine state can be achieved by the
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application of a strong magnetic field such as those used in the STIRAP procedure,

which defines the projections sufficiently to suppress transitions to non-target hyper-

fine states [9]. In the presence of an electric field, this last comment holds only in the

case where the two fields are collinear. When the fields are not collinear many states

can be accessed from any one state via a microwave transition due to the behavior of

the transition dipole moments in crossed fields, as was described in Sec. 4.3.3.

We choose the polarization of the ac field to be purely circular, qac = 1. A

component along q = 0 would lead to rapid oscillation of the eigenenergies because

the d0 moments induced by the electric field couple to the ac field, and this complicates

the analysis. Furthermore, we consider Rabi frequencies which are much less than the

bandwidth of the optical lattice so that our approximation of being in the lowest Bloch

band remains valid and we are also justified in using a rotating wave approximation.

The above considerations together with the single-molecule ac Hamiltonian

Ĥac = −d̂ · Eac = −d̂qEace
−iωt + h.c. (4.22)

lead directly to the second quantized Hamiltonian

Ĥac = −1

2

∑
σσ′

dσσ′Eac

∑
i

[
â†iσâiσ′eiωt + h.c.

]
. (4.23)

In Eq. (4.23) the label σ refers to the eigenstate |σ⟩ of the internal plus static field

Hamiltonian Ĥin + ĤF, dσσ′ ≡ ⟨σ|d1|σ′⟩, and Eσ is the energy of state |σ⟩.

Assembling all the many-body terms expressed in this basis, we obtain the time-

dependent Hamiltonian
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Ĥ =
∑
σ

Eσ
∑
i

n̂iσ −
∑
σ

tσ
∑
⟨i,j⟩

[
â†iσâjσ + h.c.

]
+

1

2

∑
σ,σ′

Uσσ′

∑
⟨i,j⟩

n̂iσn̂jσ′

− 1

2

∑
σσ′

dσσ′Eac

∑
i

[
â†iσâiσ′eiωt + h.c.

]
. (4.24)

If we change to a basis where all single-molecule states with N = 1 rotate with

frequency ω we have, finally:

Ĥ =
∑
σ

∆σ

∑
i

n̂iσ −
∑
σ

tσ
∑
⟨i,j⟩

[
â†iσâjσ + h.c.

]
+

1

2

∑
σ,σ′

Uσσ′

∑
⟨i,j⟩

n̂iσn̂jσ′

− 1

2

∑
σσ′

dσσ′Eac

∑
i

[
â†iσâiσ′ + h.c.

]
, (4.25)

where ∆σ = Eσ for states with N = 0 and Eσ − ω for states with N = 1.

4.4 Conclusions

We have presented and derived the hyperfine molecular Hubbard Hamiltonian

(HMHH). The HMHH is a lattice Hamiltonian describing the effective low-energy

physics of an ultracold gas of heteronuclear alkali dimer molecules with hyperfine

structure loaded into a 1D optical lattice and interacting with external dc electric,

ac microwave, and static magnetic fields. By tuning the angle between the electric

and magnetic fields and the strength of the magnetic and ac fields it is possible

to change the number and timescale of internal states contributing to many-body

dynamics. The Hamiltonian also displays emergent quantum dephasing, and has a

phase diagram which depends strongly on the initial state. These features make the

HMHH an ideal candidate for a model quantum complex system.
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Future work will involve time-evolving block decimation simulations of the HMHH

similar to past studies of molecular Hubbard Hamiltonians [15]. In particular, we will

discuss measures of complexity and how they relate to experimentally measurable

quantities. Future work on the Hamiltonian itself will include realistic models of

molecule loss due to inelastic and chemical processes. Such dissipative processes are

key to dissipative quantum phase transitions, which is a major area of interest in

quantum many-body theory [30–32].

We acknowledge useful discussions with Immanuel Bloch, John Bohn, Silke Os-

pelkaus, Luis Santos, and Peter Zoller. This work was supported by the National

Science Foundation under Grant PHY-0903457.

4.5 The Internal Hamiltonian

A 1Σ molecule in its electronic and vibrational ground states has three angular

momentum degrees of freedom: the rotational angular momentum N and the nuclear

spins I1 and I2. In this work we shall use the coupling schemes | (I1I2) INFMF ⟩ and

|I1M1I2M2NMN⟩, which we refer to as the coupled and uncoupled bases, respectively.

Explicit expressions for all single-molecule matrix elements in both bases are provided

in Appendix 4.7. The relevant Hamiltonian for the internal degrees of freedom Ĥin

may be written as a sum of rotational and hyperfine terms as

Ĥin = Ĥrot + Ĥhf (4.26)

where

Ĥrot = BNN
2 , (4.27)

Ĥhf =
2∑
i=1

ciN · Ii + c3I1 · T̃ · I2 + c4I1 · I2 +
2∑
i=1

Vi ·Qi . (4.28)

The rotational term Eq. (4.27) corresponds to the Hamiltonian of a rigid spheri-

cal rotor with (2N + 1)-fold degenerate eigenstates |NMN⟩, MN being the projec-
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tion of N on a space-fixed quantization axis [33]. The eigenenergies are given by

ENMN
= BNN (N + 1), where BN is the rotational constant of the molecule (we use

the notation BN instead of the more common B to avoid confusion with the magnetic

field magnitude B). In the case of 40K87Rb, BN=1.114 GHz [27]. The rotational level

splitting defines the largest intrinsic energy scale for 1Σ molecules.

The first term of the hyperfine Hamiltonian,
∑2

i=1 ciN·Ii represents the interaction

of the nuclear spins with the magnetic field created by the rotation of the molecule,

and is governed by two coupling constants cK and cRb related to the nuclear shielding

tensor. For 40K87Rb, these have been determined from density functional calculations

to be ∼20 Hz and ∼100 Hz, respectively [27]. Because of the smallness of these

constants and the fact that this term does not couple states with different N , this

term plays a very small role in the spectra.

The two nuclear spins have nuclear magnetic moments which interact via a reso-

nant dipole-dipole interaction

Ĥhf−dd = g2Hµ
2
N (µ0/4π)

[
I1 · I2
R3

− 3 (I1 ·R) (R · I2)
R5

]
, (4.29)

where gH is the proton g factor and R the vector joining the two nuclei [33]. This

may be written as the contraction of two rank-2 spherical tensors as

Ĥhf−dd = −g2Hµ2
N (µ0/4π) ⟨R−3⟩

√
6 (C)(2) · (T (I1, I2))

(2) (4.30)

where (C)(2) is an unnormalized spherical harmonic in the relative degrees of freedom.

The nuclear spins can also interact indirectly through the electron spins, and do so

even for 1Σ configurations [33]. This indirect interaction is represented by a tensor J̃

which may be decomposed into its isotropic part Jiso and its anisotropy ∆J = J∥−J⊥.

The combination of direct and indirect nuclear spin-nuclear spin interaction may thus

be written as the sum of a scalar interaction and a tensor interaction as
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Ĥhf−dd + Ĥindirect = c4I1 · I2 + c3I1 · T̃ · I2 (4.31)

where c4 ≡ Jiso, c3 ≡ g2Hµ
2
N (µ0/4π) ⟨R−3⟩ − ∆J/3, and the tensor T̃ contains the

angular dependence of the tensor interaction. c3 is of order 10 Hz for the various

isotopes of KRb, and so plays a very small role in the spectra. c4 splits the various

levels according to their total nuclear spin I as

⟨(I1I2) INFMF |c4I1 · I2| (I1I2) I ′N ′F ′M ′
F ⟩

= δI,I′δN,N ′δF,F ′δMF ,M
′
F

× c4
2

[I (I + 1)− I1 (I1 + 1)− I2 (I2 + 1)] . (4.32)

c4 is of order 100 Hz-10 kHz for isotopes of KRb, and so is the dominant hyperfine

contribution for N = 0 in the absence of external fields, see Figure 4.7. Note that

c4 may be either positive or negative. For 40K87Rb, c4=-20.304 kHz [27], and so

the lowest energy states for N = 0 in zero field are the highest nuclear spin states

I = 11/2.

The final term in the hyperfine Hamiltonian is the interaction of the quadrupole

moment of the nuclei with the gradient of the electric field produced by the electrons.

We may represent this interaction by the sum
∑2

i=1Vi · Qi where Vi is a second

rank spherical tensor describing the electric field gradient at the ith nucleus and Qi is

a second rank spherical tensor describing the nuclear quadrupole of the ith nucleus.

The pertinent coupling constants (eqQ)i which arise in the matrix elements of this

Hamiltonian are of order 100-1000 kHz, making it the largest term in the hyperfine

Hamiltonian. The quadrupole term doesn’t affect the N = 0 level, however, and

so the scalar spin-spin coupling dominates there. In a strong dc field the rotational

levels become deeply mixed and the nuclear quadrupole thus becomes the dominant

hyperfine contribution for all states.
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4.6 Interactions with Static External Fields

Polar molecules such as heteronuclear dimers can couple to external fields either

through their permanent electric dipole moment, through magnetic moments gener-

ated from their rotation or nuclear spin, or through their polarizability tensor. The

Hamiltonian representing interaction of the molecule with a static dc electric field

Edc and a static magnetic field B may be written

ĤF =− d · Edc − grµNN ·B−
2∑
i=1

giµNIi ·B (1− σi) . (4.33)

For 1Σ molecules the permanent dipole moment d lies along the internuclear axis

which defines the p = 0 axis in a spherical coordinate system rotating with the

molecule. Because this basis leads to anomalous commutation relations [Ji, Jk] =

−i~ϵijkJk [34] we find it convenient to transform to the space-fixed frame where the

angular momentum operators satisfy the normal commutation relations [Ji, Jk] =

i~ϵijkJk, giving d · eq ≡ dq = dC
(1)
q (θ, ϕ), where eq is a unit vector along the space

fixed spherical q direction and C
(1)
q (θ, ϕ) is an unnormalized spherical harmonic whose

arguments θ and ϕ are the polar and azimuthal angles of the internuclear axis in the

space fixed frame. Taking matrix elements of dq in our two basis sets yields

⟨I1M1I2M2NMN |dq|I1M ′
1I2M

′
2N

′M ′
N⟩

= δM1,M ′
1
δM2,M ′

2
d
√

(2N + 1) (2N ′ + 1) (−1)MN

×
(
N 1 N ′

0 0 0

)(
N 1 N ′

−MN q M ′
N

)
, (4.34)

⟨(I1I2) INFMF |dq| (I1I2) I ′N ′F ′M ′
F ⟩

= δI,I′d (−1)2F−MF+I+N ′+N+1

(
N 1 N ′

0 0 0

)
×
√

(2N + 1) (2N ′ + 1) (2F + 1) (2F ′ + 1)

×
(

N 1 N ′

−MN q M ′
N

){
N F I
F ′ N ′ 1

}
, (4.35)
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Figure 4.5: GHz scale view of the Stark effect for KRb. Introduction of a dc field
breaks the degeneracy between all states with the same N but different |MN |. The
large electric dipole moment causes GHz scale energy shifts which completely obscure
the hyperfine splittings on the scale of this plot. Because the dipole moment is the
same for any isotope of KRb, the Stark effect on this scale is the same for all isotopes.

where

 j1 j2 j3

m1 m2 m3

 is a Wigner 3-j coefficient and

 j1 j2 j3

j4 j5 j6

 is a Wigner

6-j coefficient [35]. We see that the rotational eigenstates have no net dipole moment,

but that the dipole operator couples the state |N,F,MF ⟩ with the states |N ± 1, F ±

1,MF + q⟩. The introduction of a dc electric field Edc with Hamiltonian −d · Edc

couples these levels and induces dipole moments, breaking the rotational symmetry

and removing the (2N + 1)-fold degeneracy. Typical molecular dipole moments are

measured in Debye (D), where 1D=503.4 MHz/(kV/cm), and so the dc field becomes

the dominant contribution to the Hamiltonian for modest fields of a few kV/cm.

The permanent dipole moment of KRb has been experimentally determined to be

0.566D [3].

On the scale of the rotational constant, the effect of a dc field on the single-

molecule energy spectrum is as in Figure 4.5. It is quadratic for field energies small

compared to the rotational energy but becomes linear in stronger fields because the
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Figure 4.6: Induced dipoles for KRb in an electric field. The N = 0 and N = 1,
MN = ±1 levels orient along the field, giving rise to positive dipole moments. The
N = 1, MN = 0 state antialigns with the field for small fields, but aligns in stronger
fields. All resonant dipole moments approach the “permanent” value 0.566D as the
field strength increases.

field strongly mixes states of opposite parity [36]. We consider the quantization axis

to lie along the field direction, and so states with the same value of |MN | remain

degenerate. A universal plot for all 1Σ molecules results on this scale if the energy

and field strength dEdc are both scaled to the rotational constant.

The average orientation of the molecule with the electric field can be obtained

with the Feynman-Hellman theorem as

⟨cos θ⟩ = − ∂E

∂ (dEdc)
, (4.36)

where E is the energy eigenvalue. The energy eigenvalue is dominated by the GHz

scale structure, thus the degree of alignment with the field is essentially independent

of the hyperfine structure. From the degree of orientation we can also determine the

effective space-fixed dipole moment as d⟨cos θ⟩. Figure 4.6 shows the behavior of the

induced dipoles as the field strength is increased. For all field strengths the N = 0

and N = 1, MN = ±1 states align with the field and so have a positive induced dipole
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Figure 4.7: kHz scale view of the Stark effect for 40K87Rb, N=0. All energies are
shown relative to the GHz scale field-dependent average energy for N = 0, see Fig-
ure 4.5. The inset shows the weak field region where the scalar spin-spin interaction
has split the levels according to I (equivalently, F ), with larger I having lower energy.
As the field is increased the nuclear quadrupole couplings split according to MI , and
in large fields MRb and MK also become well defined. See text for details.

moment. In contrast, the N = 1, MN = 0 state antialigns with the field for weak

fields and aligns with the field for stronger fields.

The magnitude of the field energy completely obscures the hyperfine splittings,

and so to see the effects of hyperfine structure we subtract from each state with a

given N the field-dependent average energy of all hyperfine states with the same N .

For N = 0 the results are shown in Figure 4.7. For low fields the hyperfine splittings

are dominated by the scalar spin-spin coupling and are of order c4, a few kHz. As

the field is increased the various hyperfine states split according to |MI |. For large

fields M1 and M2 also become well defined, which occurs because the energetic differ-

ences between states with ∆MN = ±1 become larger than the quadrupole coupling

constants (see Eq. (4.45)). Pairs of M1 and M2 which have the same |M1 +M2|

are degenerate, and the state with |M1 +M2| = 0 is degenerate due to reflection

symmetry in the plane of the electric field vector.
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Because of the signs of the quadrupole couplings for 40K87Rb, the lowest energy

states are those with MRb the largest and MK the smallest. Because the kHz scale

Stark effect depends on several molecular parameters it cannot be put into a universal

form for all 1Σ molecules like the GHz scale Stark effect. However, the qualitative

structure will be similar for all 1Σ molecules with nuclear quadrupole couplings; key

differences being the number of nondegenerate levels and the energetic ordering of

the magnetic quantum numbers [27]. The hyperfine Stark effect for N = 1 and other

molecular species as well as the effects of electric fields on microwave spectra may be

found in Ref. [10].

Magnetic fields couple to the magnetic moments generated by the rotation of the

molecule and by the nuclear spins. The former interaction is given by −grµNN · B,

where gr is the rotational g factor of the molecule and µN is the nuclear magne-

ton e~/2mp=762.259 Hz/G [37]. The latter interaction is given by −
∑2

i=1 giµNIi ·

B (1− σi), where g1 and g2 are the g-factors of nucleus 1 and 2, respectively, and

σi is the isotropic part of the nuclear shielding tensor for nucleus i. The rotational

contribution is typically much smaller than the contributions from the nuclei, due to

smaller g-factors and the fact that the isotropic parts of the nuclear shielding tensors

are typically only a few parts per thousand. For example, in 40K87Rb gr = 0.0140,

gK = −0.324, gRb = 1.834, σK = 1321 ppm, and σRb = 3469 ppm [27]. We neglect

diamagnetic contributions to the Zeeman effect, as these contributions are small for

the fields we consider.

Typical experimental magnetic fields are ∼ 550G because of the Feshbach associ-

ation stage of the STIRAP procedure [2]. In Figure 4.8 we show the Zeeman effect

for the N = 0 level of 40K87Rb for fields up to this range. We see that the mag-

netic field splits the spectrum according to the nuclear spin projections MK and MRb,

with larger (smaller) MK (MRb) having lower energy due to the signs of the g factors

for 40K87Rb. Because the nuclear quadrupole interaction doesn’t affect the N = 0
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Figure 4.8: Zeeman effect for 40K87Rb, N=0. The magnetic field splits the hyperfine
levels according to their projections MK and MRb with splittings between adjacent
levels of order kHz for the experimentally relevant range B ∼ 550 G. The lowest
(highest) energy state corresponds to mF = −4 + 3/2 = −5/2 (5/2). The zero field
splitting is set by c4 and is not visible on the scale of this plot.

level, the zero field splittings are determined by the small scalar spin-spin coupling

parameter c4. The Zeeman term dominates over the scalar spin-spin coupling at very

low fields and so the effects of the scalar spin-spin coupling are not discernible on

the scale of this plot. Additionally, the Zeeman contribution at these fields is larger

than the hyperfine Stark splittings from the largest electric fields accessible in current

experiments, see Figure 4.7.

The spectrum for the N = 1 level of 40K87Rb is shown in Figure 4.8. It is greatly

complicated by the fact that there are three times as many states as the N = 0

case (corresponding to the allowed MN). Also, the nuclear quadrupole interaction

affects the N = 1 level, causing the large zero field splittings. These larger zero field

splittings delay the separation of the levels into well defined M1 and M2, and also

causes a complicated series of avoided crossings between states with the same MF .
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Figure 4.9: Zeeman effect for 40K87Rb, N=1. The zero field splitting is caused
mainly by the nuclear quadrupole intraction and separates the levels into groups of
well defined F . The much larger zero field splitting causes avoided crossings between
states with the same MF to occur at much higher fields than in the N = 0 case.

4.7 Explicit Values for the Single-Molecule Matrix Elements

Here we present the matrix elements of the single-molecule terms of the Hamil-

tonian (4.26) in the coupled and uncoupled basis sets. We adopt the conventions of

Zare [35].

The matrix elements of the rotational Hamiltonian are given by

⟨I1M1I2M2NMN |BNN
2|I1M ′

1I2M
′
2N

′M ′
N⟩

= δM1,M ′
1
δM2,M ′

2
δN,N ′δMN ,M

′
N
BNN (N + 1) , (4.37)

⟨(I1I2) INFMF |BNN
2| (I1I2) I ′N ′F ′M ′

F ⟩
= δI,I′δN,N ′δF,F ′δMF ,M

′
F
BNN (N + 1) . (4.38)

The matrix elements of the rotation-spin Hamiltonian are given by
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⟨I1M1I2M2NMN |
2∑
i=1

ciN · Ii|I1M ′
1I2M

′
2N

′M ′
N⟩

= δN,N ′

∑
q

(−1)q+N−MN

(
N 1 N
−MN q M ′

N

)
×
∑
i

ci (−1)Ii−Mi

(
Ii 1 Ii
−Mi −q M ′

i

)
×
√
N (2N + 1) (N + 1) Ii (2Ii + 1) (Ii + 1) , (4.39)

⟨(I1I2) INFMF |
2∑
i=1

ciN · Ii| (I1I2) I ′N ′F ′M ′
F ⟩

= δN,N ′ (−1)I+N+F+I1+I2+1

{
I N F
N I ′ 1

}
×
√
N (2N + 1) (N + 1) (I + 1) (2I + 1) (2I ′ + 1)

×

[
δM2,M ′

2
(−1)I

′
c1

{
I1 I I2
I ′ I1 1

}√
I1 (2I1 + 1) (I1 + 1)

+ δM1,M ′
1

(−1)I c2

{
I2 I I1
I ′ I2 1

}√
I2 (2I2 + 1) (I2 + 1)

]
. (4.40)

The matrix elements of the scalar spin-spin coupling are

⟨I1M1I2M2NMN |c4I1 · I2|I1M ′
1I2M

′
2N

′M ′
N⟩

= δN,N ′δF,F ′δMF ,M
′
F
c4 (−1)I1−M1+I2−M2

×
√

(2I1 + 1) I1 (I1 + 1) (2I2 + 1) I2 (I2 + 1)

×
∑
q

(−1)q
(

I1 1 I1
−M1 q M ′

1

)(
I2 1 I2
−M2 −q M ′

2

)
, (4.41)

⟨(I1I2) INFMF |c4I1 · I2| (I1I2) I ′N ′F ′M ′
F ⟩

= δI,I′δN,N ′δF,F ′δMF ,M
′
F

× c4
2

[I (I + 1)− I1 (I1 + 1)− I2 (I2 + 1)] . (4.42)

The matrix elements of the tensor spin-spin coupling are
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⟨I1M1I2M2NMN |c3I1 · T̃ · I2|I1M ′
1I2M

′
2N

′M ′
N⟩

= −c3
√

6

(
N 2 N ′

0 0 0

)√
(2N + 1) (2N ′ + 1)

×
√
I1I2 (2I1 + 1) (2I2 + 1) (I1 + 1) (I2 + 1)

×
∑
q

(−1)q−MN+I1−M1+I2−M2

(
N 2 N ′

−MN q M ′
N

)
×
∑
m

⟨1,m; 1,−q −m|2,−q⟩
(

I1 1 I1
−M1 m M ′

1

)
×
(

I2 1 I2
−M2 −q −m M ′

2

)
, (4.43)

⟨(I1I2) INFMF |c3I1 · T̃ · I2| (I1I2) I ′N ′F ′M ′
F ⟩

= −c3δF,F ′δMF ,M
′
F

(−1)I
′+F

{
I N F
N ′ I ′ 2

}

×
√

(2N + 1) (2N ′ + 1)

(
N 2 N ′

0 0 0

)
I1 I1 1
I2 I2 1
I I ′ 2


×
√

30 (2I + 1) (2I ′ + 1) I1I2

×
√

(I1 + 1) (I2 + 1) (2I1 + 1) (2I2 + 1) . (4.44)

The matrix elements of the nuclear quadrupole Hamiltonian are given by

⟨I1M1I2M2NMN |
2∑
i=1

Vi ·Qi|I1M ′
1I2M

′
2N

′M ′
N⟩

=
2∑
i=1

(eqQ)i
4

∑
q

(−1)q−MN+Ii−Mi
√

(2N + 1) (2N ′ + 1)

×
(

N 2 N ′

−MN q M ′
N

)(
Ii 2 Ii
−Mi −q M ′

i

)
×
(
N 2 N ′

0 0 0

)(
Ii 2 Ii
−Ii 0 Ii

)−1

, (4.45)
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⟨(I1I2) INFMF |
2∑
i=1

Vi ·Qi| (I1I2) I ′N ′F ′M ′
F ⟩

= δF,F ′δMF ,M
′
F

1

4
(−1)I

′+F+I1+I2

×
√

(2N + 1) (2N ′ + 1) (2I ′ + 1) (2I + 1)

×
(
N 2 N ′

0 0 0

){
I N F
N ′ I ′ 2

}
×
[
δI2,I′2 (eqQ)1 (−1)I

′
{
I1 I I2
I ′ I1 2

}(
I1 2 I1
−I1 0 I1

)−1

+ δI1,I′1 (eqQ)2 (−1)I
{
I2 I I1
I ′ I2 2

}(
I2 2 I2
−I2 0 I2

)−1 ]
. (4.46)
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J. M. Hutson, and H.-C Nägerl. An ultracold high-density sample of rovibronic
ground-state molecules in an optical lattice. Nature Phys., 6:265–270, 2010.

[6] K. Winkler, F. Lang, G. Thalhammer, P. v. d. Straten, R. Grimm, and
J. Hecker Denschlag. Coherent Optical Transfer of Feshbach Molecules to
a Lower Vibrational State. Phys. Rev. Lett., 98(4):043201, Jan 2007. doi:
10.1103/PhysRevLett.98.043201.

165



[7] K. Pilch, A. D. Lange, A. Prantner, G. Kerner, F. Ferlaino, H.-C. Nägerl, and
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CHAPTER 5

MICROSCOPIC MODEL FOR FESHBACH INTERACTING FERMIONS IN AN

OPTICAL LATTICE WITH ARBITRARY SCATTERING LENGTH AND

RESONANCE WIDTH

Abstract:27 We numerically study the problem of two fermions in a three dimen-

sional optical lattice interacting via a zero-range Feshbach resonance, and display

the dispersions of the bound states as a two-particle band structure with unique fea-

tures compared to typical single-particle band structures. We show that the exact

two-particle solutions of a projected Hamiltonian may be used to define an effective

two-channel, few-band model for the low energy, low density physics of many fermions

at arbitrary s-wave scattering length. Our method applies to resonances of any width,

and can be adapted to multichannel situations or higher-ℓ pairing. In strong contrast

to usual Hubbard physics, we find that pair hopping is significantly altered by strong

interactions and the presence of the lattice, and the lattice induces multiple molecular

bound states.

The crossover of a system of attractive two-component fermions from a condensate

of loosely bound Cooper pairs to a condensate of tightly bound bosonic molecules

has a long history [1], and appears in many contexts, including high-temperature

superconductivity [2] and ultracold atoms [3]. Furthermore, near the crossover such a

system enters the unitary regime where the scattering length is larger than any other

length scale in the problem. The physics of this regime is relevant to many different

fields, bringing together quantum chromodynamics, holographic duality, and ultracold

quantum gases [4]. Theoretical study of the unitary regime is generally difficult due

27Published previously as Microscopic Model for Feshbach Interacting Fermions in an Opti-
cal Lattice with Arbitrary Scattering Length and Resonance Width, M. L. Wall and L. D. Carr,
Phys. Rev. Lett. 109, 055302 (2012).
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to the absence of any small parameter.

Theoretical analysis becomes even more difficult in a lattice, as the center of

mass, relative, and internal degrees of freedom become coupled, leading to composite

particles whose properties depend on their center of mass motion [5]. Furthermore,

strong interactions require the inclusion of a large number of Bloch bands for an

accurate description, and this cannot be handled efficiently by modern analytical or

numerical many-body techniques. In addition to general theoretical interest in how

fermions pair to form bosons in a discrete lattice setting, the study of pairing in lat-

tices is of significant practical importance. For example, an accurate, systematically

correctable, and computationally feasible many-body Hamiltonian is necessary for

calibrating fermionic quantum simulators as has been done in the bosonic case [6].

In this Letter, we describe a general method to derive an effective few-band low-

energy Hamiltonian for Feshbach interacting fermions in a lattice from the numerical

solution of the two-body problem. We call this Hamiltonian the Fermi Resonance

Hamiltonian (FRH). This method applies to Feshbach resonances of any width and

for arbitrary scattering length, and all parameters appearing in the effective model

can be computed microscopically from the properties of the two-body solution. The

difference between the bare model and the FRH is sketched in Figure 5.1.

The simplest approach to describing Feshbach interacting fermions is to replace

the interaction with a pseudo-potential chosen to reproduce the correct scattering

length. When restricted to a single Bloch band, this leads to the popular Hubbard

model [7] which has been shown to break down for scattering lengths which are far

from being resonant, even when the parameters appearing in the model are determined

self-consistently from few-body physics [8]. Our work instead defines a “dressed”

closed channel whose properties are chosen to reproduce both the scattering and

bound states correctly. In contrast to past two-channel approaches [9], we construct

the dressed fields using the full lattice solution and not an approximation where
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Figure 5.1: (Color online) Schematic of the FRH transformation. (a) In a broad
Feshbach resonance, all two-particle scattering continua (gray shading) are strongly
coupled to bare molecular bands (solid lines). Thus all scattering continua are vir-
tually strongly coupled. (b) By correctly dressing the molecular bands, one obtains
a single scattering continuum (gray) plus well-separated dressed molecular bands
(green), with much simpler couplings. This is our efficient, numerically tractable,
FRH.

the center of mass and relative coordinates separate, such as the harmonic oscillator

potential. The use of any separable approximation leads to qualitative errors, such

as the lack of tunneling along non-principal axes, and quantitative errors, such as

the underestimation of principal axis tunneling matrix elements, often by an order of

magnitude.

5.1 Exact Solution for Two Particles.

The basic concept of a two-channel model is for an open channel to describe

scattering between two atoms and a separate closed channel to describe bound pairs.

While each channel represents a single scattering or bound state in the continuum,

in the lattice it also acquires a band index. Because of an inter-channel coupling, the

actual molecule is a superposition of bands from both channels.

To treat this problem, we begin with the nonlinear eigenvalue problem developed

by Büchler [8] for EK, the bound state energy at total quasimomentum K, and RK
s ,

the coefficients of the closed channel portion of the wavefunction. As shown in [8],
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for the bound states of two fermions in an optical lattice interacting via a zero-range

Feshbach resonance in a two-channel model:

[
EK − ν − EM

sK

]
RK

s = g2

a3

∑
tχ

K
st (EK)RK

t , (5.1)

χK
st (EK) ≡

∫
dq
v0

∑
mn

hnm
sK (q)hnm

tK
⋆(q)

EK−EK
nm(q)+iη

− χ̄K
st , (5.2)

χ̄K
st ≡ −

∫
dq
v0

∑
mnh̄

nm
sK (q) h̄nm⋆

tK (q) /ĒK
nm (q) . (5.3)

Here ν is the renormalized detuning between the open and closed channels, g is the

inter-channel coupling, a is the lattice spacing, v0 is the volume of the Brillouin zone

(BZ), and the bars in Eqs. (5.2-5.3) denote quantities computed in the absence of

an optical lattice. We assume that spin-spin interactions which change the orbital

angular momentum are negligible so that the scattering is purely s-wave. The optical

lattice is assumed to be simple cubic with lattice spacing a and potential V (x) =

V
∑

j∈{x,y,z} sin2 (πj/a). The overlaps of the dimensionless coupling between the open

and closed channels are

hnmsK (q)√
N3a3

=
∫
dxdy [ψnq (x)ψm,K−q (y)]⋆ α (r)ϕsK (R) ,

where N3 is the number of unit cells, the ψnq (x) are Bloch functions with energies Enq

for particles with mass m spanning the open channel and ϕsK (z) are Bloch functions

with energies EM
sK for particles with mass 2m in a lattice potential 2V spanning the

closed channel. We have also defined relative r ≡ x−y and center of mass 2R = x+y

coordinates, and α (r) is a regularization of the inter-channel coupling. The sum of

the noninteracting energies of the open channel is denoted EK
nm (q) = Enq + Em,K−q

and the zero of energy is E0
11 (0). Here and throughout the rest of this work n and m

are band indices for the open channel, s and t are band indices for the closed channel,

q is a single-particle quasimomentum, and K is the total quasimomentum.

While Eqs. (5.1)-(5.3) apply to resonances of any width, we focus on the exper-

imentally relevant limit of a broad resonance. Narrow resonances are treated in the
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Figure 5.2: (Color online) Exact two-particle band structures for various as in a
strong optical lattice. The bound state energies for as/a = −5 (purple boxes), −0.1
(red pluses), 0.1 (green crosses), and 5 (blue asterisks) as a function of the total quasi-
momentum K along a path connecting the high-symmetry points in the irreducible
BZ Γ = (0, 0, 0), X = (−π/a, 0, 0), M = (−π/a,−π/a, 0), R = (−π/a,−π/a,−π/a)
for a lattice with V/ER = 12. The near-resonant points as/a = ±5 lie nearly on top
of one another, demonstrating universality.

supplementary material. A broad resonance in the few-body sense is the limit of

effective range much smaller than the lattice spacing, rB ≪ a, and so we can take

the limits g/ERa
3/2 = 4

√
a/rBπ3 →∞, ν/ER →∞, as/a = −πg2/8a3ERν = const.,

to obtain (8asER/πa)χK (EK)RK − RK = 0, where ER = ~2π2/2ma2 is the recoil

energy and as is the s-wave scattering length. How can we then obtain the dispersion

relation EK for fixed as, ν, etc.? First, fix the energy eigenvalue EK and solve the

resulting linear eigenproblem for 1/as. This provides exact eigentuples
(
EK, as,R

K
)

of the nonlinear eigenproblem, though it may not be the as we seek. Second, fix

as and use the exact tuple nearest this value as initialization for a Newton-Raphson

iteration [10]. This two-stage approach converges to a relative accuracy of 0.01% in

a few tens of iterations [11].

Because the eigenequation Eq. (5.1) is invariant under translation by any Bravais

lattice vector, its eigenvalues can be classified according to the total quasimomentum

and shown as a two-particle band structure. A complete classification of the solutions

is given in the supplemental material. In Figure 5.2 we show only the energy of the
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low-energy bound states with completely even parity under inversion as a function

of K for several as/a in a lattice with V/ER = 12. We see the appearance of several

bound states for a fixed s-wave scattering length, in contrast to the continuum. These

additional bound states arise from the coupling of quasimomenta modulo a reciprocal

lattice vector induced by the reduced translational symmetry. One salient feature is

the emergence of universality, which is the independence of the dispersion from the

sign of as when |as/a| becomes large. For non-resonant and negative as/a, picturing

the bound states as Fermi pairs with twice the mass and twice the polarizability

captures the relative spacings between energy levels quite accurately, but generally

overestimates the effective mass of the bound states. This effective mass difference is

an indication of the coupling between the center of mass and relative motion which

leads to important properties of the FRH.

5.2 Fermi Resonance Hamiltonian.

A promising route to describing Feshbach interacting ultracold gases is by a lattice

projection of a two-channel model in which the closed channel appears explicitly in

the Hamiltonian. However, for a typical broad resonance such models require a large

number of both open and closed channel bands to solve accurately, and so cannot be

treated efficiently. Because the modern context of this problem involves extremely

low temperatures and densities, we can look for an effective model valid in these

limits which still reproduces the correct physics. This is done by replacing the model

containing couplings between all open channel bands with all closed channel bands

with a model describing an effective resonance between the lowest open channel band

with a suitable set of effective closed channel bands whose properties are set by

the two-body solution for low densities. This process is displayed schematically in

Figure 5.1. The purpose of this section is to derive such an effective Hamiltonian

using our two-particle theory.
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We begin by separating our two-particle Hamiltonian using projectors L into the

lowest open channel band and D = 1−L into all excited open channel bands and all

closed channel bands. A similar approach was taken in Ref. [12] for the 1D case. An

analysis analogous to that leading to Eqs. (5.1)-(5.2) gives a nonlinear eigenequation

for the closed channel components of D|ψ⟩ as

[
EK − ν − EM

sK

]
RK

s = g2

a3

∑
tχ̃

K
st (EK)RK

t , (5.4)

χ̃K
st (EK) ≡

∑′
mn;q

hnm
sK (q)hnm

tK
⋆(q)

EK−EK
nm(q)+iη

− χ̄K
st , (5.5)

where the prime on the sum indicates (m,n) ̸= (1,1). Here χ̃ differs from χ in

Eqs. (5.1)-(5.2) in that the summation excludes the lowest band. We emphasize

that the renormalization χ̄ includes all bands and so the detuning and scattering

length used in this projected model are those of the full (non-projected) and properly

renormalized two-body problem. We call the eigenstates of this projected system

dressed molecules. Here we label distinct eigenstates of Eq. (5.4) by the parameter α.

These solutions share many features of the full solution presented above. However,

the divergence of the s-wave scattering length for the lowest energy completely even

parity state occurs near EK = 0, indicating that scattering resonances in the lowest

open channel band are generated by coupling to this state.

We now assume that, at low temperatures and low densities, two particles which

are separated by a distance large compared to the effective range of the potential

will remain in the lowest band to minimize their energy. When two particles come

together they interact strongly and populate many of the excited open channel bands

as well as the closed channel bands. Because it is rare for more than two particles to

come together, the particular populations of the excited states are fixed by the two-

particle solution. The dressed molecules encapsulate the short distance, high energy

physics and couple it to the long wavelength, low energy physics of the lowest band

fermions through the Feshbach coupling. The point of connection between the few-
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and many-body physics is the two-particle scattering length (equivalently g and ν for

narrow resonances), which appears as a parameter in the equation Eq. (5.4) defining

the dressed molecules.

The FRH is

Ĥeff = −tf
∑

σ∈{↑,↓}
∑

⟨i,j⟩â
†
iσâjσ + E0

∑
σ∈{↑,↓}

∑
in̂

(f)
iσ

−
∑

α∈M
∑

i,jt
α
i,j d̂

†
i,αd̂j,α +

∑
α∈Mν̄α

∑
in̂

(b)
iα

+
∑

α∈M
∑

ijkg
α
i−k,k−j

[
d̂†i,αâj,↑âk,↓ + h.c.

]
, (5.6)

where â†iσ creates a particle with spin σ in the lowest open channel band Wannier state

centered at lattice site i, wi (x); d̂†i,α creates a particle in the αth dressed molecule

Wannier state centered at site i, Wi,α (x,y); n̂
(f)
iσ is the number operator for fermions

in the lowest Bloch band; and n̂
(b)
iα is the number operator for the αth dressed molecule

state. The set of dressed molecules M which are included dynamically can be de-

termined on energetic and symmetry grounds from the two-particle solution. At low

energies, only the completely even parity dressed molecule in the lowest sheet is rel-

evant to the set M, as all others either have vanishing on-site couplings from parity

considerations or are very far off-resonance. In order, the terms in Eq. (5.6) represent

tunneling of atoms in the lowest Bloch band between neighboring lattice sites i and j;

the energy E0 =
∑

qE1,q/N
3 of a fermion in the lowest band with respect to the zero

of energy; tunneling of the dressed molecular center of mass between two lattice sites

i and j, not necessarily nearest neighbors; detunings of the dressed molecules from

the lowest band two-particle scattering continuum; and resonant coupling between

the lowest band fermions at sites j and k in different internal states and a dressed

molecule at site i. The FRH is a two-channel resonance model, between unpaired

fermions in the lowest band, and dressed molecules nearby in energy.

We now describe how to calculate the Hubbard parameters appearing in Eq. (5.6).

The first term is well-known from single-band Hubbard models [13] and we do not
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discuss it here. Due to the fact that the solutions of the projected nonlinear eigenequa-

tion Eq. (5.4) are also eigenstates of the total quasimomentum, the second and third

terms may be written as ν̄α =
∫
dKEα

K/v0 and tαi,j = −
∫
dKeiK·(Ri−Rj)Eα

K/v0. Be-

cause the band structure is not separable, EK ̸=
∑

i={x,y,z}EKi
, dressed molecules

can tunnel along directions which are not the principal axes of the lattice. This is

in stark contrast to single-particle tunneling in Bravais lattices which always occurs

along the principal axes. Thus diagonal hopping is a key feature neglected in previous

approaches. In Figure 5.3(a) we show that diagonal hopping is often of the same order

of magnitude as the tunneling of open channel fermions in the lowest band. The signs

and magnitudes of the tunnelings and particularly the dressed-molecule atom cou-

plings are crucially affected by the parities of the dressed molecular Wannier functions.

We stress that only a full lattice solution can reproduce these important properties of

the Hubbard parameters; the frequently used harmonic oscillator approximation will

fail even qualitatively to do so.

The remaining Hubbard parameter is the dressed molecule-atom coupling, which

becomes in the limit of a broad resonance g/ERa
3/2 →∞

gαi−k,k−j =
∑

s

∫
dK
v0
RK
αsgαK

∫
dq
v0
ei(K·Rik+q·Rkj)h11sK(q) (5.7)

where the renormalized coupling is gαK = ER/
√
−RK

α · (∂χ̃K/∂Eα
K) ·RK

α and Rij =

Ri − Rj. We emphasize that gαj,k has only implicit dependence on the divergent

parameter g/ERa
3/2 through gαK and so remains finite, see Figure 5.3(b). As gαK ≪

g/a3/2, the transformation to the FRH has the effect of narrowing the resonance. In

Figure 5.3(b) we also see that the on-site coupling g000,000 is the dominant energy scale

of the problem for large as/a, and that off-site couplings can also be large compared

to other Hubbard parameters such as the open channel tunneling. Atoms which do

not lie along a principal axis can pair to form a molecule, but this effect is much

weaker than diagonal tunneling for the completely even parity dressed molecule.
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Figure 5.3: (Color online) Hubbard parameters for the FRH. (a) The detunings and
tunnelings of the completely even parity dressed molecule in the lowest sheet as a
function of as/a. The detuning is negative for as < 0 and positive otherwise. The
solid black horizontal line is the tunneling of a single open channel fermion in the
lowest band. The nearest neighbor dressed molecular tunneling is nearly two orders
of magnitude larger than the open channel tunneling near resonance. (b) The effective
atom-dressed molecule couplings of the completely even parity dressed molecule in
the lowest sheet as a function of as/a. Schematics of the spatial dependence of the
various coupling processes are shown in the boxes.

In the derivation of the FRH we use only the bound states of the projected problem

and neglect scattering states in higher bands. This captures the scattering states in

the lowest band and nearby bound states, but will fail to capture the physics at higher

two-particle relative energy where scattering states in higher bands can play a role.

In order to accommodate these scattering states, one can project out higher bands

from χ as was done for the lowest band, and then include these bands dynamically in

the many-body Hamiltonian with renormalized couplings. In this way, the energetic

domain of application of the FRH can be extended arbitrarily at the expense of more

dynamical fields. Within the confines of the two-channel model and the constraint of

low energies, the FRH is an accurate representation of the many-body Hamiltonian.

However, intrinsic three-body processes which are not captured by the two-channel

model play a role at higher density and lead to corrections to the FRH. A discussion

of these three-body processes is outside the scope of this paper.
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In summary, we have studied the bound state properties of two Feshbach inter-

acting fermions in an optical lattice at a range of scattering lengths and quasimo-

menta. The bound states of a projected Hamiltonian were used to identify a numeri-

cally tractable, efficient Hamiltonian for a low density many-body collection of lattice

fermions at arbitrary scattering length and low energies, the Fermi Resonance Hamil-

tonian. Our results provide the appropriate starting point for future investigations of

strongly interacting lattice fermions.

We acknowledge useful discussions with J. L. Bohn, H. P. Büchler, C. W. Clark,

D. E. Schirmer, D. M. Wood, and Zhigang Wu. We also thank H. P. Büchler for

providing computer code for comparison. This work was supported by the Alexander

von Humboldt Foundation, AFOSR, NSF, and GECO.

5.3 Supplemental Material: Derivation of the Nonlinear Eigenequation.

Here we review the derivation of Eq. (2) of the main text for the bound states

of two fermions in an optical lattice interacting via a zero-range Feshbach resonance.

All quantities have their same meaning as in the main text. The starting point of

our analysis is a two channel model with the open channel spanned by states of

two fermions in different internal states with equal mass m and the closed channel

spanned by molecular states with twice the fermionic mass and twice the fermionic

polarizability. We describe their interaction via an inter-channel coupling g which

couples the pair of open channel fermions to a closed channel molecule at the center

of mass and a detuning ν between the two channels. This gives rise to the scattering

amplitude

f(k) = − 1

1/as + ik + rbk2
, (5.8)

with s-wave scattering length as = −2µg2/4π~2ν and effective range rB = π~4/µ2g2.

Here µ is the reduced mass and k the incident wavevector.
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Denoting the wave function of the two fermions in the open channel as ψ(x,y) and

the wave function of the closed channel molecules as ϕ(z), the two-channel Schrödinger

equation in position representation is

[E − Ĥ0(x)− Ĥ0(y)]ψ(x,y) = g
∫
dzα(r)ϕ(z)δ(z−R) ,

[E − ν0 − ĤM
0 (z)]ϕ(z) = g

∫
dxdyα(r)ψ(x,y)δ(z−R) .

In this expression Ĥ0(x) = − ~2
2m
∇2

x + V (x) is the single particle Hamiltonian for the

open channel and ĤM
0 (z) = − ~2

4m
∇2

z +2V (z) is the single particle Hamiltonian for the

closed channel. The subscript 0 in ν0 denotes that this is a bare detuning entering

the microscopic theory which is related to the physically observable detuning ν in the

limit as the regularization cutoff Λ → ∞. Additionally, we note that the Feshbach

regularization α(r)→ δ(r) in the limit Λ→∞, where δ(r) is the Dirac delta function.

The open channel solution with total quasimomentum K may be parameterized

as

ψK(x,y) =
1√
N3

∑
nm

∑
q

φKq
nmψn,q(x)ψm,K−q(y) , (5.9)

where N3 is the total number of unit cells in a 3D lattice with periodic boundary

conditions and ψnq(x) is a Bloch eigenfunction of the single-particle Hamiltonian.

As in the main text, quantities denoted in bold represent three-component vectors,

e.g. n = (nx, ny, nz). Similarly, we parameterize the closed channel wave function

as a sum over Bloch states computed for twice the mass and twice the polarizability

ϕsK(z) as

ϕK(z) =
∑
s

RK
s ϕsK(z) . (5.10)

Inserting these expansions into the two-channel Schrödinger equation yields
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[
EK − EK

nm(q)
]
φKq
nm =

g√
a3

∑
s

hnmsK (q)RK
s ,

[
EK − ν0 − EM

sK

]
RK

s =
g√
a3

∑
nm

∫
dq

v0
hnmsK

⋆(q)φKq
nm .

Formally solving the first of the two equations with a Green’s function and inserting

into the second equation gives

[
EK − ν0 − EM

sK

]
RK

s =
g2

a3
∫

dq
v0

∑
mnt

hnm
sK (q)hnm

tK
⋆(q)

EK−EK
nm(q)+iη

RK
t ,

where η is a positive infinitesimal. This expression diverges in the limit Λ→∞, as is

well known for two-channel theories involving a pointlike boson [14]. We remove this

divergence through renormalization, replacing the bare detuning ν0 with the physical

detuning ν by subtracting the infinite constant χ̄K, yielding Eq. (2) of the main text.

The divergent parts of Eq. (3) in the main text cancel and we may safely take the

limit Λ→∞.

Following Ref. [15], we use the regularization

α(r) =

∫
v(Λ)

dk

(2π)3
eik·r , (5.11)

where the cubical volume v(Λ) = v0Λ
3 is centered around k = 0 with v0 the volume of

the BZ. We also define a shell summation over bands with shell parameter S,
∑

nm;S,

as the summation over all band indices n and m less than or equal to S with at least

one of the band indices being S. The correct limiting procedure to obtain χK
st(K) in

the limit of an infinite summation over bands and vanishing short-distance cutoff is

lim
Λ→∞

[
lim
S→∞

χK
st(EK)

]
. (5.12)

The Λ limit is taken using the asymptotic scaling relation
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[
χK
st(EK)

]
(Λ) = ast/Λ + χK

st(EK) . (5.13)

On the right hand side, ast the slope defining the scaling with Λ and χK
st(EK) is the

value as Λ→∞.

One may be concerned that the scaling relation Eq. (5.13) only holds for χK of

the full model and not for χ̃K in the projected model. To show that this is not the

case, we note that in the limit of an infinite number of unit cells N →∞ the overlaps

hnmsK (q) may be written as products of 1D overlaps hnmsK (q) of the form

hnmsK (q) = lim
ℓ→∞

ℓ∑
r,r′=−ℓ

crnqc
r′

mK−qc
r+r′+f/2π
M ;sK (5.14)

× rect(
2q −K − f + 2π(r − r′)

2πΛ
) ,

where f is an integer multiple of 2π which shifts K − q into the BZ, rect(x) denotes

the rectangle function, and the vectors cnq denote the Fourier expansion of the open

channel Bloch functions as

ψnq(x) = eiqx lim
ℓ→∞

ℓ∑
r=−ℓ

crnqe
−2πirx/a/

√
Na . (5.15)

ℓ represents a finite Fourier cutoff used in numerics. Similarly, cM ;sK denote the

Fourier coefficients of the closed channel Bloch functions. χ̃K differs from χK in the

exclusion of all terms with n = m = 1. However, provided that Λ is large enough to

capture the support of the vectors cnq with n = 1, Eq. (5.14) demonstrates that these

terms are no longer functions of Λ. Thus, the scaling relation Eq. (5.13) also holds

for χ̃K. Similar arguments show that the same scaling holds for χ̃K when any finite

number of open channel bands have been projected out.
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5.4 Supplemental Material: Classification of the Two-Particle Bound
States

For the simple cubic lattice we consider the Hamiltonian is invariant under reflec-

tion in any Cartesian direction: H(θRx) = H(x′) = H(x) where x′ ≡ θRx is related

to x by changing the sign of all coordinates in some set R: xj → −xj, j ∈ R. Because

the generators of reflection and translation do not commute we cannot find simultane-

ous eigenfunctions except at high-symmetry points of the BZ. However, the fact that

the Hamiltonian commutes with both operators implies that parity transformations

yield relationships between degenerate sets of Bloch functions. In particular, for the

given lattice potential, the invariance under the reflection symmetry generated by θR

implies that the Bloch functions transform as

ψnq(x′) =
∏
j∈R

(−1)nj+1ψn,q′(x) , (5.16)

where we begin indexing the bands from 1. We can thus characterize the bands ac-

cording to whether they are even or odd under inversions by the triple p = (px, py, pz),

where pν = (−1)nν+1. This inversion relationship implies that the inter-channel over-

laps transform as

hnmsK′(q′) =
∏
j∈R

(−1)nj+mj+sj+1hnmsK (q) , (5.17)

and χK transforms as

χK′

st (EK) =
∏
j∈R

(−1)sj+tjχK
st(EK) . (5.18)

It can be proven that this transformation leaves the eigenvalues invariant, but the

eigenvectors RK
α transform according to

RK′

sα =
∏
j∈R

(−1)sj+1RK
sα . (5.19)
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For a total quasimomentum K all of whose components consist of either 0 or −π/a,

this implies that only molecular bands which transform identically under complete

inversions mix. Hence, at these exceptional points of the BZ, we can unambiguously

determine the parity of the two-particle state ψKα(x,y) by the components of its

associated eigenvector RK
α . The parity is then chosen to depend only on the eigenstate

index α by requiring that RK
α is a smooth function of K. This construction follows

that of the 1D case studied by Kohn [16], which leads to maximally localized Wannier

functions.

With this construction, there is still an undefined global phase under inversion

that we can fix in the following way. The complete two-particle bound state solution

is

ΨKα(x,y) =
1

NKα

[∑
s

RK
sαϕsK(x)r̃(x− y) (5.20)

+
g√
N3a3

∑
nms;q

RK
sαh

nm
sK (q)ψnq(x)ψmK−q(y)

Eα
K − EK

nm(q)

]
,

where NKα is a normalizing factor and r̃(x − y) denotes a relative wavefunction for

the closed channel which has characteristic width a/Λ. As the theory has already

been regularized, we may take Λ → ∞ with the understanding that this relative

wavefunction has a probability density of 1, and forces the closed channel to contribute

only at the center of mass. Because of the partitioning of Hilbert space into open and

closed channels, the normalization coefficient is

N 2
Kα = 1−

(
g

ERa3/2

)2

RK
α · χ′(Eα

K/ER) ·RK
α . (5.21)

Here χ′(E) is the derivative of χ with respect to E. Using the transformation prop-

erties under θR, we find

ΨK′α(x,y) = PαΨKα(x′,y′) . (5.22)
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Accordingly, we set Pα =
∏

j∈R pν . This implies that the dressed molecular Wannier

functions transform as Wiα(x′,y′) = PαWiα(x,y).
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Figure 5.4: (Color online) Classification of two-particle bound states. The bound
state energies at K = 0 for a lattice of depth V/ER = 12 are classified according
to their parity and sheet indices. Red corresponds to p = (1, 1, 1), green to p =
(1, 1,−1), blue to p = (1,−1,−1), and magenta to p = (−1,−1,−1). In addition,
higher molecular bands for the p = (1, 1, 1) level are shown. These give rise to weak
scattering resonances with the lowest open channel band for as/a > 0 and avoided
crossings in the higher sheets for as/a < 0.

In Figure 5.4 we display the bound state energies at K = 0 for a lattice of depth

V/ER = 12 classified according to their parity. The red points correspond to p =

(1, 1, 1), the green points to p = (1, 1,−1) et cyc, the blue points to p = (1,−1,−1)

et cyc, and the magenta points to p = (−1,−1,−1). In contrast to the continuum

where there exists at most one bound state for fixed scattering length as, there is

the possibility of several bound states for fixed as in the lattice due to the reduced

translational symmetry. Thus, the parity and the quasimomentum are not sufficient

to completely describe the states. For a fixed s-wave scattering length as, we provide

two other indices which we call the sheet index σ ∈ {1, 2, . . . ,∞} and the molecular
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band index s ∈ {1, 2, . . . ,∞}. The sheet index labels the open channel two-particle

scattering bands, with the convention that the first sheet lies below the first band, the

second sheet lies between the first and second bands, etc. as indicated on the figure.

The open channel scattering bands are denoted by solid grey stripes. The molecular

band index labels eigenstates which have the same parity and sheet indices but differ

in energy. The number of molecular bands obtained is restricted by the number of

closed channel bands used to construct χK. Let us define m to be the maximum value

of the closed channel band index along any Cartesian direction. In Figure 5.4, the

solid red line corresponds to the completely even parity state computed with m = 2

and the red points correspond to the complete even parity states computed with

m = 3. The choice m = 2 captures the physics well near the lowest open channel

scattering band. For as/a > 0, the higher molecular bands cross the lowest open

channel scattering continuum at narrow ranges of as/a, leading to weak scattering

resonances. For as/a < 0, the higher molecular bands are present at extended ranges

of as/a, and avoided crossings between these molecular bands can lead to differences

with lower m computations, see e.g. the third sheet near as/a = −0.2.

5.5 Supplemental Material: Finite Width Resonances

We now turn our attention briefly to the case where g/ERa
3/2 and ν/ER are finite.

In this case we rearrange Eq. (2) of the main text to read

∑
t

[
(EK − EM

sK)δst −
g2

a3
χK
st(EK)

]
RK

t = νRK
s (5.23)

which is an ordinary eigenvalue equation for the detuning ν when EK and g are treated

as fixed. We note that g cannot be scaled out of this equation as the molecular band

energies EM
sK depend only on the lattice strengths and masses and not on the resonance

width. The solution of this equation for various rB and K = 0 is shown in Figure 5.5.
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Figure 5.5: (Color online) Bound state energies for finite width resonances. Shown
are the lowest energy bound state energies for p = (1, 1, 1) at K = 0 in a strong
optical lattice with V/ER = 12. The red solid line is rB/a = 0.01, the green dashed
line is rB/a = 0.1, the blue dotted line is rB/a = 1, and the magenta short-dashed
line is rB/a = 10. For narrow resonances (large rB) the divergence of as is sharply
pronounced around a narrow energy range, and is shifted downwards from the broad
resonance value, compare Figure 5.4.

We characterize the width of the resonance in terms of the experimentally mea-

surable effective range rB which defines the width as g/ERa
3/2 =

√
16a/π3rB. For

narrow resonances with large rB only the lowest resonance can be seen, and as/a is

greater than 1, corresponding to strong interactions, only in a very narrow energy

range. As the resonance becomes broader the energy range over which the system

is strongly interacting widens, and we begin to see resonant behavior near higher

scattering continua. Additionally, the positions of the narrow resonances are shifted

downwards in energy with respect to the broad resonances, eventually becoming the

free molecular band energies. We note that the broadest resonance shown is in fact

narrower than typical broad resonances found in the experimentally relevant ultracold

atomic systems, but differs from the infinitely broad resonance results by at most a
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few percent. This justifies our use of the infinitely broad resonance limit in the main

text.
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CHAPTER 6

MATRIX PRODUCT STATES: FOUNDATIONS

The bulk of the numerical results for many-body systems contained in this thesis

are obtained by variational algorithms on a class of states known as matrix product

states (MPSs). The theory of MPSs as a variational ansatz for eigenstates and dy-

namics of general finite-sized one-dimensional (1D) systems is expounded at length

in Chapter 7. In addition, the definitive review of MPSs at the time of the writing

of this thesis is Ref. [1]. In this chapter, we aim instead to give intuitive notions of

what MPSs are and why they are useful as variational ansätze.

6.1 Bird’s Eye View of Matrix Product States

The quantum many-body problem is in principle completely solved given the

microscopic degrees of freedom and their interactions, as the relevant Schrödinger

equation is known once the Hamiltonian has been specified. However, in practice, the

Hilbert space of a typical many-body ensemble grows exponentially with the number

of constituents of the system, and so an algorithm which explicitly forms a matrix

representation of the Hamiltonian and diagonalizes it to find eigenstates is limited

to very small systems. Even when all symmetries of the Hamiltonian have been

carefully accounted for and sparse diagonalization routines such as the Lanczos [2]

or Davidson [3] algorithms are used to find only extremal eigenstates, cutting edge

exact diagonalization is limited to approximately 40 two-component spins or a 20-site

fermionic Hubbard model on the square lattice at half filling.

The full Hilbert space of a many-body system is in fact too big for physical dis-

cussions, as can be shown by the following argument [4]. Consider a time-dependent

Hamiltonian acting on N particles
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Ĥ (t) =
∑

X∈{1,2,...,N}

ĤX (t) , (6.1)

where X labels subsets of the N particles. We restrict each term in the summation to

have bounded norm ∥ĤX (t)∥ ≤ E and to act on no more than k particles at a time,

where k is independent of the number of particles. An operator acting on k particles

simultaneously is said to be k-local. Note that we make no assumptions about the

range of the Hamiltonian, and so our arguments apply to the long-ranged Hamiltoni-

ans relevant for molecules. We now wish to expand the full time-ordered propagator

of this Hamiltonian in terms of a series of at most k-local unitary operators. This can

be accomplished by using the time-ordered Trotter expansion for two non-commuting

terms Ĥ1 (t) and Ĥ2 (t) [5]

Û (t, t+ δt) = T exp

[
−i
∫ t+δt

t

dt′
(
Ĥ1 (t′) + Ĥ2 (t′)

)]
, (6.2)

≈ ÛTrotter (t, t+ δt) = T exp

[
−i
∫ t+δt

t

dt′Ĥ1 (t′)

]
T exp

[
−i
∫ t+δt

t

dt′Ĥ2 (t′)

]
, (6.3)

which is accurate in the operator norm as

∥Û (t, t+ δt)− ÛTrotter (t, t+ δt)∥ ≤ cTrotter (δt)2 , (6.4)

cTrotter =
1

(δt)2

∫ t+δt

t

dt′
∫ t′

t

dt′′∥
[
Ĥ1 (t′′) , Ĥ2 (t′)

]
∥ . (6.5)

Here T exp [•] is the time-ordered exponential [6]. We note that these bounds do not

depend on the smoothness of the Hamiltonian, and so are also valid for non-analytic

time dependence. Iterating this expansion for two operators log2 (L) times, where

L ∈ poly (N) is the number of k-particle terms in Eq. (6.1), we may write our full

propagator as a product of time-ordered k-local unitaries with the total error bounded

by
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1

2

∣∣∣∣max
X

sup
0≤t′≤t

∥ĤX (t′)∥
∣∣∣∣2 L2 (δt)2 . (6.6)

The notation L ∈ poly (N) denotes that L is a polynomial function of N . This error

may be made as small as desired by taking (δt)−1 ∈ poly (N). The number of k-

body unitaries which is required to bound this error by ϵ is inversely proportional

to ϵ and polynomial in both t, the final time desired, and L. One can replace these

polynomially many k-body unitaries with a discrete set of fixed one and two-body

operators which is also polynomial in L due to the Solovay-Kitaev theorem [7–9].

From the above, we conclude that any state which can be produced from a given

state |0⟩ under evolution by an arbitrary time-dependent Hamiltonian can be well

approximated by the state |0⟩ acted on by a polynomial-size quantum circuit with a

fixed set of discrete operations. It is known [8] that such circuits can only reach an

exponentially small subset of states, and so we come to the conclusion that physically

relevant states, those that can be reached from a reference state to a desired accuracy

from any time-dependent Hamiltonian in a time polynomial in the size of the system,

form an exponentially small subset of the complete Hilbert space. We note that this

general argument is independent of dimension, and can be extended from pure states

to open quantum systems described by a k-local time-dependent Liouvillian [10].

Hence, the argument also applies at finite temperature. The emphasis of the many-

body problem now shifts from, “How do we deal with the largeness of Hilbert space?”

to, “How do we parameterize the set of states relevant to our particular many-body

model?”

The answer to this latter question can be provided assuming that our Hamiltonian

has finite-range interactions and a gap to excitations28 and we consider our system

28By which we mean a spectral gap in the thermodynamic limit, E1 − E0 > 0 where E1 is the
energy of the first excited state and E0 is the energy of the ground state. Finite-sized systems whose
infinite counterparts are gapless typically have a gap which vanishes as an inverse polynomial in the
system volume.
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at zero temperature. The ground states of such systems obey an area law [11–15],

which is to say that the von Neumann entropy of entanglement of the ground state

in a region A,

SvN (A) = −Tr [ρ̂A log ρ̂A] , (6.7)

where ρ̂A is the reduced density operator describing region A, scales only with the

border of region A and not with its volume. For 1D systems, the presence of an

area law implies that the entanglement between any two complementary subregions

is independent of their size. This is in contrast with a random state in Hilbert space,

for which the entropy of entanglement is extensive. The existence of area laws has

been proven rigorously in 1D for spin-1/2 systems obeying the above constraints by

Hastings [16], and has been observed to hold for the vast majority of other known

systems satisfying our hypotheses regardless of dimension.29 At finite temperature

a condition similar to the area law can be made rigorous in any dimension as the

mutual information between a region A and its complement Ā in a system at thermal

equilibrium,

M
(
A; Ā

)
= SvN (A) + SvN

(
Ā
)
− SvN

(
A+ Ā

)
, (6.8)

satisfies an area law whose bound is inversely proportional to the temperature [18].

Here the density matrix used to obtain SvN (X), ρ̂X , is the reduced density matrix

describing region X in a system at thermal equilibrium.

A related concept in physics which gives an enlightening alternative perspective

on area laws for entanglement entropy is the notion of area laws for black holes [19].

Here, it is the thermodynamic entropy of a black hole that scales with the area

29For a counterexample in a non-translationally invariant 1D chain, see Ref. [17]. Here, a variant of
the Dasgupta-Ma-Fisher renormalization group procedure for random spin chains is used to explicitly
construct a spin chain satisfying a volume law. Additionally, as this system is not translationally
invariant, the volume law depends crucially on how the system is divided. In fact, there exist
divisions for which the entropy of entanglement is identically zero.
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enclosing the black hole rather than its volume [20]. As the entropy of any volume of

spacetime is bounded by the entropy of a black hole that fits inside of that volume [21],

we have that entropy in gravity is always sub-extensive. This fact coupled with

holographic dualities [19] mapping the properties of D+1-dimensional bulk spacetime

to a D-dimensional quantum field theory on its boundary, which are being proved

on a case-by-case basis, provide strong evidence that area laws are ubiquitous in

strongly correlated quantum systems. A similar holographic principle applies for

matrix product states and their generalizations, as expectation values of operators

may be determined in terms of the dynamics of a dissipative boundary theory [22, 23].

A notable class of exceptions to our hypotheses are systems at the critical point of

a quantum phase transition in which the gap vanishes. For systems of free fermions in

D dimensions, the corrections to the area law are logarithmic in the linear dimension

of region A, LA, [24, 25]

SvN (A) ∼ LD−1
A logLA , (6.9)

while area laws in bosonic systems in dimensions D ≥ 2 appear to be insensitive to

criticality [11, 26–28]. For 1D systems whose universal critical theory is a conformal

field theory [29] the logarithmic corrections to the area law are made precise by the

Calabrese-Cardy formula [12, 14, 30]

SvN (A) ∼ c

6
logLA . (6.10)

Here c is the central charge of the conformal field theory [29] which, in an intuitive

picture, counts the number of universal bosonic degrees of freedom.30 For example,

the central charge of a free bosonic system is 1 and a free fermionic system has c = 1/2,

corresponding to “half a boson.” The above results suggest that a reasonable class of

30Rigorously, the central charge is determined by the coefficient of the anomalous term in the
commutator of the energy-momentum tensor at two different positions [31]. Hence, c describes the
behavior of a conformally invariant system when a macroscopic length scale is introduced.
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states to be used for variational studies of 1D systems should satisfy an area law, and

possibly be able to handle weak logarithmic violations efficiently.

. . .

. . . . . .

. . .

a)

b)

. . . . . .

. . . . . .

c)

Figure 6.1: Schematic of the MPS construction. a) A 1D system comprised of local
Hilbert spaces (spheres) arranged in a regular pattern. b) Each Hilbert space is
replaced by two fictitious maximally entangled χ-level systems, where the wiggly
lines indicate which pairs are maximally entangled. Partitioning the system as with
the red box, entanglement of the boxed region with its complement occurs only at the
boundary. c) The maximally entangled fictitious systems are projected to produce
an entangled state in the physical degrees of freedom satisfying an area law.

A construction of a 1D state which obeys an area law is to take a chain of sites

and replace each site with a pair of χ-level systems which are maximally entangled

with their neighbors [32]. This construction is shown in Figure 6.1. If we are now

to isolate any region A such as that enclosed by the red box in Figure 6.1(b), the

entanglement of this region with the remainder of the system is generated only by the

entanglement between the pairs of χ-level systems at the boundaries. This boundary

entanglement scales as logχ. These χ-level subsystems thus provide a fictitious set

of states which can be manipulated such as to produce the desired entanglement

structure in the physical degrees of freedom. We manipulate these fictitious systems

by projecting from this fictitious Hilbert space onto the physical Hilbert space via a

set of isometric tensors. These tensors form the parameters of an MPS. Finally, we

note that the relationship SvN ∼ logχ implies that χ, the Hilbert space dimension of
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the fictitious system, is exponential in the entanglement entropy SvN.31 For systems

with weak logarithmic violations of the area law obeying Eq. (6.10), this gives that

χ is polynomially related to the system size, with polynomial degree depending on

the central charge [33]. Hence, any algorithm which is polynomial in χ represents a

method which is at most polynomial in the system size, an exponential improvement

over exact diagonalization!32

An enlightening alternative view of MPSs is that they are states which are the

result of a real-space renormalization group (RG) iteration [35]. The essential idea of

the renormalization group is to coarse-grain a system by integrating out the irrelevant

degrees of freedom. As coarse graining is iteratively applied, only the degrees of

freedom which describe the macroscopic behavior of the system emerge, and we can

characterize these macroscopic degrees of freedom by the universality classes which

represent fixed points of the RG iteration. Models whose microscopic details differ

greatly may fall into the same universality class, and hence have the same macroscopic

behavior. The renormalization group provides a quantitative means to sort systems

according to their universal degrees of freedom via determining which RG fixed point

they move towards as irrelevant degrees of freedom are removed.

The procedure of the original numerical renormalization group algorithm of Wilson

is to coarse-grain a system by iterative exact diagonalization. In one dimension, we

begin by assuming that our system is comprised of blocks B(0), where each block may

represent a single site or multiple sites and are taken to be identical for simplicity.

Each block is indexed by some set of χ many-body states which span its Hilbert

space. We now group two contiguous blocks together, diagonalize the Hamiltonian

of this two-block system, and keep only the χ states which are lowest in energy. The

31That is to say, the χ that is required to accurately reflect the entanglement structure grows
exponentially with the von Neumann entropy.

32Strictly speaking, this is true only for fixed error. If we require that the error be bounded by
an inverse polynomial in the system size, finding a ground state with the given representation is still
very difficult [34].
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transformation to the new configuration where two of the blocks B(0) are combined

into a single superblock B(1) = B(0)⊗B(0) may be represented by an isometric matrix

A33 mapping from B(0)⊗B(0) → B(1). We now combine B(1) and one of its neighboring

blocks B(0) together, diagonalize the Hamiltonian in this space, and keep only the low

energy states again, resulting in an isometric tensor mapping from B(1)⊗B(0) → B(2).

This outlines the general structure of the iteration.

Let us now assume that out initial blocks are the two leftmost sites of a 1D lattice,

and denote the isometric tensors constructed at iteration n as A
[n]in
αβ |α⟩|i⟩⟨β|, where

|α⟩ are the states spanning B(n−1), |i⟩ are the states spanning B(0), and |β⟩ are the

states spanning B(n). Furthermore, let us take open boundaries on a chain of L

sites, which amounts to the left basis of A[1]i1 and the right basis of A[L]iL being one-

dimensional.34 Then, the many-body state resulting at iteration L may be written

as

|ψ⟩ =
∑
i1...iL

A[1]i1 . . . A[L]iL |i1 . . . iL⟩ , (6.11)

which, as we shall see, is the form of an MPS.

This procedure produced excellent results for the Kondo problem [35], but fails

miserably for the toy model of a single particle on a 1D chain! The reasons for this

failure were investigated by White [36], and led him to the density-matrix renormal-

ization group (DMRG) algorithm, in which the relevant states which are kept after

diagonalization of the superblock Hamiltonian are not those with the lowest energy,

but those which have the largest eigenvalues in the block reduced density matrix.

Examining Eq. (6.7), we can see that this corresponds intuitively to the states which

33By isometric, we mean that this matrix has orthonormal rows. If it were square, it would be
unitary, but we are transforming from a χ2 dimensional space to a χ dimensional space, and so only
the rows are orthonormal.

34That is, at the first iteration we map from the product of the vacuum and a block B(0) to a
new set of states which is of course identical to the block B(0). A similar comment applies to the
last iteration.
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are most strongly entangled to the “environment” formed by all previous iterations.35

The more precise statement we can make is that by keeping the states which have

largest eigenvalues in the reduced density matrix we minimize the 2-norm distance

between the system in the truncated Hilbert space and the true ground state with

the given environment, which is borne out in the Schmidt decomposition [8, 38]

|ψ⟩ =
∑
α

λα|Aα⟩|Bα⟩ . (6.12)

The Schmidt decomposition represents a general quantum state |ψ⟩ in terms of or-

thonormal bases |A⟩ and |B⟩ for two complementary subsystems and the eigenvalues

of the reduced density matrix ρ̂A, {λ2α}. With this change to the original numeri-

cal renormalization group procedure, DMRG not only overcomes the failure for the

single-particle case, but turns this real-space renormalization group procedure into a

method of unparalleled power for strongly-correlated 1D systems.

After the development of DMRG, it was realized that DMRG can be formulated

as a variational method in terms of MPSs [39, 40]. While this does not lead to

any significant numerical improvement in the algorithm to find the ground state

of 1D Hamiltonians [1], other variational algorithms, for example to find excited

states or perform generic time evolution, benefit greatly from this observation. The

reason is that in DMRG all states involved in a calculation are represented as a

single MPS, which requires that they share common bases in the matrix product.

Hence, representing states together as an MPS often requires vastly more resources

than representing each state separately as an MPS for a fixed error. These issues

are discussed at length in Chapter 7. Hence, in this thesis, we focus on the explicit

formulation of variational algorithms within the class of MPSs rather than the implicit

MPS representation used in DMRG.

35Note that, strictly speaking, DMRG does not maximize entanglement due to a renormalization
of the density-matrix spectra induced by truncation [37]. However, for most physical systems this
intuition does not cause any pitfalls.
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6.2 Definitions

We now move to explicit definitions of the mathematical objects which are used

when discussing MPSs. We define a tensor as a map from a product of Hilbert spaces

to the complex numbers

T : H1 ⊗H2 ⊗ · · · ⊗Hr → C . (6.13)

Here r is the rank 36 of the tensor. If we evaluate the elements of the tensor T in a

fixed basis {|ij⟩} for each Hilbert space Hj, then equivalent information is carried in

the multidimensional array Ti1...ir . We will also refer to this multidimensional array

as a tensor. The information carried in a tensor does not change if we change the

order in which its indices appear. We will call such a generalized transposition a

permutation of the tensor. As an example, the permutations of the rank-3 tensor T

are

Tijk = [T ′]kij = [T ′′]jki = [T ′′′]jik = [T ′′′′]kji = [T ′′′′′]ikj . (6.14)

Here, the primes indicate that the tensor differs from its unprimed counterpart only

by a permutation of indices. Similarly, by combining two such indices together using

the Kronecker product we can define an equivalent tensor of lower rank, a process

we call index fusion. We denote the Kronecker product of two indices a and b using

parentheses as (ab), and a representation is provided by

(ab) = (a− 1) db + b , (6.15)

where db is the dimension of Hb and a and b are both indexed starting from 1. An

example of fusion is

36This should not be confused with the rank of a matrix, which is the number of nonzero singular
values. We shall avoid confusion in this text by referring to the number of nonzero singular values
as the matrix rank or rank of a matrix and referring to the definition given here as the tensor rank,
the rank of a tensor, or a rank-r tensor.
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Tijk = [T ′]i(jk) . (6.16)

Here, T is a rank-3 tensor of dimension di × dj × dk and T ′ is a matrix of dimension

di × djdk. The inverse operation of fusion, which involves creating a tensor of higher

rank by splitting a composite index, we refer to as index splitting.

Just as permutations generalize the notion of matrix transposition, tensor contrac-

tion generalizes the notion of matrix multiplication. In a contraction of two tensors

A and B some set of indices cA and cB which describe a common Hilbert space are

summed, and the resulting tensor C consists of products of the elements of A and B

as

Cc̄Ac̄B =
∑
c

Ac̄AcBcc̄B . (6.17)

Here c̄B denotes the indices of A which are not contracted and likewise for c̄B. The

rank of C is rA + rB − 2nc, where nc is the number of indices contracted (i.e., the

number of indices in c) and rA and rB are the ranks of A and B, respectively. In

writing expression Eq. (6.17) we have permuted all of the indices cA to be contracted

to the furthest right position in A and the indices cB to the furthest leftmost position

in B for notational simplicity. If we were also to fuse the elements in c̄A, c, and c̄B

together, then we would recognize Eq. (6.17) as a matrix-matrix multiplication. This

is a valuable insight, as matrix-matrix multiplication routines such as DGEMM37 in

BLAS38 [41] have been highly optimized and this lends efficiency to tensor contraction

algorithms.

37Double precision General Matrix Multiply.
38Basic Linear Algebra Subprograms, a large collection of numerical routines which were designed

to take advantage of the cache structure of modern computers. Using BLAS routines versus naive
loops for contractions leads to speedups often of a factor of 4 or more, even when using aggressively
optimizing compilers.
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Figure 6.2: Examples of basic tensor operations in diagrammatic notation. a) A
rank-3 tensor. b) The conjugate of a rank-3 tensor. c) The contraction of two rank-3
tensors over a single index produces a rank-4 tensor.

At this stage, it is advantageous to develop a graphical notation for tensors and

their operations [42]. A tensor is represented graphically by a point with lines ex-

tending upwards from it. The number of lines is equal to the rank of the tensor.

The order of the indices from left to right is the same as the ordering of lines from

left to right. A contraction of two tensors is represented by a line connecting two

points. Finally, the complex conjugate of a tensor is denoted by a point with lines

extending downwards. Some basic tensor operations are shown in graphical notation

in Figure 6.2.

Following a similar line of reasoning as for contractions above, we may also decom-

pose tensors into contractions of tensors using permutation, fusion, and any of the

well-known matrix decompositions such as the singular value decomposition (SVD)

or the QR decomposition. For example, a rank-3 tensor T can be factorized as

Tijk =
∑
l

U(ij)lSlVlk , (6.18)

where U and V are unitary and S is a positive semidefinite real vector. Such decom-

positions are of great use in enforcing canonical forms on MPSs, see Sec. 6.3.

A tensor network is now defined as a set of tensors whose indices are connected

in a network pattern, see Figure 6.3. Let us consider that some set of the network’s

indices c are contracted over, and the complement c̄ remain uncontracted. Then, this

network is a decomposition of some tensor Tc̄. The basic idea of tensor network algo-

rithms utilizing MPSs and their higher dimensional generalizations such as projected
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...
...

...

c)

Figure 6.3: Examples of tensor networks. a) An MPS with 7 sites and open boundary
conditions. b) A square lattice PEPS with 25 sites and open boundary conditions. c)
Two levels of a 1D MERA with periodic boundary conditions. This network consists
of alternating rows of rank-3 and rank-4 tensors.

entangled-pair states (PEPS) [43, 44] and the multiscale entanglement renormaliza-

tion algorithm (MERA) [45, 46] are to represent the high-rank tensor ci1...iL encoding

a many-body wavefunction in a Fock basis,

|ψ⟩ =
∑
i1...iL

ci1...iL |i1 . . . iL⟩ , (6.19)

as a tensor network with tensors of small rank. We set the convention in the re-

mainder of this chapter that indices which are contracted over in the tensor network

decomposition will be denoted by Greek indices, and indices which are left uncon-

tracted will be denoted by Roman indices. The former type of index will be referred

to as a bond index, and the latter as a physical index.

In particular, an MPS imposes a one-dimensional topology on the tensor network

such that all the tensors appearing in the decomposition are rank-3. The resulting

decomposition has the structure shown in Figure 6.3(a). Explicitly, an MPS may be

written in the form
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|ψMPS⟩ =
d∑

i1,...iL=1

Tr
(
A[1]i1 . . . A[L]iL

)
|i1 . . . iL⟩ . (6.20)

Here, i1 . . . iL label the L distinct sites, each of which contains a d-dimensional Hilbert

space. We will call d the local dimension. The superscript index in brackets [j]

denotes that this is the tensor of the jth site, as these tensors are not all the same

in general. Finally, the trace effectively sums over the first and last dimensions of

A[1]i1 and A[L]iL concurrently, and is necessary only for periodic boundary conditions

where these dimensions are greater than 1. Obscured within the matrix product of

Eq. (6.20) is the size of the matrix A[j]ij formed from the tensor A[j] with its physical

index held constant. We will refer to the left and right dimensions of this matrix

as χj and χj+1, and the maximum value of χj for any tensor, the bond dimension,

will be denoted as χ. The bond dimension is the parameter which determines the

efficiency of an MPS simulation, and also its dominant computational scaling. From

the relation SvN ≤ logχ, we also have that χ represents an entanglement cutoff for

MPSs. The scaling of variational MPS algorithms is discussed in Chapter 7.

In what follows, we consider MPSs with open boundary conditions (OBC) unless

explicitly indicated otherwise. Details on algorithms for periodic boundary condi-

tions (PBC) are provided in Chapter 9. The reasoning for using OBC is twofold.

First, finding the normalized eigenvector corresponding to the minimum eigenvalue

of a Hermitian operator Q̂ may be expressed as the minimization of the Rayleigh

quotient [2]

min
|ψ⟩
⟨ψ|Q̂|ψ⟩/⟨ψ|ψ⟩ . (6.21)

In variational MPS algorithms this quotient is minimized locally by holding all ten-

sors except for some subnetwork A fixed and minimizing the Rayleigh quotient with

respect to the parameters of A. The minimization problem for the subnetwork A
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becomes a generalized eigenvalue problem

QeffA = λNA , (6.22)

where Qeff is the action of the operator Q̂ on the subnetwork to be optimized with the

rest of the network held fixed, and N is the action of the identity on the subnetwork

to be optimized with the rest of the network held fixed. There exists a canonical

form for MPSs with OBC such that N is the identity, and the generalized eigenvalue

problem becomes an eigenvalue problem. For PBC this operator cannot generally be

made the identity, and may be singular or poorly conditioned, leading to numerical

instabilities and a reduction in accuracy.

The second reason for avoiding PBC is deeper. When we divide a system with

PBC into two contiguous regions, one of length L and one of length ℓ, generally the

two ends of subsystem L which surround that of subsystem ℓ are correlated. This is

to be contrasted with OBC, where an arbitrary partition creates an environment for

ℓ which is uncorrelated. This idea is demonstrated in Figure 6.4. A consequence of

this is that the entanglement entropy of a critical system with PBC grows twice as

fast as one with OBC, that is

SPBC (A) ∼ c

3
logLA . (6.23)

This should be compared with Eq. (6.10) for OBC. Hence, the corresponding bond

dimension for PBC grows as the square of the bond dimension for OBC. This is

sometimes referred to as O (χ6) scaling, as introducing a fictitious OBC system with

a long range interaction between the first and last sites will require a bond dimension

χPBC that scales as the square of the bond dimension χOBC in the absence of the

long-range interaction to represent the system with the same level of accuracy. That

is, the system with the long range interaction will require O (χ3
PBC) = O (χ6

OBC) time

for a fixed accuracy. This scaling can be brought down to O (χ5) by introducing an
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a) b)

Figure 6.4: Correlation structure of PBC states. a) For a state with a correlation
length ξ ≪ L, the two ends of subregion L are weakly correlated and the entanglement
of L with ℓ is constant, as in the OBC case. b) As the correlation length grows
comparable to L, the two ends of subregion L are strongly correlated and give rise to
twice as much entanglement between L and ℓ as in the case of OBC.

MPS which has the correct entanglement structure [32],39 and recent efforts [47, 48]

have shown how to reduce this scaling to O (pχ3), where p is the number of relevant

correlation lengths of the transfer operator, see Sec. 6.5.

6.3 Canonical Forms for Matrix Product States

The matrix product structure of an MPS implies that we can insert any invertible

matrix X and its inverse between any two matrices appearing in Eq. (6.20) without

affecting the state |ψMPS⟩. Hence, the MPS decomposition is highly non-unique. We

shall now describe canonical forms for MPSs which remove this non-uniqueness.

The first canonical form requires that a given tensor A satisfies

∑
i

Ai
†
Ai = I . (6.24)

We say that a tensor satisfying Eq. (6.24) is in left-canonical form, or it is left-

canonical for succinctness. We can enforce left-canonical form on a particular tensor

via fusing the leftmost two indices and performing a singular value decomposition

39That is, the algorithm scales as O
(
χ5
)
but χPBC = χOBC for a fixed error in the improved

ansatz.
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A(αi)β = A
[ℓ]i
αβ , (6.25)∑

γ

U(αi)γSγV
†
γβ = A(αi)β . (6.26)

Because the matrix U returned from the singular value decomposition is unitary,

Eq. (6.24) is satisfied by making the replacement

A[ℓ]i
αγ = U(αi)γ . (6.27)

In order for the total state to remain unchanged, we must contract the remaining in-

formation returned from the singular value decomposition into the neighboring tensor

as

A[ℓ+1]i
γη =

∑
β

SγV
†
γβA

[ℓ+1]i
βη . (6.28)

Hence, the procedure of bringing a tensor into canonical form affects two tensors at

a time. By carrying out this recursion all the way from the left (open) boundary to

the right boundary, we end up with an MPS in which each tensor satisfies Eq. (6.24)

and a 1× 1 matrix whose trace is the norm of the MPS. Such an MPS is said to be

in left-canonical form.

One can imagine performing the recursion Eq. (6.25)-(6.28) in the opposite direc-

tion, instead replacing A with the unitary matrix V as

Aα(iβ) = A
[ℓ]i
αβ , (6.29)∑

γ

UαγSγV
†
γ(iβ) = Aα(iβ) , (6.30)

A
[ℓ]i
γ(iβ) = V †

γ(iβ) , (6.31)

A[ℓ−1]i
ηγ =

∑
α

A[ℓ−1]i
ηα UαγSγ . (6.32)

The resulting tensor A = A[ℓ] satisfies the right-canonical condition
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∑
i

AiAi
†

= I . (6.33)

As with the left-canonical form, one can perform the recursions Eq. (6.29)-(6.32) from

the right boundary to the left boundary to obtain a representation in which all tensors

satisfy Eq. (6.33) together with a 1× 1 matrix whose trace is the norm of the MPS.

In the remainder of this chapter, we will reserve the notation A for a left-canonical

tensor and B for a right-canonical tensor. The left-canonical and right-canonical MPS

forms thus read

|ψleft−canonical⟩ =
d∑

i1,...iL=1

Tr
(
A[1]i1 . . . A[L]iL

)
|i1 . . . iL⟩ , (6.34)

|ψright−canonical⟩ =
d∑

i1,...iL=1

Tr
(
B[1]i1 . . . B[L]iL

)
|i1 . . . iL⟩ . (6.35)

The consequences of left and right canonical form in graphical notation are provided

as part of the publication in Chapter 7.

We now consider taking a state |ψ⟩ and performing Eq. (6.25)-(6.28) to put all

tensors A[j] from j = 1, . . . , k into left-canonical form and performing Eq. (6.29)-

(6.32) such that all tensors B[j] from j = k + 1, . . . , L are right-canonical. In order

for the state to be consistent, we must insert a matrix M between A[k] and B[k+1]

which represents S[k]V [k]† from the right-moving contraction Eq. (6.28) multiplied by

U [k+1]S[k+1] from the left-moving contraction Eq. (6.32). That is, the state is

|ψ⟩ =
d∑

i1,...iL=1

Tr
(
A[1]i1 . . . A[k]ikMB[k+1]ik+1 . . . B[L]iL

)
|i1 . . . iL⟩ , (6.36)

where M = S[k]V [k]†U [k+1]S[k+1]. Performing a singular value decomposition M =

UΛV and absorbing U into A[k] and V into B[k+1],40 we may write this as

40Note that this does not affect the canonical form of these two tensors.

212



|ψ⟩ =
d∑

i1,...iL=1

Tr
(
A[1]i1 . . . A[k]ikΛB[k+1]ik+1 . . . B[L]iL

)
|i1 . . . iL⟩ , (6.37)

where now Λ is a diagonal matrix. This form of the state corresponds identically

with the Schmidt decomposition mentioned in Sec. 6.1. As the matrix Λ lies at the

boundary between the left-orthogonal and right-orthogonal parts of the state, we

will call it the orthogonality center. To be more precise, we call it the bond-centered

orthogonality center as it resides on the bond between two sites. The state Eq. (6.37)

is said to be in bond-centered mixed canonical form. We may absorb Λ into A[k] to

give a tensor which is no longer left-canonical, but does carry all the information that

was contained in the orthogonality center. We will denote this tensor with a tilde to

indicate its lack of left-canonical form:

|ψ⟩ =
d∑

i1,...iL=1

Tr
(
A[1]i1 . . . Ã[k]ikB[k+1]ik+1 . . . B[L]iL

)
|i1 . . . iL⟩ . (6.38)

We now say that Ã[k] is the orthogonality center of the MPS, more precisely the site-

centered orthogonality center, and we call this particular canonical form site-centered

mixed canonical form. When there is no chance of confusion, we will refer to both

Eq. (6.37) and Eq. (6.38) as mixed canonical form. The most important feature of

the orthogonality center is that it expresses the wavefunction in terms of a tensor

whose indices run over orthonormal bases.

The final canonical form we consider takes the mixed canonical form to its logical

conclusion by ensuring that a bipartite splitting at any bond within the lattice results

in the Schmidt decomposition, and we shall call it the Vidal canonical form [49, 50]:

|ψVCF⟩ =
∑

α1...αL+1

∑
i1...iL

λ[1]α1
Γ[1]i1
α1α2

λ[2]α2
. . . λ[L]αL

Γ[L]iL
αLαL+1

λ[L+1]
αL+1

. (6.39)
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The Γ tensors and λ tensors are chosen such that a bipartite splitting of our system

at the bond between sites l and l + 1 is exactly the Schmidt decomposition

|ψ⟩ =

χS∑
αl=1

λ[l+1]
αl
|ϕ[1...l]
αl
⟩|ϕ[l+1...n]

αl
⟩ , (6.40)

with the Schmidt vectors

|ϕ[1...l]
αl
⟩ =

χS∑
α0,...,αl−1

λ[1]α0
Γ[1]i1
α0α1

λ[2]α1
Γ[2]i2
α1α2

λ[3]α2
Γ[3]i3
α2α3

. . .Γ[l]il
αl−1αl

|i1⟩ . . . |il⟩ (6.41)

and

|ϕ[l+1...L]
αl

⟩ =

χS∑
αl+1,...,αL

Γ[l+1]il+1
αlαl+1

λ[l+1]
αl+2

Γ[l+2]il+2
αl+1αl+2

. . .Γ[L]iL
αL−1αL

λ[L]αL
|il+1⟩ . . . |iL⟩ , (6.42)

and the Schmidt coefficients λ
[l+1]
αl . We can translate between the left, right, and

Vidal canonical forms by using the translation formulae

A
[j]ij
αβ = λ[j]α Γ

[j]ij
αβ , (6.43)

B
[j]ij
αβ = Γ

[j]ij
αβ λ

[j+1]
β . (6.44)

These will be useful in Chapter 8, when we discuss translationally invariant MPSs.

As an example of why the various MPS canonical forms are useful, we now consider

finding the expectation value of an observable Ôk which acts only on a single lattice

site k. Assuming that site k is the orthogonality center, this expectation value is

⟨ψ|Ôk|ψ⟩ =
∑

i1...ik...iL

∑
i′k

O
iki

′
k

k Tr
(
A[1]i1 . . . Ã [j]i′k . . . B[L]iLB[L]iL

†
. . . Ã [k]ik

†
. . . A[1]i1†

)
,

=
∑

i1...ik...iL

∑
i′k

O
iki

′
k

k Tr
(
A[1]i1†A[1]i1 . . . Ã [k]i′k . . . B[L]iLB[L]iL

†
. . . Ã [k]ik

†
. . .
)
,

=
∑

i2...ik...iL−1

∑
i′k

O
iki

′
k

k Tr
(
A[2]i2†A[2]i2 . . . Ã [k]i′k . . . B[L−1]iL−1B[L−1]iL−1

†
. . . Ã [k]ik

†
. . .
)
,
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=
∑
iki

′
k

O
iki

′
k

k Tr
(
Ã [k]i′kÃ [k]ik

†
)
. (6.45)

Here, the second line used the cyclic nature of the trace and the third and fourth

lines used the left and right-canonical conditions Eqs. (6.24) and (6.33) for the ten-

sors to the left and right of k, respectively. Thus, mixed canonical form projects

most operations involving the entire wavefunction into operations involving only the

orthogonality center.

6.4 Examples of Matrix Product States

Several important and well-known states can be cast exactly as MPSs with con-

stant bond dimension. The purpose of this section is to provide some examples of

states with exact MPS representations.

6.4.1 Product State

The simplest MPS is a product state |k1k2 . . . kL⟩, which is a product of 1 × 1

matrices A[j]ij =
(
δijkj

)
. For the Vidal canonical form, all of the λ tensors are (1)

and the Γ tensors are represented by the A tensors here. In this case, χ = 1 for any

subsystem. This is the only class of states in which all of the canonical forms above

have identical MPS representations.

6.4.2 GHZ State

A nontrivial MPS with bond dimension two is the (unnormalized) Greenberger-

Horne-Zeilinger (GHZ) state

|GHZ⟩ = |00 . . . 0⟩+ |11 . . . 1⟩ . (6.46)

This state represents a realization of Schrödinger’s famous cat paradox [51] in which

a quantum system exists in two very different macroscopic states simultaneously.
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Also, the GHZ state is closely related to NOON states in which N particles exist in a

superposition of all particles in state a and all particles in state b simultaneously. The

GHZ state garnered interest because of its very strong non-classical correlations [52].

The state is given in left or right canonical form by the matrices

Ai =

(
δi,0 0
0 δi,1

)
. (6.47)

Here we have neglected the boundary conditions. For PBC all matrices are equivalent,

and for OBC the first and last sites are 1×2 and 2×1 matrices whose elements are the

diagonal elements of Ai, respectively. The normalized GHZ state can be represented

in mixed canonical form by introducing the orthogonality center

Ai =

(
δi,0/
√

2 0

0 δi,1/
√

2

)
. (6.48)

In the Vidal canonical form, the normalized GHZ state takes the form

λ[j] =

(
1√
2
1√
2

)
,Γ[j]i =

(
δi,0
√

2 0

0 δi,1
√

2

)
, (6.49)

for 2 ≤ j ≤ L− 1 together with the boundaries

λ[1] = λ[L+1] = (1) , Γ[1]i =
(
δi,0 δi,1

)
, Γ[L]i =

(
δi,0
δi,1

)
. (6.50)

As this is a state with χ = 2, it has minimally nontrivial spatial entanglement.

6.4.3 W State

The W state is the equal superposition of all translates of |10 . . . 0⟩,

|W ⟩ =
1√
L

L∑
i=1

|0⟩⊗i−1|1⟩|0⟩⊗L−i , (6.51)
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and can also be represented as an MPS with bond dimension 2. If we interpret |0⟩

as being spin down and |1⟩ as being spin up, the W state with L = 2 constituents

is the spin triplet. If |0⟩ and |1⟩ are interpreted as lattice sites containing 0 and 1

particles, respectively, the W state represents the state of a single particle on a ring

with quasimomentum q = 0. The Vidal canonical form is

λ[j] =

 √
L−j+1
L√
j−1
L

 ,Γ[j]i =

 δi,0
√

L
L−j+1

δi,1
√

L
j(L−j+1)

δi,1
√

L
j

0

 , (6.52)

for 2 ≤ j ≤ L− 1 together with the same boundary tensors as the GHZ state. In the

MPS representation we can choose

A[1]i =

(
δi,0/
√
L

δi,1/
√
L

)
, A[j]i =

(
δi,0 0
δi,1 δi,0

)
, A[L]i =

(
δi,0 δi,1

)
, (6.53)

which amounts to mixed canonical form with the first site being the orthogonality

center.

6.4.4 AKLT State

Affleck, Kennedy, Lieb, and Tasaki (AKLT) considered the following Hamilto-

nian [53]

ĤAKLT =
∑
i

Ŝi · Ŝi+1 +
1

3

(
Ŝi · Ŝi+1

)2
. (6.54)

Here, Ŝi is the vector of three-component spin operators at site i. We will call a

three-component quantum system, isomorphic to the internal space of a particle with

a spin of 1, a qutrit. Similarly, a two-component quantum system will be referred to

as a qubit. By defining a projector onto the Hilbert space of total spin equal to two

as

P̂ =
1

6 · 4

(
Ŝ2
total − 2

)
Ŝ2
total , (6.55)
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and setting Ŝtotal = Ŝi + Ŝi+1, we find that the projector of the spin on bond i onto

the spin-2 subspace is

P̂i =
1

6 · 4

(
Ŝ2
i + Ŝ2

i+1 + 2Ŝi · Ŝi+1 − 2
)(

Ŝ2
i + Ŝ2

i+1 + 2Ŝi · Ŝi+1

)
(6.56)

=
1

2

[
2

3
+ Ŝi · Ŝi+1 +

1

3

(
Ŝi · Ŝi+1

)2]
. (6.57)

Thus,

ĤAKLT =
∑
i

(
2P̂i −

2

3
Î

)
. (6.58)

Let us now consider each qutrit to be comprised of two qubits with internal states

{| ↑⟩, | ↓⟩}. For this to be consistent, we must require these two qubits to be com-

pletely symmetrized so as to lie in the subspace with total spin equal to 1. Now,

consider the many-body state where adjacent pairs of these qubits not forming a

qutrit are joined in a singlet state such that the bonds have spin zero. The projector

P̂i acting on this state gives zero, and from ⟨P̂i⟩ ≥ 0 we have that the given construc-

tion produces a ground state of the AKLT Hamiltonian. It can also be shown that

this state is unique [53]. We will call the state formed from the above construction

the AKLT state.

We can write the AKLT state as an MPS by considering the chain of qubits which

has length 2L, with L being the length of the original qutrit chain. We define the qubit

sites ai and bi, i = 1, . . . L, such that the bonds aibi are connected in a symmetric

fashion and biai+1 are connected in an antisymmetric fashion. We will also consider

periodic boundaries so as to easily facilitate taking the limit of an infinite chain. A

matrix encapsulating the state of the singlet bonds, (| ↑↓⟩ − | ↓↑⟩)/
√

2, is

S =

(
0 1√

2

− 1√
2

0

)
. (6.59)
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Similarly, matrices representing the three triplet bonds |1⟩ = | ↑↑⟩, |0⟩ = (| ↑↓⟩+ | ↓↑

⟩)/
√

2, and | − 1⟩ = | ↓↓⟩, are

T i =

(
δi,1

1√
2
δi,0

1√
2
δi,0 δi,−1

)
. (6.60)

Hence, the state of the qutrit chain may be parameterized as

|ψ⟩ =
∑

i1a1b1...iLaLbL

T i1a1b1Sb1a2T
i2
a2b2

Sb2a3 . . . SbL−1aLT
iL
aLbL

SbLa1 |i1 . . . iL⟩ , (6.61)

=
∑
i1...iL

Tr
(
A[1]i . . . A[L]iL

)
|i1 . . . iL⟩ , (6.62)

where

Ai = T iS =

(
−1

2
δi,0

1√
2
δi,1

− 1√
2
δi,−1

1
2
δi,0

)
. (6.63)

Noting that
∑

iA
i†Ai = 3

4
I, we can normalize the state in the thermodynamic limit41

by scaling by 2/
√

3 to obtain

Ai =

 − 1√
3
δi,0

√
2
3
δi,1

−
√

2
3
δi,−1

1√
3
δi,0

 . (6.64)

We close this section by expressly pointing out the similarity between the AKLT

construction and the general construction of MPSs as projections from maximally

entangled pairs of χ-level subsystems onto physical states mentioned in Sec. 6.1. In

fact, the similarity extends from the state construction to the Hamiltonian, as every

MPS is the ground state of a parent Hamiltonian built of projectors which is gapped, is

frustration-free in the sense that each term in the Hamiltonian minimizes the energy

locally, is k-local with k ∼ 2 logχ/ log d, and allows for a detailed analysis of the

ground state degeneracy [54, 55].

41See Eq. (6.69) for the condition that a left-canonical MPS on an infinite lattice is normalized.
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6.5 Correlations within Matrix Product States and the Transfer Operator

Let us now turn to the structure of correlations within MPSs. By a correlation,

we mean a two-point correlation function, for example the density-density correlation

function ⟨n̂pn̂q⟩. Assuming that the state is in mixed canonical form with the orthog-

onality center k satisfyingp ≤ k ≤ q, the correlation becomes a finite tensor network

contraction between sites p and q. Written out explicitly, we have

⟨ÔpÔq⟩ (6.65)

= Tr

∑
ipi′p

Ôipi′pA
[p]ip⋆ ⊗ A[p]i′p

q−1∏
j=p+1

∑
ij

A[j]ij
⋆ ⊗ A[j]ij

∑
iqi′q

Ôiqi′qA
[q]iq⋆ ⊗ A[q]i′q

 ,

= Tr

(
E

[p]

Ô

q−1∏
j=p+1

E
[j]

Î
E

[q]

Ô

)
, (6.66)

where we have defined the transfer operator

EÔ =
∑
ii′

Ôii′A
i⋆ ⊗ Ai′ . (6.67)

We will also use the alternate notation

EÔ [M ] =
∑
ii′

Ai
†
Ôii′MAi

′
, (6.68)

which expresses the action of the transfer operator on a matrix M [1]. The difference

in notation is demonstrated by comparing the expectation Eq. (6.65) to Eq. (6.45).

The transfer operator EÔ either acts upon length χ2 vectors or takes χ× χ matrices

to χ× χ matrices,42 depending on which interpretation we use.

While the transfer operator is not generally symmetric, we can still venture to

find its eigenvalues and (left and right) eigenvectors/eigenmatrices. It can be shown

that the transfer operator of a normalized state has a spectral radius of 1 [1]. For

42Strictly speaking, the transfer operator using the MPS tensors at site j take χj × χj matrices
to χj−1×χj−1 matrices with the given order of operations, but the great numerical use is in infinite
systems where χ is uniform across all bonds.
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matrices which are left-canonical, we have that

EÎ

[
Î
]

=
∑
i

Ai
†
Ai = Î , (6.69)

and so the left eigenmatrix of EÎ with eigenvalue 1 is the identity matrix. Similarly,

an appropriately defined transfer operator of right-canonical MPS matrices has the

identity matrix as a right eigenmatrix with eigenvalue 1. For simplicity, let us now

consider a state which is translationally invariant such that all matrices appearing in

the contraction Eq. (6.65) are identical, and let EÎ have a non-degenerate maximal

eigenvalue 1. Expanding the product of transfer operators
∏q−1

j=p+1E
[j]

Î
in terms of its

eigenspectrum, we have that

⟨ÔpÔq⟩ =
∑
k

⟨1|E[p]

Ô
|k⟩λq−p−1

k ⟨k|E[q]

Ô
|1⟩ , (6.70)

where |k⟩ and ⟨k| are the right and left eigenvectors corresponding to eigenvalue

λk. There are now two possibilities. The first is that this correlation function is

long ranged, which occurs when ⟨1|E[p]

Ô
|1⟩⟨1|E[q]

Ô
|1⟩ is nonzero, and the second is a

superposition of exponential decays with decay lengths ξk = −1/ log λk. This may be

written compactly as

⟨ψ|ÔpÔq|ψ⟩
⟨ψ|ψ⟩

= ⟨1|E[p]

Ô
|1⟩⟨1|E[q]

Ô
|1⟩+

χ2∑
k=2

⟨1|E[p]

Ô
|k⟩⟨k|E[q]

Ô
|1⟩e−|q−p−1|/ξk . (6.71)

To illustrate these ideas, we can use the AKLT state Eq. (6.64) from above. The

transfer operator is

EÎ =
∑
i

Ai ⊗ Ai =


1
3

0 0 2
3

0 −1
3

0 0
0 0 −1

3
0

2
3

0 0 1
3

 , (6.72)
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which has eigenvalues 1 and −1/3, the latter being triply degenerate. The dominant

eigenmatrix is Î, as discussed for left-canonical matrices above. The other eigenspace

is spanned by σ̂z, σ̂+, and σ̂−, the spin-1/2 Pauli matrices. Using the transfer opera-

tors

EŜz
=


0 0 0 2

3

0 0 0 0
0 0 0 0
−2

3
0 0 0

 , (6.73)

Eexp(iπŜz) =


1
3

0 0 −2
3

0 −1
3

0 0
0 0 −1

3
0

−2
3

0 0 1
3

 , (6.74)

we find exponential decay of antiferromagnetic correlations, ⟨ŜizŜjz⟩ ∼ (−1/3)i−j, but

long-range order in the string order parameter ⟨Ŝiz
∏j−1

k=i+1 exp
(
iπŜkz

)
Ŝjz⟩ = −4/9.

Here string order refers to the fact that, although true long range antiferromagnetic

order of the classical Néel type | . . . 1,−1, 1,−1 . . . ⟩ is absent, any site with Sz = ±1

is followed by a site with the opposite spin projection Sz = ∓1, and these two sites

are connected by a string of Sz = 0 sites which can have arbitrarily long length.

Given that an MPS has correlations which decay exponentially asymptotically,

how can they accurately represent a critical state which displays power-law decay of

some correlator? The answer is that the general correlation structure of MPSs is a sum

of exponentials, and so on length scales short compared to the dominant correlation

length this sum can approximate an algebraic decay. This idea is demonstrated

in Figure 6.5, where approximations to the function 1/r3 are provided by fitting

a sum of exponentials to this function. The accuracy of the fit extends to longer

distances as more exponentials are included. The minimization procedure used to

fit the exponentials is precisely that used to define matrix product operators with

long-range interactions, see Sec. 7.2.2.
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Figure 6.5: Approximating algebraic decay by sums of exponentials. The solid red
line represents the function 1/r3, and the other lines represent approximations to 1/r3

obtained by a least squares minimization of a sum of exponentials with the indicated
number of terms.

Given that the accuracy of an MPS representation of a state monotonically in-

creases with the bond dimension and the correlation length of a critical state diverges,

we find that the correlation length must increase with χ. In fact, χ obeys a scaling

relationship with the correlation length [56]

χ ∼ ξκ , (6.75)

where

κ =
6√

12c+ c
. (6.76)

Here c is the central charge of the conformal field theory describing criticality, see

Eq. (6.10) and the surrounding discussion. Results such as Eq. (6.75) fall under the

heading of finite-entanglement scaling, as contrasted with finite-size scaling [57]. A

nice feature of finite-entanglement scaling is that scaling relationships depend only on

truly universal quantities such as the central charge rather than scaling dimensions as
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in finite-size scaling. Provided we are in the finite-entanglement scaling regime rather

than the finite-size scaling regime [58], for example because we have taken the size

of the system much larger than the correlation length,43 finite-entanglement scaling

provides us with a powerful means of extracting universal quantities for relatively

small amounts of computational effort, see Sec. 8.4.

6.6 Symmetry-Adapted Matrix Product States

A particularly important numerical optimization for finite size MPS algorithms is

the explicit conservation of symmetries [59–65]. The theory developed below extends

readily to compact, completely reducible groups G, which includes finite groups such

as the cyclic groups Zq and Lie groups such as SO(n), U(n) and SU(n). To keep

the notation simple, we develop the theory only for Abelian groups, taking U(1) as a

particular example.

For compact, completely reducible symmetry groups G, there exists a unitary

representation Û : G → H of G on the space H of a single site such that for each

element g ∈ G, we have that Ûg is unitary, ÛgÛ
†
g = I and Ûgg′ = ÛgÛg′ [66]. For U(1)

the elements of the group can be labeled by an angle ϕ ∈ [0, 2π) such that the unitary

representations Ûϕ satisfy

Û †
ϕÛϕ = ÛϕÛ

†
ϕ = Î , (6.77)

Ûϕ1Ûϕ2 = Ûϕ2Ûϕ1 = Ûϕ3 , (6.78)

where ϕ3 = ϕ1 + ϕ2 mod 2π. H now decomposes into possibly degenerate one-

dimensional44 irreducible representations (irreps) of G as

Hj = ⊕qHq , (6.79)

43For critical systems, the diverging of the correlation length requires us to consider systems with
an infinite number of sites. For an MPS algorithm which operates in this limit, see Chapter 8.

44These irreps are only one-dimensional in the Abelian case. In the non-Abelian case it is still
true that the space decomposes into degeneracy spaces and irreps; however, the irreps can have
dimensions larger than one.
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where the dq-dimensional subspaces Hq are labeled by an integer q which we call

the charge of the irrep. Here dq, the degeneracy dimension, denotes the number of

copies of the irrep of charge q which are present in H. Because the irreps of Abelian

groups are one-dimensional, these are in fact copies and not higher-dimensional irreps.

We will refer to the spaces Hq as degeneracy spaces. We can construct the unitary

representations of U(1) appearing in Eq. (6.77) by using a local Hermitian operator

Q̂ whose expectation over all sites gives the total conserved charge as

Ûϕ = exp
(
−iQ̂ϕ

)
. (6.80)

The eigenstates of Q̂ with eigenvalue q form a basis for Hq. We will index the states

in the degeneracy space Hq by the degeneracy index tq which runs from 1, . . . , dq such

that

Q̂|qtq⟩ = q|qtq⟩ , (6.81)

Ûϕ|qtq⟩ = e−iqϕ|qtq⟩ , (6.82)

⟨qtq|q′t′q⟩ = δq,q′δtqt′q . (6.83)

Hence, any state |ψ⟩ which is an eigenstate of Q̂ transforms symmetrically as

Ûϕ|ψ⟩ = exp (−iqϕ) |ψ⟩ , (6.84)

and so can be expanded in the basis states |qtq⟩ which span the degeneracy space Hq:

|ψ⟩ =
∑
tq

⟨qtq|ψ⟩|qtq⟩ . (6.85)

Similarly, a linear operator T̂ which is covariant in the sense that

ÛϕT̂ Û
†
ϕ = e−i∆qϕT̂ (6.86)

decomposes as
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T̂ = ⊕qT̂q,q−∆q , (6.87)

where the T̂q,q−∆q are dq × dq−∆q operators mapping Hq−∆q → Hq. We will denote

the matrix elements of Tq,q′ in the basis |qtq⟩⟨q′t′q| as [Tqq′ ]tqt′q . A linear operator

which is covariant with ∆q = 0 is said to be invariant, and commutes with the group

operation. This is Schur’s lemma [67]. Symmetric states and covariant operators are

strongly constrained by the fact that they act only in the smaller subspaces Hq rather

than the entire space H.

To make these ideas more concrete, let us consider some explicit examples. First,

let us consider a single lattice site which can accommodate up to 2 bosons. The charge

in this case is the number of bosons, and so the operator Q̂ is n̂, the boson number

operator. In the basis {|0⟩, |1⟩, |2⟩} where |N⟩ is the Fock state with N bosons, this

operator is

n̂ =

 0 0 0
0 1 0
0 0 2

 . (6.88)

The Fock states |0⟩, |1⟩, and |2⟩ span the spaces H0, H1, and H2 with charges 0, 1,

and 2, respectively. Hence, all degeneracy spaces are one-dimensional, dq = 1 ∀q.

The operator n̂ is invariant, as it does not connect states with different charges. It

may be written in the basis |qtq⟩ ∈ {|01⟩, |11⟩, |21⟩} as

n̂ = n̂00 ⊕ n̂11 ⊕ n̂22 =

 (0) 0 0
0 (1) 0
0 0 (2)

 . (6.89)

The fact that this operator is invariant has constrained that only the elements in the

blocks denoted by parentheses may be nonzero. As the blocks n̂qq are 1×1 matrices,

the operator n̂ is in fact specified by three numbers. An example of an operator which

is covariant but not invariant is the bosonic destruction operator
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b̂ =

 0 1 0

0 0
√

2
0 0 0

 . (6.90)

This operator reduces the particle number by 1, and so ∆q = −1. In may be written

in the basis |qtq⟩ ∈ {|01⟩, |11⟩, |21⟩} as

b̂ = b̂01 ⊕ b̂12 =

 0 (1) 0

0 0
(√

2
)

0 0 0

 . (6.91)

As a second example, consider a single lattice site in a system comprised of

spin-1/2 fermions. The charge is now the total number of fermions. In the basis{
|00⟩, |1− 1

2
⟩, |11

2
⟩, |20⟩

}
, where |NSz⟩ is the state with N particles and a total spin

projection of Sz along the z direction, the total fermion number operator is

n̂ =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

 . (6.92)

Hence, the degeneracy space H1 spanned by |1 ± 1
2
⟩ is two-dimensional due to the

spin degree of freedom. In the basis |qtq⟩ ∈ {|01⟩, |11⟩, |12⟩, |21⟩} we may write this

invariant operator as

n̂ = n̂00 ⊕ n̂11 ⊕ n̂22 =


(0) 0 0 0
0
0

(
1 0
0 1

)
0
0

0 0 0 (2)

 . (6.93)

It is specified by the 1× 1 matrices n̂00 and n̂22 and the 2× 2 matrix n̂11. An example

of an invariant operator with off-diagonal matrix elements in the degeneracy space is

Ŝx = â†↑â↓ + â†↓â
†
↑, where a↑ destroys a fermion with Sz = 1

2
and a↓ destroys a fermion

with Sz = −1
2
. This operator may be written in invariant form as
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Ŝx =


(0) 0 0 0
0
0

(
0 1
1 0

)
0
0

0 0 0 (0)

 . (6.94)

These examples illustrate the general utility of symmetry conservation in tensor net-

work algorithms. Conservation of a symmetry breaks a covariant operator into two

pieces. The first piece is the structure of nonzero elements of the operator, specified

by a direct sum of operators appropriately transforming between degeneracy spaces.

This piece is completely determined by the symmetry. The remaining piece, which

distinguishes a particular operator from all others which transform under the group

operation in the same way, is the matrix elements of the operators acting on the

degeneracy spaces.

Let us now consider the product of two spaces HA and HB which admit repre-

sentations of U(1). The action of U(1) on the coupled system HAB = HA ⊗ HB is

generated by the total charge operator Q̂AB = Q̂A ⊗ 1̂B + 1̂A ⊗ Q̂B, and so the space

HAB decomposes into irreps with total charge qAB and degeneracy dqAB
. This coupled

basis carries the same information as the decoupled basis indexed by the charges of

the subsystems qA and qB, and so a one-to-one correspondence must exist between

the two. We define

CqABtAB
qAtA;qBtB

≡ ⟨qABtAB|qAtAqBtB⟩ (6.95)

as the elements of the unitary matrix which encapsulate this one-to-one correspon-

dence. For the Abelian case at hand, each element of this transformation is either

zero or one, but for non-Abelian groups these elements represent the corresponding

Clebsch-Gordan coefficients.45

45In the physics literature, the Clebsch-Gordan coefficients typically refer to this unitary trans-
formation for the case of SU(2). Here we use it in the more general mathematical sense as the
unitary matrix connecting the tensor product of the representation spaces of two irreps of a group
to a direct sum of irreducible representation spaces [68].
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As an example of the transformation to the coupled system, consider two lattice

sites which can contain up to two bosons. Using Eq. (6.89), we can write the total

charge operator in the uncoupled basis |q1tq1q2tq2⟩={|0101⟩ , |0111⟩, |0121⟩, |1101⟩,

|1111⟩, |1121⟩, |2101⟩, |2111⟩, |2121⟩} as

n̂ = n̂1 ⊗ Î + Î ⊗ n̂2 =



0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 3 0 0 0
0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 0 4


. (6.96)

Ordering the vectors in terms of their total charges, we can identify the invariant

form of the total charge operator

n̂ = n̂00 ⊕ n̂11 ⊕ n̂22 ⊕ n̂33 ⊕ n̂44 (6.97)

=



(0) 0 0 0 0 0 0 0 0
0
0

(
1 0
0 1

)
0 0 0
0 0 0

0 0
0 0

0
0

0
0
0

0 0
0 0
0 0

 2 0 0
0 2 0
0 0 2

 0 0
0 0
0 0

0
0
0

0
0

0 0
0 0

0 0 0
0 0 0

(
3 0
0 3

)
0
0

0 0 0 0 0 0 0 0 (4)


, (6.98)

and the corresponding nonzero Clebsch-Gordan coefficients C01
01;01 = C11

01;11 = C12
11;01 =

C21
01;21 = C22

11;11 = C23
21;01 = C31

11;21 = C32
21;11 = C41

21;21 = 1. This construction also

demonstrates that even if the irreps of a single lattice site are non-degenerate, a

combinatoric degeneracy in the space of fixed total charge arises when multiple lattice

sites are considered.

If we now consider the general case of an L-fold tensor product of a space admitting

a representation of U(1) then the total charge operator is
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Q̂ =
L∑
i=1

Q̂i , (6.99)

where Q̂i is the local charge operator at site i. The total charge operator generates

the unitary transformations

Ûϕ;L = exp
(
−iQ̂ϕ

)
=
(
Ûϕ

)⊗L
. (6.100)

The total tensor product space thus decomposes into spaces of fixed total charge.

From Schur’s lemma [67], an invariant Hamiltonian has no matrix elements between

states that have differing total charge, and so we can diagonalize the Hamiltonian

in subspaces of fixed total charge. Thus, all eigenstates of an invariant Hamiltonian

can be chosen to be symmetric in the sense of Eq. (6.84). This makes rigorous the

intuitive notion that the eigenvectors of a Hamiltonian which conserves the number

of particles can be chosen to have a definite number of particles.46

We can generalize the commutation relation Eq. (6.86) for linear operators to ten-

sors by introducing the notion of incoming and outgoing indices which encapsulate

the overall charge flow described by the tensor. The distinction is that incoming

indices transform as Ûϕ under group action while outgoing indices transform as Û †
ϕ.

Intuitively, incoming indices denote charge flowing into the tensor and outgoing in-

dices describe charge flow out from the tensor. With this definition, we have that a

tensor T is invariant under the group action if

∑
i′∈I

[
Ûϕ ⊗ · · · ⊗ Ûϕ

]
ii′

∑
j′∈O

[
Û †
ϕ ⊗ · · · ⊗ Û

†
ϕ

]
jj′
Ti′j′ = Tij . (6.101)

Here I denotes all incoming indices and O all outgoing indices, we have permuted the

indices of T such that all incoming indices lie to the left and all outgoing indices to the

46Here we say only that the eigenvectors can be chosen in this way to account for possible energetic
degeneracies of two states with differing total particle number. In the presence of such a degeneracy,
any linear combination of the degenerate states is also an eigenstate.
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Figure 6.6: Structure of charge flow through an MPS in diagrammatic notation.

right, and the notation [A⊗B]ij denotes the ijth component of the tensor product.

Now, we consider decomposing each on-site state |ij⟩ into its local degeneracy spaces

spanned by |qjtqj⟩ using Eq. (6.84). This implies that the tensor decomposes as

Ti1...iL|i1 . . . iL⟩ = [Tq1...qL ]tq1 ...tqL
|q1tq1 . . . qLtqL⟩ , (6.102)

and the condition that the tensor be invariant becomes that the total incoming and

outgoing charge be the same, where the incoming and outgoing charges are defined

as Qincoming =
∑

i∈I qi and Qoutgoing =
∑

i∈O qi, respectively. This implies that any

invariant tensor takes the form

Ti1...iL = [Tq1...qL ]tq1 ...tqL
δQincomingQoutgoing

. (6.103)

This canonical form is the key result of our analysis. Using the symmetry, we have

broken each invariant tensor into a part determined by the symmetry (the delta

function) and a part which is not (indexed by the tj). This canonical form may be

viewed as a conservation of charge by invariant tensors, as the amount of charge

flowing in is equal to the amount of charge flowing out.

For MPS tensors Aiαβ, we define α and i to be incoming and β to be outgoing

such that qγ with a Greek index denotes the total charge to the left of a given bond

and qi with a Roman index denotes the charge of the particular on-site irrep. The

tensors A then become arrays of tensors
[
Aqiqαqβ

]tqi
tqα tqβ

. This convention of incoming

and outgoing indices can be displayed in a modified tensor network diagram as in
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Figure 6.6, compare Figure 6.3(c).47 The arrows indicate the flow of charge through

an MPS tensor, with the local states |qjtqj⟩ acting as sources of charge. We shall refer

to the canonical form of a tensor which is covariant under the action of U(1) as a q-

tensor. All of the results discussed above extend immediately to products of Abelian

groups by considering the charge q to be a vector q whose entries are the charges

of the individual Abelian symmetries under consideration. Multiple symmetries are

relevant in models whose constituents are particles with spin, as the total number

and the total magnetization are often independently conserved, for example.

To perform index fusion on a q-tensor we use Eq. (6.95) in the form

[
T ′
q(αi)qβ

]
tq(αi)

tqβ

=
∑

qαqitqα tqi

C
q(αi)tq(αi)

qαtqα ;qitqi

[
T qiqαqβ

]tqi
tqα tqβ

, (6.104)

where q(αi) is the charge of |α⟩|i⟩. The transformation tensor C does not change the

total charge, and so it is an invariant tensor. Taking α and i to be incoming indices and

(αi) to be an outgoing index hence requires that qαi = qα ∗ qi, where ∗ is the group

operation and we can characterize the degeneracy index of the composite system

as the Kronecker product of the degeneracy indices from the constituent systems,

tq(αi)
= (tqαtqi). That is, the symmetry determines which irreps can combine and then

the degeneracy indices are combined under ordinary index fusion.48 Writing this out

explicitly, we have

[
T ′
qα∗qi,qβ

]
(tqα tqi)tqβ

=
[
T qiqαqβ

]tqi
tqα tqβ

. (6.105)

Splitting is performed by reading this expression in reverse. Using these fusion and

splitting rules we can also apply the matrix decompositions discussed earlier to de-

47This construction can also be compared with circuit diagrams demonstrating conservation of
charge as specified by Kirchoff’s laws.

48This is the most significant difference between the Abelian and non-Abelian cases. In the latter,
the allowed irreps are enumerated by the Clebsch-Gordan series, and the elements of the unitary
matrix relating tq(αi)

to tqα and tqi are nontrivial.

232



velop canonical forms for q-tensors.

It is remarkable that the only place where the specific form of the Abelian group

arises is in the charge fusion rule qαi = qα ∗ qi. For U(1) ∗ is ordinary addition while

for Zp ∗ is addition mod p. In general, we can use the Cayley table [69] of the group

under consideration to construct the fusion rule.

The contraction of two q-tensors is restricted by the fact that incoming indices in

one covariant tensor can only be contracted with outgoing indices of another covariant

tensor in order for the result to also be a covariant tensor. Furthermore, as can be

gleaned from the fusion rule above, the charges of each index which are contracted

have to agree between the two tensors in order to yield a nonzero result. Hence, the

procedure to contract the sets of indices A and B of two q-tensors U and V together

is to find all matching charges within the two sets qA and qB, and then contract the

degeneracy tensors using ordinary tensor contraction, Eq. (6.17), resulting in

[
TqĀqB̄

]
tĀtB̄

=
∑
q

∑
tq

[
UqĀq

]
tĀtq

[
VqqB̄

]
tqtB̄

. (6.106)

Hence, essentially all expressions using MPSs can be translated directly for their

(Abelian) symmetry-adapted counterparts by replacing summations over indices with

simultaneous summations over the charges and degeneracy dimensions.

When written naively, Eq. (6.106) implies an algorithm which scales as O (NUNV ),

where NT is the number of irreps in T . This scaling can be improved by sorting

the quantum numbers and using a binary search to find matches. We note that,

because the charges can be put into one-to-one correspondence with some subset

of the integers, we can always define the vacuum charge to be zero for our finite

Hilbert spaces. Rather than working directly with the charges themselves, it is useful

to define a hash function [70] which takes unique arrays of nonnegative integers to
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unique values.49 That is, the function is injective. A hash function satisfying this

criterion, which has a number of other useful properties for our purposes, is the

square-root of primes hash

H (q) =
∑
i

qi
√
pi . (6.107)

Here pi is the ith prime, and the injectivity of H follows from the fact that the numbers

√
pi are incommensurable. A nice feature of H (q) is that it is linear in the elements

of q, and so given the values of
√
pi the hash function can be obtained for arbitrary

combinations of charges very quickly. In practice one never needs more than a few

primes, and these may be generated once using a sieve and stored for later use. With

hashing, the procedure for contracting two q-tensors becomes

1. Hash U and V according to A and B in O (NU +NV ) time.

2. Sort the smaller of the two setsA andB according to its hashes inO (NM logNM)

time, where NM = min (NU , NV ).

3. Loop through the elements of the larger list and perform a binary search to

find matching hashes in the smaller list in O (NX logNM) time, where NX =

max (NU , NV ).

4. Contract all matching hashes using the contraction algorithm for ordinary ten-

sors on the degeneracy spaces.

Using the square-root of primes hash makes the process of contracting tensors

efficient even when permutations, large numbers of indices, or multiple Abelian sym-

metries are involved.

As an example of a symmetric MPS, let us again consider the W state from

Sec. 6.4.3

49This is in fact the definition of a perfect hash function, which is harder to find than a hash
function in general but can be explicitly found for our purposes.
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|W ⟩ =
1√
L

L∑
i=1

|0⟩⊗i−1|1⟩|0⟩⊗L−i . (6.108)

If we interpret |0⟩ as a state with no particles and |1⟩ as a state with 1 particle, then

the W state is an eigenstate of the total particle number operator with eigenvalue 1.

We will use charge interchangeably with the number of particles in what follows. We

can write the W state as

|W ⟩ =
1√
L

[
|0⟩⊗j−1|1⟩|0⟩⊗L−j + |W ; j − 1⟩|0⟩|0⟩⊗L−j + |0⟩⊗j−1|0⟩|W ;L− j⟩

]
,

(6.109)

where

|W ; ℓ⟩ =
ℓ∑
i=1

|0⟩⊗i−1|1⟩|0⟩⊗ℓ−i (6.110)

is an unnormalized W state on ℓ sites. Hence, if site j is in state |1⟩, then it follows

that the state to the left of site j is |0⟩⊗j−1 and the state to the right of site j is

|0⟩⊗L−j. The state |1⟩ is the unique on-site state with charge q = 1, and so |1⟩ = |11⟩

in the |qjtqj⟩ basis. Furthermore, |00 . . . 0⟩ is the unique state with charge 0, and so

|00 . . . 0⟩ = |01⟩ in the |qαtqα⟩ basis. This implies that the contribution to the MPS

at site j with quantum numbers (qαqiqβ) = (010) is

[
A

[j]1
00

]1
11

= 1 . (6.111)

If site j is in state |0⟩, then either the state to the left is |W ; j − 1⟩ and the state to

the right is |00 . . . 0⟩ or the state to the left is |00 . . . 0⟩ and the state to the right is

|W ; ℓ− j⟩. Because the W state on any number of sites has charge 1 and the W state

is the only state with charge 1 relevant to any subsystem, we have the elements
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[
A

[j]0
01

]1
11

= 1 ,
[
A

[j]0
10

]1
11

= 1 . (6.112)

Hence, the complete MPS q-tensor at site j is the direct sum of the elements

[
A

[j]0
01

]1
11

= 1 ,
[
A

[j]0
10

]1
11

= 1 ,
[
A

[j]1
00

]1
11

= 1 , (6.113)

compare Eq. (6.53). Both the MPS tensor Eq. (6.53) and the MPS q-tensor Eq. (6.113)

have three independent elements. The difference is that Eq. (6.113) writes these three

elements as a direct sum with the topology of index contraction determined by the

charges of the subsystems. The utility of the q-tensor decomposition is that contrac-

tions over tensors become direct sums of contractions over tensors with smaller linear

dimensions, see Eq. (6.106). Because of the polynomial scaling of contractions with

the bond dimension, this leads to a significant speedup when symmetries are explic-

itly utilized. In the present case the reduction of the bond dimension is complete, as

the tensors in Eq. (6.113) are all 1×1×1 dimensional.

The present chapter gives an intuition for why MPSs are useful as variational

ansätze for strongly-correlated 1D systems, demonstrates how to extract physical

information from MPSs, and explains how to express MPSs in terms of irreducible

tensors such that Abelian symmetries are explicitly conserved. In Chapter 7, we

discuss how to generate MPS representations of eigenstates of 1D systems through

variational means. Additionally, it is shown how to time-evolve the MPS form of a

wavefunction in a generic way. These algorithms all apply to lattice systems of finite

extent. In Chapter 8 we present an algorithm for variationally finding the ground state

of a homogenous 1D system which has infinite extent. This is done by introducing an

MPS decomposition of a unit cell which, when infinitely repeated, generates the full

state. This unit cell is then optimized using variations of the finite-size algorithms.

Finally, in Chapter 9, we discuss how algorithms for time evolution of MPSs may be
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adapted to extract finite-temperature properties of 1D systems. This chapter also

discusses the form of MPSs and the structure of their algorithms for systems with

periodic boundary conditions.
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[60] I. P. McCulloch and M. Gulácsi. The non-Abelian density matrix renormalization
group algorithm. EPL (Europhysics Letters), 57(6):852, 2002. URL http://

stacks.iop.org/0295-5075/57/i=6/a=852.

[61] Ian P. McCulloch. From density-matrix renormalization group to matrix prod-
uct states. Journal of Statistical Mechanics: Theory and Experiment, 2007
(10):P10014, 2007. URL http://stacks.iop.org/1742-5468/2007/i=10/a=

P10014.

[62] Sukhwinder Singh, Huan-Qiang Zhou, and Guifre Vidal. Simulation of one-
dimensional quantum systems with a global SU(2) symmetry. New Journal of
Physics, 12(3):033029, 2010. URL http://stacks.iop.org/1367-2630/12/i=

3/a=033029.

242

http://link.aps.org/doi/10.1103/PhysRevLett.59.799
http://link.aps.org/doi/10.1103/PhysRevLett.59.799
http://link.aps.org/doi/10.1103/PhysRevB.73.085115
http://link.aps.org/doi/10.1103/PhysRevB.73.085115
http://link.aps.org/doi/10.1103/PhysRevLett.102.255701
http://arxiv.org/abs/1204.3934
http://stacks.iop.org/0295-5075/57/i=6/a=852
http://stacks.iop.org/0295-5075/57/i=6/a=852
http://stacks.iop.org/1742-5468/2007/i=10/a=P10014
http://stacks.iop.org/1742-5468/2007/i=10/a=P10014
http://stacks.iop.org/1367-2630/12/i=3/a=033029
http://stacks.iop.org/1367-2630/12/i=3/a=033029


[63] Sukhwinder Singh, Robert N. C. Pfeifer, and Guifre Vidal. Tensor network states
and algorithms in the presence of a global U(1) symmetry. Phys. Rev. B, 83:
115125, Mar 2011. doi: 10.1103/PhysRevB.83.115125. URL http://link.aps.

org/doi/10.1103/PhysRevB.83.115125.

[64] Sukhwinder Singh, Robert N. C. Pfeifer, and Guifré Vidal. Tensor network
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CHAPTER 7

OUT OF EQUILIBRIUM DYNAMICS WITH MATRIX PRODUCT STATES

Abstract:50 Theoretical understanding of strongly correlated systems in one spa-

tial dimension (1D) has been greatly advanced by the density-matrix renormaliza-

tion group (DMRG) algorithm, which is a variational approach using a class of

entanglement-restricted states called Matrix Product States (MPSs). However, DRMG

suffers from inherent accuracy restrictions when multiple states are involved due to

multi-state targeting and also the approximate representation of the Hamiltonian

and other operators. By formulating the variational approach of DMRG explicitly

for MPSs one can avoid errors inherent in the multi-state targeting approach. Fur-

thermore, by using the Matrix Product Operator (MPO) formalism, one can exactly

represent the Hamiltonian and other operators relevant for the calculation. The MPO

approach allows 1D Hamiltonians to be templated using a small set of finite state au-

tomaton rules without reference to the particular microscopic degrees of freedom.

We present two algorithms which take advantage of these properties: eMPS to find

excited states of 1D Hamiltonians and tMPS for the time evolution of a generic time-

dependent 1D Hamiltonian. We properly account for time-ordering of the propagator

such that the error does not depend on the rate of change of the Hamiltonian. Our

algorithms use only the MPO form of the Hamiltonian, and so are applicable to micro-

scopic degrees of freedom of any variety, and do not require Hamiltonian-specialized

implementation. We benchmark our algorithms with a case study of the Ising model,

where the critical point is located using entanglement measures. We then study the

dynamics of this model under a time-dependent quench of the transverse field through

the critical point. Finally, we present studies of a dipolar, or long-range Ising model,

50Out of equilibrium dynamics with Matrix Product States, M. L. Wall and L. D. Carr, New
J. Physics, under review.
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again using entanglement measures to find the critical point and study the dynamics

of a time-dependent quench through the critical point.

7.1 Introduction

The great success of experimental ultracold atomic physics has made the study

of strongly correlated one-dimensional (1D) quantum systems a major avenue of cur-

rent physics research. Examples of novel condensed matter physics realized with 1D

atomic systems include the role of integrability in thermalization [1] and static [2]

and dynamic [3] quantum simulators of Hubbard models. Furthermore, as ultracold

molecules approach quantum degeneracy [4–6], lattice models with complex internal

degrees of freedom and long-range interactions become relevant [7–9]. As more and

more complex models become amenable to study, the need for numerical methods

which can adapt to different degrees of freedom, different Hamiltonians, and different

dynamical processes thus becomes essential.

In addition to practical interest in understanding and benchmarking atomic and

molecular quantum simulators, the ability to simulate the dynamics of 1D systems

also provides insight into fundamental questions such as the universality of dynamics

approach quantum critical points and the effects of integrability on the thermalization

process [10]. The natural setting for studying dynamics near critical points is a

quantum quench where one of the parameters of the Hamiltonian is driven through

a quantum critical point following a time dependent protocol, for example

g (t) = g0 +
v (t− t0)r

r!
θ (t− t0) , (7.1)

with θ (t) the step function. Such quenches pose a special difficulty for numerical

studies as by definition they involve evolution with a time-dependent Hamiltonian

which does not commute with itself at different times. The propagator is then gen-

erally a time-ordered exponential whose precise form may be difficult to ascertain.
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Standard methods such as the Suzuki-Trotter expansion which ignore the time de-

pendence of the Hamiltonian require [11] that the infinitesimal time step used be

much less than the fluctuation time-scale of H (t) to be valid, δt≪ |∂H/∂t|−1. This

can cause simulations with rapid quench rates to become numerically very costly, and

invalidates the approach altogether for non-analytic time dependence.

Currently the only unbiased method available for the dynamics of quantum sys-

tems is exact diagonalization (ED). By unbiased, we refer to the fact that the other

methods available for dynamics are generally variational, and so have a bias towards

a particular ansatz. ED is limited in an essential way by the exponential growth of

the size of the Hilbert space with the physical size of the system. The current state

of the art is ∼ 40 spins for spin-1/2 models and 20 sites for a fermionic Hubbard

model at half filling. These sizes are often too small for accurate finite-size scaling.

An extremely powerful method for the low-energy properties of 1D systems is White’s

Density Matrix Renormalization Group (DMRG) algorithm, which uses a variational

ansatz based on a class of states known as Matrix Product States (MPSs). MPSs

will be reviewed in Sec. 7.2.1. DMRG uses an iterative procedure to develop a set of

reduced bases that the full many-body problem is projected into, and then variation-

ally minimizes an energy functional in this reduced space, enlarging it if necessary.

DMRG uses an implicit MPS representation, which is to say that the state is not

stored explicitly. This also means that the Hamiltonian and other operators in the

calculation are stored in an approximate way, as they are represented within the re-

duced basis describing the variational state. This does not cause problems in practice

when a single state is sought using the DMRG process. In fact, one can show that

the algorithm to variationally find the ground state is identical when phrased in the

implicit formulation of DMRG and when using an explicit MPS representation for

the variational state, other than the representation of the Hamiltonian [12]. However,

because of the exact representation of operators independent of the state, MPSs can
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put rigorous bounds on distances from exact quantum states such as eigenstates by

considering quantities like the variance ⟨ψ|
(
Ĥ − E

)2
|ψ⟩ with Ĥ the Hamiltonian

operator and E the energy expectation of the MPS |ψ⟩. In contrast, DMRG can

only return the distance of the variational state from the approximate operator Ĥ in

the given variational basis, and is unable to determine how well the given variational

basis represents the true operator. A particularly clear indication of the failures this

can cause is given in Ref. [13] where time evolution of a particular initial state in

DMRG fails because the Hamiltonian has no nonzero matrix elements in the initial

DMRG basis.

The situation becomes much different when multiple states are sought using the

DMRG procedure. In this case the reduced density matrix used to determine the

optimal reduced bases for the algorithm is a convex sum of the reduced density

matrices for the desired states. This is called multi-state targeting. In contrast,

an explicit MPS representation stores each of the desired states separately as an

MPS. In multi-state targeting, none of the states can be represented with the same

accuracy available if DMRG targeted that state alone. The MPS representation

also deals automatically with the fact that each state has its own optimal bases for

representation, whereas in DMRG these bases are all tied together by the multi-state

targeting. In this work we present two algorithms which take advantage of MPSs’

ability to deal with multiple states, eMPS to find excited states of 1D Hamiltonians

and tMPS to simulate the dynamics of a generic time-dependent Hamiltonian. In the

first algorithm a projector orthogonal to a set of lower-lying eigenstates is constructed

from their MPS representations and used to orthogonalize a variational state against

this set. In the second algorithm Krylov vectors in a Lanczos approximation to the

matrix exponential are stored separately as MPSs and combined in an optimal way

only at the end of the calculation. While Krylov-based MPS approaches have been

used [13, 14] to study time-dependent processes, the errors in these approaches were
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set by time derivative of the Hamiltonian. In contrast, by taking explicit account

of the time ordering of the propagator, the errors in our approach are set only by

commutators of the Hamiltonian at different times, and hence allow for larger time

steps. Because of the explicit MPS representation, we are able to put bounds on the

errors in each step of the calculations.

Finally, MPSs have a natural operator-valued extension known as Matrix Product

Operators (MPOs) which allow for the exact representation of all operators used in

the calculation. We present a general framework for constructing MPOs from a set

of rules which is independent of the nature of the microscopic degrees of freedom.

This allows for the templating of 1D Hamiltonians for general purpose software. In

addition, the ability to perform arithmetic operations on MPOs exactly enables us to

perform time-evolution using our tMPS algorithm with knowledge only of the MPO

form of the Hamiltonian and the time-dependent functional form of its parameters.

To emphasize the general nature of our algorithms, we include a generic simulation

protocol for the out-of-equilibrium dynamics of strongly correlated 1D systems using

the algorithms presented in this paper.

The remainder of this paper is organized as follows. In Sec. 7.2 we review the the-

ory of MPSs, MPOs, and their canonical forms. In addition to providing a canonical

form for operators within the matrix product formalism, we define finite state automa-

ton rules for MPOs and demonstrate how 1D Hamiltonians can be constructed from

a small set of such rules. In Sec. 7.3 we review the algorithm for finding ground states

using MPSs as variational ansätze, and in Sec. 7.4 we present the eMPS algorithm

which extends the ground state search to general excited states. Sec. 7.5 discusses

how to extract observable quantities from MPSs. In Sec. 7.6 we discuss methods

for time evolution with MPS. In particular, we provide the tMPS algorithm to time

evolve an MPS using only the MPO representation of a Hamiltonian and the func-

tional form of its time-dependent parameters. We contrast our approach with other
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Krylov subspace approaches and identify the possible sources of error. In Sec. 7.10

we present two case studies. The first is of the Ising model in a transverse field, where

we study both the statics and the dynamics of a linear quench of the transverse field

through the quantum critical point. The second is of a dipolar, or long-range Ising

model in a transverse field, where we also determine the critical point from the statics

and study a linear quench of the transverse field. Finally, in Sec. 7.11, we conclude.

Details concerning numerically exact solutions for the Ising model which are used to

benchmark our algorithms are given in 7.12.

7.2 Brief Review of Matrix Product Formalism

7.2.1 Matrix Product States

The Hilbert space of a quantum mechanical many-body system is exponentially

large in the physical size of the system, for example the number of unit cells in a

lattice or the number of particles. Stated another way, a state picked at random from

the Hilbert space of a quantum many-body system will have entanglement (as quan-

tified by the Schmidt measure [15]) which grows exponentially with the system size.

In contrast to this random state, it has been shown that the class of states which are

physically relevant in the sense that they can be prepared from some reference state

by generic time evolution in polynomial time [11] or are useful for quantum compu-

tation [16] is much smaller than the full Hilbert space. In 1D, the physically relevant

class of states appears to be those which have entanglement which is either constant

or polynomially growing as a function of system size. A convenient representation of

states with entanglement restricted in this manner is known as matrix product states

(MPSs) [12, 17, 18].

We consider our physical system to be comprised of a 1D lattice of sites, where

each site i is a d-dimensional Hilbert space Hi spanned by the vectors {|i⟩}. We will

refer to d as the local dimension, and take all sites to be identical for simplicity. We

define an MPS on a lattice with L sites as
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|ψMPS⟩ =
d∑

i1,...iL=1

Tr
(
A[1]i1 . . . A[L]iL

)
|i1 . . . iL⟩ , (7.2)

where the object A[k]ik is a χk × χk+1 matrix (with χ1 = χL+1) and Tr denotes the

matrix trace. We will refer to the maximum linear dimension of any of the matrices

A[k]ik , maxk χk, as the bond dimension of the MPS, and denote this quantity by χ. χ

may be used as a measure of the entanglement of the state [12]. In this work we will

focus on systems with open boundary conditions (OBC). MPS algorithms can also be

devised for systems with periodic boundary conditions, as discussed in Refs. [7, 19–

21], but these algorithms have worse scaling and are generally less numerically stable

than their OBC counterparts. For OBC, χ1 = χL+1 = 1, and arguments using the

Schmidt decomposition demonstrate that χk ≤ min(dk−1, dL−k) [22].

MPSs have been used for many years to represent exact ground states of parent

Hamiltonians [23] which are formed from projectors onto local high-symmetry sub-

spaces [24, 25]. However, it was not until the great success of the density matrix

renormalization group algorithm (DMRG) pioneered by White [26] that MPSs be-

came valuable as variational ansätze in their own right [19]. Why are MPSs useful

as variational ansätze? It has been shown [27] that the ground states of gapped 1D

systems have bipartite entanglement which does not depend on the system size. Such

states can be represented exactly as MPSs with a fixed bond dimension [28]. This is

an example of an area law [29]; the entanglement between two disjoint subsystems

depends only on the boundary of the two regions and not on their volume. For sys-

tems near a quantum critical point which is described by a conformal field theory

(CFT), this area law is subject to weak logarithmic violations such that the entropy

of entanglement between two subsystems of size L is given by the Calabrese-Cardy

formula [30, 31]
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SL ∼ a+
c

6
logL , (7.3)

where a is a constant and c is the central charge of the underlying CFT. Here ∼

denotes scaling equivalence in the bulk of an infinite system. In finite systems there

are often oscillating boundary and finite size contributions [32, 33]. Hence, the bond

dimension of an MPS describing a conformally invariant critical system is given as

χL ∼ expSL ∼ eaLc/6, which grows only polynomially in the system size. Typical val-

ues of c range from 1/2 for the Ising model [34] and 1 for the Bose-Hubbard model [35]

to 2 for more exotic phases like the gapless Mott insulator of the JK model [36]. We

note that, strictly speaking, finding an MPS which approximates the ground state of

an arbitrary 1D Hamiltonian to an accuracy which is an inverse polynomial in the

system size is still NP-complete [37], but practical experience demonstrates that this

method is extremely useful and robust for physical systems of interest.

We adopt the following conventions for the representation of tensors: we use roman

indices for indices which correspond to physical states and greek indices for indices

which are summed over in the matrix-product ansatz. Explicitly writing out Eq. (7.2)

with these indices, we have

|ψMPS⟩ =
∑

α1...αL−1

d∑
i1,...iL=1

A[1]i1
α1α2

. . . A[L]iL
αL−1α1

|i1 . . . iL⟩ . (7.4)

A superscript index in square brackets [] denotes the lattice site that the physical

indices of the tensor describe. A superscript index in curly braces {} denotes associ-

ation with a particular many-body state. For example, the MPS tensors at site j of

the MPSs |ϕk⟩, k = 1, . . . , n would be denoted A
[j]{k}ij
αβ . Finally, indices which appear

together in parentheses, e.g. (αβ), represent a composite index which runs over the

Cartesian product of the indices in the parentheses. As an example, if α = 1, . . . , χα

and β = 1, . . . χβ, (αβ) = (α − 1)χβ + β. To lighten the notation, we will leave off
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A
i
αβ C

ij

αβ =

∑

γ

A
i
αγB

j

γβ

(a) (b) (c)

|ψMPS〉

Figure 7.1: Diagrammatic notation for tensor networks. (a) A rank-three tensor is
represented as a point with three lines extending from it. (b) Contraction of two
rank-three tensors is accomplished by connecting the contracted index, and produces
a tensor of rank four. (c) An MPS on 5 sites with open boundary conditions
is represented as a contraction over rank three tensors with two rank-two boundary

tensors.

indices when they are unnecessary.

A particularly useful means to visualize MPSs and manipulations with them is

provided by tensor network diagrams like those shown in Figure 7.1 [38]. Here a

rank-k tensor is represented by a point with k lines extending from it. Each line

represents one of the indices of the tensor. Whenever a line connects two points,

that index is summed over, and disconnected lines represent free indices. Hence, an

MPS can be represented as a chain of rank-3 tensors as in Figure 7.1(c). Note that

the first and last MPS tensors are rank two because we have assumed OBC and so

χ1 = χL+1 = 1.

We note that the MPS definition Eq. (7.2) does not uniquely specify the tensors

A. That is, we can insert an invertible matrix X and its inverse X−1 between any

two MPS matrices without altering the physical content of the state:

|ψMPS⟩ =
d∑

i1,...iL=1

Tr
(
A[1]i1 . . . A[L]iL

)
|i1 . . . iL⟩ , (7.5)

Ã[j]ij = A[j]ijX , Ã[j+1]ij+1 = X−1A[j+1]ij+1 , (7.6)

|ψ̃MPS⟩ =
d∑

i1,...iL=1

Tr
(
A[1]i1 . . . Ã[j]ij Ã[j+1]ij+1 . . . A[L]iL

)
|i1 . . . iL⟩ = |ψMPS⟩ .(7.7)
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= =

(a) (b) (c)

=

Figure 7.2: Gauge conditions for MPSs. (a) Left gauge condition Eq (7.8). (b) Right
gauge condition Eq (7.9). (c) Using (a) and (b), the norm squared of an MPS reduces
to the trace of its orthogonality center squared, here chosen to be the third site.

This is referred to as gauge freedom in the literature [22]. For OBC, we can specify

the state uniquely51 by choosing a site k, which we call the orthogonality center of

the MPS, and requiring that all sites i to the left and right of k satisfy the left

∑
i

Ai
†
Ai = I (7.8)

and right

∑
i

AiAi
†

= I (7.9)

gauge conditions, respectively. In these expressions, I is the appropriately dimen-

sioned identity matrix. These conditions are shown in graphical notation in Fig-

ure 7.2(a) and (b), respectively.52 Graphically it is clear that the norm squared of

the state is

⟨ψ|ψ⟩ =
∑
i

Tr
(
A[k]i†A[k]i

)
, (7.10)

as shown in Figure 7.2(c), and so this site carries all information about the norm of the

state. This particular canonical form for an MPS is called mixed canonical form [12].

The mixed canonical form is crucial for improving the speed and numerical stability

of variational algorithms with MPSs.

We can impose the left gauge conditions via the following recursion:

51The state is unique up to possible degeneracies in the Schmidt decomposition.
52Here we also establish the graphical convention that downwards pointing lines correspond to

Hermitian conjugates of tensors.
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Ã(αi)β = A
[ℓ]i
αβ , (7.11)∑

γ

U(αi)γΣγV
†
γβ = Ã(αi)β , (7.12)

A[ℓ]i
αγ = U(αi)γ , (7.13)

A[ℓ+1]i
γη =

∑
β ΣγV

†
γβA

[ℓ+1]i
βη , (7.14)

where Eq. (7.12) represents the singular value decomposition (SVD) of Ã with Σ

a diagonal matrix of singular values and U and V unitary matrices.53 Because U

returned from the SVD is unitary, Eq. (7.8) is satisfied by construction. Similarly,

the recursion for the right gauge conditions is

Ãα(iβ) = A
[ℓ]i
αβ , (7.15)∑

γ

UαγΣγV
†
γ(iβ) = Ãα(iβ) , (7.16)

A
[ℓ]i
γ(iβ) = V †

γ(iβ) , (7.17)

A[ℓ−1]i
ηγ =

∑
αA

[ℓ−1]i
ηα UαγΣγ . (7.18)

To put a general state into mixed canonical form with orthogonality center k we begin

at site 1 and iterate Eqs. (7.11)-(7.14) until we reach site k, then start at site L and

iterate Eqs. (7.15)-(7.18) until we again reach site k.

Finally, we note that the set of all MPSs with a fixed bond dimension χ is not a

vector space, as the sum of two MPSs with bond dimensions χA and χB has a bond

dimension χ which is bounded by the sum of the two bond dimensions χ ≤ χA + χB.

This can be seen from considering the sum of the two states |0 . . . 0⟩ and |1 . . . 1⟩,

with MPS representations

53Note that any matrix decomposition of Ã which returns a unitary matrix as part of the decom-
position will suffice in place of the SVD. In particular, the QR decomposition [39] is particularly
efficient when the rank of Ã is not required.
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(a) (b)

Figure 7.3: MPO in diagrammatic notation. (a) A matrix product operator consists
of a contraction of rank-four tensors. We adopt the graphical convention that the
line below the horizontal corresponds to i′ and the line above the horizontal to i for
an operator Oii′ which takes the local state from |i′⟩ to |i⟩. (b) The product of an
MPO and an MPS produces another MPS whose bond dimension is the product of
the bond dimensions of the original MPS and the MPO.

|0 . . . 0⟩ =
∑
i1...iL

Ai1 . . . AiL |i1 . . . iL⟩ , Ai = (δi,0) , (7.19)

|1 . . . 1⟩ =
∑
i1...iL

Bi1 . . . BiL |i1 . . . iL⟩ , Bi = (δi,1) . (7.20)

The matrices Ai and Bi have a bond dimension of 1, as these are product states.

Their sum is

|0 . . . 0⟩+ |1 . . . 1⟩ =
∑
i1...iL

C [1]i1C [2]i2 . . . C [L−1]iL−1C [L]iL|i1 . . . iL⟩ ,(7.21)

C [1]i =
(
δi0 δi1

)
; C [j]i =

(
δi0 0
0 δi1

)
, 2 ≤ j ≤ L− 1 ; C [L]i =

(
δi0
δi1

)
;(7.22)

which has a bond dimension of 2.

7.2.2 Matrix Product Operators

The natural operator generalization of MPSs is a Matrix Product Operator (MPO),

defined as

ÔMPO =
d∑

i1,...iL=1

d∑
i′1,...i

′
L=1

Tr
(
W [1]i1i′1 . . .W [L]iLi

′
L

)
|i1 . . . iL⟩⟨i′1 . . . i′L| . (7.23)
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Here W [k]ii′ is a χOk ×χOk+1 dimensional matrix, and we will again refer to the maximum

value of χO as the bond dimension of the operator. Note that this bond dimension χO

need not be the same as the bond dimension χ appearing in the MPS representation,

Eq. (7.2). That an MPO takes MPSs to MPSs can be seen clearly from the graphical

representation of Figure 7.3. We also see from this representation that the bond

dimension of the MPS representing the product of an MPO and an MPS is the product

of the bond dimensions of the MPO and the MPS. Because the states |i1 . . . iL⟩ are

tensor products, we can also use the notation

ÔMPO =
d∑

i1,...iL=1

d∑
i′1,...i

′
L=1

Tr
(
W [1]i1i′1 . . .W [L]iLi

′
L

)
, (7.24)

where each one of the objectsW [j]iji
′
j ≡ W [j]iji

′
j |ij⟩⟨i′j|. That is to say, we can consider

the matrices which appear in the matrix-product ansatz of an MPO to be operator-

valued.

It is tempting to look for canonical forms for MPOs just as we did for MPSs,

but the relevant norm for MPOs is the Frobenius norm ⟨Ô1, Ô2⟩ = Tr(Ô†
1Ô2) which

scales exponentially in the local dimension with the number of lattice sites. Thus, for

a typical many-body system with an exponentially large Hilbert space, the elements

of the orthogonality center can differ in magnitude greatly, causing a catastrophic

loss of precision during orthogonalization. However, most physically relevant MPOs

such as one-dimensional Hamiltonians can be written down exactly in terms of an

MPO canonical form which is analogous to an LU decomposition [40]. To discuss this

canonical form, it is useful to recast an MPO as a finite state automaton (FSA) [41,

42].

To recast an MPO as a FSA, we first enumerate all of the physical operators we

use to define our local Hilbert space, O = {Ôα}, where α labels distinct operators.

We will call this set our operator alphabet (OA). As examples, the OA for the Ising
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model would be
{
Î , σ̂x, σ̂z

}
with Î the identity operator and σ̂ν the Pauli operator

along the νth Cartesian direction. The OA for the Bose-Hubbard model [43, 44] would

be
{
Î , b̂†, b̂, n̂

}
, where b̂ is a bosonic destruction operator and n̂ = b̂†b̂ the number

operator. The particular matrix representation of the OA fixes the local basis states

{|i⟩}.

Using the OA, we now introduce a set of FSA rules {Rp

(
{Ôp1 , . . . , Ôpn}, {hp} , wp

)
}

which generate strings of the n operators {Ôp1 , . . . , Ôpn} ∈ O weighted by scalar wp

and variables {hp}. We will call the variables {hp} Hamiltonian parameters and the

scalars wp weights. Each rule consists of three operator-valued matrices in the case

where the {hp} do not depend on position. The first matrix is the rightmost matrix

in the MPO representation, W [L], and represents the initial configuration. Next, we

have the MPO matrix of the bulk of the chain W [j], 2 ≤ j ≤ L − 1, which takes

an input vector of operators on k sites and produces a vector of operators on k + 1

sites according to some deterministic pattern. Finally, we have the leftmost matrix in

the MPO representation, W [1], which extends the operators according to the patten

of W [j] and returns a 1 × 1 operator-valued matrix. The trace of this matrix as in

Eq (7.23) is the desired Hamiltonian term. The generalization to position-dependent

Hamiltonian parameters requires L − 2 matrices in place of the bulk matrix W [j],

2 ≤ j ≤ L− 1, but the only modification is that hp becomes hp (j).

As a concrete example, consider the Ising model

Ĥ = −J
∑
⟨i,j⟩

σ̂zi σ̂
z
j − h

∑
i

σ̂xi . (7.25)

The Hamiltonian consists of two rules. The first is a site rule Rsite(σ̂
x, h,−1) which

generates the string −h
∑

i σ̂
x
i . The three matrices which provide this rule are
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W [1]
site =

(
−hσ̂x Î

)
, W [2≤j≤L−1]

site =

(
Î 0

−hσ̂x Î

)
,

W [L]
site =

(
Î
−hσ̂x

)
. (7.26)

As can be verified,

k∏
j=L−1

W [j]
siteW

[L]
site =

(
Î . . . Î

−h
∑L

i=k σ̂
x
i

)
, (7.27)

and so this rule produces the desired operator. Similarly, there is a bond rule

Rbond({σ̂z, σ̂z}, J,−1) given by

W [1]
bond =

(
0 −Jσ̂z Î

)
, W [2≤j≤L−1]

bond =

 Î 0 0
σ̂z 0 0

0 −Jσ̂z Î

 ,

W [L]
bond =

 Î
σ̂z

0

 , (7.28)

which produces −J
∑

⟨i,j⟩ σ̂
z
i σ̂

z
j , with ⟨i, j⟩ denoting a sum over nearest neighbors i

and j. The full Hamiltonian is given by the direct sum of the matrices. Collecting

rows of the direct sum which are exactly parallel, we have the MPO representation

of the full operator

W [1]
Ising =

(
−hσ̂x −Jσ̂z Î

)
, W [2≤j≤L−1]

Ising =

 Î 0 0
σ̂z 0 0

−hσ̂x −Jσ̂z Î

 ,

W [L]
Ising =

 Î
σ̂z

−hσ̂x

 . (7.29)

This construction can be readily extended to general sums of nearest-neighbor and

on-site interactions with Hamiltonian
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Ĥ = −
nb∑
α=1

Jα
∑
⟨i,j⟩

Ô
b1;α
i Ô

b2;α
j −

ns∑
β=1

hβ
∑
i

Ô
sβ
i (7.30)

by summing up the individual rules:

W [1] =
(
−
∑ns

β=1 hβÔ
sβ −J1Ôb1;1 . . . −Jnb

Ôb1;nb Î
)

W [2≤j≤L−1] =


Î 0 . . . 0 0

Ôb2;1 0 . . . 0 0
...

...
. . .

...
...

Ôb2;nb 0 . . . 0 0

−
∑ns

β=1 hβÔ
sβ −J1Ôb1;1 . . . −Jnb

Ôb1;nb Î

 , (7.31)

W [L] =


Î

Ôb2;1

...

Ôb2;nb

−
∑ns

β=1 hβÔ
sβ

 .

The bond dimension of the MPO representation of this Hamiltonian is 2 +nB. MPO

representations are not restricted to nearest-neighbor terms. Exponentially decaying

terms of the form54

Ĥ = −J
∑
i<j

e−λ(j−i−1)Ô1
i Ô

2
j (7.32)

can also be accommodated with the rule Rexp({Ô1, Ô2}, {J, λ},−1)

W [1]
exp =

(
0 −JÔ1 Î

)
, W [2≤j≤L−1]

exp =

 Î 0 0

Ô2 e−λÎ 0

0 −JÔ1 Î

 ,

W [L]
exp =

 Î

Ô2

0

 . (7.33)

We can also produce a general monotonically decaying term

54Note in this form that the nearest neighbor coupling is J and only longer ranged couplings
contain λ.
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Ĥ = J
∑
i<j

f (j − i) Ô1
i Ô

2
j (7.34)

by approximating the term as a sum of exponentials to a desired distance rcutoff . That

is, we minimize the functional

F (a,b) =

nexp∑
i=1

rcutoff∑
x=1

∣∣f (x)− aibx−1
i

∣∣2 (7.35)

with respect to the exponential weights ai and decay parameters bi, where a and b

are the elements ai and bi, respectively, arranged as vectors and nexp is a convergence

parameter controlling the number of exponentials used in the expansion [45–47]. Note

that the fit is only guaranteed to be accurate to rcutoff while the term has infinite range.

This does not cause difficulties in practice for decaying functions, as the resulting fit

is also guaranteed to be monotonically decaying. The decaying function rule is then

just a sum of these nexp exponential rules, Rdf({Ô1, Ô2}, {J, f(x), nexp, rcutoff}, 1) =∑nexp

i=1 Rexp({Ô1, Ô2}, {Jai,− log bi}, 1). In contrast to the other rules presented above

this rule is not exact, but the number of exponentials can be increased to any de-

sired accuracy.55 This procedure is surprisingly accurate even for small numbers of

exponentials-5 exponentials suffice to accurately represent a 1/r3 interaction at a

distance of 1000 sites to an error of 10−9 [47]. While the bond dimension increases

linearly with the number of exponentials, the number of nonzero terms in the MPO

also grows only linearly with the number of exponentials, and so operations with the

MPO scale well as nexp increases. However, the eigenstate of a Hamiltonian with

larger nexp may be more highly entangled than with smaller nexp, leading to an in-

crease in χ and longer runtimes. That is to say, the relationship between the bond

dimension of an MPO and the bond dimension of an MPS representing an eigenstate

of the MPO is difficult to predict.

55By accuracy we mean that the functional Eq. (7.35) is smaller than a given tolerance.
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While the pure functional interaction Eq. (7.34) is appealing from a theoretical

point of view, in practical applications infinite range interactions do not represent a

consistent level of approximation. That is to say, at some distance interactions are

screened, where the screening length is set by energetics or lifetime constraints in the

case of ultracold atoms or molecules [48]. Hence, we provide the finite-ranged rule

RFiniteFunction({Ô1, Ô2}, {h, f, rcutoff}, w) which generates the Hamiltonian

Ĥ = wh
∑
i

i+rcutoff∑
j=i+1

f (j − i) Ô1
i Ô

2
j (7.36)

and is given by

W [1] =
(

0 0 . . . 0 . . . 0 whf (1) Ô1 Î
)

W [2≤j≤L−1] =



Î 0 . . . 0 . . . 0 0 0

Ô2 0 . . . 0 . . . 0 0 0

Ô2 f(rcutoff)
f(rcutoff−1)

Î . . . 0 . . . 0 0 0
...

...
. . .

...
. . .

...
...

...

Ô2 0 . . . f(k)
f(k−1)

. . . 0 0 0
...

...
. . .

...
. . .

...
...

...

Ô2 0 . . . 0 . . . f(2)
f(1)

Î 0 0

0 0 . . . 0 . . . 0 whf (1) Ô1 Î


,

W [L] =



Î

Ô2

Ô2

...

Ô2

...

Ô2

0


. (7.37)

For a vector f which contains zero elements a small modification must be made, but

the bond dimension remains the same.

A small set of rules like those presented above allow us to template operators for

MPS simulations. That is, given a method to produce a Hamiltonian from a set of
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basic rules, we can generate a wide variety of different Hamiltonians by specifying

different OAs, weights, and Hamiltonian parameters as inputs to a program. The

resulting MPOs are lower triangular and usually very sparse, and so sparse matrix

structures can be used for efficiency. Beyond the flexibility that MPOs provide to

MPS algorithms, they also allow for arithmetic operations such as addition and multi-

plication to be performed exactly, albeit at the expense of a growing bond dimension.

The sum of two operators expressed as MPOs has MPO matrices which are the direct

sums of the constituent matrices, and the product of two MPOs has MPO matri-

ces which are the direct product of the constituent MPO matrices. Both of these

operations preserve the sparse lower triangular structure of the MPOs.

7.3 Variational Ground State Search

We now turn to using MPSs as variational ansätze for the eigenstates of a Hamil-

tonian expressed as an MPO. The ground state is found by minimizing the functional

E [|ψ⟩] = ⟨ψ|Ĥ|ψ⟩ − E⟨ψ|ψ⟩ (7.38)

with respect to the parameters of |ψ⟩, where E is a Lagrange multiplier enforcing

normalization. The general minimization of this functional is an NP-hard problem,

so we instead adopt a local search heuristic that has proven to work well in practice.

Let us consider fixing all parameters in the MPS except for a contiguous block of s

MPS tensors A[j] . . . A[j+s−1]. The single-site (s = 1) and two-site (s = 2) algorithms

are the most commonly used variants. We then find the extremum as

∂

∂A[j]⋆ . . . A[j+s−1]⋆

(
⟨ψ|Ĥ|ψ⟩ − E⟨ψ|ψ⟩

)
= 0 (7.39)

which corresponds to the diagrammatic equation shown in Figure 7.4. Here, the

partial derivative with respect to a tensor is defined to be a tensor whose elements are

the partial derivatives with respect to the elements of the tensor. If we assume that the
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block of tensors to be optimized contains the orthogonality center then the rightmost

diagram reduces to the block of tensors being optimized and the leftmost diagram

is the action of the effective Hamiltonian on this same block. Thus, minimization

consists of finding the eigenvector corresponding to the smallest eigenvalue of the

effective Hamiltonian eigenvalue problem

Ĥ
[j]
effA

[j] . . . A[j+s−1] = EA[j] . . . A[j+s−1] , (7.40)

where the effective Hamiltonian is

Ĥ
[j]ij ...ij+s−1i

′
j ...i

′
j+s−1

eff αβα′β′ =
∑
κκ′

∑
γ1...γs

L
[j]
καα′W

[j]iji
′
j

κγ1 . . .W
[j+s−1]ij+s−1i

′
j+s−1

γsκ′
R

[j+s]
κ′β′β , (7.41)

L and R are the partial overlaps of the Hamiltonian MPO with the state as in Fig-

ure 7.4, and W [j] is the MPO tensor at site j of the Hamiltonian. Ĥ
[j]
eff represents

the Hamiltonian for the variational degrees of freedom in the block to be optimized

with the rest of the state held fixed. This justifies our use of E as the eigenvalue,

as E obtained from the solution of this equation is the current best estimate for the

energy. We can view Eq. (7.40) as a linear eigenvalue problem by combining indices

as

∑
α′i′j ...i

′
j+s−1β

′

Ĥeff (αij ...ij+s−1β)(α′i′j ...i
′
j+s−1β

′)
[
A[j] . . . A[j+s−1]

]
(α′i′j ...i

′
j+s−1β

′)

= E
[
A[j] . . . A[j+s−1]

]
(αij ...ij+s−1β)

. (7.42)

The linear dimension of this matrix representation of Ĥ
[j]
eff is χjd

sχj+s−1, and so a

solution of this problem with dense methods would require O(χ3
jd

3sχ3
j+s−1) basic

operations, leading to a very slow algorithm of order O(χ6). In contrast, by taking

advantage of the separable form of the effective Hamiltonian Eq. (7.41) multiplication

of our block of tensors by the effective Hamiltonian can be done in O(χ3) time [12].

Thus, sparse eigensolvers such as the Lanczos [39] or Davidson [49] algorithms, which
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=E =E

L
[j]
καα

′ R
[j+s]
κ
′β′β

κ κ
′

α

α
′ β′

βW
[j]iji

′

j

κκ′

A
[j]i′j
α′β′

A
[j]ij

αβ

Figure 7.4: Variational ground state search in diagrammatic notation. Here we
display the single site (s = 1) effective Hamiltonian eigenvalue problem for simplicity.
The contractions between the block of tensors to be optimized, the MPO, and the
rest of the diagram have been omitted to accentuate the structure of the effective
Hamiltonian. The rightmost equality follows from assuming that the variational site
is the orthogonality center.

require only matrix-vector multiplies, should be employed to solve this eigenvalue

problem.

The general algorithm for ground state search is thus as follows. We begin with an

initial state with orthogonality center at site k. We choose a block of tensors contain-

ing k and optimize them by solving the effective Hamiltonian eigenvalue problem. We

then shift the orthogonality center and the block of tensors one site to the right and

again optimize. We continue shifting to the right until we reach the right boundary.

We then reverse direction, shifting the orthogonality center and the block of tensors

to be optimized to the left and solving the effective Hamiltonian eigenvalue problem

until we reach the left boundary, at which point we reverse direction again. A single

iteration of this optimization cycle which affects each tensor twice is called a sweep,

and sweeping is continued until convergence. In addition, using the MPO form of the

Hamiltonian, it is possible to develop a caching algorithm for the overlaps L and R

such that the solution of this problem requires O (L) scaling in the number of lattice

sites [42].56 To do so, we begin the iteration with a guess for the ground state |ψ⟩

assumed to have orthogonality center k. We then use the left recursion

56This scaling does not account for possible L dependence of the bond dimension χ such as exists
for conformal critical points.
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L
[1]
καα′ = δα,1δα′,1δκ,1 , (7.43)

L
[ℓ+1]
καα′ =

[∑
γ′i′

[∑
iκ′

[∑
γ A

[ℓ]i
γα

⋆
L
[ℓ]
κ′γγ′

]
W

[ℓ]ii′

κ′κ

]
A

[ℓ]i′

γ′α′

]
, (7.44)

to generate the L overlaps up to k and the right recursion

R
[L+1]
κβ′β = δβ,1δβ′,1δκ,1 , (7.45)

R
[ℓ]
κβ′β =

[∑
γ′i′ A

[ℓ]i′

β′γ′

[∑
κ′iW

[ℓ]ii′

κκ′

[∑
γ R

[ℓ+1]
κ′γ′γA

[ℓ]i
βγ

⋆
]]]

, (7.46)

to generate the R overlaps down to k + s. Here the square braces indicate the order

in which the contraction should be performed to achieve ideal scaling. Once the

eigenvalue problem has been solved and the orthogonality center shifted, we use the

recurrence Eq. (7.44) to update the overlaps when we are sweeping to the right and

the recurrence Eq. (7.46) to update the overlaps when we are sweeping to the left.

Convergence is achieved when the variance

∆ ≡ ⟨
(
Ĥ2 − E2

)
⟩ , (7.47)

with E the energy eigenvalue, drops below a user-specified tolerance ϵ. Given the

MPO form of the Hamiltonian, the variance operator ∆̂ ≡ Ĥ2−E2 can be constructed

by constructing an MPO whose matrices W̃ [i] consist of the direct product of the

corresponding matrices from Ĥ, W̃ [i] = W [i] ⊗W [i], and then subtracting −ÎE2/L

from the lower leftmost element of each W̃ [i], where Î is the identity operator. This

representation is exact, in contrast to DMRG-based approaches where the basis of

the Hamiltonian is tied together with the basis of the state. The variance is a much

better measure of convergence of the state than the so-called discarded weight which

is used to measure convergence of the two-site DMRG algorithm. This is because

it is a property of the actual MPS state and not of the eigenvalue. As a note of

caution, the variance only guarantees that the state found is an eigenstate to the
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given tolerance, it does not specify that it is the ground state. This has not proven

to cause problems in practice for non-disordered systems.

In summary, the complete algorithm for variational ground state search is:

1. Input : Input a Hamiltonian Ĥ in MPO form, an initial guess |ψ⟩ for the ground

state in MPS form, and a tolerance ϵ for the variance.

2. Initialization: Construct the LR overlaps using the recursions Eq. (7.44) and

(7.46).

3. Sweeping :

(a) Solve the effective Hamiltonian eigenvalue problem Eq. (7.40) and replace

the variational block of tensors with the eigenvector corresponding to the

lowest eigenvalue.

(b) Shift the orthogonality center to the right and update the LR overlaps

using the recursion Eq. (7.44).

(c) Continue to iterate a and b (right sweeping) until the right boundary is

reached.

(d) Solve the effective Hamiltonian eigenvalue problem Eq. (7.40) and replace

the variational block of tensors with the eigenvector corresponding to the

lowest eigenvalue.

(e) Shift the orthogonality center to the left and update the LR overlaps using

the recursion Eq. (7.46).

(f) Continue to iterate d and e (left sweeping) until the left boundary is

reached.

(g) Iterate a and b until k is reached.
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[j]{k}

R
[j+s]{k}

B
[j]{k}(a) (b)

Figure 7.5: Linear forms enforcing orthogonality. (a) The overlap ⟨ψ|ϕk⟩ in dia-
grammatic notation. The thin red lines correspond to ⟨ψ| and the thick black lines
to |ϕk⟩. (b) The linear form F [j]{k} in diagrammatic notation for the single-site case.
As before, we leave the bottom tensor uncontracted to accentuate the definitions of
the LR overlaps.

4. Check convergence: Using the most recent estimate of the energy eigenvalue Ẽ

from the last effective Hamiltonian solution, construct the variance operator ∆̂

and find the variance. If ∆ < ϵ, exit, otherwise return to a.

7.4 Variational Excited State Search

We now turn to finding excited states. We find the nth excited state by minimizing

the functional

E [|ψ⟩] = ⟨ψ|Ĥ|ψ⟩ − E⟨ψ|ψ⟩ −
n−1∑
k=0

µk⟨ψ|ϕk⟩ (7.48)

where {|ϕk⟩} are the n − 1 lower-lying eigenstates of Ĥ and the {µk} are Lagrange

multipliers enforcing the orthogonality constraints ⟨ψ|ϕk⟩ = 0. Again fixing a block

of s tensors, the minimization of this functional with respect to this block is given by

the projected effective Hamiltonian eigenvalue problem

P̂ [j] †Ĥ
[j]
eff P̂

[j]A[j] . . . A[j+s−1] = EA[j] . . . A[j+s−1] , (7.49)

where P̂ [j] is a projector into the space orthogonal to the {|ϕk⟩}. Given the states

{|ϕk⟩} as MPSs, we construct these projectors as follows. The diagram corresponding

to the overlap ⟨ψ|ϕk⟩ is shown in Figure 7.5(a), with the bold lines corresponding to

|ϕk⟩ and the thin lines to ⟨ψ|. This is a linear form in all of the MPS tensors of ⟨ψ|,
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and so the condition that |ψ⟩ be orthogonal to this state for the given block of tensors

with all others held fixed may thus be stated as

⟨ψ|ϕk⟩ = 0 ⇒
(

∂
∂A[j]⋆...A[j+s−1]⋆ ⟨ψ|ϕk⟩

)
A[j] . . . A[j+s−1] = 0 (7.50)

≡ F [j]{k}A[j] . . . A[j+s−1] = 0 . (7.51)

Here the linear form enforcing orthogonality F [j]{k} is shown diagrammatically in

Figure 7.5(b). We can construct the projector P̂ [j] as

P̂ [j] = 1̂−
∑

kk′ F
[j]{k} (N−1)kk′ F

[j]{k′} † , (7.52)

where (N−1)kk′ is the kk′th element of the inverse of the Gram matrix

Nkk′ = Tr
(
F [j]{k} †F [j]{k′}

)
. (7.53)

This Gram matrix inverse is important to ensure idempotency of the projector. As be-

fore, direct construction of the projected effective Hamiltonian leads to an algorithm

which scales poorly as O(χ6). Hence, it is important to use sparse methods which re-

quire only the application of P̂ and Ĥ on some block of tensors A[j] . . . A[j+s−1]. Direct

application of P̂ [j] as written requires O(χ4) operations and also scales quadratically

in the number of eigenstates desired NE due to the double sum in Eq. (7.52). To find

a total of NE eigenstates by this method thus requires O(N3
Eχ

4) operations, which is

unacceptably slow. A simple idea to reduce this scaling would be to find the eigen-

vectors of the inverse Gram matrix and re-express the projectors F [j]{k} in terms of

them, rendering the double sum a single sum. However, while the Gram matrix N

is Hermitian and positive semidefinite it may also be badly conditioned and singu-

lar. A numerically stable alternative to this idea is to construct the Moore-Penrose

pseudoinverse [39] of the Gram matrix

(
N+
)
kk′

=
∑np

µ=1 Vkµ
1
λµ
V ⋆
k′µ (7.54)
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where V is the matrix with the eigenvectors of N as columns and λ are the np

eigenvalues of N which are greater than n
√
λmaxϵ, where n is the linear dimension of

N , λmax its largest eigenvalue, and ϵ the machine precision. We use this pseudoinverse

to transform to a new set of linear forms

G[j]{µ} = 1√
λµ

∑
k VkµF

[j]{k} (7.55)

such that

P̂ [j] = 1̂−
∑

µG
[j]{µ}G[j]{µ} † . (7.56)

Often, the dimension of the set
{
G[j]{µ}} is much smaller than NE. The diagonal-

ization of the Gram matrix requires O(N3
E) operations, independent of χ, and its

construction and the construction of G in Eq. (7.55) both require O(χ2) operations.

The operation of P̂ [j] on the variational block of tensors is now

P̂ [j]A[j] . . . A[j+s−1] = A[j] . . . A[j+s−1] −
∑

µ Tr
(
G[j]{µ} †A[j] . . . A[j+s−1]

)
G[j]{µ}(7.57)

which is linear in NE and scales only as O(χ2). Thus, the dominant scaling for typical

parameters χ ≫ NE is still the O(χ3) scaling of the effective Hamiltonian multiply,

and the algorithm to find NE excited states scales as O(NEχ
3). A sweeping approach

is used as in the ground state search algorithm, and the iteration is stopped when

the variance drops below a user-specified tolerance. As before, the variance does not

guarantee that the state found is the next lowest-lying eigenstate, but this does not

usually cause problems in practice.

As with the LR overlaps used in the variational ground state search, one can also

cache the overlaps LR used to construct the linear forms F using the recursions

L[1]{k}
αα′ = δα,1δα′,1 , (7.58)

L[ℓ+1]{k} =
∑

iA
[ℓ]i†L[ℓ]kB[ℓ]{k}i (7.59)
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and

R[L+1]k
β′β = δβ,1δβ′,1δk,1 , (7.60)

R[ℓ]{k} =
∑

iB
[ℓ]{k}iR[ℓ+1]{k}A[ℓ]i† (7.61)

where B[ℓ]{k} is the MPS tensor of |ϕk⟩ at site ℓ. The linear forms are constructed

using these overlaps as

F
[j]{k}ij ...ij+s−1

αβ =
∑

γ1...γs+1
L[j]{k}ij
αγ1 B

[j]{k}ij
γ1γ2 . . . B

[i+s−1]{k}ij+s−1
γsγs+1 R[j+s]{k}

γs+1β
, (7.62)

see Figure 7.5(b).

The variational ground state algorithm presented above is essentially equivalent

to standard DMRG, aside from the calculation of the variance [12]. When finding

excited states, however, DMRG-based approaches target multiple excited states in

a single MPS, which causes the bond dimensions to grow and the quality of each

individual eigenstate to degrade. Furthermore, as the ground state and all excited

states are solved together in that approach, the sparse eigensolver must be able to

converge interior eigenvalues, which is known to be troublesome [39, 40]. We call the

present algorithm, which is a sparse and numerically stable variant of that proposed

in Ref. [50] for PBC, eMPS to accentuate the difference.

In our experience, there are two main limitations of eMPS. The first is that it is

difficult to construct good variational guesses for the excited states in contrast to the

ground state where the infinite size MPS algorithm [26, 51] is applicable. Here, the

usefulness of the variance becomes readily apparent, as the discarded weight can be

10−12 or less while the variance is of order 10−2 in early sweeps. The second is that

that the area law considerations which make MPS algorithms so practical for ground

states do not in general apply to bulk eigenstates, and so the bond dimension required

to accurately represent a general eigenstate may be exponential in the system size,

rendering eMPS inapplicable.
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The ability to find excited states is useful in many contexts. It provides access

to the dynamical gap for determining the location of second order quantum phase

transitions [52] and Kibble-Zurek scalings, even when the gap is not between different

symmetry sectors. It can help in understanding the structure of conformal field

theories by providing access to the primary scaling fields [53]. Excited states yield

the structure function and other dynamic response functions of low-lying excitations.

Such response functions are of great use for comparing to experimental measurements.

Finally, by considering more complex functionals such as ⟨ψ|(Ĥ− ϵ)2|ψ⟩−λ⟨ψ|ψ⟩ for

minimization, one can determine level spacing statistics in a desired energy range

for systems much larger than are amenable to exact diagonalization. Such studies

are immensely useful in discussions of integrability and quantum chaos, as well as

investigations of the thermalization hypothesis [54–56].

7.5 Calculation of Observables

We now turn to how we can extract information from a state expressed as an MPS.

We do so by the expectation values of Hermitian operators, or observables. We will

demonstrate how to compute observables of three different types: local observables,

two-point correlation functions, and general MPOs.

We define a local observable as an operator which acts only on the Hilbert space

of a single site: Ô[k] =
∑

i,i′ O
[k]
ii′ |i⟩⟨i′|. If this site corresponds to the orthogonality

center of |ψ⟩ then the expectation value reduces to

⟨ψ|Ô[k]|ψ⟩ =
∑

iki
′
k

Tr
(
A[k]ik

†
O

[k]

iki
′
k
A[k]i′k

)
. (7.63)

The overall scaling for fixed site index k is O (χ2d2).

A two-point correlation function is an expectation value of the form ⟨Ô[q]†Ô[r]⟩

where we take q < r without loss of generality. If the orthogonality center of the

MPS, k, lies within the range q ≤ k ≤ r, then we can evaluate the expectation value
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using only the tensors in this range. The most efficient way to proceed is first to form

the matrix

R[r] =
∑

iri′r
A[r]i′rO

[r]
iri′r
A[r]ir † , (7.64)

recursively generate

R[r−ℓ] =
∑

iA
[r−ℓ]iR[r−ℓ+1]A[r−ℓ]i† (7.65)

for ℓ = 1, . . . , r − q + 1, and then evaluate

⟨Ô[q]†Ô[r]⟩ =
∑

iq ,i′q
Tr
(
O

[q]
iqi′q
A[q]i′qR[q+1]A[q]iq †

)
. (7.66)

For fixed q and r, the algorithm scales as O (χ3d+ χ2d2).

To compute the expectation of a general many-body observable Ô expressed as

an MPO we start from the right (left) boundary and follow the recursion Eq. (7.44)

(Eq. (7.46)) all the way to the opposite boundary, at which point the remaining 1×1×1

tensor is the expectation value. The overall scaling is O (χ3dχO + χ2d2M (χO)) where

χO is the bond dimension of the MPO and M (χO) is the number of nonzero elements

in the MPO, which usually scales as χO.

Entanglement measures such as the bond entropy

Sj ≡ −Trρ̂j log ρ̂j , (7.67)

ρ̂j ≡ Tri<j+1|ψ⟩⟨ψ| , (7.68)

can be calculated from the singular values Σ of the MPS tensor A
[j]i
αβ as

Sj = −
∑

γ Σ2
γ log Σ2

γ (7.69)

when this tensor is the orthogonality center. These singular values are computed

automatically as part of the algorithm to shift the orthogonality center, see Sec. 7.2.1.
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7.6 Time Evolution with MPSs

We now turn our attention to a variational solution of the time-dependent Schrödinger

equation

i~
∂

∂t
|ψ (t)⟩ = Ĥ (t) |ψ (t)⟩ (7.70)

using MPSs. The general strategy is to find some representation of the propagator

over some time interval [t, t+ δt], Û(t, t+δt), and variationally optimize the functional

∣∣∣|ψ (t+ δt)⟩ − Û (t, t+ δt) |ψ (t)⟩
∣∣∣2 (7.71)

with respect to the MPS tensors of |ψ(t+δt)⟩. Several complications arise in this case

which were not present in the earlier algorithms. The first practical consideration is

that the MPO form of the propagator may be difficult and very expensive to calculate.

The second difficulty is more physical; the time-dependent state following a global

quench of a Hamiltonian parameter has entanglement which generally grows linearly

in time [57]. This causes the bond dimension χ to grow exponentially in time, and

so there is some finite time where an MPS simulation will exhaust the available com-

putational resources. However, many important questions regarding non-equilibrium

dynamics can still be answered by considering moderately sized systems and short

times. In addition, consideration of a situation in which the Hamiltonian changes only

locally can greatly increase the accessible system sizes and simulation times [58–60].

The most common approach to time evolution for MPSs is to use the Suzuki-

Trotter expansion

exp

[
−iδt

(
L−1∑
n=1

Ĥn

)]
=

L−1∏
n=1

exp

(
−iδt

2
Ĥn

)

×
1∏

n=L−1

exp

(
−iδt

2
Ĥn

)
+O

(
δt3
)

(7.72)
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or its higher order variants to construct a series of two-site propagators which can be

constructed and applied easily. This is the basis of the equivalent [12] TEBD [61] and

tDMRG [62, 63] algorithms. Here Ĥn is the nearest-neighbor bond Hamiltonian acting

on sites n and n + 1. This approach is no longer viable when the Hamiltonian has

longer-ranged terms, and attempts to accommodate such longer-ranged terms often

exhibit poor scaling [64, 65] and require Hamiltonian-specialized implementation,

resulting in inefficient, sometimes prohibitively inefficient code. Krylov-based time

evolution, which will form the basis for our approach, has been considered in both

DMRG [66] and MPS [13] variants for the time-independent case. We note that the

latter approach has been used [13, 14] to study time dependent systems, but this

necessitated very small time steps set by the rate of change of the Hamiltonian in

order to provide accurate results. Our approach generalizes the latter method to

the time-dependent case where the error is independent of the rate of change of the

Hamiltonian and demonstrates how the algorithm can be formulated entirely in terms

of FSA rules for MPOs.

7.7 Commutator-Free Magnus Expansions

The propagator of a general time-dependent Hamiltonian which does not commute

with itself at different times is given as a time-ordered exponential

Û (t, t+ δt) ≡ T
[
exp

(∫ t+δt

t

dt′Ĥ (t′)

)]
(7.73)

whose most well-known form is the Dyson series

Û (t, t+ δt) = 1̂ +

∫ t+δt

t

dt1Ĥ (t1) +

∫ t+δt

t

dt1

∫ t+δt

t

dt2Ĥ (t1) Ĥ (t2) + . . . (7.74)

This formulation of the propagator is not convenient numerically, as the Dyson series

is an asymptotic series and so it can be difficult to determine an appropriate criteria

for termination of the series. Furthermore, keeping only a finite number of terms in
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the Dyson series does not preserve the Lie group structure of the propagator; that

is, the finite approximation is not unitary. An alternative approach which produces

unitary approximations to the propagator was given by Magnus [67] who used the

ansatz

Û (0, t) = exp
(
−itΩ̂ (t)

)
(7.75)

to define the Magnus series

Ω̂ (t) =
∞∑
n=1

Ω̂n (t) (7.76)

where the nth term is of order tn in the sense that its power series in t starts with

tn. The term Ω̂n (t) involves n nested integrations over n− 1 nested commutators of

Ĥ (t) at different times. Explicitly, the first few terms are:

Ω̂1 (t) =

∫ t

0

dt1Ĥ (t1) , (7.77)

Ω̂2 (t) =
1

2

∫ t

0

dt1

∫ t1

0

dt2

[
Ĥ (t1) , Ĥ (t2)

]
, (7.78)

Ω̂3 (t) =
1

6

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

( [
Ĥ (t1) ,

[
Ĥ (t2) , Ĥ (t3)

]]
+
[[
Ĥ (t1) , Ĥ (t2)

]
, Ĥ (t3)

] )
. (7.79)

While approximations obtained from truncating the series yield unitary propagators,

these expressions are still formidable numerically, involving nested commutators and

multidimensional integrals. The commutators pose a special difficulty for MPOs, as

exact multiplication of MPOs involves multiplication of the bond dimensions of the

MPOs and hence the algorithm scales exponentially in the number of terms kept in

the series. Optimization algorithms which attempt to variationally shrink the bond

dimension of an MPO sum or product such as those proposed in Ref. [47] may also

be used, but these become numerically unstable for large systems, and when MPOs
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are subtracted as in commutators large cancellations can cause these algorithms to

become stuck far from the variational optimum.

Hence, rather than work directly with the Magnus series, Eq. (7.76), we start from

ansätze of the form

Û (t, t+ δt) =
s∏
i=1

exp
(
−iδtΩ̂i

)
(7.80)

where each one of the Ω̂i is a linear combination of Ĥ at different times in the interval

[t, t+ δt], and require that our ansatz matches the Magnus expansion (equivalently,

the full propagator) up to order δtN+1. We will call such an ansatz a commutator-free

Magnus expansion (CFME) [68, 69]. This ansatz has a number of features which make

it desirable for our purposes. It is exactly unitary and so the norm is conserved. Also,

provided that we consider the case where only the Hamiltonian parameters change in

time and the operators are time-independent, the sums of the Hamiltonian at different

times can be represented exactly as an MPO using the rules of Sec. 7.2.2. Thus, the

need for complex operations with MPOs vanishes. Finally, because the ansatz takes

into account the time dependence of the Hamiltonian explicitly, the time step is not

necessarily fixed by the rate of variation of the Hamiltonian, allowing for more coarse

stepping in time with fixed error.

Following Ref. [70], the procedure for generating an N th-order CFME is to expand

the function H (t) in terms of (shifted) Legendre polynomials Pn,

Ĥn = (2n− 1) δt
∫ 1

0
dxĤ (t+ xδt)Pn−1 (x) . (7.81)

The orthogonality properties of the Legendre polynomials allow the nested integration

to be done exactly, leaving a series of nested commutators of the Ĥn. Working in

a Hall basis [71], this series of commutators is matched with the original Magnus

expansion to yield the order conditions fi,n such that

277



Ω̂i =
N∑
n=1

fi,nĤn . (7.82)

We note that these order conditions are independent of Ĥ (t) by construction, and

so are set by the choice of CFME alone. As we only require the result to be valid to

order δtN+1, the integration required for the coefficients Ĥn may be performed using

Gauss-Legendre quadrature of order N/2 + 1. The end result of the analysis is that

an N th order expansion with s exponentials may be written as

Û (t+ δt, t) = e−iδΩ̂1 . . . e−iδΩ̂s (7.83)

Ω̂i =

N/2+1∑
m=1

gi,mĤ (t+ xmδt) (7.84)

gi,m = wm

N/2+1∑
n=1

(2n− 1)Pn−1 (xm) fi,n (7.85)

where xm and wm are the points and weights for Gauss-Legendre quadrature [72]. In

this work we use a fourth order expansion with three exponentials (N = 4, s = 3).

The optimal order conditions for this case, obtained in Ref. [70], are

f1,1 = 11/40 , f1,2 = 20/87 , f1,3 = 7/50 , f2,1 = 9/20 , f2,3 = −7/25 , (7.86)

with fs−i+1,n = (−1)n+1 fi,n. Order conditions for higher order expansions may also

be found in Ref. [70].

We now consider that our time-dependent Hamiltonian MPO is constructed from

a set of FSA rules
{
Rp

({
Ôp1 , . . . , Ôpn

}
, {hp (t)} , wp

)}
in which the OA and the

weights are chosen without loss of generality to be time-independent. In this case,

the expansion Eq. (7.81) is applied individually to each Hamiltonian parameter hp (t),

resulting in the parameters {hpn}. Now, because of the canonical decomposition of

Sec. 7.2.2, the MPO forms of Ω̂i from Eq. (7.84) at time t can be constructed exactly
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using the FSA rule set
{
Rp

({
Ôp1 , . . . , Ôpn

}
,
{∑N/2+1

m=1 gi,mh
p (t+ xmδt)

}
, wp
)}

. We

note that each one of these operators has the same bond dimensions as the original

Hamiltonian, and the updates of operators Ω̂i at each time step can be done in

O (LχO) time, which is essentially negligible.

The fact that we can construct the Ω̂i from the same FSA rules as the Hamiltonian

implies that our CFME ansatz is equivalent to evolving our system according to

piecewise constant Hamiltonians of the same form but with differing Hamiltonian

parameters. Additionally, as also occurs in high-order Suzuki-Trotter expansions,

evolution backwards in time may occur. Finally, we note that even terms in the

Hamiltonian whose parameters do not vary in time have their magnitude altered by

Eq. (7.84), as
∑

m gi,m ̸= 1 in general.

7.8 Krylov Subspace Propagation

Using the CFME Eq. (7.83) we never need to explicitly form an MPO representa-

tion of the propagator provided we can find an MPS representation of the exponential

of an MPO applied to an MPS. We find such a representation from minimizing func-

tionals of the form

∣∣∣|ϕ⟩ − exp
(
−iδtΩ̂

)
|ψ⟩
∣∣∣2 , (7.87)

where, importantly, Ω̂ has a known MPO representation. We do so by forming a

Krylov subspace approximation to the exponential [73] in which the Krylov vectors

are represented as MPSs. Specifically, we do so via the Lanczos algorithm for the

matrix exponential, which can be stated as

1. Input : Input Ω̂ in MPO form, |ψ⟩ in MPS form, and a tolerance ϵ for truncating

the recursion.

2. Initialize: Set β0 = ⟨ψ|ψ⟩ = 1 and |r⟩ = |ψ⟩.
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3. Iterate: For j = 1, 2, . . . until convergence

(a) |vj⟩ = |r⟩/βj−1.

(b) |r⟩ = Ω̂|vj⟩.

(c) αj = ⟨vj|r⟩.

(d) Orthogonalize |r⟩ against |vj⟩ and |vj−1⟩.

(e) Re-orthogonalize |r⟩ against all vk, k ≤ j if necessary.

(f) βj = ⟨r|r⟩

(g) Form the matrix exponential of T (j), U (j), and obtain c(j) = U
(j)
1:j,1.

(h) Test for convergence.

4. Finalize: Set |ϕ⟩ =
∑j

i=1 c
(j)
i |vi⟩

Here T (j) is the symmetric tridiagonal matrix with the αi, 1 ≤ i ≤ j on the

diagonal and βi, 1 ≤ i ≤ j − 1 on the superdiagonal. It is important to use a matrix

exponentiation method which produces a unitary matrix to machine precision in order

to not lose the Lie group structure. Because of the small linear dimensions of the

matrix T (j), exponentiation by direct diagonalization is practical. An a posteriori

estimate for convergence of the Lanczos recursion is that
∣∣∣2βj−1c

(j)
j

∣∣∣ < ϵ, where ϵ

is the tolerance [73]. This can be compared with residual estimates in the ordinary

Lanczos algorithm for finding eigenvalues. A rigorous bound on the approximation

||ψ⟩krylov − |ψ⟩| ≤ 12 exp
{
− (ρδt)2

16n

}(
eρδt
4n

)n
can be established [74] when n ≥ ρδt/2

with n the number of Lanczos vectors and ρ = |Emax − Emin| the spectral width of

Ω̂. This estimate shows that for typical tolerances ϵ = 10−6 to 10−10, 6 to 20 Lanczos

vectors suffice.

As stated before, MPSs do not form a vector space and so the multiplication

by Ω̂, the orthogonalization, and the final summation cannot be done exactly while

keeping the bond dimension of our MPS fixed. However, just as with the eigenstate
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search, we can devise variational algorithms for these three operations which are

iteratively performed until a desired tolerance is reached and use this tolerance to

bound the bond dimension of our time-evolved MPS. We begin by briefly reviewing

the standard algorithm [12] for finding the optimal MPS |ϕ⟩ representing a sum of

MPSs
∑N

k=1 ck|ψk⟩ to a given tolerance, as the other algorithms are similar but more

complex. In this case we have a set of LR overlaps defined between our variational

state ⟨ϕ| and the states |ψk⟩ as in Eqs. (7.59) and (7.61). We now sweep through the

lattice and make the replacement

A[j] . . . A[j+s−1] =
∑

k ckF
[j]{k} , (7.88)

where the F [j]{k} are formed as in Eq. (7.62), see also Figure 7.5(b). The orthogonality

center of |ϕ⟩ is then shifted, the LR overlaps updated, and sweeping continued.

Convergence can be monitored via

∣∣∣∣∣|ϕ⟩ −∑
k

ck|ψk⟩

∣∣∣∣∣
2

= Tr
[(
A[j] . . . A[j+s−1]

)†
A[j] . . . A[j+s−1]

]
+ 1 (7.89)

−2
∑
k

Re Tr
[
ck
(
A[j] . . . A[j+s−1]

)†
F [j]{k}

]
< ϵ ,

with Re denoting the real part. Because we do not have to solve an eigenequation at

each iteration, this algorithm is often much less costly than the iterative eigenstate

search. Also, when we have that the coefficient vector c and all of the {|ψk⟩} have

length 1, we can normalize the state |ϕ⟩ at the end of the calculation if required.

The algorithm to variationally fit an MPS to Ω̂|ψ⟩ is similar. In this case we have

a set of LR overlaps defined via the recursions

L
[1]
καα′ = δα,1δα′,1δκ,1 , (7.90)

L
[ℓ+1]
καα′ =

[∑
γ′i′

[∑
iκ′

[∑
γ A

[ℓ]i
γα

⋆
L
[ℓ]
κ′γγ′

]
W

[ℓ]ii′

κ′κ

]
B

[ℓ]i′

γ′α′

]
, (7.91)

R
[L+1]
κβ′β = δβ,1δβ′,1δκ,1 , (7.92)
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R
[ℓ]
κβ′β =

[∑
γ′i′ B

[ℓ]i′

β′γ′

[∑
κ′iW

[ℓ]ii′

κκ′

[∑
γ R

[ℓ+1]
κ′γ′γA

[ℓ]i
βγ

⋆
]]]

, (7.93)

where the MPS tensors of |ϕ⟩ are denoted by A and those of |ψ⟩ denoted by B. We

now sweep through the lattice and make the replacement

A[j] . . . A[j+s−1] = Ĥ
[j]
effB

[j] . . . B[j+s−1] (7.94)

where the effective Hamiltonian is formed from the LR overlaps as in Eq. (7.41).

Convergence can be monitored via

∣∣∣|ϕ⟩ − Ĥ|ψ⟩∣∣∣2 = Tr
[(
A[j] . . . A[j+s−1]

)†
A[j] . . . A[j+s−1]

]
+ ⟨ψ|Ĥ2|ψ⟩ (7.95)

−2RTr
[(
A[j] . . . A[j+s−1]

)†
ĤeffB

[j] . . . B[j+s−1]
]
< ϵ ,

Here, ⟨ψ|Ĥ2|ψ⟩ can be computed in a manner similar to the variance, and need only

be computed once at the beginning of the calculation. We have also assumed that the

block of tensors in Eq. (7.95) contains the orthogonality center. Again, this algorithm

is often much less costly than the iterative eigenstate search.

We now turn to steps (iii)(d) and (iii)(e) of our algorithm. Step (iii)(d) is usually

stated for ordinary vector spaces as

|r⟩ = |r⟩ − αj|vj⟩ − βj−1|vj−1⟩ , (7.96)

as αj = ⟨vj|r⟩ and βj−1 = ⟨vj−1|r⟩ and so this is equivalent to classical Gram-

Schmidt orthogonalization. Hence, we could implement step (iii)(d) by using the

fitting algorithm Eq. (7.88) to find the MPS closest to |r⟩ − αj|vj⟩ − βj−1|vj−1⟩.

However, we have found that the following algorithm, which is closely related to

eMPS, often converges more quickly and also is applicable to step (iii)(e). In our

method we look for the optimal MPS |ϕ⟩ representing |ψ⟩ but also subject to the

constraints that ⟨ϕ|ψk⟩ = 0 for some set {|ψk⟩}. We start by copying the state |ψ⟩ to
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a variational ansatz |ϕ⟩. We then construct overlaps between the state ⟨ϕ| and |ψ⟩,

which we call LR57 and a set of overlaps between ⟨ϕ| and |ψk⟩, which we call LR.

We then sweep through the lattice and make the replacement

A[j] . . . A[j+s−1] =
∑

γ1...γs+1
L
[j]ij
αγ1B

[j]ij
γ1γ2 . . . B

[j+s−1]ij
γsγs+1 R

[j+s]
γs+1β

, (7.97)

with B the MPS tensors of |ψ⟩ and A the MPS tensors of |ϕ⟩. We then apply the

projector into the space orthogonal to the |ψk⟩ by constructing the set
{
G[j]{µ}},

µ = 1, . . . , p, as in Eq. (7.55) and performing

A[j] . . . A[j+s−1] = A[j] . . . A[j+s−1] − Tr
(
G[j]{µ}†A[j] . . . A[j+s−1]

)
G[j]{µ} , (7.98)

for µ = 1, . . . , p. Using the fitting algorithm of Eq. (7.88) corresponds to replacing

the LR overlaps, which are between the variational state ⟨ϕ| and the set {|ϕk⟩},

with a set of LR overlaps between the state ⟨ψ| and the set {|ϕk⟩}. Our algorithm,

which amounts to fitting followed by modified Gram-Schmidt, uses information about

the distance between the variational state and those to be orthogonalized against to

determine operations, and hence often converges more quickly and is more stable.

Convergence can be monitored by ensuring that ⟨ϕ|ψk⟩ are orthogonal to a precision

ϵ via

∣∣∣Tr
(
A[ℓ]†F [ℓ]{k}

)∣∣∣ ≤ ϵ . (7.99)

If one requires additional truncation of the bond dimension, one can switch to the

ordinary fitting algorithm Eq. (7.88) at this point, using a new variational state |ζ⟩

to fit to |ϕ⟩.

We now pause to consider the sources of error in the time-propagation routine.

First, because the CFME expansion Eq. (7.83) is only of order δtN+1, the error in-

57In this initialization all of the LR are Kronecker deltas provided that |ψ⟩ has an orthogonality
center.
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curred in using this form of the propagator is ϵCFME = ctfinalδt
N , where tfinal is the

final time reached. Thus, as the final time desired becomes longer, smaller time steps

should be taken in order to keep the error fixed. The coefficient c can be deter-

mined by using this known scaling and decreasing the time step by a constant factor.

Factors in the range 21/N to 31/N are practical. This strategy can also be used to

devise adaptive time-step applications such as those used widely in ordinary differen-

tial equation solvers. Next, there is the error ϵKrylov incurred in the Krylov subspace

approximation to the exponential. As discussed above, this error can be minimized

by adding more and more Lanczos vectors. This error also involves the time step

δt, and so when determining the CFME expansion error constant c one should be

careful that ϵKrylov < ϵCFME. Finally, there are errors resulting from the variational

fitting of MPSs in steps (iii)(b), (iii)(d), and (iii)(e) of the Lanczos algorithm for the

matrix exponential. These can be reduced by lowering the variational tolerances, but

this is done typically at the expense of a larger bond dimension χ and hence a slower

algorithm and more memory usage.

7.9 Simulation Protocol

We are now in a position to devise a complete, generic protocol for the time

evolution of a 1D quantum system.

1. Input : Input an operator alphabet and a set of FSA rules defining the Hamilto-

nian MPO. Input the functional forms {hp (t)} of its Hamiltonian parameters,

a final time desired tfinal and a time-step δt. Input tolerances {ϵ} for variational

ground state search and time evolution.

2. Initial state preparation: Find the ground state of the Hamiltonian using varia-

tional ground state search from Sec. 7.3. Alternatively, if a different initial state

is desired, read in its MPS representation. Set |ψ (t = 0)⟩ to be this state.
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3. Measure: Measure local observables and two-point correlation functions con-

structed from the OA as well as MPO observables constructed from their own

FSA rule sets.

4. eMPS : Use eMPS (Sec. 7.4) to find excited states of the Hamiltonian, if desired.

Measure properties of the excited states.

5. tMPS : Set t = 0.

(a) For i = s, . . . 1, construct Ω̂i from Eq. (7.84) using the FSA rules and use

the Krylov algorithm to apply the matrix exponentials of these operators

in succession to |ψ (t)⟩. Set t = t+ δt.

(b) Measure |ψ (t)⟩ if desired.

(c) Continue (a) and (b) until tfinal is reached.

Starting from a base set of rules such as the site, bond, exponential, decaying

function, and finite function rules of Sec. 7.2.2, a single implementation can accommo-

date a vast range of systems based on the particular OA, rules, and quench protocols

{hp (t)} used.

7.10 Case Studies

7.10.1 Case Study: Ising model in a Transverse Field

For our first case study we choose the paradigmatic Ising model in a transverse

field, with Hamiltonian

Ĥ = −J
∑
⟨i,j⟩

σ̂zi σ̂
z
i+1 − h

∑
i

σ̂xi . (7.100)

Here J is the coupling energy, h is a transverse magnetic field, and the {σ̂i} are

the Pauli spin operators on site i. We choose this model because its dynamics are

amenable to numerically exact study using the time-dependent Bogoliubov-de Gennes
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Figure 7.6: (color online) Statics of the Ising model. (a) The gaps to the two-lowest-
lying eigenstates, computed using eMPS. (b) The bond entropy Si vs. the site index i
and magnetic field h for L = 100 sites. Note the increased curvature near the critical
point h = 1. (c) The central charge c (blue line) and bulk entanglement a (red line)
extracted from a fit to Eq. (7.101) vs. h for L = 100 sites, neglecting 30 sites at both
boundaries. The inset is a close-up of the critical region. (d) The bond entropy of
the central site SL/2 vs. L at h = 1.0 together with a fit extracting the central charge.

formalism (see 7.12 for a review) and so we were able to carefully check convergence of

our results. The statics have all been converged to eight digits, and the dynamics at

all times to at least four digits. Here we refer to convergence of local quantities such

as the energy or density of defects. Nonlocal quantities such as the bond entropy will

not have this same accuracy, but numerical tests show that the qualitative behavior

is unaffected. We begin with a discussion of the statics.

In Figure 7.6(a) we demonstrate the gaps from the ground state to the two lowest

eigenstates, computed via eMPS. The variances are smaller than the point size in this

case. The upper (lower) curve corresponds to even (odd) parity, while the ground

state has even parity, where parity is defined as simultaneous inversion of all spins

P = ⟨
∏

i σ̂
x
i ⟩. Hence, the relevant gap for discussing the quantum phase transition
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is in fact the gap to the second excited state, shown in green.58 Both gaps close at

criticality, and this can cause the first excited state returned by eMPS to be a mixture

of these two states. This will not affect the energies so long as the variance remains

small, but it can affect other observable properties of the states. There are two ways

to remove this nuisance. The first, most complex, and most preferable is to use an

MPS representation in which the state is explicitly Z2 invariant [40]. The second

is to add a field coupling to the parity −hp
∏

i σ̂
x
i to cause the relevant even-parity

subspace to become lower in energy than the odd-parity subspace. This operator is

an MPO with bond dimension 1, the MPO equivalent of a product state. The closing

of the gap at the known critical point h = 1 is linear in 1/L, indicating a conformally

invariant critical theory with dynamical critical exponent z = 1.

We venture to determine the central charge of the critical theory by fitting to the

Calabrese-Cardy formula in two ways. In the first, we fit to the finite-size formula

Si = c
6

log
[
2L
π

sin
(
πi
L

)]
+ a (7.101)

for fixed L and variable i, and in the second we fix i at L/2 and fit SL/2 to this formula

for various L. Near criticality, the presence of nonzero c indicates a curvature of Si,

while in the gapped phases Si obeys an area law and is hence a constant apart from

finite-size effects. The bond entropy in the bulk approaches the correct limiting values

of log 2 as h → 0 and 0 as h → ∞. The first fit, shown in Figure 7.6(a), provides

us with a clear indicator of the critical region by the spike in the central charge c.

However, the precise determination of c for a finite size system in this case is noisy,

likely due to strong finite-size effects. Once we have narrowed down where the critical

region is, the second fit, shown in Figure 7.6(b), allows us to extract the anticipated

value c = 1/2 much more precisely. If the same scaling analysis is attempted at a

point which is not the critical point, the bond entropy saturates and c→ 0 as L→∞.

58The even parity gap for h > 1 is in fact twice the demonstrated gap in green, but the essential
piece is the closing of the gap at criticality.
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We can understand this as a large but finite correlation length ξ. For L/2 < ξ, the

system appears to be conformal and we see scaling of the bond entropy with L. For

L > ξ the bond entropy saturates and this scaling breaks down, indicating that the

given region is not critical. We note that in this analysis we have used no properties

which are specific to this system e.g. correlation functions of an order parameter to

extract the critical behavior.

We now turn to the dynamics. The Ising model has also been a subject of interest

for dynamics as a testbed for the Kibble-Zurek hypothesis (KZH) that equilibrium

properties determine nonequilibrium properties following a quench across a quantum

critical point. This was studied in Refs. [75–77] using the quench protocol

h (t) /J = 5
(
1− t

τ

)
, 0 ≤ t ≤ τ . (7.102)

A useful quantity for determining how non-adiabatic a particular quench is in this

case is the density of defects

ρ =
1

2L

∑
i

(
1− σ̂zi σ̂zi+1

)
(7.103)

which is the density of Bogoliubov quasiparticles at zero magnetic field. In addition

to the density of defects, universal scaling has also been predicted in the heat, or

non-adiabatic part of the energy,

Q (t) = ⟨ψ (t) |Ĥ (t) |ψ (t)⟩ − ⟨ψg.s. (t) |Ĥ (t) |ψg.s. (t)⟩ (7.104)

where |ψg.s.(t)⟩ represents the instantaneous ground state of Ĥ(t). In addition to these

quantities, which are amenable to Bogoliubov-de Gennes analysis, we also compute

the time-dependent bond entropy. Our results are shown in Figure 7.7.

We first discuss the heat, as shown in panels (a) and (d). Panel (a) displays the

heat as a function of time, and demonstrates a sharp change in the behavior of the
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system as we pass through the critical point. This is especially true of the longest

quenches. In panel (d) we investigate the heat as a function of the quench rate both

at the time when h takes on its critical value, tc = 4τ/5, and at the final time when

h = 0. The large difference indicates that non-adiabatic processes continue after we

have passed from the critical region back into the gapped ferromagnetic region. Thus,

the universal scaling of the heat may be difficult to determine if the critical point itself

is not known sufficiently well. We now move on to the density of defects as shown

in panels (b) and (e). In panel (b) we see that the density of defects at the final

time decreases slowly to zero as τ →∞; that is, when the quench becomes perfectly

adiabatic. This is in accordance with the KZH prediction. Panel (e) demonstrates the

large disparity between the density of defects at the critical time and the final time

for all but the most rapid of quenches. Finally, in panels (c) and (f) we investigate

the bond entropy. In panel (c) we see the bond entropy of the central bond as a

function of time. As the quench becomes more adiabatic, the entropy increases more

towards the ferromagnetic limiting value of log 2. However, for very slow quenches,

the bond entropy reaches this value before the end of the quench and then begins

to oscillate. In panel (f) we show the bond entropy as a function of the bond index

at the critical time. Bulk curvature such as that seen at criticality in Figure 7.6(d)

is absent, indicating that the time-evolved state is still quite far from the conformal

ground state.

7.10.2 Case Study: Dipolar Ising chain

In this section we go beyond exactly solvable models and study a dipolar Ising

chain

Ĥdip = −J
∑

i<j;|j−i|≤6

σ̂zi σ̂
z
j

(j − i)3
− h

∑
i

σ̂xi . (7.105)
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Figure 7.7: (color online) Dynamics of the Ising model. (a) The heat as a function
of time shows a marked change in behavior as we transition past the critical time
t/τ = 4/5. The numbers indicate the value of τJ/~. τJ/~ = 0.1 and 0.01 are indis-
tinguishable on the scale of this plot. Both may be considered to be instantaneous.
(b) The density of defects as a function of time scales to zero as τJ/~ → ∞, in
accordance with the KZH. (c) The bond entropy of the central bond as a function of
time approaches the limiting value log 2 as the quench becomes more adiabatic. For
nearly adiabatic quenches, the bond entropy oscillates after the critical point. (d)
Scaling of the heat in the final and critical stages with the inverse quench time shows
marked non-adiabatic processes occurring after passing the critical point. (e) Scaling
of the density of defects in the final and critical stages with the inverse quench time
shows non-adiabatic processes after passing the critical point only for slow quenches.
(f) Snapshots of the bond entropy at the critical time demonstrate that the system
is not generally close to its conformal ground state.
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Such models are relevant to the study of ultracold molecules in optical lattices, where

the dipole-dipole interaction falls away as 1/r3 with r the distance between dipoles [7–

9, 48, 78]. Here the cutoff |j − i| ≤ 6 represents a consistent order of approximation in

going from a Hubbard-type model with dipolar interactions to a spin model. We stress

that all results obtained in this section were obtained using the same implementation

as the last section.
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Figure 7.8: (color online) Statics of the dipolar Ising model. (a) The gaps to the
two-lowest-lying eigenstates, computed using eMPS. Here we see a breakdown of the
linear dispersion at small h, indicating interactions between quasiparticles. (b) The
bond entropy Si vs. the site index i and magnetic field h for L = 80 sites. The point
of greatest curvature is shifted towards larger h with respect to the Ising model. (c)
The central charge c (blue line) and bulk entanglement a (red line) extracted from a
fit to Eq. (7.101) vs. h for L = 80 sites, neglecting 30 sites at both boundaries. The
inset is a close-up of the critical region. (d) The bond entropy of the central site SL/2
vs. L at h = 1.362 together with a fit extracting the central charge.

We first turn to the statics of this model, shown in Figure 7.8. Many of the

features are similar to those of the nearest-neighbor Ising model. The most important

differences are that the critical region is shifted towards larger h with respect to the
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nearest-neighbor Ising model as seen in panels b) and c). This indicates increased

stability of the ferromagnetic phase, in accordance with expectations. Using these

points as a guide, we determine the critical point to be hc = 1.362±0.01, as shown by

the scaling in panel d). Additionally, the energy of the first even parity excited state

deviates from pure z = 1 linear behavior near h = 0, indicating interactions between

quasiparticles which were noninteracting in the nearest-neighbor Ising model.

We now turn to dynamics, following the same quenching protocol Eq. (7.102) as

above. The results are shown in Figure 7.9. We reiterate that the dynamics of this

model cannot be handled by Bogoliubov-de Gennes methods, nor straightforwardly

with standard tDMRG/TEBD. The density of defects no longer represents the den-

sity of quasiparticles at the critical point, but we compute it for comparison with the

results of the nearest-neighbor Ising model. Because of the larger MPO bond dimen-

sions and the more rapid growth of bond dimension for this model, we restrict our

analysis to short times Jτ/~ ≤ 5, though an optimized implementation could reach

longer times. The basic features are similar to the dynamics of the nearest-neighbor

Ising model. One quantitative difference is that, because the critical point is reached

at an earlier time than in the nearest-neighbor Ising model, oscillations in the central

bond entropy occur for shorter quench times.

7.11 Conclusions

The power of matrix product state algorithms over DMRG-based algorithms is

most readily apparent when multiple states are involved, as each state may be rep-

resented as a separate matrix product state in the former approach. Because matrix

product states with a fixed bond dimension do not form a vector space, a set of ma-

trix product states carries more information at smaller numerical cost than the same

set represented as a multi-state targeted basis in DMRG. We have presented two al-

gorithms, eMPS and tMPS, which use this property to find eigenstates and perform

time evolution of strongly correlated 1D quantum systems.
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Figure 7.9: (color online) Dynamics of the dipolar Ising model. (a) The heat as a
function of time displays a slower buildup in post-critical non-adiabatic effects for
longer quenches, as in the nearest-neighbor case. (b) The density of domain walls
as a function of time is comparable to that for the nearest-neighbor case, but no
longer has the same interpretation in terms of quasiparticles. (c) The bond entropy
of the central bond oscillates for the shorter quench time Jτ/~ = 5 due to the quench
passing the critical point sooner than in the nearest-neighbor case.
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eMPS uses a set of eigenstates stored as separate matrix product states to define

a projector into the space orthogonal to this set. We use this projector to explicitly

orthogonalize a variational state against previously determined eigenvectors in order

to find excited states. The explicit matrix product state representation allows us

to store the excited states much more accurately than with standard DMRG, and

allows allows us to ensure global orthogonality between the eigenstates to a desired

tolerance. The variance, which is computed exactly using the matrix product operator

representation of the Hamiltonian, gives strict error bars on the energies obtained with

this procedure.

tMPS avoids the need for an explicit representation of the propagator by using

a commutator-free Magnus expansion and then building successive Krylov subspace

approximations to the matrix exponentials which appear in the expansion. Each

vector in the Krylov subspace is stored as a separate matrix product state to maxi-

mize efficiency. Furthermore, the operators Ω̂i have exact representations as matrix

product operators with the same bond dimension as the Hamiltonian. Our algorithm

eliminates the need for Hamiltonian-specialized implementation of dynamics. Addi-

tionally, by carefully accounting for the time dependence of the Hamiltonian with

a commutator-free Magnus expansion, the error in our algorithm depends only on

commutators of the Hamiltonian with itself at different times and not on its deriva-

tives. As with eMPS, the errors are rigorously accounted for by considering distance

functionals with the variational state.

The matrix product operator forms of 1D Hamiltonians can be obtained using a

small set of finite state automaton rules such as the site, bond, and finite function

rules. Using matrix product operator arithmetic, we can add together the various

terms in a Hamiltonian from these rules to form a complete canonical MPO repre-

sentation. This representation allows for templating of Hamiltonians which depend

only on the type of interactions and not on the microscopic constituents of the lattice
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model. Furthermore, given the time-dependent form of the Hamiltonian parameters,

one can use the same template to form the operators Ω̂i which appear in tMPS at

negligible numerical cost.

We used our algorithms to study both the nearest-neighbor Ising model in a

transverse field and a long-range Ising model in a transverse field. By the closing of

the gap obtained with eMPS we determined that the critical points of these models

were conformal, and so we used the Calabrese-Cardy formula for the bond entropy of

conformal systems to locate the critical point and its associated central charge. The

known result hc = 1 was verified for the nearest-neighbor case, and the critical point

was shifted deeper into the paramagnetic region hc = 1.362± 0.01 for the long-range

case, indicating a stabilization of the ferromagnetic phase. We used tMPS to study

the dynamics of these models following a linear quench of the transverse field from the

paramagnetic phase through the critical point into the ferromagnetic phase. We saw

strong non-adiabatic effects in the heat as quenching continued into the ferromagnetic

region, scaling of the density of defects consistent with the Kibble-Zurek hypothesis,

and the oscillation of the bond entropy near its limiting ferromagnetic phase value

for nearly adiabatic quenches.
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7.12 Time Evolution of Exact Solution of 1D Transverse-Field Quantum
Ising Model for Comparison with tMPS

The solution of the statics of the transverse-field quantum Ising model is covered

in standard texts [52]. However, for comparison with tMPS we require a description of

the dynamics, and so we present the dynamical case here. To find the exact solution

of the Ising model,

Ĥ = −J
∑
⟨i,j⟩

σ̂zi σ̂
z
j − h

L∑
i=1

σ̂xi , (7.106)

we affect the Jordan-Wigner transformation

σ̂xi = 1− 2ĉ†i ĉi , (7.107)

σ̂zi = −
(
ĉi + ĉ†i

)∏
j<i

(
1− 2ĉ†j ĉj

)
, (7.108)

where the fermionic operators ĉi satisfy the anticommutation relations {ĉi, ĉ†j} = δij,

{ĉi, ĉj} = {ĉ†i , ĉ
†
j} = 0. This transforms the Ising model into the fermion Hamiltonian

Ĥ = −J
L−1∑
i=1

(
ĉ†i ĉ

†
i+1 + ĉ†i ĉi+1 + h.c.

)
+ 2h

L∑
i=1

ĉ†i ĉi − Lh . (7.109)

As this is a quadratic form in fermion operators, it may be diagonalized by a canonical

(Bogoliubov) transformation [79, 80]

ĉi =
L∑
k=1

(
uikγ̂k + v⋆ikγ̂

†
k

)
(7.110)

which provides the set of Bogoliubov-de Gennes equations

ϵkuk = Auk +Bvk (7.111)

ϵkvk = −Buk − Avk (7.112)
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where uk are the elements of {uik, i = 1, . . . , L} arranged as a vector and likewise for

vk. The matrices A and B are real and tridiagonal, with the nonzero matrix elements

Ai,i = 2h, Ai,j = −J , |i− j| = 1 and Bi,i+1 = −Bi+1,i = −J . The pairs (uik, vik) with

positive energy ϵk, ϵ1 ≤ ϵ2 ≤ · · · ≤ ϵL, and the normalization |uk|2 + |vk|2 = 1 define

quasiparticle operators

γ̂k = u⋆ikĉi + vikĉ
†
i (7.113)

which bring the Hamiltonian into the diagonal form

Ĥ =
N∑
k=1

ϵk

(
γ̂†kγ̂k −

1

2

)
. (7.114)

Corresponding to every such pair is another pair (ũik, ṽik) = (vik, uik) with ϵ̃k = −ϵk

which defines the conjugate operator γ̂†k. Writing uk and vk together as a compos-

ite vector, the Bogoliubov-de Gennes equations take the form of a real symmetric

eigenproblem of dimension 2L:

ϵk

(
uk
vk

)
=

(
A B
−B −A

)(
uk
vk

)
(7.115)

which can be readily solved using standard eigenvalue methods [81].

Evolution under the fermion Hamiltonian Eq. (7.109) does not preserve the num-

ber of fermions NF but it does preserve the fermionic parity (−1)NF . Because the

ground state is the Bogoliubov vacuum it contains no fermions, and so the first ac-

cessible excited state consists of two Bogoliubov excitations, one in each of the lowest

two modes. The gap between the ground and first excited states is thus ϵ1 + ϵ2.

We now consider the Heisenberg equations of motion for the fermi operators

i~
dĉ (t)

dt
= A (t) ĉ (t) + B (t) ĉ† (t) , (7.116)
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tJ/!

(E0.1 (t)− E0.001 (t))/J

E0.01 (t)− E0.001 (t) /J

Figure 7.10: Demonstration of Bogoliubov-de Gennes method convergence. The errors
in the energy computed with a given time step δt, Eδt, are shown as a function of
time. The ratio of the errors as a function of time is roughly (0.01/0.1)4 = 0.0001,
as should be expected for our fourth-order CFME. Errors in the density of defects
behave similarly.

where A(t) and B(t) are the time-dependent generalizations of A and B above and

ĉ(t) and ĉ†(t) are the elements of {ĉi(t)} and {ĉ†i (t)}, respectively, arranged as vectors.

Because this equation is linear in the Fermi operators it may be diagonalized with a

time-dependent Bogoliubov transformation

ĉi (t) =
L∑
k=1

(
uik (t) γk + v⋆ik (t) γ̂†k

)
(7.117)

where ui(t) and vi(t) subject to the time-dependent Bogoliubov-de Gennes equations

i~
d

dt

(
uk (t)
vk (t)

)
=

(
A (t) B (t)
−B (t) −A (t)

)(
uk (t)
vk (t)

)
≡ H (t)

(
uk (t)
vk (t)

)
, (7.118)

and γ̂k and γ̂†k diagonalize the Hamiltonian at the initial time. Equivalently, u and v

define time-dependent Bogoliubov operators

γ̂k (t) = u⋆ik (t) ĉi + vik (t) ĉ†i (7.119)

such that the time-evolved state |ψ(t)⟩ is the Bogoliubov vacuum of this set, i.e. γ̂k(t)|ψ(t)⟩ =

0. To compare with the MPS simulations, we note that the energy at time t is
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− 1

2

∑
k

ϵk (t) = −1

2

∑
k

(uk (t)vk (t))H (t)

(
uk (t)
vk (t)

)
. (7.120)

Similarly, the density of defects is

ρ (t) =
1

2L

L−1∑
i=1

⟨ψ (t) |
(
1− σ̂zi σ̂zi+1

)
|ψ (t)⟩ , (7.121)

=
1

2L

L−1∑
i=1

[
1−

L∑
k=1

(vi,k (t)− ui,k (t))
(
u⋆i+1,k (t) + v⋆i+1,k (t)

)]
. (7.122)

Time evolution thus reduces to the solution of a 2L× 2L time-dependent matrix

differential equation which we solve using a CFME as in Sec. 7.7. Because the dimen-

sions of the system are much smaller than those of the associated MPS problem we

are able to take very small time steps, and so the results obtained in the method may

be considered to be numerically exact, see Figure 7.10. Here we demonstrate that the

error incurred in the energy as a function of time scales with the infinitesimal time

step δt as δt4 using our fourth-order CMFE. Hence, by decreasing δt, any desired

degree of accuracy may be met.
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CHAPTER 8

THE INFINITE SIZE VARIATIONAL MATRIX PRODUCT STATE

ALGORITHM

Chapter 7 discusses algorithms using matrix product states (MPSs) as variational

ansätze for finding eigenstates and time evolution of 1D quantum systems with a

finite number of sites. In this chapter we instead focus on a system which has an

infinite number of lattice sites59 and whose Hamiltonian is spatially homogenous.

Because of the translational invariance of the Hamiltonian, the eigenstates may also

be chosen to be translationally invariant. However, in a many-body system invariance

under translations of a single site may be spontaneously broken, resulting in a system

which is only translationally invariant under shifts by q sites. Examples of this type

of translational symmetry breaking arise in long-range interacting systems at strong

coupling [1, 2], where crystalline states of any rational filling occupy finite regions of

the phase diagram. As the broken symmetry is associated with a discrete group, the

Mermin-Wagner theorem [3, 4] does not apply and so the system can display true

long-range order. This has the unfortunate side effect of inducing very strong finite

size effects in simulations with open boundary conditions, where MPS algorithms are

most efficient. The algorithm presented in this chapter assumes that the system is

invariant under translation by a user-specified number of sites q, and then optimizes

this unit cell of q sites directly in the limit of an infinite system size. Performing the

optimization in this limit removes spurious boundary effects which can completely

obscure the properties of the system otherwise. A full set of examples are provided

in Sec. 8.4 after the theory of the algorithm has been developed.

59Because we are considering spatially discrete systems, the infinities we encounter are always
countable.
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An algorithm for optimizing an infinite MPS was present already in the very first

DMRG paper [5]. This algorithm, which is known as iDMRG,60 begins by considering

a two-site system. The energy is minimized in this configuration, resulting in the

MPS61

|ψ⟩ =
∑
i1j1

A[1]i1Λ[1]B[1]j1 |i1j1⟩ . (8.1)

This minimization, and those that follow, can be performed using the ground state

search method presented in Chapter 7. These two sites now form an environment into

which two new sites are embedded. In order to maintain a consistent canonical form

for the resulting four site MPS, the environment is formed from A[1] and B[1] and the

two new sites replace Λ[1] as the orthogonality center. These two interior sites are

optimized by minimizing the energy with the outer two sites held fixed, resulting in

the four-site MPS

|ψ⟩ =
∑

i1i2j1j2

A[1]i1A[2]i2Λ[2]B[2]j2B[1]j1 |i1i2j2j1⟩ . (8.2)

The procedure of inserting two new sites and optimizing them with the others held

fixed is repeated, leading at the nth iteration to an MPS of the form

|ψ⟩ =
∑

i1...inj1...jn

A[1]i1A[2]i2 . . . A[n]inΛ[n]B[n]jn . . . B[2]j2B[1]j1 |i1 . . . injn . . . j1⟩ . (8.3)

Using this method, White and Huse [6] found many of the properties of the spin-1

antiferromagnetic Heisenberg chain an unprecedented precision of twelve digits. In

particular, they verified Haldane’s conjecture [7] that this model has a finite gap to

excitations, and demonstrated the presence of long range string order of the correlator

60Many MPS algorithms have infinite counterparts which are denoted by attaching an “i” to the
beginning of the name, e.g. iTEBD. This naming scheme was developed well before Apple made it
trendy to do so.

61Here and throughout this section the superscript index in brackets denotes from which iteration
of iDMRG the particular tensor was obtained rather than its position in space.
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g (ℓ) = ⟨Ŝz0
ℓ−1∏
k=1

(−1)Ŝ
z
k Ŝzℓ ⟩ , (8.4)

corresponding to a hidden Z2 × Z2 order [8].62

While iDMRG produced very good results for this case, it is rarely used to study

infinite systems because of strong setbacks in the general case. One of the main

setbacks is that iDMRG does not produce a translationally invariant wavefunction.

That is to say, after a large number of iterations the resulting state Eq. (8.3) is

still an open boundary MPS with the central tensors being increasingly accurate

representations of the bulk tensors which would be embedded in the center of an

infinite chain. This makes it useful as a means to generate an initial ansatz for a

finite-size simulation, but not to study the translationally invariant infinite system.

As first realized by McCulloch [9], we can identify a translationally invariant unit cell

from the tensors obtained by iDMRG by writing the infinite wavefunction in Vidal

canonical form as

|ψ⟩ =
∑

...ikik+1ik+2ik+3,...

. . .
(
Λ[A]Γ[A]ikΛ[B]Γ[B]ik+1

) (
Λ[A]Γ[A]ik+2Λ[B]Γ[B]ik+3

)
. . .

× | . . . ikik+1ik+2ik+3 . . . ⟩ , (8.5)

where the repeat unit has been bracketed out. Translating this result into the A and

B language using Eqs. (6.43)-(6.44), we have that the current best guess at the unit

cell is

A[n]iΛ[n]B[n]j
(
Λ[n−1]

)−1
. (8.6)

62For a physical interpretation of string order and the order parameter g (ℓ), see the discussion
following Eq. (6.74). While the results given there are for the AKLT state, the AKLT state and the
ground state of the spin-1 antiferromagnetic Heisenberg model are in the same quantum phase.
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With the realization of this repeat unit, we find that the algorithm can produce ap-

proximations to an infinite many-body state which is exactly translationally invariant.

Explicitly, the infinite state is

|ψ⟩ =
∑

...ikjkik+1jk+1...

. . .
(
A[n]ikΛ[n]B[n]jk

(
Λ[n−1]

)−1
)(

A[n]ik+1Λ[n]B[n]jk+1
(
Λ[n−1]

)−1
)
. . .

× | . . . ikjkik+1jk+1 . . . ⟩ . (8.7)

So far we have considered only unit cells which are two sites in length, as this is

the configuration considered in the original iDMRG work. However, the procedure

can be applied to unit cells of any length, as required for systems which spontaneously

break single-site translational invariance. In order to keep the notation light, we will

continue to use the two-site notation for the unit cell. Expressions for larger unit

cells may be derived from these by treating i and j as multi-component site indices

i =
{
i1, . . . , i⌊q/2⌋

}
,63 j =

{
j⌊q/2⌋+1, . . . , jq

}
and then decomposing A[n]i as a product

of left-canonical matrices A[n]i1 . . . A[n]i⌊q/2⌋ and likewise for B[n]. We will use the

symbol q to denote the length of the unit cell in what follows. We also note that the

computation time scales linearly in the length of the unit cell.

An important practical consequence of McCulloch’s unit cell identification is that

we can use the optimal tensors from the (n− 1)st and nth iteration cycles to construct

a guess at the optimal wavefunction of the (n+ 1)st iteration. The optimal tensor at

the nth iteration Eq. (8.3) may be written as

A[1]i1 . . . A[n]inΛ[n]B[n]jn . . . B[1]j1

= A[1]i1 . . .
(
A[n]inΛ[n]B[n]jn

(
Λ[n−1]

)−1
)

Λ[n−1] . . . B[1]j1 . (8.8)

Identifying the unit cell, and recognizing that in the limit of an infinite system the

presence of one additional unit cell is inconsequential, we can insert our best guess at

the unit cell Eq. (8.6) to obtain a guess at the optimal tensor of the n+ 1th iteration

63Here ⌊n⌋ represents the smallest integer less than or equal to n.
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A[1]i1 . . .
(
A[n]inΛ[n]B[n]jn+1

(
Λ[n−1]

)−1
)(

A[n]in+1Λ[n]B[n]jn
(
Λ[n−1]

)−1
)

Λ[n−1] . . . B[1]j1

= A[1]i1 . . . A[n]in
(

Λ[n]B[n]jn+1
(
Λ[n−1]

)−1
A[n]in+1Λ[n]

)
B[n]jn . . . B[1]j1 , (8.9)

where the last line has bracketed out the guess. In this form it is also clear that, for a

two-site unit cell, the optimization procedure optimizes the first site and the second

site in the unit cell in alternate iterations. That is, the position of the beginning of

the unit cell shifts each iteration. For unit cells of larger than two sites there is greater

freedom in how to split the tensor for absorbing into the environment, but practical

experience shows that cutting the unit cell in half as in the two-site case works best.64

This is because this decomposition maintains that the two environments are equally

valid representations of their infinite counterparts, avoiding “one-sided” errors.

With these notations, we may now state the infinite-size variational ground state

search with MPS (iMPS) algorithm as formulated by McCulloch.

1. Input

Input the matrix product operator representation of the Hamiltonian65 and a

sequence of bond dimensions {χi}, i = 1, 2, . . . . Set χ = χ1.

2. Initialization

(a) Construct a finite-size, open boundary simulation on q sites and find the

optimal state for the given χ. Bring into mixed canonical form A[1]Λ[1]B[1].

(b) Absorb A[1] and B[1] into the environment using the caching recursions

Eqs. (7.44)-(7.46) discussed in Sec. 7.3. Solve for the ground state of a

new q-site cell with this environment, and bring into mixed canonical form

A[2]Λ[2]B[2]. Set n = 2.

64For a unit cell with an odd number of sites q, we alternately absorb ⌈q/2⌉ and ⌊q/2⌋ into the
left environment.

65See Chapter 7 for a discussion of matrix product operators.
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3. Iteration

(a) Absorb A[n] and B[n] into the environment.

(b) Initialize a trial guess at the ground state with the new environment(
Λ[n]B[n]jn+1

(
Λ[n−1]

)−1
A[n]in+1Λ[n]

)
.

(c) Using the trial guess, find the ground state, and bring into mixed canonical

form A[n+1]Λ[n+1]B[n+1].

(d) Check for convergence. If converged, measure desired properties and in-

crement to the next bond dimension χ. If the last χ was computed, exit,

otherwise return to 3(a). If convergence is not reached, increment n by

one and return to 3(a)

8.1 The Orthogonality Fidelity

If the ground state of the given Hamiltonian has the translational symmetry as-

sumed by the iMPS unit cell ansatz, then it is expected that the iMPS iteration

above converges to a fixed point in which the unit cells obtained from concurrent

iterations are close in some sense. We can make this intuition precise by introducing

the orthogonality fidelity

Fortho = Tr

√√
ρ
[n]
R ρ

[n−1]

√
ρ
[n]
R , (8.10)

where the reduced density matrices ρ
[n]
R and ρ[n−1] are obtained by tracing over every-

thing to the right of the current unit cell at the nth iteration and to the right of the

orthogonality center at the (n− 1)st iteration, respectively. For a mixed-canonical

state, ρ[n] = Λ[n]†Λ[n]. We can compute ρ
[n]
R by performing a singular value decom-

position Λ[n]B[n] = USV . Λ
[n]
R is SV , and ρ

[n]
R = Λ

[n]
R

†
Λ

[n]
R . Now, using the cyclic

properties of the trace for finite matrices, Fortho is the sum of the singular values of

Λ
[n]
R Λ[n−1]†, which is straightforwardly calculated.
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8.2 Orthogonalization of Matrix Product States in the Thermodynamic
Limit

Let us now turn to measurements using our fixed point MPS. First, we recall

that the translationally invariant unit cell is represented most accurately at the nth

iteration as

A[n]iΛnB
[n]j
(
Λ[n−1]

)−1
, (8.11)

or, shifting the position of the beginning of the unit cell, as

(
Λ[n−1]

)−1
A[n]iΛ[n]B[n]j . (8.12)

Considering Eq. (8.11) and shifting the orthogonality center to the edge of the unit

cell, we find

A[n]iA[n]jΛ
[n]
R

(
Λ[n−1]

)−1
. (8.13)

Here, the tensor describing the right half of the unit cell, Λ[n]B[n]j, has been converted

to A[n]jΛ
[n]
R , where A[n]j is left-canonical and different from the tensor A[n]i describing

the left half of the unit cell. In order to keep the notation light, we will use A for both

of these tensors, and they will be distinguished by the indices and the order in which

they appear within the unit cell. The appearance of the matrix P ≡ Λ
[n]
R

(
Λ[n−1]

)−1

indicates a deviation from orthonormality for finite Fortho, which is always the case in

numerics.66 By a deviation from orthonormality, we mean that the right basis of A[n]j

is not orthogonal, and also that the transfer matrix has a spectral radius different

than 1. Similarly, by extracting Λ
[n]
L from the SVD of A[n]iΛ[n] in Eq. (8.12), one

can show that the left basis of A[n]i is also not orthogonal. A means to measure the

amount of (non)orthogonality in the bases of these MPS tensors is to measure the

expectation of the unit operator between these states. This is readily done within the

66Except in extreme cases, for example if the ground state is a product state.
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=

TL(I) = I

a)

=
b)

TR(I) = I

Figure 8.1: Normalization conditions for infinite MPSs. a) For a left-canonical unit
cell, the transfer operator of the unit cell admits the identity as a left eigenmatrix
with eigenvalue 1. b) For a right-canonical unit cell, the transfer operator of the unit
cell admits the identity as a right eigenmatrix with eigenvalue 1.

transfer operator formalism introduced in Sec. 6.5.

We define the transfer operator of a left-canonical unit cell, TL (E) as

TL (E) =
∑
ij

P †Aj
†
Ai

†
EAiAjP , (8.14)

where P was defined in the last paragraph. Here E is a χ × χ matrix, and the

transfer operator TL is an operator which takes χ × χ matrices to χ × χ matrices.

Also, we note that TL operates on the right of E. Hence, we use the notation TL (E)

to avoid confusion with the direction of operation. Also, while naively the operation

of the transfer operator would require O (χ4) operations, it can be done in O (χ3) by

exploiting its tensor network structure.

The usefulness of the transfer operator is best seen by considering the norm of the

translationally invariant wavefunction, which is the contraction of an infinite tensor

network. If we assume that we have contracted this network from −∞ to 0 and

the result is stored in E, then TL (E) gives the result of this contraction being car-

ried through one more unit cell. Hence, for an orthonormal state, we would have

that TL (I) = I, see Figure 8.1. Stated equivalently, the identity matrix is a left

eigenmatrix of the transfer operator with eigenvalue 1. However, in the present case,

TL (I) = P †P . We can remedy this [10] by solving for the largest eigenmatrix of

TL (I), call it VL. Here it should be noted that TL (I) is not symmetric in general.

Also, because of the tensor network structure of TL (E), a sparse eigensolver should
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be used to find the eigenmatrix corresponding to the largest eigenvalue. In prac-

tice we use the routine dnaupd from the Arnoldi-based ARPACK [11] package for

non-symmetric sparse matrices. Because of the “quadratic” form of TL (I), VL is Her-

mitian and positive definite when the largest eigenvalue is non-degenerate, and hence

we can decompose it into VL = X†X where X is invertible. While this is suggestive of

a Cholesky decomposition [12], Cholesky decomposition becomes unstable when the

matrix is nearly singular [13] and so it is advisable to rather perform an eigenvalue

decomposition VL = UΛU † with U the matrix with eigenvectors of VL as columns

and then X =
√

ΛU †. We then transform the unit cell via a similarity transforma-

tion XAiAjPX−1 whence TL (I) = I, as desired. The case of degenerate maximal

eigenvalue will be discussed at the end of this subsection.

Shifting the starting point of the unit cell as in Eq. (8.12) and moving the orthog-

onality center to the left, we have that the right-canonical unit cell is

QBiBj , (8.15)

where Q ≡
(
Λ[n−1]

)−1
Λ

[n]
L . The interpretations of Bi and ΛL are parallel to that of Aj

and ΛR above. We stress that this unit cell is independent of X, and so all operations

here are compatible with the change of basis of the unit cell such that the right basis

is orthogonal. For the transfer operator of a right-canonical unit cell

TR (E) =
∑
ij

QBiBjEBj†Bi†Q† , (8.16)

we hence have that TR (I) = QQ†. Proceeding as before, we find the (right) eigenma-

trix VR associated with the largest eigenvalue and decompose it as VR = Y Y † via an

eigenvalue decomposition, VR = UΛU †, Y = U
√

Λ. We then transform the unit cell as

Y −1QBiBjY . If we reinsert all definitions, we find that the properly orthogonalized

unit cell may be written as
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XA[n]iΛ[n]B[n]jY Y −1
(
Λ[n−1]

)−1
X−1 . (8.17)

This may be brought into the original form of the unit cell

A[n]iΛ[n]B[n]j
(
Λ[n−1]

)−1
, (8.18)

by identifying the new set of tensors

A[n]i = XA[n]i , (8.19)

B[n]j = B[n]jY , (8.20)

Λ[n−1] = XΛ[n−1]Y . (8.21)

The identification of the tensors Eqs (8.19)-(8.21) has the benefit of not requiring

the inverses of X and Y , but only of XΛ[n−1]Y . This set of transformations gives

us a translationally invariant unit cell with proper left and right orthonormalization

ensured. In what follows, when we write e.g. Ain we refer to the orthonormalized

tensor and not the raw output from the iMPS iteration.

We can now discuss canonical forms for the translationally invariant MPS state.

By writing down a product of several unit cells

. . . A[n]iΛ[n]B[n]j
(
Λ[n−1]

)−1
A[n]iΛ[n]B[n]j

(
Λ[n−1]

)−1
A[n]iΛ[n]B[n]j

(
Λ[n−1]

)−1
. . . ,

(8.22)

we can identify three different canonical forms paralleling the canonical forms for finite

MPSs. The first is fully left-canonical, and is obtained by Aj = Λ[n]B[n]j
(
Λ[n−1]

)−1
:

. . .
(
Ai1Aj1

) (
Ai2Aj2

)
. . . . (8.23)

Here, the parentheses denote unit cells, and the ordering of the indices now denotes

position in the lattice from left to right rather than the optimization cycle index,

compare Eq. (8.3). By the properties of our orthonormalization procedure above,
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these tensors are truly left-canonical in the sense of Eq. (6.24). The second is fully

right-canonical, and is obtained by Bi =
(
Λ[n−1]

)−1
A[n]iΛ[n]:

. . .
(
Bi1Bj1

) (
Bi2Bj2

)
. . . . (8.24)

Again, these matrices are all right-canonical in the sense of Eq. (6.33). The mixed-

canonical state is obtained by inserting the identity I = Λ[n−1]
(
Λ[n−1]

)−1
after one of

the
(
Λ[n−1]

)−1
and using the identifications of Aj and Bi to find

. . .
(
Ai1Aj1

)
Λ[n−1]

(
Bi2Bj2

)
. . . . (8.25)

This is the form most useful for expectation values. Here, the parentheses denote

the left-canonical and right-canonical unit cells from Eq. (8.23) and Eq. (8.24). The

left-canonical unit cell repeats infinitely to the left of Λ[n−1], and the right-canonical

unit cell repeats infinitely to the right of Λ[n−1]. We note that the compatibility of

Eqs. (8.23), (8.24), and (8.25) implies that TR admits Λ[n−1]†Λ[n−1] as a left eigen-

matrix with eigenvalue 1 and similarly TL admits Λ[n−1]Λ[n−1]† as a right eigenmatrix

with eigenvalue 1. This can also be verified directly.

In the case of a degenerate maximal eigenvalue, the left and right eigenmatrices

corresponding to the maximal eigenvalue we find are not unique, but form a basis for

the degenerate eigenspace. Hence, the ordering of the numerically obtained eigenma-

trices may be such that ⟨k|k⟩ is very close to zero, where ⟨k| is the kth left eigenmatrix,

|k⟩ is the kth right eigenmatrix, and we use the Frobenius inner product. This can

cause severe instability in the formation of the properly orthogonalized tensors given

in Eqs. (8.19)-(8.21). To avoid this difficulty, we form the Gram matrix of the left

and right eigenmatrices

Mkk′ = ⟨k|k′⟩ , (8.26)
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and perform a singular value decomposition M = USV . We now unitarily transform

the left-and right eigenmatrices as

|k⟩ = Vkk′ |k′⟩ , (8.27)

⟨k| = Uk′k⟨k′| , (8.28)

such that their Gram matrix is now the positive diagonal matrix of singular values

S. This is effectively a transformation of the left and right eigenmatrices to the well-

conditioned subspace. In practice we perform this procedure on any set of Hermitian

and positive definite eigenmatrices whose eigenvalues differ in a relative sense by

10−4,67 as a quasi-degeneracy resulting in a large correlation length may be indicative

of a true degeneracy that is not converged in χ.

8.3 Expectation Values

We now turn to expectation values. Here we will use the mixed-canonical form

Eq. (8.25). Without loss of generality, we assume that the support68 of our observable

operator contains the orthogonality center. On the right of the rightmost operator

is an infinite product of right canonical matrices B. Due to the normalization of the

state and the right canonical condition shown graphically in Figure 8.1, the result of

the infinite contraction of right-canonical matrices becomes limN→∞ TNR (I) = I. Sim-

ilarly, on the left of the leftmost operator we have an infinite product of left-canonical

matrices A, yielding limN→∞ TNL (I) = I. Thus, the calculation of expectation values

of operators with finite support is obtained by contracting the finite network on which

our expectation operators have support and tracing the boundaries, see Figure 8.2.

We will turn to the question of operators with infinite support,69 whose expectation

67This value corresponds to a correlation length of roughly 104 lattice sites. The reason for
this choice is practical; current experimental setups using ultracold gases would have difficulty
distinguishing a state with a correlation length this large from a state which is truly long-range
ordered. Hence, explicitly breaking symmetries by mixing near-degenerate eigenstates for the benefit
of numerical stability will not affect our ability to predict experimental outcomes.

68The support of an operator is the region of the lattice on which the operator is nonzero.
69That is, expectations of operators which act on all sites in the infinite lattice.
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. . . . . .

=

Figure 8.2: Expectation of a finitely-supported operator within an infinite MPS.
Due to the left- and right-canonical conditions shown graphically in Figure 8.1, the
expectation of an operator whose finite support contains the orthogonality center may
be evaluated as a finite tensor network contraction using the methods of Sec. 7.5.

values diverge for the infinite state, in the next paragraph. When computing two-

point correlation functions e.g. ⟨n̂0n̂r⟩, we find that best results are obtained when the

result is averaged over all possible separations r consistent with translation invariance.

Namely, we compute

⟨n̂0n̂r⟩ =
1

q

q−1∑
i=0

⟨n̂in̂i+r⟩ , (8.29)

where q is the number of sites in the unit cell and the summation runs over all sites

in the unit cell. This accounts for possible breaking of the translational symmetry

within the unit cell itself.

We now turn our attention to finding the expectation value of an operator rep-

resenting an extensive observable, taking the Hamiltonian as a paradigmatic exam-

ple [14]. This amounts to finding the energy density of the infinite state. We make

the assumption that the expectation of the observable grows at most extensively such

that it has a finite density in the thermodynamic limit. This holds for all reasonable

Hamiltonians, but not for example for the square of the Hamiltonian.70 The Hamil-

tonian is assumed to be spatially homogenous, and so its matrix product operator

(MPO) representation is specified by a single MPO matrix W . To be concrete, let us

consider the MPO representation of the Ising model in a transverse field

70This can be seen by considering the expectation of Ĥ2 in the ground state, which is e0L
2 with

e0 the energy density and L→∞ the number of lattice sites.
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ĤIsing = −J
∑
⟨i,j⟩

σ̂zi σ̂
z
j − h

∑
i

σ̂xi , (8.30)

which is given by

W =

 Î 0 0
σ̂z 0 0

−hσ̂x −Jσ̂z Î

 . (8.31)

Here σ̂ν denotes the Pauli matrix along the νth Cartesian direction. This MPO has a

bond dimension χO = 3.

Assuming the state to be in right-canonical form as in Eq. (8.24), the expectation

⟨Ĥ⟩ becomes an infinitely large contraction of the form

⟨Ĥ⟩ = Tr

[
. . .

(∑
ii′

Bi⋆ ⊗W ii′ ⊗Bi′

)(∑
jj′

Bj⋆ ⊗W jj′ ⊗Bj′

)
. . .

]
. (8.32)

Comparing with Eq. (6.65) suggests defining a generalized unit cell transfer operator

as

TR;X (E) =
∑
iji′j′

X ii′;jj′Bi′Bj′EBj†Bi† , (8.33)

where X ii′;jj′ is an operator acting on the local indices of the unit cell. Defining the

elements of the MPO representation of our operator acting on the unit cell as

W ii′jj′

κκ′ =
∑
κ′′

W ii′

κκ′′W
jj′

κ′′κ′ , (8.34)

we can write the infinite contraction in terms of the generalized transfer operator

Eq. (8.33) as shown graphically in Figure 8.3.

The general procedure of evaluating the infinite product of transfer operators

is similar to the procedure used to normalize infinite MPSs. In the normalization

procedure, the restriction that the state have a norm of one implied that the transfer
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�Ĥ� =Tr

Tr

(

(

. . . . . . )

)
Nlim

N→∞

Figure 8.3: Expectation of an infinitely-supported operator within an infinite MPS.
Because of the repeating structure of the unit cell and the homogenous MPO represen-
tation, we can identify a repeating tensor network structure which is the generalized
transfer operator TR;Wκκ′

. The uncontracted bonds in the center of the expectation
correspond to the bond indices of the MPO.

operator had a dominant eigenmatrix with eigenvalue 1. The left- or right-canonical

form of the unit cell then allowed us to identify that this dominant eigenmatrix was

in fact the identity operator. In the present case, the dominant matrix will have

χO components, (E1, . . . , EχO
), where χO is the bond dimension of the MPO. To

outline the general structure of the dominant matrices, let us consider multiplying71

the matrix W in Eq. (8.31) by itself L times to find

WL =

 Î⊗L 0 0

Î⊗(L−1) ⊗ σ̂z 0 0

ĤIsing −Jσ̂z ⊗ Î⊗(L−1) Î⊗L

 . (8.35)

This is indicative of the general structure of an MPO. In particular, the two halves of

the bond term σ̂zσ̂z have a string of identities appended to them to become Î⊗(L−1)⊗σ̂z

and σ̂z ⊗ Î⊗(L−1). In DMRG, these operator strings are referred to as connection

operators, as they specify how the Hamiltonian connects the L sites acted on by this

MPO product to the rest of the system. Furthermore, the lower left element of the

MPO is the Hamiltonian on L sites, and the upper left and lower right components

are the identity on L sites. Because the only term in the first row is the identity, E1 is

an eigenmatrix of TR with eigenvalue 1 provided that the unit cell is in right-canonical

form. Hence, the first component of the dominant eigenmatrix is the identity matrix.

71By multiplication, we mean contraction over the bond indices with the matrix-valued elements
combined by tensor products, see Sec. 7.2.2.
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=−x

Figure 8.4: Fixed point relations for the dominant matrices of the Hamiltonian MPO
transfer matrix, Eq. (8.37).

To find the other components of the dominant matrix, let us consider that we have

performed the expectation Eq. (8.32) over n unit cells starting with some boundary

matrices {Eκ (0)} and have stored the result in the matrices {Eκ (n)}. Here n denotes

how over how many unit cells the contraction has been performed. Carrying out the

contraction over one further unit cell produces the matrix

Eκ (n+ 1) =
∑
κ′

TR;Wκκ′
(Eκ′ (n)) . (8.36)

We now focus on the case where all infinite-ranged terms in the Hamiltonian are

free of Fermi phases.72 In these cases any operator appearing on the diagonal of the

MPO matrix W is proportional to the identity. Separating out this part of the MPO

explicitly, we have the fixed point relations

(I − xTR) (Eκ) =
∑
κ′<κ

TR;Wκκ′ (Eκ′) . (8.37)

In Eq. (8.37) we have dropped the arguments n with the understanding that the

dominant matrices are fixed points of Eq. (8.37) and are hence independent of n.

The crucial component in solving Eq. (8.37) is that, because of the lower triangular

structure and the fact that E1 is known a priori, the right hand side of Eq. (8.37) is

a known matrix, and hence Eq. (8.37) represents a non-symmetric system of linear

equations for Eκ, see Figure 8.4. For κ ̸= χO, there are two possibilities. The first is

that there are no long range terms, and so x = 0. In this case there is no linear system

of equations, but rather an equality for the unknown matrix Eκ. The second is that

72This assumption does not hold for long-range tunneling of fermions, for example. Such cases
can be dealt with, but are not relevant for this thesis.
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there is a long-range interaction with x < 1.73 In this case we do have to solve a linear

system of equations, but the matrix on the left hand side is nonsingular due to the

fact that the spectral radius of TR is 1. We solve these using the GMRES method [15],

a Krylov-subspace based sparse linear solver for non-symmetric matrices. This allows

us to take advantage of the tensor network structure when applying TR so that the

solution is O (χ3). In the case of the Ising model with MPO given by Eq. (8.31), all

elements with 1 < κ < χO have x = 0, and so the associated {Eκ (n)} can be solved

for explicitly. These matrices do not depend on the initial values Eκ (0) provided that

E1 (0) = I, and so are the fixed points {Eκ} of Eq. (8.37).

Finally, we turn to κ = χO. Here we have x = 1, and so the left-hand matrix in

Eq. (8.37) is right-singular for components of EχO
along the identity. However, the

lower-left element of a product of L MPO matrices is the Hamiltonian on L sites, see

Eq. (8.35), and so EχO
(n+ 1) represents the overlap of the Hamiltonian on n unit

cells in the basis states of the unit cell MPS decomposition. Hence, the singularity

arises from the fact that this expectation can take on any value e0qn, where e0 is the

energy density, q is the number of lattice sites, and n is a positive integer. That is to

say, the result of carrying the contraction through one more unit cell is

Eκ (n+ 1) = −qe0Iδκ,χO
+
∑
κ′

TR;Wκκ′ (Eκ′ (n)) , (8.38)

where the constant piece is the energy expectation of the unit cell. We can remove

this ambiguity by using the fact that Λ[n−1]†Λ[n−1] spans the left null space of the

matrix (I − TR) to find

qe0 = Tr

[
Λ[n−1]†Λ[n−1]

∑
κ′<χO

TR;Wκκ′
(Eκ′)

]
. (8.39)

73x=1 corresponds to uniform long-range interactions, and we know of no physical real-space
Hamiltonians involving such terms.
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This provides us with the energy density. Hence, the relevant fixed-point condition

for the dominant matrices is not Eq. (8.37) but

(I − xTR) (Eκ) = −qe0Iδκ,χO
+
∑
κ′<κ

TR;Wκκ′ (Eκ′) , (8.40)

which differs from Eq. (8.37) only for κ = χO. The fact that the energy density takes

the form Eq. (8.39) also implies that the right hand side of Eq. (8.40) is orthogonal to

the left null space of the left hand side matrix. By the fundamental theorem of linear

algebra [16], the right hand side lies completely within the image of the operator

on the left-hand side, and so this equation has a consistent solution and not merely

a least-squares or pseudo-inverse solution in spite of the fact that the operator on

the left hand side is singular. This construction contrasts with the method taken in

Ref. [14], in which the extensive part of the observable is not included in Eq. (8.40)

and a projection procedure within the GMRES method is used instead. The fact that

we can add any multiple of the identity matrix to the dominant matrix EχO
which

solves Eq. (8.40) and still have a solution to Eq. (8.40) corresponds to the freedom in

choosing a zero of energy for the infinite system. Using Eq. (8.39) we get the energy

per site several orders of magnitude more accurately than we obtain from raw output

of the effective Hamiltonian eigenequation used to optimize the iMPS.

8.4 Examples

To demonstrate the iMPS method, we will study the spin-1/2 and spin-1 antiferro-

magnetic Heisenberg models. Antiferromagnetic Heisenberg models have long been of

interest in studies of quantum magnetism, where they represent a minimal Hamilto-

nian describing particles whose spins wish to be anti-aligned with their neighbors [17].

The spin-1/2 model is exactly solvable via Bethe ansatz [18, 19], and is known to be

critical with central charge 1 and z-z correlations decaying asymptotically as
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⟨Ŝz0 Ŝzr ⟩ ∼ (−1)r
√

ln |r|
|r|

. (8.41)

The z-z correlation function describes how strongly the z-component of a spin at

position 0 is correlated with the z-component of a spin r sites away. Experimentally,

this information is probed via the dynamical structure factor

S (q, ω) = L−1

∫ ∞

−∞
dteiωt

L∑
i,j=1

eiq·(ri−rj)⟨Ŝzi (t) Ŝzj (0)⟩ , (8.42)

where Ŝzi (t) is a Heisenberg picture operator and L is the number of sites [17]. In

one dimension, true long-range ferromagnetic order where ⟨Ŝz0 Ŝzr ⟩ approaches a con-

stant as r →∞ is destroyed by strong fluctuations according to the Mermin-Wagner

theorem [3, 4], and so power law decay represents the strongest allowed degree of cor-

relation. Furthermore, its nearest-neighbor and next-nearest neighbor z-z correlations

are known from the Bethe ansatz solution to be 1
12

(1− 4 log 2) ≈ −0.14771573 [19]

and 1
12

(1− 16 log 2 + 9 ζ (3)) ≈ 0.06067977 [20]. The spin-1 model has no proper-

ties which are amenable to exact computation. However, its properties were of great

interest after Haldane [7] conjectured a major difference between integer-spin and

half integer-spin antiferromagnetic Heisenberg models. In particular, as opposed to

the half-integer case where the system is critical and correlations decay algebraically,

integer-spin chains are gapped and non-critical, and z-z correlations decay exponen-

tially as

⟨Ŝz0 Ŝzr ⟩ ∼ (−1)r
exp (− |r| /ξ)

|r|
. (8.43)

DMRG found one of its important early applications for this system in which Hal-

dane’s conjecture was verified, and the gap and correlation length ξ were both calcu-

lated to high precision [6].
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Figure 8.5: Correlation functions for the spin-1/2 and spin-1 Heisenberg models com-
puted with iMPS. Top panel: The z-z correlation functions for the spin-1/2 antifer-
romagnetic Heisenberg model is compared with exactly known results. As the bond
dimension is increased, the range over which this function follows the true algebraic
decay increases, compare Figure 6.5. Bottom panel: The z-z correlation function for
the spin-1 antiferromagnetic Heisenberg model is shown together with a fit demon-
strating its exponential decay.
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In Figure 8.5, we show the z-z correlation function of these two models com-

puted from converged iMPS simulations with a range of bond dimensions χ. In

the upper plot for the spin-1/2 model, we also plot the nearest-neighbor and next-

nearest-neighbor correlations as horizontal lines to accentuate that even MPSs with

small bond dimension χ = 10 capture the short-distance physics well. The tilted

dashed line is a function with the same scaling as the Bethe ansatz result Eq. (8.41).

As the bond dimension increases, the power law behavior of the correlator persists to

further distances. Hence, what is more important than the value of the correlator for

a single χ is the scaling behavior of the correlator as χ is increased. Plotted in yellow,

which lies on top of the light blue line, is the ⟨Ŝ+
0 Ŝ

−
r ⟩/2 correlator to demonstrate

that spin-rotational symmetry is preserved by the simulation. As is always the case

for MPSs with a finite bond dimension that do not have long-range order, at large

enough distances the behavior of the correlator always becomes exponential with a

correlation length equal to the largest correlation length of the transfer operator. This

behavior may also be compared with the approximation of a power law by a sum of

exponentials shown in Figure 6.5. In the bottom panel of Figure 8.5 we show the

analogous plot for the spin-1 chain. Here the correlator is exponential, as shown via

the fit through the correlator with the largest bond dimension.

In Figure 8.6, we display the scaling of the largest correlation length obtained

from the sub-leading eigenvalue of the transfer operator with the bond dimension.

The critical spin-1/2 state shows an increase in the correlation length as the bond

dimension increases, and a fit to the prediction Eq. (6.75) yields a central charge in

good agreement with the known value. Also shown in this plot is the behavior of

the spin-1 chain, in which the saturation of the correlation length to a finite value

implies the absence of criticality. Typical values of χ for MPS/DMRG studies on

finite lattices are a few hundreds to a few thousands, with values of tens of thousands

being reported for quasi-2D systems [21, 22]. In finite-size MPS studies one must first
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Figure 8.6: Scaling of the correlation length with the bond dimension χ in iMPS. The
spin-1/2 chain obeys the scaling relation Eq. (6.75) between the correlation length
and the bond dimension, yielding a central charge in agreement with the analytical
prediction. The spin-1 chain shows a saturation of the correlation length with the
entanglement cutoff, and is hence non-critical.

extrapolate χ → ∞ before one can perform reliable finite-size scaling L → ∞. By

instead taking the limit L→∞ first and performing finite-entanglement scaling, we

can obtain very good results using comparatively rather modest values of the bond

dimension χ.
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[10] R. Orús and G. Vidal. Infinite time-evolving block decimation algorithm beyond
unitary evolution. Phys. Rev. B, 78:155117, Oct 2008. doi: 10.1103/PhysRevB.
78.155117. URL http://link.aps.org/doi/10.1103/PhysRevB.78.155117.

[11] ARPACK package for sparse solution of eigenvalue problems: http://www.caam.
rice.edu/software/ARPACK/.

[12] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Studies
in Mathematical Sciences. The Johns Hopkins University Press, Baltimore, 3
edition, 1996.

[13] J. H. Wilkinson. Rounding errors in algebraic processes. Prentice-Hall, Engle-
wood Cliffs, N.J., 1964.

[14] I. P. McCulloch L. Michel. Schur forms of matrix product operators in the infinite
limit, 2010. URL http://arxiv.org/abs/1008.4667.

331

http://link.aps.org/doi/10.1103/PhysRev.158.383
http://link.aps.org/doi/10.1103/PhysRev.158.383
http://link.aps.org/doi/10.1103/PhysRevB.48.3844
http://link.aps.org/doi/10.1103/PhysRevB.48.3844
http://link.aps.org/doi/10.1103/PhysRevLett.50.1153
http://link.aps.org/doi/10.1103/PhysRevB.45.304
http://link.aps.org/doi/10.1103/PhysRevB.45.304
http://xxx.lanl.gov/abs/0804.2509
http://link.aps.org/doi/10.1103/PhysRevB.78.155117
http://www.caam.rice.edu/software/ARPACK/
http://www.caam.rice.edu/software/ARPACK/
http://arxiv.org/abs/1008.4667


[15] Y. Saad and M. Schultz. GMRES: A Generalized Minimal Residual Algorithm
for Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific and
Statistical Computing, 7(3):856–869, 1986. doi: 10.1137/0907058. URL http:

//epubs.siam.org/doi/abs/10.1137/0907058.

[16] Gilbert Strang. The Fundamental Theorem of Linear Algebra. The American
Mathematical Monthly, 100(9):pp. 848–855, 1993. ISSN 00029890. URL http:

//www.jstor.org/stable/2324660.

[17] A. Auerbach. Interacting Electrons and Quantum Magnetism. Springer, Berlin,
1994.

[18] H. Bethe. Zur Theorie der Metalle. Zeitschrift für Physik A, 71:205–226, 1931.
doi: 10.1007/BF01341708.
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CHAPTER 9

FINITE TEMPERATURE MATRIX PRODUCT STATE ALGORITHMS AND

APPLICATIONS

Abstract:74 We review the basic theory of matrix product states (MPS) as a

numerical variational ansatz for time evolution, and present two methods to simulate

finite temperature systems with MPS: the ancilla method and the minimally entangled

typical thermal state method. A sample calculation with the Bose-Hubbard model is

provided.

9.1 Introduction

The dimension of the Hilbert space for a general many-body system increases

exponentially with the system size, severely restricting the system sizes amenable

to straightforward numerical study. Several techniques have been developed to deal

with this fact, such as the stochastic sampling of the Hilbert space in quantum Monte

Carlo techniques and the judicious use of symmetries and sparse matrix structures in

exact diagonalizations. The most successful approximate method for 1d systems is

the density matrix renormalization group (DMRG) method first pioneered by White

[1] (see Chapter 24 for a methodology tailored towards higher-dimensional lattice

configurations). Soon after, the theory of matrix product states[2, 3] (MPS) was

used to shed light on the amazing success of DMRG[4, 5]. Ideas from quantum

information theory, most notably the idea of bipartite entanglement, have led to

the development of MPS algorithms which generalize DMRG to time evolution[6, 7],

periodic boundary conditions [8], and finite temperature[9, 10]. In this chapter we

74Published previously as Finite Temperature Matrix Product State Algorithms and Applications,
M. L. Wall and L. D. Carr, Chapter in ”Quantum Gases: Finite Temperature and Non-Equilibrium
Dynamics” (Vol. 1 Cold Atoms Series), N. P. Proukakis, S. A. Gardiner, M. J. Davis and M. H. Szy-
manska, eds. (Imperial College Press, 2012).
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review algorithms based on MPS for finite temperature simulations and discuss their

relevance to studying finite temperature superfluid systems.

9.2 Methodology

9.2.1 Matrix Product States

A matrix product state75 (MPS) on a lattice with periodic boundary conditions is

defined as

|Ψmps⟩ =
d∑

i1,i2,...iL=1

Tr
(
A[1]i1 · · ·A[L]iL

)
|i1, · · · , iL⟩, (9.1)

where the A[k]ik are square matrices76 of dimension χ (the bond dimension), d is

the dimension of the Hilbert space spanned by the {|ik⟩}, and L is the number of

lattice sites. Let us refer to the set of all MPSs with bond dimension χ as Mχ.

An MPS in Mχ contains Ldχ2 parameters, and so it is clear that any state on a

finite lattice can be written as an MPS provided we take the bond dimension to

be χmax = d⌊L/2⌋. However, the great utility of MPSs is that an MPS with bond

dimension χ ≪ χmax often provides an excellent approximation to the true state[12]

and allows for exponentially more efficient manipulation and calculation of observables

than an exact representation.

To visualize MPSs and operations with them, it is useful to introduce the notion

of a tensor network diagram as in Figure 9.1. In such a diagram a box represents

a tensor, free lines are uncontracted indices and closed lines are contracted indices.

Figure 9.1(a) shows the state of a many-body system expressed in the basis of the full

Hilbert space as an L-index tensor, and Figure 9.1(b) shows the same state written as

an MPS. The advantage of the MPS representation becomes clear when we compute

scalar products such as ⟨ψ|Ô|ϕ⟩.

75An MPS is a vector in Hilbert space. The qualifier matrix product refers to the fact that the
expansion coefficients in the Fock basis are expressed as products of matrices.

76These matrices can be taken to have the same symmetry as the state they represent, e.g., if
the state has real coefficients in some basis then the MPS matrices can be taken to be real. See [11]
and references therein for more details.
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Ψ
(a)

A[1] A[2] A[3] A[4]

(b)

M [4]M [3]M [2]M [1]

(c)

Figure 9.1: (a) Tensor network representation of full 4 site wavefunction. (b) Tensor
network representation of an MPS on 4 sites. (c) Tensor network representation of
an MPO on 4 sites.

Before we discuss how scalar products are efficiently computed, it is advantageous

to introduce a matrix product operator (MPO) as

Ô =
d∑

i1,...,iL=1

d∑
i′1,...,i

′
L=1

Tr
(
M[1]i1i′1 · · ·M[L]iLi

′
L

)
|i1, · · · , iL⟩⟨i′1, · · · , i′L|, (9.2)

where each of the M[k]iki
′
k is a matrix, the dimensions of which are bounded by a

fixed number (bond dimension) χO. The tensor network representation of an MPO

is similar to that of an MPS, but there are two uncontracted indices per tensor

corresponding to the bra and ket indices; see Figure 9.1(c). Equivalently, one can

think of each element of the matrix M[k] as being operator valued, where the operator

acts on the space spanned by {|ik⟩}.

Let us now see how to evaluate the scalar product of an operator Ô represented

as an MPO between two states |ψ⟩ and |ϕ⟩ represented as MPSs. Let us denote

the MPO matrices of Ô as M and the MPS matrices of |ψ⟩ and |ϕ⟩ as A and B,

respectively. Then, we have

⟨ψ|Ô|ϕ⟩ =
d∑

i1,...,iL=1

d∑
i′1,...,i

′
L=1

Tr
(
A[1]i1⋆ · · ·A[L]iL

⋆
)

× Tr
(
M[1]i1i′1 · · ·M[L]iLi

′
L

)
Tr
(
B[1]i1 · · ·B[L]iL

) (9.3)
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=Tr

 d∑
i1,i′1=1

A[1]i1⋆ ⊗M[1]i1i′1 ⊗B[1]i′1

× · · ·
×

 d∑
iL,i

′
L=1

A[L]iL
⋆ ⊗M[L]iLi

′
L ⊗B[L]i′L


≡Tr

(
E

[1]
M (A,B) · · ·E[L]

M (A,B)
)
,

(9.4)

where the last line defines the generalized transfer matrix E
[k]
M(A,B) ≡

∑d
ik,i

′
k=1 A

[k]ik
⋆⊗

M[k]iki
′
k ⊗B[k]i′k , which is a χ2χO × χ2χO matrix. Naively we would expect that the

multiplication of two transfer matrices would require O(χ6χ3
O) operations, but the

special structure of the transfer matrices allows us to perform such a multiplication

in O(χ5χ2
Od

2)77 as

[
E

[k]
M (A,B)E

[k+1]
M (A,B)

]
[αγβ],[α′γ′β′]

=
d∑

i′=1

χ∑
β=1

(
d∑
i=1

χO∑
γ′′=1

([
G

[k]
M (A,B)

]
[αγβ],[α′γ′′β′]

)
M

[k+1]ii′

γ′′γ′

)
B

[k+1]i′

β′′β′ , (9.5)

where [
G

[k]
M (A,B)

]
[αγβ],[α′γ′′β′]

≡
χ∑

α′′=1

[
E

[k]
M (A,B)

]
[αγβ],[α′′γ′′β′′]

A
[k+1]i
α′′α′

⋆
. (9.6)

Here the square brackets around indices denote a composite index in the Kronecker

representation and parentheses give the order in which the contraction should be

performed to ensure the best scaling. In particular, it is essential not to sum over the

α′′ and β′′ indices simultaneously.78 The tensor network representation of the scalar

product procedure is given in Figure 9.2.

77The fact that the boundary matrices of MPSs with open boundary conditions have bond di-
mension 1 allows us to perform this contraction in O(χ3χ2

Od
2), and recent developments for periodic

boundary conditions have reduced the scaling to O(χ3χ2
Od

2) for large systems with only a few
relevant correlation lengths[13, 14].

78Here and throughout we use greek indices to denote bond indices and roman indices to denote
physical indices.
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M [4]M [3]M [2]M [1]

B[1] B[2] B[3] B[4]

A[1]� A[2]� A[3]� A[4]�

E[1] E[2] E[3] E[4]

E[1] E[2] E[3] E[4]

�ψ|Ô|φ�

Figure 9.2: Tensor network representation of the scalar product procedure of Eq. (9.4).

The transfer matrices E
[k]
M(A,B) have been abbreviated as E[k] for succinctness.

Many operators of interest, such as translationally invariant 1d Hamiltonians, can

be easily represented as MPOs with small bond dimension χO ∼ 4 – 10 [14, 15], and

the MPO representations of more complex operators can be constructed using simple

MPO arithmetic [15, 16]. That the MPO form of an operator is optimal for MPS

algorithms can be straightforwardly deduced using the tensor network formalism,

as the scalar product of an MPO between two MPSs is the most general 1d tensor

network that can be efficiently contracted; see Figure 9.2.

We now turn to the simulation of time evolution using MPSs. The main difficulty

of using MPSs is that Mχ is not a vector space.79 Thus, when operators such as the

propagator are applied to an MPS we must find the optimal80 projection into Mχ

to keep the algorithm efficient. We denote this projection as Pχ. The optimal MPS

|ψ⟩ ∈ Mχ representing the MPS Û |ϕ⟩ is

Pχ
[
Û |ϕ⟩

]
= min

|ψ⟩∈Mχ

∣∣∣|ψ⟩ − Û |ϕ⟩∣∣∣2
= min

|ψ⟩∈Mχ

[
⟨ψ|ψ⟩+ ⟨ϕ|Û †Û |ϕ⟩ − 2R

(
⟨ψ|Û |ϕ⟩

)]
,

(9.7)

79This can be seen from the fact that the addition of two MPSs is given by the direct sum of their
matrices: |ψC⟩ = |ψA⟩ + |ψB⟩ ⇒ C[k] = A[k] ⊕B[k]. If the matrices A[k] and B[k] have orthogonal
bases then dim(C[k]) = dim(A[k]) + dim(B[k]).

80By optimal we mean that the overlap is maximal in the 2-norm. Although MPSs do not form
a vector space, they are embedded in a larger Hilbert space and so this norm is well-defined.
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where R(•) denotes the real part. Each of the scalar products in Eq. (9.7) may be

written as a quadratic form in each of the matrices A[k]ik , as is demonstrated in the

tensor network diagram Figure 9.3.

M [4]M [3]M [2]M [1]

B[1] B[2] B[3] B[4]

A[1]� A[2]� A[3]� A[4]�

Q[3]

Û

Q[3]

Û

B[3]

A[3]†

Figure 9.3: Tensor network representation of the quadratic form representing ⟨ψ|Û |ϕ⟩
in Eq. (9.7).

Again denoting the matrices in the MPS representation of |ψ⟩ by A and those of

|ϕ⟩ by B, the quadratic form of the kth site may be written as

Q[k] = A[k]†Q
[k]

1̂
A[k] + B[k]†Q

[k]

Û†Û
B[k] − 2R

(
A[k]†Q

[k]

Û
B[k]

)
, (9.8)

where A[k] represents the dχ2 elements of the {A[k]ik}, arranged as a vector, and the

matrices QÔ are defined as

[
Q

[k]

Ô

]
[αikα′][βi′kβ′]

=

χO∑
γ,γ′=1

M
[k]iki

′
k

γγ′

[∏
j ̸=k

E
[j]
M (C,D)

]
[αγβ],[α′γ′β′]

, (9.9)

where C and D are either A or B depending on the quadratic form. The Miki
′
k in

this final expression are the matrices in the MPO representation of Ô. The stationary

points of the quadratic form Eq. (9.8) are given by the solution of the linear system81[8]

81It is important to note that while Q1̂ is the quadratic form representing the scalar product
⟨ψ|ψ⟩ it can not in general be made equal to the identity. The numerical conditioning of this matrix
and of the linear system Eq. (9.10) can be improved by suitable choice of ‘gauge conditions’ on the
matrices A; see[8].
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Q1̂A
[k] = QÛB

[k]. (9.10)

The algorithmic procedure for time evolution is to sweep back and forth through the

lattice, solving Eq. (9.10) at each site until convergence is reached. In practice, it

is essential for efficiency not to explicitly form the matrices Q•, but rather to use

iterative methods which require only multiplication by the Q• to solve Eq. (9.10).

Details on the form of the propagator Û can be found in [16, 17].

9.2.2 The Ancilla Method

At finite temperature, the state of a quantum system is given by the thermal

density matrix ρ̂ = e−βĤ/Z. The ancilla method[9, 18] relies on the notion of

purification[19] to represent the thermal density matrix as a pure state in an en-

larged Hilbert space. Each physical site is augmented with an ancilla which has the

same Hilbert space dimension as the physical site. The MPS representation of such

a system is

|ψ⟩ =
d∑

i1,...,iL=1

d∑
a1,...,aL=1

Tr
(
A[1]i1a1 · · ·A[L]iLaL

)
|i1a1 · · · iLaL⟩. (9.11)

One can think of the combined system as a two-legged ladder, with the physical sites

on the lower leg and the ancillae on the upper leg. The purpose of the ancillae is

to act as a perfect heat bath which, when traced out, provides the proper thermal

density matrix for the physical system. The choice of ancilla for infinite temperature

(β = 0) is simply the normalized purification of the identity

|ψ(0)⟩ =
1√
dL

L∏
k=1

d∑
ik,ak=1

δikak |ikak⟩, (9.12)

which represents a product of maximally entangled site-ancilla pairs. This state has

an MPS representation with bond dimension 1 generated by taking all matrices to be

A
[k]ikak
αβ = δα,1δβ,1δikak/

√
d. The extension to finite inverse temperature β is provided
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by evolving only the physical sites82 in imaginary time up to β/2,

|ψ(β)⟩ = e−βĤ/2|ψ(0)⟩ . (9.13)

This time evolution can be efficiently performed using the methods of section 9.2.1.

Observables are calculated using transfer matrices as above with the additional re-

quirement that the ancilla degrees of freedom are traced over.

The ancilla method is conceptually very simple, and becomes numerically exact for

large enough bond dimension. However, because the MPS [Eq. (9.11)] must encode

the information of both the system and the bath, it requires a bond dimension∼ χ2
gs at

low temperatures, where χgs is the bond dimension required to accurately represent

the ground state. Typical values of χgs range from 50 – 5000, making the ancilla

method impractical for many systems at very low temperatures.

We conclude this section by remarking that the ancilla method represents a highly

idealized heat bath chosen to reproduce the exact thermal density matrix. Many of

the current examples of strongly correlated many-body systems, e.g. cold atoms, are

very mesoscopic and are in contact with thermal reservoirs which are also mesoscopic.

A modification of the ancilla method where the perfect entanglement at infinite tem-

perature is replaced with ancilla-ancilla and ancilla-system couplings in the Hamil-

tonian can be devised. Alternatively, one can directly simulate master equations by

considering matrix product density operators with optimal projections based on the

Hilbert–Schmidt distance[8] or matrix product decompositions of superkets with local

projections[10].

9.2.3 Minimally Entangled Typical Thermal States

A new method for finite temperature MPS simulations has recently been proposed

by White [20]. The idea stems from the question ‘What is a typical wave function of

a quantum system at finite temperature?’ That is, if we are to measure a quantum

82That is, the Hamiltonian only couples physical sites to physical sites, and not ancillae to ancillae
or physical sites to ancillae.
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system at finite temperature, what ‘typical’ pure states would we find, and with what

probabilities? It is clear from the basic tenets of statistical mechanics that any set of

typical states {|ϕ (i)⟩} must satisfy∑
i

P (i) |ϕ (i)⟩⟨ϕ (i) | = e−βĤ , (9.14)

where P (i) is the probability of measuring the system to be in state |ϕ(i)⟩, and so

the expectation of an operator Â at finite temperature may be written as

⟨Â⟩ =
∑
i

P (i)

Z
⟨ϕ(i)|Â|ϕ(i)⟩, (9.15)

with Z the partition function. From Eq. (9.15), we see that we can calculate observ-

ables using an unweighted average of ⟨ϕ(i)|Â|ϕ(i)⟩, if we choose the |ϕ(i)⟩ at random

according to their probabilities of being measured P (i)/Z. It is easy to generate states

satisfying the typicality condition [Eq. (9.14)] simply by taking any orthonormal basis

{|i⟩} and defining

|ϕ (i)⟩ = [P (i)]−1/2 exp
(
−βĤ/2

)
|i⟩, P (i) = ⟨i| exp

(
−βĤ

)
|i⟩. (9.16)

We now use the freedom in the choice of the orthonormal basis {|i⟩} to generate

typical states with the least amount of spatial entanglement, as these are the states

which can be most efficiently represented as MPSs[6, 21]. This amounts to taking the

{|i⟩} to be classical product states (CPSs), |i⟩ =
∏L

k=1 |ik⟩, where ik labels the state

of site k. The set of |ϕ(i)⟩ obtained from this choice of {|i⟩} are called minimally

entangled typical thermal states (METTS).

The most efficient algorithmic procedure for generating thermal averages using

METTS is as follows:

1. Choose a CPS |i⟩ at random.

2. Evolve in imaginary time using the methods of section 9.2.1 to generate the

METTS |ϕ(i)⟩ = [P (i)t]−1/2 exp(−βĤ/2)|i⟩.
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3. Compute observables of interest using this METTS and add to the running

averages.

4. Randomly select a new CPS |i′⟩ according to the probability |⟨i′|ϕ(i)⟩|2.

5. Repeat from step 2 until converged.

We see that the main loop of this algorithm closely resembles a Monte Carlo itera-

tion with measurement taking the place of the usual configuration updates. However,

it does not rely on a rejection method to perform sampling, and so each METTS that

is generated can be used to generate statistics. In practice very few (∼ 100) METTS

suffice to obtain the total energy to a relative accuracy of 10−5. For algorithmic de-

tails on how to perform the CPS selection to minimize correlations between successive

METTS we refer the reader to [16].

This METTS algorithm has many advantages over the ancilla method of the

previous section. As we do not have to encode the bath degrees of freedom in our

MPS, the bond dimension required to accurately represent each METTS ranges from

1 at infinite temperature to χgs at very low temperatures. This makes the METTS

method more efficient than the ancilla method by a factor of 103 – 1010 for typical

systems at very low temperatures. Additionally, if the Hamiltonian of interest has

a global symmetry then we can use the fact that the MPS matrices must transform

irreducibly to speed up the calculation[15] or find the thermal ensemble corresponding

to a fixed quantum number (canonical ensemble). This latter point is relevant to cold

atom systems where the total number of atoms is held fixed.83

83The ancilla method can also be used to simulate systems in the canonical ensemble, but the pro-
cess is complicated by the fact that we need the purification of the constrained infinite temperature
density matrix. This purification can be generated using a ground state DMRG-type calculation
with a suitably chosen Hamiltonian[22]. The Hamiltonian will contain artificial ancilla-ancilla and
ancilla-physical site couplings which are typically highly nonlocal.
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9.3 Validity Issues

It has been shown that MPSs can faithfully represent ground states of 1d gapped

Hamiltonians with at most nearest neighbor interactions with a bond dimension which

grows only polynomially in the system size[12]. In higher dimensions this polynomial

scaling gives way to an exponential scaling[23], but calculations on 2D systems of

width 8 – 12 are still feasible[24]. Generalizations of MPSs to higher dimensions

exist, but are so far limited by poor polynomial scaling of tensor contractions[25–27].

Perhaps the most important quality of MPS methods as compared to other efficient

many body methods, such as quantum Monte Carlo, is that MPS methods work

equally well for fermionic or frustrated systems. All of the methods presented here

will work equally well for any 1d or quasi-1d physical system.

9.4 Application: Specific Heat of the Hard-Core Extended Bose-Hubbard
Model

As an example of how the above methods may be applied to study the behavior

of a finite temperature superfluid system, we study the properties of the hard-core

extended Bose-Hubbard model

Ĥ = −J
∑
⟨i,j⟩

(
b̂†i b̂j + H.c.

)
+ V

∑
⟨i,j⟩

n̂in̂j (9.17)

at half filling. This model is known to have a superfluid phase in the XY universality

class for V < 2J . In the below figure we show a typical thermodynamic quantity,

the specific heat CV = β2(⟨Ĥ2⟩ − ⟨Ĥ⟩2)/L, as a function of temperature and the

nearest-neighbor repulsion. Note that computation of ⟨Ĥ2⟩ is easily performed when

the MPO representation of Ĥ is known.
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CHAPTER 10

OPEN SOURCE CODE DEVELOPMENT

The purpose of this chapter is to describe two open source code projects in which

the author has been involved. The first, open source time-evolving block decimation

(OSTEBD) [1], is a package which was maintained by the Carr theoretical physics

research group and heavily modified for flexibility and efficiency by the author. OS-

TEBD had two releases, one in February of 2009 and the other in October of 2009.

The OSTEBD dedicated blog has been viewed uniquely over 2,100 times to date, and

OSTEBD has been used in 8 publications within the Carr research group [2–9] and

6 known publications outside of this group [10–15]. The most recent blog statistics,

as gathered by http://wordpress.com, are shown in Figure 10.1. An extensive user’s

guide was distributed with OSTEBD describing the background of time-evolving block

decimation (TEBD), providing exercises to acquaint the user with the package, and

manual pages for all routines in the code. The most recent version of the manual is

included in Appendix B, and the most recent release of OSTEBD, v2.0, is contained

on the source code CD accompanying this thesis.
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Figure 10.1: Open source time-evolving block decimation blog statistics. The red
lines indicate releases of ALPS code and documentation.

In 2010, the code used for the OSTEBD project was significantly altered for sta-

bility and speed and merged into the algorithms and libraries for physics simulations
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(ALPS) package [16], the premier resource for numerical methods for strongly corre-

lated many-body problems. This code was formally included in the v2.0 release of

the ALPS package in November 2010. ALPS contains open source implementations

of nearly all widely used numerical methods for strongly correlated many-body sys-

tems, including exact diagonalization; worm, stochastic series expansion, and quan-

tum Wang-Landau quantum Monte Carlo; dynamical mean field theory; and a static

density-matrix renormalization group code. The TEBD software described in this

thesis was the first component of the ALPS package to enable the study of dynamics.

The ALPS software package is maintained by the ALPS international collaboration

presently consisting of 28 researchers. In addition to being used for cutting-edge re-

search world-wide with nearly 250 citations for the first two versions of ALPS at the

time of writing [8, 17], ALPS is also used as a pedagogical tool for summer schools.

The ALPS collaboration maintains other pedagogical resources such as tutorials and

a user’s forum. The most recent major release of ALPS at the time of writing of this

thesis, ALPS 2.1, is included with the source code CD. Additionally, all documenta-

tion for the ALPS TEBD routines which were written solely by the present author,

including tutorial exercises, are reprinted in Appendix C.

The OSTEBD manual (see Sec. B) covers the vast majority of that project. Hence,

in Sec. 10.1 we provide a brief overview of the package and its capabilities, referring the

reader to the manual for more detail. Sec. 10.1.1 contains information about parallel

extensions to OSTEBD which were in alpha version at the time of the v2.0 release.

The documentation for the ALPS code is given in Appendix C. It is much less detailed

than the documentation for the OSTEBD project. Hence, in Sec. 10.2 we discuss the

differences in the ALPS and OSTEBD codes, as well as other parts of the ALPS

project which required development by the present author including a Python [18]

front end and integration with the VisTrails workflow provenance system [19].
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10.1 Open Source Time-Evolving Block Decimation Overview.

OSTEBD [1] is a software package, written in Fortran 90, implementing the TEBD

algorithm for one-dimensional systems with nearest-neighbor interactions [20, 21]. In

addition to real-time propagation, ground states may be found using imaginary time

propagation. OSTEBD supports systems of bosons with or without spins, fermions

with or without spins, spin systems, and open or periodic boundary conditions [22].

The resulting matrix product state (MPS) representations of the wavefunction are ex-

plicitly stored, allowing for checkpointing of long simulations as well as wavefunction-

based techniques for detecting quantum phase transitions such as fidelity analysis [6].

Arbitrary one and two-point correlation functions can be specified by the user, and

routines to obtain one and two-body density matrices are included for more complex

or quantum-information based measures. Number conservation for particle models or

magnetization conservation for spin models is supported [23, 24]. The irreps of the

associated on-site Hilbert space are allowed to be degenerate. Both data parallelism

and intrinsic parallelism are included in alpha version with the 2.0 release of the code,

and are discussed in Sec. 10.1.1. OSTEBD v2.0 contains 21, 822 lines of code in its

core, i.e., code which does not comprise main files or inputs.

Inputs are provided using the Fortran NAMELIST syntax, which allows for input

files to be generated using scripts. For example, the inputs for the

BoseHubbard_ITP.f90 case study are given in the file BH_ITP.nml as

&SystemSett ings
systemSize=30, maxFi l l ing=5, totNum=30, BoundaryCond=’O’ ,

TrotterOrder=5
&end

&BHParams
jTunn=1.0 , U0=20.0 , V0=0.0 , mu0=0.0

&end

&ITPParams
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chiMin=15, chiMax=20, convCr i t e r i on1 =0.00001 , convCr i t e r i on2
=0.0000001 , stepsForJudge=100 , dtITP=0.05 , maxITPsteps=4000 ,
i tpD i r=’ITPDATA/ ’

&end

The top line gives Hilbert space metadata, including the number of lattice sites,

the maximum number of particles allowed on any site, the number of particles, the

boundary conditions, and the order of Trotter expansion used for the propagator,

see Appendix B.3.5. The second line gives the parameters of the Bose-Hubbard

model, Eq. (B.151). Finally, the last line gives convergence criteria for imaginary

time propagation, such as the maximum number of iterations, the imaginary time

step, and the maximal bond dimensions. In addition to supporting a wide array

of models, the package was designed to be easily modified to suit users’ individual

needs. The comprehensive manual pages starting with Appendix B.7 of the OSTEBD

manual were part of this approach, as were exercises using the OSTEBD routines in

Appendix B.4 which require users to write their own code. For more detail on the

educational component of the manual, we refer the reader to Chapter 11.

10.1.1 Parallel Extensions in Open Source Time-Evolving Block Decima-
tion

Data-parallelism is supported in alpha version in OSTEBD v2.0 via the

PD_Extension. Here a phase diagram is defined by a range of chemical potentials

µmin ≤ µ ≤ µmax with µres points or total numbers Nmin ≤ N ≤ Nmax with Nres

points and a range of tunnelings Jmin ≤ J ≤ Jmax with Jres points. A master node

sends points in this phase diagram to worker nodes one at a time, and the worker

nodes send observables to the master node when the computation has finished. This

automatically scheduled data-parallel paradigm is more efficient than assigning the

tasks evenly between all nodes, as points in more highly entangled regions of the

phase diagram take more time to compute than less entangled regions, and so nodes

which are given only lowly entangled regions may sit idle while others compute highly
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entangled regions. The code in this extension was used in Ref. [6]. For large numbers

of tasks, i.e., large µresJres or NresJres, the code is P −1 times faster than a single core

within a few percent, where P is the number of processors.

Sites_Parallel_Extension, also included in alpha version with OSTEBD, is an

intrinsically parallel TEBD code using MPI [25]. In the sense of balancing the load

evenly and having large granularity, the most naturally parallelizable portion of the

TEBD algorithm is the loop over spatial positions during time evolution. The ability

to intrinsically parallelize the time evolution sweep in TEBD stems from the fact that

in the Vidal canonical form Eq, (6.39), any bipartite splitting can be chosen to be

the orthogonality center. Hence, when we use Vidal’s suggested Trotterization of the

propagator:

e−iĤδt = e−iĤoddδt/2~e−iĤevenδt/~e−iĤoddδt/2~ +O
(
δt3
)
, (10.1)

e−iĤoddδt/2~ =
∏

odd l

e−iĤlδt/2~ ,

e−iĤevenδt/~ =
∏

even l

e−iĤlδt/~ ,

we can apply the propagation over even bonds and odd bonds simultaneously at all

bipartite splittings. A slab decomposition of the application of propagators across all

similar parity bonds would ideally reduce the scaling of the most expensive step by a

factor of P , where P is the number of processors.

A two site operation performed on the two sites l and l + 1 involves λ[l], Γ[l],

λ[l+1], Γ[l+1], and λ[l+2], see Appendix B.3.4.2. Thus, for a given processor to time

evolve site l it needs to also own84 the local tensors of site l + 1. This means that,

in a distributed memory paradigm, the last site that can be time evolved by a given

processor is the penultimate one. In order for all processors to possess a current85

copy of all owned local tensors, they must receive at least one and possibly two sets of

84In this section we use the word own to denote that a processor holds this object in its memory.
85By current, we mean time-evolved to the most recent time.
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local tensors from neighboring sites. Thus, each processor overlaps one Γ tensor and

two λ tensors with each of its neighbors. To evenly divide the memory load among

all processors, we give each processor the same number of sites to optimize. When

the number of processors does not evenly divide the number of sites, we give the first

and last processors more sites, as the sites at the end of the chain are more weakly

entangled and hence we expect to have better load balancing in this configuration. In

addition to the number of Γ tensors, which we denote in the code as my_local_dim,

we also give each processor a two-component array my_bounds which contains the

absolute site indices of the first and last Γ tensor that the processor owns.

Initialization of the tensors in the absence of conserved quantities may be done

without communication. Similarly, the Hamiltonian, propagators, and all other op-

erators may be initialized independently. In the presence of conserved quantities, the

LabelLeft and LabelRight structures depend on the state of the wavefunction to

the left of the given site. Hence, we initialize the state sequentially in processor rank,

with each processor sending its penultimate value of cumulative conserved quantity

to the next processor.

The parity of the local site indices may not be the same as the parity of the global

site indices. That is to say, the first site a processor owns might be the sixth site in

the actual chain, and so one must be careful when applying propagators over even or

odd bonds to apply them to globally even or globally odd sites. Because updating a

local tensor at site l requires owning the local tensors of site l+ 1 and the processors

do not own all of the local tensors, after each Trotter sweep we must pass local tensors

between processors in order that all processors are properly updated. If the last site

that a given processor π updates is one less than the total number of sites that the

processor owns, then the next processor will not have updated its first tensor in the

same Trotter sweep due to the parity difference. Thus, processor π should send its

last updated local tensors to processor (π + 1), where they will become the first local
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tensors. In a similar manner, if processor π begins on a site with the same parity as

the current Trotter sweep,86 it should send its first local tensors to processor (π − 1)

where they will become the new last local tensors. Identical analysis applies to the

even time step, which completes a Trotter sweep.

We now pause to consider the asymptotic scaling of our algorithm’s computation

time and communication time. The computational scaling of TEBD is

O
[
L
tf
δt

max (d3χ3, d4χ2)
]
, where χ is the bond dimension, d the local dimension, δt

the infinitesimal time step, L the number of sites, and tf the final time. The com-

munication time is proportional to the size of the sent data, which is O (dχ2 + χ)

per time step. In essentially all cases of interest, χ ≫ d, and so we will assume

that the O (χ3) scaling dominates. If we now divide the computation time among

P processors and have all P processors communicate, we have a computational scal-

ing of O
[
L
P

tf
δt
d3χ3

]
and a communication scaling of O

[
tf
δt
dχ2
]
. We thus expect the

best performance when L ≫ P , χ ≫ P , or both, as the computation time is larger

than the communication time in these instances. Additionally, parallelization is more

efficient for increasing d. The L ≫ P condition states that each processor should

update several local tensors before communicating, and the conditions involving χ

and d state that it is less computationally intensive to send a copy of a tensor than

to perform a tensor operation such as contraction or decomposition. For large L, the

first condition is naturally enforced by the condition P ≤ ⌊L
2
⌋, for if P is larger than

this some processors will own less than two local tensors and so two site operations

cannot be performed.

Not all of the expensive operations in TEBD can be parallelized using the above

decomposition. The two most expensive non-parallel operations are restoration of

canonical form and the computation of two-point correlation functions. The restora-

tion of canonical form must be done in a sweeping fashion for neighboring sites. If

86Equivalently, processor (π − 1) ends with parity opposite to the Trotter sweep.
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canonical form is not restored after every time step but only before measuring observ-

ables, then this does not slow down the execution considerably. However, not using a

strict canonical form at every time step degrades the quality of a TEBD simulation,

as will be discussed in Sec. 10.2.1. Two-point correlation functions ⟨ÔiÔj⟩ require

communication of a partial overlap between processors when i and j are not both

owned by the same processor. However, the amount of information which must be

sent is less than in a typical Trotter sweep, and so these operations do not slow down

parallel execution considerably.

We quantify the performance of our parallel implementation by three quantities:

the speedup, defined as

SP ≡ T1
TP

, (10.2)

where TP denotes the time it takes the code to run on P processors, the efficiency

EP ≡ T1
PTP

, (10.3)

and the experimentally determined serial fraction

expf =
1
SP
− 1

P

1− 1
P

. (10.4)

The speedup is said to be ideal if SP ≈ P . Likewise, optimal efficiency is E = 1.

The experimentally determined serial fraction, in an ideal case, should be as small as

possible, as its inverse limits the speedup for fixed data as the number of processors

increases (by Amdahl’s law [26]).

We show these measures for a variety of system sizes L and bond dimensions χ in

Figure 10.2. As expected from the above scaling arguments, simulations with larger

L and larger χ perform better in all three measures.
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Figure 10.2: Performance of intrinsically parallel OSTEBD routines. The parallel
performance as determined by all three measures increases as L, χ, and d increase,
in accordance with the scaling expectations given in the text.
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10.2 The Algorithms and Libraries for Physics Simulations Time-Evolving
Block Decimation Routines.

The ALPS TEBD routines perform similar functions to the OSTEBD routines,

performing real or imaginary time evolution of systems of bosons, fermions, or spins.

Rather than using different main files or the NAMELIST system of input as in OS-

TEBD, the ALPS routines instead rely on a Python interface which writes appro-

priate input files, calls the Fortran routines, and the post-processes the output from

the Fortran routines. The parts of this front end which are relevant to TEBD are

covered in Sec. 10.2.2. The ALPS code is less easily modified to suit user needs than

the OSTEBD code due to the requirement of compatibility with the front end, but

the author attempted to counteract this by including a wide array of models, mea-

sures, and time evolution protocols accessible by the Python interface. The Python

interface for the general MPS routines discussed in Appendix A increases the capac-

ity for models and measures enormously, and will be included in a later release of

ALPS. In addition to the different interface, several improvements of the core rou-

tines of OSTEBD regarding speed and efficiency were implemented, and are discussed

in Sec. 10.2.1. The ALPS TEBD routines can also be utilized via the integration of

ALPS with the VisTrails workflow provenance system in part due to Python ports

written by the author. Discussions of scientific workflows, provenance, and the ALPS

VisTrails interface are relegated to Sec. 10.2.3.

The ALPS TEBD code consists of 10,610 lines of Fortran and on the order of 700

lines of Python written by the author, not including tutorials and other main files.

10.2.1 Numerical Optimizations of the Algorithms and Libraries for Physics
Simulations Code

In two-site operations with TEBD, it is always assumed that the MPS is in

the Vidal canonical form, in particular that the Schmidt vectors
{
|ϕ[1...l−1]
α ⟩

}
and{

|ϕ[l+2...L]
β ⟩

}
are orthonormal bases. When this is true, then the tensors on which
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TEBD operates contain the orthogonality center, and any truncation which occurs

represents an optimal truncation of the wavefunction in that it minimizes the 2-norm

distance between the truncated state and the true state at that bipartite splitting.

When these bases are not orthogonal, the truncation represents an optimal truncation

of the particular tensor, but there is not generally any relation between the tensor and

the actual wavefunction. After a two-site operation, the Schmidt vectors
{
|ϕ[1...l]
γ ⟩

}
and

{
|ϕ[l+1...L]
γ ⟩

}
will be orthogonal by construction, but the same cannot be said of

other sets of vectors which change under the course of the operation, for example the

set
{
|ϕ[1...l+1]
γ ⟩

}
. This destruction of canonical form always arises from non-unitary

operations such as application of an imaginary time propagator, but it also arises

from truncation of the bond dimension of a state following application of a unitary

operator. The way that OSTEBD accounted for these errors was to explicitly return

the state to its canonical form periodically during real and imaginary time evolution.

Additionally, in the case that the time step is small, imaginary time propagation is

close to unitary, and when truncation is also small the effects of being away from

canonical form are not extreme and can be accounted for by extrapolating the time

step to zero [27].

A better way to account for the loss of canonical form is to re-order the application

of the propagator such that all of the bases which we assume to be orthonormal

throughout the course of an update sweep have been made orthonormal by the last

operation on them. This can be done by applying operations to successive sites in a

directed sweeping motion, e.g. (l, l + 1), (l + 1, l + 2), etc. or (l + 1, l + 2), (l, l + 1),

etc.. Before computing observables, in which all sites are assumed to be in canonical

form, we can return the state to a fully canonical representation by applying the

identity operator to two sites at a time in the same forwards and backwards sweeping

motion.
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In order to apply the propagators in the sweeping fashion as just described, we

abandon the use of the Trotter expansion discussed in Appendices B.3.5.1 and B.3.5.2,

and instead use the expansion [28]

exp
(
−iĤδt/~

)
=

L−1∏
i=1

exp
(
−iĤi,i+1δt/2~

) 1∏
i=L−1

exp
(
−iĤi,i+1δt/2~

)
+O

(
δt3
)
,

(10.5)

where Ĥi,i+1 is the two-site Hamiltonian acting on sites i and i+1. The use of this de-

composition to explicitly maintain local canonical form is the first of the optimizations

implemented in the ALPS code for stability.

Another source of possible numerical error in TEBD as implemented in the OS-

TEBD package is in the decomposition of the object Θij
αβ representing the two-site

wavefunction following application of some operation into the Γ tensors and λ tensors

as87

Θ(αi)(jβ)
−→
SVD USV , (10.6)

λ̃[l+1]
αl

=
Sαl√∑χ
α=1 (Sα)2

, (10.7)

Γ̃[l]il
αl−1αl

= U(il−1)χ+αl−1,αl
/λ[l]αl−1

, (10.8)

Γ̃[l+1]il+1
αlαl+1

= Vαl,(il+1−1)χ+αl+1
/λ[l+2]

αl+1
. (10.9)

Here −→SVD indicates performing a singular value decomposition on the left hand side

to yield the right hand side. In particular, the elements of the tensor λ appearing in

Eq. (10.8) and Eq. (10.9) can be very small, of order the machine precision, resulting

in loss of precision in the elements of the Γ tensors. To remedy this, we do not store

the tensors Γ explicitly, but rather only store products such as λΓ or Γλ to create

left- and right-canonical MPS tensors according to the translation rules Eq. (6.43)

and (6.44). If a single λ tensor is left uncontracted from the remainder of the tensors

87See also Eqs. (B.80)-(B.83) of the OSTEBD manual.
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of the MPS at any time, the resulting MPS decomposition is in mixed canonical form

rather than the Vidal canonical form,88 with the uncontracted λ tensor being the

orthogonality center. The splitting of Θ now becomes

Θ(αi)(jβ)
−→
SVD USV , (10.10)

λ̃[l+1]
αl

=
Sαl√∑χ
α=1 (Sα)2

, (10.11)

(λΓ)[l]ilαl−1αl
= U(il−1)χ+αl−1,αl

, (10.12)

(Γλ)[l+1]il+1

αlαl+1
= Vαl,(il+1−1)χ+αl+1

. (10.13)

The bond-centered orthogonality center can now be shifted in the direction of the

propagator sweep as discussed in Sec. 6.3. it is remarkable that the mixed canonical

form arises naturally when repairing numerical instabilities that arise from the more

theoretically appealing Vidal canonical form. This demonstrates the general fact that

the theoretically most appealing methods are often not the most numerically stable

in practice.

A third optimization is an improved implementation of symmetry-adapted MPSs

(see Sec. 6.6) over OSTEBD in the case that all of the on-site irreps are non-

degenerate. In this case, the Γ tensors may be written as

Γiαβ = Γαβδi,qβ−qα+1−qi,min
, (10.14)

where qi is the quantum number on site i, qγ is the cumulative quantum number

to the left of bond γ, and qi,min is the minimum allowed value of qi. Thus, we can

store only the matrices Γαβ rather than the full tensors. In addition to a reduction

in storage requirements, this also avoids sums over the local dimension which leads

to significant speedup.

88See Sec. 6.3 for a discussion of canonical forms for MPSs.
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Fourth, OpenMP threading [29] over computationally expensive portions of the

code is implemented. In particular, the greatest speedup occurs by threading over

the SVD of Θ when Abelian symmetries are used. Here the threading is over blocks

corresponding to a fixed total charge to the left of the bond on which Θ is centered.

This threading displays nearly perfect parallel efficiency because threads operate on

blocks independently. Threading is also performed over the formation of Γs from the

SVD matrices, the formation of Θ, and propagation of the partial overlap G used for

two-point correlation functions, see Appendix B.3.6.4 of the OSTEBD manual.

Fifth, in OSTEBD the bond dimension is used as the main truncation parameter,

and is fixed by the user without any input from the simulation. A better means to

control the entanglement cutoff is to define a tolerance ϵ on the percentage of the

singular value norm which can be discarded at a particular two-site operation, and

then let this tolerance dynamically define the bond dimension. That is, χ is taken to

be the smallest integer satisfying

1−
∑χ

α=1 S
2
α∑

α S
2
α

≤ ϵ . (10.15)

Here, the sum in the denominator runs over all the singular values. The parame-

ter ϵ is represented by TRUNC_LIMIT and a safeguard bond dimension is provided by

CHI_LIMIT. The parameter ITP_CHIS is also able to be specified separately for imag-

inary time propagation. The value of χ now represents a safeguard value to avoid

running out of memory, and may be set very large. Provided that this safeguard value

of χ is not reached, the simulation remains quasi-exact in the sense that the distance

between the state returned by TEBD and the true time evolution obtained from the

given initial state is bounded by a known constant.

Finally, it is described in the OSTEBD manual how computing expectations of

nonlocal observables expressed as tensor products can be performed more efficiently

than a general two-site operator due to the tensor network structure of the con-
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traction. The one place where this was not taken advantage of in OSTEBD was in

computing the energy, as the expansions of the two-site Hamiltonians in terms of a

separable basis are not generally known. The ALPS routines account for the non-

separability of the Hamiltonian Ĥ which acts on two neighboring sites |i⟩|j⟩ via the

following transformation

[
Ĥ
]
(ij),(i′j′)

=
[
Ĥi,i+1

]
(ii′),(j,j′)

, (10.16)[
Ĥ
]
(ii′),(j,j′)

−→
SVD

∑
γ

U(i,i′)γΣγVγ(j,j′) , (10.17)

which implies that we may write the operator as a sum of separable operators as

⇒
[
Ĥ
]
(ij),(i′j′)

=
∑
γ

HL
(i,i′)γH

R
γ,(j,j′) , (10.18)

where

HL
(i,i′)γ = U(i,i′)γΣγ , (10.19)

HR
γ,(j,j′) = Vγ(j,j′) . (10.20)

Using this decomposition, we can convert any two-site operator into a sum of tensor

products of local operators, where the number of terms in the sum is equal to the

number of nonzero singular values. The speedup of using this method together with

the routines for computing expectations of tensor products versus using the two-site

density matrix is striking. This is especially true in systems of bosons with large

local dimension where the computation of the energy using the non-tensor-product

methods can be the dominant scaling operation. It should also be noted that what we

have affected is a decomposition of a rank-4 tensor into a matrix product operator.

This same basic decomposition can be applied to turn an operator of any rank into a

matrix product operator, see Sec. 7.2.2.
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10.2.2 The Python Front End

To discuss the Python front end for the ALPS TEBD code, called PyALPS, it is

simplest to start with an example, here provided by the TEBD tutorial tutorial1a.py.

The file begins by loading the required Python modules, here PyALPS and routines

for plotting output.

import pyalps
import matp lo t l i b . pyplot as p l t

10.30 import pyalps . p l o t

We now proceed to prepare all of the metadata defining our simulations using an

array of Python dictionaries called parms

parms=[ ]
count=0

10.35 for A in [ 5 . 0 , 10 . 0 , 15 . 0 , 25 . 0 , 5 0 . 0 ] :
count+=1
parms . append ({

’L ’ : 10 ,
’MODEL’ : ’ hardcore boson ’ ,

10.40 ’CONSERVEDQUANTUMNUMBERS’ : ’N ’ ,
’N ’ : 5 ,
’ t ’ : 1 . 0 ,
’V ’ : 10 . 0 ,
’ ITP CHIS ’ : [ 2 0 , 30 , 35 ] ,

10.45 ’ ITP DTS ’ : [ 0 . 0 5 , 0 . 0 5 , 0 . 0 2 5 ] ,
’ITP CONVS ’ : [ 1E−8, 1E−8, 1E−9] ,
’ INITIAL STATE ’ : ’ ground ’ ,
’CHI LIMIT ’ : 40 ,
’TRUNC LIMIT ’ : 1E−12,

10.50 ’NUMTHREADS’ : 1 ,
’TAUS ’ : [A, A] ,
’POWS’ : [ 1 . 0 , 1 . 0 ] ,
’GS ’ : [ ’V ’ , ’V ’ ] ,
’GIS ’ : [ 1 0 . 0 , 0 . 0 ] ,

10.55 ’GFS ’ : [ 0 . 0 , 1 0 . 0 ] ,
’NUMSTEPS’ : [ 500 , 500 ] ,
’STEPSFORSTORE’ : [ 5 , 3 ] ,
’SIMID ’ : count

})
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The parameters which are included in parms are discussed in detail in the ALPS

documentation, see Appendices C.1 and C.2. Here we only note that what results

from these lines is a length-5 array parms. Each element of parms is a Python

dictionary, which is an unordered set of key:value pairs. The keys in this instance are

the strings on the left column, e.g. ’L’ and ’MODEL’, and the values form the right

column. Thus, parms[0][’L’] would return 10. Each element of parms defines a

TEBD simulation.

We now write Fortran-readable files from this simulation metadata with

writeTEBDfiles and run simulations using this input with runTEBD via

baseName=’ t u t o r i a l 1 a ’
#wr i t e output f i l e s
nmlnameList=pyalps . writeTEBDfi les ( parms , baseName )

10.65 #run the a pp l i c a t i o n
r e s=pyalps . runTEBD( nmlnameList )

We extract information from the outputs of the Fortran code using loadTimeEvolution

as

LEdata=pyalps . load . loadTimeEvolution ( pyalps . g e tRe su l tF i l e s ( p r e f i x
=’ t u t o r i a l 1 a ’ ) , measurements=[ ’ Loschmidt Echo ’ , ’V ’ ] )

The measurements tag specifies which outputs to load. LEdata is an array with the

same number of elements as parms, and contains all of the same simulation metadata

together with the specified measurements. This allows for complex evaluations to

be performed involving parameters in the Hamiltonian, the system size, or any other

input parameters. In the present case, we are interested only in plotting the Loschmidt

echo and the parameter V vs. time. We do so by turning these values into ordered

(x, y) pairs suitable for a 2D plot with collectXY, and then passing these pairs to a

plotting front end

LE=pyalps . co l lectXY (LEdata , x=’Time ’ , y=’ Loschmidt Echo ’ , f o r each
=[ ’SIMID ’ ] )

for q in LE:
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q . props [ ’ l a b e l ’ ]= r ’ $\ tau=$ ’+s t r ( q . props [ ’TAUS ’ ] [ 0 ] )

10.75 p l t . f i g u r e ( )
pyalps . p l o t . p l o t (LE)
p l t . x l ab e l ( ’Time $t$ ’ )
p l t . y l ab e l ( ’ Loschmidt Echo $ |< \ ps i (0 ) | \ p s i ( t ) > |ˆ2 $ ’ )
p l t . t i t l e ( ’ Loschmidt Echo vs . Time ’ )

10.80 p l t . l egend ( l o c=’ lower r i g h t ’ )

Uf ig=pyalps . co l lectXY (LEdata , x=’Time ’ , y=’V ’ , f o r each=[ ’SIMID ’ ] )
for q in Ufig :

q . props [ ’ l a b e l ’ ]= r ’ $\ tau=$ ’+s t r ( q . props [ ’TAUS ’ ] [ 0 ] )
10.85

p l t . f i g u r e ( )
pyalps . p l o t . p l o t ( Uf ig )
p l t . x l ab e l ( ’Time $t$ ’ )
p l t . y l ab e l ( ’V ’ )

10.90 p l t . t i t l e ( ’ I n t e r a c t i o n parameter $V$ vs . Time ’ )
p l t . l egend ( l o c=’ lower r i g h t ’ )
p l t . show ( )

The resulting plots are shown as Figure 11.2 in Chapter 11, where the physical content

of these tutorials are discussed in greater detail.

While the actual NAMELIST files which are passed to the Fortran routines are

similar to those of OSTEBD above, the Python front end provides a powerful way

to automate the writing of these inputs, allows for much easier post-processing of

outputs, and also unifies the preparation, execution, and analysis of simulations.

The contributions of the present author to the Python front end were to write the

Python routines to write Fortran-readable files for TEBD, run TEBD simulations,

and process the outputs of TEBD as a function of time. Since TEBD was the first of

the ALPS applications to simulate dynamics, the author also modified several of the

other existing ALPS processing routines to accept data which depends on time.

10.2.3 Integration with the VisTrails Workflow Provenance System

The Python front end for ALPS provides a unified way of defining, executing,

and analyzing simulations. ALPS v2.0 is also integrated with VisTrails [19], which

is an open-source scientific workflow and provenance management system written
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a)

b)

Figure 10.3: Example VisTrail for ALPS TEBD tutorial 1. a) The workflows for
tutorial 1 are represented as the beige circles. Changes to the workflow of tebd1a
are represented as blue ovals below the beige one. b) The contents of the workflow
tebd1a. Here each large box represents a task performed by PyALPS or an internal
VisTrails task.
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in Python. By provenance, we refer to both the steps that need to be followed to

produce a specific result (Prospective provenance) as well as the steps which were

actually taken (Retrospective provenance) [30, 31]. Hence, the simulation metadata

above, which user ran the simulation, at what time, etc. are all data relevant to the

provenance of a particular result. VisTrails caches all of this data in persistent storage

such that results are always reproducible without the need to repeat the calculation.

The same tutorial which was used to exemplify the Python front end is shown

using VisTrails in Figure 10.3. In panel (a), the three parts to tutorial 1 are shown

as three different workflows, the beige ovals. Under tebd1a, the blue boxes capture

provenance information about changes made to the workflow itself. The actual work-

flow contents of tebd1a are shown in panel (b). Here the large boxes, called modules

represent subtasks to be performed, with the small boxes on the top corresponding

to inputs for a particular task and the boxes on the bottom corresponding to outputs

from the task. The overall simulation flow is similar to that using the Python front

end: parameters are specified or looped over, Fortran-readable files are written, the

simulation is performed, data is extracted and post-processed, and plots are made.

With VisTrails, the full provenance information of both how a simulation is to be

performed as well as what the actual values used to achieve a particular result are

permanently captured. The contributions of the present author to the VisTrails func-

tionality of ALPS were modules to write files for and run TEBD simulations as well

as the post-processing of time series.
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CHAPTER 11

EDUCATIONAL MATERIALS

Chapter 10 discusses the author’s involvement in the development of open source

code implementing variational matrix product state (MPS) algorithms. The present

chapter covers educational materials which were distributed with these codes, either

as part of the open source packages or within the Carr theoretical physics research

group (CTPRG). The educational materials which were disseminated with the open

source code are aimed at the level of graduate students performing research in strongly

correlated physics, and are designed to enable users to modify the open source codes

to meet their own research goals. The materials designed for use by the CTPRG are

aimed more to the level of undergraduates who may not have completed a quantum

mechanics course and may have no coding experience. Hence, they must strike a bal-

ance between being conveying the important ideas of the algorithms without being

too technical, and not require coding experience while still enabling the student to

perform calculations which are meaningful and exciting. Within the CTPRG several

undergraduates at the senior level were able to use these educational materials suc-

cessfully towards modifying and using the open source codes as part of their senior

thesis projects.

11.1 Materials Distributed with the Open Source Packages

The open source time-evolving block decimation (OSTEBD) [1] package includes a

manual written by the present author which provides background on the time-evolving

block decimation (TEBD) algorithm [2, 3] and manual pages for all routines contained

in the package. This manual is included with the thesis as Appendix B. The manual

also contains case studies whose documentation begins with Appendix B.4. Provided

with each case study is a main file from which a user can reproduce the figures given
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in the manual in order to understand how to run the code and post-process its output.

The case studies, in order, are a study of the ground state properties of the Bose-

Hubbard Hamiltonian, the dynamics of the Bose-Hubbard Hamiltonian following a

linear ramp of the on-site interaction from the Mott insulator to the superfluid phase

and back [4, 5], the ground state properties of spinless fermions, and the dynamics of

a domain wall defect in the XX model [6]. At the end of each case study are exercises

which require the user to modify the case study base code to extract other observables

or perform other tasks. For example, in the Bose-Hubbard case study, the user is

required to add a harmonic trap in one of the exercises and study the physics of the

trapped system. Several of the exercises, in particular those dealing with dynamics,

have the user study the behavior of the simulation as the bond dimension χ, the time

step δt, the system size, and the boundary conditions are changed. These exercises

help the user gain an intuition for the convergence behavior of typical simulations.

The educational materials distributed with the Algorithms and Libraries for Physics

Simulations (ALPS) [7–9] TEBD routines take the form of case studies which were

posted on the ALPS wiki pages at http://alps.comp-phys.org. These case studies and

other ALPS TEBD documentation from the ALPS wiki are included as Appendix C

with this thesis. The second tutorial is the more pedagogical, as it uses comparisons

with analytically known results to demonstrate the convergence of TEBD simulations.

In particular, this tutorial uses the same system as the last case study for OSTEBD

in which a single domain wall defect is initialized at the center of a long chain:

|ψ⟩ = | ↓↓ . . . ↓↑ . . . ↑↑⟩ . (11.1)

At time t = 0, this wavefunction is evolved according to the XX model

ĤXX = −
∑
i

(
Ŝxi Ŝ

x
i+1 + Ŝyi Ŝ

y
i+1

)
, (11.2)
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where Ŝνi is the spin-1/2 operator along the νth Cartesian direction at lattice site

i. This Hamiltonian is equivalent to a system of free fermions via a Jordan-Wigner

transformation, and so we can solve exactly for the magnetization a distance n from

the initial defect position at time t, M (n, t), as [10]

M (n, t) = −1

2

n−1∑
i=1−n

j2l (t) , (11.3)

where jl (x) is the Bessel function of order l. This result also implies that in the limit

as n→∞ and t→∞, this function approaches as scaling form which depends only

on the variable n/t as

lim
n→∞

lim
t→∞

M (n, t) = ϕ
(n
t

)
≡ − 1

π
arcsin

(n
t

)
. (11.4)

The results comparing these predictions with the outputs of the ALPS TEBD tutorial

tutorial2a.py are shown in Figure 11.1. We see very good visual agreement between

the numerical results and the predictions for the magnetization in Figure 11.1(a).

Figure 11.1(b) demonstrates that the magnetization does indeed approach the scaling

limit Eq. (11.4), with agreement improving for large n and t, as expected. This part

of the tutorial also demonstrates the power of the Python front end for performing

complex post-processing such as the extraction of scaling forms from the numerical

data, see Sec. 10.2.2.

In the next two parts of this tutorial, we examine the deviations of the magne-

tization with these exact results as we change the two main convergence parameters

in TEBD: the time step δt and the bond dimension χ. In Figure 11.1(c) we see the

deviation of the magnetization as a function of time and the time step δt. At short

times, the smallest δt has the smallest error in accordance with our expectations

given by the error bounds on the Trotterization of the propagator. However, at long

times, we begin to see an exponential growth in the errors for the smallest δt, and
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Figure 11.1: Results of ALPS TEBD tutorial 2. a) The magnetization computed by
TEBD for the given situation compared to the prediction Eq. (11.3). b) The scaling
limit of the magnetization compared to the scaling function predicted in Eq. (11.4).
c) The error in the magnetization as a function of time and the time step δt. d) The
error in the magnetization as a function of time and the bond dimension χ.
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this simulation eventually has the largest error of all the simulations. The reason for

this is that at each time step we perform a truncation of the bond dimension, and

this truncation involves a renormalization of the wavefunction. Hence, in contrast to

the error due to the Trotterization of the propagator which grows linearly in time,

the error due to this renormalization grows approximately exponentially in time. The

timescale on which this exponentially growing error overtakes the linearly growing er-

ror can be pushed to later times by increasing χ, as shown in Figure 11.1(d). Hence,

the errors incurred by the time step and the bond dimension have a subtle interplay

in which larger time steps make better use of the available bond dimension to reach a

certain fixed time, but introduce a larger linearly growing error. This causes special

difficulty for systems which are required to have a small time step when using non-

time ordered Trotterization schemes due to a fast rate of change of the Hamiltonian.

This observation was part of the motivation for the general use time-ordered time

evolution scheme proposed in Chapter 7. The final part of this tutorial introduces

interactions89 JzŜ
z
i Ŝ

z
i+1 to the spin chain, and investigates how the behavior of the

time-evolved magnetization changes [11].

The other tutorial provided for the ALPS routines is simpler, and so was included

first in spite of the fact that the second tutorial is more pedagogical. This tutorial

studies the behavior of a model of hardcore bosons with nearest neighbor hopping

and nearest-neighbor density-density interactions,

Ĥ = −t
∑
⟨i,j⟩

[
b̂†i b̂j + h.c.

]
+ V

∑
⟨i,j⟩

n̂in̂j , (11.5)

as the strength of the interactions V/t90 is changed in time. The measure of adia-

baticity we use is the Loschmidt echo

89These are interactions in that they provide terms which are quartic in the fermion field operators
following a Jordan-Wigner transformation.

90In the expression V/t, t denotes the nearest-neighbor tunneling and not the time.
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Figure 11.2: Results of ALPS TEBD tutorial 1. The color scheme in a panel in the left
column is the same as the neighboring panel in the right column. a) The Loschmidt
echo for a process which quenches V/t from the CDW phase to the superfluid and
back as a function of the linear timescale of the quench τ . b) The form of V/t as a
function of time for the simulation in (a). c) The Loschmidt echo for a process which
quenches V/t from the CDW phase to the superfluid, holds the parameters constant
for a time τhold, and then quenches back as a function of the hold time τhold. d) The
form of V/t as a function of time for the simulation in (c). e) The Loschmidt echo
for a process which quenches V/t linearly from the CDW phase to the superfluid and
nonlinearly quenches back as a function of the power of the return quench. f) The
form of V/t as a function of time for the simulation in (e).
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L (t; γ) = |⟨ψ (t) |ψ (0)⟩|2 , (11.6)

which is the squared overlap of the time-evolved wavefunction with the initial wave-

function. This quantity depends on general on the way in which the parameters are

changed in time; this dependence is denoted by the symbol γ.

The first part of the tutorial focuses on quenches from the gapped charge-density

wave (CDW) phase to the superfluid phase and back. The exercises explore how

difficult it is for such a quench to be adiabatic in the sense that the system returns to

its initial configuration, and how this depends on the system size [12–16]. An exercise

which represents a possible research project is to extend the simulation to the soft-core

boson model with nearest-neighbor interactions in which there exist Mott insulating,

CDW, and superfluid phases at unit filling. One can then explore how difficult it is

to be adiabatic when quenching between two gapped phases, here the Mott insulator

and the CDW. In the next part of the tutorial, the system is held in the superfluid

phase for a time τhold before quenching back to the CDW. The final part of the tutorial

utilizes the capability of the ALPS TEBD routines to also simulate time evolutions

described by nonlinear power law behavior of Hamiltonian parameters. The outputs

of the simulations in this tutorial are shown in Figure 11.2.

11.2 Materials intended for Carr Theoretical Physics Research Group
Use

In addition to the OSTEBD manual, which contains a great amount of detail, a

smaller work “A gentle introduction to Time Evolving Block Decimation (TEBD)”

(henceforth, the TEBD intro) was developed for use by advanced undergraduate and

beginning graduate students within the CTPRG. The purpose of this document is to

acquaint the student with the basic idea of how MPS algorithms make the many-body

problem tractable through restricting entanglement, to provide experience in running
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and post-processing MPS code, to develop familiarity with the high-performance and

parallel computing environments available to CTPRG members, and to enable the

student to perform an exciting, cutting-edge calculation regarding quantum phase

transitions. This document is included as Appendix D.

The TEBD intro builds upon an earlier set of exercises “Introduction to the Bose-

Hubbard Model and Fock State Basis” which provides a basic introduction to strongly

correlated lattice models, Fock space, and second quantization. The final exercise in

this latter problem set is to write an exact diagonalization program to compute the

spectrum of the Bose-Hubbard model on M sites with N particles and at most d− 1

particles per site. The introductory TEBD exercises begin by having the student

explore for what size systems exact diagonalization is numerically practical. For most

of the implementations that the author has seen, this is usually 8 to 10 sites. Then, the

notion of the singular value decomposition (SVD) and reduced rank approximations

are introduced. Rather than discuss tensor networks in general, it is demonstrated

how a matrix represented as its singular value decomposition may be applied to

vectors much more cheaply than the full matrix representation when the rank of

the matrix is small compared to its dimension. Mathematical and programming

exercises on the SVD acquaint the user with its properties, and also demonstrate

that the rank of a matrix may be difficult to ascertain from its other properties. A

physical connection between quantum mechanical states and the SVD is provided

by the Schmidt decomposition [17, 18], and the matrices in the mathematical SVD

exercises are related to quantum states. Finally, the ideas are put together noting

that TEBD performs a truncated Schmidt decomposition at every bipartite splitting,

hence restricting the amount of entanglement in the state and allowing for more

efficient operations.

At the end of the introductory TEBD materials, some exercises are provided to

orient the user with running the OSTEBD code and to introduce quantum phase
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transitions [6, 19]. The first few exercises consist of comparing the results of small

Bose-Hubbard systems with exact diagonalization with and without number conser-

vation. The next exercise requires the student to diagonalize the bosonic tight-binding

chain via a Fourier transform for both open and periodic boundary conditions and

compute the spectrum, the on-site number, and the single-particle density matrix.

These results are compared with the open source code. The exercise also acquaints

the student with other useful many-body tools such as canonical transformations. The

final exercise makes use of the data-parallel capability of OSTEBD (see Sec. 10.1.1)

to explore the Mott insulator-superfluid transition in the Bose-Hubbard model. As

such, this exercise also serves to introduce students to high-performance and parallel

computing environments. The exercise begins with a qualitative treatment of why

the ground state must be non-analytic based on strong and weak coupling limits of

the depletion, relying on the student’s intuition for the single-particle density matrix

developed by the tight-binding chain. The critical point is then located numerically

via the maximum of the fidelity susceptibility, which gives a system-independent mea-

sure of changes in the ground state as a system passes through a quantum critical

point [20]. An algebraic scaling function for the position of the fidelity susceptibility

maximum as a function of the system size is provided [21], and the student is asked to

find the critical point using a scaling analysis for a series of system sizes. Estimates

for the appropriate range of parameters are provided by fidelity susceptibility data

on small system sizes.

The final educational document to be discussed is “Introduction to MPS Algo-

rithms,” (henceforth, the MPS intro) which is included in its most recent version as

Appendix E. The MPS intro was developed for future code developers in the CTPRG

to write their own small working variational MPS code for the Ising model. This

process is guided by introducing a theoretical concept, for example canonical forms

for MPSs, and then having the student write code with a specific interface to perform
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the procedure outlined in theory. A highly stripped-down and de-optimized version

of the author’s code was provided along with this document and discussed in Ap-

pendix A. Each of the procedures of the author’s code has the same interface as the

procedures outlined in the document, and so students can consult the author’s code

for implementation hints if they are stuck. The author’s code can also be used as a

black box to obtain observables for the Ising model for varying system parameters,

and so the student can verify his or her own code for correctness. The topics cov-

ered are canonical forms, matrix product operators including a section on long-range

operators [22–24], caching of effective Hamiltonian overlaps [25] and the formation

of the effective Hamiltonian from them, the sparse solution of the effective Hamilto-

nian eigenproblem using the Lanczos recursion [26, 27], computation of observables,

calculation of excited states using eMPS,91 and TEBD-style time evolution.
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CHAPTER 12

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

This thesis presents models for the low energy physics of molecules trapped in

optical lattices and simulation methods to elucidate the many-body physics of these

models in one dimension. Part II focused on the molecular Hubbard Hamiltonian

(MHH), a model for the low-energy physics of 1Σ heteronuclear bialkali molecules in

an optical lattice [1, 2]. A strong DC electric field applied to these molecules gives

rise to resonant dipole-dipole interactions which are long-range, and also allows for

tunable access to rotational states other than the lowest rotational level via an AC

microwave field. The nuclear spin degrees of freedom couple most strongly to a DC

magnetic field, but the coupling of rotational and nuclear spin degrees of freedom

provided by nuclear quadrupole interactions implies that the interplay between the

rotational and nuclear spin degrees of freedom may be tuned by changing the angle

between the electric and magnetic fields. Thus, not only the magnitudes of the

parameters of the MHH, but also the number of states involved in the dynamics are

amenable to experimental control. Hence, the MHH may be used as a simulator of a

quantum complex system, one in which are large number of degrees of freedom are

interacting quantum mechanically on a multitude of timescales.

For nearest-neighbor interactions and a single internal state, the MHH admits only

superfluid and charge-density wave (CDW) phases [3]. The CDW is characterized by

a “checkerboard” pattern in the density which arises as a peak in the structure factor

at a wavevector of π/a. For convex long-range interactions, insulating phases appear

at every rational filling [4, 5], and so the phase diagram is much richer. While the-

oretically appealing, these phases may exist only in a very narrow parameter range,

and may be destroyed by terms such as tunneling between sites which are not near-
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est neighbors and thermal fluctuations. Hence, a consistent analysis would involve

carefully enumerating all terms appearing in the many-body Hamiltonian in order of

decreasing energy and then performing a self-consistent truncation down to an en-

ergy scale set by experimental constraints on timescale. The microscopic connections

between the few-body physics and the many-body physics presented in this thesis are

crucial for this kind of analysis, and hence also for practical guidance of experiments.

When more than one internal state is populated the possibilities for statics become

even greater. As discussed in Chapters 3 and 4, both the tunneling and the interac-

tions depend on the rotational state. This allows for the study of many-body systems

in mixtures different quantum phases and possibly far from equilibrium. Furthermore,

away from the strong DC field regime studied in Chapter 4, there is a long-ranged

interaction term which represents the exchange of a rotational quantum between two

molecules in different rotational states [6, 7]. For two internal states σ = {1, 2}, this

term has the form

∑
i<j

Ei,j â†i1â
†
j2âj1âi2 , (12.1)

where i and j are lattice sites, âiσ destroys a particle in internal molecular state σ

at site i, and Ei,j obeys a power law form for large distances |i− j|. The exchange

contribution Ei,j has a comparable power-law form to U i,j, the direct part of the

dipole-dipole interaction, but its magnitude can be tuned independently. The action

of this term in the internal degrees of freedom of a molecule is similar to that of ring-

exchange terms in real space [8]. Such terms have been shown to induce novel Bose

metal and gapless Mott insulator phases in ladder systems of hard-core bosons [8, 9]

and also drive electronic systems into a non-Fermi liquid phase [10]. The exchange

term frustrates the system, and so studies of the MHH with the exchange term must

be performed with either exact diagonalization or tensor network methods due to a

sign problem in quantum Monte Carlo. Studies of the MHH with all terms accounted
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for to a self-consistent energetic cutoff, across a wide range of static and dynamical

field regimes, and for different molecular species are currently under way [11].

In addition to the statics, the dynamics of the MHH were investigated in this the-

sis. The particular quench process studied initializes the system in the ground state

of the MHH in the absence of an AC field. An AC field is suddenly turned on at a

frequency corresponding to a single-molecule rotational resonance. In the absence of

couplings between sites, each molecule would undergo coherent Rabi flopping inde-

pendently of the others. However, when averaged over the many-body wavefunction,

the Rabi oscillations of transitions between the single-molecule levels driven on reso-

nance were seen to damp out exponentially with an emergent timescale. This effect

was studied for a variety of Hamiltonian parameters near half filling, but a more thor-

ough study of how the emergent timescale depends on the experimental parameters

is lacking. Such a study may also shed light on the true microscopic mechanism of

quantum dephasing. Is it governed only by equilibrium properties, as suggested by

the Kibble-Zurek hypothesis [12–16]? What is the nature of the state as t → ∞?

A final interesting avenue for further research is to study the interplay between the

complex many-molecule behavior of quantum dephasing with the complex behavior

of a single molecule in the presence of non-collinear electric and magnetic fields.

Molecular Hubbard Hamiltonians may also be derived and studied for more com-

plex molecules using the procedures outlined in this thesis. Near-term extensions

include 2Σ molecules formed from alkali metals and alkaline earths. These molecules

have an unpaired spin giving rise to magnetic dipole moments in addition to elec-

tric dipole moments, which may lead to a rich interplay of crystalline and magnetic

phases. Longer-term extensions can include molecules in Π or ∆ states which have

orbital angular momenta. Essentially nothing is known about the possibilities for

many-body physics with such molecules.

391



Part III of this thesis laid the foundations for the Fermi resonance Hamiltonian

(FRH) [17]. The FRH is a lattice projection of a two-channel model for a Feshbach

resonance between two-component fermions and a bound molecular state. The two-

body bound states in the lattice are nontrivial combinations of all Bloch bands from

both the open and closed channels. Using a projection method to separate the two-

particle Hilbert space into a low energy piece spanned by open channel fermions in

the lowest band and a high energy piece spanned by open channel fermions in excited

bands and all bands of the closed channel, the relevant high-energy degrees of freedom

at low density are identified. The derivation of the FRH consists of re-coupling the

low-energy and high energy sectors of Hilbert space at the many-body level, resulting

in a multi-channel resonance model between fermions in the lowest open channel band

and dressed molecules which are nontrivial linear combinations of an infinite number

of bands chosen to reproduce the two-body scattering length exactly. The use of the

numerically exact lattice solution of the two-body problem leads to novel features of

the Hamiltonian, such as diagonal hopping of dressed molecules.

The physics related to the FRH is very much in its infancy. The most immediate

question is, What are the many-body features of the FRH? How is the phase diagram

affected by diagonal hopping and other features arising from the lattice solution? How

do the Hubbard parameters for the FRH behave in confined geometries or geometries

which are not separable for a single particle? Furthermore, one can imagine extending

the FRH analysis to pairing in higher relative orbital angular momentum, multichan-

nel situations, mass-imbalanced systems, or more realistic interchannel potentials. A

final practical application of the FRH would be to optimize production of Feshbach

molecules directly in an optical lattice using the many-body properties of the FRH.

In Parts IV and V of this thesis we devised variational matrix product state (MPS)

algorithms for eigenstates and dynamics of generic time-dependent 1D Hamiltoni-

ans [18, 19], discussed open source software efforts for MPS algorithms [20], and pre-
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sented educational materials to aid in the use of the open source implementations to

study strongly correlated physics. Our stand-alone implementation of time-evolving

block decimation (TEBD), open source TEBD [21], and the TEBD code written for

the algorithms and libraries for physics simulations (ALPS) [20, 22, 23] package are

both in use by many groups across the world [20, 24–36]. ALPS is also regularly used

as a pedagogical tool for learning many-body physics at summer schools. At present,

open source implementations of the generic algorithms presented in this thesis are

being prepared for merger into the ALPS open source software package in its next

release. This will greatly extend the capability of the ALPS package to study the

statics and dynamics of a wider range of models, including long-range interactions

and general time-dependence. In order to make these tools useful, we also are writ-

ing new educational materials to demonstrate the use of these algorithms and their

enhanced capabilities over other MPS algorithms for time evolution.

MPS algorithms are very powerful in that they do not depend on the nature of

the microscopic constituents of the model under study. Also, MPS methods produce

wavefunctions, allowing for the simulation of dynamics and access to a broad range

of quantum measures. The flexibility of MPS algorithms makes them especially well

suited both to open source implementation and studies of many-body physics with

ultracold molecules. Speaking broadly, as more complex molecules approach quantum

degeneracy, the number of many-body models and their complexity will also dramat-

ically increase. Searching for emergent phenomena such as quantum order in strongly

correlated systems requires exploration of large parameter regimes and careful finite-

size or finite-entanglement scaling. Open source tools for modern strongly correlated

physics must be adaptable to different physical degrees of freedom, interactions, and

dynamical processes. Furthermore, they should support massive parallelization over

parameter regimes, and be efficient enough to handle large-scale parameter explo-

ration. Finally, they must be able to calculate a broad range of quantum measures,
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and contain powerful post-processing tools to extract and manipulate data from large

simulations. Many open questions remain regarding MPSs in general. Is it possible to

simulate the dynamics of a generic time-dependent infinite system using Krylov meth-

ods as outlined for finite systems? How do we improve the numerical conditioning

of the higher-dimensional tensor network algorithms so as to make them practical?

What is the relevant operator structure, analogous to MPOs in 1D, for higher di-

mensions? The answer to these questions would provide a “holy grail” of strongly

correlated physics: a black box numerical method applicable to any many-body sys-

tem.
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tion and Glassy Dynamics Of Many-Body Quantum Systems. Sci. Rep., 2(243),
2011.

[32] Yinyin Qian, Ming Gong, and Chuanwei Zhang. Quantum transport of bosonic
cold atoms in double-well optical lattices. Phys. Rev. A, 84:013608, Jul 2011.
doi: 10.1103/PhysRevA.84.013608. URL http://link.aps.org/doi/10.1103/

PhysRevA.84.013608.

[33] Zheng-Wei Zhou, Shao-Liang Zhang, Xiang-Fa Zhou, Guang-Can Guo, Xingx-
iang Zhou, and Han Pu. Quantum phase transition of Bose-Einstein con-
densates on a nonlinear ring lattice. Phys. Rev. A, 83:043626, Apr 2011.
doi: 10.1103/PhysRevA.83.043626. URL http://link.aps.org/doi/10.1103/

PhysRevA.83.043626.

[34] Hong Lu, L. O. Baksmaty, C. J. Bolech, and Han Pu. Expansion of 1D Polarized
Superfluids: The Fulde-Ferrell-Larkin-Ovchinnikov State Reveals Itself. Phys.
Rev. Lett., 108:225302, May 2012. doi: 10.1103/PhysRevLett.108.225302. URL
http://link.aps.org/doi/10.1103/PhysRevLett.108.225302.

[35] Yinyin Qian, Ming Gong, and Chuanwei Zhang. Many-body Landau-
Zener Transition in Cold Atom Double Well Optical Lattices.
http://arxiv.org/abs/1110.1653, 2012.

[36] Shuai Yin, Xizhou Qin, Chaohong Lee, and Fan Zhong. Finite-time scaling of
dynamic quantum criticality. http://arxiv.org/abs/1207.1602, 2012.

397

http://link.aps.org/doi/10.1103/PhysRevA.84.013608
http://link.aps.org/doi/10.1103/PhysRevA.84.013608
http://link.aps.org/doi/10.1103/PhysRevA.83.043626
http://link.aps.org/doi/10.1103/PhysRevA.83.043626
http://link.aps.org/doi/10.1103/PhysRevLett.108.225302




APPENDIX A - OVERVIEW OF SOURCE CODE CD CONTENTS

A.1 Codes Associated with Open Source Projects and Educational Ma-
terials

The open source time-evolving block decimation (OSTEBD) project was overviewed

in Secs. 10.1 and 10.1.1, and a user’s guide containing a thorough exposition of its use

and operation is given as Appendix B. Hence, we will not discuss OSTEBD further

in this appendix. The most recent release of the code, version 2.0, is included as the

file OpenSourceTEBD v2.0.tar.gz.

The time-evolving block decimation (TEBD) code which was included with the

algorithms and libraries for physics simulations (ALPS) open source package was

discussed in Secs. 10.2-10.2.3, and so we will not discuss it further here. The source

code of the most recent major release, version 2.1, is included as the file

alps-2.1.1-r6176-src.tar.gz. The TEBD routines may be found in the

alps/applications/dmrg/tebd directory, and the tutorial files are located in the

subdirectories of alps/tutorials/ which start with tebd-. ALPS uses a CMake [1]-

based build system, and binary installers are available for many popular operating

systems. Setup and installation instructions are included on the ALPS installation

page and as part of Ref. [2].

The code SimpleMPS was circulated with the document “Introduction to MPS

Algorithms” discussed in Sec. 11.2 and reprinted as Appendix E. This code is a

stripped-down version of the matrix product state (MPS) algorithms proposed in

Chapter 7. As it is intended for pedagogy, this implementation focuses on clarity

rather than optimization. The main file IsingGSMain.f90 computes the ground

state energy for the Ising model in a transverse field with user-specified parameters.

This file is intended to provide a black box with which students can check the results

of their own implementations. Additionally, the interfaces of the procedures in the
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core of this code are the same as those used in the educational document so that a

student can consult the source code for implementation hints while debugging.

A.2 Code for the Fermi Resonance Hamiltonian

The code used to generate the data in Part III is included as the file FRH Code.tar.gz.

The ultimate outputs of the code are the Hubbard parameters defining the Fermi res-

onance Hamiltonian (FRH), Eq. (5.6), for a given s-wave scattering length as and

isotropic lattice height V . This computation is performed in 3 stages:

1. The exact bound states at the extremal points of the Brillouin zone (BZ) with

total quasimomentum K = Γ, X, M , and R92 are computed. This is done

by specifying a range of bound state energies EK and solving the nonlinear

eigenvalue problem in E, Eq. (5.1), as a linear eigenvalue problem for as with

EK fixed. These solutions, along with their associated matrices χK
st (EK), are

written to the disk for later use. DataParallelInitializeMain.f90 performs

this operation in parallel over bound state energies.

2. The bound states from (1) are sorted according to their parity, which is always

possible at the extremal points of the BZ. A fixed s-wave scattering length

as is specified, and the results of (1) are used to find the bound states of a

given parity at fixed as in the entire BZ. The bound states are found via a

Newton-Raphson iteration [3], starting from the point computed in (1) which

is nearest the desired as. Due to the parity symmetry, only the bound states in

a single octant of the cubic BZ are computed and the others can be generated

by symmetry operations. DataParallelNRMain.f90 performs these tasks in

parallel over the total quasimomentum K.

3. The bound states at fixed as calculated in (2) are used to compute the Hubbard

parameters appearing in Eq. (5.6). HubbMain.f90 performs this computation.

92See the caption of Figure 5.2 for the definitions of the irreducible BZ points.
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This part of the calculation is not computationally intensive, and so is done in

serial.

Implementation and optimization details of the computation will appear in an

upcoming paper [4].

A.3 Code for Variational Matrix Product State Simulations

In this section we discuss the author’s implementations of the MPS algorithms

discussed in this part of the thesis. The numerical routines are written in Fortran 90,

with a Python [5] front end named MPSPyLib similar to the front end for the ALPS

routines, see Sec. 10.2.2. The local Hilbert space, operators, observables, and other

simulation metadata are generated using Python. The front end then sends this data

to a Fortran back end which performs the intensive variational MPS computations.

The output is then read in and post-processed by the Python front end. A Python

front end is also used for the code to compute molecular Hubbard parameters, see

Appendix A.4. The MPS codes discussed here are found in MPS Code.tar.gz.

A.3.1 Generic Fortran Programming with the Python Preprocessor

Generic programming is implemented in Fortran by using type placeholders in

template routines, and then using Python preprocessing scripts to build Fortran

modules for user-defined types. This functionality is provided by the regex Python

module which performs operations with regular expressions. As an example of the

templating procedure, consider the subroutine below:

SUBROUTINE Project QTENSOR TYPE(B,A, p s iP r o j s )
! Purpose : Apply the p r o j e c t o r 1−\sum {\ a lpha } | p s iP ro j s {\ a lpha}><

p s iP ro j s {\ a lpha } | to A and s t o r e in B.
! Used in o r t h o g ona l i z i n g an MPS aga in s t another s e t o f MPSs
IMPLICIT NONE
TYPE(QTENSORTYPE) : : A,B
TYPE(QTENSORTYPE) , POINTER : : p s iP r o j s ( : )
INTEGER : : j
REALORCOMPLEX(KIND=rKind ) : : p ro j
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CALL Copy(B,A)
DO j =1,SIZE( p s iP r o j s )

pro j=−Dot ( p s iP r o j s ( j ) ,A)
CALL GAXPY(B, proj , p s iP r o j s ( j ) )

ENDDO
END SUBROUTINE Project QTENSOR TYPE

Here, a QTENSOR TYPE A is orthogonalized against a set of QTENSOR TYPEs stored

in psiProjs. All that is required is that the QTENSOR TYPE have the Copy, Dot,

and GAXPY93 capabilities. The Python preprocessor replaces QTENSOR TYPE with the

actual types used by the code and places a generic interface to this procedure with

other similar procedures into a Fortran module. This methodology prevents the

copying of code, making the project easier to maintain. The preprocessing takes place

automatically as part of a Python-based build system run by the file BuildMPSLib.py.

At the time of the writing of this thesis, the author’s MPS code consists of 12433

lines of Fortran, and 3404 lines of Python. The templating procedures discussed above

make this code smaller than the Open Source TEBD, see Sec. 10.1, for example. For

direct comparison, the Fortran code after preprocessing the template files is 23277

lines. While no manual for this code exists at this time, MPSPyLib is documented

using the docstring capability of Python. Thus, documentation for any code object

p in the Python libraries is provided by calling help(p) in the Python interpreter.

A.3.2 Defining Local Hilbert Spaces: the Ops Module

The on-site Hilbert space is specified using the Ops.py module, which produces

operators as Python dictionaries which map strings to matrix representations of the

operators. For example, consider the code

import MPSPyLib as mps

Operators=mps . Bui ldSpinOperators ( sp in =0.5)
print Operators [ ’ s z ’ ]

93Generalized A times X plus Y, x = a ∗ x+ y
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Now Operators contains a complete set of spin-1/2 operators. These are accessed as

e.g. Operators[’sz’], which produces Ŝz in matrix representation. Explicitly, the

output from the above code is

[[ 0.5 0. ]

[ 0. -0.5]]

Convenience functions exist to build operators for spins, bosons and fermions with

arbitrary internal degrees of freedom, and combinations of bosons and fermions with

internal degrees of freedom. User defined operators can be defined simply by naming

a new key in the dictionary holding the operators. For example, to generate the Bose-

Hubbard interaction operator 1
2
n̂i (n̂i − 1) from the boson number operator nbtotal,

we could perform

import numpy as np
Operators [ ’ I n t e r a c t i o n ’ ]=0 .5∗ ( np . dot ( Operators [ ’ nbto ta l ’ ] ,

Operators [ ’ nbto ta l ’ ] )−Operators [ ’ nbto ta l ’ ] )

Here np.dot is matrix multiplication implemented in the numerical Python pack-

age [6]. In addition to building operators, Ops.py can also transform them into

covariant form appropriate for conserving Abelian symmetries94 using the

OperatorstoQOperators procedure. Given a set of operators as a Python dictio-

nary and a set of diagonal generators of the Abelian symmetries as a list of matrices,

the routine transforms the operators into their canonical forms Eq. (6.87)95 in which

nonzero elements are labeled by their incoming and outgoing charges expressed as

integers and sorted in decreasing order. As an example, consider

import MPSPyLib as mps

Operators=mps . Bui ldSpinOperators ( sp in =0.5)
QOperators=mps . OperatorstoQOperators ( Operators [ ’ s z ’ ] , Operators )

94See Sec. 6.6 for the general theory of tensors which are covariant under the action of Abelian
symmetries.

95All operators are assumed to be covariant, with an exception thrown if this is not the case.
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print ’ Sz : ’
for element in QOperators [ ’ s z ’ ] :

print element , QOperators [ ’ s z ’ ] [ e lement ]
print ’ SPlus : ’
for element in QOperators [ ’ s p lu s ’ ] :

print element , QOperators [ ’ s p lu s ’ ] [ e lement ]

This will convert the spin operators into a form appropriate for conserving the total

magnetization. The output from this code is

Sz:

q [[(1,), (1,)], [(0,), (0,)]]

Blocks [array([[ 0.5]]), array([[-0.5]])]

SPlus:

q [[(1,), (0,)]]

Blocks [array([[ 1.]])]

q gives the incoming and outgoing quantum numbers for each irrep, and Blocks

gives the matrix representations in the degeneracy spaces. For Ŝz, the matrix is

diagonal in the quantum numbers, but for Ŝ+, the matrix takes quantum number 0

(corresponding to spin down, as can be seen from Ŝz) to quantum number 1 (spin

up).96 Because all on-site irreps are one-dimensional in this case, the blocks are all

1× 1 matrices.

A.3.3 Defining Hamiltonians: the MPO Module

The MPO.py module builds MPO representations of operators using a set of pre-

defined finite state automaton rules as outlined in Chapter 7. In particular, the rules

are

• site rule. Example :

H.AddMPOTerm( Operators , ’ s i t e ’ , ’ s z ’ , hparam=’ h z ’ , weight =1.0)

96One can compare this form of Ŝz to the invariant form of n̂ in Eq. (6.89). Also, compare Ŝ+

to b̂ given in Eq. (6.91).
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generates Ĥ = hz
∑L

i=1 Ŝ
z
i , where Ŝz=Operators[’sz’]. In this and the other

examples, the first argument of AddMPOTerm is a Python dictionary of operators

and the third argument contains the relevant names of the operators to be used.

Because only the names of the operators are used, this routine handles operators

and q-operators on the same footing.

• bond rule. Examples:

H.AddMPOTerm( Operators , ’ bond ’ , [ ’ s p lu s ’ , ’ sminus ’ ] , hparam=’ J xy
’ , weight =0.5)

generates Ĥ = Jxy
2

∑
⟨i,j⟩

(
Ŝ+
i Ŝ

−
j + h.c.

)
, where ⟨i, j⟩ denotes all nearest neigh-

bor pairs i and j,

H.AddMPOTerm( Operators , ’ bond ’ , [ ’ s z ’ , ’ s z ’ ] , hparam=’ J z ’ , weight
=1.0)

generates Ĥ = Jz
∑

⟨i,j⟩ Ŝ
z
i Ŝ

z
j , and

H.AddMPOTerm( Operators , ’ bond ’ , [ ’ fdagger ’ , ’ f ’ ] , hparam=’ t ’ ,
weight=−1.0 ,Phase=True )

generates Ĥ = −t
∑

⟨i,j⟩

(
f̂ †
i f̂j + h.c.

)
, where f̂ is a fermionic destruction op-

erator. That is, terms with fermi phases are cared for with the optional Phase

argument and Hermiticity is automatically enforced by this routine.

• product rule. Example:

H.AddMPOTerm( Operators , ’ product ’ , ’ s z ’ , hparam=’ h p ’ , weight
=−1.0)

generates Ĥ = −hp
∏L

i=1 Ŝ
z
i . The operator used in the product must be Hermi-

tian.

• FiniteFunction rule. Example:
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f =[ ]
for i in range (6 ) :

f . append ( 1 . 0 / ( i +1.0) ∗∗3)
H.AddMPOTerm( Operators , ’ F in i t eFunct ion ’ , [ ’ s z ’ , ’ s z ’ ] , f=f ,

hparam=’ J z ’ , weight=−1.0)

generates Ĥ = −Jz
∑

1≤i,j≤6
1

|j−i|3 Ŝ
z
i Ŝ

z
j , where the summation is over all i and

j pairs separated by at least 1 and at most 6 lattice spacings. The range of the

potential is given by the number of elements in the list f. This rule enforces

Hermiticity and cares for Fermi phases as in the bond rule case.

• exponential rule

H.AddMPOTerm( Operators , ’ exponent i a l ’ , [ ’ s z ’ , ’ s z ’ ] , hparam=’ J z ’
, decayparam=a , weight =1.0)

generates Ĥ = Jz
∑

i<j a
j−i+1Ŝzi Ŝ

z
j . This rule also enforces Hermiticity and

cares for Fermi phases as in the bond rule case.

• InfiniteFunction rule. Examples

invrcube = lambda x : 1 . 0/ ( x∗x∗x )
H.AddMPOTerm( Operators , ’ I n f i n i t eFunc t i o n ’ , [ ’ s z ’ , ’ s z ’ ] , hparam=

’ J z ’ , weight =1.0 , func=invrcube ,L=1000 , t o l=1e−9)

generates Ĥ =
∑

i<j
1

|j−i|3 Ŝ
z
i Ŝ

z
j , where the functional form is valid to a distance

L with a residual of at most tol. Similarly,

H.AddMPOTerm( Operators , ’ I n f i n i t eFunc t i o n ’ , [ ’ s z ’ , ’ s z ’ ] , hparam=
’ J z ’ , weight =1.0 ,x=x , y=f , t o l=1e−9)

generates Ĥ =
∑

i<j f (j − i) Ŝzi Ŝzj , where the functional form f (x) is deter-

mined by the array of values f and the evaluation points x. The distance of

validity L is determined from the array x. This rule applies only to monotoni-

cally decreasing functions func or f, and so outside the range of validity L the

corrections are also monotonically decreasing. This rule enforces Hermiticity

and cares for Fermi phases as in the bond rule case.
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In all of the above expressions, H is an object of the MPO class. The strings passed

to the argument hparams represent tags for variable Hamiltonian parameters. Hence,

a template MPO for the hard-core boson model with 1/r3 interactions,

Ĥ = −t
∑
⟨i,j⟩

(
b̂†i b̂j + h.c.

)
+ U

∑
i<j

n̂in̂j

|j − i|3
− µ

∑
i

n̂i , (A.1)

is provided by

import MPSPyLib as mps

#Bui ld opera tor s
Operators=mps . Bui ldBoseOperators (1 )
#Define Hamiltonian MPO
H=mps .MPO()
H.AddMPOTerm( Operators , ’ s i t e ’ , ’ nbto ta l ’ , hparam=’mu ’ , weight=−1.0)
H.AddMPOTerm( Operators , ’ bond ’ , [ ’ bdagger ’ , ’ b ’ ] , hparam=’ t ’ , weight

=−1.0)
invrcube = lambda x : 1 . 0/ ( x∗x∗x )
H.AddMPOTerm( Operators , ’ I n f i n i t eFunc t i on ’ , [ ’ nbto ta l ’ , ’ nbto ta l ’ ] ,

hparam=’U ’ , weight =1.0 , func=invrcube ,L=1000 , t o l=1e−9)

The actual numerical values of t, U , and µ are not specified until a particular simu-

lation is defined, see Appendix A.3.5.

A.3.4 Defining Observables: the Obs Module

Observables are specified using the Obs.py module. The types of observables

supported are site observables such as ⟨n̂i⟩, corr observables such as ⟨n̂in̂j⟩, and

general MPOs. Each observable is given a tag which is used to post-process it later.

For example, to tag the computation of the single-particle density matrix ⟨b̂†i b̂j⟩ with

’spdm’, one would call

myObservables . AddObservable ( Operators , [ ’ bdagger ’ , ’ b ’ ] , ’ c o r r ’ , ’
spdm ’ )

where myObservables is an object of the Observables class. For finite systems,

site observables are measured at every position and returned as a vector and corr
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observables are stored as a (Hermitian) matrix whose indices run over the sites in

the system. For infinite systems, site observables are measured within the unit cell

and the function SpecifyCorrelationRange allows the user to specify the maxi-

mum distance of correlation functions. After a simulation has been run, the function

Outputs=ReadStaticObservables(staticsParameters,myObservables) reads all

of the observables specified in myObservables and computed by a simulation whose

metadata is stored in staticsParameters and places them along with all simulation

metadata and convergence information in Outputs. This can be compared with a

similar capability given by LoadTimeEvolution in the ALPS Routines of Sec. 10.2.2.

A.3.5 Interfacing with the Fortran Back End: the tools Module

The tools.py module contains routines to write class data and other pertinent

information in a format understood by the Fortran routines, as well as writing build

scripts, compiling, and running simulations. A simulation is specified as a Python dic-

tionary of metadata. As an example, consider a simulation of noninteracting spinless

fermions given by the following code

A.1 import MPSPyLib as mps
A.2 import numpy as np
A.3

A.4 #Bui ld opera tor s
A.5 Operators=mps . BuildFermiOperators ( )
A.6 #Define Hamiltonian MPO
A.7 H=mps .MPO()
A.8 H.AddMPOTerm( Operators , ’ bond ’ , [ ’ fdagger ’ , ’ f ’ ] , hparam=’ t ’ , weight

=−1.0,Phase=True )
A.9

A.10 #ground s t a t e o b s e r v a b l e s
A.11 myObservables=mps . Observables ( )
A.12 #Si t e terms
A.13 myObservables . AddObservable ( Operators , ’ n f t o t a l ’ , ’ s i t e ’ , ’ n ’ )
A.14 #co r r e l a t i o n f unc t i on s
A.15 myObservables . AddObservable ( Operators , [ ’ n f t o t a l ’ , ’ n f t o t a l ’ ] , ’ c o r r

’ , ’ nn ’ )
A.16 myObservables . AddObservable ( Operators , [ ’ fdagger ’ , ’ f ’ ] , ’ c o r r ’ , ’

spdm ’ , Phase=True )
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A.17

A.18 t=1.0
A.19 L=10
A.20 N=5
A.21 #de f i n e s t a t i c s
A.22 s t a t i c sParamete r s =[{
A.23 }Di r e c t o r i e s
A.24 ’ job ID ’ : ’ Sp in l e s sFermions ’ ,
A.25 ’ unique ID ’ : ’ L ’+s t r (L)+’N ’+s t r (N) ,
A.26 ’ Wr i te Di rec tory ’ : ’TMP/ ’ ,
A.27 ’ Output Directory ’ : ’OUTPUTS/ ’ ,
A.28 #System s i z e and Hamiltonian parameters
A.29 ’L ’ : L ,
A.30 ’ t ’ : t ,
A.31 #Spe c i f i c a t i o n o f symmetries and good quantum numbers
A.32 ’ Abe l i an gene ra to r s ’ : Operators [ ’ n f t o t a l ’ ] ,
A.33 ’ Abelian quantum numbers ’ : N,
A.34 #Convergence parameters
A.35 ’ MaxnLanczosIterat ions ’ : 100 ,
A.36 #IMPS
A.37 ’ imps to l ’ : 1E−12,
A.38 ’ imps bond dimension ’ : 170 ,
A.39 #FMPS
A.40 ’ bond dimension ’ : 500 ,
A.41 ’ n e x c i t e d s t a t e s ’ : 1 ,
A.42 ’ v a r i a n c e t o l ’ : 1E−10,
A.43 ’ l a n c z o s t o l ’ : 1E−12,
A.44 ’max num Sweeps ’ : 10 ,
A.45 #Other parameters
A.46 ’ verbose ’ : 0 ,
A.47 ’ s t r i c t ’ : False ,
A.48 ’ s imtype ’ : ’ F i n i t e ’
A.49

A.50 } ]
A.51

A.52 #Write Fortran−r eadab l e main f i l e s
A.53 MainFi les=mps . Wr i t eF i l e s ( s ta t i c sParamete r s , Operators ,H,

myObservables , teParameters=None )
A.54 #Run the s imu la t i on s
A.55 mps . runMPS( MainFi les )
A.56

A.57 #post−proce s s ing and p l o t t i n g
A.58 Outputs=mps . ReadStat icObservables ( s ta t i c sParamete r s , myObservables

)
A.59 mps . Pr intObservable (Outputs , ’ energy ’ )
A.60 mps . Pr intObservable (Outputs , ’ spdm ’ )
A.61
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A.62 mps . C l eanF i l e s ( s t a t i c sParamete r s )

Here, staticsParameters contains all of the simulation metadata, including a nu-

merical value for the Hamiltonian parameter t specified in line 8. The parameters

appearing are:

1. ’job ID’: a string identifying a group of simulations. This parameter is not

optional.

2. ’unique ID’: a string identifying a particular simulation. This parameter is

optional and defaults to an empty string. It is used for batching simulations to

ensure that each simulation is distinguishable from the others.

3. ’Write Directory’: the directory where the Fortran-readable files are written.

This parameter keeps the main directory from becoming cluttered. It is optional

and defaults to the current directory.

4. ’Output Directory’: the directory where files are written from the Fortran

code. It is optional and defaults to the current directory.

5. ’L’: the number of sites for a finite simulation or the number of sites in the

unit cell for an infinite simulation. This parameter is not optional.

6. ’bond dimension’: the maximum bond dimension allowed for static calcula-

tions. For finite simulations, this is an integer. For infinite simulations, this

parameter is a list so that a finite-entanglement scaling may be performed.

This parameter is not optional.

7. ’imps bond dimension’: the maximum bond dimension allowed when using

iMPS97 to generate an initial ansatz for a finite-sized ground state search. This

parameter is optional and defaults to one-third of ’bond dimension’.

97See Chapter 8 for a discussion of the iMPS algorithm.

410



8. ’n excited states’: the number of excited states calculated. This optional

parameter is only relevant for finite systems where eMPS98 applies and defaults

to 0.

9. ’variance tol’: the tolerance ϵ on the variance of the state for exit from

variational state search, i. e. ,⟨
(
Ĥ − E

)2
⟩ < Lϵ. This parameter is optional

and defaults to machine precision. For infinite simulations, this controls the

truncation error rather than the variance.

10. ’imps tol’: The tolerance on the truncation error used when applying iMPS to

generate an initial ansatz for a finite-sized ground state search. This parameter

is optional and defaults to the machine precision.

11. ’lanczos tol’: the tolerance ϵ for exiting the Lanczos iteration with either the

norm of the kth Lanczos vector less than ϵ or the residual
∣∣∣ĤA− λA∣∣∣ < ϵ. This

parameter is optional and defaults to the machine precision.

12. ’MaxnLanczosIterations’: the maximum number of iterations allowed by the

Lanczos algorithm when solving an effective Hamiltonian eigenproblem. This

parameter is optional, and defaults to 100.

13. max num Sweeps : the maximum number of sweeps (complete optimization cy-

cles over the lattice) allowed in the variational state search. This parameter is

optional and defaults to 6.

14. ’verbose’: denotes the level of verbosity of standard output from the Fortran

code. 0 is no output, 1 is normal, and 2 is debug level of output. Optional,

defaults to 0.

15. ’strict’: a value of True prevents existing files with the same name from being

overwritten. This parameter is optional and defaults to False.

98See Chapter 7 for a discussion of the eMPS algorithm.
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16. ’Abelian generators’: the diagonal matrices whose elements are the on-site

charges which are to be conserved by the simulation. Here, the presence of

the on-site number operator nftotal specifies that we are conserving the total

number of fermions.

17. ’Abelian quantum numbers’: the values of the conserved charges associated

with the operators in ’Abelian generators’.

18. ’simtype’: specifies whether the simulation uses finite-size or infinite-size al-

gorithms.

The order of the terms has no importance. This data is passed together with the

MPO template for the Hamiltonian and the observables to WriteFiles, which writes

all of the data pertinent to the simulations to Fortran-readable files. These files are

then passed to runMPS, which runs the simulations. After simulations have been run,

ReadStaticObservables is used as described above to extract the observable quanti-

ties from the outputs of the Fortran code. At the end of the simulation, CleanFiles

is used to remove all intermediate files which are no longer needed.

A.3.6 Data-Parallelsim: the Paralleltools module

Data-parallel simulations may be prepared using the Paralleltools.py module.

Here a set of tags and a set of iterators are passed along with a Python dictionary

template which contains all of the other parameters relevant to the simulations. The

routines write all of the necessary input files to the run the simulations, and addi-

tionally write a job pool file which as master node uses to delegate simulations to

workers in parallel. A record of progress is kept so that simulations which are pre-

maturely aborted can be restarted. For example, to loop over the parameters t and

µ in parallel, we could use the code

mumin=0.5
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mumax=1.8
muvals=50
muiter=np . l i n s p a c e (mumin ,mumax, muvals )

tmin=0.01
tmax=0.4
t v a l s=50
t i t e r=np . l i n s p a c e ( tmin , tmax , t v a l s )

i te rparams=[ ’mu ’ , ’ t ’ ]
i t e r s =[muiter , t i t e r ]

mps . WriteMPSParal le lFi les ( s ta t i c sParameter s template , comp info ,H,
iterparams , i t e r s , Operators , myObservables )

staticsParameterstemplate is a Python dictionary containing all other parameters

relevant to the simulation as in the example above, comp info is a Python dictionary

containing metadata about the number of nodes, the desired time, etc. which are

relevant for parallel environments, H is the MPO template, and myObservables is an

observables object. The result of calling this procedure is a pbs script which will run

the desired simulations in parallel.

A.3.7 Dynamics: the Dynamics module

Dynamics based on the general method discussed in Chapter 7 are supported in

an alpha version at the time of the writing of this thesis, and are not included as part

of the stable version on the source code CD. A dynamic process is specified as

Quenches=mps . QuenchList ( )
Quenches . AddQuench( hparamsl i s t , tau , de l ta t , f unc t i ona l f o rms )

hparamslist is a list containing the Hamiltonian parameters which change in time,

tau is the length of the particular dynamical process, deltat is the time step, and

functionalforms is a list of function handles describing how the parameters in

hparamslist change. For example, to define a linear quench of the transverse field

hx in the Ising model from 5J to 0 over a timescale τ = ~/J , we would call

h0=5.0
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hf =0.0
tau=1.0
hfunc= lambda t : h0+(hf−h0 ) ∗ t / tau
Quenches=mps . QuenchList ( )
Quenches . AddQuench ( [ ’ hx ’ ] , tau , 0 . 1 , [ hfunc ] )

A.4 Code for Computation of Molecular Hubbard Parameters

Code to generate Hubbard parameters for the molecular Hubbard Hamiltonian

using the methods of Chapter 2 is included as the file MHHLib.tar.gz. The com-

putation of the Hubbard parameters proceeds in three stages. In the first stage, we

solve the internal Hamiltonian including static external fields. This Hamiltonian is

discussed in Appendices 4.5 and 4.6 of Chapter 4, with explicit matrix elements given

in Appendix 4.7. For strong DC electric fields, several rotational levels are required

to accurately converge the results, see Sec. 3.7. The large number of rotational states

together with the hyperfine spin states can make the linear dimension of the internal

Hamiltonian a few thousands, and so pre-computation of matrix elements and sparse

diagonalization routines [7] are used to find the eigenstates which correlate to the

lowest two rotational manifolds.

Once a basis for the internal Hamiltonian has been found, the dipole moments,

polarizability tensor, and other operators relevant to the calculation are transformed

to this basis. The complete single-particle Hamiltonian is now diagonalized to yield

the single-particle eigenstates in Bloch form, see Sec. 2.1. For the lowest rotational

level, the polarizability tensor is diagonal to a relative precision of 10−9 in most cases

of interest, and so may be computed using the methods of Sec. 2.1 which assume

the lattice has no matrix elements connecting different eigenstates of the internal

Hamiltonian. For internal states which correlate to rotational angular momentum

N = 1 and rotational projection MN = ±1 along the DC electric field axis in zero

field, the polarizability is not diagonal in the internal degrees of freedom, and so

a more sophisticated procedure is required. This procedure will be elucidated in
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a forthcoming paper [8]. In the final stage, the Bloch functions are transformed

to Wannier functions and used to compute Hubbard parameters as in Eqs. (2.26),

(2.34), and (2.39). The ranges of the Hubbard parameters are truncated according

to a user-supplied energetic cutoff.

As with the MPS codes discussed in Appendix A.3, this code uses a Python front

end to define, run, and post-process simulations. This makes integration of the Hub-

bard parameters and execution of many-body simulations of the resulting molecular

Hubbard Hamiltonians using the MPS code straightforward. The relevant experimen-

tal parameters are provided as input using a Python dictionary in a similar manner

to the MPS code. Example main files are provided in MHHLib.tar.gz. Finally, the

computation of Hubbard parameters for a range of experimental controls, for example

the strength of the DC or AC electric fields, may be parallelized over using a list of

iterators as discussed for the MPS code in Appendix A.3.6.
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APPENDIX B - OPEN SOURCE TEBD V2.0 USER’S GUIDE

This appendix is the User’s guide associated with the v2.0 release of the Open

Source TEBD package with some slight updates. This was the last release of Open

Source TEBD before the routines were merged into the ALPS collaboration.

B.1 What’s New in v2.0

The v2.0 release of Open Source TEBD is a beta version supported by the Carr

Theoretical Physics Research Group which contains many improvements over the v1.0

alpha release. In decreasing order of importance, the improvements are

1. a fifth order Trotter expansion of the propagator, discussed in Sec. B.3.5.2,

2. support for systems with periodic boundary conditions, discussed in Sec. B.3.5.3,

3. support for fermionic systems, discussed in Sec. B.3.6.3,

4. new routines for constructing the propagator based on the boundary conditions

and the order of Trotter expansion, discussed in Sec. B.9.1.24,

5. a compact structure for calculating and storing observables, discussed in Sec. B.3.6.6,

6. a more efficient means of computing nonlocal observables which are tensor prod-

ucts, discussed in Sec. B.3.6.4,

7. the usage of NAMELIST i/o in all case studies to avoid the need to recompile

when parameters are changed,

8. several small changes related to code readability and performance,

9. correction of typographical errors and updating of material in this document.
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B.2 Introduction

The development of efficient classical algorithms to simulate quantum many-body

phenomena is a very active area of contemporary theoretical physics research. The

challenge of simulation lies in the exponential growth of the full many-body Hilbert

space with the size of the system. For example, in the Bose-Hubbard model, which

accurately describes the behavior of ultracold alkali atoms in deep optical lattices [1],

the dimension of a Hilbert space describing N bosons distributed among L lattice

sites is

ΩBH =
(L+N − 1)!

L! (N − 1)!
. (B.1)

Typical experimental systems are on the order of hundreds of lattice sites with com-

parable numbers of particles, making exact diagonalization of the full many-body

Hamiltonian intractable even with sparse matrix methods. Also, the introduction of

an internal Hilbert space (e.g. spin or rotational degrees of freedom) will make the

Hilbert space even larger, furthering the need for efficient algorithms.

Great progress has been made in the past decade in numerical studies of the quan-

tum many-body problem. In particular, the density matrix renormalization group

(DMRG) technique proposed by White [2, 3] has been used to great success in a

variety of 1-dimensional (1D) systems with so-called “limited entanglement” (see [4]

for a review). The initial limitation of DMRG is that it was a static method–it could

predict the ground state of a given Hamiltonian but could not simulate time evolution

efficiently. After many proposed extensions of DMRG with varying degrees of success,

Vidal was able to produce a successful time evolution method [5, 6] which we now refer

to as the time-evolving block decimation (TEBD) algorithm. With TEBD, one can

study the dynamics of quantum many-body systems efficiently, and also find ground

states through propagation in imaginary time. In the remainder of this document we
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will provide a thorough discussion of the theory and implementation of TEBD. The

heart of this manual is a collection of manpages which describe the syntax and uses

of all routines included in the package. This part of the manual begins with Sec. B.7.

B.3 The Time-Evolving Block Decimation Algorithm

In this section we will provide a detailed description of the Time-Evolving Block

Decimation algorithm (TEBD) with a focus on theoretical and conceptual aspects.

B.3.1 Schmidt Decomposition and Related Theorems

Theorem: (Singular value decomposition) Let A be an m × n complex matrix.

Then there exists an m×m unitary matrix ΓA, an n× n unitary matrix ΓB, and an

m× n positive diagonal (as defined for rectangular matrices) matrix λ such that

A = ΓAλΓ†
B . (B.2)

This is referred to as the singular value decomposition of A, and the diagonal

elements of λ are referred to as the singular values of A. Note that the form of the

decomposition implies that A has at least one and at most min (m,n) distinct singular

values. The number of nonzero singular values of a matrix is its rank.

The most important property of the SVD for our purposes is that the matrix A(l)

defined by the matrix elements

A
(l)
ij =

l∑
k=1

[ΓA]ik λkk

[
Γ†
B

]
kj

(B.3)

is the closest rank-l matrix to A, meaning that A(l) minimizes the Frobenius norm:

the sum of the absolute squares of the element-wise difference between the rank-

l approximation and the full matrix,
∑

ij

∣∣∣Aij − A(l)
ij

∣∣∣2. Thus, the SVD gives us a

means to find the best approximation to a matrix in a reduced-rank space.
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Theorem: (Schmidt Decomposition) Let |ψ⟩ be a pure state in the dAdB dimen-

sional Hilbert space HA ⊗ HB. Then there exist vectors
{
|ϕAα ⟩

}
and

{
|ϕBα ⟩

}
and

scalars χS and {λα} such that

|ψ⟩ =

χS∑
α=1

λα|ϕAα ⟩ ⊗ |ϕBα ⟩ , (B.4)

1 ≤ χS ≤ min (dA, dB) , (B.5)

λ1 ≥ λ2 ≥ · · · ≥ λχS
≥ 0 , (B.6)∑

α

λ2α = 1 . (B.7)

This is referred to as the Schmidt decomposition of |ψ⟩. χS is referred to as the

Schmidt rank, and the {λα} are referred to as the Schmidt coefficients. We shall pro-

vide two proofs of this theorem. The first is a mathematical proof which sheds light

on our numerical procedure, and the second is a physically motivated proof which

elucidates the physical motivation for TEBD.

Proof 1: Let {|jA⟩} and {|nB⟩} be two orthonormal bases of HA and HB of

dimension dA and dB, respectively. The most general decomposition of |ψ⟩ in this

basis is

|ψ⟩ =

dA∑
j=1

db∑
n=1

cjn|jA⟩ ⊗ |nB⟩ . (B.8)

Applying the singular value decomposition to the coefficient matrix C, we have

|ψ⟩ =

dA∑
j=1

min(dA,dB)∑
i=1

dB∑
n=1

ΓAjiλiiΓ
B†
in|jA⟩ ⊗ |nB⟩ . (B.9)

If we now define

|ϕAi ⟩ ≡
dA∑
j=1

ΓAji|jA⟩ , |ϕBi ⟩ ≡
dB∑
n=1

ΓB
†
in|nB⟩ , λi ≡ λii , (B.10)
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we have

|ψ⟩ =

χS∑
i=1

λi|ϕAi ⟩ ⊗ |ϕBi ⟩ , (B.11)

as was to be proven. We can identify χS generally as the number of nonzero singular

values of the decomposition matrix, with 1 ≤ χS ≤min(dA, dB). We also note that

the Schmidt decomposition may be easily performed numerically using the singular

value decomposition of the coefficient matrix C.

Our second proof of the Schmidt decomposition begins as before, with

|ψ⟩ =

dA∑
j=1

db∑
n=1

cjn|jA⟩ ⊗ |nB⟩ . (B.12)

We now define the (not necessarily orthonormal) basis

|µ̃B⟩ ≡
∑
n

cjn|nB⟩ , (B.13)

yielding

|ψ⟩ =
∑
j

|jA⟩ ⊗ |µ̃B⟩ . (B.14)

We now choose as a basis for HA a set {|mA⟩} that diagonalizes the reduced density

operator ρ̂A

ρ̂A = TrB|ψ⟩⟨ψ| =
χS∑
m=1

pm|mA⟩⟨mA| , (B.15)

where χS ≤ dA is the number of nonzero eigenvalues pm of the reduced density matrix

obtained by tracing out the degrees of freedom of subsystem B. If χS <min(dA, dB),

we complete the set with a set of NA − χS vectors orthonormal to the {|mA⟩}. Ex-

plicitly taking the partial trace over the B degrees of freedom, we find
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ρ̂A =
∑
mµ

⟨µ̃B|m̃B⟩|mA⟩⟨µA| , (B.16)

⇒ ⟨µ̃B|m̃B⟩ = pmδmµ , (B.17)

and so the set {|µ̃B⟩} is, in fact, orthogonal with this choice for {|mA⟩}. Normalizing

this set gives

|µB⟩ = p−1/2
m |µ̃B⟩ , (B.18)

|ψ⟩ =
∑
µ

√
pµ|µA⟩ ⊗ |µB⟩ , (B.19)

which is the Schmidt decomposition, as was to be shown. If we now trace over A, we

find

ρ̂B =
∑
µ

pµ|µB⟩⟨µB| , (B.20)

and so we arrive at the conclusion that ρ̂A and ρ̂B have the same (nonzero) eigenvalues.

The Schmidt rank χS is now identified with the number of nonzero eigenvalues of

the reduced density matrices, and the Schmidt vectors are their eigenvectors. A very

important result is that the Schmidt rank is invariant under a local evolution described

by a unitary operator UA⊗UB (local in this case means our system does not interact

with other systems, for example because all other systems are far away). We deduce

from this that a product state cannot be transformed into an entangled state through

a local evolution in which the systems HA and HB evolve independently (also, we

can’t disentangle a state by the same means).

A two-body state is a tensor product (i.e. not entangled) iff its Schmidt rank

is one. Similarly, a two-body state is maximally entangled if the Schmidt rank is

min (dA, dB). This motivates the following entanglement measure associated with

the Schmidt rank. Consider an n-body system of qu-dits (d-level quantum systems)

described by a pure state |ψ⟩ which can be expressed in terms of the local bases
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{|i1⟩, |i2⟩, ..., |iL⟩} as

|Ψ⟩ =
d∑

i1,i2,...,iL=1

ci1,i2,...,iL |i1⟩|i2⟩ · · · |in⟩ , (B.21)

and consider all bipartite splittings of this system. That is, consider all decompositions

of the form

|Ψ⟩ =

χSl∑
il=1

λ
[l]
il
|ϕ[l]
il
⟩|ϕ[n−l]

il
⟩ , (B.22)

where the Schmidt vectors |ϕ[l]⟩ span the Hilbert space also spanned by |i1⟩|i2⟩ · · ·

|il⟩, the Schmidt vectors |ϕ[n−l]⟩ span the Hilbert space also spanned by |il+1⟩|il+2⟩ ·

· · |iL⟩, and 1 ≤ χSl ≤min
(
dl, dL−l

)
is the Schmidt rank associated with bipartite

splitting l. Note that these decompositions are guaranteed to exist by the Schmidt

decomposition. We define EχS
≡ logd (χS) where χS ≡ maxl (χSl) as the Schmidt

measure, a measure of entanglement central to TEBD. Some properties of the Schmidt

measure are explored in the exercises.

Exercise: Prove that a local unitary operation UA ⊗ UB leaves the Schmidt rank

unchanged. Hint: Act on Eq. (B.19) with the given operator.

Exercise: You proved in the last exercise that the Schmidt measure is entanglement

monotone, i.e. that it is unchanged by local unitary operations. Prove that it is

bounded below by zero (when does it reach this bound?) and also that it bounds the

entropy of entanglement

S = −
∑
α

λ2α logd λ
2
α. (B.23)

Finally, prove that it is additive under tensor products.
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EχS
(|ψ⟩ ⊗ |ψ′⟩) = EχS

(|ψ⟩) + EχS
(|ψ′⟩) (B.24)

These conditions show more rigorously that EχS
is a faithful measure of entanglement

for pure states.

B.3.2 Conceptual Basis of TEBD

The essential fact that allows for the efficiency and success of TEBD is that the

singular values of reduced density matrices, when arranged in non-increasing fashion,

have an approximately exponential decay. This means that a rank-χ approximation

to the reduced density matrix, ρ̂(χ), formed from the singular value decomposition as

in Eq. (B.3) with χ≪ χS will provide an excellent approximation to the true reduced

density matrix. We can understand this fact using an analogy to image compression.

Consider the JPEG image shown in Figure B.1(a). We can represent this picture

as a 300×416 array of pixels, requiring 124800 words of storage. If we look at the

singular values of this pixel array, we find the distribution shown in Figure B.1(b),

namely that the singular values decay roughly exponentially. This implies that the

best approximation to the image given by the SVD will be excellent even if we keep

only a fraction of the total singular values. To see this in action, examine Figures Fig-

ure B.1(c)–Figure B.1(e), which show the best approximation to the image for various

numbers of singular values. Keeping 100 singular values gives an excellent approxima-

tion to the original image with only a quarter of the data storage. If we consider that

the original image was a JPEG which itself was compressed down from a ∼3000×3000

pixel (10 Megapixel) raw array, we have benefitted enormously by carefully sampling

the parts of “image space” that are the most important via the SVD.

Why were we able to represent the image with so little data? The reason is that

a physical images are a very special subset of all 2D pixel arrays; they have a great

deal of structure and regularity. If we consider instead the most probable image of
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the same size as our original image–one consisting of random pixel values–we get the

singular value scaling shown in Figure B.1(f). In this case the singular values do scale

exponentially with the data size, and our SVD compression would yield a miserable

approximation to the original image if we were to use only a quarter of the singular

values. In the same manner typical physical states in Hilbert space, including the

ground state, have limited entanglement as quantified by some entanglement measure.

This limited entanglement means the singular value spectra of physical states decay

exponentially more quickly than a general state, enabling them to be “entanglement

compressed” by algorithms such as TEBD. There is no general proof of this fact

just as there is no guarantee that an image will come out perfectly crisp after JPEG

compression, it is simply a trend observed in many-body quantum systems.

B.3.3 Vidal’s State Decomposition

The starting point for TEBD is to express the L-body coefficient tensor ci1...iL

defined as

|Ψ⟩ =
d∑

i1...iL=1

ci1...iL |i1⟩ . . . |iL⟩ (B.25)

as a sum over products of local tensors Γ[l] and local vectors λ[l] as

ci1i2...iL =

χS∑
α0...αL

λ[1]α0
Γ[1]i1
α0α1

λ[2]α1
Γ[2]i2
α1α2

λ[3]α2
Γ[3]i3
α2α3

. . .Γ[L]iL
αL−1αL

λ[L+1]
αL

(B.26)

or, for open boundary conditions, as

ci1i2...iL =

χS∑
α1...αL−1

Γ[1]i1
α1

λ[2]α1
Γ[2]i2
α1α2

λ[3]α2
Γ[3]i3
α2α3

. . .Γ[L]iL
αL−1

, (B.27)

where we have defined
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Figure B.1: SVD representation of an image. (a) Original Image. (b) Log plot of
singular values. (c) 10 Singular values. (d) 50 Singular values. (e) 100 Singular
values. (f) Log plot of singular values: General pixel array (pink), Physical pixel
array (blue).
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Γ[1]i1
α1
≡
∑
α0

λ[1]α0
Γ[1]i1
α0α1

, Γ[L]iL
αL−1

≡
∑
αL

Γ[L]iL
αL−1αL

λ[L+1]
αL

. (B.28)

For open boundary conditions, λ
[1]
α0 = δα0,1 and λ

[L]
αL = δαL,1, and so the two decom-

positions are identical. We will use the latter expression, Eq. (B.27), most often in

theoretical considerations, only using Eq. (B.26) when periodic boundary conditions

require us to.

In Eq. (B.25), d is the Hilbert space of site l, which may or may not be a physical

site, we simply mean it refers to the local Hilbert space spanned by |il⟩. This implies

that the Hilbert space of the full system is dL, meaning we need dL coefficients, the

{ci1,i2,...,iL}, to specify our state |Ψ⟩. In the second expression, we have replaced the

dL coefficients with dχ2L+ χ (L+ 1) coefficients, the Γs and λs.

We refer to the Γs and λs as being local because each one is assigned either to

a site (Γs) or a link (also called a bond in the condensed matter literature) between

sites (λs). The schematic replacement is shown in Figure B.2. The top row of the

figure shows the system before the decomposition as being a collection of sites (blue

ovals) linked together via the tensor product. After the decomposition, each site is

replaced with a four-index tensor Γ
[l]il
αl−1,αl . The superscript index in brackets l denotes

that the Γ is associated with the lth site, the superscript index without brackets il

denotes that the system is in the local state |il⟩, and the subscripts αl−1 and αl

are the Schmidt indices which relay information about the remainder of the system

with this particular on-site configuration. Similarly, we replace each tensor product

with a “link,” and upon each link is associated with a λ
[l]
αl . The superscript index in

brackets l denotes the link index, with link l being between sites l− 1 and l, and the

subscript index is the Schmidt index which gives the relative importance of the state

represented by the αth
l Schmidt index of the corresponding Γ.
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Figure B.2: Schematic of Vidal Decomposition. In the lower representation a line
connecting two objects is an implied summation over a shared index. The lines
shown are the contractions over the Schmidt indices as in Eq. (B.26).

We have written the Vidal Decomposition, Eq. (B.26), in a way that reflects the

indexing used in the actual code. Other works [7, 8] write the decomposition for open

boundary conditions as

ci1i2...iL =

χS∑
α1...αL−1=1

Γ[1]i1
α1

λ[1]α1
Γ[2]i2
α1α2

λ[2]α2
Γ[3]i3
α2α3

. . . λ[L−1]
αL−1

Γ[L]iL
αL−1

, (B.29)

which becomes ours upon the substitution

this work’s λ[l]αl
= λ[l−1]

αl
other work. (B.30)

The reason that we have reindexed the λs is purely pragmatic: Fortran naturally

indexes from 1 and not from 0. This definition allows for direct comparison of the

manual and the code. We hope that this is not the source of any confusion.

The Γs and λs are chosen such that a splitting of our system between sites l and

l+ 1 into two subsystems (a bipartite splitting) is exactly the Schmidt decomposition

|ψ⟩ =

χS∑
αl=1

λ[l+1]
αl
|ϕ[1...l]
αl
⟩|ϕ[l+1...n]

αl
⟩ (B.31)
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meaning that the Schmidt vectors

|ϕ[1...l]
αl
⟩ =

χS∑
α0,...,αl−1

λ[1]α0
Γ[1]i1
α0α1

λ[2]α1
Γ[2]i2
α1α2

λ[3]α2
Γ[3]i3
α2α3

. . .Γ[l]il
αl−1αl

|i1⟩ . . . |il⟩ (B.32)

and

|ϕ[l+1...L]
αl

⟩ =

χS∑
αl+1,...,αL

Γ[l+1]il+1
αlαl+1

λ[l+1]
αl+2

Γ[l+2]il+2
αl+1αl+2

. . .Γ[L]iL
αL−1αL

λ[L]αL
|il+1⟩ . . . |iL⟩ (B.33)

span the reduced density matrices

ρ(1...l) = Tr(l+1)...L|ψ⟩⟨ψ| (B.34)

and

ρ(l+1...L) = Tr1...l|ψ⟩⟨ψ| (B.35)

respectively, and the
(
λ
[l+1]
αl

)2
are their eigenvalues.

With the Γs and λs chosen in this manner, we have incurred no error as long as

we select χS to be the Schmidt rank min
[
dl, dL−l

]
. The approximation comes when

we select out the χ largest eigenvalues λ
[l+1]
αl , rejecting the other χS − χ. Since we

have replaced dL parameters with dχ2L + χ (L+ 1) parameters, for this to be of

significant value χS must scale polynomially in L, which is the same essential idea as

the singular value spectrum decaying exponentially discussed in Sec. B.3.3. In light

of the discussion of Sec. B.3.1, we note that the precise way in which TEBD best

approximates the ground state is by forming the best rank-χ approximation to the

coefficient tensor of each bipartite splitting.

To give some physical motivation for the polynomial scaling of χ with the system

size, consider the following argument due to Zwolak[9]. For a 1D critical system with

finite range interactions the entropy of entanglement (von Neumann entropy) of a

contiguous block of length ξ scales as
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S ∼ c

3
log ξ , (B.36)

where c is the central charge of the underlying conformal field theory[10]. If we

consider the block to be half of a system with open boundary conditions of size L,

the entropy scales as

S ∼ c

6
logL ; (B.37)

it is half of what may have been expected from above because the block has two

boundaries. This growth is much slower than the maximum growth possible, which

would be linear in L. The maximum entropy that a truncated Vidal decomposition

can hold is logχ (as proved in the exercises). For the truncation error to remain fixed

as we increase the system size, we should thus scale the entanglement cutoff roughly

as

χ ∼ Lc/6 , (B.38)

that is, polynomially in the system size. The polynomial scaling can be made much

more precise[11], but the important idea is that, even for critical 1D systems, the

Vidal decomposition can efficiently represent the state.

B.3.3.1 Construction of the Local Tensors using the Singular Value De-
composition

The decomposition, Eq. (B.26), cannot be used directly to construct an initial

state because we do not know the full coefficient tensor in most cases. Nevertheless,

it is instructive to show how to construct the local tensors from the full coefficient

tensor in simple cases. If we consider a bipartite splitting of our full wavefunction

into two systems spanned by |iA⟩ and |jB⟩, then we have

430



|Ψ⟩ =
∑
i,j

cij|iAjB⟩ . (B.39)

Via the singular value decomposition, we find the coefficient matrix to be

cij =
∑
k

ΓAikλkkΓ
B
kj , (B.40)

⇒ |Ψ⟩ =
∑
k

λkk|ϕ[A]
k ⟩|ϕ

[B]
k ⟩ , (B.41)

|ϕ[A]
k ⟩ ≡

∑
i

ΓAi,k|iA⟩ , |ϕ[B]
k ⟩ ≡

∑
j

ΓBj,k|jB⟩. (B.42)

We now show how to use the SVD to perform Vidal’s decomposition. For the sake of

clarity, we will consider only a four site system, as the generalization to more sites is

straightforward. The Vidal Decomposition of the 4-party coefficient tensor is

ci1i2i3i4 =

χ∑
α1,α2,α3=1

Γ[1]i1
α1

λ[2]α1
Γ[2]i2
α1α2

λ[3]α2
Γ[3]i3
α2α3

λ[4]α3
Γ[4]i4
α3

. (B.43)

Performing a Schmidt decomposition at the first link yields

|Ψ⟩ =

χ∑
α1=1

λ[2]α1
|ϕ[1]
α1
⟩|ϕ[234]

α1
⟩ =

∑
α1;i1,i2,i3,i4

λ[2]α1
Γ[1]i1
α1
|i1⟩ ⊗

(
Γ[234]i2i3i4
α1

|i2i3i4⟩
)
. (B.44)

We obtain the numbers λ
[2]
α1 , Γ

[1]i1
α1 , and Γ

[234]i2i3i4
α1 from performing an SVD at this

splitting as outlined above. Comparing with the full decomposition, Eq. (B.43), we

have the relation

Γ[234]i2i3i4
α1

=
∑
α2α3

Γ[2]i2
α1α2

λ[3]α2
Γ[3]i3
α2α3

λ[4]α3
Γ[4]i4
α3

(B.45)

which does not yet allow us to solve for all of the local tensors uniquely. Performing

a second bipartite splitting, now at the second link, yields
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|Ψ⟩ =

χ∑
α2=1

λ[3]α2
|ϕ[12]
α2
|ϕ[34]
α2
⟩ =

∑
α2;i1i2i3i4

λ[3]α2
Γ[12]i1i2
α2

|i1i2⟩ ⊗
(
Γ[34]i3i4
α2

|i3i4⟩
)
. (B.46)

Comparing again with the full decomposition, we find

Γ[34]i3i4
α2

=
∑
α3

Γ[3]i3
α2α3

λ[4]α3
Γ[4]i4
α3

, (B.47)

⇒ Γ[12]i1i2
α2

=
∑
α1

Γ[1]i1
α1

λ[2]α1
Γ[2]i2
α1α2

. (B.48)

We now know λ
[3]
α2 , Γ

[12]i1i2
α2 , and Γ

[34]i3i4
α2 in addition to the coefficients from the first

splitting. With this information we can solve for Γ
[2]i2
α1α2 on the right hand side of

Eq. (B.48). Performing one last bipartite splitting at the third link provides us with

the equation

Γ[34]i3i4
α3

=
∑
α3

Γ[3]i3
α2α3

λ[3]α3
Γ[4]i4
α3

(B.49)

along with λ
[4]
α3 , Γ

[123]i1i2i3
α3 , and Γ

[4]i4
α3 . With all of this we can solve for Γ

[4]i4
α3 , uniquely

specifying all of the local tensors.

For a few particular states we can compute the local tensors intuitively “by in-

spection.” One such state is the L-party vacuum state |Ψ⟩ = |0⟩⊗L. Recall that χ = 1

for a product state such as this and so all bipartite splittings will involve only one

term. Performing a splitting at the first link yields

|Ψ⟩ =
∑
α1

λ[2]α1
|ϕ[1]
α1
⟩|ϕ[2...L]

α1
⟩ = |0⟩|0⟩⊗L−1 (B.50)

from which we can read off λ
[1]
α1 = δα1,1. Inspecting the first Schmidt vector,

|ϕ[1]
α1
⟩ =

∑
i1

Γ[1]i1
α1
|i1⟩ , (B.51)
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we are also able to read off Γ
[1]i1
α1 = δα1,1δi1,0. If we now expand the second Schmidt

vector in a local basis for the second site we find

|ϕ[2...L]
α1
⟩ =

∑
i2

|i2⟩|τ [3...L]α1i2
⟩. (B.52)

This allows us to easily identify

|τ [3...L]α1i2
⟩ = δα1,1δi2,0|0⟩⊗L−2 (B.53)

and, with the decomposition definition

|τ [3...M ]
α1i2

⟩ =
∑
α2

Γ[2]i2
α1α2

λ[3]α2
|ϕ[3...L]
α2
⟩ (B.54)

|ϕ[3...L]
α2
⟩ = |0⟩⊗L−2 , (B.55)

we find Γ
[2]i2
α1α2 = δα1,1δα2,1δi2,0. Noting the general trend, we can write down Γ

[l]il
αl−1αl =

δαl−1,1δαl,1δi2,0 and λ
[l+1]
αl = δαl,1. This generalizes immediately to the most general

product state

|Ψ⟩ =
L⊗
k=1

|ψk⟩ where |ψk⟩ =
d∑

ik=1

c
(k)
ik
|ik⟩. (B.56)

As this is a product state, all of the λ
[l+1]
αl = δαl,1 as above, but Γ

[l]il
αl−1αl = c

(l)
il
δαl−1,1δαl,1.

Exercise: The product state examples above were particularly simple because they

were not entangled. Let us now consider the Vidal decomposition of a state of maximal

entanglement (by some entanglement measures), the L-party GHZ state

|Ψ⟩ =
1√
2

(
|0⟩⊗L + |1⟩⊗L

)
. (B.57)

Noting that a bipartite splitting at an arbitrary link l will involve only χ = 2 terms

433



|Ψ⟩ =
1√
2

(
|0⟩⊗l|0⟩⊗L−l + |1⟩⊗l|1⟩⊗L−l

)
, (B.58)

solve for the λ
[l]
αl and Γ

[l]il
αl−1αl .

B.3.3.2 Initial State Selection

The methods developed in the last section give us a means to initialize the local

tensors of our system. The most straightforward means of initializing the system is

to generate a product state where the coefficient of state i on site l is the (i, l) entry

of a specified matrix C. In this case we have

Γ[l]i
αl−1αl

= Cilδαl−1,1δαl,1 , (B.59)

λ[l+1]
αl

= δαl,1 . (B.60)

This operation is performed in the procedure ProductStateMPD discussed in Sec. B.9.2.1.

If the initial state is a product of number eigenstates, the lists of number conserv-

ing vectors LabelLeft and LabelRight (Sec. B.3.4.3) can be constructed using the

routine ProductStateLabels discussed in Sec. B.9.2.2.

Some states, namely the generalized GHZ state

|GHZ⟩ =
1√
d

[|00 . . . 0⟩+ |11 . . . 1⟩+ · · ·+ |(d− 1)(d− 1) . . . (d− 1)⟩] (B.61)

and the W state

|W⟩ =
1√
L

L∑
k=1

|0⟩⊗L−k|1⟩|0⟩⊗k−1 (B.62)

have analytically known Vidal representations, and so can be used as initial states.

This is done using the procedure SpecialState discussed in Sec. B.9.8.38. Also

included in SpecialState is a routine to generate a hard-core boson cluster state[12]

by the following steps:
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1. Begin in the state |00 . . . 0⟩ which corresponds to a tensor product of spin up

qubits.

2. Act on each site with exp
[
−π

4

(
âi − â†i

)]
corresponding to rotation of each

qubit by π/4 with respect to the y-axis.

3. Evolve under the Hamiltonian Ĥ =
∑

i

(
1− 2â†i âi

)(
1− 2â†i+1âi+1

)
, corre-

sponding to the Ising Hamiltonian for the qubits, for t=π/4.

4. Act on each site with exp
[
−iπ

4

(
1− 2â†i âi

)]
corresponding to rotation of each

qubit by π/4 with respect to the z-axis.

Often one wishes to begin time evolution in the ground state of a particular

Hamiltonian, but the ground state is unknown. By a method known as imaginary

time propagation we let τ ≡ it replace time in the governing Schrödinger equation

and then evolve the system. With this replacement the Schrödinger equation takes

the form of a diffusion equation with the highest energy eigenmodes decaying the

most quickly. Thus, after some long “time” τ , if the overlap of the initial state used

in imaginary time propagation with the actual ground state of the Hamiltonian is

nonzero, we will recover the ground state. For finite systems with a gap ∆ > 0, we

can make this more precise as

|⟨ψτ |ψg⟩|>1−O
(
e−2∆τ

δ2

)
, δ ≡ |⟨ψ0|ψg⟩| , (B.63)

where |ψ0⟩ is the initial state used in imaginary time propagation, |ψτ ⟩ is the state

at imaginary time τ , and |ψg⟩ is the true ground state [13]. Because this evolution is

not unitary, we must also renormalize and re-orthogonalize the state after each time

step, see Sec. B.3.4.4.

An appropriate state for imaginary time propagation, if we are not concerned with

conservation of any quantum numbers, is the product state that contains all possible
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states in the same amount: ci1,i2,...,iL = 1/
√
dL ∀ ii, i2, ..., iL. The Vidal decomposition

for this state is

Γ[l]i
αl−1αl

=
1√
d
δαl−1,1δαl,1 , (B.64)

λ[l+1]
αl

= δαl,1 . (B.65)

This operation is performed in the procedure AllStates discussed in Sec. B.9.2.3.

The state generated by AllStates is not an eigenstate of any operator except

in highly atypical cases. Thus, this state is not acceptable for symmetry conserving

implementations (Sec. B.3.4.3) which require the Γs to be expressed in the eigen-

basis of the symmetry generator. In the case of number conservation, the routine

InitialSetNC will generate an initial state with total number totNum such that all

Γs are expressed in a basis of number eigenstates(Sec. B.8.1.31). The routine was also

designed so that the given state is the closest approximation to a gaussian centered

at the center of the system, referred to in the code as a “wedding cake” structure.

We outline the method here.

The wedding cake structure has two possible tiers, differing in on-site number by

one. The number per site in the upper tier region is denoted “center” and the number

per site in the lower tier region is center-1. The region to the left of the upper tier

is “hole” sites long, the upper tier region is “tops” sites long, and the region to the

right of the upper tier is the remainder up to L. hole, tops, and center are defined as

tops ≡ MOD (N − 1, L) + 1 , (B.66)

center ≡ ⌊N
L
− 10−8⌋+ 1 , (B.67)

hole ≡


if MOD(L-MOD(N ,L),2)=0

or MOD(N ,L)=0

{
0 if MOD(N ,L)=0

(L−MOD(N ,L)) /2 otherwise
(L−MOD(N ,L) + 1) /2 otherwise

,

(B.68)
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where N is the total number of particles in the system and ⌊x⌋ denotes the greatest

integer less than or equal to x. The procedure first generates the vectors LabelLeft

and LabelRight which hold the cumulative number to the left and right of a particular

link, respectively. The procedure then constructs the local tensors according to

Γ[l]i
αl−1αl

=
1√
dnl

δαl−1,1δαl,1δni,nl
, (B.69)

λ[l+1]
αl

= δαl,1 . (B.70)

where ni is the number in the on-site state |il⟩, nl is the number on site l by the

construction above, and dnl
is the number of on-site states with ni = nl. In the

absence of internal degrees of freedom dnl = 1, but with internal degrees of freedom

we must account for all states with a given number. Some examples make this clearer.

Consider Table B.1, which shows hole, tops, center, and the onsite configuration (with

the number of dots within a site representing the number of particles in that particular

site) for 4 sites and various numbers.

Further implementation details are discussed under the InitialSetNC procedure

listing in Sec. B.9.2.6.

B.3.4 Local Operations in the Vidal Representation

B.3.4.1 One Site Operations

Consider acting on a state with a unitary operator Û that acts only on a single

site:

Û =
∑
il,i

′
l

Uili′l |il⟩⟨i
′
l|. (B.71)

In the Schmidt decomposition for a bipartite splitting at link l, this operator will

not modify the left Schmidt vector, and so all Γ[i] and λ[i+1] with i ≤ l − 1 remain

unchanged. In the Schmidt decomposition for a bipartite splitting at link l + 1, this

operator will not modify the right Schmidt vector, and so all Γ[i] and λ[i] with i ≥ l+1
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Table B.1: Result of the number conserving initial state routine for four sites.

Number of particles hole tops center On-site configuration
1 2 1 1 | | | • | |
2 1 2 1 | | • | • | |
3 1 3 1 | | • | • | • |
4 0 4 1 | • | • | • | • |

5 2 1 2 | • | • |
•
• | • |

6 1 2 2 | • |
•
• |
•
• | • |

7 1 3 2 | • |
•
• |
•
• |
•
• |

8 0 4 2 | •• |
•
• |
•
• |
•
• |

9 2 1 3 | •
•
| •
•
|
•
•
•
| •
•
|

10 1 2 3 | •
•
|
•
•
•
|
•
•
•
| •
•
|

11 1 3 3 | •
•
|
•
•
•
|
•
•
•
|
•
•
•
|

12 0 4 3 |
•
•
•
|
•
•
•
|
•
•
•
|
•
•
•
|
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remain unchanged. Thus, the only affected local tensor is Γ[l], which transforms as

Γ̃[l]il
αl−1αl

=
∑
i′l

Uili′lΓ
[l]i′l
αl−1αl . (B.72)

Such a transformation was to be expected, as Γ[l] is the only local tensor that carries

any information about the site l. One-site operations are performed numerically with

the procedure OneSiteOp discussed in Sec. B.9.8.3.

Figure B.3: Schematic of a one site operation.

Figure B.4: Schematic of a two site operation.
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B.3.4.2 Two Site Operations

Let us now consider acting on a state with a unitary operator V̂ that acts on two

sites:

V̂ =
∑

il,il+1;i
′
li
′
l+1

V
ilil+1

i′li
′
l+1
|ilil+1⟩⟨i′li′l+1|. (B.73)

If we write the initial state as a bipartite splitting between sites l and l + 1

|Ψ⟩ =
∑

αl−1αlαl+1;il,il+1

λ[l]αl−1
Γ[l]il
αl−1αl

λ[l+1]
αl

Γ[l+1]il+1
αlαl+1

λ[l+2]
αl+1
|ϕ[1...l−1]
αl−1

⟩ ⊗ |ilil+1⟩ ⊗ |ϕ[l+2...M ]
αl+1

⟩

(B.74)

then we can define the object Θ as (see Figure B.4)

|Ψ⟩ =
∑

αl−1αl+1;il,il+1

Θilil+1
αl−1αl+1

|ϕ[1...l−1]
αl−1

⟩ ⊗ |ilil+1⟩ ⊗ |ϕ[l+2...M ]
αl+1

⟩ , (B.75)

⇒ Θilil+1
αl−1αl+1

≡
∑
αl

λ[l]αl−1
Γ[l]il
αl−1αl

λ[l+1]
αl

Γ[l+1]il+1
αlαl+1

λ[l+2]
αl+1

. (B.76)

Note that this differs from the object Θ defined in Vidal’s original paper[5] in that

we have also included λ[l] and λ[l+2]. With this definition we can write the updated

state (the state after action by V̂ ) as

V̂ |Ψ⟩ =
∑

αl−1αl+1;il,il+1

Θ̃ilil+1
αl−1αl+1

|ϕ[1...l−1]
αl−1

⟩ ⊗ |ilil+1⟩ ⊗ |ϕ[l+2...M ]
αl+1

⟩ (B.77)

Θ̃ilil+1
αl−1αl+1

=
∑
i′li

′
l+1

V
ilil+1

i′li
′
l+1

Θ
i′li

′
l+1

αl−1αl+1 (B.78)

=
∑
α̃l

λ[l]αl−1
Γ̃[l]il
αl−1αl

λ̃[l+1]
αl

Γ̃[l+1]il+1
αlαl+1

λ[l+1]
αl+2

. (B.79)

Algorithmically, the procedure for a two-site operation is as follows: (1) form

Θ from the current Γs and λs as in Eq.(B.76), (2) form Θ̃ from V̂ and Θ as in

Eq.(B.78), (3) normalize such that
∑

α,i,j,γ

∣∣∣Θ̃ij
αγ

∣∣∣2 = 1 and repack the normalized

χ×d×d×χ rank-four tensor Θ̃ into a (χd)×(χd) matrix Θ̃RS, (4) perform a singular
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value decomposition (SVD) on this matrix, keeping only the χ largest singular values

λ̃
[l+1]
αl , and (5) compute the updated tensors Γ̃[l] and Γ̃[l+1] from the matrix elements

obtained via SVD as

Θ̃RS
−→
SVD USV , (B.80)

λ̃[l+1]
αl

=
Sαl√∑χ
α=1 (Sα)2

, (B.81)

Γ̃[l]il
αl−1αl

= U(il−1)χ+αl−1,αl
/λ[l]αl−1

, (B.82)

Γ̃[l+1]il+1
αlαl+1

= Vαl,(il+1−1)χ+αl+1
/λ[l+2]

αl+1
. (B.83)

Note that a two-site operation applied on site l updates the local tensors of site

l + 1 as well as those of site l. The numerical routines that comprise each step are

(1) FormTheta, (2) ThetaOperation, (3) ReshapeTheta, (4) SVDTruncation, and

(5) FormLambda1, FormGamma1, and FormGamma2 for Eqs. (B.81), (B.82), and (B.83),

respectively. The procedure listings for these are found in sections (1) B.9.8.4, (2)

B.9.8.5, (3) B.9.8.6, (4) B.9.8.7, and (5) B.9.8.8, B.9.8.9, and B.9.8.10. The two-site

operation defined by steps (1)-(5) is performed by TwoSiteOp, with procedure listing

in Sec. B.9.8.11.

Note that step (4) involves discarding χ (d− 1) of the dχ eigenvalues of Θ̃. It is

in this sense that the new local tensors Γ̃ and λ̃ are approximate. Because of the

normalization of the Schmidt coefficients
∑χS

αl

(
λ
[l+1]
αl

)2
= 1, we can explicitly write

down the truncation error due to this procedure, called the Schmidt error (also known

as the discarded weight in the DMRG community):

τSl ≡ 1−
χ∑
αl

(
λ[l+1]
αl

)2
. (B.84)

This error depends explicitly on the degree of entanglement of the system, as measured

by the Schmidt measure. It is in this sense that TEBD performs best on lowly spatially

entangled systems. Note, however, that we are not minimizing the entanglement in
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the system but rather the “distance” (Frobenius norm) between our state in the

subspace of limited entanglement and the true state of the full Hilbert space. For

large enough χ the Schmidt error is identically zero, and so we refer to TEBD as

being quasi-exact.

B.3.4.3 Two Site Operations in the Presence of an Abelian Symmetry

Let us now turn our attention to a two-site operation performed in the presence

of a symmetry whose representations are one-dimensional. We call such symmetries

Abelian. The fact that the representations are one dimensional implies that the

associated quantum number (which labels each irreducible representation) also forms

a group, and so composition of two irreducible representations with quantum numbers

i and j, D (i) ⊗ D (j), is the irreducible representation with quantum number given

by the group operation i ∗ j, D (i ∗ j).

The Abelian symmetry that we shall henceforth consider is total number conser-

vation, with operator N̂ =
⊕L

i=1 n̂i. When the two-site operator V̂ commutes with

the total number operator of the two site block, acting with V̂ will not produce states

with a different total number of particles than the initial state. Thus, the object Θ

defined to be

Θilil+1
αl−1αl+1

≡
∑
αl

λ[l]αl−1
Γ[l]il
αl−1αl

λ[l+1]
αl

Γ[l+1]il+1
αlαl+1

λ[l+2]
αl+1

. (B.85)

can be reshaped into a (χd) × (χd) block diagonal matrix, with each block corre-

sponding to a fixed number of particles on the left. To see this, we write

|Ψ⟩ =
∑

αl−1αl+1;il,il+1

Θilil+1
αl−1αl+1

|ϕ[1...l−1]
αl−1

⟩ ⊗ |ilil+1⟩ ⊗ |ϕ[l+2...M ]
αl+1

⟩ , (B.86)

and note that, in order for |ϕ[1...l−1]
αl−1 ⟩ ⊗ |ilil+1⟩ ⊗ |ϕ[l+2...M ]

αl+1 ⟩ to be an eigenstate of N̂

we must have
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NL (αl−1) +NS (il) +NS (il+1) +NR (αl+1) = N , (B.87)

in an obvious notation. This is equivalent to the physically more transparent state-

ment that the reduced density matrix defined by

ρ[1...l] = Tr(l+1)...L|Ψ⟩⟨Ψ| , (B.88)

=
∑

il+1i
′
l+1

∑
αl+1α

′
l+1

∑
αl−1il

Θilil+1
αlαl+1

(
Θ
ili

′
l+1

αlα
′
l+1

)⋆ |il+1ϕ
[l+2...L]
αl+1

⟩⟨i′l+1ϕ
[l+2...L]
αl+1]

| . (B.89)

is block diagonal, as the object in square brackets is nonzero iff NL (αl−1) +NS (il) =

NS

(
i′l+1

)
+NL

(
α′
l+1

)
. This special structure allows us to perform a series of smaller

singular value decompositions–one on each block of fixed number on the left of the

bipartite splitting–which, in light of the cubic complexity class of SVD algorithms,

amounts to significant speedup.

In order to form Θ consistent with number conservation, it is important to know

the number associated with a given left (right) Schmidt vector |ϕ[1...l]
αl ⟩ (|ϕ[l+1...L]

αl ⟩)

and also the total number in the onsite state |il⟩. In the code, we store the number

of the αth
l left Schmidt vector as LabelLeft(l)%vi(alpha), the number of the αth

l

right Schmidt vector as LabelRight(l)%vi(alpha), and the number of the ithl on-

site state as Conserv%vi(i) (see Sec. B.8.2.13). These vectors allow us to insert IF

statements to enforce Eq. (B.87) when e. g. forming Θ. As an example, LabelLeft

and LabelRight for the state |010101⟩ are given as in Table B.2, which may be easily

verified by counting the cumulative number to the left or right of the given link. If a

particular Schmidt index is unused on a given Label, it is set to 10000 to distinguish

it from being identically zero.

The procedure for a two-site operation that conserves the total number is (1)

form Θ the current Γs and λs as in Eq.(B.76) subject to the number constraint

Eq. (B.87), (2) form Θ̃ from V̂ and Θ as in Eq.(B.78) subject to the number con-
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Table B.2: Number conserving labels for the state |010101⟩.

link l LabelLeft(l)%vi(alpha) LabelRight(l)%vi(alpha)

1 0δα,1 3δα,1
2 0δα,1 3δα,1
3 1δα,1 2δα,1
4 1δα,1 2δα,1
5 2δα,1 1δα,1
6 2δα,1 1δα,1
7 3δα,1 0δα,1

straint Eq. (B.87), (3) normalize such that
∑

α,i,j,γ

∣∣Θij
αγ

∣∣2 = 1, (4) find the maximum

and minimum values of the total number to the left of the link separating the two

sites (5) find the size of each block in the block-diagonal Θ, (6) find the on-site and

Schmidt indices that correspond to the allowed values of the total number to the

left of the link from (4), (7) repack the NBlocks blocks of the block-diagonal Θ̃ into

a NBlocks length vector of matrices Θ̃i, (8) perform an SVD on every Θ̃i, (9) gather

all of the singular values into one vector and order them in non-decreasing fashion,

(10) update the Label vectors with the new configuration, and (11) update the lo-

cal tensors from the proper SVD results. The corresponding procedure listings are

found in (1) Sec. B.9.8.18, (2) Sec. B.9.8.19, (3) Sec. B.9.8.20, (4) Sec. B.9.8.22, (5)

Sec. B.9.8.23, (6) Sec. B.9.8.24 and Sec. B.9.8.25, (7) Sec. B.9.8.26, (8) Sec. B.9.8.27,

(9) Sec. B.9.8.28, Sec. B.9.8.29, and Sec. B.9.8.30, (10) Sec. B.9.8.31 and Sec. B.9.8.32,

and (11) Sec. B.9.8.33, Sec. B.9.8.34, and Sec. B.9.8.35.

B.3.4.4 Swapping Routines and the Canonical Form

In the above we have always taken for granted that the Γs are all expressed in terms

of orthonormal bases and the λs are the Schmidt coefficients of the corresponding

bipartition. Such a Vidal representation is a tensor network that is said to be in the

canonical form[14]. Given a bipartition which is not in canonical form,
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|Ψ⟩ =
∑
α

|Φ[A]
α ⟩|Φ[B]

α ⟩ , (B.90)

we restore it to canonical form as follows. We first form the matrix MA, which has

elements

MA
α,α′ ≡ ⟨Φ[A]

α′ |Φ[A]
α ⟩ (B.91)

=
∑
γ

(
ΓiAγα′

)⋆
(λγ)

2 ΓiAγα , (B.92)

where iA is the local index of the site in A which is furthest to the right. We find

an orthogonal matrix X and a vector of values S from performing an SVD on this

matrix M A−→
SVDUSV , Xαβ =

√
SαU

⋆
βα. The new set of vectors

|eτ ⟩ =
∑
α

(
X†)

τα
|Φ[A]

α ⟩ (B.93)

form an orthonormal set. A similar procedure for B leads to a matrix Y defined as

MB−→
SVDUSV , Yαβ = λαUαβ

√
Sβ and the orthonormal set

|fη⟩ =
∑
α

Yηα|Φ[B]
α ⟩ . (B.94)

The state may now be written as

|Ψ⟩ =
∑
τη

(
XTY

)
τη
|eτ ⟩|fη⟩ , (B.95)

which may be brought to canonical form using the SVD in the usual way

(
XTY

)
=
∑
k

Γ̃Aikλ̃kΓ̃
B
kj , (B.96)

⇒ |Ψ⟩ =
∑
k

λ̃k|Φ̃[A]
k ⟩|Φ̃

[B]
k ⟩ , (B.97)

|Φ̃[A]
k ⟩ ≡

∑
i

Γ̃Ai,k|iA⟩ , |Φ̃[B]
k ⟩ ≡

∑
j

Γ̃Bj,k|jB⟩. (B.98)

445



When we initialize our state we use the canonical form and this form is preserved for

unitary operations such as real time evolution, but two important operations destroy

the canonical form.

The first operation which takes states to non-canonical form is imaginary time

propagation. Imaginary time propagation involves non-unitary operations on the

tensor network, and so causes nonorthogonality in the Γ bases. For small imaginary

time steps the propagator is very close to unitary, and the buildup of nonorthogonal-

ity is small, but it will lead to unphysical results if not cared for properly. The tensor

network may be restored to its canonical form using the routine CanonicalFormAll

(Sec. B.9.11.6), or in the number conserving case, CanonicalFormAllNC (Sec. B.9.11.14).

All imaginary time propagation routines restore the tensor network to canonical form

after each imaginary time step.

The second operation which takes states to non-canonical form is deformation of

the tensor network. The specific case of deformation we consider is that of “swapping”

two sites such that the jth Γ in the tensor network contains information for site j + 1

and the j + 1th Γ in the tensor network contains the information for site j. Such a

deformation is the key to implementing periodic boundary conditions, and also allows

for the simulation of ladders and systems with long-range interactions.

In the specific case of periodic boundary conditions, we need to apply a two-site

operation to the pair of sites (1, L) because there is a Hamiltonian matrix element

between these two sites. TEBD only gives us a prescription for two-site operations on

sites whose local tensors are neighboring, and so we must deform our tensor network

to put site L next to site 1. To accomplish this, we use the swapping routines as in

Figure B.5 [15]. We begin by forming Θ using sites L− 1 and L

ΘiL−1iL
αL−2αL

≡
∑
αL−1

λ[L−2]
αL−2

Γ[L−1]iL−1
αL−2αL−1

λ[L]αL−1
Γ[L]iL
αL−1αL

λ[L+1]
αL

. (B.99)
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We then swap the site indices of Θ: Θ̃ij
αL−2αL

= Θji
αL−2αL

and then perform an SVD

on Θ̃ (reshaped into a two-tensor as above) to get the new local tensors Γ[L](1), λ̃[L],

and Γ̃[L−1], which amounts to putting this new bipartite splitting into canonical form.

Our tensor network has transformed from

∑
i1...iL

χS∑
α0...αL

λ[1]α0
Γ[1]i1
α0α1

λ[2]α1
Γ[2]i2
α1α2

λ[3]α2
Γ[3]i3
α2α3

. . .

× λ[L−1]
αL−2

Γ[L−1]iL−1
αL−2αL−1

λ[L]αL−1
Γ[L]iL
αL−1αL

λ[L+1]
αL
|i1i2i3 . . . iL−1iL⟩ (B.100)

to

∑
i1...iL

χS∑
α0...αL

λ[1]α0
Γ[1]i1
α0α1

λ[2]α1
Γ[2]i2
α1α2

λ[3]α2
Γ[3]i3
α2α3

. . .

× λ[L−1]
αL−2

Γ[L](1)iL
αL−2αL−1

λ̃[L]αL−1
Γ̃[L−1]iL−1
αL−1αL

λ[L+1]
αL
|i1i2i3 . . . iL−1iL⟩ ; (B.101)

we have swapped the positions of Γ[L−1] and Γ[L] while keeping their interpretations

the same, and then put this new state into canonical form. This process is carried

out numerically via the procedure Swapping or, in the case of number conservation,

SwappingNC which are listed in Sec. B.9.8.15 and Sec. B.9.8.37, respectively.

We repeat this process with the pair (L − 2, L) and so on until the sites 1 and

L are adjacent in the tensor network. We may then apply a two-site operator to

this pair of sites and then swap back successively so that the tensors are in their

original positions. We note that the swapping process represents an approximation,

as we are forming a best approximation to the tensor network with the sites swapped

and this involves a truncation. Furthermore, the renormalization associated with this

truncation causes a larger Schmidt error in the case of real time propagation. This

coupled with the fact that simulations with periodic boundary conditions are more

difficult to converge in χ (i.e. the states produced tend to be more highly entangled)

imply that care is needed to ensure a simulation with periodic boundary conditions

is properly converged.
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Figure B.5: Schematic of how to place site L next to site 1 in the tensor network
using swapping routines. The red box and arrow represent application of a swapping
routine to the boxed sites.
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B.3.5 Time Propagation

B.3.5.1 The Second-Order Suzuki-Trotter Expansion for Open Boundary
Conditions

We now consider the time evolution operator Û (δt) ≡ exp
(
− i

~Ĥδt
)

which evolves

the state |Ψ⟩ according to the Hamiltonian Ĥ a time interval δt. We assume the

Hamiltonian can be written as a direct sum of “local Hamiltonians” that act on at

most two sites at a time (note that a one-site operation can be made into a two-site

operation by a tensor product with the appropriate identity, see Sec. B.3.5.4). This is

equivalent to saying that each local Hamiltonian acts on a given link l, and so we can

decompose the total Hamiltonian into pieces that act on odd index links and even

index links as

Ĥ = Ĥodd + Ĥeven, where Ĥodd ≡
∑

odd l

Ĥl and Ĥeven ≡
∑

even l

Ĥl. (B.102)

Our time evolution operator thus becomes

Û (δt) = exp

− iδt
~

 ∑
odd l

Ĥl +
∑

even l

Ĥl

 . (B.103)

We would like to write this as a sequence of two-site operators so that we can use the

methods developed above, but unfortunately Ĥl and Ĥl+1 do not, in general, com-

mute, and so the time evolution operator will not factorize into two-site evolutions.

The approximate answer to this trouble comes from the second order Suzuki-Trotter

expansion [16], an approximate factorization that has an asymptotic error of order

O (δt3). The expansion is
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e−iĤδt = e−iĤoddδt/2~e−iĤevenδt/~e−iĤoddδt/2~ +O
(
δt3
)
, (B.104)

e−iĤoddδt/2~ =
∏

odd l

e−iĤlδt/2~ ,

e−iĤevenδt/~ =
∏

even l

e−iĤlδt/~ .

We perform a half timestep propagation over odd sites, a full timestep propagation

over odd sites, and then another half timestep propagation over odd sites to complete

a full timestep over the whole system. Because
[
Ĥl, Ĥl+j

]
= 0 for |j| ≥ 2, acting with

the time evolution operator is now described as a sequence of two-site operations, and

so the methods of Sec. B.3.4.2 and Sec. B.3.4.3 apply. TEBD will find the optimal

truncation of the Hilbert space based on the current state of the system at each time

step, and so it is referred to as being time-adaptive.

B.3.5.2 The Fifth-Order Suzuki-Trotter expansion for Open Boundary
Conditions

A fifth-order decomposition of the time evolution operator is given by the Forest-

Ruth formula

e−iĤδt =e−iĤoddθδt/2~e−iĤevenθδt/~e−iĤodd(1−θ)δt/2~e−iĤeven(1−2θ)δt~e−iĤodd(1−θ)δt/2~

(B.105)

× e−iĤevenθδt/~e−iĤoddθδt/2~ +O
(
δt5
)
,

where the Forest-Ruth parameter θ ≡ 1/
(
2− 21/3

)
and the exponentials of Ĥodd and

Ĥeven factorize as in Eq. (B.104). We see that application of this expansion involves

7 sweeps across the lattice instead of 3 as in the second order case. However, we

may take coarser time steps δt5 ∼ (δt2)
3/5 and maintain the same accuracy, reducing

the number of timesteps to reach a given time, which in turn reduces not only the

computation time but also the accumulated Schmidt error. This makes the higher

order expansion almost always worthwhile. One case in which the lower order ex-
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pansion may be preferred is when the Hamiltonian is changing in time on a short

timescale which limits the size of the trotter step. Over long times the Schmidt error

will dominate and so the error due to the trotter expansion becomes irrelevant. In

this case the second order expansion will give the same accuracy with a factor of two

speedup over the fifth order expansion.

B.3.5.3 Suzuki-Trotter Expansions for Periodic Boundary Conditions

To perform simulations with periodic boundary conditions, we follow the method

of [15]. We break the Hamiltonian into three parts: Ĥ = Ĥodd + Ĥeven + Ĥedge, where

Ĥodd and Ĥeven have their usual meanings and Ĥedge is the part of the Hamiltonian

which couples the last site to the first. It is clear that
[
Ĥodd, Ĥedge

]
̸= 0 by con-

struction, since the edge Hamiltonian acts on the first site which has odd parity by

definition, but the edge Hamiltonian commutes with the even site Hamiltonian if L

is even. To perform the trotter decomposition, we make the definitions Ĥodd = A,

Ĥeven = B, Ĥedge = C, and −i∆t/~ = δ, and investigate U (δ) = exp [(A+B + C) δ].

Writing B + C = D and noting that [A,D] ̸= 0, we can use the standard trotter

decompositions to write

U (δ) = eAδ/2eDδeAδ/2 +O
(
δ3
)

(B.106)

= eAθδ/2eDθδeA(1−θ)δ/2eD(1−2θ)δeA(1−θ)δ/2eDθδeAθδ/2 +O
(
δ5
)
. (B.107)

In the case where L is even we can immediately separate B and C from D to write

U (δ) = eAδ/2eBδeCδeAδ/2 +O
(
δ3
)

(B.108)

= eAθδ/2eBθδeCθδeA(1−θ)δ/2eB(1−2θ)δeC(1−2θ)δeA(1−θ)δ/2eBθδeCθδeAθδ/2 +O
(
δ5
)
.

(B.109)

This involves 1 (3) swapping applications (Sec. B.3.4.4) and additional sweeps for the

second (fifth) order routine. In the case where L is odd and B and C don’t commute,

we must apply another trotter decomposition of the same order to the exponentials
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involving D, yielding

U (δ) =eAδ/2eBδ/2eCδeBδ/2eAδ/2 +O
(
δ3
)

(B.110)

=eAθδ/2
[
eBθ

2δ/2eCθ
2δeB(1−θ)θδ/2eC(1−2θ)θδeB(1−θ)θδ/2eCθ

2δeBθ
2δ/2
]

× eA(1−θ)δ/2
[
eBθ(1−2θ)δ/2eCθ(1−2θ)δeB(1−θ)(1−2θ)δ/2eC(1−2θ)2δ

× eB(1−θ)(1−2θ)δ/2eCθ(1−2θ)δeBθ(1−2θ)δ/2
]

× eA(1−θ)δ/2
[
eBθ

2δ/2eCθ
2δeB(1−θ)θδ/2eC(1−2θ)θδeB(1−θ)θδ/2eCθ

2δeBθ
2δ/2
]
eAθδ/2

+O
(
δ5
)
, (B.111)

In this case the number of swapping applications remains the same and only one more

sweep is required for the second order case, but the fifth order case requires a total

of 9 swapping applications and 25 sweeps.

It is clear that the number of different exponential operators differs based on the

order of expansion, the type of boundary conditions, and whether the lattice has an

even or odd number of sites. The routines AllocateProp and DeallocateProp listed

in Sec. B.9.1.22 and B.9.1.23 will allocate and deallocate the propagators based on

the appropriate global variables, respectively. The routine ConstructPropagators,

when called with the syntax

CALL ConstructPropagators(H, U, dt) (Sec. B.9.1.24), will generate the required

propagators. The old syntax

CALL ConstructPropagators(H, U, dtodd, dteven), which is specific to the case

of second order trotter with open boundary conditions, is supported for compatibility

with past versions, but will be deleted in a future version.

B.3.5.4 Putting a Hamiltonian in TEBD Form

A fundamental assumption in the discussion of time evolution above is that the

Hamiltonian can be written in the form of Eq. (B.102), as a sum of two-site operations.

To include a one-site operator Â we write it in terms of two two-site operations as
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1
2

(
Â⊗ 1̂ + 1̂⊗ Â

)
. In addition, for box boundary conditions the first and last site are

only updated once per time step (see Eq. (B.104)), and so they require an additional

1
2
Â ⊗ 1̂ or 1

2
1̂ ⊗ Â, respectively. As an example, the list of two-site Hamiltonians

representing the Bose-Hubbard Hamiltonian (Sec. B.3.7.2) in TEBD form, H(:), is

given by

Hi = −J t̂+
U

4

{[
n̂
(
n̂− 1̂

)]
⊗ 1̂ + 1̂⊗

[
n̂
(
n̂− 1̂

)]}
+ V n̂⊗ n̂+

ϵi
2

[
n̂⊗ 1̂ + 1̂⊗ n̂

]
,

(B.112)

H1 = H1 +
U

4

[
n̂
(
n̂− 1̂

)]
⊗ 1̂ +

ϵ1
2
n̂⊗ 1̂ , (B.113)

HL−1 = HL−1 +
U

4
1̂⊗

[
n̂
(
n̂− 1̂

)]
+
ϵL−1

2
1̂⊗ n̂ , (B.114)

where i = 1, 2, ..., L− 1 is the site index. In the case of periodic boundary conditions,

HL holds the two site operators which act on sites L and 1.

B.3.6 Observables

The expectation value of an observable Â in the density matrix formalism is

⟨Â⟩ = Tr
(
ρ̂Â
)
, (B.115)

where the density matrix ρ̂ defines the state in the Hilbert space upon which the

operator Â acts. In the following sections we describe how to calculate observables

in the Vidal representation.

B.3.6.1 Expectation Values of Single-Site Operators

For single-site observables, we calculate the expectation value on the lth site as

⟨Âl⟩ = Tr
(
ρ̂lÂ
)
, (B.116)

where ρ̂l is the reduced density matrix obtained by tracing over all sites but l. In the

full many-body space this is achieved through
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ρ̂ = |Ψ⟩⟨Ψ| =
∑
il,i

′
l

 ∑
i1,...,il−1,il+1,...,iL

c⋆i1...i′l...iLci1...il...iL

 |il⟩⟨i′l| (B.117)

⇒ (ρ̂l)i′lil
=

∑
i1,...,il−1,il+1,...,iL

c⋆i1...i′l...iLci1...il...iL . (B.118)

To obtain this object in the Vidal representation, we first decompose the state to

isolate the single site |il⟩

|Ψ⟩ =
∑

il;αl−1αl

|ϕ[1...l−1]
αl−1

⟩
[
λ[l]αl−1

Γ[l]il
αl−1αl

λ[l+1]
αl
|il⟩
]
|ϕ[l+1...M ]
αl

⟩ , (B.119)

and then take the outer product and trace over all sites but l to obtain

(ρ̂l)il,i′l
=
∑
αl−1αl

λ[l]αl−1

(
Γ
[l]i′l
αl−1αl

)⋆
λ[l+1]
αl

λ[l]αl−1
Γ[l]il
αl−1αl

λ[l+1]
αl

. (B.120)

The single-site density matrix for a particular site is numerically generated using the

procedure FormSingleSiteRho in Sec. B.9.9.1. The procedure

SingleSiteDensityMatrix discussed in Sec. B.9.9.2 generates a list of single-site

density matrices; one for each site. The procedure OneSiteExpVal discussed in

Sec. B.9.9.3 will compute the expectation value of a general one-site observable at each

site. The procedure OneSiteVar discussed in Sec. B.9.9.4 will compute the variance

of a general one-site observable at each site. In addition, many common single-site

observables have their own expectation value routines. See the procedure listings for

observables_module in Sec. B.9.9 for a full account.

B.3.6.2 Expectation Values of Two-Site Operators: The General Case for
Bosons

If we now wish to calculate the expectation value of a two-site observable B̂ at

sites k and l, we need to calculate

⟨B̂⟩kl = Tr
(
ρ̂klB̂

)
(B.121)
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where ρ̂kl is the reduced density matrix obtained by tracing over all sites but k and l,

and B̂ is an operator in the Kronecker product representation spanned by |ikil⟩. For

example, if we wish to calculate ⟨n̂kn̂l⟩ then B̂ = n̂⊗ n̂.

To calculate the two-site reduced density matrix we first assume, without loss of

generality, that l < k so that we can write our Vidal decomposed state as

|Ψ⟩ =
∑
il...ik

∑
αl−1...αk

λ[l]αl−1
Γ[l]il
αl−1αl

λ[l+1]
αl

. . . λ[k]αk−1
Γ[k]ik
αk−1αk

λ[k+1]
αk

(B.122)

× |ϕ[1...(l−1)]
αl−1

⟩ ⊗ |il . . . ik⟩ ⊗ |ϕ[(k+1)...M ]
αk

⟩ .

The density operator associated with this state is

|Ψ⟩⟨Ψ| =
∑

il . . . ik
i′l . . . i

′
k

∑
αl−1 . . . αk
α′
l−1 . . . α

′
k

(
λ[l]αl−1

Γ[l]il
αl−1αl

λ[l+1]
αl

. . . λ[k]αk−1
Γ[k]ik
αk−1αk

λ[k+1]
αk

)
(B.123)

×
(
λ
[l]

α′
l−1

Γ
[l]i′l
α′
l−1α

′
l

⋆
λ
[l+1]

α′
l
. . . λ

[k]

α′
k−1

Γ
[k]i′k
α′
k−1α

′
k

⋆
λ[k+1]
αk

)
× |ϕ[1...(l−1)]

αl−1
⟩ ⊗ |il . . . ik⟩ ⊗ |ϕ[(k+1)...M ]

αk
⟩⟨ϕ[1...(l−1)]

α′
l−1

| ⊗ ⟨i′l . . . i′k| ⊗ ⟨ϕ
[(k+1)...M ]

α′
k

| .

Tracing over all sites except l and k and using the orthonormality of the Schmidt

vectors yields

Tr (|Ψ⟩⟨Ψ|) =
∑
il, ik
i′li

′
k

∑
il+1 . . . ik−1

∑
αl−1 . . . αk
α′
l . . . α

′
k−1

|ilik⟩⟨i′li′k| (B.124)

×
(
λ[l]αl−1

Γ[l]il
αl−1αl

λ[l+1]
αl

Γ[l+1]il+1
αlαl+1

λ[l+2]
αl+1

. . . λ[k−1]
αk−2

Γ[k−1]ik−1
αk−2αk−1

λ[k]αk−1
Γ[k]ik
αk−1αk

λ[k+1]
αk

)
×
(
λ[l]αl−1

Γ
[l]i′l
αl−1α

′
l

⋆
λ
[l+1]

α′
l

Γ
[l+1]il+1

α′
lα

′
l+1

⋆
λ
[l+2]

α′
l+1
. . . λ

[k−1]

α′
k−2

Γ
[k−1]ik−1

α′
k−2α

′
k−1

⋆
λ
[k]

α′
k−1

Γ
[k]i′k
α′
k−1αk

⋆
λ[k+1]
αk

)
.

From which we can read off the two-site reduced density matrix
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(ρ̂lk)ilik,i′li′k
=

∑
il+1 . . . ik−1

∑
αl−1 . . . αk
α′
l . . . α

′
k−1

(B.125)

×
(
λ[l]αl−1

Γ[l]il
αl−1αl

λ[l+1]
αl

Γ[l+1]il+1
αlαl+1

λ[l+2]
αl+1

. . . λ[k−1]
αk−2

Γ[k−1]ik−1
αk−2αk−1

λ[k]αk−1
Γ[k]ik
αk−1αk

λ[k+1]
αk

)
×
(
λ[l]αl−1

Γ
[l]i′l
αl−1α

′
l

⋆
λ
[l+1]

α′
l

Γ
[l+1]il+1

α′
lα

′
l+1

⋆
λ
[l+2]

α′
l+1
. . . λ

[k−1]

α′
k−2

Γ
[k−1]ik−1

α′
k−2α

′
k−1

⋆
λ
[k]

α′
k−1

Γ
[k]i′k
α′
k−1αk

⋆
λ[k+1]
αk

)
.

Numerically, we calculate the two-site reduced density matrix as follows. We begin

by defining an initial Θ at the kth site as

Θ
iki

′
k

αk−1α
′
k−1

=
∑
αk

λ[k]αk−1
Γ[k]ik
αk−1αk

λ[k+1]
αk

λ[k+1]
αk

Γ
[k]i′k
α′
k−1αk

⋆
λ
[k]

α′
k−1

. (B.126)

This is performed in ThetaKernal, listed in Sec. B.9.9.9. We then perform

Θ
iki

′
k

αk−2α
′
k−2

=
∑
ik−1

∑
αk−1α

′
k−1

λ[k−1]
αk−2

Γ[k−1]ik−1
αk−2αk−1

Θ
iki

′
k

αk−1α
′
k−1

Γ
[k−1]ik−1

α′
k−2α

′
k−1

⋆
λ
[k−1]

α′
k−2

(B.127)

repeatedly until Θ
iki

′
k

αlα
′
l

is obtained. Each application of Eq. (B.127) corresponds to a

call of the procedure ThetaNext, listed in Sec. B.9.9.10. Once Θ
iki

′
k

αlα
′
l

is obtained, we

form the two-site reduced density matrix as

(ρlk)ilik,i′li′k
=

∑
αl−1αlα

′
l

λ[l]αl−1
Γ[l]il
αl−1αl

Θ
iki

′
k

αlα
′
l
Γ
[l]i′l
αl−1α

′
l

⋆
λ[l]αl−1

, (B.128)

which, of course, agrees with Eq. (B.125). This last step of forming ρ̂lk from Θ
iki

′
k

αlα
′
l

is performed in the procedure TwoSiteRho listed in Sec. B.9.9.11. The procedure

TwoSiteExpVal listed in Sec. B.9.9.12 computes the two-site expectation values of

the specified operator on all possible two-site arrangements, and returns the val-

ues as a systemSize×systemSize matrix. In addition, many common two-site ob-

servables have their own expectation value routines. See the procedure listings for

observables_module in Sec. B.9.9 for a full listing.
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B.3.6.3 Expectation Values of Two-Site Operators: The General Case for
Fermions

The fermionic canonical commutation relations

{
âi, â

†
j

}
= δij , {âi, âj} =

{
â†i , â

†
j

}
= 0 (B.129)

impose a set of nonlocal conditions on the creation and destruction operators. Because

all operators in TEBD are local, we can not impose this constraint directly through

the operator. The way that we satisfy the anti-commutation relations is by defining

a local operator called Fermiphase_op as

θ̂i = (−1)n̂i (B.130)

and then defining the nonlocal creation operators to be the string of local operators

ˆ̃ai =
∏
j>i

θ̂j âi (B.131)

where âi is an operator which displays local anti-commutation properties. This for-

mulation should be compared with the well-known Jordan-Wigner transformation

which induces off-site anti-commutation relations by counting the cumulative num-

ber of fermions on either side of a particular site in a similar manner. Numerically

we include the Fermi phase by introducing an additional step in the formation of Θ.

After calling ThetaKernal to form

Θ
iki

′
k

αk−1α
′
k−1

=
∑
αk

λ[k]αk−1
Γ[k]ik
αk−1αk

λ[k+1]
αk

λ[k+1]
αk

Γ[k]ik
αk−1αk

⋆
λ
[k]

α′
k−1

, (B.132)

we then act with the Fermi phase operator on the lower Γ:

P [k−1] = θ̂k−1Γ
[k−1] (B.133)

and then use ThetaNext to generate
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Θ
iki

′
k

αk−2α
′
k−2

=
∑
ik−1

∑
αk−1α

′
k−1

λ[k−1]
αk−2

P [k−1]ik−1
αk−2αk−1

Θ
iki

′
k

αk−1α
′
k−1

Γ
[k−1]ik−1

α′
k−2α

′
k−1

⋆
λ
[k−1]

α′
k−2

. (B.134)

This process is repeated with lower-index Γs until we reach the desired site and the

two-site reduced density matrix is formed as

(ρlk)ilik,i′li′k
=

∑
αl−1αlα

′
l

λ[l]αl−1
P [l]il
αl−1αl

Θ
iki

′
k

αlα
′
l
Γ
[l]il
αl−1α

′
l

⋆
λ[l]αl−1

, (B.135)

via TwoSiteRho.

Note that this procedure only applies to two-site operators whose local action

involves a product of an odd number of Fermi operators. Operators formed from

even numbers of local Fermi operators, e. g. ⟨n̂in̂j⟩ have no additional phases and the

calculation is identical to the bosonic case.

B.3.6.4 Expectation Values of Two-Site Operators: Special Case of Ten-
sor Product of One-Site Operators

In this section we shall describe how the procedure for computing the expectation

of a two-site observable may be improved when the two-site operator V̂ is a tensor

product of one-site observables V̂ = Â ⊗ B̂, where Â acts on site l and B̂ on site k.

We return to the density operator from above

|Ψ⟩⟨Ψ| =
∑

il . . . ik
i′l . . . i

′
k

∑
αl−1 . . . αk
α′
l−1 . . . α

′
k

(
λ[l]αl−1

Γ[l]il
αl−1αl

λ[l+1]
αl

. . . λ[k]αk−1
Γ[k]ik
αk−1αk

λ[k+1]
αk

)
(B.136)

×
(
λ
[l]

α′
l−1

Γ
[l]i′l
α′
l−1α

′
l

⋆
λ
[l+1]

α′
l
. . . λ

[k]

α′
k−1

Γ
[k]i′k
α′
k−1α

′
k

⋆
λ[k+1]
αk

)
× |ϕ[1...(l−1)]

αl−1
⟩ ⊗ |i1 . . . ik⟩ ⊗ |ϕ[(k+1)...M ]

αk
⟩⟨ϕ[1...(l−1)]

α′
l−1

| ⊗ ⟨i′1 . . . i′k| ⊗ ⟨ϕ
[(k+1)...M ]

α′
k

| .

Acting on this state with the given operator, we have
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V̂ |Ψ⟩⟨Ψ| =
∑

il . . . ik
i′l . . . i

′
k

∑
αl−1 . . . αk
α′
l−1 . . . α

′
k

(
λ[l]αl−1

λ
[l]

α′
l−1

[∑
jl

AiljlΓ
[l]jl
αl−1αl

]
Γ
[l]i′l
α′
l−1α

′
l

⋆

)
(B.137)

×
(
λ[l+1]
αl

λ
[l+1]

α′
l

Γ
[l+1]il+1

α′
lα

′
l+1

⋆
Γ[l+1]il+1
αlαl+1

)
. . .

×

(
λ[k]αk−1

λ
[k]

α′
k−1

[∑
jk

BikjkΓ[k]jk
αk−1αk

]
Γ
[k]i′k
α′
k−1α

′
k

⋆

)
λ[k]αk

λ
[k]

α′
k

× |ϕ[1...(l−1)]
αl−1

⟩ ⊗ |i1 . . . ik⟩ ⊗ |ϕ[(k+1)...M ]
αk

⟩⟨ϕ[1...(l−1)]

α′
l−1

| ⊗ ⟨i′1 . . . i′k| ⊗ ⟨ϕ
[(k+1)...M ]

α′
k

| .

Taking the trace and again using Schmidt vector orthonormality, we have

⟨V̂ ⟩ = Tr
[
V̂ |Ψ⟩⟨Ψ|

]
=

∑
αl−1 . . . αk
α′
l . . . α

′
k−1

(
G̃l

)αl−1α
′
l

αl−1αl

(Gl+1)
α′
lα

′
l+1

αlαl+1
. . .
(
G̃k

)α′
k−1αk

αk−1αk

(
λ[k]αk

)2
,

(B.138)

where we have defined

(Gp)
α′
p−1α

′
p

αp−1αp
≡
∑
ip

λ[p]αp−1
λ
[p]

α′
p−1

Γ
[p]ip
α′
p−1α

′
p

⋆
Γ[p]ip
αp−1αp

(B.139)

(
G̃p

)α′
p−1α

′
p

αp−1αp

≡
∑
ipi′p

λ[p]αp−1
λ
[p]

α′
p−1

∑
jp

CipjpΓ[p]jp
αp−1αp

Γ
[p]ip
α′
p−1α

′
p

⋆
, (B.140)

C being the appropriate one-site operator from above. The improvement comes from

the fact that we no longer need to carry around the site indices ip, which becomes

especially important in parallel applications. Most two-site operations are of this

form and so the more efficient routines described here are preferred over the rou-

tines described in Sec. B.3.6.2. The one common exception is the expectation of the

Hamiltonian, which is rarely separable into a tensor product of one-site operators.

We perform ⟨ÂB̂⟩ numerically by the above in the following way. We first act

with B̂ on Γ[k]
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Q[k] = B̂Γ[k] (B.141)

and then form the object

G
[k]
αkβk

=
∑
β′i

(
λ
[k+1]
β′

)2
Q

[k]ik
βkβ′

⋆
Γ
[k]ik
αkβk

(B.142)

via a call to the procedure GKernal, listed in Sec. B.9.9.5. We then form the object

G[k−1] as

G
[k−1]
αk−1βk−1

=
∑
α′β′i

λ
[k]
α′ λ

[k]
β′ P

[k−1]ik−1

βk−1β′

⋆
Γ
[k−1]ik−1

αk−1α′ G
[k]
α′β′ (B.143)

where P [k−1] = Γ[k−1] for bosonic systems or Â and B̂ consisting of even numbers of

local Fermi operators and P [k−1] = θ̂k−1Γ
[k−1] where θ̂ is the Fermi phase operator

for operators with Fermi phases. This operation is performed in GNext, listed in

Sec. B.9.9.6. When the desired site has been reached the tensor is contracted as

[
⟨ÂB̂⟩

]
jk

=
∑
αββ′i

(
λ[j]α
)2
P

[j]i
β′β

⋆
Γ
[j]i
β′αλ

[j+1]
α λ

[j+1]
β G

[j+1]
αβ (B.144)

where P [j] = ÂΓ[j] for Fermi phase-less systems and P [j] = Âθ̂jΓ
[j] for systems with

a Fermi phase. This is performed in GContraction, listed in Sec. B.9.9.7. The

procedure TwoSiteExpValG listed in Sec. B.9.9.8 computes the two-site expectation

values of the specified operator on all possible two-site arrangements, and returns the

values as a systemSize×systemSize matrix.

B.3.6.5 Expectation Values of N-Site Operators

Higher-order expectation values are a straightforward extension of the ideas of the

last section and will be incorporated as need arises in a later version. The general

method is described in [8]. The one special case that we do consider in the code is

that of the overlap between two states |ψ̃⟩ and |ψ⟩. Denoting the Vidal decomposition
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tensors of the respective states as
{

Γ̃, λ̃
}

and {Γ, λ}, the inner product is

⟨ψ̃|ψ⟩ =
∑
i1,...,iL

 ∑
β1,...,βL−1

Γ̃
[1]i1
β1

λ̃
[2]
β1

Γ̃
[2]i2
β1β2

. . . Γ̃
[L]iL
βL−1

⋆

(B.145)

×

 ∑
α1,...αL−1

Γ[1]i1
α1

λ[2]α1
Γα2,α3 . . .Γ

[L]iL
αL−1


=

∑
β1, . . . , βL−1

α1, . . . , αL−1

(∑
i1

λ̃
[2]
β1

Γ̃
⋆[1]i1
β1

Γ[1]i1
α1

λ[2]α1

)(∑
i2

λ̃
[3]
β2

Γ̃
⋆[2]i2
β1β2

Γ[2]i2
α1α2

λ[3]α2

)

×

(∑
i3

λ̃
[4]
β3

Γ̃
⋆[3]i3
β2β3

Γ[3]i3
α2α3

λ[4]α3

)
. . .

(∑
iL

Γ̃
⋆[L]iL
βL−1

Γ[L]iL
αL−1

)
. (B.146)

We compute this numerically as

⟨ψ̃|ψ⟩ =
∑
α,i,β

Γ̃⋆[M ]i
α K

[M ]
α,β Γ

[M ]i
β , (B.147)

where the object K is defined recursively as

K
[l]
α,β =

∑
γ,il

λ̃[l+1]
α Γ⋆[l]ilγ,α

[∑
η

K [l−1]
γ,η Γ

[l]i
η,β

]
λ
[l+1]
β (B.148)

subject to the initial condition

K
[0]
α,β =

∑
i

λ̃
[2]
β Γ̃

⋆[1]i
β Γ[1]

α λ
[2]
α . (B.149)

The procedure InnerProduct discussed in Sec. B.9.9.13 performs this operation.

B.3.6.6 The Measure Derived Type

The measures amenable to TEBD can be broadly classified as:

1. Local measures : An observable whose associated operator acts only on a single

site at a time, as in Sec. B.3.6.1. Such a measure is stored in a site indexed

array.
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2. Average measures: The expectations of a local operator at each site are summed

and divided by the number of sites ⟨Ô⟩ =
∑L

i=1⟨Ôi⟩/L.

3. Correlations : An observable whose associated operator acts on two sites at a

time and has no Fermi phases, as in Sec. B.3.6.2. Such a measure is stored in a

systemSize×systemSize array.

4. Fermi Correlations : An observable whose associated operator acts on two sites

at a time and has Fermi phases, as in Sec. B.3.6.3. Such a measure is stored in

a systemSize×systemSize array.

5. Entanglement measures: These can further be classified into average entangle-

ment measures such as the Meyer Q-measure, one-body (in the sense that they

require only linear storage) measures such as the single-site von Neumann en-

tropy of entanglement and the chain entropy (a link indexed list which gives

the entanglement of the sites to the left of link with the sites to the right of

link), and two-body measures such as the two-site von Neumann entropy of

entanglement.

The measures derived type provides a compact means of computing and stor-

ing these measures based on their classification by the above scheme. The measure

derived type is set up using the routine AllocateMeasures which has the syntax

AllocateMeasures(Measures,numLocal, numAvg, numCorr, numFermiCorr,

numEnt) The variable Measures is a measure derived type, numLocal is an INTEGER

specifying the number of local measures desired, numAvg is an INTEGER specifying

the number of average measures desired, numCorr is an INTEGER specifying the

number of Correlations desired, numFermiCorr is an INTEGER specifying the num-

ber of Fermi Correlations, and numEnt specifies the entanglement measures desired.

numEnt=0 returns the Q measure only, numEnt=1 returns the Q-measure and the

one-body entanglement measures, and numEnt=2 returns all the entanglement mea-
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sure listed above. Once numEnt has been chosen the entanglement measures are set

and will be returned in:

Q-measure Measures%ent%qme

one-body von Neumann entropy Measures%ent%vn

chain entropy Measures%ent%chain

two-body von Neumann entropy Measures%ent%tbvn

For the other measures we must define the operators corresponding to each mea-

sure. For example, if we specified numLocal=2 and we want the both the expectation

of the single-site operators Op1 and Op2, we define the first and second operators for

local measures as

Measures%local(1)%op=Op1%mr

Measures%local(2)%op=Op2%mr

where Op1%mr represents a (possibly complex) localSize×localSize array. Similar

logic follows for Measures%avg(:)%op which holds the average measure operators,

Measures%corr(:)%op which holds the Correlation operators, and

Measures%FermiCorr(:)%op which holds the Fermi Correlation operators. The two-

body observable (e. g. Correlations and Fermi Correlations) operators are stored in

two-site tensor product form. For example, if we want to calculate ⟨Op1Op2⟩ where

Op1 acts on site i and Op2 on site j, we would define e. g.

Measures%corr(1)%op=TensorProd(Op1%mr,Op2%mr)

Once the operators have been defined, we calculate the measures as

CALL EvaluateMeasures(Measures, Gammas, Lambdas, H)

The result corresponding to a given operator is stored in a derived type component

%value. For example:
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Measures%local(1)%value

Measures%local(2)%value

Measures%corr(1)%value

return a site-indexed list of the expectation values of Op1, a site-indexed list of the

expectation values of Op2, and a systemSize×systemSize array of the expectation

values of Op1⊗Op2, respectively.

To deallocate the measure derived type Measures, use the routine

DeallocateMeasures which has the syntax

DeallocateMeasures(Measures)

For more information, consult the procedure listing for EvaluateMeasures in

Sec. B.9.9.35.

B.3.7 Supported Hamiltonians

In this section we list the Hamiltonians which can be generated by routines in

the Open Source TEBD package. User-defined routines should be straightforward to

construct using these examples.

B.3.7.1 The Heisenberg Spin Chain

The Heisenberg model is common model for studying phase transitions in quantum

magnetic systems, defined by

Ĥ =
L−1∑
i=1

[
−JxŜxi Ŝxi+1 − JyŜ

y
i Ŝ

y
i+1 − JzŜzi Ŝzi+1 + hŜzi

]
(B.150)

where Ŝνi is the spin operator in the νth cartesian direction on the ith site and h

is an applied magnetic field. This Hamiltonian is supported mainly for pedagogical

purposes. The 1D spin-1/2 Heisenberg spin chain can be solved exactly via the Bethe

Ansatz (it was, in fact, the first application by Bethe of his Ansatz!) and some exact
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results are known regarding time evolution. See Sec. B.4.4 for a case study regarding

this Hamiltonian.

The Heisenberg spin chain is generated using the procedure

HamiltonianHeisenberg discussed in Sec. B.9.5.4 and the suite of operators needed

to define and characterize it are generated using the procedure CreateHeisenbergOps

discussed in Sec. B.9.5.2.

B.3.7.2 The Bose-Hubbard Hamiltonian

The Bose-Hubbard Hamiltonian was first introduced by Fisher et. al. as a model

to study the phases of bosons with short-ranged repulsive interactions [17]. It became

the subject of much interest in the atomic physics community after a paper by Jaksch

et. al. demonstrated that an optical lattice containing ultracold bosons is an almost

perfect realization of the Bose-Hubbard Hamiltonian [1]. The Hamiltonian is

ĤBH = −J
L−1∑
i=1

t̂i +
U

2

L∑
i=1

n̂i
(
n̂− 1̂

)
+ V

∑
⟨i,i′⟩

n̂in̂i′ +
L∑
i=1

(ϵi − µ) n̂i (B.151)

where âi destroys a particle on site i, a dagger denotes Hermitian conjugation, n̂i ≡

â†i âi is the number operator on the ith site, t̂i ≡
(
â†i+1âi + h.c.

)
is the tunneling

operator, and the notation ⟨...⟩ means that the sum is taken over nearest neighbors.

J is the energetic cost for a particle to “hop” or “tunnel” from a particular discrete

position to its neighboring discrete position, U is the energetic cost for two bosons to

occupy the same discrete position, V is the energetic cost for two bosons to occupy

neighboring sites, µ is the chemical potential, and ϵi is the on-site energy of site i.

The Bose-Hubbard Hamiltonian is generated using the procedure

HamiltonianBoseHubbard discussed in Sec. B.9.3.4 and the suite of operators needed

to define and characterize it are generated using the procedure CreateFieldOps dis-

cussed in Sec. B.9.3.2.
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B.3.7.3 The Hubbard Hamiltonian

The Hubbard hamiltonian is the simplest model Hamiltonian for studying the

metal-insulator transition in an electronic system. It is given by

Ĥ =− t
∑
⟨i,j⟩,σ

(
f̂ †
i,σf̂j,σ + f̂ †

j,σf̂i,σ

)
+ U

L∑
i=1

(
n̂i↑ −

1

2

)(
n̂i↓ −

1

2

)
(B.152)

+ V
∑
⟨i,j⟩,σ

n̂iσn̂j,σ +
∑
iσ

(ϵi − µ) n̂iσ

where f̂i,σ destroys a fermion of spin σ = {↑, ↓} on the ith lattice site, t is the

energetic cost for a particle to “hop” or “tunnel” from a particular discrete position

to its neighboring discrete position, U is the energetic cost for a spin up and a spin

down particle to occupy the same site, and V is the energetic cost for two particles

of the same spin to occupy neighboring sites.

The Hubbard Hamiltonian is generated using the procedure HamiltonianHubbard

discussed in Sec. B.9.4.4 and the suite of operators needed to define and characterize

it are generated using the procedure CreateFermiSOps discussed in Sec. B.9.4.2.

B.3.7.4 Spin-s Bose-Hubbard Hamiltonian

The low-energy Hamiltonian describing bosonic (pseudo)spin-s atoms in an optical

trap interacting by a rotationally invariant, spin-preserving contact potential is, in

second quantization, [18]

Ĥ = −J
L−1∑
i=1

s∑
α=−s

(
â†i+1,αâi,α + h.c.

)
+

2s∑
S=0

gS

s∑
α=−s

Ô†
i,S,αÔi,S,α +

L∑
i=1

s∑
α=−s

ϵi,αn̂i,α

(B.153)

Ôi,S,α =
∑
α1,α2

⟨Sα|s, α1; s, α2⟩âi,α1 âi,α2 , gS =
4π~2aS
m

, (B.154)

n̂i,α = â†i,αâi,α , (B.155)
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where m is the mass of the atomic species, aS is the s-wave scattering length in the

total spin S channel, ⟨Sα|s, α1; s, α2⟩ is a Clebsch-Gordan coefficient (Sec. B.3.8.1),

ϵi,α is an external potential applied to the αth spin component on site i, and âi,α

destroys a particle in the αth spin component on site i. For spin-1, this can be

rearranged to

Ĥ = −J
L−1∑
i=1

1∑
α=−1

(
â†i+1,αâi,α + h.c.

)
+
Uo
2

L∑
i=1

n̂i
(
n̂− 1̂

)
+
U2

2

L∑
i=1

(
Ŝ2
i − 2n̂i

)
+

L∑
i=1

1∑
α=−1

ϵi,αn̂i,α , (B.156)

U0 =
g0 + 2g2

3
, U2 =

g2 − g0
3

, (B.157)

n̂i =
1∑

α=−1

n̂i,α , Ŝ
2
i =

(∑
ν

Ŝ2
i,ν

)
, (B.158)

which has a clearer relationship to the ordinary Bose-Hubbard Hamiltonian, Eq. (B.151).

We can define the spin operators
{
Ŝi,x, Ŝi,y, Ŝi,z

}
in terms of the creation and destruc-

tion operators as

Ŝi,ν =
s∑

α,β=−s

â†i,αF
ν
αβâi,β , (B.159)

where F ν is the (2s+ 1) × (2s+ 1) dimensional matrix representation of the Pauli

matrix in the νth cartesian direction. It may be easily verified that the operators

defined as such obey the proper SU(2) commutation rules using the commutation

properties of the bosonic operators and the Pauli matrices.

When we introduce a magnetic field B, the linear Zeeman effect causes a uniform

rotation of the spins about B, and so we can neglect this term by transforming to the

frame that rotates with the Larmor frequency in spin space. The quadratic Zeeman

effect has the interaction term
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ĤB =
µ2
B

4Ehf

∫
dr
∑
m,m′

ψ̂†
m (r)

[
(B · F)2

]
mm′ ψ̂m′ (r) , (B.160)

where µB is the magnetic dipole moment of the species in question and Ehf is the

energetic splitting between the s and s + 1 hyperfine levels. Assuming êz polarized

field and the Wannier basis decomposition ψ̂α =
∑

iwα (r− ri) âi,α we have

ĤB = VB

L−1∑
i=1

∑
α,α′

[
Ŝ2
z

]
α,α′

â†i,αâi,α′ , (B.161)

≡ VBV̂B . (B.162)

The spin-s Bose-Hubbard Hamiltonian is generated using the procedure

HamiltonianSpinS discussed in Sec. B.9.6.5 and the suite of operators needed to

define and characterize it are generated using the procedure CreateSpinSops dis-

cussed in Sec. B.9.6.2. If one wishes to call the spin-1 Hamiltonian with the Hub-

bard parameters instead of the scaled scattering lengths, Eq. (B.156), the procedure

HamiltonianSpinOne discussed in Sec. B.9.6.4 will do so.

B.3.7.5 The Molecular Hubbard Hamiltonian

The Molecular Hubbard Hamiltonian (MHH), which describes the essential many

body physics of closed-shell ultracold heteronuclear molecules in their absolute ground

state in a quasi-one-dimensional optical lattice, is

Ĥ = −
∑
JJ ′M

tJJ ′M

∑
⟨i,i′⟩

(
â†i′,J ′M âiJM + h.c.

)
+
∑
JM

EJM
∑
i

n̂iJM − π sin (ωt)
∑
JM

ΩJM

∑
i

(
â†iJ,M âiJ+1,M + h.c.

)
+

1

2

∑
J1, J

′
1, J2, J

′
2

M,M′

U
J1, J

′
1, J2, J

′
2

M,M′

dd

∑
⟨i,i′⟩

â†iJ1M âiJ ′
1M
â†i′J2M ′ âi′J ′

2M
′ . (B.163)
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A careful derivation of Eq. (B.163) and some results of its time evolution are presented

in this paper.

B.3.8 Internal Degrees of Freedom

In this section we demonstrate how Hilbert spaces with internal degrees of freedom

are generated by the code, and also discuss how vector coupling constants which are

used by the spin-S and molecular Hubbard Hamiltonians are generated numerically.

B.3.8.1 Definitions and Basic properties of Vector-Coupling Coefficients

In the quantum theory of angular momentum, the total angular momentum op-

erator Ĵ of a two part system comprised of angular momenta Ĵ1 and Ĵ2 is given by

the vector sum Ĵ = Ĵ1 + Ĵ2. There are two bases with which we can describe the

rotational properties of this system. The first, known as the uncoupled representation,

is the basis |j1m1j2m2⟩ which diagonalizes Ĵ2
1, Ĵ

2
2, Ĵ1z, and Ĵ2z, with the fundamental

equations

Ĵ2
1|j1m1j2m2⟩ = j1 (j1 + 1) |j1m1j2m2⟩ , (B.164)

Ĵ1z|j1m1j2m2⟩ = m1|j1m1j2m2⟩ , (B.165)

Ĵ2
2|j1m1j2m2⟩ = j2 (j1 + 1) |j1m1j2m2⟩ , (B.166)

Ĵ2z|j1m1j2m2⟩ = m2|j1m1j2m2⟩ . (B.167)

This basis describes the system in terms of the rotational properties of its constituents,

but obscures the rotational properties of the composite system. The second basis,

known as the coupled representation, is the basis |j1j2jm⟩ which diagonalizes Ĵ2
1, Ĵ

2
2,

Ĵ2, and Ĵz = Ĵ1z + Ĵ2z, with the fundamental equations

Ĵ2
1|j1j2jm⟩ = j1 (j1 + 1) |j1j2jm⟩ , (B.168)

Ĵ2
2|j1j2jm⟩ = j2 (j1 + 1) |j1j2jm⟩ , (B.169)

Ĵ2|j1j2jm⟩ = j (j + 1) |j1j2jm⟩ , (B.170)

Ĵz|j1j2jm⟩ = m|j1j2jm⟩ . (B.171)
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This basis describes the system in terms of its composite rotational properties, and is

often denoted |jm⟩ for brevity. The two bases are equivalent, and so can be related

via the unitary transformation

|j1m1j2m2⟩ =
∑
jm

⟨jm|j1m1j2m2⟩|jm⟩ (B.172)

or the inverse transformation

|jm⟩ =
∑
m1m2

⟨j1m1j2m2|jm⟩|j1m2j2m1⟩ (B.173)

where the transformation coefficients ⟨jm|j1m1j2m2⟩ = ⟨j1m1j2m2|jm⟩, known as the

Clebsch-Gordan coefficients (CG coefficients), are chosen to be real. It is expedient

to define three functions:

T (j1, j2, j) =

{
1 if |j1 − j2| ≤ j ≤ j1 + j2 and j1 + j2 + j is an integer

0 otherwise
,

(B.174)

P (m, j) =

{
1 if − j ≤ m ≤ j and m+ j is an integer

0 otherwise
, (B.175)

Q (m1,m2,m) =

{
1 if m1 +m2 = m

0 otherwise
, (B.176)

which encapsulate the selection rules required of the arguments of vector coupling

coefficients. For a nonzero CG coefficient ⟨j1m1j2m2|jm⟩, we must have T (j1, j2, j) =

P (m1, j1) = P (m2, j2) = P (m, j) = Q (m1,m2,m) = 1. The CG coefficients are

generated by the function Clebsch discussed in Sec. B.9.2.15.

Wigner defined an equivalent, but more symmetric, object known as a Wigner 3-j

symbol as

(
j1 j2 j
m1 m2 −m

)
≡ (−1)j1−j2+m

⟨j1m1j2m2|jm⟩√
2j + 1

. (B.177)
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The 3-j symbol is left unchanged by an even permutation of its columns, and is

multiplied by the factor (−1)j1+j2+j under an odd permutation of its columns. These

properties allow for easier analytic manipulation, and so 3-j coefficients are favored

over CG coefficients in many applications.

The orthonormality of the basis elements |jm⟩ and |j1m1j2m2⟩ lead to the Clebsch-

Gordan orthogonality relations

∑
j,m

⟨j1m1j2m2|jm⟩⟨jm|j1m′
1j2m

′
2⟩ = δm1,m′

1
δm2,m′

2
, (B.178)∑

m1,m2

⟨jm|j1m2j2m2⟩⟨j1m1j2m2|j′m′⟩ = δj,j′δm,m′ , (B.179)

subject, of course, to the selection rules above. These, in turn, imply the 3-j orthog-

onality relations

∑
j,m

(2j + 1)

(
j1 j2 j
m1 m2 m

)(
j1 j2 j
m′

1 m′
2 m

)
= δm1,m′

1
δm2,m′

2
, (B.180)

∑
m1,m2

(2j + 1)

(
j1 j2 j
m1 m2 m

)(
j1 j2 j′

m1 m2 m′

)
= δj,j′δm,m′ . (B.181)

Racah, in an important 1942 paper, gave the explicit 3-j formula [19]

(
a b c
α β γ

)
= △ (abc)

√
(a+ α)! (a− α)! (b+ β)! (b− β)! (c+ γ)! (c− γ)!

×
∑
t

(−1)a−b−γ+t [t! (c− b+ t+ α)! (c− a+ t− β)! (a+ b− c− t)!]−1

× [(a− t− α)! (b− t+ β)!]−1 , (B.182)

where we have defined the “triangle coefficient” as

△ (abc) ≡

√
(a+ b− c)! (b+ c− a)! (c+ a− b)!

(a+ b+ c+ 1)!
(B.183)

and the summation includes all values of t such that the factorials are nonnega-

tive. If all of the selection rules are satisfied, then all of the factorials will be in-
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teger for integer t. If these are not satisfied, then the coefficient is identically zero.

To explicitly find the integer values of t to include in the summation, we investi-

gate when the summed factorials become negative. The first term (t!) ensures that

the lowest allowed value of t is zero. The next two terms involve addition of t to

some constants, thus they may set a lower bound greater than 0. From inspection

of the arguments, we see that the lowest t value allowed by these three terms is

min {0, c− b+ α, c− a− β}. The remaining terms provide an upper bound for t. By

inspection this is min {a+ b− c, a− α, b+ β}, which is never negative so long as the

triangle inequalities hold. The number of terms in the sum is ν + 1 where ν is the

smallest of the nine numbers [20]

a± α b± β c± γ

a+ b− c b+ c− a c+ a− b .

Direct use of formula Eq. (B.182) above for numerical computation would result

in large roundoff error and possible integer overflow. Thus, we work not with the

factorials but with their logarithms, which grow much more slowly. See the listing

for ThreeJ in Sec. B.9.2.14 for implementation details.

In the coupling of three angular momenta j1, j2, and j3 to form a total angular

momentum j, we can first couple j1 to j2 as

|j12m12⟩ =
∑
m1,m2

|j1m1j2m2⟩⟨j1m1j2m2|j12m12⟩ (B.184)

and then couple the resultant angular momentum j12 to j3 to result in total angular

momentum j as

| ((j1j2j12) j3) jm⟩ =
∑

m12,m3

|j12m12j3m3⟩⟨j12m12j3m3|jm⟩ (B.185)

where the parentheses in the resultant ket reminds us of the order of coupling. Al-

ternatively, we can first couple j2 to j3 as
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|j23m23⟩ =
∑
m2,m3

|j2m2j3m3⟩⟨j2m2j3m3|j23m23⟩ (B.186)

and then couple the resultant angular momentum j23 to j1 to result in total angular

momentum j as

| (j1 (j2j3j23)) jm⟩ =
∑

m23,m1

|j1m1j23m23⟩⟨j1m2j23m23|jm⟩ . (B.187)

Both coupling schemes result in complete orthonormal bases for the coupled repre-

sentation of the three angular momenta, and so can be related through a unitary

transformation

| ((j1j2j12) j3) jm⟩ =
∑
j23

| (j1 (j2j3j23)) jm⟩⟨(j1 (j2j3j23)) jm| ((j1j2j12) j3) jm⟩ .

(B.188)

The coefficients, which are independent of m, are cast in their most symmetric form

as a Wigner 6-j symbol defined by

{
j1 j2 j12
j3 j j23

}
≡ (−1)j1+j2+j3+j [(2j12 + 1) (2j23 + 1)]−

1
2 ⟨((j1j2j12) j3) j| (j1 (j2j3j23)) j⟩ .

(B.189)

For a nonzero 6-j

 j1 j2 j3

J1 J2 J3

 we must have T (j1, j2, j3) = T (j1, J2, J3) =

T (J1, j2, J3) = T (J1, J2, j3) = 1. Because the transformation between bases is uni-

tary, we have the orthonormality condition

∑
j

(2j + 1) (2j′′ + 1)

{
j1 j2 j′

j3 j4 j

}{
j3 j2 j
j1 j4 j′′

}
= δj′,j′′ . (B.190)

To compute the Wigner 6-j coefficient we use the Racah formula [19]
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{
j1 j2 j3
J1 J2 J3

}
= △ (j1j2j3)△ (j1J2J3)△ (J1j2J3)△ (J1J2j3)

∑
t

(−1)t (t+ 1)!

× [(j1 + j2 + J1 + J2 − t)! (j2 + j3 + J2 + J3 − t)! (j3 + j1 + J3 + J1 − t)!]−1

× [(t− j1 − j2 − j3)! (t− j1 − J2 − J3)! (t− J1 − j2 − J3)! (t− J1 − J2 − j3)!]−1 ,
(B.191)

where △ (j1j2j3) was defined in Eq. (B.183) and the summation includes all t such

that the factorials are nonnegative. This gives (nonnegative) lower and upper bounds

of

tmin = max {j1 + j2 + j3, j1 + J2 + J3, J1 + j2 + J3, J1 + J2 + j3} , (B.192)

tmax = min {j1 + j2 + J1 + J2, j2 + j3 + J2 + J3, j3 + j1 + J3 + J1} , (B.193)

respectively. The number of terms in the summation is 1 + σ where σ is the smallest

of the twelve numbers [20]

j1 + j2 − j3 j1 + J2 − J3 J1 + j2 − J3 J1 + J2 − j3

j2 + j3 − j1 J2 + J3 − j1 j2 + J3 − J1 J2 + j3 − J1

j3 + j1 − j2 J3 + j1 − J2 J3 + J1 − j2 j3 + J1 − J2 .

See the listing for SixJ in Sec. B.9.2.16 for implementation details.

The last vector coupling coefficient we consider is the Wigner 9-j symbol, which

arises in the re-coupling of four angular momenta. It is defined by


j1 j2 j12
j3 j4 j34
j12 j24 j

 ≡ ⟨((j1j2j12) (j3j4j34)) j| ((j1j3j13) (j2j4j24)) j⟩
[(2j12 + 1) (2j34 + 1) (2j13 + 1) (2j24 + 1)]

1
2

. (B.194)

From the orthonormality of the coupled bases, we have the orthogonality relation

∑
j12j34

(2j12 + 1) (2j34 + 1) (2j13 + 1) (2j24 + 1)


j1 j2 j12
j3 j4 j34
j13 j24 j




j1 j2 j12
j3 j4 j34
j′13 j′24 j


= δj13,j′13δj24,j′24 . (B.195)
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The 9-j is also used to find the reduced matrix elements of the tensor product of two

operators in the coupled representation, e.g.

⟨γ′j′1j′2j′||
[
T (k1) ⊗ U (k2)

](k) ||γj1j2j⟩
=
√

(2j + 1) (2j′ + 1) (2k + 1)
∑
γ′′


j′1 j1 k1
j′2 jk k2
j′ j k

 ⟨γ′j′1||T (k1)||γ′′j1⟩⟨γ′′j′2||U (k2)||γj2⟩

(B.196)

where T (k1) and U (k2) are tensor operators that act in the j1 and j2 subspaces, respec-

tively, and the double vertical bar signifies a reduced matrix element. This formula

has been used in SU(2) conserving implementations of DMRG[21], and so may prove

useful in future versions of the code.

There is no single-index Racah formula for the Wigner 9-j symbol, but we can

compute them from the contraction formula


j11 j12 j13
j21 j22 j23
j31 j32 j33

 =
∑
t

(−1)t (t+ 1)

{
j11 j21 j31
j32 j33

t
2

}
(B.197)

×
{
j12 j22 j32
j21

t
2

j23

}{
j13 j23 j33
t
2

j11 j12

}
.

The summation runs over all t such that the 6-js are not trivially zero (i.e. all triangle

rules hold). This amounts to the lower and upper bounds

max {|j11 − j33| , |j32 − j21| , |j23 − j12|} and min {j11 + j33, j32 + j21, j23 + j12}, and also

the condition that t increases in increments of two. See the listing for NineJ in

Sec. B.9.2.17 for implementation details.

B.3.8.2 Fock Space Combinatorics with Spin Degrees of Freedom

Consider a site on a lattice system which can be occupied by at most N bosons,

each of which has spin s. We wish to find the local dimension d, i.e. the total number

of allowed quantum states per site. If we first consider how many states exist for a

fixed number of particles k, the problem becomes the familiar combinatoric problem
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of how many ways one can place k identical particles into 2s + 1 wells. The answer

is simply the number of combinations of k objects and 2s partitions,

 k + 2s

2s

. If

we now sum over all k from 0 to N , we have

d =
N∑
k=0

(
k + 2s

2s

)
=

(
N + 2s+ 1

2s+ 1

)
(B.198)

from the upper summation identity of binomial coefficients. If we denote the number

in the mth spin component as Nm, then we index the Fock space for a fixed total

number N as in Table B.3.

N 0 0 0 . . . 0
N − 1 1 0 0 . . . 0
N − 1 0 1 0 . . . 0

...
...

...
...

. . .
...

N − 1 0 0 0 . . . 1
N − 2 2 0 0 . . . 0
N − 2 1 1 0 . . . 0
N − 2 1 0 1 . . . 0

...
...

...
...

. . .
...

N − 2 1 0 0 . . . 1
N − 2 0 2 0 . . . 0
N − 2 0 1 1 . . . 0

...
...

...
...

. . .
...

N − 2 0 1 0 . . . 1
N − 2 0 0 2 . . . 0

...
...

...
...

. . .
...

N − 2 0 0 0 . . . 2
...

...
...

...
...

...

Figure B.6: Structure of
Fock space algorithm.

The indexing given suggests our method for con-

structing this Fock space for arbitrary s. We begin with

all N particles in the m = s state, of which there is one

such arrangement. We then consider N − 1 particles in

the m = s state, of which there are

 2s

2s− 1

 states-

the number of ways to put the single particle into the

2s remaining spin components. We now consider N − 2

particles in the m = s state. There are

 2s+ 1

2s− 1


such states, which is also

∑2s
i=0

 1 + (2s− 1)− i

(2s− 1)− i

,

the number of ways of putting a single particle particle

into 2s wells added to the number of ways of putting a

single particle into 2s− 1 wells and so on. This implies

that we can break the problem of putting 2 particles

into 2s− 1 wells into 2s single well problems. Another

diagram makes this clearer. Consider Figure B.6, where

we demonstrate this substructure. The section colored
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Table B.3: Fock space indexing for a fixed number of particles N .

label Ns Ns−1 Ns−2 Ns−3 . . . N−s+1 N−s(
2s− 1
2s− 1

)
=1 N 0 0 0 . . . 0 0

2 N-1 1 0 0 . . . 0 0
3 N-1 0 1 0 . . . 0 0
...

...
...

...
...

...
...

...
2s N-1 0 0 0 . . . 1 0(

2s− 1
2s− 1

)
+

(
2s

2s− 1

)
= 2s+ 1 N-1 0 0 0 . . . 0 1

2s+2 N-2 2 0 0 . . . 0 0
2s+3 N-2 1 1 0 . . . 0 0
2s+4 N-2 1 0 1 . . . 0 0

...
...

...
...

...
...

...
...

1 +
∑2

i=0

(
i+ 2s− 1

2s− 1

)
N-3 3 0 0 . . . 0 0

2 +
∑2

i=0

(
i+ 2s− 1

2s− 1

)
N-3 2 1 0 . . . 0 0

3 +
∑2

i=0

(
i+ 2s− 1

2s− 1

)
N-3 2 0 1 . . . 0 0

...
...

...
...

...
...

...
...

1+
∑N

i=0

(
i+ 2s− 1

2s− 1

)
0 N 0 0 . . . 0 0

...
...

...
...

...
...

...
...

1+
∑N

i=0

(
i+ 2s− 1

2s− 1

)
+

(
2s− 1
2s− 2

)
0 N-1 1 0 . . . 0 0

...
...

...
...

...
...

...
...(

N + 2s
2s

)
0 0 0 0 . . . 0 N
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in cyan is putting a single particle into 2s − 1 wells, the part colored in magenta

is putting a single particle into 2s − 2 wells, and so on. If we now recognize that

everything in green is the original problem of putting N particles into M wells with

N = 2 and M = 2s, we see that the entire algorithm has this recursive substructure.

We take advantage of this recursive structure by making the procedure for gener-

ating the Fock space recursive. This algorithm focuses on the mth spin component,

which can have up to nmax particles. If the state is ...︸︷︷︸
m−1

,0,...,0 then it is simply

counted, if the state is ...︸︷︷︸
m−1

,1,0,...,0 then the 1 is moved from its current position to

the last spin component, counting each time, and if the state is ...︸︷︷︸
m−1

,k,0,...,0 with

k > 1 we loop over performing the algorithm on the subspace beginning with spin

component m + 1 and 0,1,...,nmax particles in spin component m + 1. Looping the

recursive algorithm over 0,1,...,maxFilling particles in the first spin component gen-

erates the entire Fock space.

0 0 0
1 0 0
0 1 0
0 0 1
2 0 0
2 0 0
1 1 0
1 0 1
0 2 0
0 2 0
0 1 1
0 0 2
0 0 2

Figure B.7: Fock space al-
gorithm execution for Spin-
1.

As a concrete example, consider a spin-1 Fock space

with maxFilling=2, and observe Figure B.7. Calling

onsiteStateListIdof begins a loop (the blue loop)

which initializes onsiteStateListIdofInner with 0

particles in the first spin component, focused on the first

spin component. This state is ⟨N1, N0, N−1⟩ = ⟨0, 0, 0⟩,

which is of the form ⟨ ...︸︷︷︸
m−1

, 0, ..., 0⟩ with m = 1, and so

it is simply counted, giving ⟨0, 0, 0⟩ as state 1. The blue

loop then initializes onsiteStateListIdofInner with

1 particle in the first spin component, focused on the

first spin component. This state is ⟨1, 0, 0⟩, which is of

the form ⟨ ...︸︷︷︸
m−1

, 1, ..., 0⟩ with m = 1 and so the inner

routine returns ⟨1, 0, 0⟩ as state 2, ⟨0, 1, 0⟩ as state 3,

and ⟨0, 0, 1⟩ as state 4. The blue loop now initializes onsiteStateListIdofInner
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with 2 particles in the first spin component, focused on the first spin component.

This state is ⟨2, 0, 0⟩, which is of the form ⟨ ...︸︷︷︸
m−1

, k, ..., 0⟩ with k > 1 and m = 1.

onsiteStateListIdofInner now calls a loop (the green loop) which initializes

onsiteStateListIdofInner with 2 particles in the first spin component and zero

in the second spin component, focused on the second spin component. The state is

⟨2, 0, 0⟩, which is of the form ⟨ ...︸︷︷︸
m−1

, 0, ..., 0⟩ with m = 2, and so the state is simply

counted, giving ⟨2, 0, 0⟩ as state 5. The green loop now moves one particle from the

first spin component into the second spin component. The state is ⟨1, 1, 0⟩, which is of

the form ⟨ ...︸︷︷︸
m−1

, 1, ..., 0⟩ with m = 2, and so the inner routine returns ⟨1, 1, 0⟩ as state

6 and ⟨1, 0, 1⟩ as state 7. The green loop now initializes onsiteStateListIdofInner

with 2 particles in the second spin component, focused on the second spin compo-

nent. This state is ⟨0, 2, 0⟩, which is of the form ⟨ ...︸︷︷︸
m−1

, k, ..., 0⟩ with k > 1 and

m = 2. onsiteStateListIdofInner now calls a loop (the red loop) which initializes

onsiteStateListIdofInner with no particles in the first spin component, two parti-

cles in the second spin component, and zero in the third spin component, focused on

the third spin component. This state is ⟨0, 2, 0⟩, which is of the form ⟨ ...︸︷︷︸
m−1

, 0, ..., 0⟩

with m = 3, and so it is simply counted, giving ⟨0, 2, 0⟩ as state 8. The red loop now

moves one particle from the second spin component into the third spin component.

The state is ⟨0, 1, 1⟩, which is of the form ⟨ ...︸︷︷︸
m−1

, 1, ..., 0⟩ with m = 3, and so the inner

routine returns ⟨0, 1, 1⟩ as state 9. The red loop now moves one particle from the

second spin component into the third spin component. The state is ⟨0, 0, 2⟩, which

is of the form ⟨ ...︸︷︷︸
m−1

, k, ..., 0⟩ with k > 1 and m = 3. onsiteStateListIdofInner

now calls a loop (the cyan loop) which initializes onsiteStateListIdofInner with

no particles in either the first or second spin components and two particles in the

third spin component, focused on a fictitious fourth spin component. This state is

⟨0, 0, 2⟩, which is of the form ⟨ ...︸︷︷︸
m−1

, 0, ..., 0⟩ with m = 4, and so it is simply counted,
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giving ⟨0, 0, 2⟩ as state 10. This completes the algorithm for s = 1, maxFilling=2.

The general procedure should now be clear. The recursive procedure which gener-

ates the Fock space for a fixed number of particles in the highest spin component is

onsiteStateListIdofInner, listed in Sec. B.9.2.5, and the procedure which gener-

ates the entire Fock space by calling onsiteIdofInner with N = 0, 1, ...,maxFilling

particles is onsiteStateListIdof, listed in Sec. B.9.2.4.

B.4 Case Studies and Exercises

The purpose of this section is to provide exercises which will orient the user with

Open Source TEBD, and also require them to modify the code for specific purposes.

B.4.1 Case Study 1:The Bose-Hubbard Hamiltonian–Ground state Prop-
erties

In this section we shall study the ground state properties of the Bose-Hubbard

Hamiltonian (BHH) in the absence of a trap:

Ĥ = −J
∑
⟨i,i′⟩

[
â†i âi′ + h.c.

]
+
U

2

L∑
i=1

n̂i
(
n̂− 1̂

)
−

L∑
i=1

µn̂i (B.199)

using TEBD. We will begin with an overview of the properties of the Bose-Hubbard

model.

First, let us consider the symmetries of the BHH. It is symmetric under the global

U(1) phase transformation

âi → âie
iθ , (B.200)

the associated conserved quantity is the total number of bosons

N̂ =
∑
i

â†i âi . (B.201)
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The first term in Eq. (B.199) couples neighboring sites in a way that prefers to break

this global symmetry, and this competes with the second term, which is completely

local and prefers states which are invariant under Eq. (B.200). Thus, we may reason-

ably expect a quantum phase transition as a function of J/U from a state in which the

U(1) symmetry is unbroken to one in which it is broken. We begin our investigation

of this phase transition by considering the limiting cases J → 0 and U → 0.

In the J → 0 limit particles cannot hop from site to site, and so each site is

occupied by n bosons, where n is a non-negative integer. The energy becomes a

function of n alone:

ϵ (n) =
U

2
n (n− 1)− µn , (B.202)

and so we can find the number of bosons per site by minimizing this expression with

respect to n. We find that for chemical potentials in the range

n− 1 ≤ µ/U ≤ n , n ≥ 1 , (B.203)

exactly n bosons occupy each site, and the total wavefunction is

|Ψ⟩ =

[
L∏
i=1

1√
n!

(
â†i

)n]
|00 . . . 0⟩ = |nn . . . n⟩. (B.204)

Investigating the density ρ ≡ N/L (N is the total number of particles, not the number

of particles per site) as a function of µ, we see a step-like structure where the chemical

potential can be varied in the range according to Eq. (B.203) at integer fillings without

changing ρ. Thus, the state represented by the wavefunction of Eq. (B.204) represents

a gapped phase known as a Mott Insulator (MI).

Let us now consider the effects of small J . If we have a system in the MI phase

with chemical potential in the range
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µ/U = n− 1

2
+ α , −1

2
< α <

1

2
(B.205)

then a tunneling energy J that is smaller than either
(
1
2
− α

)
U or

(
1
2

+ α
)
U will not

affect the system. We understand this, as the kinetic energy we gain from adding/re-

moving a particle to/from the system is smaller than the potential energy cost of

the particle interacting with the other particles in the lattice. Thus, for each integer

density ρ we expect a finite area in the µ vs J phase diagram corresponding to the

MI phase. The strong suppression of hopping also leads to a localization of den-

sity fluctuations, making the states incompressible and justifying the use of the term

insulator.

In the limit U → 0 the particles are noninteracting, and so the ground state is the

state with all particles in the lowest energy single-particle state. For a system of N

particles and periodic boundary conditions this is represented by the coherent state

|Ψ⟩ =
1√
N !

[
1√
L!

L∑
i=1

â†i

]N
|00 . . . 0⟩ , (B.206)

which represents the Superfluid (SF) phase. This state is highly delocalized and

displays large number fluctuations, in contrast to the MI state which is highly localized

and displays no number fluctuations. The complementary (in Bohr’s sense) observable

to number is phase, and so the SF phase displays a phase coherence which breaks

the U(1) symmetry Eq. (B.200). We will investigate ways to quantify this phase

coherence in the exercises.

We now show how to characterize the SF and MI phases using the case study

BoseHubbard_ITP found in Bose_Hubbard_Wrapper via Figure B.8-Figure B.10.
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(a) (b)

Figure B.8: Numbers and number deviations for the Bose-Hubbard model. (a) ⟨n̂⟩
and deviations for a superfluid system. Note the very large fluctuations and the
tapering towards the boundaries. (b)⟨n̂⟩ and deviations for a Mott insulating system.
Note that the number fluctuations are much smaller than in the superfluid case.
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Figure B.9: Single-particle density matrix for the Bose-Hubbard model. (a) Single-
particle density matrix for a superfluid system. The strong off-diagonal correlations
are indicative of the quasi-off-diagonal long range order that characterizes the super-
fluid phase. (b) Single-particle density matrix for a Mott insulating system. The
off-diagonal correlations decay very rapidly with the site separation, in stark contrast
to the superfluid phase.
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Figure B.10: Differences in number and single-particle density matrix as χ is in-
creased. (a) Difference in the on-site expectation values of numbers as χ is increased.
The superfluid case is shown, the Mott case is zero on the scale of this plot. The Mott
phase numbers do not change as more entanglement is allowed, while the superfluid
phase numbers change slightly as the amount of entanglement allowed increases. (b)
Difference in the single-particle density matrix as χ is increased. The Mott phase dif-
ferences are smaller than 1 part in a billion, but the superfluid phase differences are
significant at large distances-up to one part in ten. The moral here is that long-range
correlations need much higher χ to converge properly than do single-site observables
e. g. number or energy. This is especially true in critical systems.
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B.4.1.1 Exercise: ρ as a Function of µ

We can determine the universality class of the SF-MI transition in the following

way. Consider the U →∞ limit of Eq. (B.199), known as the “hard core limit.” Now

each site can have either 0 or 1 bosons. If we now identify

σxj = âj + â†j , σyj = −i
(
âj − â†j

)
, σzj = 1− 2â†j âj , (B.207)

as simply the spin-1/2 spin operators in the Schwinger representation, the Hamilto-

nian can be written as

Ĥ = −J
2

∑
⟨i,j⟩

(
σ̂xi σ̂

x
j + σ̂yi σ̂

y
j

)
+
µ

2

∑
i

σzi , (B.208)

which is the Heisenberg model, Eq. (B.150), with Jx = Jy = J/2, Jz = 0, and

h = µ/2, known as the XX model. Using the Jordan-Wigner transformation, we find

the free fermion dispersion Ek = −2J cos (ka)− µ. We can thus express the number

expectation in terms of the magnetization of the XX model as

ρ ∝ ⟨â†i âi⟩ =
1

2
(1− ⟨σ̂zi ⟩) = ⟨f̂ †

i f̂i⟩ =


0 µ ≤ −2J

1− (1/π) cos−1 (µ/2J) |µ| ≤ 2J
1 µ ≥ 2J

(B.209)

In the scaling region µ ∼ 2J , the compressibility κ = ∂ρ
∂µ

thus diverges as κ ∼

|µ− µc|1/2, the critical exponent of 1
2

placing this transition in the same universality

class as the transitions between fully polarized and partially polarized spin states in

the XX model.

Using the number conserving code for some small number of sites (∼ 10) and

U/J = 20, compute the energy of the system for N = 1, 2, ..., 2L. We can get

the chemical potentials from µ (N) = E (N + 1) − E (N). Plot µ versus the filling

ρ = N/L. Identify the Mott gap. Is it where you expected? Why is the chemical

potential negative below half filling? Does the behavior near the critical point behave
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with the proper scaling? If not, why?

B.4.1.2 Exercise. Bose Hubbard Hamiltonian in a Trap

Using the extPot global variable, define a harmonic trap and include it in the

Hamiltonian (see Sec. B.9.3.4 for implementation details). Repeat the analysis of the

above exercise. What can you conclude? Define the local compressibility as

κi =
√
⟨n̂2⟩ − ⟨n̂⟩2 , (B.210)

and study this quantity. How does the physics change as you move across the trap?

B.4.1.3 Exercise. Phase Coherence and Visibility

We define the visibility ν as

ν =
Imax − Imin

Imax + Imin

, (B.211)

where I is

I (q) =
1

L

L∑
j,k=1

e−i(j−k)q⟨â†i âj⟩ , (B.212)

q being one of the allowed quasimomenta: q = 2πk
L

, k = 0, 1, ..., L−1. We can interpret

I either as being the occupation number of the Bloch state with quasimomentum q

or simply as the Fourier transform of the boson green’s function. As suggested by

the name visibility, ν gives an indication of the visibility of matter wave interference

fringes arising from the superfluid phase. Compute this quantity for a system deep in

the Mott phase U/J = 20 and in the superfluid phase U/J = 1 and comment on the

phase coherence of the system. Also investigate what happens in the trapped case.
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B.4.2 Case Study 2:The Bose-Hubbard Hamiltonian–Quench Dynamics
and Loschmidt Echo.

In this Case study, we investigate the dynamics a Bose-Hubbard system, initially

in the Mott phase (U/J = 10), as U/J is quenched linearly to 1 in a time tR/2

and then back to the starting value. We characterize the system by its “Loschmidt

echo” |⟨Ψ (0) |Ψ (t)⟩|2, which provides the most definitive measure for how adiabatic

the quench and return process is. Shown in Figure B.11 is this quantity for a six-

site, six-particle system and a variety of quench times. We see that for rapid quench

times the system does not return to its initial state, but for longer quench times

it will. The calculations are performed by the case study BoseHubbard_Quench in

Bose_Hubbard_Wrapper.
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1
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1

Figure B.11: Loschmidt echo vs. 100t/tR for L = N = 6, χ = 50. Note that the more
rapid quench has difficulty returning to the initial state, whereas the more adiabatic
quenches recover more easily.

B.4.2.1 Exercise. Finite Size Effects During a Quench.

Investigate the behavior of the Loschmidt echo as a function of the ramp time

and system size. Be careful that your calculations are well converged (the cumulative

truncation error being < 10−9 is a rough estimate). Do you need much higher χ

or longer tR as you increase the system size? Why might this be so? Estimate the

scaling of tR with the system size.
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B.4.3 Case Study 3:Spinless Fermions

In this section we examine the behavior of a chain of tight-binding spinless fermions.

The main program we use to do so is fermionITP.f90 located in the Fermi_Wrapper

subdirectory of the Case_Studies directory. We use imaginary time to find the

ground state of a 50-site system with 29 fermions and open boundary conditions

(note that periodic boundary conditions are not supported for fermionic systems),

and then measure the on-site numbers and deviations, as well as the single particle

density matrix. We compute the single particle density matrix using both the corr

(phaseless) part of the measure derived type and the Fermicorr part, which gives

the correct Fermi phases to emphasize the drastic difference. The results are shown

in Figure B.12-Figure B.13.
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Figure B.12: ⟨n̂⟩ and deviations for a system of spinless fermions. The blue line
is the prediction for an infinite homogenous system of spinless fermions. Near the
boundaries the density oscillates, a phenomenon known as Friedel oscillations.

B.4.3.1 Exercise. Interacting Fermions.

The Pauli principle prohibits spinless fermions from interacting on-site, but they

can still interact via longer-range potentials. A model nearest-neighbor density-
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Figure B.13: Comparison of single-particle density matrices and their eigenvalues for
noninteracting spinless fermions with and without proper Fermi phases. (a) Single-
particle density matrix with Fermi phases for a system of spinless fermions. Note the
many nodes present in this function. (b) Eigenvalue spectrum of the single particle
density matrix with Fermi phases. These eigenvalues give the occupations of single
particle orbitals. In this case they give a Fermi distribution, as was to be expected.
(c) Single-particle density matrix without Fermi phases (Wrong!). This function has
no nodes, as was the case in the bosonic system. (d) Eigenvalue spectrum of the
single particle density matrix without Fermi phases (Wrong!). In this case we see
macroscopic occupation of a single particle orbital-the hallmark of Bose condensation.
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density interaction V
∑

⟨i,j⟩ n̂in̂j is controlled by the parameter V0 in the

fermionITP.nml input file. Study what happens as you increase the interactions.

B.4.4 Case Study 4:Dynamics of the XX Spin Chain

Download the paper “Real-time dynamics in spin-1/2 chains with adaptive time-

dependent DMRG” available from Prof. Ulrich Schollwöck’s website. In this paper

they perform a thorough analysis of the sources of error in time-dependent DMRG

by using an exactly known result concerning dynamics of a spin chain. Their re-

sults apply equally as well for TEBD. The main program XXDynamics.f90 found

in the Heisenberg_Wrapper subdirectory of Case_Studies performs the real time

propagation described in the paper. By changing the parameters in the input file

XXDynamics.nml, repeat their study of the error as a function of δt and time, and

observe the behavior of the runaway time as a function of χ. As exercises, study the

same details using the fifth order trotter decomposition instead of the second order

decomposition, and investigate the effects of using periodic over open boundary con-

ditions (restricting your simulations to times over which the boundary effects cannot

reach the spins in question).

B.5 OpenSourceTEBD v2.0

B.5.1 Package Layout

The OpenSourceTEBD package is written in a Core/Wrapper structure which al-

lows the sharing of core procedures and variables. The core routines and variables are

stored in VidalCore_v_2.0, HamiltonianCore_v_2.0, and ToolsCore_v_2.0, and

are enumerated below.
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B.5.1.1 Cores

ToolsCore_v_2.0 contains input/output routines which are useful to any pro-

gram. Specifically it contains:

1. io_module.f90: Contains i/o routines. See Sec. B.9.10 for details on these

routines.

2. timing_module.f90 has been deleted. The Fortran routine CPU_TIME (see this

website for implementation details) may be used in its place. Examples of its

use may also be found in the case study main programs.

HamiltonianCore_v_2.0 contains routines which define Fock spaces, operators,

and Hamiltonians in TEBD form. Specifically it contains:

1. Hamiltonian_tools_module.f90: This module contains declarations of all of

the operators that are used in the various hamiltonians, the procedures to define

initial states, and routines to compute vector-coupling coefficients. For infor-

mation on the operators, see Sec. B.8.2, and for information on the routines see

Sec. B.9.2.

2. Heisenberg_module.f90: This module contains routines to define the oper-

ators, Fock space, and Hamiltonian associated with the Heisenberg Chain of

Sec. B.3.7.1. For details on the routines see Sec. B.9.5.

3. Bose_hubbard_module.f90: This module contains routines to define the oper-

ators, Fock space, and Hamiltonian associated with the Bose Hubbard Model

of Sec. B.3.7.2. For details on the routines see Sec. B.9.3.

4. Fermi_hubbard_module.f90: This module contains routines to define the op-

erators, Fock space, and Hamiltonian associated with the Hubbard Model of

Sec. B.3.7.3. For details on the routines see Sec. B.9.4.
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5. spinS_module.f90: This module contains routines to define the operators, Fock

space, and Hamiltonian associated with the spin-s Bose Hubbard Model of

Sec. B.3.7.4. For details on the routines see Sec. B.9.6.

6. rotation_module.f90: This module contains routines to define the operators,

Fock space, and Hamiltonian associated with the Molecular Hubbard Model of

Sec. B.3.7.5. For details on the routines see Sec. B.9.7.

VidalCore_v_2.0 contains declarations of the derived types used in the pack-

age, allocation and deallocation routines, and the main routines to perform TEBD.

Specifically it contains:

1. TEBDtools_module.f90: This module contains declarations of the derived types

used in the package, allocation and deallocation routines, and functions that are

generally useful. For listings of the derived types, see Sec. B.7, and for procedure

listings see Sec. B.9.1.

2. local_operations_module.f90: This module contains the routines which per-

form one and two site operations on a state in the Vidal representation both

with and without number conservation. See Sec. B.9.8 for details on these

routines.

3. observables_module.f90: This module contains routines that extract observ-

ables from a state in the Vidal representation. See Sec. B.9.9 for details on

these routines.

4. propagation_module.f90: This module contains routines that propagate a

state in the Vidal representation in real or imaginary time. See Sec. B.9.11 for

details on these routines.

ExtensionsCore_v_2.0 contains routines which are under development and not

used in a general program. Those that are interested in helping develop or using these
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routines should contact the author. Specifically it contains:

1. PDtools_module.f90: This module generates a Bose-Hubbard or Hubbard

phase diagram by parallelizing over parameter space using MPI.

2. SitesParallelSetup_Module.f90: This module is a first attempt at intrinsic

parallelization. The tensor network is divided among processors, allowing the

trotter step to be parallelized.

B.5.1.2 Wrappers

Wrappers obey the following rules:

1. Each wrapper should contain its own readme, describing the purpose and im-

plementation of the program(s).

2. Each wrapper should contain a makefile with primary rules to make all of the

main programs in the wrapper. The makefile should reference all modules in

the core libraries and any additional ones in the wrapper itself.

3. The makefile should have the option ’make clean’ to remove all object files in

the wrapper.

4. Each main program in the wrapper should have a NAMELIST (.nml) input file.

5. Each wrapper should contain its own copy of system_parameters.f90 to set

its own defaults.

6. If a program is designed to run on a cluster, a qsub or similar script should be

included in the wrapper.

The Wrappers contained in the v2.0 release are Case studies found in the directory

Case_Studies. They are
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1. Heisenberg_Wrapper, which contains main programs to illustrate the Heisen-

berg Case studies in Sec. B.4.

2. Bose_Hubbard_Wrapper, which contains main programs to illustrate the Bose

Hubbard Case studies in Sec. B.4.

3. Fermi_Wrapper, which contains main programs to illustrate the spinless fermion

Case study in Sec. B.4.

B.6 Frequently Asked Questions

B.6.1 Regarding Fortran90+

1. Q: What does the _rKind at the end of real numbers mean?

A: One of the problems often encountered when porting programs from one

platform to another is that the terms “single precision” and “double preci-

sion” are not precisely defined. In most cases, single precision refers to a 32

bit long value and double precision to a 64 bit long value, but on some plat-

forms, most notably Cray supercomputers and hardware based on the 64-bit

Intel Itanium chip, the bit values are twice this. Fortran 90+ has a built in

means to automatically select the proper kind of real value to use based on the

required precision and range. It takes the form of an integer valued function

SELECTED_REAL_KIND(p=precision,r=range) which returns the smallest type

of real value that has precision decimal digits of accuracy and a range of the

exponent (in powers of 10) of range. In the code, we refer to the specified real

kind with global variable precis digits of precision and a range of range as

being KIND=rKind, with the real unit of this kind being 1.0_rKind and so on.

2. Q:What is a derived type?/What is this %t thing that follows Gammas?

A:In addition to the intrinsic data types: REAL, INTEGER, etc. , Fortran 90+

gives us a means to create our own data types and define operations on them.
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Such an object is called a derived type. For example, in TEBDtools_module, we

define the TYPE vector as

TYPE vector

REAL(KIND=rKind), POINTER :: v(:)

END TYPE vector

so that when we define an object, let’s call it my_vec, as being TYPE(vector),

e.g.

TYPE(vector) :: my_vec

my_vec is now a REAL 1-D pointer. This allows us to dynamically allocate and

deallocate such 1-D objects as

ALLOCATE(my_vec%v(vecsize))

...

DEALLOCATE(my_vec%v)

providing us with a great deal of flexibility, as we often do not know a priori

what the size of our objects needs to be. Note that the TYPE(vector) object

my_vec is followed by %v, as was specified by calling the general TYPE(vector)

“v(:)” in the definition above. This additional piece is known as the component

selector of that derived type.

Perhaps the greatest utility of derived types for our code is that they allow

us to create linked lists of non-scalar objects. For example, consider the four-

index local tensors Γ
[l]il
αlαl+1 . There are occasions when we wish to pass the entire

set of Gammas to a procedure, but there are also occasions when we wish to

pass a Gamma corresponding to a single site. We facilitate this by defining a

TYPE(tensor) as
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TYPE tensor

COMPLEX(KIND=rKind), POINTER :: t(:,:,:)

END TYPE tensor

and then defining a list of TYPE(tensor)s

TYPE(tensor), POINTER :: Gammas(:)

We now specify how many three-index Gammas we want as

ALLOCATE(Gammas(systemSize))

and then how large each Gamma is as

DO i=1,systemSize

ALLOCATE(Gammas(i)%t(chi,localSize,chi))

END DO

Gammas(l)%t(j,i,k) refers to the element with site index l, Schmidt indices

j and k, and on-site index i. If we wish to pass all of the Gammas into a

procedure, then we call the procedure as

CALL Procedure(...,Gammas,...)

whereas if we wish to pass only the Gamma on site l, we call the procedure as

CALL Procedure(...,Gammas(l)%t,...)

This flexibility coupled with the dynamic allocation abilities of derived types

clearly display their utility. A listing of all derived types and their component

selectors is found in Sec. B.7.
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3. Q: What are these INTERFACEs doing at the top of a module?

A: The interface allows us to define a generic procedure, one which chooses be-

tween the following MODULE PROCEDURES based on the number, KIND, etc

of arguments present when the interface is called. This allows for construction

of procedures that can accept real or complex arguments etc.

B.6.2 Regarding Code Output

1. Q: The code says ”*** Cannot open file named ...”

A: One of a few things will cause this. First of all, make sure that the directory

beginning the file name exists. Second, be sure that openUnit is being called

properly. If the file already exists and you call openUnit(...,’N’), the program

will give this error, as it is looking to open a new file and the file already

exists. I have designed the program to do this so that old data is not carelessly

overwritten. To overwrite any old data, simply leave the optional character at

the end of openUnit out (see Sec. B.9.10.5 for implementation details).

Please ask more!

B.7 Derived Type Listings

B.7.1 TEBDtools module Derived Type Listings

Contents:

TYPE vector

TYPE vectorComplex

TYPE matrix

TYPE tensor

TYPE vectorInt

TYPE matrixInt

TYPE matrixReal

TYPE mlocal

TYPE mavg
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TYPE mcorr

TYPE mcorrf

YPE entropy

B.7.1.1 vector

Description:

The derived type vector is a POINTER to a single-index array of REAL(KIND=rKind).

The component selector is v.

B.7.1.2 vector

Description:

The derived type vectorComplex is a POINTER to a single-index array of COM-

PLEX(KIND=rKind). The component selector is vc.

B.7.1.3 matrix

Description:

The derived type matrix is a POINTER to a two-index array of COMPLEX(KIND=rKind).

The component selector is m.

B.7.1.4 tensor

Description:

The derived type tensor is a POINTER to a three-index array of COMPLEX(KIND=rKind).

The component selector is t.
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B.7.1.5 vectorInt

Description:

The derived type vectorInt is a POINTER to a single-index array of INTEGER.

The component selector is vi.

B.7.1.6 matrixInt

Description:

The derived type matrixInt is a POINTER to a two-index array of INTEGER. The

component selector is mi.

B.7.1.7 matrixReal

Description:

The derived type matrixReal is a POINTER to a two-index array of REAL(KIND=rKind).

The component selector is mr.

B.7.1.8 mlocal

Description:

The derived type mlocal consists of an allocatable COMPLEX(KIND=rKind) rank-

two array with component selector Op and an allocatable COMPLEX(KIND=rKind)

rank-one array with component selector value. It is part of the measure derived

type, see Sec. B.3.6.6.
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B.7.1.9 mavg

Description:

The derived type mavg consists of an allocatable COMPLEX(KIND=rKind) rank-two

array with component selector Op and a COMPLEX(KIND=rKind) with component

selector value. It is part of the measure derived type, see Sec. B.3.6.6.

B.7.1.10 mcorr

Description:

The derived type mcorr consists of an allocatable COMPLEX(KIND=rKind) rank-

two array with component selector Op and an allocatable COMPLEX(KIND=rKind)

rank-two array with component selector value. It is part of the measure derived

type, see Sec. B.3.6.6.

B.7.1.11 mcorrf

Description:

The derived type mcorrf consists of an allocatable COMPLEX(KIND=rKind) rank-

two array with component selector Op and an allocatable COMPLEX(KIND=rKind)

rank-two array with component selector value. It is part of the measure derived

type, see Sec. B.3.6.6.

B.7.1.12 entropy

Description:

The derived type entropy consists of a REAL(KIND=rKind) with component selec-

tor qme, an allocatable COMPLEX(KIND=rKind) rank-one array with component

selector vN, an allocatable COMPLEX(KIND=rKind) rank-one array with compo-
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nent selector chain, and an allocatable COMPLEX(KIND=rKind) rank-two array

with component selector tbvN. It is part of the measure derived type, see Sec. B.3.6.6.

B.7.2 observables module Derived Type Listings

Contents:

TYPE measure

B.7.2.1 measure

Description:

The derived type measure consists of a REAL(KIND=rKind) with component selec-

tor en, LOGICALs with component selectors localpres, avgpres, entpres, corrpres,

and Fermicorrpres, a TYPE(entropy) with component selector ent, and pointers to

TYPE(mlocal), TYPE(mavg), TYPE(mcorr), and TYPE(mcorrf) with component

selectors local, avg, corr, and Fermicorr, respectively. The usage of this derived

type is discussed in Sec. B.3.6.6.

B.8 Global Variable Listings

B.8.1 system parameters Global Variable Listings

Contents:

precis

range

rKind

systemSize

maxFilling

trotterOrder

chiMin

chiMax

dtITP
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stepsForJudge

maxITPsteps

convCriterion1

convCriterion2

dtRTP

totalStep

stepsForStore

localSize

itpDir

itpExt

rtpDir

rtpExt

pdDir

print_switch

ncSwitch

ITPreadMPDSwitch

ITPwriteMPDSwitch

BoundaryCond

ITPopenKind

statInt

fileStatus

totNum

U2

VB

B.8.1.1 precis

Description:

precis is an INTEGER PARAMETER which is the number of decimal digits of preci-

sion required for real variables. It is used to define rKind through the SELECTED_REAL_KIND

construct, see Sec. B.6. The default value is 15.
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B.8.1.2 range

Description:

range is an INTEGER PARAMETER which is the range of the exponent required for

real variables in powers of 10. It is used to define rKind through the SELECTED_REAL_KIND

construct, see Sec. B.6. The default value is 30.

B.8.1.3 rKind

Description:

rKind is an INTEGER PARAMETER which defines the KIND of REAL variables

used in the code through the SELECTED_REAL_KIND construct, the global precision

precis, and the global range range, see Sec. B.6.

B.8.1.4 systemSize

Description:

systemSize is an INTEGER which defines the total number of lattice sites. The

default value is 4.

B.8.1.5 maxFilling

Description:

maxFilling is an INTEGER which defines the total number of particles allowed on

a single site. The default value is 1.
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B.8.1.6 trotterOrder

Description:

trotterOrder is an INTEGER which defines the order of the Trotter expansion used

for time evolution. The default value is 2. It may only be 2 or 5, see Secs. B.3.5.1

and B.3.5.1.

B.8.1.7 chiMin

Description:

chiMin is an INTEGER which defines the entanglement cutoff parameter used in the

first iteration of imaginary time propagation. The default value is 2.

B.8.1.8 chiMax

Description:

chiMax is an INTEGER which defines the entanglement cutoff parameter used in the

final iteration of imaginary time propagation. The default value is 5.

B.8.1.9 dtITP

Description:

dtITP is a REAL(KIND=rKIND) which defines the “infinitesimal” imaginary time

step. The default value is 0.0001 rKind

B.8.1.10 stepsForJudge

Description:

stepsForJudge is an INTEGER which gives the number of imaginary time steps
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between convergence tests. The default value is 100

B.8.1.11 maxITPsteps

Description:

maxITPsteps is an INTEGER which gives the total number of imaginary time steps

allowed. The default value is 2000.

B.8.1.12 convCriterion1

Description:

convCriterion1 is a REAL(KIND=rKIND) which defines the convergence crite-

rion for the first iteration of imaginary time propagation. The first iteration of

imaginary time propagation is said to have converged if the difference between all

λ
[l]
α at imaginary time τ and imaginary time τ+stepsForJudge∗dtITP is less than

convCriterion1. The default value is 0.00001 rKind.

B.8.1.13 convCriterion2

Description:

convCriterion2 is a REAL(KIND=rKIND) which defines the convergence crite-

rion for the last iteration of imaginary time propagation. The last iteration of

imaginary time propagation is said to have converged if the difference between all

λ
[l]
α at imaginary time τ and imaginary time τ+stepsForJudge∗dtITP is less than

convCriterion2. The default value is 0.000001 rKind.
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B.8.1.14 dtRTP

Description:

dtRTP is a COMPLEX(KIND=rKIND) which defines the “infinitesimal” real time

step. The default value is 0.1 rKind

B.8.1.15 totalStep

Description:

totalStep is an INTEGER which gives the total number of real time steps allowed.

The default value is 10000.

B.8.1.16 stepsForStore

Description:

stepsForStore is an INTEGER which gives the number of real time steps between

computation and output of a set of observables. The default value is 10

B.8.1.17 localSize

Description:

localSize is an INTEGER which defines the size of the local Hilbert space, denoted

d in theoretical discussions. Each Hamiltonian has its own local dimension function,

for example BoseHubbardLocalDim (Sec. B.9.3.1) for the Bose-Hubbard model.

B.8.1.18 itpDir

Description:

itpDir is a CHARACTER(32) which gives the directory for output files generated
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during imaginary time propagation. The default directory is “ITPDATA/”.

B.8.1.19 itpExt

Description:

itpExt is a CHARACTER(32) which gives the extension for output files generated

during imaginary time propagation. The default extension is “.dat”.

B.8.1.20 rtpDir

Description:

rtpDir is a CHARACTER(32) which gives the directory for output files generated

during real time propagation. The default directory is “RTPDATA/”.

B.8.1.21 rtpExt

Description:

rtpExt is a CHARACTER(32) which gives the extension for output files generated

during real time propagation. The default extension is “.dat”.

B.8.1.22 pdDir

Description:

pdDir is a CHARACTER(32) which gives the directory for output files generated by

the phase diagram extension. The default directory is “PD DATA/”.
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B.8.1.23 print switch

Description:

print_switch is a LOGICAL which controls non-error output to the screen. When

print_switch=.TRUE. messages are printed to the screen, and when print_switch=.FALSE. print-

ing to the screen are suppressed. The default value is .TRUE..

B.8.1.24 ncSwitch

Description:

ncSwitch is a LOGICAL which toggles the number conserving option. When

ncSwitch=.TRUE. the number conserving method is used, and when

ncSwitch=.FALSE. the number non-conserving method is used. The default value is

.FALSE..

B.8.1.25 ITPreadMPDswitch

Description:

ITPreadMPDswitch is a LOGICAL which toggles the generation of an initial state for

imaginary time propagation. When ITPreadMPDswitch=.TRUE. the initial state is

read from file (if possible), and when ITPreadMPDswitch=.FALSE. the initial state

is generated using one of the methods of Sec. B.3.3.2. The default value is .FALSE..

This variable is not used in any of the case studies.

B.8.1.26 ITPwriteMPDswitch

Description:

ITPwriteMPDswitch is a LOGICAL which toggles the output of a state after imag-

inary time propagation. When ITPwriteMPDswitch=.TRUE. the initial state is
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written to file, and when ITPwriteMPDswitch=.FALSE. it is not. The default value

is .FALSE.. This variable is not used in any of the case studies.

B.8.1.27 BoundaryCond

Description:

BoundaryCond is a CHARACTER which toggles the boundary conditions. When

BoundaryCond=’O’ the code uses open boundary conditions and when BoundaryCond=’P’

the code uses periodic boundary conditions. The default value is ’O’ Periodic bound-

ary conditions are not supported for fermionic systems.

B.8.1.28 ITPopenKind

Description:

ITPopenKind is a CHARACTER which toggles the format of output states. When

ITPopenKind=’S’ the state is output in human readable scientific notation, and when

ITPopenKind=’B’ the state is output in binary. The default value is ’S’. This variable

is not used in any of the case studies.

B.8.1.29 statInt

Description:

statInt is an INTEGER used as an error flag when dynamically allocating or deal-

locating memory.

B.8.1.30 fileStatus

Description:

fileStatus is an INTEGER used as an error flag when opening files.
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B.8.1.31 totNum

Description:

totNum is an INTEGER which defines the total number of particles when the number

conserving method is being used. The default value is 4.

B.8.2 Hamiltonian tools module Global Variable Listings

Contents:

jTunn

U0

mu0

V0

extPot

spin

spinSize

one_op

a_op

t_op

PBphase_op

FermiPhase_op

Conserv

lFac

a_opS

Sx_opS

Sy_opS

Sz_opS

Ssq_opS

VB_opS

ntot_opS

ttot_opS
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B.8.2.1 jTunn

Description:

jTunn is a REAL(KIND=rKind) giving the tunneling energy in the Bose-Hubbard

and Hubbard Hamiltonians, Sec. B.3.7.2 and Sec. B.3.7.3.

B.8.2.2 U0

Description:

U0 is a REAL(KIND=rKind) giving the on-site repulsion energy in the Bose-Hubbard

Hamiltonian, Sec. B.3.7.2, the Hubbard Hamiltonian, Sec. B.3.7.3, and the spin-1

Bose-Hubbard model Sec. B.3.7.4.

B.8.2.3 mu0

Description:

mu0 is a REAL(KIND=rKind) giving the chemical potential in the Bose-Hubbard

Hamiltonian, Sec. B.3.7.2, the Hubbard Hamiltonian, Sec. B.3.7.3, and the spin-s

Bose-Hubbard model Sec. B.3.7.4.

B.8.2.4 V0

Description:

V0 is a REAL(KIND=rKind) giving the nearest neighbor repulsion energy in the

(extended) Bose-Hubbard Hamiltonian, Sec. B.3.7.2.

B.8.2.5 extPot

Description:

extPot is an ALLOCATABLE REAL(KIND=rKind), DIMENSION(:) giving the

external potential in the Bose-Hubbard Hamiltonian, Sec. B.3.7.2, or the Hubbard

Hamiltonian, Sec. B.3.7.3.
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B.8.2.6 spin

Description:

spin is a REAL(KIND=rKind) which defines the spin of the constituent particles

in the spin-s Bose-Hubbard Hamiltonian (Sec. B.3.7.4) or the Hubbard Hamiltonian,

Sec. B.3.7.3.

B.8.2.7 spinSize

Description:

spinSize is an INTEGER which defines the number of allowed states per particle of

the constituent particles in the spin-s Bose-Hubbard Hamiltonian (Sec. B.3.7.4) or

the Hubbard Hamiltonian, Sec. B.3.7.3. It is simply a convenient integer shorthand

for 2spin+1.

B.8.2.8 one op

Description:

one_op is the one-site unit operator, 1̂, used in systems with and without inter-

nal degrees of freedom. It is constructed in CreateHeisenbergOps, Sec. B.9.5.2;

CreateFieldOps, Sec. B.9.3.2; CreateSpinSops, Sec. B.9.6.2; CreateRotationops,

Sec. B.9.7.7; and CreateRotationopsMzero, Sec. B.9.7.5.

KIND:

TYPE(matrixReal)
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B.8.2.9 a op

Description:

a_op is the one-site destruction operator for systems without internal degrees of free-

dom, âi. It is constructed in CreateFieldOps, Sec. B.9.3.2.

KIND:

TYPE(matrixReal)

B.8.2.10 t op

Description:

t_op is the two-site tunneling operator for systems without internal degrees of free-

dom, defined as t̂ =
(
â†i+1âi + h.c.

)
. It is constructed in CreateFieldOps, Sec. B.9.3.2.

KIND:

TYPE(matrixReal)

B.8.2.11 PBphase op

Description:

PBphase_op is the Pegg-Barnett Hermitian phase operator, defined in number repre-

sentation as[22]

θ̂ = θo +
(d− 1) π

d
+

2π

d

∑
n ̸=n′

exp [i (n′ − n) θo]

exp [i (n′ − n) 2π/d]− 1
|n′⟩⟨n| , (B.213)

where we set the reference phase θo to zero. It is constructed in CreateFieldOps,

Sec. B.9.3.2.
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KIND:

TYPE(matrix)

B.8.2.12 FermiPhase op

Description:

FermiPhase_op is (−1)n̂, where n̂ is the number operator for a single site. It is used

to construct operators which anticommute on different sites for fermionic codes, and

is constructed in CreateFermiSOps, B.9.4.2.

KIND:

TYPE(matrixReal)

B.8.2.13 Conserv

Description:

Conserv is a vector that stores a the number associated with an on-site state, used

in number-conserving code with internal degrees of freedom, see Sec. B.3.4.3. It’s ith

component is the quantum number for on-site state i. It is constructed in CreateHeisenbergOps,

Sec. B.9.5.2;CreateSpinSops, Sec. B.9.6.2; CreateRotationops, Sec. B.9.7.7; and

CreateRotationopsMzero, Sec. B.9.7.5

KIND:

TYPE(vectorInt)
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B.8.2.14 lFac

Description:

lFac is an array, indexed from 1 to 200, whose ith component is log [(i− 1)!]. It is

initialized in SetupLogFac, Sec. B.9.2.7.

KIND:

REAL(KIND=rKind), DIMENSION(:)

B.8.2.15 a opS

Description:

a_opS is the one-site destruction operator for systems with internal degrees of free-

dom, âi,α. It is constructed in CreateHeisenbergOps, Sec. B.9.5.2; CreateSpinSops,

Sec. B.9.6.2 and CreateRotationops, Sec. B.9.7.7.

KIND:

TYPE(matrixReal), POINTER, DIMENSION(:)

B.8.2.16 Sx opS

Description:

Sx_opS is the one-site spin operator in the x direction, Ŝx, defined as in Eq. (B.159). It

is constructed in CreateHeisenbergOps, Sec. B.9.5.2 and CreateSpinSops, Sec. B.9.6.2.

KIND:

TYPE(matrixReal)
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B.8.2.17 Sy opS

Description:

Sy_opS is the one-site spin operator in the y direction, Ŝy, defined as in Eq. (B.159). It

is constructed in CreateHeisenbergOps, Sec. B.9.5.2 and CreateSpinSops, Sec. B.9.6.2.

Note that this operator is (necessarily) complex, unlike Sx_opS and Sz_opS.

KIND:

TYPE(matrix)

B.8.2.18 Sz opS

Description:

Sz_opS is the one-site spin operator in the z direction, Ŝz, defined as in Eq. (B.159). It

is constructed in CreateHeisenbergOps, Sec. B.9.5.2 and CreateSpinSops, Sec. B.9.6.2.

KIND:

TYPE(matrixReal)

B.8.2.19 Ssq opS

Description:

Ssq_opS is the one-site total spin operator, defined as Ŝ2
z + Ŝ2

y + Ŝ2
z . It is constructed

in CreateHeisenbergOps, Sec. B.9.5.2 and CreateSpinSops, Sec. B.9.6.2.

KIND:

TYPE(matrixReal)

516



B.8.2.20 VB opS

Description:

VB_opS is the quadratic Zeeman operator, defined as in Eq. (B.161). It is constructed

in CreateSpinSops, Sec. B.9.6.2.

KIND:

TYPE(matrixReal)

B.8.2.21 ntot opS

Description:

ntot_opS is the total one-site number operator for systems with spin degrees of free-

dom, defined as n̂i =
∑

α â
†
i,αâi,α. It is constructed in Sec. B.9.5.2 and CreateSpinSops,

Sec. B.9.6.2.

B.8.2.22 ttot opS

Description:

ttot_opS is the total two-site tunneling operator for systems with spin degrees of free-

dom, defined as t̂i =
∑

α

(
â†i+1,αâi,α + h.c.

)
. It is constructed in CreateSpinSops,

Sec. B.9.6.2.

B.8.3 Heisenberg module Global Variable Listings

Contents:

Jx

Jy

Jz

magH
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B.8.3.1 Jx

Description:

Jx is a REAL(KIND=rKind) giving the coupling of the x-component of spin in the

Heisenberg spin chain, Sec. B.3.7.1.

B.8.3.2 Jy

Description:

Jy is a REAL(KIND=rKind) giving the coupling of the y-component of spin in the

Heisenberg spin chain, Sec. B.3.7.1.

B.8.3.3 Jz

Description:

Jz is a REAL(KIND=rKind) giving the coupling of the z-component of spin in the

Heisenberg spin chain, Sec. B.3.7.1.

B.8.3.4 magH

Description:

magH is a REAL(KIND=rKind) giving the strength of the magnetic field in the Heisen-

berg spin chain, Sec. B.3.7.1.

B.8.4 spinS module Global Variable Listings

Contents:

U2

VB

B.8.4.1 U2

Description:

U2 is a REAL(KIND=rKind) giving the spin-dependent on-site repulsion energy in

the spin-1 Bose-Hubbard model Sec. B.3.7.4.

518



B.8.4.2 VB

Description:

VB is a REAL(KIND=rKind) giving the quadratic Zeeman strength in the spin-1

Bose-Hubbard model Sec. B.3.7.4.

B.8.5 rotation module Global Variable Listings

Contents:

rotLevel

rotSize

Jcut

qDC

qAC

rotConst

dip

eDC

eAC

omega

detuning

alphaBar

deltaAlpha

Udipdip

ERecoil

LattHeight

EDC_opR

EAC_opR

ttot_opR

dipdip_opR

INTEGER :: LWORK, LIWORK, LRWORK

INTEGER, ALLOCATABLE :: IWORK(:)

REAL(KIND=rKind), ALLOCATABLE :: W(:), RWork(:)

COMPLEX(KIND=rKind) ,ALLOCATABLE :: Work(:)
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B.8.5.1 rotLevel

Description:

rotLevel is an INTEGER PARAMETER which defines the largest number of ro-

tational quanta allowed per particle of the constituent particles in the Molecular

Hubbard Hamiltonian (Sec. B.3.7.5).

B.8.5.2 rotSize

Description:

rotSize is an INTEGER which defines the number of allowed states per particle of

the constituent particles in the Molecular Hubbard Hamiltonian (Sec. B.3.7.5). It is

simply a convenient shorthand for (1+rotLevel)2.

B.8.5.3 Jcut

Description:

Jcut is an INTEGER PARAMETER which defines the largest number of rotational

quanta used to construct the dressed basis for the Molecular Hubbard Hamiltonian

(Sec. B.3.7.5).

B.8.5.4 qDC

Description:

qDC is an INTEGER PARAMETER which defines the space-fixed spherical polariza-

tion for the DC electric field used in the Molecular Hubbard Hamiltonian (Sec. B.3.7.5).
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B.8.5.5 qAC

Description:

qAC is an INTEGER PARAMETER which defines the space-fixed spherical polariza-

tion for the AC electric field used in the Molecular Hubbard Hamiltonian (Sec. B.3.7.5).

B.8.5.6 rotConst

Description:

rotConst is a REAL(KIND=rKind) PARAMETER which defines the rotational con-

stant of the molecular species considered in the Molecular Hubbard Hamiltonian

(Sec. B.3.7.5).

B.8.5.7 dip

Description:

dip is a REAL(KIND=rKind) PARAMETER which defines the permanent dipole

moment of the molecular species considered in the Molecular Hubbard Hamiltonian

(Sec. B.3.7.5).

B.8.5.8 eDC

Description:

eDC is a REAL(KIND=rKind) which defines the strength of the DC electric field used

in the Molecular Hubbard Hamiltonian (Sec. B.3.7.5).
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B.8.5.9 eAC

Description:

eAC is a REAL(KIND=rKind) which defines the strength of the AC electric field used

in the Molecular Hubbard Hamiltonian (Sec. B.3.7.5).

B.8.5.10 omega

Description:

omega is a REAL(KIND=rKind) which defines the frequency of the AC electric field

used in the Molecular Hubbard Hamiltonian (Sec. B.3.7.5).

B.8.5.11 detuning

Description:

omega is a REAL(KIND=rKind) which defines the detuning from resonance of the

AC electric field used in the Molecular Hubbard Hamiltonian (Sec. B.3.7.5).

B.8.5.12 alphaBar

Description:

alphaBar is a REAL(KIND=rKind) PARAMETER which defines the average polar-

izability of the molecular species considered in the Molecular Hubbard Hamiltonian

(Sec. B.3.7.5).

B.8.5.13 deltaAlpha

Description:

deltaAlpha is a REAL(KIND=rKind) PARAMETER which defines the polarizabil-
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ity anisotropy of the molecular species considered in the Molecular Hubbard Hamil-

tonian (Sec. B.3.7.5).

B.8.5.14 Udipdip

Description:

Udipdip is a REAL(KIND=rKind) PARAMETER which defines the energy scale of

the dipole-dipole term of the Molecular Hubbard Hamiltonian (Sec. B.3.7.5).

B.8.5.15 ERecoil

Description:

ERecoil is a REAL(KIND=rKind) PARAMETER which defines the recoil energy of

an optical lattice.

B.8.5.16 LattHeight

Description:

LattHeight is a REAL(KIND=rKind) PARAMETER which defines the ersatz lattice

height used in the scaled Molecular Hubbard Hamiltonian (Sec. B.3.7.5).

B.8.5.17 EDC opR

Description:

EDC_opR is the Rotational+DC Hamiltonian operator for the MHH. It is constructed

in CreateRotationops, Sec. B.9.7.7 and CreateRotationopsMzero, Sec. B.9.7.5.

KIND:

TYPE(matrixReal)
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B.8.5.18 EAC opR

Description:

EAC_opR is the AC Hamiltonian operator for the MHH. It is constructed in CreateRotationops,

Sec. B.9.7.7 and CreateRotationopsMzero, Sec. B.9.7.5.

KIND:

TYPE(matrixReal)

B.8.5.19 ttot opR

Description:

ttot_opR is the total two-site tunneling operator for systems with rotational degrees

of freedom. It is constructed in CreateRotationops, Sec. B.9.7.7 and CreateRotationopsMzero,

Sec. B.9.7.5.

KIND:

TYPE(matrixReal)

B.8.5.20 dipdip opR

Description:

dipdip_opR is the dipole-dipole Hamiltonian operator. It is constructed in CreateRotationops,

Sec. B.9.7.7 and CreateRotationopsMzero, Sec. B.9.7.5.

KIND:

TYPE(matrixReal)
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Descriptions:

The remaining global variables in rotation module are used in the LAPACK routine

DSYEV to diagonalize a real symmetric matrix, and have the same names as their

counterparts in the LAPACK manpages. See the webpage for DSYEV.

B.8.6 local operations module Global Variable Listings

Contents:

CHARACTER(1) :: jobu_SVD, jobvt_SVD

INTEGER :: matrixSizeSM_SVD, workSizeSM_SVD, matrixSizeLG_SVD, workSizeLG_SVD

INTEGER :: matrixSize_SVD, workSize_SVD, info_SVD, matrixSizeL_SVD, matrixSizeT_SVD

REAL(KIND=rKind), ALLOCATABLE :: rworkSM_SVD(:)

COMPLEX(KIND=rKind), ALLOCATABLE :: workSM_SVD(:)

REAL(KIND=rKind), ALLOCATABLE :: rworkLG_SVD(:)

COMPLEX(KIND=rKind), ALLOCATABLE :: workLG_SVD(:)

REAL(KIND=rKind), ALLOCATABLE :: rwork_SVD(:)

COMPLEX(KIND=rKind), ALLOCATABLE :: work_SVD(:)

Descriptions:

The global variables in local_operations_module all correspond to inputs of the

LAPACK routine ZGESVD which performs the singular value decomposition on a

general, possibly rectangular, COMPLEX double precision (64-bit) matrix. The im-

plementation details are found on this website. The correspondence between our

global variables and the argument names given is given in Table B.4. The variables

not in this table are the sizes of variables in this table, and can be clearly determined

from the procedures SVDInit discussed in Sec. B.9.8.1 (Number non-conserving) or

SVDInitNC discussed in Sec. B.9.8.16 (Number conserving).

B.9 Procedure Listings

B.9.1 TEBDtools module Procedure Listings

Contents:
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Table B.4: Correspondence between global variables and ZGESVD arguments

Global variable name ZGESVD Argument name
jobu_SVD JOBU

jobvt_SVD JOBVT

matrixSizeLG_SVD M, N, LDA, LDU, LDVT, LDWORK
workSizeLG_SVD WORK

info_SVD INFO

rworkLG_SVD WORK2

INTERFACE matrix_exponential

MODULE PROCEDURE matrix_exponential_r, matrix_exponential_c

INTERFACE tensorProduct

MODULE PROCEDURE tensorProd_r, tensorProd_c

tensorProd_rc,tensorProd_cr

tensorProd_rs, tensorProd_cs

tensorProd_rcs,tensorProd_crs

INTERFACE kronDelta

MODULE PROCEDURE kronDelta_r, kronDelta_c

INTERFACE TraceMatmul

MODULE PROCEDURE TraceMatmul_r,TraceMatmul_c,

TraceMatmul_rc,TraceMatmul_cr

TraceMatmul_rf,TraceMatmul_cf,

TraceMatmul_rcf,TraceMatmul_crf

FUNCTION Factorial

FUNCTION BinomialCoef

SUBROUTINE AllocateGamLam

SUBROUTINE CopyGamLam

SUBROUTINE DeallocateGamLam

SUBROUTINE AllocateLabel

SUBROUTINE CopyLabel

SUBROUTINE DeallocateLabel

SUBROUTINE AllocateIndexLR

SUBROUTINE DeallocateIndexLR
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SUBROUTINE AllocateBlockTheta

SUBROUTINE DeallocateBlockTheta

SUBROUTINE AllocateUSV

SUBROUTINE DeallocateUSV

SUBROUTINE AllocateSSflat

SUBROUTINE AllocateOps

SUBROUTINE DeallocateOps

SUBROUTINE AllocateProp

SUBROUTINE DeallocateProp

INTERFACE ConstructPropagators

MODULE PROCEDURE OLDConstructPropagators, NEWConstructPropagators

B.9.1.1 matrix exponential

Description:

matrix_exponential(A,Exp_A,tau,n) computes exp [−tau ∗ A] for a real n× n ma-

trix A and real tau and exp [−i ∗ tau ∗ A] for complex n×n matrix A and complex

tau, storing this in Exp A. The routine assumes A is symmetric if real and Hermitian

if complex. The routine diagonalizes A, computes the matrix with exponentials of

the eigenvalues on the diagonal, and then transforms back to the original basis of A

using the matrix with A’s eigenvectors as columns. This procedure uses the LAPACK

routines DSYEV and ZHEEVD for real and complex matrices, respectively.

Type:

SUBROUTINE

Arguments:

A is REAL(KIND=rKind), DIMENSION(n,n) or COMPLEX(KIND=rKind), DI-

MENSION(n,n)

tau is REAL(KIND=rKind) or COMPLEX(KIND=rKind) and must match the type
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of A

n is INTEGER

Exp A is REAL(KIND=rKind), DIMENSION(n,n) or COMPLEX(KIND=rKind),

DIMENSION(n,n) and must match the type of A and tau.

B.9.1.2 tensorProd

Description:

tensorProd(A,B) returns the tensor product of matrices A and B, and tensorProd(AXB,A,B)

computes the tensor product of matrices A and B and stores it in AXB. The proce-

dure accepts real or complex A or B.

Types:

SUBROUTINE

REAL(KIND=rKind) or COMPLEX(KIND=rKind), DIMENSION(:,:) FUNCTION

Syntaxes:

result=tensorProd(A,B)

CALL tensorProd(AXB,A,B)

Arguments:

A is REAL(KIND=rKind), DIMENSION(:,:) or COMPLEX(KIND=rKind), DI-

MENSION(:,:) and is INTENT(IN)

B is REAL(KIND=rKind), DIMENSION(:,:) or COMPLEX(KIND=rKind), DI-

MENSION(:,:) and is INTENT(IN)

AXB is REAL(KIND=rKind), DIMENSION(:,:) if both A and B are REAL(KIND=rKind),

and COMPLEX(KIND=rKind), DIMENSION(:,:) otherwise.
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B.9.1.3 kronDelta

Description:

kronDelta(vec1,vec2, dim) returns 1 if the vectors vec1 and vec2 (each of size dim)

are identical and zero otherwise. The procedure accepts real or complex vec1 or vec2.

Type:

INTEGER FUNCTION

Arguments:

vec1 is REAL(KIND=rKind), DIMENSION(:) or COMPLEX(KIND=rKind), DI-

MENSION(:) and is INTENT(IN)

vec2 is REAL(KIND=rKind), DIMENSION(:) or COMPLEX(KIND=rKind), DI-

MENSION(:) is INTENT(IN), and must match the type of vec1

dim is INTEGER and INTENT(IN)

B.9.1.4 TraceMatmul

Description:

TraceMatmul(A,B) returns the trace of the matrix resulting from matrix-matrix mul-

tiplication of A and B, and

TraceMatmul(res,A,B) computes the trace of the matrix resulting from matrix-

matrix multiplication of A and B, and stores this in res. The procedure accepts

real or complex A or B.

Types:

REAL(KIND=rKind) or COMPLEX(KIND=rKind) FUNCTION

SUBROUTINE
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Syntaxes:

result=TraceMatmul(A,B)

CALL TraceMatmul(res,A,B)

Arguments:

A is REAL(KIND=rKind), DIMENSION(:,:) or COMPLEX(KIND=rKind), DI-

MENSION(:,:) and is INTENT(IN)

B is REAL(KIND=rKind), DIMENSION(:,:) or COMPLEX(KIND=rKind), DI-

MENSION(:,:) and is INTENT(IN)

res is REAL(KIND=rKind) if both A and B are REAL(KIND=rKind), and COM-

PLEX(KIND=rKind) otherwise.

B.9.1.5 Factorial

Description:

Factorial(n) returns the factorial of the integer n.

Type:

INTEGER FUNCTION

Arguments:

n is INTEGER and INTENT(IN)
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B.9.1.6 BinomialCoef

Description:

BinomialCoef(n,m) returns the binomial coefficient

 n

m

.

Type:

REAL(KIND=rKind) FUNCTION

Arguments:

n, m are INTEGER and INTENT(IN)

B.9.1.7 AllocateGamLam

Description:

AllocateGamLam(Gammas,Lambdas,chi) allocates the lists of local tensors Gammas

and Lambdas with entanglement cutoff chi and local dimension localSize.

Type:

SUBROUTINE

Arguments:

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

chi is INTEGER and of INTENT(IN)
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B.9.1.8 CopyGamLam

Description:

CopyGamLam(GammasCopy, LambdasCopy, GammasOrig, LambdasOrig) copies the val-

ues from GammasOrig to GammasCopy, and from LamdasOrig to LambdasCopy.

Type:

SUBROUTINE

Arguments:

GammasCopy, GammasOrig are TYPE(tensor), DIMENSION(:), POINTER

LambdasCopy, LambdasOrig are TYPE(vector), DIMENSION(:), POINTER

B.9.1.9 DeallocateGamLam

Description:

DeallocateGamLam(Gammas, Lambdas) deallocates the lists of local tensors Gammas

and Lambdas.

Type:

SUBROUTINE

Arguments:

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER
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B.9.1.10 AllocateLabel

Description:

AllocateLabel(LabelLeft,LabelRight,chi) allocates the lists of number conserv-

ing vectors LabelLeft and LabelRight with entanglement cutoff chi. See Sec. B.3.4.3

for more details on these objects.

Type:

SUBROUTINE

Arguments:

LabelLeft, LabelRight are TYPE(vectorInt), DIMENSION(:), POINTER

chi is INTEGER and of INTENT(IN)

B.9.1.11 CopyLabel

Description:

CopyLabel(LabLCopy, LabRCopy, LabLOrig, LabROrig) copies the list of number

conserving vectors from LabROrig to LabRCopy, and from LabLOrig to LabLCopy.

Type:

SUBROUTINE

Arguments:

LabLCopy, LabRCopy, LabLOrig, LabROrig are TYPE(vectorInt), DIMENSION(:),

POINTER
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B.9.1.12 DeallocateLabel

Description:

DeallocateLabel(LabelLeft, LabelRight) deallocates the lists of number conserv-

ing vectors LabelLeft and LabelRight.

Type:

SUBROUTINE

Arguments:

LabelLeft, LabelRight are TYPE(vectorInt), DIMENSION(:), POINTER

B.9.1.13 AllocateIndexLR

Description:

AllocateIndexLR(indL, indR, BlockSize) allocates the lists of indices for the

Block diagonal Theta used in number conserving codes. BlockSize gives the size

of each block in the Block diagonal Theta. See Sec. B.3.4.3 for more details.

Type:

SUBROUTINE

Arguments:

indL, indR are TYPE(matrixInt), DIMENSION(:), POINTER

BlockSize is an INTEGER, DIMENSION(:,:) and is INTENT(IN)
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B.9.1.14 DeallocateIndexLR

Description:

DeallocateIndexLR(indL, indR) deallocates the lists of indices for the Block diag-

onal Theta used in number conserving codes. See Sec. B.3.4.3 for more details.

Type:

SUBROUTINE

Arguments:

indL, indR are TYPE(matrixInt), DIMENSION(:), POINTER

B.9.1.15 AllocateBlockTheta

Description:

AllocateBlockTheta(BlockTheta, BlockSize) allocates the Block diagonal Theta

used in number conserving codes. BlockSize gives the size of each block in the Block

diagonal Theta. See Sec. B.3.4.3 for more details.

Type:

SUBROUTINE

Arguments:

BlockTheta is TYPE(matrix), DIMENSION(:), POINTER

BlockSize is INTEGER, DIMENSION(:,:) and is INTENT(IN)
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B.9.1.16 DeallocateBlockTheta

Description:

DeallocateBlockTheta(BlockTheta) deallocates the Block diagonal Theta used in

number conserving codes. See Sec. B.3.4.3 for more details.

Type:

SUBROUTINE

Arguments:

BlockTheta is TYPE(matrix), DIMENSION(:), POINTER

B.9.1.17 AllocateUSV

Description:

AllocateUSV(US, SS, VS, BlockSize) allocates the SVD arrays US, SS, and VS

used in number conserving codes. BlockSize gives the size of each block in the Block

diagonal Theta. See Sec. B.3.4.3 for more details.

Type:

SUBROUTINE

Arguments:

US, VS are TYPE(matrix), DIMENSION(:), POINTER

SS is TYPE(vector), DIMENSION(:), POINTER

BlockSize is an INTEGER, DIMENSION(:,:) and is INTENT(IN)
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B.9.1.18 DeallocateUSV

Description:

DeallocateUSV(US, SS, VS) deallocates the SVD arrays US, SS, and VS used in

number conserving codes. See Sec. B.3.4.3 for more details.

Type:

SUBROUTINE

Arguments:

US, VS are TYPE(matrix), DIMENSION(:), POINTER

SS is TYPE(vector), DIMENSION(:), POINTER

B.9.1.19 AllocateSSflat

Description:

AllocateSSflat(ssflat, BlockSize) allocates the array ssflat, which is used to

combine all of the singular values from the individual blocks of the block diagonal

Theta into one long array. It is used in number conserving codes. BlockSize gives the

size of each block in the Block diagonal Theta. See Sec. B.3.4.3 for more details.

Type:

SUBROUTINE

Arguments:

ssflat is TYPE(vector)

BlockSize is an INTEGER, DIMENSION(:,:) and is INTENT(IN)
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B.9.1.20 AllocateOps

Description:

AllocateOps(Ops,numops,opsize) allocates a numops length list of opsize×opsize

TYPE(matrix) named Ops.

Type:

SUBROUTINE

Arguments:

Ops is TYPE(matrix), DIMENSION(:), POINTER

numops, opsize are INTEGER, INTENT(IN)

B.9.1.21 DeallocateOps

Description:

DeallocateOps(Ops,numops) deallocates a numops length list of TYPE(matrix)

named Ops.

Type:

SUBROUTINE

Arguments:

Ops is TYPE(matrix), DIMENSION(:), POINTER

numops is INTEGER, INTENT(IN)

538



B.9.1.22 AllocateProp

Description:

AllocateProp(U) allocates the propagator TYPE(matrix) U based on the bound-

ary conditions and order of trotter expansion. This routine supersedes the usage of

AllocateOps in v1.0.

Type:

SUBROUTINE

Arguments:

U is TYPE(matrix), DIMENSION(:), POINTER

B.9.1.23 DellocateProp

Description:

DeallocateProp(U) deallocates the propagator TYPE(matrix) U based on the bound-

ary conditions and order of trotter expansion. This routine supersedes the usage of

AllocateOps in v1.0.

Type:

SUBROUTINE

Arguments:

U is TYPE(matrix), DIMENSION(:), POINTER

539



B.9.1.24 ConstructPropagators

Description:

ConstructPropagators(H, U, dtodd, dteven) creates a systemSize length list of

second order trotter propagators U from the list of two-site Hamiltonians H with odd

site time step dtodd and even site time step dteven. Explicitly, U(i) is exp [−i ∗ dtodd ∗ Hi]

for i odd and exp [−i ∗ dteven ∗ Hi] for i even. ConstructPropagators(H, U, dt)

constructs a general propagator based on the boundary conditions and order of trotter

expansion, see Sec. B.3.5 for details. The old syntax is being kept only for consistency

with v1.0 and is pending deletion in the next version.

Type:

SUBROUTINE

Syntaxes:

CALL ConstructPropagators(H, U, dtodd, dteven)

CALL ConstructPropagators(H, U, dt)

Arguments:

H, U are TYPE(matrix), DIMENSION(:), POINTER

dtodd, dteven, dt are COMPLEX(KIND=rKind), INTENT(IN)

B.9.2 Hamiltonian tools module Procedure Listings

Contents:

SUBROUTINE ProductStateMPD

SUBROUTINE ProductStateLabels

SUBROUTINE AllStates

SUBROUTINE onsiteStateListIdof
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RECURSIVE SUBROUTINE onsiteIdofInner

SUBROUTINE InitialSetNC

SUBROUTINE SetupLogFac

FUNCTION LogTriCoef

FUNCTION TriTest

FUNCTION IntTest

FUNCTION MTest

FUNCTION tIndTJ

FUNCTION tIndSJ

FUNCTION ThreeJ

FUNCTION Clebsch

FUNCTION SixJ

FUNCTION NineJ

INTERFACE HamiOneSite

MODULE PROCEDURE HamiOneSite_r, HamiOneSite_c

INTERFACE HamiLeft

MODULE PROCEDURE HamiLeft_r, HamiLeft_c

INTERFACE HamiRight

MODULE PROCEDURE HamiRight_r, HamiRight_c

B.9.2.1 ProductStateMPD

Description:

ProductStateMPD(Gammas, Lambdas, carray) constructs the Vidal decomposition

of a product state whose coefficients are stored in carray, and then imprints this de-

composition on the lists of local tensors Gammas and Lambdas as in Eqs. (B.59) and

(B.60). The (i, l) element of carray is the coefficient of the ith on-site state located at

site l.

Type:

SUBROUTINE
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Arguments:

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

carray is COMPLEX(KIND=rKind), Dimension(:,:) and is INTENT(IN)

B.9.2.2 ProductStateLabels

Description:

ProductStateLabels initializes the lists of number conserving vectors based on the

MPS stored in carray. This routine should be used in conjunction with ProductStateMPD

(Sec. B.9.2.1) when the number conserving routines are to be used. intDegFree is an

OPTIONAL argument that specifies the presence of internal degrees of freedom.

Type:

SUBROUTINE

Syntaxes:

CALL ProductStateLabels(LabelLeft, LabelRight, carray)

CALL ProductStateLabels(LabelLeft, LabelRight, carray, intDegFree)

Arguments:

LabelLeft, LabelRight are TYPE(vectorInt), DIMENSION(:), POINTER

carray is COMPLEX(KIND=rKind), Dimension(:,:) and is INTENT(IN)

intDegFree is an INTEGER, INTENT(IN) and is OPTIONAL
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B.9.2.3 AllStates

Description:

AllStates(Gammas, Lambdas) initializes the local tensor lists Gammas and Lamb-

das as a product state that contains all possible states in the same amount, see

Eqs. (B.64) and (B.65). It is used as the inital state for imaginary time propagation

in the absence of symmetries.

Type:

SUBROUTINE

Arguments:

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

B.9.2.4 onsiteStateListIdof

Description:

onsiteStateListIdof(list, idofSize) indexes the Fock space with up to maxFilling

particles per site and idofSize internal states per particle and stores the index and

number in each component in the variable list. This routine calls onsiteStateListIdofInner

below. Both routines are described in detail in Sec. B.3.8.2.

Type:

SUBROUTINE

Arguments:

list is COMPLEX(KIND=rKind), DIMENSION(:,:), INTENT(OUT)
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idofSize is INTEGER, INTENT(INOUT)

B.9.2.5 onsiteIdofInner

Description:

onsiteIdofInner(list, nmax, counter, m, n, idofSize) is a recurisve routine

that indexes the Fock space with up to nmax particles per site and idofSize internal

states per particle and stores the indexing in the variable list. The routine is described

in detail in Sec. B.3.8.2.

Type:

RECURSIVE SUBROUTINE

Arguments:

list is COMPLEX(KIND=rKind), DIMENSION(:,:), INTENT(INOUT)

nmax, m, counter are INTEGER, INTENT(INOUT)

n is INTEGER, DIMENSION(:), INTENT(INOUT)

idofSize is INTEGER, INTENT(INOUT)

B.9.2.6 InitialSetNC

Description:

InitialSetNC initializes the local tensor lists Gammas and Lambdas and lists of

number conserving vectors LabelLeft and LabelRight as the ”wedding cake” prod-

uct state that is an eigenstate of total number, see Sec. B.3.3.2. It is used as the

inital state for imaginary time propagation when number is conserved. intDegFree

is an OPTIONAL argument that specifies the presence of internal degrees of freedom.
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Type:

SUBROUTINE

Syntaxes:

CALL InitialSetNC(Gammas, Lambdas, LabelLeft, LabelRight)

CALL InitialSetNC(Gammas, Lambdas, LabelLeft, LabelRight, intDegFree)

Arguments:

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

LabelLeft, LabelRight are TYPE(vectorInt), DIMENSION(:), POINTER

intDegFree is an INTEGER, INTENT(IN) and is OPTIONAL

B.9.2.7 SetupLogFac

Description:

SetupLogFac() initializes the global vector lFac such that lFac(n)=log [(n− 1)!]

for 1 ≤ n ≤ 200. This routine should be run once before any of the vector coupling

coefficient routines are run.

Type:

SUBROUTINE

Arguments:

None
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B.9.2.8 LogTriCoef

Description:

LogTriCoef(X1,X2,X3) returns the logarithm of the triangle coefficient△(X1,X2,X3)

defined in Eq. (B.183). SetupLogFac() should be run before using this routine.

Type:

REAL(KIND=rKind) FUNCTION

Arguments:

X1,X2,X3 are REAL(KIND=rKind) and INTENT(IN)

B.9.2.9 TriTest

Description:

TriTest(J1,J2,J3) returns 1 if the triad J1, J2, J3 satisfies the triangle inequality

|J1− J2| ≤ J3 ≤ J1 + J2 and zero if it doesn’t.

Type:

REAL(KIND=rKind) FUNCTION

Arguments:

J1,J2,J3 are REAL(KIND=rKind) and INTENT(IN)

B.9.2.10 IntTest

Description:

IntTest(J1,J2,J3) returns 1 if J1+J2+J3 is integer and zero if it isn’t. We define
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the real number x as “integer” if it satisfies ⌊x⌋ = ⌈x⌉.

Type:

REAL(KIND=rKind) FUNCTION

Arguments:

J1,J2,J3 are REAL(KIND=rKind) and INTENT(IN)

B.9.2.11 MTest

Description:

MTest(M1,J1) returns 1 if -J1≤M1≤J1 and M1+J1 is integer, and zero otherwise.

We define the real number x as “integer” if it satisfies ⌊x⌋ = ⌈x⌉.

Type:

REAL(KIND=rKind) FUNCTION

Arguments:

M1, J1 are REAL(KIND=rKind) and INTENT(IN)

B.9.2.12 tIndTJ

Description:

tIndTJ(X1,X2,X3,Y1,Y2,Y3) returns the logarithm of the coefficient preceding the

summation in the Racah formula for the Wigner 3-j coefficient, Eq. (B.182). SetupLogFac()

should be run before using this routine.
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Type:

REAL(KIND=rKind) FUNCTION

Arguments:

X1,X2,X3,Y1,Y2,Y3 are REAL(KIND=rKind) and INTENT(IN)

B.9.2.13 tIndSJ

Description:

tIndSJ(X1,X2,X3,Y1,Y2,Y3) returns the logarithm of the coefficient preceding the

summation in the Racah formula for the Wigner 6-j coefficient, Eq. (B.191). SetupLogFac()

should be run before using this routine.

Type:

REAL(KIND=rKind) FUNCTION

Arguments:

X1,X2,X3,Y1,Y2,Y3 are REAL(KIND=rKind) and INTENT(IN)

B.9.2.14 ThreeJ

Description:

ThreeJ(J1D,M1D,J2D,M2D,J3D,M3D) calculates the Wigner 3-j coefficient J1D/2 J2D/2 J3D/2

M1D/2 M2D/2 M3D/2

 using the Racah formula, Eq. (B.182). Note that

the arguments of this procedure are integers twice the value of the inputs to the 3-j

symbol. SetupLogFac() should be run before using this routine.
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Type:

REAL(KIND=rKind) FUNCTION

Arguments:

J1D,M1D,J2D,M2D,J3D,M3D are INTEGER and INTENT(IN)

B.9.2.15 Clebsch

Description:

Clebsch(J1D,M1D,J2D,M2D,JD,MD) calculates the Clebsch-Gordan coefficient

⟨J1D/2,M1D/2, J2D/2,M2D/2|JD/2,MD/2⟩ using the corresponding 3-j as in Eq. (B.177).

Note that the arguments of this procedure are integers twice the value of the inputs

to the Clebsch-Gordan coefficient. SetupLogFac() should be run before using this

routine.

Type:

REAL(KIND=rKind) FUNCTION

Arguments:

J1D,M1D,J2D,M2D,JD,MD are INTEGER and INTENT(IN)

Return Value:

⟨J1D/2,M1D/2, J2D/2,M2D/2|JD/2,MD/2⟩

B.9.2.16 SixJ

Description:

SixJ(J11D,J21D,J12D,J22D,J13D,J23D) calculates the Wigner 6-j coefficient
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 J11D/2 J12D/2 J13D/2

J21D/2 J22D/2 J23D/2

 using the Racah formula, Eq. (B.191). Note that

the arguments of this procedure are integers twice the value of the inputs to the 6-j

symbol. SetupLogFac() should be run before using this routine.

Type:

REAL(KIND=rKind) FUNCTION

Arguments:

J11D,J21D,J12D,J22D,J13D,J23D are INTEGER and INTENT(IN)

B.9.2.17 NineJ

Description:

NineJ(J11D,J21D,J31D,J12D,J22D,J32D,J13D,J23D,J33D) calculates the Wigner

9-j coefficient
J11D/2 J12D/2 J13D/2

J21D/2 J22D/2 J23D/2

J31D/2 J32D/2 J33D/2

 using the contraction formula, Eq. (B.197). Note

that the arguments of this procedure are integers twice the value of the inputs to the

9-j symbol. SetupLogFac() should be run before using this routine.

Type:

REAL(KIND=rKind) FUNCTION

Arguments:

J11D,J21D,J31D,J12D,J22D,J32D,J13D,J23D,J33D are INTEGER and INTENT(IN)
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B.9.2.18 HamiOneSite

Description:

HamiOneSite(Op) returns 1
2

[
1̂⊗ Ôp + Ôp⊗ 1̂

]
, used to add a one-site term to a

Hamiltonian. The procedure accepts TYPE(matrix) or TYPE(matrixReal) Op, and

returns COMPLEX(KIND=rKind) or REAL(KIND=rKind) values accordingly.

Type:

COMPLEX(KIND=rKind) or REAL(KIND=rKind) FUNCTION

Arguments:

Op is TYPE(matrix), INTENT(IN) or TYPE(matrixReal), INTENT(IN)

B.9.2.19 HamiLeft

Description:

HamiLeft(Op) returns 1
2
Ôp⊗1̂, used to add a one-site term to the first site of an open-

boundary Hamiltonian. The procedure accepts TYPE(matrix) or TYPE(matrixReal)

Op, and returns COMPLEX(KIND=rKind) or REAL(KIND=rKind) values accord-

ingly.

Type:

COMPLEX(KIND=rKind) or REAL(KIND=rKind) FUNCTION

Arguments:

Op is TYPE(matrix), INTENT(IN) or TYPE(matrixReal), INTENT(IN)
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B.9.2.20 HamiRight

Description:

HamiRight(Op) returns 1
2
1̂⊗Ôp, used to add a one-site term to the last site of an open-

boundary Hamiltonian. The procedure accepts TYPE(matrix) or TYPE(matrixReal)

Op, and returns COMPLEX(KIND=rKind) or REAL(KIND=rKind) values accord-

ingly.

Type:

COMPLEX(KIND=rKind) or REAL(KIND=rKind) FUNCTION

Arguments:

Op is TYPE(matrix), INTENT(IN) or TYPE(matrixReal), INTENT(IN)

B.9.3 Bose hubbard module Procedure Listings

Contents:

FUNCTION BoseHubbardLocalDim

SUBROUTINE CreateFieldOps

SUBROUTINE DestroyFieldOps

INTERFACE HamiltonianBoseHubbard

MODULE PROCEDURE HamiltonianBoseHubbardScalar, HamiltonianBoseHubbardUVector,

HamiltonianBoseHubbardJVector, HamiltonianBoseHubbardJUVector

SUBROUTINE SetupBHName

B.9.3.1 BoseHubbardLocalDim

Description:

BoseHubbardLocalDim() returns the local dimension of a spinless Bose-Hubbard sys-

tem truncated at maxFilling particles per site. It is simply maxFilling+1, the extra
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1 accounting for the vacuum state.

Type:

INTEGER FUNCTION

Arguments:

None

B.9.3.2 CreateFieldOps

Description:

CreateFieldOps() allocates and defines the suite of operators that define and char-

acterize the Bose-Hubbard Hamiltonian, Eq. (B.151). These include the one-site op-

erators a op, which destroys a particle on-site, one op, the single site unity operator,

and PBphase op, the Pegg-Barnett phase operator. Also included is the two-site op-

erator t op, the tunneling operator. All of these operators are discussed in Sec. B.8.2.

Type:

SUBROUTINE

Arguments:

None

B.9.3.3 DestroyFieldOps

Description:

DestroyFieldOps() deallocates the suite of operators that define and characterize

the Bose-Hubbard Hamiltonian, Eq. (B.151).
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Type:

SUBROUTINE

Arguments:

None

B.9.3.4 HamiltonianBoseHubbard

Description:

HamiltonianBoseHubbard creates the Bose-Hubbard Hamiltonian, Eq. (B.151), char-

acterized by tunneling energy jTunn, on-site interaction energy U0, chemical potential

mu0, and nearest-neighbor interaction energy V0 in TEBD form, and stores this in

the list H. The OPTIONAL argument extPot is a site-indexed array of the onsite en-

ergies ϵi as defined in Eq. (B.151), allowing for the additional of an arbitrary external

potential. The arguments jTunn and U0 may be either scalars or site-indexed vectors.

Type:

SUBROUTINE

Syntaxes:

CALL HamiltonianBoseHubbard(H, jTunn, U0, mu0, V0)

CALL HamiltonianBoseHubbard(H, jTunn, U0, mu0, V0, extPot)

Arguments:

mu0, V0 are REAL(KIND=rKind) and INTENT(IN)

jTunn, U0 may be either REAL(KIND=rKind), INTENT(IN) or REAL(KIND=rKind),

DIMENSION(:), INTENT(IN)
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extPot is REAL(KIND=rKind), DIMENSION(:), INTENT(IN), OPTIONAL

H is TYPE(matrix), DIMENSION(:), POINTER

B.9.3.5 SetupBHName

Description:

SetupBHName(baseName,diRectory) creates a file name (in the directory diRectory)

containing the Bose-Hubbard parameters defined when called, and stores it in the

character string baseName.

Type:

SUBROUTINE

Arguments:

baseName is CHARACTER(len=*), INTENT(INOUT)

diRectory is CHARACTER(len=*), INTENT(IN)

B.9.4 Fermi hubbard module Procedure Listings

Contents:

FUNCTION spinSFermiLocalDim

SUBROUTINE CreateFermiSOps

SUBROUTINE DestroyFermiSOps

INTERFACE HamiltonianHubbard

SUBROUTINE SetupFHName

B.9.4.1 spinSFermiLocalDim

Description:

spinSFermiLocalDim() returns the local dimension of a spin-S Hubbard system trun-
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cated at maxFilling particles per site.

Type:

INTEGER FUNCTION

Arguments:

None

B.9.4.2 CreateFermiSOps

Description:

CreateFermiSOps() allocates and defines the suite of operators that define and char-

acterize the Hubbard Hamiltonian, Eq. (B.152). These include the list of one-site

operators a opS(:), which destroys a particle on-site in a particular spin component,

one op, the single site unity operator, Sx opS, Sy opS, Sz opS, and Ssq opS, the spin

operators, and FermiPhase op (Sec. B.8.2.12), which is used in constructing two-site

correlation functions with Fermi phases (Sec. B.3.6.3). Also included is the two-site

operator ttot opS, the tunneling operator summed over all spin components. All of

these operators are discussed in Sec. B.8.2.

Type:

SUBROUTINE

Arguments:

None
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B.9.4.3 DestroyFermiSOps

Description:

DestroyFermiSOps() deallocates the suite of operators that define and characterize

the Hubbard Hamiltonian, Eq. (B.152).

Type:

SUBROUTINE

Arguments:

None

B.9.4.4 HamiltonianHubbard

Description:

HamiltonianHubbard creates the Hubbard Hamiltonian, Eq. (B.151), characterized

by tunneling energy jTunn, on-site interaction energy U0, chemical potential mu0, and

nearest-neighbor interaction energy V0 in TEBD form, and stores this in the list H.

The OPTIONAL argument extPot is a site-indexed array of the onsite energies ϵi as

defined in Eq. (B.152), allowing for the additional of an arbitrary external potential.

Type:

SUBROUTINE

Syntaxes:

CALL HamiltonianHubbard(H, jTunn, U0, mu0)

CALL HamiltonianHubbard(H, jTunn, U0, mu0, V0=V0)

CALL HamiltonianHubbard(H, jTunn, U0, mu0, extPot=extPot)

CALL HamiltonianHubbard(H, jTunn, U0, mu0, V0=V0, extPot=extPot)
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Arguments:

jTunn, U0, mu0 are REAL(KIND=rKind) and INTENT(IN)

V0 is REAL(KIND=rKind), INTENT(IN), OPTIONAL

extPot is REAL(KIND=rKind), DIMENSION(:), INTENT(IN), OPTIONAL

H is TYPE(matrix), DIMENSION(:), POINTER

B.9.4.5 SetupFHName

Description:

SetupFHName(baseName,diRectory) creates a file name (in the directory diRectory)

containing the Hubbard parameters defined when called, and stores it in the character

string baseName.

Type:

SUBROUTINE

Arguments:

baseName is CHARACTER(len=*), INTENT(INOUT)

diRectory is CHARACTER(len=*), INTENT(IN)

B.9.5 Heisenberg module Procedure Listings

Contents:

FUNCTION HeisenbergLocalDim

SUBROUTINE CreateHeisenbergOps

SUBROUTINE DestroyHeisenbergOps

SUBROUTINE HamiltonianHeisenberg

SUBROUTINE SetupHeisenbergName
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B.9.5.1 HeisenbergLocalDim

Description:

HeisenbergLocalDim() returns the local dimension of a spin=spin Heisenberg chain

truncated at maxFilling=1 particles per site. It is simply spinSize+1, the extra 1

accounting for the vacuum state.

Type:

INTEGER FUNCTION

Arguments:

None

B.9.5.2 CreateHeisenbergOps

Description:

CreateHeisenbergOps() allocates and defines the suite of operators that define and

characterize the Heisenberg spin chain, Eq. (B.150). These include the list of destruc-

tion operators indexed by spin component a opS(:), the unity operator one op, the

spin operators Sx opS, Sy opS, Sz opS, and Ssq opS, and the total number operator

ntot opS, all of which are discussed in Sec. B.8.2.

Type:

SUBROUTINE

Arguments:

None
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B.9.5.3 DestroyHeisenbergOps

Description:

DestroyHeisenbergOps() deallocates the suite of operators that define and charac-

terize the Heisenberg spin chain, Eq. (B.150).

Type:

SUBROUTINE

Arguments:

None

B.9.5.4 HamiltonianHeisenberg

Description:

HamiltonianHeisenberg creates the Heisenberg spin chain Hamiltonian, Eq. (B.150),

characterized by spin couplings Jx, Jy, and Jz in TEBD form, and stores this in the

list H. The OPTIONAL argument magField adds a magnetic field, defined as h in

Eq. (B.150).

Type:

SUBROUTINE

Syntaxes:

CALL HamiltonianHeisenberg(H , Jx, Jy, Jz)

CALL HamiltonianHeisenberg(H , Jx, Jy, Jz, magField)
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Arguments:

Jx, Jy, Jz are REAL(KIND=rKind) and INTENT(IN)

magField is REAL(KIND=rKind), INTENT(IN), OPTIONAL

H is TYPE(matrix), DIMENSION(:), POINTER

B.9.5.5 SetupHeisenbergName

Description:

SetupHeisenbergName(baseName,diRectory) creates a file name (in the directory

diRectory) containing the Heisenberg parameters defined when called, and stores it

in the character string baseName.

Type:

SUBROUTINE

Arguments:

baseName is CHARACTER(len=*), INTENT(INOUT)

diRectory is CHARACTER(len=*), INTENT(IN)

B.9.6 spinS module Procedure Listings

Contents:

FUNCTION spinSLocalDim

SUBROUTINE CreateSpinSops

SUBROUTINE DestroySpinSops

SUBROUTINE HamiltonianSpinOne

SUBROUTINE HamiltonianSpinS

SUBROUTINE SetupBHSpinOneName
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B.9.6.1 SpinSLocalDim

Description:

SpinSLocalDim() returns the local dimension of a spin=spin system with at most

maxFilling particles per site using Eq. (B.198).

Type:

INTEGER FUNCTION

Arguments:

None

B.9.6.2 CreateSpinSops

Description:

CreateSpinSops() allocates and initializes the operators which define and charac-

terize the spin-s Bose-Hubbard Hamiltonian, Eq. (B.153). These include the list

of destruction operators indexed by spin component a opS(:), the unity operator

one op, the spin operators Sx opS, Sy opS, Sz opS, and Ssq opS, the Zeeman opera-

tor VB opS, the total number operator ntot opS, and and the total tunneling operator

ttot opS, all of which are discussed in Sec. B.8.2.

Type:

SUBROUTINE

Arguments:

None
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B.9.6.3 DestroySpinSops

Description:

DestroySpinSops() deallocates the operators which define and characterize the spin-

s Bose-Hubbard Hamiltonian, Eq. (B.153).

Type:

SUBROUTINE

Arguments:

None

B.9.6.4 HamiltonianSpinOne

Description:

HamiltonianSpinOne(H , J, U0, U2, mu0, VB) creates the spin-1 Bose-Hubbard

Hamiltonian, Eq. (B.156).

Type:

SUBROUTINE

Arguments:

H is TYPE(matrix), DIMENSION(:), POINTER

J, U0, U2, mu0, VB are REAL(KIND=rKind) and INTENT(IN)

B.9.6.5 HamiltonianSpinS

Description:

HamiltonianSpinS(H , J, gS, mu0, VB) creates the spin-s Bose-Hubbard Hamil-
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tonian, Eq. (B.153), where gS is a vector of the gS.

Type:

SUBROUTINE

Arguments:

H is TYPE(matrix), DIMENSION(:), POINTER

J, mu0, VB are REAL(KIND=rKind) and INTENT(IN)

gS is REAL(KIND=rKind), DIMENSION(:) and INTENT(IN)

B.9.6.6 SetupBHSpinOneName

Description:

SetupBHSpinOneName(baseName,diRectory) creates a file name (in the directory di-

Rectory) containing the spin-1 Bose-Hubbard parameters defined when called, and

stores it in the character string baseName.

Type:

SUBROUTINE

Arguments:

baseName is CHARACTER(len=*), INTENT(INOUT)

diRectory is CHARACTER(len=*), INTENT(IN)

B.9.7 rotation module Procedure Listings

Contents:

SUBROUTINE AllocateDsyev
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SUBROUTINE DeAllocateDsyev

FUNCTION rotationLocalDimMzero

SUBROUTINE DiagDsyev

SUBROUTINE CreateRotationopsMzero

FUNCTION rotationLocalDim

SUBROUTINE CreateRotationops

SUBROUTINE HamiltonianRotationTI

SUBROUTINE HamiltonianRotationTD

SUBROUTINE DestroyRotationops

SUBROUTINE SetupRotName

B.9.7.1 AllocateDsyev

Description:

AllocateDsyev(dimen) allocates the variables needed to diagonalize the rotational

+ DC Hamiltonians on the extended (highest field-free state=Jcut manifold) using

the LAPACK routine DSYEV. These variables are discussed in Sec. B.8.5. dimen is

the dimension of the Hamiltonian.

Type:

SUBROUTINE

Arguments:

dimen is INTEGER, INTENT(IN)

B.9.7.2 DeallocateDsyev

Description:

DeallocateDsyev() deallocates the variables needed to diagonalize the rotational +

DC Hamiltonians on the extended (highest field-free state=Jcut manifold) using the
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LAPACK routine DSYEV.

Type:

SUBROUTINE

Arguments:

None

B.9.7.3 rotationLocalDimMzero

Description:

rotationLocalDimMzero() returns the local dimension of a system with highest al-

lowed number of rotational quanta rotLevel and at most maxFilling particles per

site under the constraint that M = 0.

Type:

INTEGER FUNCTION

Arguments:

None

B.9.7.4 DiagDsyev

Description:

DiagDsyev(dimen, Mat,OutMat,OutEig,dipoles) diagonalizes the dimen×dimen

rotational + DC Hamiltonians Mat on the extended (highest field-free state=Jcut

manifold) using the LAPACK routine DSYEV under the constraint that M = 0, and

returns the full set of eigenvectors as OutMat, the eigenvalues as OutEig, and the

induced dipoles for the lowest rotLevel levels as dipoles.
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Type:

SUBROUTINE

Arguments:

dimen is INTEGER, INTENT(IN)

Mat is REAL(KIND=rKind), INTENT(INOUT)

OutMat and dipoles are REAL(KIND=rKind), DIMENSION(:,:), INTENT(OUT)

OutEig is REAL(KIND=rKind), DIMENSION(:), INTENT(OUT)

B.9.7.5 CreateRotationopsMzero

Description:

CreateRotationopsMzero() allocates and initializes the operators which define and

characterize the Molecular Hubbard Hamiltonian, Eq. (B.163), under the constraint

that M = 0. These include the list of destruction operators indexed by rotational

component a opS(:), the unity operator one op, the DC and AC electric field oper-

ators EDC opR and EAC opR, the dipole-dipole operator dipdip opR, and and the

total tunneling operator ttot opR, all of which are described in sections B.3.7.5 and

B.8.2.

Type:

SUBROUTINE

Arguments:

None
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B.9.7.6 rotationLocalDim

Description:

rotationLocalDim() returns the local dimension of a system with highest allowed

number of rotational quanta rotLavel and at most maxFilling particles per site.

Type:

INTEGER FUNCTION

Arguments:

None

B.9.7.7 CreateRotationops

Description:

CreateRotationops() allocates and initializes the operators which define and char-

acterize the Molecular Hubbard Hamiltonian, Eq. (B.163). These include the list of

destruction operators indexed by rotational component a opS(:), the unity operator

one op, the DC and AC electric field operators EDC opR and EAC opR, the dipole-

dipole operator dipdip opR, and and the total tunneling operator ttot opR, all of

which are described in sections B.3.7.5 and B.8.2. The tunneling and dipole-dipole

operators are not currently supported.

Type:

SUBROUTINE

Arguments:

None
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B.9.7.8 HamiltonianRotationTI

Description:

HamiltonianRotationTI(H) creates the time-independent Molecular Hubbard Hamil-

tonian, Eq. (B.163) with all ΩJM = 0. It is used for finding the static ground state

via imaginary time propagation.

Type:

SUBROUTINE

Arguments:

H is TYPE(matrix), DIMENSION(:), POINTER

B.9.7.9 HamiltonianRotationTD

Description:

HamiltonianRotationTD(H,time) creates the time-dependent Molecular Hubbard

Hamiltonian, Eq. (B.163), evaluated at t=time. It is used for real time propagation.

Type:

SUBROUTINE

Arguments:

H is TYPE(matrix), DIMENSION(:), POINTER

time is REAL(KIND=rKind), INTENT(IN)

B.9.7.10 DestroyRotationops

Description:

DestroyRotationops() deallocates the operators which define and characterize the

569



Molecular Hubbard Hamiltonian, Eq. (B.163). Note that this routine is used for both

M = 0 codes and normal codes.

Type:

SUBROUTINE

Arguments:

None

B.9.7.11 SetupRotName

Description:

SetupRotName(baseName,diRectory) creates a file name (in the directory diRec-

tory) containing the Molecular-Hubbard parameters defined when called, and stores

it in the character string baseName.

Type:

SUBROUTINE

Arguments:

baseName is CHARACTER(len=*), INTENT(INOUT)

diRectory is CHARACTER(len=*), INTENT(IN)

B.9.8 local operations module Procedure Listings

Contents:

SUBROUTINE SVDInit

SUBROUTINE SVDFinish
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INTERFACE OneSiteOp

MODULE PROCEDURE OneSiteOp_r,OneSiteOp_c

SUBROUTINE FormTheta

INTERFACE ThetaOperation

MODULE PROCEDURE ThetaOperation_r, ThetaOperation_c

SUBROUTINE ReshapeTheta

SUBROUTINE SVDTruncation

SUBROUTINE FormLambda1

SUBROUTINE FormGamma1

SUBROUTINE FormGamma2

INTERFACE TwoSiteOp

MODULE PROCEDURE TwoSiteOp_r,TwoSiteOp_c

SUBROUTINE CanonicalForm

SUBROUTINE SVD

SUBROUTINE SwapTheta

SUBROUTINE Swapping

SUBROUTINE SVDInitNC

SUBROUTINE SVDFinishNC

SUBROUTINE FormThetaNC

INTERFACE ThetaOperationNC

MODULE PROCEDURE ThetaOperationNC_r,ThetaOperationNC_c

SUBROUTINE RenormThetaNC

SUBROUTINE SwapThetaNC

SUBROUTINE minmaxNLR

SUBROUTINE SizeOfBlocks

SUBROUTINE IndexLeft

SUBROUTINE IndexRight

SUBROUTINE FormBlockTheta

SUBROUTINE SVDNC

SUBROUTINE FlattenSS

SUBROUTINE Ordering

SUBROUTINE JudgePosition

SUBROUTINE UpdateLabelLeft
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SUBROUTINE UpdateLabelRight

SUBROUTINE FormLambdaNC

SUBROUTINE FormGamma1NC

SUBROUTINE FormGamma2NC

INTERFACE TwoSiteOpNC

MODULE PROCEDURE TwoSiteOpNC_r, TwoSiteOpNC_c

SUBROUTINE SwappingNC

SUBROUTINE SpecialState

B.9.8.1 SVDInit

Description:

SVDInit(chi) allocates the workspace needed to perform a singular value decompo-

sition via the LAPACK routine ZGESVD.

Type:

SUBROUTINE

Arguments:

chi is INTEGER, INTENT(IN)

B.9.8.2 SVDFinish

Description:

SVDFinish() deallocates the workspace needed to perform a singular value decom-

position via the LAPACK routine ZGESVD.

Type:

SUBROUTINE
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Arguments:

None

B.9.8.3 OneSiteOp

Description:

OneSiteOp(Op1,Gamma) performs the one-site operation Op1 on the site whose local

tensor is Gamma. The routine updates Gamma as discussed in Sec. B.3.4.1

Type:

SUBROUTINE

Arguments:

Op1 is either REAL(KIND=rKind) or COMPLEX(KIND=rKind), DIMENSION(:,:),

INTENT(IN)

Gamma is COMPLEX(KIND=rKind), DIMENSION(:,:,:), INTENT(INOUT)

B.9.8.4 FormTheta

Description:

FormTheta(Theta, Lambda0, Gamma1, Lambda1, Gamma2, Lambda2) generates the

four-index tensor Θ as defined in Sec. B.3.4.2, Eq. (B.75). For a bipartite splitting at

link l + 1, Lambda0 is λ[l], Gamma1 is Γ[l], Lambda1 is λ[l+1], Gamma2 is Γ[l+1], and

Lambda2 is λ[l+1].

Type:

SUBROUTINE
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Arguments:

Lambda0, Lambda1, Lambda2 are REAL(KIND=rKind), DIMENSION(:), INTENT(IN)

Gamma1, Gamma2 are COMPLEX(KIND=rKind), DIMENSION(:,:,:), INTENT(IN)

Theta is COMPLEX(KIND=rKind), DIMENSION(:,:,:,:), INTENT(OUT)

B.9.8.5 ThetaOperation

Description:

ThetaOperation(Op2,Theta) multiplies Θ by the two-site operator Op2 (in the Kro-

necker representation). This is step (2) of the procedure discussed in Sec. B.3.4.2.

Type:

SUBROUTINE

Arguments:

Op2 is either REAL(KIND=rKind) or COMPLEX(KIND=rKind), DIMENSION(:,:),

INTENT(IN)

Theta is COMPLEX(KIND=rKind), DIMENSION(:,:,:,:), INTENT(INOUT)

B.9.8.6 ReshapeTheta

Description:

ReshapeTheta(Theta,ThetaRS) renormalizes Θ such that the sum of the squares of

all elements is 1, and then reshapes the χ× d× d×χ four-tensor into a two-tensor as

Θ′
(i−1)χ+α,(j−1)χ+β = Θα,i,j,β . (B.214)

This is step (3) of the procedure discussed in Sec. B.3.4.2.
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Type:

SUBROUTINE

Arguments:

Theta is COMPLEX(KIND=rKind), DIMENSION(:,:,:,:), INTENT(IN)

ThetaRS is COMPLEX(KIND=rKind), DIMENSION(:,:), INTENT(OUT)

B.9.8.7 SVDTruncation

Description:

SVDTruncation(link, MatrixIn, S, U, V) performs a singular value decomposi-

tion on the matrix MatrixIn, storing the χ largest singular values in the vector S and

the left and right unitary matrices in U and V, respectively. When MatrixIn is the

reshaped Theta from above, this is step (4) of the procedure discussed in Sec. B.3.4.2,

and is shown explicitly in Eq. (B.80).

Type:

SUBROUTINE

Arguments:

link is INTEGER, INTENT(IN)

MatrixIn is COMPLEX(KIND=rKind), DIMENSION(:,:), INTENT(INOUT)

S is REAL(KIND=rKind), DIMENSION(:), INTENT(OUT)

U is COMPLEX(KIND=rKind), DIMENSION(:,:), INTENT(OUT)

V is COMPLEX(KIND=rKind), DIMENSION(:,:), INTENT(OUT)
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B.9.8.8 FormLambda1

Description:

FormLambda1(Lambda1, truncerr, S, chi1) updates the local tensor Lambda1=

λ[l+1] using the singular values stored in S to account for the action of a two-site oper-

ation. The truncation error resulting from discarding the (d− 1)χ smallest singular

values is returned in truncerr. This is part of step (5) of the procedure discussed in

Sec. B.3.4.2, and is shown explicitly in Eq. (B.81).

Type:

SUBROUTINE

Arguments:

S is REAL(KIND=rKind), DIMENSION(:), INTENT(IN)

Lambda1 is REAL(KIND=rKind), DIMENSION(:), INTENT(INOUT)

truncerr is REAL(KIND=rKind), INTENT(OUT)

chi1 is INTEGER, INTENT(IN)

B.9.8.9 FormGamma1

Description:

FormGamma1(Lambda0,Gamma1,U,chi0,chi1) updates the local tensor Gamma1= Γ[l]

using the matrix U obtained from the singular value decomposition to account for

the action of a two-site operation. This is part of step (5) of the procedure discussed

in Sec. B.3.4.2, and is shown explicitly in Eq. (B.82).

Type:

SUBROUTINE
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Arguments:

U is REAL(KIND=rKind), DIMENSION(:,:), INTENT(IN)

Lambda0 is REAL(KIND=rKind), DIMENSION(:), INTENT(IN)

Gamma1 is COMPLEX(KIND=rKind), DIMENSION(:,:,:), INTENT(INOUT)

chi0, chi1 are INTEGER, INTENT(IN)

B.9.8.10 FormGamma2

Description:

FormGamma2(Gamma2,Lambda2,V,chi1,chi2) updates the local tensor Gamma2=

Γ[l+1] using the matrix V obtained from the singular value decomposition to account

for the action of a two-site operation. This is part of step (5) of the procedure dis-

cussed in Sec. B.3.4.2, and is shown explicitly in Eq. (B.83).

Type:

SUBROUTINE

Arguments:

V is REAL(KIND=rKind), DIMENSION(:,:), INTENT(IN)

Lambda2 is REAL(KIND=rKind), DIMENSION(:), INTENT(IN)

Gamma2 is COMPLEX(KIND=rKind), DIMENSION(:,:,:), INTENT(INOUT)

chi1, chi2 are INTEGER, INTENT(IN)

B.9.8.11 TwoSiteOp

Description:

TwoSiteOp(link,Op2,Gammas,Lambdas,truncerr) operates the two-site operator Op2

on the sites separated by link. The truncation error resulting from discarding the

(d− 1)χ smallest singular values is recorded in truncerr. This procedure performs
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steps (1)-(5) of the procedure discussed in Sec. B.3.4.2.

Type:

SUBROUTINE

Arguments:

link is INTEGER, INTENT(IN)

Op2 is either REAL(KIND=rKind) or COMPLEX(KIND=rKind), DIMENSION(:,:),

INTENT(IN)

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

truncerr is REAL(KIND=rKind), INTENT(OUT)

B.9.8.12 CanonicalForm

Description:

CanonicalForm(Lambda0,Gamma1,Lambda1,Gamma2,Lambda2) puts the bipartite split-

ting at link l + 1 defined by Lambda1=λ[l+1] into canonical form as defined in[14].

The essential idea is that we change a splitting of our tensor network into subsystems

A and B into a Schmidt decomposition, i.e.

|Ψ⟩ =
∑
α

|ϕ[A]
α ⟩|ϕ[B]

α ⟩−→CF

∑
α

λα|Φ[A]
α ⟩|Φ[B]

α ⟩ . (B.215)

This is useful when we need to re-orthogonalize the Schmidt bases during imaginary

time evolution or after swapping routines. See Sec. B.3.4.4 for explicit details.

Type:

SUBROUTINE
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Arguments:

Lambda0, Lambda1, Lambda2 are REAL(KIND=rKind), DIMENSION(:), INTENT(INOUT)

Gamma1, Gamma2 are COMPLEX(KIND=rKind), DIMENSION(:,:,:), INTENT(INOUT)

B.9.8.13 SVD

Description:

SVD(MatrixIn, U, S, VT) performs a singular value decomposition on the matrix

MatrixIn, storing the singular values in the vector S and the left and (transposed)

right unitary matrices in U and VT, respectively.

Type:

SUBROUTINE

Arguments:

MatrixIn is COMPLEX(KIND=rKind), DIMENSION(:,:), INTENT(INOUT)

S is REAL(KIND=rKind), DIMENSION(:), INTENT(OUT)

U is COMPLEX(KIND=rKind), DIMENSION(:,:), INTENT(OUT)

VT is COMPLEX(KIND=rKind), DIMENSION(:,:), INTENT(OUT)

B.9.8.14 SwapTheta

Description:

SwapTheta(Theta,ThetaSW) swaps the local indices on the four-tensor Θ and then

reshapes this into the two-tensor Θ′ as

Θ′
(j−1)χ+α,(i−1)χ+β = Θα,i,j,β . (B.216)
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This procedure is used in routines for periodic boundary conditions, see Sec. B.3.4.4.

Type:

SUBROUTINE

Arguments:

Theta is COMPLEX(KIND=rKind), DIMENSION(:,:,:,:), INTENT(IN)

ThetaSW is COMPLEX(KIND=rKind), DIMENSION(:,:), INTENT(OUT)

B.9.8.15 Swapping

Description:

Swapping(link,Gammas,Lambdas) swaps the local indices on the four-tensor Θ and

then puts this new splitting into canonical form. This procedure is used in routines

for periodic boundary conditions, see Sec. B.3.4.4.

Type:

SUBROUTINE

Arguments:

link is INTEGER, INTENT(IN)

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

B.9.8.16 SVDInitNC

Description:

SVDInitNC(k,BlockSize) allocates the workspace needed to perform singular value
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decompositions on each block of the block diagonal Θ via the LAPACK routine

ZGESVD.

Type:

SUBROUTINE

Arguments:

k is INTEGER, INTENT(IN)

BlockSize is INTEGER, DIMENSION(:,:), INTENT(IN)

B.9.8.17 SVDFinishNC

Description:

SVDFinishNC() deallocates the workspace needed to perform singular value decom-

positions on each block of the block diagonal Θ via the LAPACK routine ZGESVD.

Type:

SUBROUTINE

Arguments:

None

B.9.8.18 FormThetaNC

Description:

FormThetaNC generates the four-index tensor Θ=Theta consistent with number con-

servation as defined in Sec. B.3.4.3. For a bipartite splitting at link l + 1, Lambda0

is λ[l], Gamma1 is Γ[l], Lambda1 is λ[l+1], Gamma2 is Γ[l+1], and Lambda2 is λ[l+1].
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The OPTIONAL argument intDegFree, which can be any integer value, specifies the

presence of internal degrees of freedom. This procedure is step (1) of the number

conserving two-site operation discussed in Sec. B.3.4.3.

Type:

SUBROUTINE

Syntaxes:

CALL FormThetaNC(link, Theta, Gammas, Lambdas, LabelLeft, LabelRight)

CALL FormThetaNC(link, Theta, Gammas, Lambdas, LabelLeft, LabelRight, int-

DegFree)

Arguments:

link is INTEGER, INTENT(IN) Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

LabelLeft and LabelRight are TYPE(vectorInt), DIMENSION(:), POINTER

Theta is COMPLEX(KIND=rKind), DIMENSION(:,:,:,:), INTENT(OUT)

intDegFree is INTEGER, INTENT(IN), OPTIONAL

B.9.8.19 ThetaOperationNC

Description:

ThetaOperationNC multiplies Θ by the two-site operator Op2 (in the Kronecker rep-

resentation) consistent with number conservation. The OPTIONAL argument int-

DegFree, which can be any integer value, specifies the presence of internal degrees

of freedom. This procedure is step (2) of the number conserving two-site operation

discussed in Sec. B.3.4.3.
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Type:

SUBROUTINE

Syntaxes:

CALL ThetaOperationNC(link, Op2, Theta, LabelLeft, LabelRight)

CALL ThetaOperationNC(link, Op2, Theta, LabelLeft, LabelRight, intDegFree)

Arguments:

link is INTEGER, INTENT(IN)

Op2 is either REAL(KIND=rKind) or COMPLEX(KIND=rKind), DIMENSION(:,:),

INTENT(IN)

Theta is COMPLEX(KIND=rKind), DIMENSION(:,:,:,:), INTENT(INOUT)

LabelLeft and LabelRight are TYPE(vectorInt), DIMENSION(:), POINTER

intDegFree is INTEGER, INTENT(IN), OPTIONAL

B.9.8.20 RenormThetaNC

Description:

RenormThetaNC renormalizes Θ such that the sum of the squares of all elements is

1. The OPTIONAL argument intDegFree, which can be any integer value, specifies

the presence of internal degrees of freedom. This procedure is step (3) of the number

conserving two-site operation discussed in Sec. B.3.4.3.

Type:

SUBROUTINE

Syntaxes:

CALL RenormThetaNC(link, Theta, LabelLeft, LabelRight)

583



CALL RenormThetaNC(link, Theta, LabelLeft, LabelRight, intDegFree)

Arguments:

link is INTEGER, INTENT(IN)

Theta is COMPLEX(KIND=rKind), DIMENSION(:,:,:,:), INTENT(INOUT)

LabelLeft and LabelRight are TYPE(vectorInt), DIMENSION(:), POINTER

intDegFree is INTEGER, INTENT(IN), OPTIONAL

B.9.8.21 SwapThetaNC

Description:

SwapThetaNC swaps the local indices on the four-tensor Θ. The OPTIONAL argu-

ment intDegFree, which can be any integer value, specifies the presence of internal

degrees of freedom. This procedure is used in routines for periodic boundary condi-

tions, see Sec. B.3.4.4.

Type:

SUBROUTINE

Syntaxes:

CALL SwapThetaNC(link, Theta, LabelLeft, LabelRight)

CALL SwapThetaNC(link, Theta, LabelLeft, LabelRight, intDegFree)

Arguments:

link is INTEGER, INTENT(IN)

Theta is COMPLEX(KIND=rKind), DIMENSION(:,:,:,:), INTENT(INOUT)

LabelLeft and LabelRight are TYPE(vectorInt), DIMENSION(:), POINTER

intDegFree is INTEGER, INTENT(IN), OPTIONAL
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B.9.8.22 minmaxNLR

Description:

minmaxNLR(link, LabelLeft, LabelRight, minNL, maxNL, minNR, maxNR) finds

the minimum and maximum values of the number on the left of link, NL (αl−1) +

NS (il), and the minimum and maximum values of the number on the right of link,

NR (αl+1) + NS (il+1), and stores these in minNL, max NL, minNR, and maxNR,

respectively. This procedure is step (4) of the number conserving two-site operation

discussed in Sec. B.3.4.3.

Type:

SUBROUTINE

Arguments:

link is INTEGER, INTENT(IN)

LabelLeft and LabelRight are TYPE(vectorInt), DIMENSION(:), POINTER

minNL, maxNL, minNR, maxNR are INTEGER, INTENT(OUT)

B.9.8.23 SizeOfBlocks

Description:

SizeOfBlocks finds the number of blocks of fixed number on the left of link that

exist and their sizes. This information is stored in BlockSize such that BlockSize(i,1)

is the number on the left in site i, BlockSize(i,2) is the number of left arrangements

(Schmidt vector plus onsite vector) that have the fixed number i on the left, and

BlockSize(i,3) is the number of right arrangements (Schmidt vector plus onsite vec-

tor) that have the fixed number i on the left. The OPTIONAL argument intDegFree,
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which can be any integer value, specifies the presence of internal degrees of freedom.

This procedure is step (5) of the number conserving two-site operation discussed in

Sec. B.3.4.3.

Type:

SUBROUTINE

Syntaxes:

CALL SizeOfBlocks(link, BlockSize, minNL, maxNL, minNR, maxNR, LabelLeft,

LabelRight)

CALL SizeOfBlocks(link, BlockSize, minNL, maxNL, minNR, maxNR, LabelLeft,

LabelRight, intDegFree)

Arguments:

link is INTEGER, INTENT(IN)

BlockSize is INTEGER, DIMENSION(:,:), INTENT(IN)

minNL, maxNL, minNR, maxNR are INTEGER, INTENT(IN)

LabelLeft and LabelRight are TYPE(vectorInt), DIMENSION(:), POINTER

intDegFree is INTEGER, INTENT(IN), OPTIONAL

B.9.8.24 IndexLeft

Description:

IndexLeft indexes the states corresponding to allowed configurations of fixed num-

ber on the left of link and stores this information such that indL(Number on Left-

minNL+1)%mi(index,1)=alpha and indL(Number on Left-minNL+1)%mi(index,1)=i,

where index indexes the allowed configurations in decreasing order of reduced den-

sity matrix eigenvalue, alpha is the left Schmidt index, and i is the onsite index for
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the site left of the bipartite splitting. The OPTIONAL argument intDegFree, which

can be any integer value, specifies the presence of internal degrees of freedom. This

procedure is half of step (6) of the number conserving two-site operation discussed in

Sec. B.3.4.3.

Type:

SUBROUTINE

Syntaxes:

CALL IndexLeft(link, indL, minNL, maxNL, LabelLeft)

CALL IndexLeft(link, indL, minNL, maxNL, LabelLeft, intDegFree)

Arguments:

link is INTEGER, INTENT(IN)

indL is TYPE(matrixInt), DIMENSION(:), POINTER

minNL and maxNL are INTEGER, INTENT(IN)

LabelLeft is TYPE(vectorInt), DIMENSION(:), POINTER

intDegFree is INTEGER, INTENT(IN), OPTIONAL

B.9.8.25 IndexRight

Description:

IndexRight indexes the states corresponding to allowed configurations of fixed num-

ber on the left and stores this information such that indR(Total Number-Number

on Right-minNR+1)%mi(index,1)=alpha and indR(Total Number-Number on Right-

minNR+1)%mi(index,1)=i, where index indexes the allowed configurations in de-

creasing order of reduced density matrix eigenvalue, alpha is the right Schmidt index,

and i is the onsite index for the site to the right of the bipartite splitting. The OP-
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TIONAL argument intDegFree, which can be any integer value, specifies the presence

of internal degrees of freedom. This procedure is half of step (6) of the number con-

serving two-site operation discussed in Sec. B.3.4.3.

Type:

SUBROUTINE

Syntaxes:

CALL IndexRight(link, indR, minNL, maxNL, minNR, maxNR, LabelRight)

CALL IndexRight(link, indR, minNL, maxNL, minNR, maxNR, LabelRight,intDegFree)

Arguments:

link is INTEGER, INTENT(IN)

indR is TYPE(matrixInt), DIMENSION(:), POINTER

minNR and maxNR are INTEGER, INTENT(IN)

LabelRight is TYPE(vectorInt), DIMENSION(:), POINTER

intDegFree is INTEGER, INTENT(IN), OPTIONAL

B.9.8.26 FormBlockTheta

Description:

FormBlockTheta(BlockTheta, indL, indR, BlockSize, Theta) creates BlockTheta,

a list of the Θs which each constitute a fixed number on the left, from Theta.

This procedure is step (7) of the number conserving two-site operation discussed

in Sec. B.3.4.3.

Type:

SUBROUTINE
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Arguments:

BlockTheta is TYPE(matrix), DIMENSION(:), POINTER

indL and indR are TYPE(matrixInt), DIMENSION(:), POINTER

BlockSize is INTEGER, DIMENSION(:,:), INTENT(IN)

Theta is COMPLEX(KIND=rKind), DIMENSION(:,:,:,:), INTENT(INOUT)

B.9.8.27 SVDNC

Description:

SVDNC(US, SS, VS, BlockTheta, BlockSize) performs a singular value decompo-

sition on each of the blocks in BlockTheta, storing the singular values of the kth block

in the kth vector in the list of vectors SS and the kth left and (transposed) right

unitary matrices in the kth matrix of the list of matrices U and VT, respectively.

This procedure is step (8) of the number conserving two-site operation discussed in

Sec. B.3.4.3.

Type:

SUBROUTINE

Arguments:

BlockTheta, US, and VS are TYPE(matrix), DIMENSION(:), POINTER

SS is TYPE(vector), DIMENSION(:), POINTER

BlockSize is INTEGER, DIMENSION(:,:), INTENT(IN)
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B.9.8.28 FlattenSS

Description:

FlattenSS(SS, ssfl, BlockSize) collects all of the singular values from the blocks

of BlockTheta into ssfl. This procedure is part of step (9) of the number conserving

two-site operation discussed in Sec. B.3.4.3.

Type:

SUBROUTINE

Arguments:

SS is TYPE(vector), DIMENSION(:), POINTER

ssfl is REAL(KIND=rKind), INTENT(OUT)

BlockSize is INTEGER, DIMENSION(:,:), INTENT(IN)

B.9.8.29 Ordering

Description:

Ordering(RealArray, order) creates an array order such that order(i)=index of

the ith largest singular value in the array RealArray. This procedure is part of step

(9) of the number conserving two-site operation discussed in Sec. B.3.4.3.

Type:

SUBROUTINE

Arguments:

RealArray is REAL(KIND=rKind), INTENT(IN)

order is INTEGER, DIMENSION(:), INTENT(OUT)
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B.9.8.30 JudgePosition

Description:

JudgePosition(Position, order, BlockSize) creates an object Position such that

Position(beta,1)=k and Position(beta,2)=i, with beta being the index of the singular

value (in nondecreasing fashion), k being the block index (with e. g. 1 meaning the

least number on the left) and i being the index of the state within the block k. In

other words, Position finds the map between the singular value index beta and the

block and state indices k and i. This procedure is part of step (9) of the number

conserving two-site operation discussed in Sec. B.3.4.3.

Type:

SUBROUTINE

Arguments:

Position is INTEGER, DIMENSION(:,:), INTENT(OUT)

order is INTEGER, DIMENSION(:), INTENT(IN)

BlockSize is INTEGER, DIMENSION(:,:), INTENT(IN)

B.9.8.31 UpdateLabelLeft

Description:

UpdateLabelLeft(link, LabelLeft, minNL, Position, ssfl, order) updates La-

belLeft such that

LabelLeft(link+1)%vi(beta) is the number in the betath Schmidt vector (in the or-

dering scheme specified by the procedure Ordering above) to the left of link+1. This

procedure is half of step (10) of the number conserving two-site operation discussed
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in Sec. B.3.4.3.

Type:

SUBROUTINE

Arguments:

link is INTEGER, INTENT(IN)

LabelLeft is TYPE(vectorInt), DIMENSION(:), POINTER

minNL is INTEGER, INTENT(IN)

Position is INTEGER, DIMENSION(:,:), INTENT(OUT)

ssfl is REAL(KIND=rKind), INTENT(OUT)

order is INTEGER, DIMENSION(:), INTENT(IN)

B.9.8.32 UpdateLabelRight

Description:

UpdateLabelRight(link, LabelLeft, LabelRight) updates LabelRight such that

LabelRight(link+1)%vi(beta) is the number in the betath Schmidt vector (in the or-

dering scheme specified by the procedure Ordering above) to the right of link+1.

This procedure is half of step (10) of the number conserving two-site operation dis-

cussed in Sec. B.3.4.3.

Type:

SUBROUTINE

Arguments:

link is INTEGER, INTENT(IN)

LabelLeft and LabelRight are TYPE(vectorInt), DIMENSION(:), POINTER
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B.9.8.33 FormLambdaNC

Description:

FormLambdaNC(Lambda1, truncerr, ssfl, order) updates the local tensor Lambda1=

λ[l+1] using the singular values stored in ssfl to account for the action of a two-site

operation. The truncation error resulting from discarding the (d− 1)χ smallest sin-

gular values is returned in truncerr. This procedure is part of step (11) of the number

conserving two-site operation discussed in Sec. B.3.4.3.

Type:

SUBROUTINE

Arguments:

ssfl is REAL(KIND=rKind), DIMENSION(:), INTENT(IN)

Lambda1 is REAL(KIND=rKind), DIMENSION(:), INTENT(INOUT)

truncerr is REAL(KIND=rKind), INTENT(OUT)

order is INTEGER, DIMENSION(:), INTENT(IN)

B.9.8.34 FormGamma1NC

Description:

FormGamma1NC(Lambda0, Gamma1, US, indL, order, Position, BlockSize) up-

dates the local tensor Gamma1= Γ[l] using the matrices US obtained from the singular

value decompositions of the blocks of Theta to account for the action of a two-site

operation. This procedure is part of step (11) of the number conserving two-site op-

eration discussed in Sec. B.3.4.3.
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Type:

SUBROUTINE

Arguments:

Lambda0 is REAL(KIND=rKind), DIMENSION(:), INTENT(IN)

Gamma1 is COMPLEX(KIND=rKind), DIMENSION(:,:,:), INTENT(INOUT)

US is TYPE(matrix), DIMENSION(:), POINTER

indL is TYPE(matrixInt), DIMENSION(:), POINTER

order is INTEGER, DIMENSION(:), INTENT(IN)

Position is INTEGER, DIMENSION(:,:), INTENT(OUT)

BlockSize is INTEGER, DIMENSION(:,:), INTENT(IN)

B.9.8.35 FormGamma2NC

Description:

FormGamma2NC(Gamma2, Lambda2, VS, indR, order, Position, BlockSize) up-

dates the local tensor Gamma2= Γ[l+2] using the matrices VS obtained from the

singular value decompositions of the blocks of Theta to account for the action of

a two-site operation. This procedure is part of step (11) of the number conserving

two-site operation discussed in Sec. B.3.4.3.

Type:

SUBROUTINE

Arguments:

Gamma2 is COMPLEX(KIND=rKind), DIMENSION(:,:,:), INTENT(INOUT)

Lambda2 is REAL(KIND=rKind), DIMENSION(:), INTENT(IN)

VS is TYPE(matrix), DIMENSION(:), POINTER
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indR is TYPE(matrixInt), DIMENSION(:), POINTER

order is INTEGER, DIMENSION(:), INTENT(IN)

Position is INTEGER, DIMENSION(:,:), INTENT(OUT)

BlockSize is INTEGER, DIMENSION(:,:), INTENT(IN)

B.9.8.36 TwoSiteOpNC

Description:

TwoSiteOpNC operates the two-site operator Op2 on the sites separated by link con-

sistent with number conservation. The truncation error resulting from discarding the

(d− 1)χ smallest singular values is recorded in truncerr. The OPTIONAL argument

intDegFree, which can be any integer value, specifies the presence of internal degrees

of freedom. This procedure performs steps (1)-(11) of the procedure discussed in

Sec. B.3.4.3.

Type:

SUBROUTINE

Syntaxes:

CALL TwoSiteOpNC(link, Op2, Gammas, Lambdas, LabelLeft, LabelRight, truncerr)

CALL TwoSiteOpNC(link, Op2, Gammas, Lambdas, LabelLeft, LabelRight, truncerr,intDegFree)

Arguments:

link is INTEGER, INTENT(IN)

Op2 is either REAL(KIND=rKind) or COMPLEX(KIND=rKind), DIMENSION(:,:),

INTENT(IN)

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER
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truncerr is REAL(KIND=rKind), INTENT(OUT)

LabelLeft and LabelRight are TYPE(vectorInt), DIMENSION(:), POINTER

intDegFree is INTEGER, INTENT(IN), OPTIONAL

B.9.8.37 SwappingNC

Description:

SwappingNC swaps the local indices on the four-tensor Θ and then puts this new

splitting into canonical form, consistent with number conservation. The OPTIONAL

argument intDegFree, which can be any integer value, specifies the presence of in-

ternal degrees of freedom. This procedure is used in routines for periodic boundary

conditions, see Sec. B.3.4.4.

Type:

SUBROUTINE

Syntaxes:

CALL SwappingNC(link, Gammas, Lambdas, LabelLeft, LabelRight, truncerr)

CALL SwappingNC(link, Gammas, Lambdas, LabelLeft, LabelRight, truncerr,intDegFree)

Arguments:

link is INTEGER, INTENT(IN)

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

LabelLeft and LabelRight are TYPE(vectorInt), DIMENSION(:), POINTER

intDegFree is INTEGER, INTENT(IN), OPTIONAL
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B.9.8.38 SpecialState

Description:

SpecialState(Gammas, Lambdas, stateChar) stores in Gammas and Lambdas the

analytically known Vidal decomposition of the W, GHZ, or cluster state based on

whether statechar=’W’, ’GHZ’, or ’Cluster’, respectively. The bond dimension χ of

the Gammas and Lambdas must be at least two for these states, and the Cluster

state algorithm only allows hard core bosons (i.e. maxFilling must be 1).

Type:

SUBROUTINE

Syntaxes:

CALL SpecialState(Gammas, Lambdas, ’W’)

CALL SpecialState(Gammas, Lambdas, ’GHZ’)

CALL SpecialState(Gammas, Lambdas, ’Cluster’)

Arguments:

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

stateChar is CHARACTER(len=*), INTENT(IN)

B.9.9 observables module Procedure Listings

Contents:

SUBROUTINE FormSingleSiteRho

SUBROUTINE SingleSiteDensityMatrix

INTERFACE OneSiteExpVal

MODULE PROCEDURE OneSiteExpVal_mr,OneSiteExpVal_m,

OneSiteExpVal_r,OneSiteExpVal_c

597



INTERFACE OneSiteVar

MODULE PROCEDURE OneSiteVar_mr, OneSiteVar_m,

OneSiteVar_r, OneSiteVar_c

SUBROUTINE GKernal

SUBROUTINE GNext

SUBROUTINE GContraction

INTERFACE TwoSiteExpValG

MODULE PROCEDURE TwoSiteExpValG_r, TwoSiteExpValG_c,

TwoSiteExpValG_rc, TwoSiteExpValG_cr

SUBROUTINE ThetaKernal

SUBROUTINE ThetaNext

SUBROUTINE TwoSiteRho

INTERFACE TwoSiteExpVal

MODULE PROCEDURE TwoSiteExpVal_r, TwoSiteExpVal_c,

TwoSiteExpVal_rc, TwoSiteExpVal_cr

FUNCTION InnerProduct

SUBROUTINE OnSiteNumber

SUBROUTINE TotalNumber

INTERFACE TotalOneSite

MODULE PROCEDURE TotalOneSite_mr, TotalOneSite_m,

TotalOneSite_r, TotalOneSite_c

SUBROUTINE LocalNumDev

SUBROUTINE LocalEnergy

SUBROUTINE LocalSpin

SUBROUTINE TotalEnergy

SUBROUTINE Qdepletion

FUNCTION MeyerQmeasure

FUNCTION ChainEntropy

SUBROUTINE LocalEntropyDist

SUBROUTINE TwoBodyEntropyDist

SUBROUTINE PBphaseDist

SUBROUTINE ZetaKernelNC

SUBROUTINE ZetaNextNC
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SUBROUTINE TwoPointRhoNC

INTERFACE TwoPointExpValNC

MODULE PROCEDURE TwoPointExpValNC_r, TwoPointExpValNC_c,

TwoPointExpValNC_rc, TwoPointExpValNC_cr

SUBROUTINE TotalEnergyNC

SUBROUTINE LocalEnergyNC

SUBROUTINE AllocateMeasures

SUBROUTINE DeallocateMeasures

SUBROUTINE EvaluateMeasures

B.9.9.1 FormSingleSiteRho

Description:

FormSingleSiteRho(rho1, Lambda0, Gamma1, Lambda1) calculates the single-site

reduced density matrix ρ̂l where Gamma1=Γ[l]. The algorithm is discussed in Sec. B.3.6.1.

Type:

SUBROUTINE

Arguments:

rho1 is COMPLEX(KIND=rKind), DIMENSION(:,:)

Gamma1 is COMPLEX(KIND=rKind), DIMENSION(:,:,:)

Lambda0 and Lambda1 are REAL(KIND=rKind), DIMENSION(:)

B.9.9.2 SingleSiteDensityMatrix

Description:

SingleSiteDensityMatrix(rho,Gammas,Lambdas) calculates the single-site reduced

density matrices and stores them in rho such that rho(l)%m(i,j)=(ρ̂l)ij. The algo-

rithm is discussed in Sec. B.3.6.1.
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Type:

SUBROUTINE

Arguments:

rho is TYPE(matrix), DIMENSION(:), INTENT(OUT)

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

B.9.9.3 OneSiteExpVal

Description:

OneSiteExpVal(expList,Op, Gammas, Lambdas) calculates the expectation values

of the one-site operator Op at each site, and stores these in expList such that

expList(i)=Tr
(

Ôpρ̂i

)
in the notation of sections B.3.6.1 and B.3.6.2. Op can be either

REAL(KIND=rKind), COMPLEX(KIND=rKind), TYPE(matrix), or TYPE(matrixReal).

Details on the algorithm can be found in Sec. B.3.6.1.

Type:

SUBROUTINE

Arguments:

expList is REAL(KIND=rKind), DIMENSION(:), INTENT(OUT) or COMPLEX(KIND=rKind),

DIMENSION(:), INTENT(OUT)

Op is REAL(KIND=rKind) DIMENSION(:,:), INTENT(IN); COMPLEX(KIND=rKind),

DIMENSION(:,:), INTENT(IN); TYPE(matrix); or TYPE(matrixReal) and must

match the type of expList (i.e. expList should be complex if Op is).

Gammas is TYPE(tensor), DIMENSION(:), POINTER
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Lambdas is TYPE(vector), DIMENSION(:), POINTER

B.9.9.4 OneSiteVar

Description:

OneSiteVar(varList,Op, Gammas, Lambdas) calculates the variance of the one-site

operator Op at each site, and stores these in expList such that varList(i)=Tr
(

Ôp
2
ρ̂i

)
−[

Tr
(

Ôpρ̂i

)]2
in the notation of sections B.3.6.1 and B.3.6.2. Op can be either

REAL(KIND=rKind), COMPLEX(KIND=rKind), TYPE(matrix), or TYPE(matrixReal).

Details on the algorithm can be found in Sec. B.3.6.1.

Type:

SUBROUTINE

Arguments:

varList is REAL(KIND=rKind), DIMENSION(:), INTENT(OUT) or

COMPLEX(KIND=rKind), DIMENSION(:), INTENT(OUT)

Op is REAL(KIND=rKind) DIMENSION(:,:), INTENT(IN); COMPLEX(KIND=rKind),

DIMENSION(:,:), INTENT(IN); TYPE(matrix); or TYPE(matrixReal) and must

match the type of expList (i.e. expList should be complex if Op is).

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

B.9.9.5 GKernal

Description:

GKernal(gee, Gamma, GammaP,Lambda) constructs G
[k]
αkβk

as defined in Eq. (B.142)

and stores it in gee. It is the first step in calculating a two-site observable that is a
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tensor product of one-site observables as discussed in Sec. B.3.6.4.

Type:

SUBROUTINE

Arguments:

gee is COMPLEX(KIND=rKind), DIMENSION(:,:), INTENT(INOUT)

Gamma, GammaP are COMPLEX(KIND=rKind), DIMENSION(:,:,:), INTENT(IN)

Lambda is REAL(KIND=rKind), DIMENSION(:), INTENT(IN)

B.9.9.6 GNext

Description:

GNext(gee, Gamma, GammaP,Lambda) constructs G
[k−1]
αk−1βk−1

as defined in Eq. (B.143)

and stores it in gee. It is the recursive step in calculating a two-site observable that

is a tensor product of one-site observables as discussed in Sec. B.3.6.4.

Type:

SUBROUTINE

Arguments:

gee is COMPLEX(KIND=rKind), DIMENSION(:,:), INTENT(INOUT)

Gamma, GammaP are COMPLEX(KIND=rKind), DIMENSION(:,:,:), INTENT(IN)

Lambda is REAL(KIND=rKind), DIMENSION(:), INTENT(IN)
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B.9.9.7 GContraction

Description:

GContraction(obsv,gee, Gamma, GammaP,Lambda1,Lambda2) constructs the final

contraction involved in computing a two-site observable that is a tensor product of

one-site observables as in Eq. (B.144) and stores it in obsv. It is the final step in

calculating a two-site observable that is a tensor product of one-site observables as

discussed in Sec. B.3.6.4.

Type:

SUBROUTINE

Arguments:

gee is COMPLEX(KIND=rKind), DIMENSION(:,:), INTENT(INOUT)

Gamma, GammaP are COMPLEX(KIND=rKind), DIMENSION(:,:,:), INTENT(IN)

Lambda1, Lambda2 are REAL(KIND=rKind), DIMENSION(:), INTENT(IN)

B.9.9.8 TwoSiteExpValG

Description:

TwoSiteExpValG(observable, Op1, Op2, Gammas, Lambdas) calculates the expec-

tation values of the two-site operator Op1⊗Op2, and stores these in observable

such that observable(i,j)=Tr
(

ˆOp1⊗Op2ρ̂ij

)
in the notation of sections B.3.6.1 and

B.3.6.2. Op2 and Op1 can be either REAL(KIND=rKind), COMPLEX(KIND=rKind),

TYPE(matrix), or TYPE(matrixReal). The OPTIONAL argument phaseStat speci-

fies that a Fermi phase should be included in the calculation, see Sec. B.3.6.3. Details

on the algorithm can be found in Sec. B.3.6.2.
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Type:

SUBROUTINE

Syntaxes:

CALL TwoSiteExpValG(observable, Op1, Op2, Gammas, Lambdas)

CALL TwoSiteExpValG(observable, Op1, Op2, Gammas, Lambdas,phaseStat)

Arguments:

observable is COMPLEX(KIND=rKind), DIMENSION(:,:), INTENT(OUT)

Op1 is REAL(KIND=rKind) DIMENSION(:,:), INTENT(IN); COMPLEX(KIND=rKind),

DIMENSION(:,:), INTENT(IN); TYPE(matrix); or TYPE(matrixReal)

Op2 is REAL(KIND=rKind) DIMENSION(:,:), INTENT(IN); COMPLEX(KIND=rKind),

DIMENSION(:,:), INTENT(IN); TYPE(matrix); or TYPE(matrixReal)

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

phaseStat is INTEGER, INTENT(IN), OPTIONAL

B.9.9.9 ThetaKernal

Description:

ThetaKernal(Theta,Lambda1,Gamma,Lambda2) constructs Θ
iki

′
k

αk−1α
′
k−1

as defined in

Eq. (B.126) where Gamma=Γ[k]. It is the first step in calculating the two-site re-

duced density matrix as discussed in Sec. B.3.6.2.

Type:

SUBROUTINE
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Arguments:

Theta is COMPLEX(KIND=rKind), DIMENSION(:,:,:,:), INTENT(OUT)

Gamma1 is COMPLEX(KIND=rKind), DIMENSION(:,:,:), INTENT(IN)

Lambda1 and Lambda2 are REAL(KIND=rKind), DIMENSION(:), INTENT(IN)

B.9.9.10 ThetaNext

Description:

ThetaNext(Theta, Gamma, GammaP, Lambda) constructs Θ
iki

′
k

αk−2α
′
k−2

from Θ
iki

′
k

αk−1α
′
k−1

as defined in Eq. (B.127) where Gamma=Γ[k−1]. It is the second step in calculating

the two-site reduced density matrix as discussed in Sec. B.3.6.2.

Type:

SUBROUTINE

Arguments:

Theta is COMPLEX(KIND=rKind), DIMENSION(:,:,:,:), INTENT(INOUT)

Gamma and GammaP are COMPLEX(KIND=rKind), DIMENSION(:,:,:)

Lambda is REAL(KIND=rKind), DIMENSION(:)

B.9.9.11 TwoSiteRho

Description:

TwoSiteRho(rho2, Theta, Gamma, GammaP, Lambda) constructs ρ̂lk from Θ
iki

′
k

αlα
′
l

as

defined in Eq. (B.128) where Gamma=Γ[l]. It is the final step in calculating the two-

site reduced density matrix as discussed in Sec. B.3.6.2.
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Type:

SUBROUTINE

Arguments:

rho2 is COMPLEX(KIND=rKind), DIMENSION(:,:), INTENT(OUT)

Theta is COMPLEX(KIND=rKind), DIMENSION(:,:,:,:), INTENT(IN)

Gamma and GammaP are COMPLEX(KIND=rKind), DIMENSION(:,:,:)

Lambda is REAL(KIND=rKind), DIMENSION(:)

B.9.9.12 TwoSiteExpVal

Description:

TwoSiteExpVal(observable, Op1, Op2, Gammas, Lambdas) calculates the expec-

tation values of the two-site operator Op2, and stores these in observable such that

observable(i,j)=Tr
(

ˆOp2ρ̂ij

)
, i ̸= j, observable(i,j)=Tr

(
ˆOp1ρ̂i

)
, i = j in the notation

of sections B.3.6.1 and B.3.6.2. Op2 and Op1 can be either REAL(KIND=rKind),

COMPLEX(KIND=rKind), TYPE(matrix), or TYPE(matrixReal). The OPTIONAL

argument phaseStat specifies that a Fermi phase should be included in the calcula-

tion, see Sec. B.3.6.3. Details on the algorithm can be found in Sec. B.3.6.2.

Type:

SUBROUTINE

Syntaxes:

CALL TwoSiteExpVal(observable, Op1, Op2, Gammas, Lambdas)

CALL TwoSiteExpVal(observable, Op1, Op2, Gammas, Lambdas,phaseStat)

606



Arguments:

observable is COMPLEX(KIND=rKind), DIMENSION(:,:), INTENT(OUT)

Op1 is REAL(KIND=rKind) DIMENSION(:,:), INTENT(IN); COMPLEX(KIND=rKind),

DIMENSION(:,:), INTENT(IN); TYPE(matrix); or TYPE(matrixReal)

Op2 is REAL(KIND=rKind) DIMENSION(:,:), INTENT(IN); COMPLEX(KIND=rKind),

DIMENSION(:,:), INTENT(IN); TYPE(matrix); or TYPE(matrixReal)

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

phaseStat is INTEGER, INTENT(IN), OPTIONAL

B.9.9.13 InnerProduct

Description:

InnerProduct(GammasL, LambdasL, GammasR, LambdasR) returns the overlap of the

wavefunction defined by the local tensors GammasL and LambdasL with the wave-

function defined by the local tensors GammasR and LambdasR, ⟨ΨL|ΨR⟩. It can be

used to compute the Fidelity (also known as the Loschmidt echo) |⟨ψ (0) |ψ (t)⟩|2, or

simply to check normalization. See Sec. B.3.6.5 for a discussion of the algorithm.

Type:

COMPLEX(KIND=rKind) FUNCTION

Arguments:

GammasL and GammasR are TYPE(tensor), DIMENSION(:), POINTER

LambdasL and LambdasR are TYPE(vector), DIMENSION(:), POINTER
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B.9.9.14 OnSiteNumber

Description:

OnSiteNumber(number, Gammas, Lambdas,siteIndex, comPonent) calculates the

total number on the site siteindex, and returns this in number such that number=⟨n̂siteIndex⟩

for systems without degrees of freedom and number=⟨n̂siteIndex,comPonent⟩ if the OP-

TIONAL argument comPonent specifying internal degrees of freedom is present.

Type:

SUBROUTINE

Syntaxes:

CALL OnSiteNumber(number, Gammas, Lambdas,siteIndex)

CALL OnSiteNumber(number, Gammas, Lambdas,siteIndex, comPonent)

Arguments:

number is REAL(KIND=rKind)

comPonent is INTEGER, INTENT(IN), OPTIONAL

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

siteIndex is INTEGER, INTENT(IN)

B.9.9.15 TotalNumber

Description:

TotalNumber(number, Gammas, Lambdas, comPonent) calculates the site-averaged

total number across all sites, and returns this in number such that number=⟨n̂⟩/L for

systems without degrees of freedom and number=⟨n̂comPonent⟩/L if the OPTIONAL
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argument comPonent specifying internal degrees of freedom is present.

Type:

SUBROUTINE

Syntaxes:

CALL TotalNumber(number, Gammas, Lambdas)

CALL TotalNumber(number, Gammas, Lambdas, comPonent)

Arguments:

number is REAL(KIND=rKind)

comPonent is INTEGER, INTENT(IN), OPTIONAL

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

B.9.9.16 TotalOneSite

Description:

TotalOneSite(total, Op, Gammas, Lambdas) calculates the value of Op at each

site and stores the values in total such that total(i)=Tr(Opρ̂i). Op can be REAL(KIND=rKind),

COMPLEX(KIND=rKind), TYPE(matrix), or TYPE(matrixReal).

Type:

SUBROUTINE

Arguments:

total is REAL(KIND=rKind) or COMPLEX(KIND=rKind), DIMENSION(:), IN-

TENT(INOUT).

609



Op is REAL(KIND=rKind) DIMENSION(:,:), INTENT(IN); COMPLEX(KIND=rKind),

DIMENSION(:,:), INTENT(IN); TYPE(matrix); or TYPE(matrixReal)

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

B.9.9.17 LocalNumDev

Description:

LocalNumDev(numbers, deviations, Gammas, Lambdas, comPonent) calculates the

total number and number standard deviation on the site siteindex, and returns these

in number and deviations such that number=⟨n̂siteIndex⟩,

deviations=
√
⟨n̂2

siteIndex⟩ − ⟨n̂siteIndex⟩2 for systems without degrees of freedom and

number=⟨n̂siteIndex,comPonent⟩,

deviations=
√
⟨n̂2

siteIndex,comPonent⟩ − ⟨n̂siteIndex,comPonent⟩2 if the OPTIONAL argument

comPonent specifying internal degrees of freedom is present.

Type:

SUBROUTINE

Syntaxes:

LocalNumDev(numbers, deviations, Gammas, Lambdas)

LocalNumDev(numbers, deviations, Gammas, Lambdas, comPonent)

Arguments:

number and deviations are REAL(KIND=rKind), DIMENSION(:)

comPonent is INTEGER, INTENT(IN), OPTIONAL

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

610



B.9.9.18 LocalEnergy

Description:

LocalEnergy(energy, H, Gammas, Lambdas) calculates the energy associated with

each two-site block and stores it in energy such that energy(i)=⟨Ĥi,i+1⟩. If periodic

boundary conditions are used, energy(systemSize)=⟨ĤL,1⟩.

Type:

SUBROUTINE

Arguments:

energy is REAL(KIND=rKind), DIMENSION(:), INTENT(OUT)

H is TYPE(matrix), DIMENSION(:), POINTER

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

B.9.9.19 LocalSpin

Description:

LocalSpin(spinVec, Gammas, Lambdas) calculates the expectation value of the to-

tal spin squared ⟨i1i2|
(
Ŝ1 + Ŝ2

)2
|i1i2⟩ for each contiguous pair of lattice sites i1 and

i2, and returns this value in spinVec.

Type:

SUBROUTINE
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Arguments:

spinVec is REAL(KIND=rKind), DIMENSION(:), INTENT(OUT)

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

B.9.9.20 TotalEnergy

Description:

TotalEnergy(energy, H, Gammas, Lambdas) calculates the total energy of the sys-

tem and stores it in energy.

Type:

SUBROUTINE

Arguments:

energy is REAL(KIND=rKind), INTENT(OUT)

H is TYPE(matrix), DIMENSION(:), POINTER

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

B.9.9.21 Qdepletion

Description:

Qdepletion(depletion, rho, population) calculates the quantum depletion, de-

fined as D ≡ 1 − N0/N , where N0 is the number of particles in the most highly

occupied natural orbital (eigenvector of the single-particle density matrix) and N is

the total number of particles (here denoted “population”)[7]. We find this numerically

by performing an SVD on the single-particle density matrix (ρsp)ij ≡ ⟨â
†
j âi⟩; N0 is
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the largest singular value of this matrix. This routine can also return the condensate

wave function, the system’s most highly occupied natural orbital, which is specified

by the largest eigenvector of the single-particle density matrix. This is returned in

the OPTIONAL argument CW.

Type:

SUBROUTINE

Syntaxes:

CALL Qdepletion(depletion, rho, population)

CALL Qdepletion(depletion, rho, population, CW)

Arguments:

depletion is REAL(KIND=rKind), INTENT(OUT)

rho is COMPLEX(KIND=rKind), DIMENSION(:,:), INTENT(IN)

population is REAL(KIND=rKind), INTENT(IN)

CW is COMPLEX(KIND=rKind), DIMENSION(:), INTENT(OUT), OPTIONAL

B.9.9.22 MeyerQmeasure

Description:

MeyerQmeasure(Gammas, Lambdas) returns the Meyer Q-measure [23–25]

Q ≡ d

d− 1

[
1− 1

L

L∑
k=1

Tr
(
ρ2k
)]

, (B.217)

where ρk is the single-site density matrix obtained by tracing over all but the kth

lattice site, and the factor outside of the bracket is a normalization factor (d is the

on-site dimension). This gives an average measure of the entanglement of a single site
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with the rest of the system. The Q-measure can also be interpreted as the average

local impurity (recall that the Tr(ρ̂2) = 1 if and only if ρ̂ is a pure state).

Type:

REAL(KIND=rKind) FUNCTION

Arguments:

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

B.9.9.23 ChainEntropy

Description:

ChainEntropy(link, Lambdas) returns the entropy of entanglement of the sites to

the left of link with the sites to the right of link in the MPS approximation, defined

to be

Sl ≡ −
χ∑
α

(
λ[l]α
)2

logd

[(
λ[l]α
)2]

. (B.218)

Because of the finite entanglement of an MPS representation, this object is bounded

by logd χ.

Type:

REAL(KIND=rKind) FUNCTION

Arguments:

link is INTEGER, INTENT(IN)

Lambdas is TYPE(vector), DIMENSION(:), POINTER
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B.9.9.24 LocalEntropyDist

Description:

If the OPTIONAL argument tsalliSq is present, then LocalEntropyDist calculates

the single site Tsallis entropy

Sq,k ≡
1

1− q
[Tr (ρ̂qk)− 1] , (B.219)

for each site k, where q=tsalliSq. Otherwise, LocalEntropyDist computes the single-

site von Neumann entropy

SvN,k ≡ −Tr [ρ̂k logd (ρ̂k)] (B.220)

for each site k. The resulting values are stored in the array entDist. The procedure

computes the matrix logarithm (power) by diagonalizing the single-site density ma-

trix and then taking the logarithms (powers) of the eigenvalues.

Type:

SUBROUTINE

Syntaxes:

CALL LocalEntropyDist(entDist, Gammas, Lambdas)

CALL LocalEntropyDist(entDist, Gammas, Lambdas, tsalliSq)

Arguments:

entDist is REAL(KIND=rKind), DIMENSION(:), INTENT(OUT)

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

tsallisQ is REAL(KIND=rKind), INTENT(IN), OPTIONAL
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B.9.9.25 TwoBodyEntropyDist

Description:

If the OPTIONAL argument tsalliSq is present, then TwoBodyEntropyDist calculates

the two-site Tsallis entropy

Sq;i,j ≡
1

1− q
[
Tr
(
ρ̂qi,j
)
− 1
]
, (B.221)

for each distinct pair of sites i and j, where q=tsalliSq. Otherwise, TwoBodyEntropyDist

computes the two-site von Neumann entropy

SvN;i,j ≡ −Tr [ρ̂i,j logd (ρ̂i,j)] (B.222)

for each distinct pair of sites i and j. The resulting values are stored in the matrix

entDist. The procedure computes the matrix logarithm (power) by diagonalizing the

single-site density matrix and then taking the logarithms (powers) of the eigenvalues.

Type:

SUBROUTINE

Syntaxes:

CALL TwoBodyEntropyDist(entDist, Gammas, Lambdas)

CALL TwoBodyEntropyDist(entDist, Gammas, Lambdas, tsalliSq)

Arguments:

entDist is REAL(KIND=rKind), DIMENSION(:,:), INTENT(OUT)

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER
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tsallisQ is REAL(KIND=rKind), INTENT(IN), OPTIONAL

B.9.9.26 PBphaseDist

Description:

PBphaseDist(phaseDist, Gammas, Lambdas) calculates the expectation of the Pegg-

Barnett phase operator, Eq. (B.213) at each lattice site and stores these in the array

phaseDist. This is currently only supported for codes without internal degrees of

freedom.

Type:

SUBROUTINE

Arguments:

phaseDist is REAL(KIND=rKind), DIMENSION(:), INTENT(OUT)

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

B.9.9.27 ZetaKernelNC

Description:

ZetaKernelNC(Zeta, Lambda0, Gamma1, Lambda1, LabelL0, LabelL1) constructs

ζ
iki

′
k

αk−1α
′
k−1

, which is identical to Θ as defined in Eq. (B.126) except that the number

conservation constraint NL (αk−1) + NS (ik) = NS (i′k) + NR

(
α′
k−1

)
is enforced. The

site k is identified from the input as Gamma=Γ[k]. It is the first step in calculating the

two-site reduced density matrix for number conservation, analogous to ThetaKernal

as discussed in Sec. B.3.6.2. This routine currently does not support internal degrees

of freedom.
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Type:

SUBROUTINE

Arguments:

Zeta is COMPLEX(KIND=rKind), DIMENSION(:,:,:,:), INTENT(OUT)

Gamma1 is COMPLEX(KIND=rKind), DIMENSION(:,:,:), INTENT(IN)

Lambda0 and Lambda1 are REAL(KIND=rKind), DIMENSION(:), INTENT(IN)

LabelL0 and LabelL1 are INTEGER, DIMENSION(:), INTENT(IN)

B.9.9.28 ZetaNextNC

Description:

ZetaNextNC(Zeta, Lambda0, Gamma1, LabelL0, LabelL1) constructs ζ
iki

′
k

αk−2α
′
k−2

which

is identical to Θ defined in Eq. (B.127) except that the number conservation constraint

NL (αk−1) + NS (ik) = NS (i′k) + NR

(
α′
k−1

)
is enforced. The site k − 1 is identified

from the input as Gamma=Γ[k−1]. It is the second step in calculating the two-site re-

duced density matrix for number conservation, analogous to ThetaNext as discussed

in Sec. B.3.6.2. This routine currently does not support internal degrees of freedom.

Type:

SUBROUTINE

Arguments:

Zeta is COMPLEX(KIND=rKind), DIMENSION(:,:,:,:), INTENT(INOUT)

Gamma1 is COMPLEX(KIND=rKind), DIMENSION(:,:,:)

Lambda0 is REAL(KIND=rKind), DIMENSION(:)

LabelL0 and LabelL1 are INTEGER, DIMENSION(:), INTENT(IN)
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B.9.9.29 TwoPointRhoNC

Description:

TwoPointRhoNC(rho2, Zeta, Lambda0, Gamma1, LabelL0, LabelL1) constructs ρ̂lk

subject to number conservation from ζ
iki

′
k

αlα
′
l

just as the number non-conserving ρ̂lk is

constructed from Θ
iki

′
k

αlα
′
l

as in Eq. (B.128) where Gamma=Γ[l]. This routine currently

does not support internal degrees of freedom.

Type:

SUBROUTINE

Arguments:

rho2 is COMPLEX(KIND=rKind), DIMENSION(:,:), INTENT(OUT)

Zeta is COMPLEX(KIND=rKind), DIMENSION(:,:,:,:), INTENT(IN)

Gamma1 is COMPLEX(KIND=rKind), DIMENSION(:,:,:)

Lambda0 is REAL(KIND=rKind), DIMENSION(:)

LabelL0 and LabelL1 are INTEGER, DIMENSION(:), INTENT(IN)

B.9.9.30 TwoSiteExpValNC

Description:

TwoSiteExpValNC(observable, Op1, Op2, Lambdas, Gammas, LabelLeft) calcu-

lates the expectation values of the two-site operator Op2 consistent with number con-

servation, and stores these in observable such that observable(i,j)=Tr
(

ˆOp2ρ̂ij

)
, i ̸= j,

observable(i,j)=Tr
(

ˆOp1ρ̂i

)
, i = j in the notation of sections B.3.6.1 and B.3.6.2. Op2

and Op1 can be either REAL(KIND=rKind) or COMPLEX(KIND=rKind). Details

on the algorithm can be found in Sec. B.3.6.2.
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Type:

SUBROUTINE

Arguments:

observable is COMPLEX(KIND=rKind), DIMENSION(:,:), INTENT(OUT)

Op1 is REAL(KIND=rKind) or COMPLEX(KIND=rKind), DIMENSION(:,:), IN-

TENT(IN)

Op2 is REAL(KIND=rKind) or COMPLEX(KIND=rKind), DIMENSION(:,:), IN-

TENT(IN)

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

LabelLeft is TYPE(vectorInt), DIMENSION(:), POINTER

B.9.9.31 TotalEnergyNC

Description:

TotalEnergyNC(energy, H, Gammas, Lambdas, LabelLeft) calculates the total en-

ergy of the system consistent with number conservation and stores it in energy. This

routine currently does not support internal degrees of freedom.

Type:

SUBROUTINE

Arguments:

energy is REAL(KIND=rKind), INTENT(OUT)

H is TYPE(matrix), DIMENSION(:), POINTER

Gammas is TYPE(tensor), DIMENSION(:), POINTER
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Lambdas is TYPE(vector), DIMENSION(:), POINTER

LabelLeft is TYPE(vectorInt), DIMENSION(:), POINTER

B.9.9.32 LocalEnergyNC

Description:

LocalEnergyNC(energy, H, Gammas, Lambdas, LabelLeft) calculates the energy

associated with each two-site block consistent with number conservation and stores

it in energy such that energy(i)=⟨Ĥi,i+1⟩. This routine currently does not support

internal degrees of freedom.

Type:

SUBROUTINE

Arguments:

energy is REAL(KIND=rKind), DIMENSION(:), INTENT(OUT)

H is TYPE(matrix), DIMENSION(:), POINTER

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

LabelLeft is TYPE(vectorInt), DIMENSION(:), POINTER

B.9.9.33 AllocateMeasures

Description:

AllocateMeasures(Measures,numLocal, numAvg, numCorr, numFermiCorr, numEnt)

allocates the measure derived type Measures to hold numLocal local observables, nu-

mAvg average measures etc. numEnt can take on the values 0, 1, or 2. 0 specifies that

only the Q-measure is computed; 1 specifies that the Q measure, the von Neumann
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entropy at each site, and the Chain entropy of each bond are computed, and 2 spec-

ifies that the Q measure, the von Neumann entropy at each site, the Chain entropy

of each bond, and the von Neumann entropy of each pair of sites are computed. For

more information on the measure derived type, see Sec.sec:OSTEBD:measure.

Type:

SUBROUTINE

Arguments:

Measures is TYPE(measure)

numLocal, numAvg, numCorr, numFermiCorr, numEnt are INTEGER, INTENT(IN)

B.9.9.34 DeallocateMeasures

Description:

DeallocateMeasures(Measures) deallocates the measure derived type Measures.

For more information on the measure derived type, see Sec.sec:OSTEBD:measure.

Type:

SUBROUTINE

Arguments:

Measures is TYPE(measure)

B.9.9.35 EvaluateMeasures

Description:

EvaluateMeasures(Measures,Gammas, Lambdas, H) evaluates the suite of measures
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defined by the measure derived type Measures and returns them in Measures. For

more information on the measure derived type, see Sec.sec:OSTEBD:measure.

Type:

SUBROUTINE

Arguments:

Measures is TYPE(measure)

H is TYPE(matrix), DIMENSION(:), POINTER

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

B.9.10 io module Procedure Listings

Contents:

SUBROUTINE createFileName

INTERFACE appendBaseName

MODULE PROCEDURE appendBaseName_r, appendBaseName_i, appendBaseName_c

SUBROUTINE copyName

FUNCTION CheckName

SUBROUTINE openUnit

SUBROUTINE RecordLambdas

SUBROUTINE RecordGammas

SUBROUTINE RecordLabel

SUBROUTINE readGammaLambda

SUBROUTINE readGammaLambdaLabels

INTERFACE RecordOp

MODULE PROCEDURE RecordOp_m,RecordOp_mr,

RecordOp_c,RecordOp_r

INTERFACE RecordOpList
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MODULE PROCEDURE RecordOpList_m,RecordOpList_mr

INTERFACE RecordOneSiteOb

MODULE PROCEDURE RecordOneSiteOb_r,RecordOneSiteOb_c

INTERFACE RecordTwoSiteOb

MODULE PROCEDURE RecordTwoSiteOb_r,RecordTwoSiteOb_c

B.9.10.1 createFileName

Description:

createFileName(basename,diRectory) initializes the character string basename with

the character string diRectory.

Type:

SUBROUTINE

Arguments:

baseName is CHARACTER(len=*), INTENT(INOUT)

diRectory is CHARACTER(len=*), INTENT(IN)

B.9.10.2 appendBaseName

Description:

appendBaseName has three options for appending data to a given baseLen-length

character string basename. The first option is

appendBaseName(basename,partName,partDigs,partValue) with partValue a REAL

quantity, which will append the character string partName, and then the REAL value

partValue to partDigs decimal places to basename. The next option is

appendBaseName(basename,partName,partDigs,partValue) with partValue an IN-

TEGER quantity, which will append the character string partName, and then the

partDigs-length INTEGER partValue to basename. The final option is
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appendBaseName_c(basename,partName), which will append the character string

partName to basename. This function is useful for dynamically naming output files

based on parameters used in the code.

Type:

SUBROUTINE

Syntaxes:

partValue=REAL or INTEGER:

CALL appendBaseName(basename,partName,partDigs,partValue)

partValue=CHARACTER: CALL appendBaseName(basename,partName)

Arguments:

For appending REAL or INTEGER data:

baseName is CHARACTER(len=*), INTENT(INOUT)

partname is CHARACTER(len=*), INTENT(IN)

partDigs is INTEGER, INTENT(IN)

partValue is REAL(KIND=rKind), INTENT(IN) or INTEGER, INTENT(IN)

For appending a character string:

baseName is CHARACTER(len=*), INTENT(INOUT)

partname is CHARACTER(len=*), INTENT(IN)

B.9.10.3 copyName

Description:

copyName(name1,name2) copies the character string name1 to the character string

name2.
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Type:

SUBROUTINE

Arguments:

name1 is CHARACTER(len=*), INTENT(IN)

name2 is CHARACTER(len=*), INTENT(OUT)

B.9.10.4 CheckName

Description:

CheckName(baseName) returns TRUE if the file with the name basename exists and

FALSE otherwise.

Type:

LOGICAL FUNCTION

Arguments:

baseName is CHARACTER(len=*), INTENT(IN)

B.9.10.5 openUnit

Description:

openUnit(fileName,myUnit) opens the file with name fileName, giving it the UNIT

myUnit. openUnit(fileName,myUnit, openKind) produces different results based

on the value of the OPTIONAL character openKind. If openKind=’N’, it opens the

file with STATUS=’NEW’, write capability only; if openKind=’O’, it opens the file

with STATUS=’OLD’, read and write capability; and if openKind=’A’, it opens the
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file with write capability only, appending new data to the existing data. This allows

for strict checking before files are overwritten.

Type:

SUBROUTINE

Syntaxes:

CALL openUnit(fileName,myUnit)

CALL openUnit(fileName,myUnit, openKind)

Arguments:

fileName is CHARACTER(len=*), INTENT(IN)

openKind is CHARACTER, INTENT(IN), OPTIONAL.

B.9.10.6 RecordLambdas

Description:

RecordLambdas(fileid, Lambdas,openKind) writes the contents of Lambdas onto

the file whose UNIT is fileID. If openKind=’S’ then the data is written in scientific

notation and if openKind=’B’ the data is written in binary.

Type:

SUBROUTINE

Arguments:

fileid is INTEGER, INTENT(IN)

Lambdas is TYPE(vector), DIMENSION(:), POINTER

openKind is CHARACTER, INTENT(IN)
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B.9.10.7 RecordGammas

Description:

RecordGammas(fileid, Gammas, openKind) writes the contents of Gammas onto

the file whose UNIT is fileID. If openKind=’S’ then the data is written in scientific

notation and if openKind=’B’ the data is written in binary.

Type:

SUBROUTINE

Arguments:

fileid is INTEGER, INTENT(IN)

Gammas is TYPE(tensor), DIMENSION(:), POINTER

openKind is CHARACTER, INTENT(IN)

B.9.10.8 RecordLabel

Description:

RecordLabel(fileid, LabelLorR) writes the contents of Label onto the file whose

UNIT is fileID. Because Label is TYPE(vectorInt), the data is always written in IN-

TEGER format.

Type:

SUBROUTINE

Arguments:

fileid is INTEGER, INTENT(IN)
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Label is TYPE(vectorInt), DIMENSION(:), POINTER

B.9.10.9 readGammaLambda

Description:

readGammaLambda(lambdafileID, gammafileID,Gammas,Lambdas, openKind, chiNow)

reads the Γs and λs from the files with UNITs gammafileID and lambdafileID, respec-

tively, into the objects Gammas and Lambdas. chiNow specifies the entanglement

cutoff parameter of the Γs and λs in the files. If openKind=’S’ the data in the files

is assumed to be in scientific notation and if openKind=’B’ the data in the files is

assumed to be in binary.

Type:

SUBROUTINE

Arguments:

lambdafileid, gammafileid, and chiNow are INTEGER, INTENT(IN)

Lambdas is TYPE(vector), DIMENSION(:), POINTER

Gammas is TYPE(tensor), DIMENSION(:), POINTER

openKind is CHARACTER, INTENT(IN)

B.9.10.10 readGammaLambdaLabels

Description:

readGammaLambdaLabels(lambdafileID, gammafileID,labelleftFileID

, labelrightFileID,Gammas,Lambdas,LabelLeft, LabelRight, openKind, chiNow)

reads the Γs, λs, LabelLeft, and LabelRight from the files with UNITs gammafileID,

lambdafileID, labelleftFileID, and labelrightFileID, respectively, into the objects Gam-
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mas, Lambdas, LabelLeft, and LabelRight. chiNow specifies the entanglement cutoff

parameter of the Γs and λs in the files. If openKind=’S’ the data in the files is as-

sumed to be in scientific notation and if openKind=’B’ the data in the files is assumed

to be in binary (except for the Labels, which are always written as INTEGERs, see

Sec. B.9.10.8).

Type:

SUBROUTINE

Arguments:

lambdafileid, gammafileid, labelleftFileID, labelrightFileID, and chiNow are INTE-

GER, INTENT(IN)

Lambdas is TYPE(vector), DIMENSION(:), POINTER

Gammas is TYPE(tensor), DIMENSION(:), POINTER

LabelLeft and labelRight are TYPE(vectorInt), DIMENSION(:), POINTER

openKind is CHARACTER, INTENT(IN)

B.9.10.11 RecordOp

Description:

RecordOp(fileid, Op) writes the operator Op onto the file whose UNIT is fileid.

The procedure accepts TYPE(matrix); TYPE(matrixReal); REAL(KIND=rKind),

DIMENSION(:,:); or COMPLEX(KIND=rKind), DIMENSION(:,:) Op.

Type:

SUBROUTINE
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Arguments:

fileid is INTEGER, INTENT(IN)

Op is TYPE(matrix); TYPE(matrixReal); REAL(KIND=rKind), DIMENSION(:,:);

or COMPLEX(KIND=rKind), DIMENSION(:,:)

B.9.10.12 RecordOpList

Description:

RecordOpList(fileid, Op) writes the list of operators Op onto the file whose UNIT

is fileid. The procedure accepts TYPE(matrix), DIMENSION(:), POINTER or

TYPE(matrixReal), DIMENSION(:), POINTER Op.

Type:

SUBROUTINE

Arguments:

fileid is INTEGER, INTENT(IN)

Op is TYPE(matrix), DIMENSION(:), POINTER or TYPE(matrixReal), DIMEN-

SION(:), POINTER

B.9.10.13 RecordOneSiteOb

Description:

RecordOneSiteOb(fileid, Obs) writes the systemSize-length list of one-site expec-

tation values Ob onto the file whose UNIT is fileid. RecordOneSiteOb(fileid, Obs, timeN)

records the value timeN and then the systemSize-length list of one-site expectation

values Ob onto the file whose UNIT is fileid. The procedure accepts REAL or COM-

PLEX Ob.
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Type:

SUBROUTINE

Syntaxes:

CALL RecordOneSiteOb(fileid, Obs)

CALL RecordOneSiteOb(fileid, Obs, timeN)

Arguments:

fileid is INTEGER, INTENT(IN)

Ob is REAL(KIND=rKind), DIMENSION(systemSize) or COMPLEX(KIND=rKind),

DIMENSION(systemSize)

timeN is REAL(KIND=rKind), OPTIONAL

B.9.10.14 RecordTwoSiteOb

Description:

RecordTwoSiteOb(fileid, Obs) writes the systemSize×systemSize-length array

of two-site expectation values Ob onto the file whose UNIT is fileid. The procedure

accepts REAL or COMPLEX Ob.

Type:

SUBROUTINE

Arguments:

fileid is INTEGER, INTENT(IN)

Ob is REAL(KIND=rKind), DIMENSION(systemSize,systemSize) or

COMPLEX(KIND=rKind), DIMENSION(systemSize,systemSize)
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B.9.11 propagation module Procedure Listings

Contents:

SUBROUTINE TrotterStep

SUBROUTINE TrotterStep2ndOrder

SUBROUTINE TrotterStep2ndOrderPBC

SUBROUTINE TrotterStep5thOrder

SUBROUTINE TrotterStep5thOrderPBC

SUBROUTINE CanonicalFormAll

SUBROUTINE ImagTimeProp

SUBROUTINE ImagTimePropSpin

SUBROUTINE TrotterStepNC

SUBROUTINE TrotterStep2ndOrderNC

SUBROUTINE TrotterStep2ndOrderPBCNC

SUBROUTINE TrotterStep5thOrderNC

SUBROUTINE TrotterStep5thOrderPBCNC

SUBROUTINE CanonicalFormAllNC

SUBROUTINE ImagTimePropNC

B.9.11.1 TrotterStep

Description:

TrotterStep(Udt, Gammas, Lambdas, totalTruncerr) propagates the state de-

fined by Gammas and Lambdas a single (real or imaginary) time step by the list of

trotter propagators Udt. The Schmidt error defined in Eq. (B.84) is returned in total-

Truncerr. This particular routine is an interface to the routines below which propagate

for second or fifth order trotter expansions with open or periodic boundary condi-

tions. The appropriate routine is chosen based on the global variables BoundaryCond

and trotterOrder.

Type:

SUBROUTINE
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Arguments:

Udt is TYPE(matrix), DIMENSION(:), POINTER

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

totalTruncerr is REAL(KIND=rKind), INTENT(OUT)

B.9.11.2 TrotterStep2ndOrder

Description:

TrotterStep2ndOrder(Udt, Gammas, Lambdas, totalTruncerr) propagates the state

defined by Gammas and Lambdas a single (real or imaginary) time step by the list

of trotter propagators Udt. The Schmidt error defined in Eq. (B.84) is returned in

totalTruncerr. This particular routine uses the second order expansion with open

boundary conditions (Sec. B.3.5.1).

Type:

SUBROUTINE

Arguments:

Udt is TYPE(matrix), DIMENSION(:), POINTER

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

totalTruncerr is REAL(KIND=rKind), INTENT(OUT)

634



B.9.11.3 TrotterStep2ndOrderPBC

Description:

TrotterStep2ndOrderPBC(Udt, Gammas, Lambdas, totalTruncerr) propagates the

state defined by Gammas and Lambdas a single (real or imaginary) time step by the

list of trotter propagators Udt. The Schmidt error defined in Eq. (B.84) is returned in

totalTruncerr. This particular routine uses the second order expansion with periodic

boundary conditions (Sec. B.3.5.3).

Type:

SUBROUTINE

Arguments:

Udt is TYPE(matrix), DIMENSION(:), POINTER

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

totalTruncerr is REAL(KIND=rKind), INTENT(OUT)

B.9.11.4 TrotterStep5thOrder

Description:

TrotterStep5thOrder(Udt, Gammas, Lambdas, totalTruncerr) propagates the state

defined by Gammas and Lambdas a single (real or imaginary) time step by the list

of trotter propagators Udt. The Schmidt error defined in Eq. (B.84) is returned in

totalTruncerr. This particular routine uses the second order expansion with open

boundary conditions (Sec. B.3.5.2).
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Type:

SUBROUTINE

Arguments:

Udt is TYPE(matrix), DIMENSION(:), POINTER

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

totalTruncerr is REAL(KIND=rKind), INTENT(OUT)

B.9.11.5 TrotterStep5thOrderPBC

Description:

TrotterStep5thOrderPBC(Udt, Gammas, Lambdas, totalTruncerr) propagates the

state defined by Gammas and Lambdas a single (real or imaginary) time step by the

list of trotter propagators Udt. The Schmidt error defined in Eq. (B.84) is returned

in totalTruncerr. This particular routine uses the fifth order expansion with periodic

boundary conditions (Sec. B.3.5.3).

Type:

SUBROUTINE

Arguments:

Udt is TYPE(matrix), DIMENSION(:), POINTER

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

totalTruncerr is REAL(KIND=rKind), INTENT(OUT)
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B.9.11.6 CanonicalFormAll

Description:

CanonicalFormAll(Gammas,Lambdas) puts all bipartite splittings into canonical form

using the procedure CanonicalForm discussed in Sec. B.9.8.12. This amounts to re-

orthogonalizing the Schmidt vectors, a necessary step after a non-unitary imaginary

time step. See Sec. B.3.4.4 for more details.

Type:

SUBROUTINE

Arguments:

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

B.9.11.7 ImagTimeProp

Description:

ImagTimeProp(H, GammasOuter, LambdasOuter, chiIn) propagates the state rep-

resented by the Vidal decomposition GammasOuter and LambdasOuter in imaginary

time under the Hamiltonian H. The routine performs two iterations of imaginary

time propagation. The first uses the entanglement cutoff chiIn, and uses the con-

vergence criterion

∣∣∣∣maxl
λ
[l]
1 (τ+∆δτ)−λ[l]1 (τ)

λ
[l]
1 (τ)

∣∣∣∣ < ϵ, where λ
[l]
1 (τ) represents λ

[l]
1 at imagi-

nary time τ , ∆ is stepsForJudge (Sec. B.8.1.10), δτ is dtITP (Sec. B.8.1.9), and ϵ

is convCriterion1 (Sec. B.8.1.12). The second iteration uses entanglement cutoff

chiMax (Sec. B.8.1.8) and convergence criterion ϵ=convCriterion2 (Sec. B.8.1.13).

The OPTIONAL argument intDegFree specifies the presence of internal degrees of

freedom. If print_switch is 1, the progress of the routine will be output to the
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screen every stepsForJudge imaginary time steps.

Type:

SUBROUTINE

Syntaxes:

CALL ImagTimeProp(H, GammasOuter, LambdasOuter, chiIn)

CALL ImagTimeProp(H, GammasOuter, LambdasOuter, chiIn, intDegFree)

Arguments:

H is TYPE(matrix), DIMENSION(:), POINTER

GammasOuter is TYPE(tensor), DIMENSION(:), POINTER

LambdasOuter is TYPE(vector), DIMENSION(:), POINTER

chiIn is INTEGER, INTENT(INOUT)

intDegFree is INTEGER, INTENT(IN), OPTIONAL

B.9.11.8 ImagTimePropSpin

Description:

ImagTimePropSpin(H, GammasOuter, LambdasOuter, chiIn) propagates the state

represented by the Vidal decomposition GammasOuter and LambdasOuter in imag-

inary time under the (spin) Hamiltonian H. The routine performs two iterations of

imaginary time propagation. The first uses the entanglement cutoff chiIn, and uses

the convergence criterion

∣∣∣∣maxl
λ
[l]
1 (τ+∆δτ)−λ[l]1 (τ)

λ
[l]
1 (τ)

∣∣∣∣ < ϵ, where λ
[l]
1 (τ) represents λ

[l]
1 at

imaginary time τ , ∆ is stepsForJudge (Sec. B.8.1.10), δτ is dtITP (Sec. B.8.1.9), and

ϵ is convCriterion1 (Sec. B.8.1.12). The second iteration uses entanglement cutoff

chiMax (Sec. B.8.1.8) and convergence criterion ϵ=convCriterion2 (Sec. B.8.1.13).

If print_switch is 1, the progress of the routine will be output to the screen every
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stepsForJudge imaginary time steps. The difference with ImagTimeProp is that this

routine computes the average values of the spins instead of the average number.

Type:

SUBROUTINE

Arguments:

H is TYPE(matrix), DIMENSION(:), POINTER

GammasOuter is TYPE(tensor), DIMENSION(:), POINTER

LambdasOuter is TYPE(vector), DIMENSION(:), POINTER

chiIn is INTEGER, INTENT(INOUT)

B.9.11.9 TrotterStepNC

Description:

TrotterStepNC(Udt, Gammas, Lambdas, LabelLeft,

LabelRight, totalTruncerr, intDegFree) propagates the state defined by Gam-

mas and Lambdas a single (real or imaginary) time step by the list of trotter prop-

agators Udt consistent with number conservation. The Schmidt error defined in

Eq. (B.84) is returned in totalTruncerr. This particular routine is an interface to

the routines below which propagate for second or fifth order trotter expansions with

open or periodic boundary conditions. The appropriate routine is chosen based on

the global variables BoundaryCond and trotterOrder. The OPTIONAL argument

intDegFree specifies the presence of internal degrees of freedom.

Type:

SUBROUTINE
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Arguments:

Udt is TYPE(matrix), DIMENSION(:), POINTER

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

LabelLeft and LabelRight are TYPE(vectorInt), DIMENSION(:), POINTER

totalTruncerr is REAL(KIND=rKind), INTENT(OUT)

intDegFree is INTEGER, INTENT(IN), OPTIONAL

B.9.11.10 TrotterStep2ndOrderNC

Description:

TrotterStep2ndOrderNC(Udt, Gammas, Lambdas, LabelLeft,

LabelRight, totalTruncerr, intDegFree) propagates the state defined by Gam-

mas and Lambdas a single (real or imaginary) time step by the list of trotter prop-

agators Udt consistent with number conservation. The Schmidt error defined in

Eq. (B.84) is returned in totalTruncerr. This particular routine uses the second order

expansion with open boundary conditions (Sec. B.3.5.1). The OPTIONAL argument

intDegFree specifies the presence of internal degrees of freedom.

Type:

SUBROUTINE

Arguments:

Udt is TYPE(matrix), DIMENSION(:), POINTER

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

LabelLeft and LabelRight are TYPE(vectorInt), DIMENSION(:), POINTER

totalTruncerr is REAL(KIND=rKind), INTENT(OUT)
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intDegFree is INTEGER, INTENT(IN), OPTIONAL

B.9.11.11 TrotterStep2ndOrderPBCNC

Description:

TrotterStep2ndOrderPBCNC(Udt, Gammas, Lambdas, LabelLeft, LabelRight,

totalTruncerr, intDegFree) propagates the state defined by Gammas and Lamb-

das a single (real or imaginary) time step by the list of trotter propagators Udt consis-

tent with number conservation. The Schmidt error defined in Eq. (B.84) is returned in

totalTruncerr. This particular routine uses the second order expansion with periodic

boundary conditions (Sec. B.3.5.3). The OPTIONAL argument intDegFree specifies

the presence of internal degrees of freedom.

Type:

SUBROUTINE

Arguments:

Udt is TYPE(matrix), DIMENSION(:), POINTER

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

LabelLeft and LabelRight are TYPE(vectorInt), DIMENSION(:), POINTER

totalTruncerr is REAL(KIND=rKind), INTENT(OUT)

intDegFree is INTEGER, INTENT(IN), OPTIONAL

B.9.11.12 TrotterStep5thOrderNC

Description:

TrotterStep5thOrderNC(Udt, Gammas, Lambdas, LabelLeft, LabelRight,

641



totalTruncerr, intDegFree) propagates the state defined by Gammas and Lamb-

das a single (real or imaginary) time step by the list of trotter propagators Udt

consistent with number conservation. The Schmidt error defined in Eq. (B.84) is

returned in totalTruncerr. This particular routine uses the second order expansion

with open boundary conditions (Sec. B.3.5.2). The OPTIONAL argument intDegFree

specifies the presence of internal degrees of freedom.

Type:

SUBROUTINE

Arguments:

Udt is TYPE(matrix), DIMENSION(:), POINTER

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

LabelLeft and LabelRight are TYPE(vectorInt), DIMENSION(:), POINTER

totalTruncerr is REAL(KIND=rKind), INTENT(OUT)

intDegFree is INTEGER, INTENT(IN), OPTIONAL

B.9.11.13 TrotterStep5thOrderPBCNC

Description:

TrotterStep5thOrderPBCNC(Udt, Gammas, Lambdas, LabelLeft, LabelRight,

totalTruncerr, intDegFree) propagates the state defined by Gammas and Lamb-

das a single (real or imaginary) time step by the list of trotter propagators Udt consis-

tent with number conservation. The Schmidt error defined in Eq. (B.84) is returned

in totalTruncerr. This particular routine uses the fifth order expansion with periodic

boundary conditions (Sec. B.3.5.3). The OPTIONAL argument intDegFree specifies

the presence of internal degrees of freedom.
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Type:

SUBROUTINE

Arguments:

Udt is TYPE(matrix), DIMENSION(:), POINTER

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER

LabelLeft and LabelRight are TYPE(vectorInt), DIMENSION(:), POINTER

totalTruncerr is REAL(KIND=rKind), INTENT(OUT)

intDegFree is INTEGER, INTENT(IN), OPTIONAL

B.9.11.14 CanonicalFormAllNC

Description:

CanonicalFormAllNC(Gammas, Lambdas, LabelLeft, LabelRight,intDegFree) puts

all bipartite splittings into canonical form by acting with the two-site identity oper-

ator on all sites successively from left to right, and then successively from right to

left. This amounts to re-orthogonalizing the Schmidt vectors, a necessary step after

a non-unitary imaginary time step. The OPTIONAL argument intDegFree specifies

the presence of internal degrees of freedom. See Sec. B.3.4.4 for more details.

Type:

SUBROUTINE

Arguments:

Gammas is TYPE(tensor), DIMENSION(:), POINTER

Lambdas is TYPE(vector), DIMENSION(:), POINTER
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LabelLeft and LabelRight are TYPE(vectorInt), DIMENSION(:), POINTER

intDegFree is INTEGER, INTENT(IN), OPTIONAL

B.9.11.15 ImagTimePropNC

Description:

ImagTimePropNC(H, GammasOuter, LambdasOuter, LabelLeftOuter,

LabelRightOuter, chiIn) propagates the state represented by the Vidal decom-

position GammasOuter and LambdasOuter and lists number conserving vectors La-

belLeftOuter and LabelRightOuter in imaginary time subject to number conserva-

tion under the Hamiltonian H. The routine performs two iterations of imaginary

time propagation. The first uses the entanglement cutoff chiIn, and uses the con-

vergence criterion

∣∣∣∣maxl
λ
[l]
1 (τ+∆δτ)−λ[l]1 (τ)

λ
[l]
1 (τ)

∣∣∣∣ < ϵ, where λ
[l]
1 (τ) represents λ

[l]
1 at imagi-

nary time τ , ∆ is stepsForJudge (Sec. B.8.1.10), δτ is dtITP (Sec. B.8.1.9), and ϵ

is convCriterion1 (Sec. B.8.1.12). The second iteration uses entanglement cutoff

chiMax (Sec. B.8.1.8) and convergence criterion ϵ=convCriterion2 (Sec. B.8.1.13).

The OPTIONAL argument intDegFree specifies the presence of internal degrees of

freedom. If print_switch is 1, the progress of the routine will be output to the

screen every stepsForJudge imaginary time steps.

Type:

SUBROUTINE

Syntaxes:

CALL ImagTimePropNC(H, GammasOuter, LambdasOuter, LabelLeftOuter, Label-

RightOuter, chiIn)

CALL ImagTimePropNC(H, GammasOuter, LambdasOuter, LabelLeftOuter, Label-

RightOuter, chiIn, intDegFree)
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Arguments:

H is TYPE(matrix), DIMENSION(:), POINTER

GammasOuter is TYPE(tensor), DIMENSION(:), POINTER

LambdasOuter is TYPE(vector), DIMENSION(:), POINTER

LabelLeftOuter and LabelRightOuter are TYPE(vectorInt), DIMENSION(:), POINTER

chiIn is INTEGER, INTENT(INOUT)

intDegFree is INTEGER, INTENT(IN), OPTIONAL
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APPENDIX C - DOCUMENTATION FOR ALPS V2.0 TEBD CODE

This appendix contains the documentation for the TEBD code included in the v2.0

release of the ALPS code, see Chapter 10. At the time of the writing of this thesis,

this information was hosted on the ALPS wiki at http://alps.comp-phys.org. Sec. C.1

is documentation about the code in general, the background of the TEBD algorithm,

and explanations of the parameters used as input to the code. The original website for

this section is http://alps.comp-phys.org/mediawiki/index.php/Documentation:TEBD.

Secs. C.2 and C.3 are tutorials on using the ALPS routines. The original web-

sites are http://alps.comp-phys.org/mediawiki/index.php/ALPS 2 Tutorials:TEBD-

01 bhquench and http://alps.comp-phys.org/mediawiki/index.php/ALPS 2 Tutorials:

TEBD-02 kink, respectively.

C.1 Documentation: TEBD

C.1.1 Time-Evolving Block Decimation

The Time-Evolving Block Decimation (TEBD) algorithm is a method for simu-

lating the time evolution of one-dimensional quantum lattice systems governed by a

Hamiltonian with at most nearest neighbor interactions. It is closely related to the

Density Matrix Renormalization Group (DMRG) method in that both methods op-

erate on a class of states known as Matrix Product States (MPS). In addition to

real time evolution, imaginary time evolution can also be used to find ground states.

Essentially, TEBD consists of two parts: a canonical MPS representation of a many-

body state, and a protocol for finding the MPS closest to a state which is acted upon

by a two-site operator.

The particular implementation of TEBD used in ALPS simulates a series of global

parameter quenches of the form g(t) = g(ti)+((t−ti)/τ)p(g(tf )−g(ti)). The timescale

τ , power p, initial and final values g(tf ) and g(ti), and Hamiltonian parameters g of
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each quench are all amenable to specification by the user. Additionally, because the

TEBD method produces wavefunctions, a wide range of observables are available,

including entropies, correlation functions, and overlaps between the state at different

times.

C.1.2 References

G. Vidal

Efficient classical simulation of slightly entangled quantum computations

Phys. Rev. Lett. 91, 147902 (2003).

G. Vidal

Efficient simulation of one-dimensional quantum many-body systems

Phys. Rev. Lett 93, 040502 (2004).

A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal

Time-dependent density-matrix renormalization-group using adaptive effective Hilbert

spaces

J. Stat. Mech. (2004) P04005.

C.1.3 TEBD-specific parameters

CHI LIMIT

The maximum bond dimension of the MPS allowed during real time propagation.

The default value is 50.

TRUNC LIMIT

The maximum truncation error allowed for a specific two-site evolution. If the bond di-

mension corresponding to this truncation is greater than CHI LIMIT, then CHI LIMIT
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is chosen instead. The default value is 10−12.

TAUS

The elements of this vector are the timescales τ of the global quenches.

GS

The elements of this vector are the Hamiltonian parameters g of the global quenches,

given as character variables. Note that the elements of this vector may themselves be

vectors, which corresponds to quenching several parameters at the same time. If this

is so the corresponding elements of POWS, GIS, and GFS must also be vectors of the

same length. Note that TAUS, NUMSTEPS, and STEPSFORSTORE will not be

vectors, as the timescale, number of time steps, and number of steps between outputs

are the same for each parameter being quenched.

POWS

The elements of this vector are the powers p of the global quenches.

GIS

The elements of this vector are the initial values of the Hamiltonian parameters g of

the global quenches.

GFS

The elements of this vector are the final values of the Hamiltonian parameters g of

the global quenches.

CONSERVED QUANTUMNUMBERS

Quantum numbers conserved by the model of interest. For spin models ’Sz’ can be
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conserved, and for particle models ’N’ can be conserved.

NUMSTEPS

The elements of this vector are the number of timesteps of the global quenches. This

implicitly defines the time steps dt of the quenches.

STEPSFORSTORE

The elements of this vector are the number of timesteps between the calculation and

output of observables.

INITIAL STATE

The state used at t = 0, before real time propagation begins. Currently, only two

values are supported: ’kink’, which produces a specific initial state to be discussed

further in tutorial 2a, and ’ground’, which calculates the ground state of a specified

initial hamiltonian via imaginary time propagation. The default value is ’ground’. See

the tutorials for examples.

ITP CHIS

The elements of this vector are the maximum bond dimensions used in iterations

of imaginary time propagation to find the group state. It is only referenced if INI-

TIAL STATE is ’ground’.

ITP DTS

The elements of this vector are the time steps used in iterations of imaginary time

propagation to find the group state. It is only referenced if INITIAL STATE is

’ground’.
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ITP CONVS

The elements of this vector are the convergence parameters used in iterations of

imaginary time propagation to find the group state. An iteration of imaginary time

propagation exits if the maximal difference between singular values at some time in-

terval is less than the convergence parameter. It is only referenced if INITIAL STATE

is ’ground’.

SIMID

An optional integer input which differentiates a series of simulations and can simplify

plotting commands.

NUM THREADS

The number of OpenMP threads used.

VERBOSE

If set to ’true’ then the code will output, time values, truncation errors, and other

running messages. The default value is ’false’.

C.2 Tutorials: TEBD-01 bhquench

C.2.1 The Hardcore Boson Model

In this first tutorial we investigate the behavior of the hardcore boson model

H = −t
L−1∑
i=1

(b†ibi+1 + bib
†
i+1) + V

L−1∑
i=1

nini+1 (C.1)

as the parameter V is changed in time. It is well known that for large V/t the ground

state of the hardcore boson model at half filling is a charge-density wave (CDW)

insulator while for small V/t the ground state is a superfluid (SF). It is interesting to
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consider what happens to the system if we begin in one phase and then dynamically

change, or ”quench”, one of the Hamiltonian parameters t or V such that we are

in the other phase. As a simple first foray into the rich physics of quenches, we will

consider quenching from one phase to the other and then back into the original phase.

A particularly stringent criterion for adiabaticity of such a quench is how close the

final state is to the initial state, i.e.

L(t; γ) ≡ |⟨ψ (t) |ψ (0)⟩|2 (C.2)

which we call the Loschmidt Echo. Note that the t in this expression is the time and

not the hopping parameter t. The parameter γ is meant to convey that this quantity

in general depends on the manner in which the system is quenched.

The general structure of a quench in the ALPS TEBD routines is given by the

parameterization

g(t) = g(ti) + ((t− ti)/τ) p(g(tf )− g(ti)) (C.3)

where g is some Hamiltonian parameter. In the present case we will take g to be

the interaction parameter V . We will begin our system in the CDW regime with

V/t = 10, quench to the SF regime where V/t = 0, and then quench back to the

CDW regime with V/t = 10. In the three parts of this tutorial we will investigate

a)the effects of the timescale τ on the Loschmidt echo during a linear quench, b) the

effects of ”holding” the system in the SF phase for a time τhold before returning to

the CDW phase, and c) the effects of changing the power p of the quench function.

C.2.2 Linear Quench

First, we will investigate the effects of the quench rate τ on the adiabaticity of a

linear quench from the CDW to the SF phase and back.
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C.2.2.1 Preparing and running the simulation using Python

To set up and run the simulation in Python we use the script tutorial1a.py. The

first parts of this script imports the required modules and then prepares the input

files as a list of Python dictionaries:

import pyalps
import matp lo t l i b . pyplot as p l t
import pyalps . p l o t

parms=[ ]
count=0
for A in [ 5 . 0 , 10 . 0 , 15 . 0 , 25 . 0 , 5 0 . 0 ] :

count+=1
parms . append ({

’L ’ : 10 ,
’MODEL’ : ’ hardcore boson ’ ,
’CONSERVEDQUANTUMNUMBERS’ : ’N ’ ,
’N ’ : 5 ,
’ t ’ : 1 . 0 ,
’V ’ : 10 . 0 ,
’ ITP CHIS ’ : [ 2 0 , 30 , 35 ] ,
’ ITP DTS ’ : [ 0 . 0 5 , 0 . 0 5 , 0 . 0 2 5 ] ,
’ITP CONVS ’ : [ 1E−8, 1E−8, 1E−9] ,
’ INITIAL STATE ’ : ’ ground ’ ,
’CHI LIMIT ’ : 40 ,
’TRUNC LIMIT ’ : 1E−12,
’NUMTHREADS’ : 1 ,
’TAUS ’ : [A, A] ,
’POWS’ : [ 1 . 0 , 1 . 0 ] ,
’GS ’ : [ ’V ’ , ’V ’ ] ,
’GIS ’ : [ 1 0 . 0 , 0 . 0 ] ,
’GFS ’ : [ 0 . 0 , 1 0 . 0 ] ,
’NUMSTEPS’ : [ 500 , 500 ] ,
’STEPSFORSTORE’ : [ 5 , 3 ] ,
’SIMID ’ : count

})

Let’s go through the TEBD-specific parameters in more detail (see the TEBD docu-

mentation, Sec. C.1, for a list of all such parameters). The parameter INITIAL STATE

is set to ground, which means that we begin from the ground state of our Hamilto-

nian with user-specified parameters. The parameters t and V specify that the initial
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Hamiltonian parameters t = 1 and V = 10 are used to find the ground state. In order

to find the ground state, TEBD performs evolution in imaginary time. We refer to

this step as ITP, and so all parameters containing ITP deal with the ground state

properties. The vectors ITP CHIS, ITP DTS, and ITP CONVS are the entanglement

cutoff parameters, time steps, and convergence criteria for successive applications of

imaginary time propagation. These constitute the main convergence parameters for

TEBD, and convergence should always be carefully checked in each parameter. For

now, don’t worry too much about their actual values, we’ll see how errors are con-

trolled in the next set of tutorials.

Now we turn to the real-time propagation parameters. We wish to perform a

series of two quenches. First we want to quench the parameter V linearly in time

from its initial value 10 to 0. Comparing with the general form of a quench g(t) =

g(ti) + ((t− ti)/τ) p(g(tf )− g(ti)) we see that this corresponds to g = V , g(ti) = 10,

g(tf ) = 0, p = 1, and τ is the free parameter whose effects are to be investigated.

Looking at the parameter list, we see that the first elements of the vectors GS, GIS,

GFS, and POWS correspond to g, g(ti), g(tf ), and p, respectively. The first element

of the vector TAUS is looped over using the variable A, which means that we will

perform a series of simulations with τ=5, 10, 15, 25, and 50. The second quench is

essentially the reverse of the first, with g = V , g(ti) = 0, g(tf ) = 10, p = 1, and τ the

same as the first. Comparing with the parameters list, we see that this corresponds

to the second elements of the vectors GS, GIS, etc. as above.

Time evolution is simulated by breaking the full propagator approximately into

a series of operations which act only on two neighboring sites at a time. The error

in using this approximate propagator is second order in the ”infinitesimal” timestep

dt. TEBD gives a protocol for updating the canonical form of our state after such

a two-site operation has been applied. The error in this procedure is controlled

by CHI LIMIT, which is directly related to the amount of spatial entanglement,
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and TRUNC LIMIT, which is akin to the TRUNCATION ERROR in the DMRG

routines. The parameter vector NUMSTEPS specifies how many timesteps are taken

in performing each quench, which together with τ implicitly defines the timestep

dt. The overall error is a nontrivial function of CHI LIMIT, TRUNC LIMIT, and

NUMSTEPS which will be investigated in the next set of tutorials, so we won’t worry

about the choice of these much for now. Finally, STEPSFORSTORE determines how

many time steps are taken before observables are computed and stored and SIMID is

an integer differentiating the simulations with different τ .

We now move on to the actual computation. The lines:

baseName=’ t u t o r i a l 1 a ’
#wr i t e output f i l e s
nmlnameList=pyalps . writeTEBDfi les ( parms , baseName )
#run the a p p l i c a t i o n
r e s=pyalps . runTEBD( nmlnameList )

prepare the input files for the TEBD routines and run the simulations for the range

of τ specified in the parameters. We now load the Loschmidt Echo and interaction

parameter U as functions of time via:

#Load the lo schmid t echo and V
LEdata=pyalps . load . loadTimeEvolution ( pyalps . g e tRe su l tF i l e s (

p r e f i x=’ t u t o r i a l 1 a ’ ) , measurements=[ ’ Loschmidt Echo ’ , ’V ’ ] )

Finally, we plot the collected data using:

LE=pyalps . co l lectXY (LEdata , x=’Time ’ , y=’ Loschmidt Echo ’ , f o r each
=[ ’SIMID ’ ] )

for q in LE:
q . props [ ’ l a b e l ’ ]= r ’ $\ tau=$ ’+s t r ( q . props [ ’TAUS ’ ] [ 0 ] )

p l t . f i g u r e ( )
pyalps . p l o t . p l o t (LE)
p l t . x l ab e l ( ’Time $t$ ’ )
p l t . y l ab e l ( ’ Loschmidt Echo $ |< \ p s i (0 ) | \ ps i ( t ) > |ˆ2 $ ’ )
p l t . t i t l e ( ’ Loschmidt Echo vs . Time ’ )
p l t . l egend ( l o c=’ lower r i gh t ’ )
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Ufig=pyalps . co l lectXY (LEdata , x=’Time ’ , y=’V ’ , f o r each=[ ’SIMID ’ ] )
for q in Ufig :

q . props [ ’ l a b e l ’ ]= r ’ $\ tau=$ ’+s t r ( q . props [ ’TAUS ’ ] [ 0 ] )

p l t . f i g u r e ( )
pyalps . p l o t . p l o t ( Uf ig )
p l t . x l ab e l ( ’Time $t$ ’ )
p l t . y l ab e l ( ’V ’ )
p l t . t i t l e ( ’ I n t e r a c t i o n parameter $V$ vs . Time ’ )
p l t . l egend ( l o c=’ lower r i gh t ’ )
p l t . show ( )

C.2.2.2 Preparing and running the simulation using Vistrails

To run the simulation in Vistrails open the file tutorial1a.vt and look at the

workflow labeled ”tutorial1a”. Click on ”Execute” to prepare the input file, run the

simulation and create the output figure.

C.2.2.3 Questions

• How does the behavior of the overlap change as the quench rate decreases?

• Roughly how slowly do you have to perform the quench in order for it to be

adiabatic?

• Is it easier or harder for a larger system to be adiabatic? Why?

• Are these properties changed depending on whether the intermediate phase is

gapped or not? One can test this by changing from the hardcore boson model

to the (softcore) boson Hubbard model, and then quenching from the Mott-

Insulating (MI) phase at large U/t and unit filling to the CDW phase with

large V . As you quench from the Mott insulating to the CDW phase and back,

how difficult is it to be adiabatic?

C.2.3 Linear Quench with hold

In this section we will investigate the effects of ”holding” the system in the SF

phase for a time τhold before quenching back to the CDW phase.
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C.2.3.1 Preparing and running the simulation using Python

To set up and run the simulation in Python we use the script tutorial1b.py. The

first parts of this script imports the required modules and then prepares the input

files as a list of Python dictionaries:

import pyalps
import matp lo t l i b . pyplot as p l t
import pyalps . p l o t

#prepare the input parameters
parms=[ ]
count=0
for A in [ 5 . 0 , 10 . 0 , 15 . 0 , 25 . 0 , 5 0 . 0 ] :

count+=1
parms . append ({

’L ’ : 10 ,
’MODEL’ : ’ hardcore boson ’ ,
’CONSERVEDQUANTUMNUMBERS’ : ’N ’ ,
’N ’ : 5 ,
’ t ’ : 1 . 0 ,
’V ’ : 10 . 0 ,
’ ITP CHIS ’ : [ 2 0 , 30 , 35 ] ,
’ ITP DTS ’ : [ 0 . 0 5 , 0 . 0 5 , 0 . 0 2 5 ] ,
’ITP CONVS ’ : [ 1E−8, 1E−8, 1E−9] ,
’ INITIAL STATE ’ : ’ ground ’ ,
’CHI LIMIT ’ : 80 ,
’TRUNC LIMIT ’ : 1E−12,
’NUMTHREADS’ : 1 ,
’TAUS ’ : [ 1 0 . 0 , A, 1 0 . 0 ] ,
’POWS’ : [ 1 . 0 , 0 . 0 , 1 . 0 ] ,
’GS ’ : [ ’V ’ , ’V ’ , ’V ’ ] ,
’GIS ’ : [ 1 0 . 0 , 0 . 0 , 0 . 0 ] ,
’GFS ’ : [ 0 . 0 , 0 . 0 , 1 0 . 0 ] ,
’NUMSTEPS’ : [ 500 , i n t (A/0 .05 ) , 500 ] ,
’STEPSFORSTORE’ : [ 5 , 5 , 3 ] ,
’SIMID ’ : count

})

Note that in this case we have three quenches as GS, GIS, etc. are all vectors of

length three. The second quench keeps the Hamiltonian parameters fixed at t = 1,

V = 0 for a time τhold before quenching back. We write the input files, run the

simulations, get outputs, and plot as above:
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baseName=’ t u t o r i a l 1 b ’
#wr i t e output f i l e s
nmlnameList=pyalps . writeTEBDfi les ( parms , baseName )
#run the a p p l i c a t i o n
r e s=pyalps . runTEBD( nmlnameList )

#Load the lo schmid t echo and U
LEdata=pyalps . load . loadTimeEvolution ( pyalps . g e tRe su l tF i l e s (

p r e f i x=’ t u t o r i a l 1 b ’ ) , measurements=[ ’ Loschmidt Echo ’ , ’V ’ ] )

LE=pyalps . co l lectXY (LEdata , x=’Time ’ , y=’ Loschmidt Echo ’ , f o r each
=[ ’SIMID ’ ] )

for q in LE:
q . props [ ’ l a b e l ’ ]= r ’ $\ tau {\mathrm{hold}}=$ ’+s t r ( q . props [ ’

TAUS ’ ] [ 1 ] )
p l t . f i g u r e ( )
pyalps . p l o t . p l o t (LE)
p l t . x l ab e l ( ’Time $t$ ’ )
p l t . y l ab e l ( ’ Loschmidt Echo $ |< \ p s i (0 ) | \ ps i ( t ) > |ˆ2 $ ’ )
p l t . t i t l e ( ’ Loschmidt Echo vs . Time ’ )
p l t . l egend ( l o c=’ lower r i gh t ’ )

Uf ig=pyalps . co l lectXY (LEdata , x=’Time ’ , y=’V ’ , f o r each=[ ’SIMID ’ ] )
for q in Ufig :

q . props [ ’ l a b e l ’ ]= r ’ $\ tau {\mathrm{hold}}=$ ’+s t r ( q . props [ ’
TAUS ’ ] [ 1 ] )

p l t . f i g u r e ( )
pyalps . p l o t . p l o t ( Uf ig )
p l t . x l ab e l ( ’Time $t$ ’ )
p l t . y l ab e l ( ’V ’ )
p l t . t i t l e ( ’ I n t e r a c t i o n parameter $V$ vs . Time ’ )
p l t . l egend ( )
p l t . show ( )

C.2.3.2 Preparing and running the simulation using Vistrails

To run the simulation in Vistrails open the file tutorial1b.vt and look at the

workflow labeled ”tutorial1b”. Click on ”Execute” to prepare the input file, run the

simulation and create the output figure

C.2.3.3 Questions

• How does the behavior of the overlap change as the hold time increases?
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• Is this behavior monotonic in the hold time? Why or why not?

C.2.4 Nonlinear Quenches

In this section we will investigate the effects of varying the power of the quench

away from being linear.

C.2.4.1 Preparing and running the simulation using Python

To set up and run the simulation in Python we use the script tutorial1c.py. The

first parts of this script imports the required modules and then prepares the input

files as a list of Python dictionaries:

import pyalps
import matp lo t l i b . pyplot as p l t
import pyalps . p l o t

#prepare the input parameters
parms=[ ]
count=0
for A in [ 1 . 0 , 1 . 5 , 2 . 0 , 2 . 5 , 3 . 0 ] :

count+=1
parms . append ({

’L ’ : 10 ,
’MODEL’ : ’ hardcore boson ’ ,
’CONSERVEDQUANTUMNUMBERS’ : ’N ’ ,
’N ’ : 5 ,
’ t ’ : 1 . 0 ,
’V ’ : 10 . 0 ,
’ ITP CHIS ’ : [ 2 0 , 30 , 35 ] ,
’ ITP DTS ’ : [ 0 . 0 5 , 0 . 0 5 , 0 . 0 2 5 ] ,
’ITP CONVS ’ : [ 1E−8, 1E−8, 1E−9] ,
’ INITIAL STATE ’ : ’ ground ’ ,
’CHI LIMIT ’ : 40 ,
’TRUNC LIMIT ’ : 1E−12,
’NUMTHREADS’ : 1 ,
’TAUS ’ : [ 1 0 . 0 , 1 0 . 0 ] ,
’POWS’ : [ 1 . 0 , A] ,
’GS ’ : [ ’V ’ , ’V ’ ] ,
’GIS ’ : [ 1 0 . 0 , 0 . 0 ] ,
’GFS ’ : [ 0 . 0 , 1 0 . 0 ] ,
’NUMSTEPS’ : [ 1000 , 1000 ] ,
’STEPSFORSTORE’ : [ 1 0 , 5 ] ,
’SIMID ’ : count
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})

We then write the input files, run the simulations, get outputs, and plot as above:

baseName=’ t u t o r i a l 1 c ’
#wr i t e output f i l e s
nmlnameList=pyalps . writeTEBDfi les ( parms , baseName )
#run the a p p l i c a t i o n
r e s=pyalps . runTEBD( nmlnameList )

#Load the lo schmid t echo and U
LEdata=pyalps . load . loadTimeEvolution ( pyalps . g e tRe su l tF i l e s (

p r e f i x=’ t u t o r i a l 1 c ’ ) , measurements=[ ’V ’ , ’ Loschmidt Echo ’ ] )

LE=pyalps . co l lectXY (LEdata , x=’Time ’ , y=’ Loschmidt Echo ’ , f o r each
=[ ’SIMID ’ ] )

for q in LE:
q . props [ ’ l a b e l ’ ]= r ’ $\ tau=$ ’+s t r ( q . props [ ’POWS’ ] [ 1 ] )

p l t . f i g u r e ( )
pyalps . p l o t . p l o t (LE)
p l t . x l ab e l ( ’Time $t$ ’ )
p l t . y l ab e l ( ’ Loschmidt Echo $ |< \ p s i (0 ) | \ ps i ( t ) > |ˆ2 $ ’ )
p l t . t i t l e ( ’ Loschmidt Echo vs . Time ’ )
p l t . l egend ( l o c=’ lower l e f t ’ )

Uf ig=pyalps . co l lectXY (LEdata , x=’Time ’ , y=’V ’ , f o r each=[ ’SIMID ’ ] )
for q in Ufig :

q . props [ ’ l a b e l ’ ]= r ’ $\ tau=$ ’+s t r ( q . props [ ’POWS’ ] [ 1 ] )
p l t . f i g u r e ( )
pyalps . p l o t . p l o t ( Uf ig )
p l t . x l ab e l ( ’Time $t$ ’ )
p l t . y l ab e l ( ’U ’ )
p l t . t i t l e ( ’ I n t e r a c t i o n parameter $V$ vs . Time ’ )
p l t . l egend ( l o c=’ lower l e f t ’ )
p l t . show ( )

C.2.4.2 Preparing and running the simulation using Vistrails

To run the simulation in Vistrails open the file tutorial1c.vt and look at the

workflow labeled ”tutorial1c”. Click on ”Execute” to prepare the input file, run the

simulation and create the output figure
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C.2.4.3 Questions

• How does the behavior of the overlap change as the power changes?

• Again change from the hardcore boson model to the boson Hubbard model and

investigate the dynamics of the MI-CDW transition, this time with a nonlinear

quench. Is the behavior different from that of a linear quench?

• The present example uses an asymmetric quench which is linear one one side

and nonlinear on the other. How is the behavior changed if you make both

quenches nonlinear?

C.3 Tutorials: TEBD-02 kink

C.3.1 Evolution of a domain Wall

In this tutorial we will study the time evolution of a S=1/2 spin chain prepared

in a nonequilibrium state. The particular state that we choose is that with all spins

to the left of the chain center ”down” and all of those to the right of the center

”up,” | ↓↓ . . . ↓↑ . . . ↑↑⟩. This state can be chosen as the initial state by setting

INITIAL STATE to be ’kink’. Some exact results are known regarding the evolution

of this state under the 1D XX model, which allows for a detailed study of the errors

present in TEBD.

C.3.2 Exact Solution for the case of the XX model

The time evolution of the kink initial state under the XX model was solved exactly

in Phys. Rev. E 59, 4912 (1999) by a Jordan-Wigner transformation to free fermions.

It was found that the expectation value of the magnetization at any site as a function

of time can be represented as a sum of Bessel functions, and the magnetization in

the limit of long times and large distances from the initial domain wall approaches

a scaling form in the variable n/t, where n is the distance from the center and t the

time. Explicitly, we have
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M(n, t) = −1

2

n−1∑
i=1−n

j2i (t) , (C.4)

lim
n→∞

lim
t→∞

M(n, t)→ ϕ (n/t) = − 1

π
arcsin (n/t) , (C.5)

where M(n, t) is the magnetization a distance n from the center and ji(t) is the Bessel

function of order i. In the first part of this tutorial we demonstrate these two results.

C.3.2.1 Preparing and running the simulation using Python

To set up and run the simulation in Python we use the script tutorial2a.py. The

first parts of this script imports the required modules and prepares the input files as

a list of Python dictionaries:

import pyalps
import matp lo t l i b . pyplot as p l t
import pyalps . p l o t
import numpy as np
import copy
import math
import s c ipy . s p e c i a l

#prepare the input parameters
parms = [{

’L ’ : 50 ,
’MODEL’ : ’ sp in ’ ,
’ l o c a l S ’ : 0 . 5 ,
’CONSERVEDQUANTUMNUMBERS’ : ’ Sz ’ ,
’ Jxy ’ : 1 ,
’ INITIAL STATE ’ : ’ kink ’ ,
’CHI LIMIT ’ : 40 ,
’TRUNC LIMIT ’ : 1E−12,
’NUMTHREADS’ : 1 ,
’TAUS ’ : [ 2 0 . 0 ] ,
’POWS’ : [ 0 . 0 ] ,
’GS ’ : [ ’H ’ ] ,
’GIS ’ : [ 0 . 0 ] ,
’GFS ’ : [ 0 . 0 ] ,
’NUMSTEPS’ : [ 5 0 0 ] ,
’STEPSFORSTORE’ : [ 2 ]

} ]
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The math and scipy.special modules are required to generate the special functions

needed to compare with the exact solution. Note that we have chosen POWS to be

zero, which corresponds to no quenching at all. Thus, the values of GS, GIS, and GFS

are arbitrary, and TAUS and NUMSTEPS give us the total simulation time and the

number of time steps, respectively. We write the input files, run the simulation, and

get the output as usual:

baseName=’ t u t o r i a l 2 a ’
nmlname=pyalps . writeTEBDfi les ( parms , baseName )
r e s=pyalps . runTEBD(nmlname)

#Get the r e s u l t s o f the s imu la t i on
Data=pyalps . load . loadTimeEvolution ( pyalps . g e tRe su l tF i l e s ( p r e f i x=

’ t u t o r i a l 2 a ’ ) , measurements=[ ’ Local Magnet izat ion ’ ] )

We now must postprocess the raw output to compare with the exact solution. To

do this we first define empty arrays to hold the postprocessed data

#de f i n e a da t a s e t numer ica lSo lu t ion to conta in the numerical
r e s u l t

numer ica lResu l t =[ ]
#de f i n e a da t a s e t e xa c tSo l u t i on to conta in the exac t s o l u t i o n
exactResu l t =[ ]
#de f i n e a da t a s e t scal ingForm to conta in the s c a l i n g form
scal ingForm =[ ]

we then calculate the exact result from the time data, and use the computed values

of the magnetization at each site to compare with the exact solution.

#Compute the exac t r e s u l t M(n , t )=<S nˆz>=−(1/2)∗sum { i=1−n}ˆ{n
−1} j i ( t ) ˆ2 , where

# j i ( t ) i s the Besse l f unc t i on o f order i and compare to the
numer ica l l y ob ta ined r e s u l t

for q in Data :
s y s s i z e=q [ 0 ] . props [ ’L ’ ]
#Assign a l a b e l ’ Distance ’ denot ing the d i s t ance from

the cen ter n ( on ly do the f i r s t two s i t e s
#to avoid c l u t t e r i n g the p l o t )
for n in range (1 , 3 ) :

#Create cop i e s o f the data f o r po s t p ro c e s s i n g
numericalCopy=copy . deepcopy (q )
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exactCopy=copy . deepcopy (q )

numericalCopy [ 0 ] . props [ ’ Distance ’ ]=n
numericalCopy [ 0 ] . props [ ’SIMID ’ ]= ’ Numerical at n=

’+s t r (n)
exactCopy [ 0 ] . props [ ’ Distance ’ ]=n
exactCopy [ 0 ] . props [ ’SIMID ’ ]= ’ Exact at n=’+s t r (n)

#compute the exac t r e s u l t o f the manet i za t ion n
s i t e s from the cen te r

l o c =0.0
for i in range(1−n , n) :

loc −=0.5∗ s c ipy . s p e c i a l . jn ( i , q [ 0 ] . props [ ’
Time ’ ] ) ∗ s c ipy . s p e c i a l . jn ( i , q [ 0 ] . props
[ ’Time ’ ] )

exactCopy [ 0 ] . y=[ l o c ]
#add to the exac t da t a s e t
exactResu l t . extend ( exactCopy )

#ge t the numerical r e s u l t o f the magnet i za t ion n
s i t e s from the cen ter

numericalCopy [ 0 ] . y=[q [ 0 ] . y [ s y s s i z e /2+n−1] ]
#add to the numerical da t a s e t
numer ica lResu l t . extend ( numericalCopy )

Next, we calculate the exact scaling function, and then compute magnetization as

a function of the scaling variable n/t to compare with the exact solution

#compute the s c a l i n g form
# \ phi (n/ t )=−(1/p i )∗ arc s in (n/ t ) t ha t M(n , t ) approaches as n−>

i n f i n i t y and t−> i n f i n i t y
# and compare i t wi th the numer ica l l y computed va l u e s o f M(n/ t )
for q in Data :

s y s s i z e=q [ 0 ] . props [ ’L ’ ]
#Assign a l a b e l ’ Distance ’ denot ing the d i s t ance from

the cen ter n ( on ly do the f i r s t few s i t e s
#to avoid c l u t t e r i n g the p l o t )
for n in range (0 , 5 ) :

#Create a copy o f the data f o r po s t p ro c e s s i n g
sca l ingCopy=copy . deepcopy (q )
sca l ingCopy [ 0 ] . props [ ’ Distance ’ ]=n

#The f i r s t d i s t ance conta ins the exac t s c a l i n g
form \ phi (n/ t )=−(1/p i )∗ arc s in (n/ t )

i f n==0:
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sca l ingCopy [ 0 ] . props [ ’Time ’ ]=1.0/
scal ingCopy [ 0 ] . props [ ’Time ’ ]

sca l ingCopy [ 0 ] . y=[−(1.0/3.1415926) ∗math .
a s in (min ( sca l ingCopy [ 0 ] . props [ ’Time ’
] , 1 . 0 ) ) ]

sca l ingCopy [ 0 ] . props [ ’SIMID ’ ]= ’ Exact ’

#The other d i s t anc e s conta in the numerical data
as a func t i on o f the s c a l i n g v a r i a b l e M(n/ t )

else :
sca l ingCopy [ 0 ] . props [ ’Time ’ ]=n/

scal ingCopy [ 0 ] . props [ ’Time ’ ]
sca l ingCopy [ 0 ] . y=[ sca l ingCopy [ 0 ] . y [

s y s s i z e /2+n−1] ]
sca l ingCopy [ 0 ] . props [ ’SIMID ’ ]= ’ Numerical

at n=’+s t r (n)
#add to the s c a l i n g da t a s e t
scal ingForm . extend ( sca l ingCopy )

Finally, we plot the exact and numerical results for comparison.

#Plot the numerical and exac t magnet i za t ion f o r comparison
exactMag=pyalps . co l lectXY ( exactResult , x=’Time ’ , y=’ Local

Magnet izat ion ’ , f o r each=[ ’SIMID ’ ] )
for q in exactMag :

q . props [ ’ l a b e l ’ ]=q . props [ ’SIMID ’ ]
numericalMag=pyalps . co l lectXY ( numerica lResult , x=’Time ’ , y=’

Local Magnet izat ion ’ , f o r each=[ ’SIMID ’ ] )
for q in numericalMag :

q . props [ ’ l a b e l ’ ]=q . props [ ’SIMID ’ ]

p l t . f i g u r e ( )
pyalps . p l o t . p l o t ( [ exactMag , numericalMag ] )
p l t . x l ab e l ( ’Time $t$ ’ )
p l t . y l ab e l ( ’ Magnet izat ion ’ )
p l t . l egend ( l o c=’ lower r i gh t ’ )
p l t . t i t l e ( ’ Magnet izat ion vs . time ’ )

#Plot the s c a l i n g form with the numerical data f o r comparison
Sca l=pyalps . co l lectXY ( scalingForm , x=’Time ’ , y=’ Local

Magnet izat ion ’ , f o r each=[ ’SIMID ’ ] )
for q in Sca l :

q . props [ ’ l a b e l ’ ]=q . props [ ’SIMID ’ ]

p l t . f i g u r e ( )
pyalps . p l o t . p l o t ( Sca l )
p l t . x l ab e l ( ’ S ca l i ng va r i ab l e $n/ t$ ’ )
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p l t . y l ab e l ( ’ Magnet izat ion$ (n , t ) $ ’ )
p l t . l egend ( )
p l t . xl im ( 0 , 1 . 5 )
p l t . t i t l e ( ’ Magnet izat ion s c a l i n g func t i on ; numerica l and exact

r e s u l t s ’ )
p l t . show ( )

We see that the magnetization agrees very well to visual accuracy, and approaches

the exact scaling form in the relevant limit.

C.3.2.2 Preparing and running the simulation using Vistrails

To run the simulation in Vistrails open the file tutorial2a.vt and look at the

workflow labeled ”tutorial2a”. Click on ”Execute” to prepare the input file, run the

simulation and create the output figure

C.3.3 Error analysis of TEBD 1:Time step error

We now use the exact solution to compute the error in a TEBD simulation as a

function of time. We first investigate the effects of changing the ”infinitesimal” time

step dt.

C.3.3.1 Preparing and running the simulation using Python

To set up and run the simulation in Python we use the script tutorial2b.py. The

first parts of this script imports the required modules and prepares the input files as

a list of Python dictionaries:

import pyalps
import matp lo t l i b . pyplot as p l t
import pyalps . p l o t
import numpy as np
import math
import s c ipy . s p e c i a l

#prepare the input parameters
parms=[ ]
count=0
for nsteps in [ 1 00 , 250 , 500 , 750 , 1 0 0 0 ] :

count+=1
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parms . append ({
’L ’ : 50 ,
’MODEL’ : ’ sp in ’ ,
’ l o c a l S ’ : 0 . 5 ,
’CONSERVEDQUANTUMNUMBERS’ : ’ Sz ’ ,
’ Jxy ’ : 1 ,
’ INITIAL STATE ’ : ’ kink ’ ,
’CHI LIMIT ’ : 20 ,
’TRUNC LIMIT ’ : 1E−12,
’NUMTHREADS’ : 1 ,
’TAUS ’ : [ 2 0 . 0 ] ,
’POWS’ : [ 0 . 0 ] ,
’GS ’ : [ ’H ’ ] ,
’GIS ’ : [ 0 . 0 ] ,
’GFS ’ : [ 0 . 0 ] ,
’NUMSTEPS’ : [ ns teps ] ,
’STEPSFORSTORE’ : [ i n t (math . f l o o r ( ns teps /100) )

] ,
’SIMID ’ : count

})

By changing the parameter NUMSTEPS we implicitly change the time step, since

the total evolution time TAU is fixed. We now write the input files, run the simula-

tions, and collect data:

baseName=’ t u t o r i a l 2 b ’
nmlnameList=pyalps . writeTEBDfi les ( parms , baseName )
r e s=pyalps . runTEBD( nmlnameList )

#Get magnet i za t ion data
Magdata=pyalps . load . loadTimeEvolution ( pyalps . g e tRe su l tF i l e s (

p r e f i x=’ t u t o r i a l 2 b ’ ) , measurements=[ ’ Local Magnet izat ion ’ ] )

We now calculate the exact result from the time data, and then calculate the

difference between the numerical and the exact result for the magnetization

#Postprocess ing−ge t the exac t r e s u l t f o r comparison
for q in Magdata :

s y s s i z e=q [ 0 ] . props [ ’L ’ ]
#Get the exac t r e s u l t o f M(1 , t )=−(1/2)∗( j 0 ( t ) ˆ2) , where

j 0 ( t ) i s the 0ˆ{ th } order
# b e s s e l f unc t i on and M(1 , t ) i s the magnet i za t ion one

s i t e to the r i g h t o f the chain cen ter
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l o c=−0.5∗ s c ipy . s p e c i a l . jn (0 , q [ 0 ] . props [ ’Time ’ ] ) ∗ s c ipy .
s p e c i a l . jn (0 , q [ 0 ] . props [ ’Time ’ ] )

#Get the d i f f e r e n c e between the computed and exac t
r e s u l t s

q [ 0 ] . y=[abs (q [ 0 ] . y [ s y s s i z e /2+1−1]− l o c ) ]

Finally, we plot this magnetization error:

#Plot the Error in the magnet i za t ion one s i t e to the r i g h t o f
the chain cen ter

Mag=pyalps . co l lectXY (Magdata , x=’Time ’ , y=’ Local Magnet izat ion ’ ,
f o r each=[ ’SIMID ’ ] )

for q in Mag:
dt=round (q . props [ ’TAUS ’ ] / q . props [ ’NUMSTEPS’ ] , 3 )
q . props [ ’ l a b e l ’ ]= ’ dt=’+s t r ( dt )

p l t . f i g u r e ( )
pyalps . p l o t . p l o t (Mag)
p l t . x l ab e l ( ’Time $t$ ’ )
p l t . y s c a l e ( ’ l og ’ )
p l t . y l ab e l ( ’ Magnet izat ion Error ’ )
p l t . t i t l e ( ’ Error in the magnet izat ion vs . time ’ )
p l t . l egend ( l o c=’ lower l e f t ’ )
p l t . show ( )

We see that, for short times, the errors are roughly proportional to dt2, reflecting

the contribution to the error from the trotter breakup of our exponential. At long

times, however, the simulations with the smallest dt have errors which become larger

than those with larger dt, and eventually the errors blow up! We will have more to

say about this behavior in the next section.

C.3.3.2 Preparing and running the simulation using Vistrails

To run the simulation in Vistrails open the file tutorial2b.vt and look at the

workflow labeled ”tutorial2b”. Click on ”Execute” to prepare the input file, run the

simulation and create the output figure

C.3.4 Error analysis of TEBD 2:Entanglement cutoff error

We now investigate the effects of changing the entanglement cutoff parameter χ

on the errors in the magnetization.
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C.3.4.1 Preparing and running the simulation using Python

To set up and run the simulation in Python we use the script tutorial2c.py. The

first parts of this script imports the required modules and prepares the input files as

a list of Python dictionaries:

import pyalps
import matp lo t l i b . pyplot as p l t
import pyalps . p l o t
import math
import s c ipy . s p e c i a l

#prepare the input parameters
parms=[ ]
count=0
for ch i in [ 1 0 , 20 , 30 , 4 0 ] :

count+=1
parms . append ({

’L ’ : 50 ,
’MODEL’ : ’ sp in ’ ,
’ l o c a l S ’ : 0 . 5 ,
’CONSERVEDQUANTUMNUMBERS’ : ’ Sz ’ ,
’ Jxy ’ : 1 ,
’ INITIAL STATE ’ : ’ kink ’ ,
’CHI LIMIT ’ : chi ,
’TRUNC LIMIT ’ : 1E−12,
’NUMTHREADS’ : 1 ,
’TAUS ’ : [ 2 0 . 0 ] ,
’POWS’ : [ 0 . 0 ] ,
’GS ’ : [ ’H ’ ] ,
’GIS ’ : [ 0 . 0 ] ,
’GFS ’ : [ 0 . 0 ] ,
’NUMSTEPS’ : [ 5 0 0 ] ,
’STEPSFORSTORE’ : [ 5 ] ,
’SIMID ’ : count

})

We now write the input files, run the simulations, collect data, and compute the

errors as above

baseName=’ t u t o r i a l 2 c ’
nmlnameList=pyalps . writeTEBDfi les ( parms , baseName )
r e s=pyalps . runTEBD( nmlnameList )
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#Get magnet i za t ion data
Magdata=pyalps . load . loadTimeEvolution ( pyalps . g e tRe su l tF i l e s (

p r e f i x=’ t u t o r i a l 2 c ’ ) , measurements=[ ’ Local Magnet izat ion ’ ] )

#Postprocess ing−ge t the exac t r e s u l t f o r comparison
for q in Magdata :

s y s s i z e=q [ 0 ] . props [ ’L ’ ]
#Get the exac t r e s u l t o f M(1 , t )=−(1/2)∗( j 0 ( t ) ˆ2) , where

j 0 ( t ) i s the 0ˆ{ th } order
# b e s s e l f unc t i on and M(1 , t ) i s the magnet i za t ion one

s i t e to the r i g h t o f the chain cen ter
l o c=−0.5∗ s c ipy . s p e c i a l . jn (0 , q [ 0 ] . props [ ’Time ’ ] ) ∗ s c ipy .

s p e c i a l . jn (0 , q [ 0 ] . props [ ’Time ’ ] )
#Get the d i f f e r e n c e between the computed and exac t

r e s u l t s
q [ 0 ] . y=[abs (q [ 0 ] . y [ s y s s i z e /2+1−1]− l o c ) ]

Finally, we plot the magnetization error

#Plot the Error in the magnet i za t ion one s i t e to the r i g h t o f
the chain cen ter

Mag=pyalps . co l lectXY (Magdata , x=’Time ’ , y=’ Local Magnet izat ion ’ ,
f o r each=[ ’SIMID ’ ] )

for q in Mag:
q . props [ ’ l a b e l ’ ]= ’ $\ ch i$=’+s t r ( q . props [ ’CHI LIMIT ’ ] )

p l t . f i g u r e ( )
pyalps . p l o t . p l o t (Mag)
p l t . x l ab e l ( ’Time $t$ ’ )
p l t . y s c a l e ( ’ l og ’ )
p l t . y l ab e l ( ’ Magnet izat ion Error ’ )
p l t . t i t l e ( ’ Error in the magnet izat ion vs . time ’ )
p l t . l egend ( l o c=’ lower l e f t ’ )
p l t . show ( )

We see that, for short times, the errors are roughly proportional to dt2, again

reflecting the contribution to the error from the trotter breakup of our exponential. As

time increases, however, a cascade of diverging errors ensues. First the simulation with

χ = 10 diverges around t = 5, then the simulation with χ = 20 diverges around t = 9

and so on. This breakdown is due to the fact that the protocol for finding the matrix

product state which best approximates the time-evolved state is approximate when

the state becomes highly entangled. This approximation involves a renormalization

of the wavefunction, and so the errors accumulate roughly exponentially in time.
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This exponential growth of errors also accounts for the failure of the simulations

with smaller dt. As dt becomes smaller we must apply the approximate propagation

scheme more to reach the same fixed final time, and this means more accumulation of

the exponentially growing truncation error. Thus, we must strike a delicate balance

between the error incurred by increasing the time step and the error incurred by

taking more time steps. All results should be carefully checked for convergence in

both dt and χ.

C.3.4.2 Preparing and running the simulation using Vistrails

To run the simulation in Vistrails open the file tutorial2c.vt and look at the

workflow labeled ”tutorial2c”. Click on ”Execute” to prepare the input file, run the

simulation and create the output figure

C.3.5 Solution in the case of the XXZ model

We saw from the exact solution that the magnetization profile had a well defined

front which expanded ballistically with velocity v = 1. The XX model has many

special properties and so it is natural to ask if this same magnetization behavior holds

under more general conditions. In this part of the tutorial we investigate the effects of

adding a JzS
z
i S

z
i+1 term to the Hamiltonian, corresponding to the XXZ model. In the

limit as this term dominates the spins become frozen in a parallel configuration, and

so the initial state becomes an exact eigenstate of the Hamiltonian. The XX terms

in the Hamiltonian try to flip the spins, and are responsible for the propagating

magnetization wavefront we saw in the pure XX model. As a quantitative measure

of the ability of the system to transport spin, we consider the integrated flow of

magnetization through the center defined in Phys. Rev. E 71, 036102 (2005) as

∆M(t) =
∑L

n>L/2(⟨Szn(t)⟩+ 1/2)
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C.3.5.1 Preparing and running the simulation using Python

To set up and run the simulation in Python we use the script tutorial2d.py. The

first parts of this script imports the required modules and prepares the input files as

a list of Python dictionaries:

import pyalps
import matp lo t l i b . pyplot as p l t
import pyalps . p l o t
import math
import s c ipy . s p e c i a l

#prepare the input parameters
parms=[ ]
count=0
for z in [ 0 . 0 , 0 . 3 , 0 . 9 , 1 . 0 , 1 . 1 , 1 . 5 ] :

count+=1
parms . append ({

’L ’ : 50 ,
’MODEL’ : ’ sp in ’ ,
’ l o c a l S ’ : 0 . 5 ,
’CONSERVEDQUANTUMNUMBERS’ : ’ Sz ’ ,
’ Jxy ’ : 1 ,
’ Jz ’ : z ,
’ INITIAL STATE ’ : ’ kink ’ ,
’CHI LIMIT ’ : 40 ,
’TRUNC LIMIT ’ : 1E−12,
’NUMTHREADS’ : 1 ,
’TAUS ’ : [ 2 0 . 0 ] ,
’POWS’ : [ 0 . 0 ] ,
’GS ’ : [ ’H ’ ] ,
’GIS ’ : [ 0 . 0 ] ,
’GFS ’ : [ 0 . 0 ] ,
’NUMSTEPS’ : [ 5 0 0 ] ,
’STEPSFORSTORE’ : [ 5 ] ,
’SIMID ’ : count

})

Note that we are simulating a range of Jz-couplings. We then write the input files,

run the simulation, and get the output as usual:

baseName=’ t u t o r i a l 2 d ’
nmlnameList=pyalps . writeTEBDfi les ( parms , baseName )
r e s=pyalps . runTEBD( nmlnameList )
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#Get magnet i za t ion data
Magdata=pyalps . load . loadTimeEvolution ( pyalps . g e tRe su l tF i l e s (

p r e f i x=’ t u t o r i a l 2 d ’ ) , measurements=[ ’ Local Magnet izat ion ’ ] )

From the computed magnetization data we calculate the integrated magnetization as

defined above:

#Compute the i n t e g r a t e d magnet i za t ion across the cen ter
for q in Magdata :

s y s s i z e=q [ 0 ] . props [ ’L ’ ]
#Compute the i n t e g r a t e d f l ow o f magnet i za t ion through the

cen te r \Delta M=\sum {n>L/2}ˆ{L} (<S nˆz ( t )>+1/2)
#\Del ta M= L/4
l o c =0.5∗( s y s s i z e /2)
#\Del ta M−=<S nˆz ( t )> from n=L/2 to L
q [ 0 ] . y=[0 .5∗ ( s y s s i z e /2)+sum(q [ 0 ] . y [ s y s s i z e /2 : s y s s i z e ] ) ]

Finally, we plot the integrated magnetization for the range of Jz couplings simu-

lated.

#Plot the i n t e g r a t e d magnet i za t ion
Mag=pyalps . co l lectXY (Magdata , x=’Time ’ , y=’ Local Magnet izat ion ’ ,

f o r each=[ ’ Jz ’ ] )

p l t . f i g u r e ( )
pyalps . p l o t . p l o t (Mag)
p l t . x l ab e l ( ’Time $t$ ’ )
p l t . y l ab e l ( ’ In t eg ra t ed Magnet izat ion $\Delta M( t ) $ ’ )
p l t . t i t l e ( ’ In t eg ra t ed Magnet izat ion vs . Time ’ )
p l t . l egend ( l o c=’ upper l e f t ’ )
p l t . show ( )

We see that for Jz<1 the integrated magnetization increases roughly linearly in

time, and so the magnetization transport is ballistic as in the XX case. For Jz

around 1, we see a change in the qualitative behavior to one in which the integrated

magnetization eventually saturates.

C.3.5.2 Preparing and running the simulation using Vistrails

To run the simulation in Vistrails open the file tutorial2d.vt and look at the

workflow labeled ”tutorial2d”. Click on ”Execute” to prepare the input file, run the
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simulation and create the output figure

C.3.5.3 Questions

• The point Jz=1 where the behavior of the integrated magnetization undergoes a

distinct qualitative change is the point at which the XXZ model transitions from

a critical phase to the Antiferromagnetic phase. However, this phase transition

is a priori a low-energy phenomenon, affecting the ground state. Can you deduce

how this low energy change affects the dynamical properties of our high-energy

initial state?
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APPENDIX D - EDUCATIONAL MATERIALS: A GENTLE INTRODUCTION

TO TIME EVOLVING BLOCK DECIMATION (TEBD)

D.1 Pre-test

Before we begin, I’m assuming that you have finished the “Introduction to the

Bose-Hubbard Model and Fock State Basis” problem set. In particular, it is important

that you have finished problem 6 and have a working code which will compute the

ground state of an N particle, L site Bose-Hubbard system with local dimension d.

The below exercises will test your familiarity with the Bose-Hubbard Hamiltonian

and the Fock state basis. If you can’t complete them with relative ease, you may

want to review the material presented in the other problem set before proceeding.

D.1.1 Exercise 1

Consider a system with three sites occupied by bosons. The Fock space is spanned

by the states |n1n2n3⟩. What is the overlap of the states |110⟩ and |010⟩ (That is,

what is ⟨110|010⟩)? What are ⟨110|b̂1|010⟩ and ⟨110|b̂†1|010⟩?

D.1.2 Exercise 2

Now consider the total number operator defined by N̂ ≡
∑3

i=1 n̂i, where n̂i = b̂†i b̂i.

What is the action of N̂ on the states |ψ1⟩ = |231⟩, |ψ2⟩ = 1√
5
|022⟩ +

√
4
5
|101⟩,

and |ψ3⟩ =
√

1
3
|112⟩ +

√
2
3
|022⟩. Which of these states (if any) are total number

eigenstates such that N̂ |ψ⟩ = N |ψ⟩?

D.1.3 Exercise 3

In the Bose-Hubbard Hamiltonian, the tunneling term is

−t
∑
⟨i,j⟩

(
b̂†i b̂j + b̂ib̂

†
j

)
. (D.1)
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What does the second term in parentheses represent physically? Why is it important

mathematically?

D.2 The Limitations of Exact Diagonalization

In the previous problem set you wrote a code to explicitly construct the Bose-

Hubbard Hamiltonian, diagonalize it, and thus find the ground state energy and

eigenvector. The process of finding the ground state of a many-body hamiltonian

in terms of a fixed Fock basis is referred to as exact diagonalization (ED). ED is

very powerful in that it gives us maximal information about the energy spectrum

and eigenstates of the Hamiltonian, and also has the benefit of being very simple to

understand and to program. As we shall see, ED is also very limited in the sizes of

the systems it can handle.

D.2.1 Exercise 4: The Limitations of Exact Diagonalization

Using your ED code, find the largest Bose-Hubbard system your computer can

handle for non-number conserving code before running out of memory. Repeat for

the number conserving case.

From this previous exercise, we gather two things. The first is that ED is not

going to be of much use in studying systems of more than a few sites. The second is

that judicious exploitation of symmetries and their associated conservation laws, such

as the conservation of total number in the Bose Hubbard model, drastically improves

the performance of many-body simulations.

Time-Evolving Block Decimation (TEBD) is a powerful method to simulate many-

body systems such as the Bose-Hubbard model whose computation time and memory

usage scale polynomially in the system size (as opposed to exponentially in the system

size, as in ED). It is also, however, much more difficult to conceptually understand

and to program. In the next few subsections I will provide a crash course in what

TEBD is and how it works. Those interested in learning only how to use the open
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source TEBD package should skip to subsection D.6.

D.3 Preliminaries

D.3.1 Mathematical Preliminaries

As is often the case, before we get to the physics we have to learn some math.

In this subsection I present two theorems, the singular value decomposition and the

Schmidt decomposition.

Theorem: (Singular value decomposition) Let A be an m× n matrix. Then there

exists an m×m unitary matrix ΓA, an n×n unitary matrix ΓB, and an m×n positive

diagonal (as defined for rectangular matrices) matrix λ such that

A = ΓAλΓTB , (D.2)

or, stated element-wise,

Aij =

min(m,n)∑
k=1

[ΓA]ik λkk
[
ΓTB
]
kj
. (D.3)

This is referred to as the singular value decomposition of A, and the diagonal

elements of λ are referred to as the singular values of A. Note that the form of the

decomposition implies that A has at least one and at most min (m,n) distinct singular

values. The number of nonzero singular values of a matrix is its rank.

The most important property of the SVD for our purposes is that the matrix A(l)

defined by the matrix elements

A
(l)
ij =

l∑
k=1

[ΓA]ik λkk
[
ΓTB
]
kj

(D.4)

is the closest rank-l matrix to A, meaning that A(l) minimizes the Frobenius norm:

the sum of the absolute squares of the element-wise difference between the rank-
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l approximation and the full matrix,
∑

ij

∣∣∣Aij − A(l)
ij

∣∣∣2. Thus, the SVD gives us a

means to find the best lower-rank approximation to a matrix. The reduction in rank

is important because matrices of lower rank require much less storage and allow for

more efficient operations. Explicitly, a rank-l approximation to an m × n matrix

is comprised of ml + nl + l numbers whereas the full rank matrix is comprised of

mn numbers. For matrices with ranks small compared to their size, l ≪ m,n, the

reduction in storage is enormous.

We saw in the previous paragraph that a reduced rank approximation to a matrix

requires less storage than the full rank matrix. Here we also explore how reducing the

rank of a matrix improves the efficiency of operations performed with it. Consider

multiplying an n× n matrix A to a vector v. The resulting vector Av can be written

in indicial notation as

[Av]i =
n∑
k=1

Aikvk . (D.5)

The formation of each element of Av requires n multiplications, and there are n ele-

ments of Av, so the formation of the full vector Av requires O (n2) operations,99 where

O (a) is read “of order a.”100 Now consider taking the singular value decomposition

of A, and forming a rank-l approximation A(l):

A
(l)
ij =

l∑
k=1

[ΓA]ik λkk
[
ΓTB
]
kj
. (D.6)

How many operations are required to form A(l)v? Naively, we would write

[
A(l)v

]
ij

=
l∑

k=1

n∑
j=1

[ΓA]ik λkk
[
ΓTB
]
kj
vj , (D.7)

99by operation we mean an elementary operation such as an addition, multiplication, subtraction,
or division. In computer science language, where we deal with floating point representations of
numbers, such an operation is called a floating-point operation, or FLOP.

100For more information on this notation, see the wikipedia page for Big-O notation.
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which seems to involve O (n2l) operations, increasing the number of operations by

a factor of l! We can be more clever, however, and first multiply v by ΓTB to get a

vector q

qi =
n∑
k=1

[
ΓTB
]
ik
vk . (D.8)

Note that q has l elements and this multiplication involves O (nl) operations. We

now multiply each element of q by an element of λ to get

qi = λiqi (D.9)

which involves O (l) operations. Finally, we multiply q by ΓA to get

[
A(l)v

]
i

=
l∑

j=1

[ΓA]ij qj , (D.10)

which again involves O (nl) operations. Thus, our total operation count is nl+ l+nl,

which is O (nl)! For l ≪ n, the reduction in the number of operations is again

enormous.

D.3.1.1 Exercise 5: General matrix-vector multiply using the SVD

How many operations does it take to multiply an m× n matrix A to an n dimen-

sional vector v both with and without the singular value decomposition?

D.3.1.2 Exercise 6: Simple examples of the SVD

Compute the singular value decompositions of the matrices

c1 =

(
1 0
0 0

)
, c2 =

(
0 1/

√
2

−1/
√

2 0

)
, c3 =

(
1/2 1/2
1/2 1/2

)
(D.11)

numerically. The simplest way to do so is using Matlab or Mathematica, where the

commands are [U,S,V]=svd(A) and
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{U,S,V}=SingularValueDecomposition[A],101 respectively. Those who wish to use

Fortran or C++ can use the lapack routine dgesvd. What are the ranks of these

matrices? Could you have guessed their ranks simply by looking at them?

The singular value decomposition is a general mathematical statement about a

way to rewrite any arbitrary matrix. The next theorem, the Schmidt decomposition,

gives a more physical understanding of what the singular value decomposition means

in the context of a tensor product space.

Theorem: (Schmidt Decomposition) Let |ψ⟩ be a state vector in the dAdB dimen-

sional Hilbert space HA ⊗ HB.102 Then there exist vectors
{
|ϕAα ⟩

}
and

{
|ϕBα ⟩

}
and

scalars χS and {λα} such that

|ψ⟩ =

χS∑
α=1

λα|ϕAα ⟩ ⊗ |ϕBα ⟩ , (D.12)

1 ≤ χS ≤ min (dA, dB) , (D.13)

λ1 ≥ λ2 ≥ · · · ≥ λχS
> 0 , (D.14)∑

α

λ2α = 1 . (D.15)

This is referred to as the Schmidt decomposition of |ψ⟩. χS is referred to as the

Schmidt rank, and the {λα} are referred to as the Schmidt coefficients. We shall prove

this theorem to elucidate the connection between the Schmidt rank and the singular

value decomposition.

Proof: Let {|jA⟩} and {|nB⟩} be two orthonormal bases of HA and HB of dimen-

sion dA and dB, respectively. The most general decomposition of |ψ⟩ in this basis

is

|ψ⟩ =

dA∑
j=1

dB∑
n=1

cjn|jA⟩ ⊗ |nB⟩ . (D.16)

101Note in Mathematica that it returns U , S, and V such that A = USV T

102To be concrete, you could consider HA to be the Hilbert space of the first site and HB to be
the Hilbert space of the second site of a two site system. Or you could consider HA to represent the
internal states of some particle and HB to represent the internal states of another particle.
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Applying the singular value decomposition to the coefficient matrix C such that

cjn =

min(dA,dB)∑
i=1

[ΓA]ji λii
[
ΓTB
]
in
, (D.17)

we have

|ψ⟩ =

dA∑
j=1

min(dA,dB)∑
i=1

dB∑
n=1

[ΓA]ji λii
[
ΓTB
]
in
|jA⟩ ⊗ |nB⟩ . (D.18)

If we now define

|ϕAi ⟩ ≡
dA∑
j=1

[ΓA]ji |jA⟩ , |ϕ
B
i ⟩ ≡

dB∑
n=1

[
ΓTB
]
in
|nB⟩ , λi ≡ λii , (D.19)

we have

|ψ⟩ =

χS∑
i=1

λi|ϕAi ⟩ ⊗ |ϕBi ⟩ , (D.20)

as was to be proven. We can identify χS generally as the number of nonzero singular

values of the decomposition matrix, with 1 ≤ χS ≤min(dA, dB). We also note that

the Schmidt decomposition may be easily performed numerically using the singular

value decomposition of the coefficient matrix C.

What has the Schmidt decomposition done for us? The Schmidt decomposition

of |ψ⟩ provides us with unique orthonormal bases for the two subsystems A and B

such that |ψ⟩ can be written as a superposition of tensor products with the least

possible number of terms. In addition, the sizes of the Schmidt coefficients λi give

the “importance” of the particular state |ϕAi ⟩⊗ |ϕBi ⟩ in the representation of |ψ⟩, and

the Schmidt rank tells us how difficult it is to write |ψ⟩ as a tensor product, loosely

speaking.

These statements can be made more precise and physically meaningful by intro-

ducing the quantum mechanical idea of entanglement, as is done in the next subsec-

683



tion.

D.3.2 Entanglement

We again consider a system with two parts, which we refer to as a bipartite system.

A general ket |ψ⟩ in this system can be written as

|ψ⟩ =
∑
n,m

cnm|n⟩ ⊗ |m⟩ (D.21)

where the {|n⟩} and {|m⟩} form complete orthonormal bases for the first and second

parts, respectively. We see that this is not, in general, a tensor product |ϕ1⟩⊗ |ϕ2⟩ of

kets in the subspaces. States in the composite space which are not tensor products

of kets from the subspaces are said to be entangled. For example, if we examine a

two-qubit103 system, a general ket can be written

|ψ⟩ = c11|+⟩ ⊗ |+⟩+ c12|+⟩ ⊗ |−⟩+ c21|−⟩ ⊗ |+⟩+ c22|−⟩ ⊗ |−⟩ (D.22)

whereas general normalized kets of the subsystems can be written

|ϕ1⟩ = a1|+⟩+ b1|−⟩ (D.23)

|ϕ2⟩ = a2|+⟩+ b2|−⟩ (D.24)

⇒ |ϕ1⟩ ⊗ |ϕ2⟩ = a1a2|+⟩ ⊗ |+⟩+ a1b2|+⟩ ⊗ |−⟩+ b1a2|−⟩ ⊗ |+⟩+ b1b2|−⟩ ⊗ |−⟩
(D.25)

|ψ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ iff c11c22 = c12c21, which is certainly not the general case.

We saw above that the Schmidt rank gave us a measure of how difficult it was to

accurately represent our state as a tensor product. From the above considerations,

we see that states with a higher Schmidt rank are more entangled. By truncating at

a fixed Schmidt rank, we find the best approximation to our state in a Hilbert space

that truncates the amount of entanglement allowed. This statement is very key, so

I’m going to write it out in bold so that you remember it:

103a qubit is a general two-state system, for example the internal states of a spin-1/2 particle.
Here |+⟩ represents one of the two states and |−⟩ the other.
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By performing the Schmidt decomposition on the state of a bi-

partite system and truncating the Schmidt rank, we find the best

approximation to the state in a Hilbert space with restricted en-

tanglement.

The efficient approximation of a state in a space with restricted entanglement is the

key idea of TEBD. In the next subsection we will compare the above mathematical

ideas with the more tangible idea of image compression.

D.3.2.1 Exercise 7: Studying entanglement via the Schmidt Decomposi-
tion

We can now give a physical interpretation to the purely mathematical Exercise 6.

Write down the coefficient matrices of the states

|ψ1⟩ = |+⟩ ⊗ |+⟩ (D.26)

|ψ2⟩ =
1√
2

(|+⟩ ⊗ |−⟩ − |−⟩ ⊗ |+⟩) (D.27)

|ψ3⟩ =
1

2
[|+⟩ ⊗ |+⟩+ |+⟩ ⊗ |−⟩+ |−⟩ ⊗ |+⟩+ |−⟩ ⊗ |−⟩] (D.28)

(D.29)

in the form

C =

(
c11 c12
c21 c22

)
, (D.30)

where cij is given as in Eq. (D.22). You should recover the matrices of Exercise 6.

Using their singular value decompositions, find the Schmidt ranks. Which of these

states are entangled according to the Schmidt rank? For those states that are not

entangled, can you find a way to write them as a tensor product? How might you

use the singular value decomposition to accomplish this?
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D.4 Conceptual Basis of TEBD

The essential fact that allows for the efficiency and success of TEBD is that the sin-

gular values of reduced density matrices,104 when arranged in non-increasing fashion,

have an approximately exponential decay. This means that a rank-χ approximation

to the reduced density matrix, ρ̂(χ), formed from the singular value decomposition as

in Eq. (D.4) with χ≪ χS will provide an excellent approximation to the true reduced

density matrix. We can understand this fact using an analogy to image compression.

Consider the JPEG image shown in Figure D.1(a). We can represent this picture

as a 300×416 array of pixels, requiring 124800 words of storage. If we look at the

singular values of this pixel array, we find the distribution shown in Figure D.1(b),

namely that the singular values decay roughly exponentially. This implies that the

best approximation to the image given by the SVD will be excellent even if we keep

only a fraction of the total singular values. To see this in action, examine Figures Fig-

ure D.1(c)–Figure D.1(e), which show the best approximation to the image for various

numbers of singular values. Keeping 100 singular values gives an excellent approxima-

tion to the original image with only a quarter of the data storage. If we consider that

the original image was a JPEG which itself was compressed down from a ∼3000×3000

pixel (10 Megapixel) raw array, we have benefitted enormously by carefully sampling

the parts of “image space” that are the most important via the SVD.

Why were we able to represent the image with so little data? The reason is that

a physical images are a very special subset of all 2D pixel arrays; they have a great

deal of structure and regularity. If we consider instead the most probable image of

the same size as our original image–one consisting of random pixel values–we get the

singular value scaling shown in Figure D.1(f). In this case the singular values are all

roughly the same, and our SVD compression would yield a miserable approximation

104The reduced density matrix is a general way of dealing with subsystems of quantum mechanical
systems. For our purposes, it takes the place of the coefficient tensor when the system has more
than two parts (e.g. more than two lattice sites).
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to the original image if we were to use only a quarter of the singular values. In

the same manner typical physical states in Hilbert space, including the ground state,

have limited entanglement as quantified by some entanglement measure. This limited

entanglement means the singular value spectra of physical states decay exponentially

more quickly than a general state, enabling them to be “entanglement compressed”

by algorithms such as TEBD.

D.5 TEBD in Summary

Before going on to use TEBD, let’s pause to reiterate what TEBD is and why it

works where ED fails. TEBD is a method which gives the best approximation to the

state of a many-body system by truncating the amount of entanglement allowed in

the state. This is done by the singular value decomposition, which reduces the rank

of the matrices carrying the state information. We have seen that reducing the rank

of a matrix allows it to be stored more compactly, and operations to be done more

efficiently. In the case of TEBD, the rank of the matrices we keep is exponentially

smaller than the size of the matrices they approximate. The exponential decrease

in storage and exponential increase in efficiency of operations are what allow us to

use TEBD where ED fails. For all of the gory details on TEBD, you can consult the

User’s guide for the open source package, located on the downloads page.

D.6 Using OSTEBD

To begin, download the most recent version of the open source TEBD package

from the downloads page (unless you have a more recent version from another place).

After decompressing the .tar.gz file, go into the Case_Studies directory, and then

into Bose_Hubbard_Wrapper. Open a terminal in this directory. Type make ITP.

If you see Execute_ITP in this folder after a while, the case study has compiled.

Otherwise, it didn’t compile for some reason. You should be sure that you have

gfortran as well as lapack installed and try again.
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Figure D.1: SVD representation of an image. (a) Original Image. (b) Log plot of
singular values. (c) 10 Singular values. (d) 50 Singular values. (e) 100 Singular
values. (f) Log plot of singular values: General pixel array (pink), Physical pixel
array (blue).
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Once you have compiled successfully, open the file BoseHubbard_ITP.nml This is

the input file, which sets the parameters for a specific TEBD job. You will see three

lines, denoted by SystemSettings, BHParams, and ITPParams. The parameters in

SystemSettings define the properties of the system as a whole. Specifically, they are

1. systemSize, the number of lattice sites.

2. maxFilling, the maximum number of bosons allowed per lattice site.

3. totNum, the total number of bosons for number conserving code. If totNum=0,

the non-number conserving code is used.

4. BoundaryCond, the boundary conditions used. It can be either ’O’ for open

boundary conditions or ’P’ for periodic boundary conditions.

5. trotterOrder, the order of the trotter expansion of the propagator. It can be

either 2 or 5.

In very recent versions you may also have numThr, which specifies the number

of threads used for OpenMP parallelization. Unless you know what you are doing,

set this to be 1. The parameters in BHParams represent the parameters in the Bose-

Hubbard model. Specifically they are

1. jTunn, the tunneling energy t.

2. U0, the on-site interaction energy U .

3. V0, the nearest-neighbor interaction energy V .

4. mu0, the chemical potential µ. Note that the chemical potential sets the total

number when the non-number conserving code is used, but only gives an overall

(unimportant) energy shift when the number conserving code is used.

The parameters contained in ITPParams determine the convergence and output

properties of the TEBD run. Specifically, they are
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1. chiMin, the minimum value of the entanglement cutoff parameter χ used to

calculate the ground state.

2. chiMax, the maximum value of the entanglement cutoff parameter χ used to

calculate the ground state.

3. convCriterion1, the convergence criterion for the first ITP.105 attempt.

4. convCriterion2, the convergence criterion for the first ITP attempt.

5. stepsForJudge determines how many ITP steps occur before convergence is

checked for.

6. dtITP, the “infinitesimal” timestep used for ITP.

7. maxITPsteps, the maximum number of ITP steps allowed.

8. itpDir, the directory where the output will be written. Note that this directory

must exist when you run the program or it will exit!

After setting the parameters you want in the BoseHubbard_ITP.nml file, type

./Exectute_ITP to run the TEBD program.

D.6.1 Exercise 8: Using TEBD:Non-Number Conserving Version

Set SystemSize=4, totNum=0, BoundaryCond=’O’, trotterOrder=2,

chiMin=chiMax=10, and maxFilling to 3. Then set jTunn=1.12, U0=0.72, V0=0.0,

and mu0=0.5. Run the code as described above, and note the total number and total

energy. Using your ED code, calculate the ground state energy and total number

of particles for the same parameters and without number conservation and compare

them to the TEBD predictions.

105ITP is short for imaginary time propagation Imaginary time propagation replaces t = −it in
the Schrödinger equation, which turns it into a diffusion equation. The highest energy eigenmodes
decay the most quickly during imaginary time evolution, and so in the limit of long times imaginary
time propagation gives us the ground state.
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D.6.2 Exercise 9: Using TEBD:Number Conserving Version

Set SystemSize=4, totNum=4, BoundaryCond=’O’, trotterOrder=2,

chiMin=chiMax=10, and maxFilling to 3. Then set jTunn=1.12, U0=0.72, V0=0.0,

and mu0=0.0. Run the code as described above, and note the total energy. Using your

ED code, calculate the ground state energy with number conservation and compare

it to the TEBD prediction. Also note the large increase in efficiency of the number

conserving codes vs. non-number conserving codes.

I hope the last two exercises give you some confidence that the OSTEBD package

works. However, TEBD is hardly useful for 4 sites where ED still works and is likely

faster. In the next exercise we will study the analytically solvable tight-binding limit

of the Bose-Hubbard model using TEBD for large numbers of sites where ED fails.

D.6.3 Exercise 10: The Tight-Binding Chain

Consider the Bose-Hubbard model in the limit U → 0, V → 0 and a fixed number

of particles:

Ĥ = −t
∑
i

(
b̂†i b̂i+1 + b̂ib̂

†
i+1

)
. (D.31)

This Hamiltonian, known as the tight-binding Hamiltonian, represents noninteracting

bosons which are free to hop between sites on a lattice. It is the many-body gen-

eralization of the particle in an infinite well problem from single-particle quantum

mechanics, and can be solved similarly. We can write the kth eigenstate for a single

particle as

|ψk⟩ =
L∑
i=1

ψikb̂
†
i |0 . . . 0⟩ (D.32)

where the ψik are complex scalars to be determined and |0 . . . 0⟩ is the Fock state

with no particles in any site (the Fock vacuum). Inserting this solution into the
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Schrödinger equation Ĥ|ψ⟩ = E|ψ⟩, we have the recursion relation

−t (ψi−1,k + ψi+1,k) = Ekψik (D.33)

together with appropriate boundary conditions. For open boundary conditions, we

have

ψ0k = 0 , ψL+1,k = 0 (D.34)

and for periodic boundary conditions we have

ψ1k = ψL+1,k . (D.35)

Let us now define the ansatz

ψjk =

{
Aeikj +Be−ikj OBC

Aeikj PBC
. (D.36)

Inserting this ansatz into the above recursion relation gives a set of algebraic equations

for the ψik and the energy Ek. Solve these equations and determine the single-particle

eigenfunctions and energies for both open and periodic boundary conditions. Then,

normalize these solutions such that ⟨ψk|ψk⟩ = 1.

We note that the operator

ŝ†k =
L∑
i=1

ψikb̂
†
i (D.37)

creates an eigenstate of the tight binding Hamiltonian with quantum number k. Since

the particles do not interact, the solution for N particles with quantum numbers

k1, k2 . . . kN is simply

|ψ⟩ = N ŝ†kN . . . ŝ
†
k2
ŝ†k1 |0 . . . 0⟩ , (D.38)
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where |0 . . . 0⟩ is again the Fock vacuum and

N =
1√∏
k nk!

(D.39)

is a normalization factor accounting for the indistinguishability of bosons. The energy

of this state is E = Ek1 +Ek2 +· · ·+EkN . This completes the solution of the N -particle

tight-binding Hamiltonian. For bosons, the lowest energy state is the one where all

particles are in the lowest energy single-particle eigenstate. Using the above results,

find what the expectation value of the number operator in the ground state is at each

site for both open and periodic boundary conditions.106 As a slight generalization,

also compute the single-particle density matrix defined by

ρij = ⟨g.s.|b̂†i b̂j|g.s.⟩ . (D.40)

Using some system size which is much too large for ED (say, 25), study the tight-

binding Hamiltonian using TEBD for both open and periodic boundary conditions.

In particular, compare the results for the energy and the on-site number expectation

values. To compare with your predictions for the on-site number expectation values,

look in the directory ITPDATA for the file ending in localmeasures.dat. The full file-

name will be in the form BH_L$N@ChiXjTunnP.PPUQQ.QQ*BClocalmeasures, where

$ is the number of lattice sites, @ the number of particles, X the chi value and so on.

On the first line of this file are the on-site number expectation values, listed in order

of increasing site index.

106There’s an easy way and a hard way to do this. The easy way involves representing the number
operator n̂i = b̂†i b̂i in terms of the ŝk using Eq. (D.37) and then taking the expectation value using

Eq. (D.38). The hard (but fun) way is to expand the solution Eq. (D.38) in terms of b̂i using

Eq. (D.37) and then take the expectation value of n̂i = b̂†i b̂i.

693



D.6.4 Exercise 11: Fidelity Susceptibility and the Superfluid-Mott Insu-
lator Quantum Phase Transition

The previous exercise allowed us to go beyond where ED could, but the results

were still amenable to analytic computation. Here we go beyond the reach of analytic

techniques to study a strongly interacting Bose-Hubbard system, and investigate its

quantum phase transition. By a quantum phase transition we mean a transition

between two different states of matter (characterized by different symmetries) which

is driven by quantum fluctuations at zero temperature.107 Specifically, in the Bose-

Hubbard model the quantum phase transition occurs because of fluctuations in the

on-site number as we change the ratio t/U of the hopping strength to the interaction.

To discover where the quantum phase transition is in the Bose-Hubbard model,

let us return to the single particle density matrix (SPDM) from the last exercise, and

focus on the case of OBC and N = L (as many particles as lattice sites).108 You

should have found that the SPDM in the non-interacting OBC case had the form

ρij =
2N

L+ 1
sin

(
πi

L+ 1

)
sin

(
πj

L+ 1

)
(D.41)

which is plotted in Figure D.2 . What does this quantity tell us? Notice that the

elements of the SPDM can be interpreted as the overlap of the two wavefunctions

b̂j|g.s.⟩ and b̂i|g.s.⟩ Thus, we can interpret the elements of the single particle density

matrix as the probability amplitude that if we remove a particle from the ground state

at site i we will find it missing at site j, averaged over all the other N − 1 particles

(with the “diagonal” elements i = j just being the number on site i, of course). For

this to be nonzero with i ̸= j implies that the particles must be delocalized. In

the present case the particles are highly delocalized, and this gives rise to mostly

107This is in contrast to classical phase transitions, which are driven by thermal fluctuations, and
thus necessarily occur at nonzero temperatures.

108For good reason, as this quantum phase transition happens to occur only for integer filling
N/L = 1, 2, . . . .
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Figure D.2: Single particle density matrix, noninteracting system of L = 50 lattice
sites and N = 50 particles.

nonzero SPDM matrix elements. Secondly, because this matrix is Hermitian it may

be diagonalized and written in terms of its eigenvalues Nν and eigenvectors ϕµ (i) as

ρij =
∑
µ

Nµϕµ (i)⋆ ϕµ (j) . (D.42)

The eigenfunctions ϕµ (i) behave in many respects like single-particle wavefunctions

(although they do not, in general, diagonalize the single-particle part of the full

many-body Hamiltonian) and we can interpret the eigenvalues Nµ as the number of

particles in the “single-particle state” ϕµ.109 For our noninteracting case there is one

eigenvalue N1 = N , with all others being zero. The corresponding eigenfunction ϕ1

is an actual single-particle wavefunction in this case, and corresponds to the k = 1

mode (or the k = 0 mode for PBC). Thus we have that all of the particles occupy one

particular single-particle mode, which is a hallmark of the phase of the Bose-Hubbard

model known as the superfluid phase. We can express this result in terms of another

quantity, called the depletion, as

109For more information on the physical content of the eigenvalues/vectors of the SPDM and their
connection with Bose-Einstein condensation, I recommend A. J. Leggett’s highly readable book
“Quantum Liquids,” which is available in the library.
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D = 1−N1/N . (D.43)

The depletion in this case is 0, meaning that the all particles are condensed into

one single-particle mode (the condensate is not at all depleted). When we add small

interactions N1 will shrink somewhat, giving rise to nonzero depletion, and the eigen-

function ϕ1 will no longer be a true single-particle wavefunction, but the overall

behavior will be qualitatively the same (most of the elements of ρij will be nonzero,

there will be one SPDM eigenvalue that is O (N), etc.).

Let us now focus on the opposite limit of the Bose-Hubbard model, where we let

the hopping t→ 0 and have U nonzero. The only surviving term for a fixed number

of particles is

Ĥ =
U

2

∑
i

n̂i (n̂i − 1) . (D.44)

This Hamiltonian does not couple the different sites together, and so its ground state

is a Fock state. In particular, for N = L, the ground state is the Fock state with one

particle at each lattice site |11 . . . 1⟩.110 What does the SPDM look like in this case?

A trivial calculation gives

ρij = δij , (D.45)

where δij is the Kronecker delta. Loosely speaking, there is no probability of finding a

removed particle missing from anywhere besides the exact spot it was removed from,

and so we see that the particles are now highly localized! Also, we see that all of the

eigenvalues of the single particle density matrix are 1, giving the depletion

D = 1− 1/N . (D.46)

110We arrive at this conclusion by noting that occupation of any site by two particles costs an
energy U more than if those two particles occupied separate sites.
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In the limit as L→∞ and N →∞ with N/L fixed (the thermodynamic limit) where

a true quantum phase transition occurs, the depletion becomes 1, meaning that there

are no particles in a condensed state (the condensate is fully depleted). The resulting

phase is known as the Mott Insulator. If the transition from the superfluid to Mott

insulator occurs at a finite value of t/U , then we expect the depletion to be zero

below this value and nonzero above it. It is clear that the depletion is thus not a

smooth (meaning infinitely continuously differentiable) function of t/U , and it is this

singularity in the depletion (or one of its derivatives) that signals the quantum phase

transition.

To “see” the quantum phase transition using TEBD, we could calculate the ground

state for a series of lattices with increasing L = N and a range of t/U , compute the

depletion for each case, and try to find the point where it goes to zero as L → ∞.

However, this would require us to know ahead of time that the depletion is the

quantity signaling the quantum phase transition. In TEBD we have the option of

taking a more general approach, which I will outline here.

The ground states on either side of a quantum phase transition are very different

from one another, and the non-analyticity at the transition point disallows us from

smoothly “connecting” one type of ground state to another. Thus, we expect that

the overlap of the ground state on one side of the critical point with the ground state

on the other side should go to zero in the thermodynamic limit. This motivates the

definition of the fidelity

f

(
t

U
, δ
t

U

)
≡
∣∣∣∣⟨g.s.( t

U

)
|g.s.

(
t

U
+ δ

t

U

)
⟩
∣∣∣∣ (D.47)

which is the overlap of the ground state at t/U with the ground state at t/U + δt/U .

For small δt/U this quantity should drop sharply only right near a quantum critical

point, and does not require us to know anything about the system at hand. To remove

the dependence on the step size δt/U it is actually better to work with the fidelity
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susceptibility

χf

(
t

U

)
=

2

L
(
δ t
U

)2 (1− f
(
t

U
, δ
t

U

))
(D.48)

which can be shown to be independent of δ t
U

. This quantity diverges at the quantum

critical point, and will be the basis of our TEBD study.

In order to be able to properly extrapolate finite size results to the infinite size

limit, we will need to run TEBD for several numbers of sites L. In addition, because

the prediction of where the quantum critical point is will change as L changes, we will

need to simulate several t/U for each L. This amounts to running many simulations,

and you will run out of time and/or patience if you try and do it sequentially on a

desktop computer! Thus, in this exercise we will use the high performance resources

available here at Mines to run TEBD simulations in parallel. The TEBD code we will

use distributes a group of tasks (here computation of the ground state for a range of

t/U) among a group of processors, and then compiles the results into a single file.

Log in either to Ra or Mio (Mio is preferred) and go to the carr group directory.111

Go to the Case studies folder and then enter the MPI_BH_Wrapper directory. Type

make FS, which compiles the main program

BoseHubbard_FS_MPI.f90. This program calculates the ground state of the Bose-

Hubbard model for N = L and a user-specified range of t/U in parallel, and saves the

states to disk as they are generated. Once all states have been generated, the routine

reads them in and computes the fidelity susceptibility. We can use this routine to

study the behavior of the fidelity susceptibility as L gets progressively larger. Also,

because we save the states we generate, we can progressively refine our result for the

fidelity susceptibility by gradually increasing the amount of entanglement allowed

(controlled by χ) or by making the imaginary time step smaller.

111On Ra, this is /lustre/scratch/projects/carrgroup/. We will get such a directory started on
Mio once it is fully operational.
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The NAMELIST parameter file is BH_FS.nml. The parameters are:

1. systemSize, same meaning as before.

2. maxFilling, same meaning as before.

3. BoundaryCond, same meaning as before.

4. Jmin, the minimum value of t/U considered.

5. jMax, the maximum value of t/U considered.

6. jres, the number of t/U points from Jmin to jMax, inclusive.

7. chiOld, the old value of χ, used when reading in previously generated states.

8. chiIn, the value of χ for which you want to generate the fidelity susceptibility.

9. convCriterion, the convergence criterion for ITP.

10. stepsForJudge, same meaning as before.

11. dtOld, the old value of δt, used when reading in previously generated states.

12. dtIn, the value of δt for which you want to generate the fidelity susceptibility.

13. maxITPsteps, same meaning as before.

14. FSDir, the directory where the fidelity susceptibility data is stored.

15. statesDir, the directory where the state information is stored.

For the first run at a given systemSize, chiOld and chiIn should be the same.

If more accuracy is desired after this first run, chiOld should be set to the value

of χ you previously generated and chiIn should be set to the value you want to

output at the end of the calculation. Identical reasoning applies to dt*. The output

file in the directory FSDir ending in FS.dat has as its columns the values of t/U
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and χf . These can be plotted using your favorite program (e.g. gnuplot, Matlab, or

Mathematica). See Figure D.3 for example fidelity susceptibility curves to get you

started on appropriate parameters.

To run a job in a high performance computing environment we must submit our

job with a request for resources to the queue. This is done using the attached PBS

file tebdpbs. The contents of the file are

#!/bin/csh

#PBS -l nodes=1:ppn=8

#PBS -l walltime=00:59:00

#PBS -N FS_MPI

#PBS -o FSstdout.$PBS_JOBID

#PBS -e FSstderr.$PBS_JOBID

#PBS -V

#PBS -m abe

#PBS -M YOURNAME@mines.edu

#------------------------

cd $PBS_O_WORKDIR

sort -u $PBS_NODEFILE > mynodes.$PBS_JOBID

mpiexec Execute_FS > FSstdout.$PBS_JOBID

You should change YOURNAME to your mines user name. This has the supercomputer

email you when a job begins, finishes, or is aborted. Out of the remainder, the lines

you need to focus on are

#PBS -l nodes=1:ppn=8

#PBS -l walltime=00:59:00
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The first specifies the number of nodes you are asking for, where each node is a

computer with 8 processors. Choosing n nodes will speed up the calculation by a

factor of 8n − 1 in the ideal case. The second line specifies how long the computer

gives your job to finish before killing it. In the above it is set to 59 minutes. The

longer you ask for, the longer you may have to wait before your job starts running

(see the GECO webpage for more information about the different queues). To submit

your job to the queue, type msub tebdpbs.

After you have generated χf for a series of L values, plot the locations of the

maxima versus the lattice size and fit to a function of the form

L = f (ζmaxL) = C |ζmaxL − ζmax∞|−η (D.49)

with C, η > 0 as fit parameters, ζ = t/U , ζmaxL the value of ζ where χf is a maximum

for a particular L, and ζmax∞ a fit parameter estimating the location of the quantum

phase transition in the thermodynamic limit. Note that this calculation was only

first done in 2007!112 Quantum phase transitions are an exciting and very current

area of research, and powerful new methods such as TEBD are key to advancing

understanding in the field.

112The relevant paper is Phys. Rev. Lett. 98 110601, but don’t look at it until you have a prediction
for ζmax∞!
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Figure D.3: Fidelity susceptibility for (bottom to top) L = 3, 5, 10, 20, 40.
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APPENDIX E - EDUCATIONAL MATERIALS: INTRODUCTION TO MPS

ALGORITHMS

The goal of this document is to give a series of successive steps leading to a working

variational matrix product state (MPS) code for the Ising model. New in v3: sections

marked with an asterisk (∗) represent optimizations which should be skipped on first

reading, but are important for efficient MPS code.

E.1 Matrix Product States and their Canonical Forms

The definition of a matrix product state (MPS) is

|MPS⟩ =
d∑

i1,...,jL=1

Tr
(
Ai1 . . . AiL

)
|i1 . . . iL⟩ , (E.1)

where L is the number of lattice sites on a 1D chain, ij is a physical index denoting

the state of the jth lattice site, and d is the on-site dimension (which I will also call the

local dimension). Because each Aij with ij fixed is a matrix we use the terminology

MPS. However, each A in fact has three elements: Aiαβ. We will refer to an object

with greater than two indices generically as a tensor, and the number of indices will

be its rank. The dimensions of the spaces indexed by α and β are referred to as

bond dimensions, with the bond dimension of an MPS being the maximum bond

dimension of the matrices A. We will generically give a bond dimension the symbol

χ. Simple arguments using the Schmidt decomposition show that the left and right

bond dimensions in the case of open boundary conditions satisfy

χα ≤ min
(
dj−1, dL−j+1

)
,

χβ ≤ min
(
dj, dL−j

)
(E.2)
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on the jth site, as can be easily proved by Schmidt decomposition. Note in partic-

ular that this implies that the furthest left and furthest tensors A[1] and A[L]113 are

max (χα, d, χβ) = (1, d, d) and (d, d, 1), respectively. We will focus on the case of open

boundaries for the remainder of this document. The case of periodic boundary con-

ditions is considerably more complicated and should really be considered a separate

algorithm altogether.

We plan to use MPS as a variational ansatz for finding the ground state of the

Ising model. As such, we will need to define an MPS structure and initialize it with

random numbers.

E.1.1 Step 1: MPS Structure

Define a tensor 114 structure which is an allocatable array with three indices.

This structure will hold the tensors Aiαβ. Next, define an MPS structure which is an

array of tensors. For the first part of this problem set, real tensors and MPSs will

suffice.

E.1.2 Step 2: MPS Initialization

Write a subroutine AllocateMPS(psi,L,bondD,d) which allocates an MPS psi on

L sites with maximum bond dimension bondD and local dimension d. The left and right

bond dimensions of each tensor A should obey the conditions Eq. (E.2). Also write a

routine DeallocateMPS which deallocates the MPS structure. Finally, write a routine

CreateRandomMPS(psi,L,bondD,d) which allocates an MPS as in AllocateMPS, but

also assigns each element a random number∈ [−1, 1].

As discussed in Schollwöck,115 the imposition and maintenance of canonical forms

is absolutely essential to the efficiency of a variational MPS program. The canonical

113The notation A[j] means the tensor A
ij
αβ on site j. When all four indices are required, we will

use A
[j]ij
αβ

114I will use typewriter face whenever I refer to something which is to be coded.
115By which I mean Prof. Ulrich Schollwöck’s major review The density-matrix renormalization

group in the age of matrix product states, Annals of Physics 326, 96 (2011).
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form we will use most often is Mixed canonical form at site k, in which all tensors to

the left of k satisfy the left orthogonality conditions

∑
α,i

Aiαβ
⋆
Aiαβ′ = δβ,β′ (E.3)

and all tensors to the right of k satisfy the right orthogonality conditions

∑
i,β

AiαβA
i
α′β

⋆
= δα,α . (E.4)

The site k itself satisfies no such orthogonality conditions, but we note that

Tri1,...,iL (|ψ⟩⟨ψ|) = ⟨ψ|ψ⟩ =
∑

α,β,ik
A

[k]ik
αβ A

[k]ik
αβ

⋆
, and so this site carries all information

about the norm of the state. We will refer to the site k in mixed canonical form as

the orthogonality center of the MPS.

We can always choose the orthogonality conditions Eqs. (E.3) and (E.4) to hold

because of the so-called gauge freedom inherent in the MPS representation. This

freedom refers to the fact that if we consider any two MPS tensors A[i] and A[i+1],

the same MPS results if we replace these by Ã[j]ij and Ã[j+1]ij+1 , where

Ã[j]ij ≡ A[j]ijX , (E.5)

Ã[j+1]ij+1 ≡ X−1A[j+1]ij+1 , (E.6)

and X is any invertible matrix. In practice we implement the orthogonality conditions

Eqs. (E.3) and (E.4) as in Figure E.1 and Figure E.2, respectively.116

You should take a minute to convince yourself of why this works, recalling that

the matrices U and V of the singular value decomposition are unitary. Furthermore,

you should pay close attention to groupings of indices and note that two tensors are

changed at a time.

116The notation [αi] refers to the Kronecker product of the indices α and i. The product index
ξ = [αi] runs from 1 to dαdi, and an explicit representation is ξ = (α− 1) di + i.
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1. Reshape A
[j]i
αβ → A[αi],β.

2. Perform the singular value decomposition (SVD) on this matrix to obtain
A[αi]β → U[αi]γSγVγβ.

3. Replace A
[j]i
αβ = U[αi]β.

4. Combine (SV )γβ = SγVγβ.

5. Contract SV into the A tensor to the right of the one just replaced A
[j+1]i
αβ =

(SV )αγ A
i[j+1]
γβ .

Figure E.1: Algorithm to put site j into left canonical form.

1. Reshape A
[j]i
αβ → Aα[iβ].

2. Perform an SVD on this matrix to obtain Aα[iβ] → UαγSγVγ[iβ].

3. Replace A
[j]i
αβ = Vα[iβ].

4. Combine (US)αγ = UαγSγ.

5. Contract US into the A tensor to the left of the one just replaced A
[j−1]i
αβ =

A
[j−1]i
αγ (US)γβ.

Figure E.2: Algorithm to put site j into right canonical form.

E.1.3 Step 3: Canonical Form

Write a routine OrthogonalizeMPS(psi,k,kl,kr) which puts the MPS psi into

mixed canonical form with the orthogonality center at site k. The optional arguments

kl and kr denote the furthest left and furthest right sites which are altered. The

default values are 1 and L, respectively. Test this routine by explicitly checking

the relations Eqs. (E.3) and (E.4) at each site. Do tensors in left canonical form

obey any sort of right canonical form or vice versa? What about the orthogonality

center-does it have any structure that you can discern?117 Then, write a routine

117These are not trick questions...
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OrthonormalizeMPS(psi,k) which shifts the orthogonality center of psi to site k

and then normalizes the state by replacing A
[k]i
αβ → A

[k]i
αβ /
√
⟨ψ|ψ⟩, where ⟨ψ|ψ⟩ =∑

α,β,ik
A

[k]ik
αβ A

[k]ik
αβ

⋆
as shown above. The svd may be performed using the LAPACK

routine dgesvd.

OK, you now have an MPS in a form amenable to the variational procedure. Let’s

now move on to constructing the Hamiltonian in an appropriate way.

E.2 Matrix Product Operators

Just as an MPS can be viewed as a sum over tensor products of state-valued

matrices:

|MPS⟩ =
∑
i1...iL

Tr
(
Ai1 ⊗ · · · ⊗ AiL

)
, (E.7)

Aijαβ ≡ A
ij
αβ|ij⟩ (E.8)

we can define an object which is like an MPS but is operator-valued instead of state-

valued

ĤMPO =
∑
i1...iL

Tr
(
W i1i′1 ⊗ · · · ⊗W iLi

′
L

)
, (E.9)

W iji
′
j

αβ ≡ W
iji

′
j

αβ |ij⟩⟨i
′
j| . (E.10)

Such an object is called a Matrix Product Operator (MPO). As with an MPS, the ij

indices are physical, referring to actual sites in the lattice, and the indices implicit in

the matrix product are called bond indices. The reason that MPOs are useful is that

they map MPSs to MPSs. To see this, note that an MPO-MPS product is

Ĥ|ψ⟩ = Tr
(
Ãi1 . . . ÃiL

)
|i1 . . . iL⟩ , (E.11)

Ã
ij
[αk][βk′] ≡

∑
i′j

A
i′j
αβW

iji
′
j

kk′ . (E.12)
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We see that, generically, the action of an MPO on an MPS increases the bond di-

mension of that MPS by the multiplicative factor χH , the bond dimension of the

MPO. Because MPOs are operators, the relevant norm for them is the Frobenius

norm ⟨Ĥ|Ĥ⟩ =

√
Tr
(
Ĥ†Ĥ

)
. However, this norm scales as dL, and so we cannot

hope to orthogonalize the matrices of an MPO in the same way that we did MPSs

without running into serious numerical issues concerning precision. Luckily, because

of the structure of physical operators such as many-body Hamiltonians it is possible to

explicitly construct the MPOs in a canonical form in which all of the (matrix-valued!)

matrices Wkk′ are lower triangular. For the case of a generic nearest-neighbor Hamil-

tonian

Ĥ =
∑
⟨i,j⟩

p∑
α=1

JαÔ
(1)
iα Ô

(2)
jα +

∑
i

q∑
β=1

hβÔ
(0)
iβ , (E.13)

where α denotes the different nearest neighbor terms and β denotes the different

on-site terms (each characterized by different operators Ô), the MPO representation

is

W [1] =
( ∑q

β=1 hβÔ
(0)
1β J1Ô

(1)
11 . . . JpÔ

(1)
1p I

)
, (E.14)

W [j] =


I 0 . . . 0 0

Ô
(2)
j1 0 . . . 0 0
...

...
. . .

...
...

Ô
(2)
jp 0 . . . 0 0∑q

β=1 hβÔ
(0)
jβ J1Ô

(1)
j1 . . . JpÔ

(1)
jp I

 , j ̸= 1 , L , (E.15)

W [L] =


I

Ô
(2)
L1
...

Ô
(2)
Lp∑q

β=1 hβÔ
(0)
Lβ

 . (E.16)

To be very concrete, in the case of the Ising model
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Ĥ = −J
∑
⟨i,j⟩

σ̂zi σ̂
z
j − h

∑
i

σ̂xi , (E.17)

and so p = 1, q = 1, Jα = −J , hβ = −h, Ô
(1)
iα = Ô

(2)
iα = σ̂zi , Ô

(0)
iβ = σ̂xi . The MPO in

this case is

W [1] =
(
−hσx −Jσ̂z I

)
, (E.18)

W [j] =

 I 0 0
σ̂z 0 0
−hσ̂x −Jσ̂z I

 , j ̸= 1 , L ,

W [L] =

 I
σ̂z

−hσ̂x

 .

We note that the MPO has a bond dimension of 3.118 The reader should convince

themselves that the MPO form given reproduces the correct Hamiltonian. A simple

check is to compute the two-site hamiltonian using only the boundary operators and

then the three site Hamiltonian with an additional matrix between them etc. with the

understanding that the matrices that are elements of the matrices W are multiplied

according to the tensor product. This method also suggests a straightforward way to

prove the consistency by induction for those who wish to be more thorough.

E.2.1 Step 4: MPO Structure

Introduce a matrix structure which is an allocatable array with two indices. Then,

define an MPOm structure which is an allocatable array of matrices with two indices.

This represents the on-site MPO tensors W ii′

kk′ , with i and i′ being the indices of the

on-site operator. Finally, define an MPO structure which is an allocatable array of

MPOms.

118The general case given above has a bond dimension of p + 2, independent of the number of
on-site operators.
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E.2.2 Step 5: MPO Representation of the Ising Hamiltonian

Write a subroutine IsingMPO(H,L,Jz,hx) which creates an MPO H on L sites con-

taining the MPO representation of the Ising model with J=Jz and h=hx according

to Eq. (E.18). Additionally, write a routine DeallocateMPO(H) which deallocates the

MPO H which was allocated by the IsingMPO routine.

E.2.3 ∗ Long Range Interactions with MPO.

Just as exponentially decaying correlations are naturally supported by an MPS

with a constant bond dimension, interactions with exponentially decaying weight may

be easily expressed as an MPO with a constant (independent of system size) bond

dimension. As an example, a long range Ising model

Ĥ = −J
∑
i<j

e−ξ|i−j−1|σ̂zi σ̂
z
j − h

∑
i

σ̂xi (E.19)

can be expressed as an MPO as

W [1] =
(
−hσx −Jσ̂z I

)
, (E.20)

W [j] =

 I 0 0
σ̂z e−ξ 0
−hσ̂x −Jσ̂z I

 , j ̸= 1 , L ,

W [L] =

 I
σ̂z

−hσ̂x

 .

Power-law decaying functions can be approximated by using sums of exponentials

in the following manner. We have some function f (i− j − 1) and we want to approx-

imate it by the sum of k weighted exponentials
∑k

i=1 αkβ
i−j−1
k =

∑k
i=1 αke

(i−j−1) log βk .

We do so in the least squares sense, that is we find the αk and βk such that

∣∣∣∣∣f (x)−
k∑
i=1

αkβ
x
k

∣∣∣∣∣
2

(E.21)
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is minimized in the desired (integer valued) domain of x. This can be done with

standard numerical packages such as MINPACK. My own implementation in Python

follows:

from math import s q r t
import numpy as np
from s c ipy . opt imize import l e a s t s q
def f i ttoexpSum ( func , L , maxnterms , t o l ) :

””” Fi t a sum of e xponen t i a l s \sum n a n b n ∗∗{x−1} to the
func t i on func
across the range [ 1 : L ] . maxnterms i s the maximum number

o f e xponen t i a l s a l l owed
and t o l i s the t o l e r anc e used to ob ta in the a c t ua l number

o f terms . ”””
x=np . l i n s p a c e (1 ,L ,L)
#func t i on eva lua t ed at x−po in t s
y= func (x )
f a i l=True
for n in range (1 ,maxnterms+1) :

#re s i d u a l f unc t i on
r e s i d = lambda p , x , y : sumexp (p , x )−y
#i n i t i a l guess
p0=np . z e ro s (2∗n)
i f n==1:

for i in range (2∗n) :
p0 [ i ]=0.1

else :
#use o ld va l u e s to r e f i n e guess
p0 [ : 2 ∗ ( n−1)]=p
p0 [ 2∗ ( n−1) : ]=0 . 1

p , cov , i n f o d i c t , mesg , i e r=l e a s t s q ( r e s id , p0 , args=(x , y ) , f t o l
=to l , g t o l=to l , maxfev=100000 , f u l l o u t pu t =1,warning=
True )

i f np . dot ( i n f o d i c t [ ’ f v e c ’ ] , i n f o d i c t [ ’ f v e c ’ ] )<t o l :
print ’ r e s i d ’ , np . dot ( i n f o d i c t [ ’ f v e c ’ ] , i n f o d i c t [ ’ f v e c ’

] )
f a i l=Fal se
break

i f f a i l :
raise Exception ( ”Unable to converge decayingFunct ion to

the de s i r ed t o l e r an c e with the g iven number o f terms !
Try i n c r e a s i n g maxnterms or dec r ea s ing t o l ! ” )

return p

def sumexp (p , x ) :
”””Return y=\sum n a n b n ˆ{r−1}. ”””
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va l=np . double ( 0 . 0 )
nterms=len (p) /2
for n in range ( nterms ) :

va l=va l+p [2∗n ] ∗ ( p [2∗n+1]∗∗(x−1) )
return va l

The resulting MPO has the same overall format as the exponential Ising MPO, with

the border terms and the diagonals nonzero, but now there are k such nonzero terms

instead of just 1. The number of terms which must be kept depends on the particular

form of f and the domain of x.

E.3 Construction of the Effective Hamiltonian

We now have the state and Hamiltonian in the form appropriate for variational

MPS studies. We now wish to variationally optimize the MPS tensors A one at a

time until a global optimum has been reached. We optimize the state in the usual

way, by changing its parameters such that the total energy functional

E [|ψ⟩] =
⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

(E.22)

is minimized. As shown in Schollwöck, minimization with respect to a single tensor

A chosen to be the orthogonality center leads to the linear eigenequation

∑
α′,i′,β′

Ĥeff
[αiβ][α′i′β′]A

i′

α′β′ = λAiαβ , (E.23)

where the effective Hamiltonian Ĥeff is defined by the tensor network diagram shown

in Figure E.3. We call this object the effective Hamiltonian because it gives the

energies when all tensors except those at site j are held fixed, and so it incorpo-

rates nonlocal effects of the many-body state when choosing the minimum energy

configuration at a particular site.

The overall algorithm for variationally finding the ground state is outlined in

Figure E.4.
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Ĥ
eff

α

α�

β

β�

i

i�

LR[j+1]k�

β�β
LR[j]k

αα�
W ii�

kk�

Figure E.3: Construction of the Effective Hamiltonian in tensor network diagram
representation

From Figure E.3, we see that construction of the effective Hamiltonian at each site

requires O (L) operations, as we have to contract over all MPS tensors not currently

being optimized. Because a complete sweep runs over L sites, this implies that the

overall algorithm scales as O (L2), which is unacceptably slow. We now turn to how

to generate the effective Hamiltonian using O (L) time. We do so by introducing an

array of L + 1 tensors, which we call LR. This object is defined for orthogonality

center ℓ via the relations

LR
[1]k
αα′ = δk,1δα,1δα′,1 (E.24)

LR
[j]k
αα′ =

∑
i,i′,k′,γ,γ′

A[j−1]i
γα

⋆
LR

[j−1]k′

γγ′ A
[j−1]i′

γ′α′ W
[j−1]ii′

k′k , 2 ≤ j ≤ ℓ (E.25)

LR
[L+1]k
β′β = δk,1δβ′,1δβ,1 (E.26)

LR
[j]k
β′β =

∑
i,i′,k′,γ,γ′

A
[j]i′

β′γ′LR
[j+1]k′

γ′γ A
[j]i
βγ

⋆
W

[j]ii′

kk′ , ℓ+ 1 ≤ j ≤ L . (E.27)

Very special attention should be paid to the ordering of indices in each term. While

the order of indices may seem arbitrary, the particular choice shown here will turn out

to be beneficial for later optimization. We now note that the effective Hamiltonian

at site j can be constructed from these overlaps as

Ĥeff
[αiβ][α′i′β′] =

∑
k,k′

LR
[j]k
αα′W

ii′

kk′LR
[j+1]k′

β′β , (E.28)
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1. Create a random MPS with fixed bond dimension, normalize it, and shift the
orthogonality center to some user-specified site j. Set k = j

2. Create the MPO representation of the Hamiltonian.

3. (Begin sweeping procedure: right sweep part 1) Create the effective Hamiltonian
at site k, diagonalize it, and replace A with the eigenvector corresponding to
the lowest eigenvalue.

4. Move the orthogonality center one site to the right. k = k + 1

5. Repeat 3 and 4 until site L is the orthogonality center.

6. (sweeping procedure: left sweep) Create the effective Hamiltonian at site k,
diagonalize it, and replace A with the eigenvector corresponding to the lowest
eigenvalue.

7. Move the orthogonality center one site to the left. k = k − 1

8. Repeat 6 and 7 until site 1 is the orthogonality center.

9. (sweeping procedure: right sweep part 2) Repeat 3 and 4 until site j is the
orthogonality center.

10. Test for convergence (to be discussed) and either repeat from 3 or exit the loop.

Figure E.4: Pseudocode to find the ground state variationally.
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as shown in Figure E.3. Once the present site has been variationally optimized and

the orthogonality center shifted to the next site, we update the jth element of the LR

array using Eq. (E.25) if we are sweeping to the right (steps 3/4 or 9) or Eq. (E.27)

if we are sweeping to the left (step 6/7). Note also that we must initialize the LR

array for the beginning orthogonality center j.

E.3.1 Step 6: LR Array

Create a routine InitializeLR(LR,H,psi,k) which initializes the L+1-dimensional

array of tensors LR according to the above relations for orthogonality center k. Also,

write a routine UpdateLR(LR,H,psi,k,sense) which updates the k + 1th element of

LR according to Eq. (E.25) if the integer sense is greater than 0 and which updates

the kth element of LR according to Eq. (E.27) if sense is less than 0.119 These routines

allow us to “recycle” old values of LR and keep the algorithm scaling as O (L).

E.3.2 Step 7: Effective Hamiltonian

Create a routine EffectiveHamiltonian(j,Heff,H,LR) which creates the matrix

Heff at site j according to Eq. (E.28). Create another routine MinimizeSite(j,psi,H,

LR, energy) which creates the effective Hamiltonian at site j, diagonalizes it,120 out-

puts the lowest eigenvalue as energy, and replaces psi with the eigenvector corre-

sponding to the lowest energy (be careful with indices).

E.3.3 Step 8: Putting It All together

Write a routine FindGroundState(H,psi,k) which takes as input an MPO Hamilto-

nian H, a random MPS psi with orthogonality center k and variationally optimizes it to

the ground state of H. We do this in several parts. First, call InitializeLR(LR,H,psi,k)

119Note the asymmetry between which element we update based on the direction of the sweep.
This arises from the fact that we use LR[j] and LR[j+1] to update site j.

120Because the effective Hamiltonian is real and symmetric(prove this to yourself) you can use the
LAPACK routine DSYEV.
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and set the logical flag converged to .FALSE., energySave=10000.0, and numsweeps=1.

We then have the following psuedocode recursion:

DO WHILE( . not . converged )
sense=1
DO j=k ,L−1

CALL MinimizeSite ( j , ps i ,H,LR, energy )
CALL OrthogonalizeMPS ( ps i , j +1, j , j +1)
CALL UpdateLR(LR,H, ps i , j , s ense )

END DO
sense=−1
DO j=L,2 ,(−1)

CALL MinimizeSite ( j , ps i ,H,LR, energy )
CALL OrthogonalizeMPS ( ps i , j −1, j −1, j )
CALL UpdateLR(LR,H, ps i , j , s ense )

END DO
sense=1
DO j =1,kin−1

CALL MinimizeSite ( j , ps i ,H,LR, energy )
CALL OrthogonalizeMPS ( ps i , j +1, j , j +1)
CALL UpdateLR(LR,H, ps i , j , s ense )

END DO
IF (ABS( energySave−energy ) <0.01) converged=. t rue .
IF ( numsweeps==10) EXIT
IF ( converged ) EXIT
numsweeps=numsweeps+1
energySave=energy

END DO

Compare with Figure E.3. After convergence is reached, print the ground state energy

and whether it converged to the screen. Write a main program which creates a random

MPS, creates the MPO representation of the Ising Hamiltonian with user specified Jz

and hx, and then finds the ground state energy. Compare your results with the results

of the attached code. The main program is IsingGSMain.f90 which is compiled as

make IsingGSMain and run as ./Execute IsingGSMain.

E.3.4 ∗ Sparse Eigensolvers-the Lanczos Algorithm

Looking again at Figure E.3, we see that the application of the effective Hamilto-

nian onto some MPS tensor A may be broken into three pieces:
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F k′

αiβ =
∑
β′

A
[j]i
αβ′LR

[j+1]k′

β′β , Gk
αiβ =

∑
k′i′

W ii′

kk′F
k′

αi′β ,
[
ĤeffA

]i
αβ

=
∑
α′k

LR
[j]k
αα′G

k
αiβ .

(E.29)

The relative scalings of these contractions are χ3dχO, χ2
Od

2χ2, and χ3dχO, where χ is

the bond dimension of the MPS, d the local dimension, and χO the bond dimension

of the MPO. On the other hand, the direct construction of the effective Hamiltonian,

Eq. (E.28), scales as χ4χ2
Od

2, which is much slower than a single Hamiltonian-tensor

multiply, and the diagonalization of the Hamiltonian scales as χ6d3, which is incom-

parably slower than either of these operations when χ ≫ 1, as is typically the case.

Luckily, there exist eigensolvers for one or a few of the extremal eigenvalues which

require only Hamiltonian-tensor multiplies. The Lanczos algorithm is an example of

such an alogirithm. It may be stated as follows:121

input ps i , a normal ized vec to r ( t enso r )
input H, an e f f e c t i v e Hamiltonian in the LR/W format
input eps i l on , a t o l e r an c e f o r convergence

k=1
lanc=ps i
v=H∗ p s i
alpha (k )=ps i ∗v
v=v−alpha (k ) ∗ p s i
beta (k )=sq r t ( v∗v )
do un t i l convergence

temp=ps i
p s i=v/beta (k )
v=−beta (k ) ∗temp
v=v+H∗ ps i
k=k+1
alpha (k )=ps i ∗v
v=v−alpha (k ) ∗ ps i
beta (k )=sq r t ( v∗v )
s o l v e alpha /beta system and t e s t f o r convergence

end

121A great deal more can be said about the origins and interpretation of the Lanczos algorithm.
See for example Trefethen and Bau’s book “Numerical Linear Algebra” or Golub and Van Loan’s
book “Matrix Computations.” Here, for the sake of compactness, we just outline the algorithm.
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! g enerate e i g enve c t o r
p s i=e i gve c (1 ) ∗ l anc
v=0
v=H∗ l anc
alpha (k )=lanc ∗v
v=v−alpha (k ) ∗ l anc
beta (k )=sq r t ( v∗v )
do i =1,k−1

temp=lanc
lanc=v/beta (k )
v=−beta (k ) ∗ l anc
p s i=ps i+e i gve c ( i +1)∗ l anc
v=v+H∗ l anc
k=k+1
alpha (k )=lanc ∗v
v=v−alpha (k ) ∗ l anc
beta (k )=sq r t ( v∗v )

end
renorma l i z e p s i

Where ∗ for two tensors is the inner product of the Hilbert space ⟨A,B⟩ ≡ A ∗

B =
∑

αiβ A
i⋆
αβB

i
αβ and for Hamiltonian-tensor multiplies is the three-step process

Eq. (E.29). The section solve alpha/beta system at the kth step means to solve

for the lowest eigenvalue/eigenvector pair of the symmetric tridiagonal matrix with

alpha(1:k) on the diagonals and beta(1:k-1) on the offdiagonals. evec(i) in the

above represents the ith component of this eigenvector. Specialized routines for tridi-

agonal problems exist in lapack. Exact convergence occurs when one of the beta(k)

is zero, to within numerical tolerance. Convergence within a specified tolerance ε, in

the sense that
∣∣∣ĤeffA− λA

∣∣∣ < ε, occurs when |ekβk−1| < ε, where e is the eigenvector

of the alpha/beta matrix at the kth iteration and β is beta.

The Lanczos algorithm often converges in a constant (independent of χ) number

of iterations on the order of a few tens or hundreds. This leads to an algorithm which

scales as χ3 overall, much faster than the χ6 scaling of the direct algorithm. The

Lanczos algorithm should thus be considered an essential part of any efficient MPS

program.
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E.4 Observables

The simplest observables to compute are those at a single site: ⟨Ôj⟩. If that site

is the orthogonality center then we have

⟨Ôj⟩ =
∑
α,β,i,i′

A
[j]i⋆
αβ Ô

j
ii′A

[j]i′

αβ . (E.30)

To test these routines, compute
∑

i⟨σ̂iz⟩ and demonstrate that it is 0 (by symmetry)

and compute
∑

i⟨σ̂ix⟩ and show it is −∂⟨Ĥ⟩/∂h = − [E (h+ δh)− E (h− δh)] /2δh+

O (δh2). To compute the expectation of a general operator expressed as an MPO you

can use the LR recursion

LR
[L+1]k
β′β = δk,1δβ′,1δβ,1 (E.31)

LR
[j]k
β′β =

∑
i,i′,k′,γ,γ′

A
[j]i′

β′γ′LR
[j+1]k′

γ′γ A
[j]i
βγ

⋆
W

[j]ii′

kk′ , j = 1 . . . L , (E.32)

the expectation is LR
[1]1
11 (note that this tensor is 1× 1× 1).

E.5 Excited States

To compute the nth excited state, we again minimize the energy functional

E [|ψ⟩] =
⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

(E.33)

but this time subject to the constraints ⟨ψ|φγ⟩ = 0, γ = 1, . . . , n, where |φγ⟩ is the

γth lowest energy state already obtained by the ground state procedure above or the

current procedure. We note that each one of the constraints is a linear form in each

of the tensors A[ℓ]⋆. Thus, we can represent the constraints as122

⟨ψ|φγ⟩ =
∑
αiβ

A
[ℓ]i⋆
αβ B[ℓ](γ)i

αβ = 0 . (E.34)

where

122Note that the bases of B are the same as the bases of A, as can be clearly seen from Figure E.5.
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B[ℓ](γ)i
αβ ≡ ∂

∂A[ℓ]⋆
⟨ψ|ϕγ⟩ = LR

[ℓ]γ
αα′B

[ℓ](γ)i
α′β′ LR

[ℓ+1]γ
β′β . (E.35)

The LR overlaps used in this expression are

LR
[1]γ
αα′ = δk,1δα,1δα′,1 (E.36)

LR
[j]γ
αα′ =

∑
i,β,β′

A
[j−1]i⋆
βα LR

[j−1]γ
ββ′ B

[j−1](γ)i
β′α′ , 2 ≤ j ≤ ℓ (E.37)

LR
[L+1]γ
β′β = δk,1δβ′,1δβ,1 (E.38)

LR
[j]γ
β′β =

∑
i,α,α′

B
[j](γ)i
β′α′ LR

[j+1]γ
α′α A

[j]i⋆
βα , ℓ+ 1 ≤ j ≤ L , (E.39)

and B[ℓ](γ) is the on-site tensor at site ℓ for state |φγ⟩. The tensor network diagram

representing these objects is shown in Figure E.5. We use the B(γ) to construct

LR[j]γ
αα� LR[j+1]γ

β�β

B[j](γ)i
α�β�

B[j](γ)i
αβ

= B
= A

Figure E.5: Construction of linear forms for projection in tensor network diagram
representation. The thick lines correspond to contractions over the bond dimensions
of A and the thin lines are contractions over the bond dimensions of B.

projectors into the subset of states orthogonal to the n lowest states

P [ℓ] = 1−
∑
γγ′

B[ℓ](γ)
(
N−1

)
γγ′

B[ℓ](γ′)† (E.40)

where N−1 is the inverse of the Gram matrix

Nγγ′ =
∑
αiβ

B[ℓ](γ)i⋆
αβ B[ℓ](γ′)i

αβ . (E.41)

The Gram matrix inverse is required for the projector to be idempotent: P2 = P .

While the n lowest states are all orthogonal the B are not guaranteed to be orthogonal,
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and may even be linearly dependent.123 Thus, instead of the true inverse we use the

Moore-Penrose pseudo-inverse of the (Hermitian) Gram matrix.

(
N−1

)
γγ′

=

NS∑
β=1

Vγβ
1

λβ
V ⋆
γ′β (E.42)

where V is the matrix with the eigenvectors of N as columns and NS is the number

of eigenvalues greater than a set tolerance (to avoid overflow).124 By defining the new

set of tensors

C[ℓ](γ)i
αβ =

∑
γ′

1√
λγ
Vγ′γB[ℓ](γ′)i

αβ (E.43)

the projector becomes

P [ℓ]
[αiβ],[α′i′β′] = δ[αiβ],[α′i′β′] −

∑
γ

C[ℓ](γ)i
αβ C[ℓ](γ)i′⋆

α′β′ . (E.44)

We compute the projected effective Hamiltonian as P [ℓ]†ĤeffP [ℓ]. The total algorithm

proceeds much like the ground state search algorithm except that we also initialize

the B overlaps LR using Eqs. (E.37) and (E.39), compute the projectors at each site

to compute and diagonalize the projected effective Hamiltonian, and update the B

LR after each optimization.125 As a final note, clearly 0 is a valid eigenvalue of the

projected Hamiltonian with eigenvector 0. Thus, if the next excited state energy is

positive then the algorithm will fail to converge trying to force the state to be zero.

This difficulty can be avoided by shifting the spectrum of the Hamiltonian to be

negative definite.126

123One can see that if the number of states desired is larger than the local Hilbert space of a single
MPS tensor then the vectors must be linearly dependent just by the dimension of the space.

124A good choice for the tolerance is n∥N∥2ε = n
√
maxλε where ε is the machine epsilon, n is

the linear dimension of the matrix, and
√
maxλ is the square root of the largest eigenvalue. Note

that because N is a Gram matrix it is guaranteed to be positive semidefinite and have at least one
positive eigenvalue.

125Note that we don’t need to shift the orthogonality center of the Bs, as all of them get contracted
each time we form the Bs.

126Note that the largest eigenvalue of Ĥ can be found by solving for the “ground state” of −Ĥ.

721



E.5.1 ∗ Sparse Solution of the Projected Eigenproblem

The above method can also easily be recast in a form amenable to the Lanczos

algorithm. Every Hamiltonian-tensor multiply is replaced by projection, Hamiltonian-

tensor multiply, and then projection again, where projection is

Aiαβ = Aiαβ −
∑
γ

[∑
α′β′i′

Ai
′

α′β′C[ℓ](γ)i′⋆
α′β′

]
C[ℓ](γ)i
αβ . (E.45)

E.6 Time Evolution with TEBD

In this section we discuss the simplest method for time evolution of an MPS:

Time-evolving block decimation (TEBD). TEBD involves two parts: 1.the approxi-

mation of the full propagator by a series of two-site propagators for short times and 2.

representation of a two-site operator times an MPS as an MPS. There are many ways

to accomplish the first task which fall generally under the heading of Suzuki-Trotter

expansions. A simple expression which fits our purposes nicely is

U = exp
(
−iĤδt

)
=

1∏
j=L−1

exp
(
−iĤ(j)δt/2

) L−1∏
j=1

exp
(
−iĤ(j)δt/2

)
+O

(
δt3
)

(E.46)

=
1∏

j=L−1

U (j)

L−1∏
j=1

U (j) +O
(
δt3
)

(E.47)

where Ĥ(j) is a two-site Hamiltonian acting on sites j and j + 1 whose precise form

will be determined shortly. We first note that this restriction implies that TEBD

is restricted to nearest-neighbor Hamiltonians. As was discussed in the MPO sec-

tion, the MPO of any Hamiltonian with only nearest-neighbor and local interactions

has nonzero entries only on the “border” of the MPO matrices. We construct the

Hamiltonians in Eq. (E.46) as
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Ĥ
(1)
[ij][i′j′] =

χO−1∑
k=1

(
W [1]

)ii′
1k

(
W [2]

)jj′
k1

+
1

2

(
W [1]

)ii′
1χO

(
W [2]

)jj′
χO1

, (E.48)

Ĥ
(ℓ)
[ij][i′j′] =

1

2

(
W [ℓ]

)ii′
11

(
W [ℓ+1]

)jj′
11

+

χO−1∑
k=2

(
W [ℓ]

)ii′
1k

(
W [ℓ+1]

)jj′
k1

(E.49)

+
1

2

(
W [ℓ]

)ii′
1χO

(
W [ℓ+1]

)jj′
χO1

, 2 ≤ ℓ ≤ L− 2

Ĥ
(L−1)
[ij][i′j′] =

1

2

(
W [L−1]

)ii′
11

(
W [L]

)jj′
11

+

χO∑
k=2

(
W [L−1]

)ii′
1k

(
W [L]

)jj′
k1
. (E.50)

Note that, with these definitions, Ĥ =
∑L−1

j=1 Ĥ
(j). The factors of 1/2 in the local

terms with k = 1 or χO account for the fact that Ĥ(ℓ) and Ĥ(ℓ+1) both contribute a

local term at site ℓ, and the boundary Hamiltonians account for the fact that only

Ĥ(1) and Ĥ(L−1) contain local terms for the first and last site, respectively. With

these Hermitian matrices in hand we can easily find the exponentials appearing in

Eq. (E.46) by performing the eigenvalue decomposition H = V λV †, where V is the

matrix with the eigenvectors of H as columns and λ is a diagonal matrix with the

eigenvalues on the diagonal. The matrix exponential exp (−iHδt) is V exp (−iλδt)V †

in the same notation.

Our task of applying the full propagator U to a site |ψ⟩ expressed as an MPS has

been reduced to computing the application of a two-site operator to an MPS. We do

this in the following manner. We first define a new fourtensor structure which has

four indices. We then fuse two tensors A and B into a fourtensor T as

Tαijβ =
∑
γ

AiαγB
j
γβ . (E.51)

The operation of a two-site operator U on this object is

T̃αijβ =
∑
i′,j′

U[ij][i′j′]Tαi′j′β . (E.52)
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Finally, a fourtensor may be split into two tensors by first reshaping it into a dαdi ×

djdβ matrix:

T[αi][jβ] = Tαijβ (E.53)

performing an SVD

T[αi][jβ] = U[αi]γSγVγ[jβ] (E.54)

and then unpacking the SVD matrices

Aiαγ = U[αi]γ , Bj
γβ = SγVγ[jβ] . (E.55)

As written, if either A or B was the orthogonality center then B is the new orthog-

onality center. One can make A the orthogonality center by contracting S into A

instead of B:

Aiαγ = U[αi]γSγ , Bj
γβ = Vγ[jβ] . (E.56)

The growth of the number of singular values is typically exponential in the number of

time steps, and this causes the bond dimensions of the tensors A and B to also grow

exponentially. We truncate the bond dimension optimally by truncating the singular

values. In simulations it is often better to impose a condition on the decay of the

singular values rather than to impose a condition on the bond dimension itself. That

is, we want to discard at most ϵ of the norm of the state at each two site operation.

This defines the new bond dimension χnew implicitly as

1−
χnew∑
α=1

S2
α∑
β S

2
β

< ϵ . (E.57)

Note that the sum in the denominator runs over all values of S, and so the sum of

the squares is normalized to 1. Once we have χnew, we define
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S = S(1 : χnew)/
√
⟨S(1 : χnew)|S(1 : χnew)⟩ and the γ summations in Eqs. (E.55) and

(E.56) run from 1 to χnew.

The procedure for TEBD with a time-independent Hamiltonian is thus as follows:

1. Shift the orthogonality center to the first site. t = 0. If the MPS structure

is real, transfer to a complex MPS representation (be careful in your complex

code that you have implemented all conjugates properly-this is an easy mistake

to make!).

2. Construct the two-site Hamiltonians Ĥ(j) as in Eqs. (E.48)-(E.50) and expo-

nentiate them to find the two-site propagators Û (j) = exp
(
−iĤ(j)δt

)
.

3. Starting from the first site, j = 1, fuse sites j and j + 1 into a fourtensor T .

4. act with Û (j) on T , and split into new updated A[j] and A[j+1] using Eq. (E.55).

5. Repeat 3 and 4 up to and including j = L− 1.

6. Starting from j = L− 1 fuse sites j and j + 1 into a fourtensor T .

7. act with Û (j) on T , and split into new updated A[j] and A[j+1] using Eq. (E.56).

8. Repeat 5 and 6 down to and including j = 1.

9. t = t+ δt

10. Compute any desired observables. If t is greater than or equal to the maximum

time desired, exit. Otherwise, return to step 3.

This completes the discussion of TEBD in the MPS language. It turns out to be

a much simpler algorithm than the ground state search.
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