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ABSTRACT

We report the development, implementation and complete experimental vindication of

a model for complex dynamical behaviors in spin wave envelopes propagating in nonlinear,

dissipative driven, damped systems. These backward volume spin waves evolve under at-

tractive nonlinearity in active magnetic thin film-based feedback rings where the major loss

mechanisms present in the film are directly compensated by periodic linear amplification.

Such a quasi-conservative evolution allows for the self-generation of spin waves and the ob-

servation of long-time behaviors O(ms) which persist for hundreds to tens of thousands of

the fundamental round trip time O(100 ns).

The cubic-quintic complex Ginzburg-Landau equation is developed as a predictive, de-

scriptive model for the evolution of spin wave envelopes. Over 180000 nodes hours of com-

putation are used to execute more than 10000 simulations in order characterize the model’s

six dimensional parameter space. This exploration of parameter space was conducted in full

generality, spanning a minimum of eight orders of magnitude for each of three loss terms and

five orders of magnitude for higher order nonlinearities. Nine distinct classes of behavior were

identified, including four categories of dynamical pattern formation. This work contains the

first predicted long time dynamical behaviors for spin waves and analogous physical systems.

All four categories of dynamical pattern formation that were identified numerically were

then cleanly realized experimentally. Additionally we observed the first known examples

of dynamical behaviors for dark solitary waves self-generated under attractive nonlinearity.

Our experimental verification of these dynamical regimes show that such ideas are not simply

theoretical but in fact occur in the real physical world and are observable in an approachable,

tunable spin-wave system which matches the conditions of many other real-world physical

systems. It further established that the relatively simple cubic-quintic complex Ginzburg-

Landau equation provides a highly accurate, effective, and predictive description of complex
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spin wave dynamics and should replace the commonly used nonlinear Schrödinger equation

for these systems.

Finally, simulations which model the ring dynamics on the scale round trips were con-

ducted using 130000 node hours over 3000 unique numerical simulations. This yielded a

robust general solution for stable bright solitary wave trains evolving under periodic ampli-

fication which is the numerical equivalent to the bright solitary wave train initial condition

perturbed experimentally to generate soliton fractals and chaotic solitons. Using this novel

dynamical equilibrium as an initial condition we developed a mechanism for the generation

of bright soliton fractals.

Our experimental and numerical works on complex spin wave envelopes in magnetic

thin films suggest these systems provide for an approachable, table top, experiment for

the study of fundamental nonlinear wave physics. The cubic-quintic complex Ginzburg-

Landau model further provides for means for both prediction and verification of results. The

physics reported here are expected to be wildly applicable to related fields of physics that

are described by isomorphic forms of our model. This includes fields such as nonlinear

optics, nonlinear hydrology and Bose-Einstein condensation.
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CHAPTER 1

MOTIVATION AND CONTEXT

We report on the development, evaluation, and experimental vindication of a driven

damped model for spin wave envelopes in magnetic thin film-based active feedback rings

(AFR); a problem with applications across an extraordinary range of physical systems and

fundamental nonlinear dynamical studies. Such systems have typically been modeled by an

integrable nonlinear Schrödinger equation (NLS) derived either via a slowly varying envelope

approximation or through conservation considerations and a Hamiltonian formalism on an

infinite and lossless thin film [1–3]. These conservative models, however, are fundamentally

unable to reproduce the complex and chaotic dynamical behaviors that have been experi-

mentally observed in magnetic thin films over the past two decades. Previously observed

dynamics include bright and dark envelope solitons [4–10, 10–19], soliton trains [20, 21],

möbius solitons [22], Fermi-Pasta-Ulam and spatial recurrence [23, 24], soliton fractals [25],

random solitons [26], chaotic spin waves [27–29], multiple solitons [30], and chaotic soli-

tons [31, 32].

Most of these phenomena were observed on AFRs as such feedback geometries are ubiqui-

tous across science and physics in general. Rings are commonly used to study wave dynamics

when one seeks to study resonant phenomena such as quantized wavenumber, periodic pump-

ing, self-generation. AFRs, so-called for the presence of periodic linear amplification, allow

for the direct compensation of major loss mechanisms present within a propagation medium.

This permits one to drive a system into quasi-conservative regimes where the major loss

mechanisms are directly compensated on the time scale of a single round trip (O(100 ns).

This enables the observation of dynamics on scales of several to tens of thousands of round

trip times O(ms). Dissipation would otherwise prohibit dynamics with lifetimes of this order.
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A driven, damped model is necessary to account for both the periodic nature of amplifi-

cation within feedback rings and the sustained losses, nonlinearities and dispersions present

within magnetic thin film propagation media. To date, significant research efforts have been

made into studying solitons in dissipative physical systems governed by analogous models.

A growing body of experimental evidence indicates these systems exhibit strong saturable

gains [5, 28]. These considerations, along with an overall desire to develop the simplest model

which nonetheless reproduces observed experimental results, suggests that a suitable model

may be generated via the phenomenological introduction of gain and loss terms to a standard

NLS. This driven damped model, to be called the cubic-quintic complex Ginzburg-Landau

equation (CQCGL), was developed and evaluated numerically to determine its merit both

as a descriptive and predictive modeling equation for the study of spin wave envelope soliton

trains driven from equilibrium in active magnetic thin film-based feedback rings.

Significant work, including over 300,000 node hours of computation generating 10 TB of

data, have been completed to verify the efficacy of the CQCGL within the context of mag-

netic thin film-based active feedback rings. This includes the modification and verification

of existing NLS evolution codes to include gains and losses as well as the development of

scripts for efficiently executing this code on high-performance computing (HPC) environ-

ments. HPC was necessary to fully examine the dynamical behavior of solitary waves driven

out of equilibrium across a massive six or higher-dimensional parameter space. Robust pro-

cedures for post-processing, data management, and the rigorous quantification of complex

dynamical behaviors have also been established. This work has resulted in three collabora-

tive publications with an experimental research group at Colorado State University as well

as two distinct numerical schemes [31, 33, 34].

This new model has wide applications as isomorphic forms of the nonlinear Schrödinger

equation are used to simulate nonlinear phenomena across many distinct physical systems.

This includes Ginzburg-Landau type equations that describe the envelope evolution of mode-

locked lasers, and superconductivity [35]; the cubic nonlinear Schrödinger equation treats

2



deep water waves [1] and the dynamics of spin wave envelopes in magnetic thin films [36, 37];

a driven damped nonlinear Schrödinger equation models exciton-polariton and magnon Bose-

Einstein condensates (BECs) [38]; and the Gross-Pitaevskii equation models the mean field

of atomic and molecular BECs [39, 40].

This thesis is organized as follows. In Chapter 2 the necessary background on spin waves,

thin films and AFRs will be introduced. The derivation and motivation behind the cubic-

quintic complex Ginzburg-Landau equation will be given within Chapter 3. The numerical

and analytical methods used to generate and quantify the complex dynamical behaviors

reported in this work are introduced in Chapter 4. A numerical exploration of the CQCGLs

parameter space is presented in Chapter 5 and the experimental verification of those results

is given in Chapter 6. A summary of unpublished work including the development and

evaluation of an iterative numerical scheme for the GLNLS is given in Chapter 7. Finally, a

summary of results and an outlook on future work are given in Chapter 8.
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CHAPTER 2

OVERVIEW OF SPIN WAVES: EXPERIMENT AND THEORY

All of the work presented in this thesis is focused on the excitation, detection or numerical

simulation of spin wave envelopes (SWEs) propagating in active magnetic thin film-based

feedback rings. This chapter introduces the underlying and important physical features of

these waves and the apparatus and film in which they propagate. The information presented

in this chapter is influenced significantly by Stancil’s Theory of Magnetic Waves, MZ Wu’s

Nonlinear Spin Waves in Magnetic Film Feedback Rings and by PhD theses from MZ Wu’s

group from Scott, Wang and Janantha[2, 41–44]. Those works, and the references therein,

are highly recommended for additional reading on the topic.

2.1 Physics of Spin Waves

Spin waves are fundamentally an excitation of a collection of magnetic moments which

may then propagate through a material. These waves are called spin waves due to the fact

that magnetic moments in most materials are primarily determined by the angular momenta

of electron spins. Such moments precess if exposed to a fixed external magnetic field. This

precession is described by the magnetic torque equation first introduced by Landau and

Lifshitz [45],

dM

dt
= −|γ|M×H, (2.1)

where here M is the total magnetization vector, H is the external magnetic field and γ is the

absolute electron gyromagnetic ratio. This type of precession is diagrammed in Figure 2.1

where a magnetic moment M precesses around an external magnetic field H applied in the z

direction (up). The z-component of the magnetization may be written as Mz =
√

M2 −m2

and here m is the variable component of the precession given by the sum of the x and y

components. We note that if the dynamical component is circular, or m(t) ∝ expiωt where
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ω is the frequency of precession, then it follows from Equation 2.1 that the magnitude of the

magnetization, |M|, is constant.

Figure 2.1: Diagram of Magnetic Moment Precession where a magnetization M is seen
precessing about an external field H applied in the z direction. The z component and
variable component of the magnetization are shown as Mz and m, respectively.

A precession of coupled magnetic moments which propagate within an ordered magnetic

medium is termed a spin wave. These coupled moments precess at the same frequency, ω,

but typically out of phase, and interact with their neighbors through either magnetic dipolar

or exchange effects. Spin waves which are dominated by magnetic dipolar interactions are

called magnetostatic spin waves or dipolar spin waves and spin waves which are dominated by

exchange interactions are called exchange spin waves. Magnetostatic spin waves are the focus

of this work and will be discussed in further detail below. A diagram of a spin wave, given by

a collection of coupled magnetic moments, is shown in Figure 2.2 where the wavelength λ and

propagation vector k are illustrated by arrows. This is a typical example where neighboring

magnetic moments are coupled causing them to precess at a fixed frequency but out of phase.

An initial analysis of spin wave dynamics may be made by solving the magnetostatic

Maxwell equations within an infinite arbitrary magnetic material. These may be arrived

at by applying the limit where dipolar fields dominate the coupling between spins and the
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Figure 2.2: Diagram of a Spin wave where nearby magnetic moments coupled via exchange
or magnetic dipolar interactions precess at a fixed frequency but slight of phase with their
neighbors. The wave length λ and propagation vector k are shown.

exchange interaction can be ignored, given by k0 � k � π/a where a is the spacing between

spins in the material and k0 ≈ ω(k)/c and c is the speed of light. Under this approximation

only the slow waves which are strongly coupled to the magnetic material are considered and

fast electromagnetic waves that have weaker coupling and vastly lower wavenumbers at the

same frequency are ignored. The magnetostatic approximation to Maxwell’s equations are

given by

∇× h = 0, (2.2)

∇ · b = 0, (2.3)

∇× e = iωb. (2.4)

Here h is the variable component of the full magnetic field, H = H0ẑ + h and H0 is the

external field amplitude along the ẑ direction. The associated variable electric field is given

by e and b and h are related by

b = µ̄ · h, (2.5)

where µ̄, the permeability tensor, is defined by

µ̄ = µ0

(
Ī + χ̄

)
. (2.6)

Here Ī is the unit matrix and χ̄ is the magnetic susceptibility tensor. The magnetostatic

Maxwell equations are derived assuming constant tensors and uniform plane wave solutions:
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{h, e} ∝ exp (−k · r− iωt). The permeability tensor in the absence of exchange interaction

and anisotropy is

µ̂ = µ0

1 + χ −iκ 0
iκ 1 + χ 0
0 0 1

 . (2.7)

Here χ = ωMωH/(ω
2
H − ω2) and κ = ωMω/(ω

2
H − ω2) and the characteristic frequencies, ωM

and ωH are given by

ωM = |γ|Ms,

ωH = |γ|H.
(2.8)

where γ is the absolute electron gyromagnetic ratio and µ0 is the permeability of free space

and Ms is the saturation magnetization. Equation 2.2 suggests we may define a scale potential

h = −∇ψ. (2.9)

Combining equations 2.3, 2.7, and 2.9 one may obtain a differential equation for the magne-

tostatic scalar potential

(1 + χ) (∂xxψ + ∂yyψ)− iκ∂x∂yψ + iκ∂y∂xψ + ∂zzψ = 0,

assuming ψ is a well behaved function we have ∂xyψ = ∂yxψ and may write

(1 + χ)

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+
∂2ψ

∂z2
= 0, (2.10)

which is the well known Walker equation that describes magnetostatic modes in homogeneous

magnetic media, and we have assumed χ and k are independent of position.

Assuming plane wave solutions, ψ ∝ expk·r, to Equation 2.10 we may derive the dispersion

relation for an unbounded magnetic sample without exchange interactions

(1 + χ)
(
k2x + k2y

)
+ k2z = 0. (2.11)

Ultimately yeilding an expression for the spin wave dispersion relation

ω2 = ωH

(
ωH + ωM sin2 (θ)

)
, (2.12)
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where one makes use of the magnetic susceptibility for an unbounded magnetic sample in

the absence of exchange interactions and we have θ as the propagation angle with respect

to ẑ. Note there are two limiting cases for θ = 0 and θ = π/2 corresponding to an external

field perpendicular and parallel to propagation. It is also worth highlightning that the

frequency degeneracy in Equation 2.12 is completed addressed by including finite boundaries

or exchange interaction. Both are considered below. Equation 2.12 may also be found by

looking for nontrivial solutions of the constitutive relationship between m and h in the

magnetostatic limit, or by solving the maxwell boundary problem in a finite sample for the

so called uniform precession modes that are characterized by a magnetization that precesses

in-phase throughout the entire sample.

2.1.1 Magnetostatic Approximation

The magnetostatic approximation warrants further discussion before we move forward,

as it underpins all derivations present in thesis including that of our models. If one fully

treats a plane wave propagating parallel to an applied field within a magnetic material

you arrive at two sets of propagating waves with opposite polarization. The polarization

which matches the natural precession of the magnetization, given by Equation 2.1, interacts

strongly with the medium while the opposite polarization does not. The functional result is

these two sets of waves can have vastly different wavenumbers for a given frequency, or vastly

different frequencies for a given wavenumber. The waves that couple with the medium are

usually called slow spin waves while the waves which do not are called fast electromagnetic

waves. Qualitatively the magnetostatic approximation is the process of ignoring the fast

electromagnetic waves in favor of the slow spin waves. This is justified since at a given

wavenumber their excitation frequencies can vary by orders of magnitude.

More formally if we write down Maxwell’s equations for a uniform plane wave propagating

within a magnetized medium at any arbitrary direction we arrive at

8



h =
k20m− kk ·m

k2 − k20
, (2.13)

e =
ωµ0k×m

k20 − k2
, (2.14)

∇× h =
k20k×m

k20 − k2
. (2.15)

In the limit of |k| � |k0| that Equation 2.13 remains finite so long as k · m 6= 0 since

there are terms quadratic in k in both the numerator and denominator. On the other hand

equations 2.14 and 2.15 decay as 1/k in this limit. The application this limit, to first order,

yields the magnetostatic approximation to Maxwell’s equations given in equations 2.2, 2.3

and 2.4. We note both that this approximation is also valid in the |k0| � |k| limit and if

k ·m = 0 since both Equation 2.13 and Equation 2.14 still vanish for large k.

As mentioned earlier dipolar spin waves or magnetostatic spin waves propagate when the

coupling between spins is dominated by dipolar fields rather than the exchange interaction.

Again, this given by the limit k0 � k � π/a where a is the spin spacing. This is most readily

visualized if one solves the full, non-magnetostatic Maxwell’s equations to find a version of

the spin wave dispersion, Equation 2.12, where the effects of exchange are included. This is

given by,

ω2 =
(
ωH + ωMλexk

2
) (
ωH + ωM

(
λexk

2 + sin2 θ
))
, (2.16)

where again θ is the propagation angle with respect to ẑ and λex is an exchange constant.

As λexk
2 → 0 we return to the expression for dispersion derived from the magnetostatic

approximation, Equation 2.12. The exchange term λexk
2 will begin to impact dispersion as

the magnitude of k increases.

This is shown in Figure 2.3 where the θ = π/2 is shown as dashed red and θ = 0 as

solid blue. We set ωH/ωM = 0.5 and use λex = 3.2 × 10−12rad/cm, the value measured

for YIG films at microwave frequencies. We see that frequency does not develop a strong

wavenumber dependence until well after k = 104 rad/cm. The region without wavenumber
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Figure 2.3: Effect of exchange interaction on spin wave dispersion where the case of θ = 0
is shown in solid blue and θ = π/2 as dashed red. In both cases the frequency does not
develop a strong dependence on wavenumber until after k = 104 rad/cm, well beyond where
the magnetostatic approximation remains valid. Spin waves below this threshold are dipolar
spin waves and those in the exponential region are exchange spin waves. ωH/ωM = 0.5 and
λex = 3.2× 10−12 rad/cm for YIG films.
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dependence, λexk
2 � 1, is where dipolar spin waves or magnetostatic spin waves propagate,

and exchange spin waves propagate in the exponential tail.

2.2 Spin Waves in Magnetic Thin Films

Consider now a magnetostatic spin wave propagating within a finite geometry (a thin

magnetic film) of thickness d surrounded by dielectrics. We seek to solve Walker’s Equation

within the limiting case of a tangentially magnetized film with k ‖ H0. Such a geometry,

corresponding to θ = 0 in equation 2.12, and supports the propagation of backwards volume

spin waves which are the focus of this thesis. The case of k ⊥ H0 supports surface spin waves

while a normally, θ = π
2
, magnetized film supports forward volume spin waves. Neither of

these cases are explicitly considered here but are covered in detail in the works of Stancil

and Wu [2, 41]. All three excitation types will be briefly discussed below.

If a spin wave is excited within a fully saturated thin film and allowed to reach a steady

state one can solve the boundary condition problem assuming the propagation of guided plane

waves and their reflections. This yields a transcendental form of the dispersion relation for

backward volume spin waves in a thin film,

tan

(
kd

2
√
−(1 + χ)

− (n− 1)π

2

)
=
√
−(1 + χ). (2.17)

Kalinikos derived an approximate dispersion relation for the lowest order mode (n = 1)

which may be explicitly solved for ω [46]. His result is

ω2 = ωH

[
ωH + ωM

(
1− e−kd

kd

)]
. (2.18)

We note that in the limit of an infinite thin film, d → ∞, Equation 2.18 reduces to Equa-

tion 2.12 in the appropriate θ = 0 case. The approximation is valid only in the small

precession angle limit where the variable magnetization is much less than the saturation

magnization, m � Ms. This approximation was further derived under the magnetostatic

condition and remains strictly valid only when k0 � k � π/a.
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Figure 2.4: Dispersion for (a) forward volume, (b) backward volume and (c) surface spin
waves in magnetic thin films. Reprinted with permission from Elsevier [41].

The geometry and Kalinikos derived expressions for the lowest order mode dispersion

relation are plotted for (a) forward volume, (b) backward volume and (c) surface spin waves

in Figure 2.4. In each case the orientation of the external magnetic field is illustrated relative

to the film and the direction of propagation. The dispersion relations were calculated for a

YIG film where 4πMs = 1750 G with an external saturation field magnitude of H = 1500 Oe.

This figure is reprinted with permission. ωH is given in 2.8 and the remaining characterstic

frequences which describe the spin wave passbands are

ωB = |γ|
√

H(H + 4πMS),

ωS = |γ|(H + 4πMS/2).
(2.19)

We highlight that the forward volume spin waves are so called due to having a positive

group velocity, whereas backward volume spin waves have a negative group velocity. This is

evident in the dispersion curves in Figure 2.4(a) and (b). Surface spin waves also exhibit a

positive group velocity. We define group velocity as,

vg =
∂ω(k)

∂k
. (2.20)
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It is also crucial to note that the spin wave passband for backward and forward volume

spin waves is entirely defined by the characteristic frequencies ωB and ωH which are both

highly dependent on the magnitude of the external magnetic field. This allows for the direct

tuning of spin wave frequency. The dispersion coefficient may also be tuned by varying the

direction of the external magnetic field where the dispersion coefficient is defined as,

D =
∂2ω(k)

∂k2
, (2.21)

This results in negative dispersion for forward volume and surface spin waves, and positive

dispersion for backward volume waves. This an important degree of freedom for designing

and running experiment.

2.3 Spin Wave Nonlinearity

There are two main sources of nonlinearity for spin waves in magnetic thin films. The

first we will consider is the shift in frequency due to spin wave amplitude. Qualitatively if

one considers the precession of a single magnetic moment, such as in Figure 2.1, any increase

in precession angle (and thereby the magnitude of m) will result in a decrease in Mz through

the expression Mz =
√

M2 −m2. This change in Mz can then result in a frequency shift of

the dispersion curve.

Thus, when the precession angle becomes appreciable one must replace Ms in the disper-

sion relation with Mz. Equation 2.18’s dependence on Ms comes from the ωM term, defined

by Equation 2.8. The relation between Ms and Mz is simply derived. In a saturated sample

one has,

Ms
2 = M2

x + Mz
y + M2

z (2.22)

which may be readily solved for Mz for the case of circular precession,

Mz = Ms

√
1− |Mx|2 + |My|2

2M2
s

= Ms

√
1− m2

2M2
s

. (2.23)
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Here m is the variable magnetization. We may define a unitless magnetization amplitude as

|u(z, t)|2 =
m2

2Ms

. (2.24)

Assuming |u| � 1 one may further reduce Equation 2.23 to

Mz = Ms

√
1− |u|2 ≈Ms

(
1− |u|2

)
. (2.25)

The case of elliptical precession for backward volume spin waves is considered by Wu and

Boardman and gives,

Mz = Ms

[
1− 1

2

(
1 +

ω2
B

ω2
H

)
|u|2
]

(2.26)

This frequency shift is most easily identified by examining the dispersion relation for

magnetostatic spin waves given in Equation 2.12 with θ = π/2 corresponding to backward

volume spin waves, our case of interest, and with Mz substituted for Ms. This gives,

ω2 = ωH(ωH + Mz). (2.27)

In both the elliptical and circular precession cases we can see how an increase in spin wave

power |u|2 results in a decrease in Mz, which would result in a decrease in frequency. This

implies that nonlinearity is negative for backward volume spin waves. We may confirm this

by substituting Ms in the dispersion relation with Mz and then directly evaluating the spin

wave nonlinearity coefficient given by,

N =
∂ω

∂|u|2
. (2.28)

For the elliptical precession of backward volume spin waves with ω close to ωB we have,

N = −ωHωM

4ωB

(1 +
ω2
H

ω2
B

). (2.29)

The axis of the elliptical precession was chosen arbitrarily to derive Equation 2.29. The

other equally valid choice results in the swaping of ωB and ωH in Equation 2.26 which yields

the following expression for the nonlinearity coefficientm

N = −ωHωM

4ωB

(1 +
ω2
B

ω2
H

). (2.30)
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When O(ωH) ≈ O(ωB) both are close to −ωHωM/4ωB.

As with dispersion, the sign of the nonlinearity coefficient for spin waves in magnetic

thin films can be adjusted by varying the direction of the external magnetic field. We

determined above that the nonlinearity coefficient is negative for backward volume spin

waves. It is also negative for surface spin waves, but is positive for forward volume waves.

The sign of the effectively nonlinear ND will be important to determining the type of spin

wave envelope excitation which can observed in magnetic thin films, and will be discussed

in detail in Chapter 6. For now we mention again this tunability is a powerful degree of

freedom for designing and running experiment.

The type of nonlinearity discussed so far and described by Equation 2.28 is a result of

conservative four wave mixing. For spectrally narrow peaks in magnetic thin films the four

wave mixing conservation equations are given by,

2ω1 = ω2 + ω3, (2.31)

2k1 = k2 + k3, (2.32)

and describe two modes, k2 and k3 with sufficient amplitude interacting to generate a third

mode, k3. If ring power is further increased additional modes may be generated via this four

wave mixing process, resulting in a uniform frequency comb with spacing fs = |ω1 − ω2|.

This development process for increasing ring gain is shown in Figure 2.5 where in (a) the

location of the original ring eigenmodes and the first mode generated via four wave mixing

are shown on the dispersion curve for a backward volume spin wave. Figure 2.5(b) shows

the development of additional equispaced modes through four wave mixing as ring gain is

increased further. This process is known as self-generation and we will be discussed later.

The additional form of nonlinearity experienced by spin waves in magnetic thin films

are the three wave splitting of one mode (ω0) into two new half-frequency modes and three

wave confluence where two half-frequency modes combine into a new mode (ω3). These are

respectively described by,
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Figure 2.5: Generation of modes via four wave mixing where (a) shows the location of
the new and old modes on the dispersion curve for backward volume spin waves and (b)
shows development of additional ring eigenmodes through four wave mixing. Reprinted with
permission from Elsevier [41].
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ω0 = ω1 + ω2,

k0 = k1 + k2,

and

ω1 + ω2 = ω3,

k1 + k2 = k3.

For the case of backward volume waves these three wave processes can be considered an

additional source of nonlinear losses where energy leaves the system via the splitting of low

wavenumber (O(10) rad/cm) modes into modes with high wavenumbers (O(105) rad/cm).

Such high wavenumber modes are not detectable in our experiments, as will be discussed

later Chapter 6. Three wave modes may also be forbidden via conservation considerations by

increasing the external field strength until no half-frequency bands remain in the passband,

this occurs at around 600 Oe.

2.4 Active Magnetic Thin Film-based Feedback Rings

All of the experimental data presented in this work was generated on a single system

at Colorado Statue University called an Active Magnetic Thin Film-based Feedback Ring

(AFR). This system also informed the derivation and simulation of our model, to be discussed

in chapters 3, 5 and 7. Data gathered on the AFR is presented in chapters 6 and 7.

A schematic of the AFR used is shown in Figure 2.6 and the system is composed of

two main components: (1) an electronic feedback loop containing an amplifier/attenuator

pair that is coupled via two microwave transducers to a (2) Ytrrium-Iron-Garnet thin film

propagation media. An oscilliscope and spectrum analyzer are attached to the feedback loop

via a directional coupler to allow for real time recording of time and frequency data. A

microwave source may also be attached to the feedback loop using a directional coupler after

the attenuator/amplifier pair but that is not used in any work presented here.
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Figure 2.6: Schematic of an Active Magnetic Thin Film-based feedback ring that is con-
structed of an electronic feedback look containing a variable anttenuator and a fixed ampli-
fier coupled to a Yttrium-Iron-Garnet thin film via two microwave transducers. Directional
couplers also allow the feedback ring to be attached to a microwave source or to an oscillis-
cope or spectrum analyzer for the in-situ driving, observarion or recording of ring voltage.
Reprinted with permission from Elsevier [41].

The AFR operates as an effective periodic boundary conditions for the spin wave propa-

gation media, coupled with periodic amplification. Signals that are observed in the detection

transducer are boosted, and then fed back into the film after a fixed delay, φe. The fixed

electronic feedback loop delay, O(10 ns), is an order of magnitude smaller than the spin wave

propagation time in the thin film, O(100 ns). Clean feedback is possible due to the fact that

the films used are much longer than the separation between the excitation and detection

transducers. Combined with 45 degree cuts on the film ends these considerations prevent

end reflections from interfering with any dynamics circling the ring.

A direct consequence of the ring geometry is a resonance condition for spin wave ring

eigenmodes,

φ(f ) = k(f )`+ φe = 2πn, (2.33)

where ` is the transducer separation, φe is the above mentioned electronic phase shift intro-

duced by the feedback loop, and k is the spin wave wavenumber for a given frequency. It

is important to note that the spacing between ring eigenmodes is not fixed, owing to the

nonlinearity discussed previously in Section 2.3.
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The feedback ring is called active due to the present of periodic, linear amplification. This

periodic gain can be tuned to compensate for the major loss mechanisms present within the

thin film. Such a direct form of loss compensation enables the system to operate in an

quasi-conservative regime where, over many round trips, energy is conserved in an average

sense. It is this feature that enables the observation of complex dynamical behaviors with

characteristic periods ranging from tens to hundreds of round trip times and that may persist

for tens of thousands.

Active feedback also enables the so-called self-generation of spin waves where ring gain is

increased until the lowest loss eigenmode begins to circulate. As additional ring eigenmodes

enter the system they interact via four wave mixing, defined earlier in Equation 2.31. As ring

gain is increased more, additional modes will be generated from this process ultimately gen-

erating an equispaced frequency comb. This process is shown schematically in Figure 2.5(b)

and experimentally in Figure 2.7. In both cases gain is increased from top to bottom. Fig-

ure 2.7 shows the spectral (left) and temporal (right) ring data as gain is increased from

where a single eigenmode circulates a ring to the full realization of a equispaced frequency

comb in, corresponding to a bright solitary wave train. All experiments in this thesis use

self-generated spin waves.

Additional considerations the AFR places on modeling spin wave dynamics will be dis-

cussed in Chapter 3 and a detailed description of running the AFR system as well as its

design considerations is presented in crefchpt:nine.

2.5 Fitting Parameters

In this section we will detail the procedure for determining the experimental parameters

via fitting. We explicit about our assumptions and do our best to quantify our error rig-

orously. The fitting is rather straight forward and involves two fitting parameters and two

estimated parameters.

Experimentally we are able to record two curves as a function of frequency by attaching

the YIG film to a Vector Network Analyzer; these are (1) transmission as a function of
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Figure 2.7: Spin wave self-generation. Experimental self-generation of a bright solitary wave
through four-wave mixing as ring gain is increased. The left column shows with increasing
gain: (a) the lowest loss ring eigenmode, (b) four wave mixing of the two lowest loss ring
eigenmodes, (c) generation of additional modes through four wave mixing, and (d) a fully
realized equispaced frequency comb corresponding to a bright soliton. The right column
shows the equivalent temporal voltage data as gain is increased. Reprinted with permission
from Elsevier [41].
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frequency, dB(f ), and (2) Phase shift as a function of frequency, φ(f ). Our ultimate goal is

to the determination of the Dispersion relation, from which we can estimate the experimental

parameters for group velocity, vg, dispersion, D, and nonlinearity, N .

This is accomplished by exploiting the ring resonance condition, Equation 2.33, and

scaling by the observed passband,

k(f ) =
φ(f )− φe

`
, (2.34)

where ` is the transducer sepataion and φe is an electronic phase shift introduced by the

VNA. We have access to the phase as a function of frequency from the VNA and ` is known,

so we may solve for the wavenumber as a function of frequency using Equation 2.34. The

unknown, φe, may be determined by graphically locating the high frequency end of the

backward volume spin wave(BVSW) passband, or the ferromagnetic resonance frequency.

This is a characteristic frequency for the problem given by, ωB, and corresponds to the

lowest mode, k = 0. Explicitly we have k(ωB) = 0 which implies φ(ωB) = φe for the VNA

loop.

Having determined k(f ) we may invert the data and identify a curve for 2πf (k) = ω(k).

We may use this curve to estimate our parameters directly, and may also fit a known ex-

pression for ω(k) and use that to do our parameter estimation. The known expression for

the dispersion relation, valid for kd� 1, is given by

ω(k) =

[
ω2
H + ωHωM

(
1− e−kd

kd

)]1/2
, (2.35)

where the characteristic frequencies ωH and ωM will be defined below and d is the Yttrium-

Iron-Garnet thin film thickness. The characteristic frequencies are defined by,
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ωH = γ
(
~H0 + ~Ha

)
= γ ~H, (2.36)

ωB = γ
[
~H
(
~H + 4π ~MS

)]1/2
, (2.37)

ωS = γ

(
~H

4π ~MS

2

)
, (2.38)

ωM = γ4π ~MS. (2.39)

where γ is the gyromagnetic ratio and ~H = ~H0 + ~Ha is the total field defined by the external

tangential magnetic field and the internal anisotropy field. We may use dispersion relation,

given by Equation 2.35, to determine the experimental values for dispersion, group velocity

and nonlinearity. These ex[ressions, evaluated for k = 0 are given by

D =
∂2ω(k)

∂k2

∣∣∣∣
k=0

=
ωMωHd

2

2ωB

[
1

3
− ωMωH

8ωB

]
, (2.40)

Vg =
∂ω(k)

∂k

∣∣∣∣
k=0

= −ωMωHd

4ωB

. (2.41)

The expression for nonlinearity, evaluated for k = 0 and |u|2 = 0 is given by

N =
∂ω(k, |u|2)
∂|u|2

∣∣∣∣
k=0,|u|2=0

= −ωHωM

2ωB

. (2.42)

There are several distinct sources of error involved this process. First, have error in

our estimation of ωB as graphically isolating its location is the most subjective part of the

overall fitting process. Second, there are measurements errors for both ` and ~H0. Finally, if

we choose to fit the dispersion we will have errors in our fit based on how far into k we choose

to fit. Explicitly the dispersion curve we are fitting is valid for kd � 1, which means we

can evaluate k = O(100rad/cm). The total passband is generally O(400rad/cm). Detailed

estimations of the error if we vary the location of ωB and the extent of the fit in k yields

percent errors for parameter estimation below 5%.
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CHAPTER 3

A MODEL OF SPIN WAVE ENVELOPE DYNAMICS

In this chapter we introduce the model used within this thesis to numerically evaluate

spin wave envelope solitary wave dynamics within active magnetic thin thilm-based feedback

rings. We begin with a simple derivation of the nonlinear Schrödinger equation using the

slowly varying envelope approximation. We then explore and justify the modifications used

to arrive at the our governing model: the cubic-quintic complex Ginzburg-Landau equation.

As discussed in Section 1 this model is used as a descriptive and predictive tool for the study

of complex nonlinear dynamics.

3.1 Nonlinear Schrödinger Equation

As detailed in Section 2.3 the substitution of Mz into the spin wave dispersion relation

introduces a dependence on the magnetization amplitude |u|2. The general functional form

of a spin wave dispersion may therefore be written as

ω = f
(
ω, k, |u|2

)
. (3.1)

Assuming spin wave propagation in the form of an envelope modulated carrier wave at an

operating point (ω0, k0) such that

u(z, t) ∝ ei(ω0t−k0z). (3.2)

If we then consider small modulations about the operating point defined by

k = k0 + ∆k, ∆k � k0

ω = ω0 + ∆ω, ∆ω � ω0,
(3.3)

where a small perturbation in frequency ∆ω results in a change of the same order in wave

number, ∆k. A tailor expansion of the general dispersion, Equation 3.1, about the operating
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point yields

ω − ω0 =
∂ω

∂k
(k − k0) +

1

2

∂2ω

∂k2
(k − k0)2 +

∂ω

∂|u|2
+O

(
(k − k0)3

)
, (3.4)

where we define group velocity, vg, dispersion coefficient, D, and the nonlinearity coefficient,

N in the usual way,

vg =
∂ω(k)

∂k
,

D =
∂2ω(k)

∂k2
,

N =
∂ω(k)

∂|u|2
.

(3.5)

In terms of usual operator language we have

∆ω = ω − ω0 = i
∂

∂t

∆k = k − k0 = −i ∂
∂z
.

(3.6)

Combining equations 3.4, 3.5 and 3.6 we arrive at a partial differential equation describing

the evolution of spin wave envelopes in a dispersive , nonlinear medium typicall known as

nonlinear Schrödinger equation (NLS)

i

(
∂

∂t
+ vg

∂u

∂z

)
u = −1

2
D
∂2u

∂z2
+N |u|2u, (3.7)

We may shift the NLS into the frame of the envelope by scaling out the group velocity

through the transformation

z′ = z + vgt. (3.8)

Then by the chain-rule we have

∂u

∂t
=
∂u

∂z′
∂z′

∂t
+
∂u

∂t
=
∂u

∂t
− vg

∂u

∂z′

∂u

∂z
=
∂u

∂z′
∂z′

∂z
=
∂u

∂z′
.

(3.9)
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Plugging Equation 3.9 into Equation 3.7 we arrive at

−i∂u
∂t

=
1

2
D
∂2u

∂z2
−N |u|2u, (3.10)

which is the NLS of the usual form and we have set z′ = z for clarity. One may further

reduce the NLS to a canonical form by using the scaled variables t = −tN
2

and z = z
√
−N
D

.

We note we the roles of ∆ω and ∆k could have easily been reversed in our taylor expansion

of generalized dispersion in Equation 3.4. The result is an NLS-like equation with the roles

of time and space reversed and redefined coefficients

∂k

∂ω
= v′g

∂2k

∂ω2
= D′

∂k

∂|u|2
= N ′.

(3.11)

This newly defined equivalent to group velocity may likewise be scaled out, resulting in a

form of the NLS which is commonly used to study envelopes in optical fibers,

−i∂u
∂z

=
1

2
D′
∂2u

∂t2
−N ′|u|2u. (3.12)

This methodology is known as the slowly varying envelope approximation and is com-

monly to derive wave equations to first order. The NLS for spin wave envelopes in magnetic

materials may be derived rigorously from a Hamiltonian formalism [3]. It can also be de-

rived directly from Maxwell’s equations and a magnetic torque equation using appropriate

boundary conditions and multi-scale methods [47].

3.2 Cubic-Quintic Complex Ginzburg-Landau Equation

The primary focus of this thesis is the development and application of a driven-damped

NLS better suited to describe the rich nonlinear dynamics being observed spin waves in thin

magnetic films. We are principally motivated by a series of experiments conducted at CSU

in which a series of chaotic solitons are observed. The traditional NLS, derived early in

this chapter and given by Equation 3.10, is fundamentally unable to reproduce the observed
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phenomena as integral equations do not exhibit chaotic behaviors. These phenomena were

produced by driving stable soliton systems out of equilibrium, into regimes where dynamics

are influenced, potentially subtly, by losses and gains present in the system. In this section

we detail the development of a generalized high-order NLS which is known as cubic-quintic

complex Ginzburg-Landau equation, the simplest model capable of reproducing the complex

dynamics observed by CSU. The development of this model remains principally interested

in the low and intermediate ring gain cases where a stable, underlying bright soliton trains

are observed to modulate chaotically.

A thorough analysis of timeseries from CSU and of their experimental apparatus moti-

vates several significant limitations on a potential model [26, 31, 43]. The active feedback

ring, as introduced earlier in Section 2, applies an instant, periodic, linear gain on signals

passing through the active feedback loop. These signals also experience instant losses at both

the injection and detection transducers and continuous losses while propagating through the

film. Spin wave frequencies typical of CSU experiments typically have round trip times of

O(100 ns). This experimental design suggests two distinct modeling methodologies: (1) Ig-

nore the electronic feedback loop and amplifier and only model evolution within the magnetic

thin film. Periodic boundary conditions will mimic propagation around the ring. (2) Explic-

itly model the electronic feedback loop. We refer to these as the continuum and iterative

models, respectively.

The continuum model is a gross simplification of feedback ring evolution, but may be

justified as a valid approximation if the period of envelope dynamics is much greater than a

single round trip time. In this limit the effect of the instant amplifier gain is compensated

by linear loss within the film and dynamics are driven, over many round trips, by other

forces acting in the system including dispersion, nonlinearity and nonlinear losses. Low and

intermediate ring gain CSU time series satisfy this condition, with dynamics occurring on the

order of 100 round trips. In the high ring gain cases observed dynamics approach periods on

the order of 10 round trips and we may anticipate that this approximation will be insufficient
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to describe spin wave behavior. Further, losses and gains expressed in a continuum model

will represent the average values experienced by ring signals over many round trips and

will not be directly proportional to measurable material values. Such a model is considered

in Chapter 5

An iterative model provides a more thorough description of the experiment but with a

more undefined potential scope. One may choose to model evolution in a film with an ad-

ditional periodic amplification present, introducing a single additional free parameter to the

continuum model. Alternatively one may more explicitly model each stage of ring propaga-

tion from transducer effects to coaxial cable transmission loss. The most appealing feature

of an iterative model is that it eliminates ambiguity over the relative scales of modulation

and round trip time and allows for the direct comparison of model and experimental param-

eters. The development, implementation and investigation of an iterative model to evaluate

dynamics on the scale of single round trips is given in Chapter 7.

3.2.1 Phenomenological Gain and Loss

Experimental studies of nonlinear losses in the propagation of backward volume spin

waves in magnetic thin films propagating under the influences of both three and wave mixing

have been conducted [5, 28]. In both cases it has been demonstrated that there is a strong

saturation in the observed power at the detection transducer relative to the power fed into

the excitation transducer. Fittings to these profiles suggest both cubic and quintic losses

can be relevant at higher ring power. Similar studies have been conducted for mode locked

lasers where saturable gains are used to often used to study dynamics. One possible form of

saturable gain is given by

iSg

1 + |u|2
Is

, (3.13)

where Sg is a saturable gain coefficient, Is is a weighting factor and |u|2 is the magnitude of the

unitless magnetiation amplitude defined in Equation 2.24. Saturable gains of this form have

been studied extensively by in the context of highly dispersive mode locked lasers [48, 49].
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Early numerical studies of saturable gain suggested that it was ill suited for produc-

ing stable, modulated soliton trains of the type observed by CSU. Saturable gain may be

generalized through a Taylor expansion

iSg

1 + |u|2
Is

=≈ iSg − iSg
|u|2

Is
+ iSg

|u|4

I2s
+O

(
|u|6

I3s

)
. (3.14)

We keep up to fifth order gain to match previous experimental fits to the power saturation

cuves, and include a matching fifth order nonlinearity. Such a quintic nonlinearity may be

obtained by keeping an additional term of the slowly varying envelope approximation used

to derive the NLS in Section 3.1. Last we assign unique coefficients to each new term and

arrive at the result is the cubic-quintic complex Ginzburg-Landau equation

i
∂u

∂t
=

[
−D

2

∂2u

∂z2
+ iL+ (N + iC)|u|2 + (S + iQ)|u|4

]
u, (3.15)

where N and D are defined in Equation 3.5, S is a quintic nonlinearity given by

S =
∂2ω

∂|u|4
, (3.16)

and L, C and Q are linear, cubic and quintic loss or gain terms, respectively and depending

on sign. All coefficients are real, with any imaginary parts explicitly stated in the equation.

The CQCGL is fully generalized, but in a limiting case of approximating saturable gain one

has Q = C2/L and we necessarily impose |u|2Is � 1 for the expansion to be valid.
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CHAPTER 4

ANALYTICAL AND NUMERICAL METHODS

4.1 Numerical Methods

The numerical methods used here simulate the propagation of spin wave envelopes within

active magnetic thin film-based feedback rings were intentionally easy to approach and im-

plement. As described in in Section 1 it is the intention of this work to demonstrate that

the cubic-quintic complex Ginzburg-Landau equation, derived in Section 3 and given in

Equation 3.15, is predictive and descriptive across a wide range of physics systems. It was

therefore necessary to make any numerical simulation of the model approachable with the

hope that anyone could simply reproduce our work if they desired and expand on its ac-

curacy or scope if needed. To that end we numerically simulated the CQCGLE using a

standard Split-step method where time propagation is computed via an Adaptive Runge-

Kutta and the complex potential including the spatial dispersion derivatives are computing

with a Pseudo-spectral method. Both methods may be easily derived and implemented,

and a majority of necessary code is also available in common resources such as Numerical

Recipes [50]. The authors understanding of this topic was also heavily influenced by the

PhD thesis of Victor Snyder [51].

The remainder of this chapter will be spent introducing these methods and discussing

their numerical robustness in the context of simulating complex, driven damped systems.

4.1.1 Adaptive Runge-Kutta

Runge-Kutta are a family of high order finite differencing algorithms which are commonly

used and well studied. We consider the case of Cash and Karp’s fifth-order adaptive timestep

Runge-Kutta method with an embedded fourth-order forumla. This implementation is in-

cluded in Numerical Recipes. This method gives a fifth-order approximation to u(t + δt)

given u(t), or in other words to the first-order ordinary differential equation
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du

dt
= f(t, u),

over timestep δt. This approximations is given by

u(t+ δt) = u(t) +
37

378
K1 +

250

621
K3 +

125

594
K4 +

512

1771
K6 +O(δ6t ), (4.1)

where the coefficients are

K1/δt =u [t, u(t)] ,

K2/δt =u

[
t+

1

5
δt, u(t) +

1

5
K1

]
,

K3/δt =u

[
t+

3

10
δt, u(t) +

3

40
K1 +

9

40
K2

]
,

K4/δt =u

[
t+

3

5
δt, u(t) +

3

10
K1 +

9

10
K2 +

6

5
K3

]
,

K5/δt =u

[
t+ δt, u(t)− 11

54
K1 +

5

2
K2 −

70

27
K3 +

35

27
K4

]
,

K6/δt =u

[
t+

7

8
δt, u(t) +

1631

55296
K1 +

175

512
K2 +

575

13824
K3 +

44275

110592
K4 +

253

4096
K5

]
.

(4.2)

Finally an estimate of the truncation error in the embedded fourth-order forumla is

∆ = (
37

378
− 2825

27648
)K1 + (

250

621
− 18575

48384
)K3

+
125

594
− 13525

55296
)K4 −

277

14336
K5 + (

512

1771
− 1

4
)K6, (4.3)

and provides a basis for adapting the step size. Following the Numerical Recipes’ method-

ology, if on any given timestep the estimated truncation error is below some tolerance ∆0

then the fifth-order approximation is accepted. In addition the timestep is adjusted so that

δnextt =
9

10
δnowt |

∆

∆0

|1/5. (4.4)

If the estimated error is instead higher than the tolerance the timestep size is reduced to

δnextt =
9

10
δnowt |

∆0

∆
|1/4, (4.5)
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and the current timestep is attempted again under the same criteria. This is repeated until

either the timestep succeeds or a predetermined number of attempts is reached and the

simulation is aborted.

4.1.2 Psuedo-Spectral Methods

Pseudo-spectral methods exploit the fact that the derivatives of a function may be com-

puted by simple multiplication on its fourier transform. Given a function u(x) and its fourier

transform F [u(x)] the nth derivative of the function is given by F−1[(2πix)nF [u(x)]]. This

method can offer increased accuracy and decreased computation time for smooth functions

through the use of Fast Fourier Transform algorithms, such as those provided in Numerical

Recipes. We may expect the derivatives computed using this method to be well behaved,

and exact the grid points. Discontinuities in the original function u(x) on the scale of the

lattice spacing will, however, introduce artifacts such as ringing into the transform which will

result in significant errors being introduced during the inverse transformation. These errors

generally are severe enough, however, to trigger failure in any reasonably tuned adaptive

Runge-Kutta algorithm during any subsequent propagation.

The case for discrete fourier transforms is slightly more convoluted but may still be easily

derived. For a discrete set of data f(xn) for n = 1, 2, 3, ..., N and spacing δx the discrete

fourier transformation and its inverse are defined as,

Xk =
N−1∑
n=0

xne
−2πi
N

kn, (4.6)

and

xn =
1

N

N−1∑
k=0

Xke
2πi
N
kn. (4.7)

In the discrete case derivatives must be approximated by finite differencing. The form of the

derivatives may be isolated from a standard central differences. For the first derivative we

have
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∆f(xj)

∆x

=
f(xj + 1)− f(xj − 1)

δx
=

1

δxN

N−1∑
k=1

[
Xke

2πikj
N

(
e

2πik
N − e

−2πik
N

)]
,

=
2

δxN

N−1∑
k=1

[
Xke

2πikj
N sin(

2πk

N
)

]
. (4.8)

Which is the discrete fourier transform of xn scaled by sin(2πk
N

). The second-order central

difference may be similarly used to find an expression for the second derivative. This yields,

∆2f(xj)

∆2
x

=
2

δ2xN

N−1∑
k=1

[
Xke

2πikj
N

(
cos(

2πk

N
)− 1

)]
, (4.9)

Similar to the first derivative the second is given by a multiplication on the discrete fourier

transform, this time of the form
(
cos(2πk

N
)− 1

)
.

4.1.3 Implimentation

The implementation of the of the above psuedo-spectal spatial derivatives and adap-

tive Runge-Kutta temporal propagation for the simulation of the CQCGLE via a split-step

method is rather trivial. One needs initial and boundary conditions to utilize the existing al-

gorithms in Numerical Recipes. For any given timestep we compute the local, instantaneous

effects of the gains, losses and nonlinearity in x-space before computing the instantaneous

dispersion in k-space via Equation 4.9. This is then propagated forward in time via the

adaptive Runge-Kutta. Note that the set of N constants needed for computing the second

derivative via Psueod-spectral methods is constant and independent of xn so only needs to

be computed once for each grid size.

We may easily recast the CQCGL given in Equation 3.15 into a first-order differential

equation of the form given Equation 4.1.1 needed to make use of the Runge-Kutta algorithm.

If uab = u(za, tb) corresponds to the scaled magnetization amplitude at some grid point a

and time step b then we may write

∂uab
∂t

= −i
[
−D

2

∂2uab
∂z2

+ iL+ (N + iC)|uab|2 + (S + iQ)|ujk|4
]
uab (4.10)
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where we have divided by i. Numerically this will result in the swapping of real and imaginary

parts during this evaluation. Dropping this transformation is a common mistake. If we define

F and F−1 to be the discrete fourier transform as and its inverse as discussed above we can

replace with the spatial derivative with our psuedo-spectral approximation giving

∂uab
∂t
≈− i

(
− D

2
F−1

[
F(uab)

(
cos(

2πk

N
)− 1

)]

+iL+ (N + iC)|uab|2 + (S + iQ)|uab|4
)
uab.

(4.11)

This may then be evaluated using the adaptive Runge-Kutta method. This analysis can also

be extended to higher dimensions. We also highlight the inclusion of additional derivative

terms or gain loss terms will not increase the computational complexity of the above step.

However gain and loss do generally require finer time discretization.

A stable initial condition can easily be generated via imaginary time propagation where

t→ −iτ in the CQCGLE with S, L, C,Q =. This transforms the general solution of the time-

dependent nonlinear Schrödinger equation given by a sum of weighted energy eigenfunctions

into a sum of decaying exponentials. If we propagate forward in τ then higher energy modes

will experience exponentially more decay than the ground state. The exponential decay can

be combined with a periodic renormalization and then evolved forward in τ until only the

lowest loss eigenmode will remain. This result can be used to converge any random initial

condition to the ground state to machine precision. Imaginary time decay is used to create

all initial conditions used in this work, including those used to verify convergence.

Numerical convergence is typically demonstrated by comparing a result to known, ana-

lytic solutions as temporal and spatial resolutions are increased. In the case of the CQCGLE

where no there exist no or few known solutions we may not try to demonstrate a steady state

solution in converged this same way. Complex dynamical solutions require careful care, par-

ticularly in the case of chaotic evolution where no two numerical simulations may be directly

compared due to the exponential separation of nearby trajectories in phase space. It is also
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not possible to show convergence in norm in the presence of gains and losses and nonlinearity

prevents backwards time propagation. A more rigorous discussion of these issues as well as

some examples are provided in Section 5.8.

4.2 Nonlinear Time Series Analysis

One often finds themselves presented with a set {x1, x2, . . . , xn} of some observable quan-

tity, x, having been measured at discrete values of a time-like variable t. Regardless of the

nature of the generating system: numeric, experimental, deterministic, stochastic, finite or

continuous, the fundamental goal is usually to quantitatively determine as much informa-

tion as possible about the origins of the observed signal. Ideally one seeks to determine the

observable’s evolution rule, D[xm] = xm+1,m < n, and use that to study the physical and

dynamical properties of the underlying generating system. In general one will have access to

at worst a single observable quantity and at best an a priori knowledge of the generating sys-

tem and its physical mechanisms. Even with significant a priori knowledge it is exceedingly

rare to have access to a full phase space when conducting experiment or numerics. Thus the

task of nonlinear time series analysis is ultimately the characterization of an unknown phase

space.

For the purposes of this work it is assumed that a generating system (physical or nu-

meric) in the form of a differential equation or discrete-time evolution rule is responsible for

the observations. Any stochastic behavior will therefore be attributed to independent and

identically distributed (IID) random noise isolated in system parameters or measurement

processes. The general case of continuous-time dynamics may be written down as the par-

tial differential equation (PDE) describing a field φ(x, t) = [φ1(x, t), φ2(x, t), . . . , φn(x, t)] of

n components,

∂φ(x, t)

∂t
= G(φ(x, t)), (4.12)

where the vector field G is assumed to be well behaved, which in the context of this work

signifies continuous, bounded and differentiable.
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A measurement process, s, which maps φ(x, t) to the real numbers is assumed to sampled

every ts to generate our time series,

s(x, n) = s(φ(x, t0 + nts)) + ηn, (4.13)

where s is an unknown, and in general nonlinear, function of the underlying variables of

the system, t0 is the initial measurement time, ηn is the IID random noise associated with

the measurement process and n ∈ {0, 1, 2, ..}. We will assume measurements occur at a

fixed space coordinate and adopt the notation s(n) = s(x, n) for the remainder of this work.

Likewise ηn is assumed to be insignificant unless specifically stated to be otherwise.

The remainder of this section will deal with the classification of data of the above form

when the dynamical system responsible is nonlinear and exhibits chaos.

4.2.1 Chaos

0 50 100 150 200

Iteration

0

0.5

1

x

Figure 4.1: Timeseries of the Logistic map in a chaotic regime. 200 iterations of the Logistic
map xn+1 = rxn(1 − xn) with r = 3.9 and x0 = 0.5. This is a chaotic regime of the one
dimensional map.

Chaos is used to describe a dynamical system whose bounded evolution appears to be

random. A typical numerical example, the logistic map is shown in Figure 4.1. The source of

this apparently random behavior is the result of two defining features of chaotic data: (1) that
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it is aperiodic (has broadband spectrum) and (2) trajectories show exponential sensitivity

to initial conditions. The first steps towards a fundamental understanding of chaos were

made by Henri Poincaré in his two-dimensional portrait of the three-body problem at the

turn of the 19th century [52]. Chaos was not accepted as the third type of non-transient

motion until half a century later when computing resources became powerful enough to

allow Edward Lorenz to numerically evaluate his now famous differential equations and he

noticed divergence when restarting simulations [53]. Lorenz’ work would not have been

possible without the significant contributions of Ellen Fetter and Margaret Hamilton who

programmed, implemented and ran the numerical computations behind the now famous

results [54]. By the early 1980s the theory and methods of nonlinear and chaotic time

system analysis had established some footing with the works of Grassberger and Eckman

and the term Chaos had been coined by Yorke [55–59]. Since its acceptance chaos has been

observed experimentally in laser cavities, microwave magnetics, fluid dynamics, electronic

circuits, wildlife populations, neural signals, and atmospheric data (to name a scant few).

The inherent instability and broadband nature of chaotic data have significant conse-

quences on our standard approaches to time series analysis. Most importantly, no individual

trajectory may be direcrtly compared to another experimental or computed orbit where now

any numerical roundoff or inherent limit on experimental precision will render each trajec-

tory unique. This implies there will be no explicit way to compare separately generated

time series without the use of statistical quantities. Additionally the broadband spectra of

additive noise is no longer distinguishable from the underlying chaotic dynamics via Fourier

transforms, see Figure 4.2. In fact, the task of data separation in nonlinear systems is entirely

nontrivial [60, 61].

The origins of chaos in nonlinearity imply we need to separate ourselves from the use of the

ubiquitous and powerful linear time series technique of power spectra. While a linear system

may be uniquely characterized by the sharp line spectra of its power spectrum (invariant

measures of the series under perturbations of the initial conditions), we may not rely on the
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Figure 4.2: Fourier spectra of random noise and chaotic logistic map data. (left) Power
spectrum of 20000 iterations of the Logistic map defined in. (right) Power spectrum of
20000 pseudo-random numbers from the normal distribution. Both spectrum generated by
fast Fourier Transform.

power spectrum of chaotic signals as a means of identification across multiple trajectories.

The limited utility of the Fourier transform on nonlinear signals is easily understood from the

perspective of the underlying dynamical system: A linear system of differential equations will

be transformed into an algebraic problem in Fourier space; a marked reduction in complexity.

The transformation of a nonlinear system of differential equations is instead into a series of

convoluted integral equations in Fourier space. This is not in general an improvement [62].

Linear signals will also be invariant under translations in time, so sines and cosines present

a natural basis. The same may not be said for nonlinear signals.

4.2.2 Phase Space and Attractor Reconstruction

The limitations of the tools of linear time series analysis are now well understood, however

our ultimate goals for the analysis of chaotic signals remain the same. A new set of invariants

for chaotic systems are necessary to characterize the dynamics in place of sharp lines in power

spectra.
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We earlier assumed that a deterministic dynamical system, G, in the form of a differential

equation or discrete-time evolution rule is responsible for the series s(n). Once the state of

G is defined for a time t0 the state at all future times are fixed. Once an initial state is

known we can study the dynamics of the system by studying the dynamics of the phase space

points [60–62]. This state is specified by a vector in the phase space of the system. The

dimensionality of this phase space represents the minimum number of variables necessary to

uniquely define a state of the system. For the case of m coupled ODEs the dimensionality

of this space is exactly m. This is easily seen for the case of a particle under constant

potential in 3 dimensional Cartesian space. One must supply the 3-dimensional position

and 3-dimensional velocity in order to guarantee a unique solution to 6-dimensional ODE

generated by Newton’s second law of motion. The omission of a single variable leaves us

instead with an infinite family of solutions which makes describing dynamics unmanageable.

For a PDE this phase space dimension is infinite.

Signals observed from physical systems are described by dissipative PDEs of the form

defined by Equation 4.12. These signals are finitely sampled in space and in time. If the

signal represents a well behaved observable, i.e. something experimentalists are likely to

design experiments to observe, then the behavior is bounded within the measurement limits

of the experimental apparatus. The experimentalist will of course strive to ensure their

measurement limits are far beyond the dynamic limits of their observables, but one can be

sure this limit is still far below infinity. Discrete sampling means we may treat a PDE as a

large number, N , of couple ODEs for the purposes of discussing the time series s(n). In the

limit where s(n) is no longer approximate, ts → 0 and N → ∞, one recreates the original

PDE for any space point x.

In reality the dimensionality, m, of our phase space is infinite and at best the approx-

imation N � 1 is still too large to be tractable for analysis. We will instead exploit that

the time series we’re presented with is physical and the evolution is bounded in s(n). This

implies our dynamical system is evolving in some bounded region of the full phase space
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known as the attractor of the system. Importantly. the attractor is invariant under dynam-

ical evolution and reasonable perturbations (perturbations which do not push the solution

outside the attractor itself, or which are on average smaller than the radius of the attrac-

tor) [55, 60, 61, 63]. The dynamical system G does not in general preserve the volume of the

associated phase space, in fact within dissipative systems the phase space volume containing

some initial conditions will contracted under the dynamics. Regardless, trajectories which

evolve onto the attractor will in general remain there indefinitely, unless perturbed outside

the set of initial conditions which evolve into the attractor.

It may then be expected that if one observes a stationary time series from a dynamical

system that these dynamics are being carried out on an attractor of finite dimension da � n.

There are four types of attractors which can exist in phase space corresponding to geometrical

subspaces: fixed point (point), limit cycle (line), limit torus (surface) and strange (fractal).

A dynamic which equally fills all directions in phase space (volume) is noise.

We remind the reader that an interesting consequence of determinism for autonomous

ODEs is that trajectories in phase space must not cross. This implies that complex attractor

behavior must occur in an attractor of dimension da > 2 where folding and mixing are possi-

ble. The mutually exclusive concepts of a finite attractor and exponential time divergence of

initial conditions can only occur if the nonlinearity of the system allows the kind of folding

described above. This allows for infinite trajectories in a finite area [60]. Of course, map-like

systems can exhibit chaos on attractors with dimensions less than two.

Our task of extracting details of the dynamical system may be accomplished by recon-

structing the attractor describing the observed evolution using the information available to

us, s(n). The process of converting a time series into state vectors is formally known as

time delay embedding or phase space reconstruction. Since s(n) is generally unknown and

nonlinear it is unlikely one will be able to reconstruct the original phase space of the dy-

namical system. We argued above that knowledge of the total phase space is unnecessary

if the motion we are interested in exists on an small (in comparison to the original phase
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space) dimensional attractor. We instead seek to recreate the simplest space in which the

embedded attractor is equivalent to the attractor in the full space. Formally one states

attractors in the two spaces are equivalent if the embedding procedure is a one-to-one map

and an immersion [58, 60]. The goal of embedding is to introduce the attractor into a space

where the dynamics are completely unfolded.

Assuming an attractor of dimension D there are two tasks necessary to complete the

embedding. First, To uniquely describe the dynamics of the system we much construct D

independent variables from s(n) for every time nts that is sampled. Equivalently we need

to specify the D-dimensional state vector for every time s(n) is sampled. Second we need to

embed the attractor into a Cartesian vector space so we have a global representation of the

dynamics where we can perform analysis [58, 60, 62].

The second problem was addressed in Whitney’s embedding theorem in 1936 and later

strengthened in 1991 by Sauer. They showned that for any attractor with a finite dimension,

da, then almost every one-to-one immersion from the attractor to <m with m > 2da forms

an embedding [58, 60, 64, 65]. Note, the attractor dimension is not required to be integer

valued [65].

The first problem was addressed by in Taken’s delay embedding theorem in 1981, and was

again strengthened in 1991 by Sauer. It is shown that for almost every smooth measurement

function s and sampling time ts > 0 the delay time embedding into <m with m > 2da is an

embedding if there are no periodic orbits of the system with period ts or 2ts and only a finite

number of periodic orbits with period pts, p > 2 [65, 66]. The delay time embedding vectors

are defined as,

s(n) = [s(n− (m− 1)τ), s(n− (m− 2)τ), . . . , s(n− 2τ), s(n− τ), s(n)] , (4.14)

where τ is the delay time and m is the embedding dimension defined above. The visual

comparison of the original attractor of the 3-dimensional Lorenz equations (x(t),y(t),z(t))

and a reconstruction generated only the time series x(t) is shown in Figure 4.3. The variables
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τ and m used in an embedding are known as the embedding parameters, and in general it is

the goal of nonlinear time series analysis to determine these values. It is often argued that

the relevant embedding parameter is mτ , known as the delay window, since this represents

the time spanned by an embedding vector[60, 67]. There are a great number of alternative

methods to delay time embedding as well as generalizations which allow for variable τ which

are beyond the scope of this work [68, 69].
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Figure 4.3: Full phase space and a reconstruction of the Lorenz attractor. (left) The phase
space portrait of the Lorenz equation for 5000 iterations. (right) A reconstructed phase
space from the same 5000 iterations of x(t). [53]

The Takens embedding procedure produces N = n−(m−1)τ points in the m-dimensional

reconstructed phase space from a time series of finite length n. The embedding theorems

assume s(n) is a noise free time series of infinite length and provide no insight into the proper

choice of m or τ for a physical, noisy, time series of finite length. One is generally trying

to determine the dimension of the attractor, da, with no bounds on the proper choice of

m. The embedding theorems provide a formal mathematical foundation for the analysis of

nonlinear time series but provide little practical information beyond a proof of concept. One

must return to the theory of dynamical systems and the geometry of attractors to attempt

and choose the appropriate embedding parameters.
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4.2.3 Embedding Parameters

For the case of noisy and finite time series the choice of embedding parameters is nontriv-

ial. There exist systematic methods for determining approximations for these parameters

from the time series itself. Sauer demonstrated that for any choice of dimension m > 2 ∗ da

we expect a valid embedding space, so the choice of large embedding dimensions will in

theory, assuming sufficient data, only have negative impact on the computing time involved

in analysis [65]. The general approach to optimizing the embedding parameters is then us-

ing statistical tools to determine an approximation for the delay time or delay window and

evaluating an invariant of the attractor as the dimensionality is increased. A plateau in the

behavior of the invariant as a function of m is sought as evidence of satisfying the embedding

theorem conditions. Useful invariants will be introduced below.

Methods for approximating the embedding parameters are a subject of much ongoing

research and numerous approaches are suggested every year [67–83]. The author here follows

the philosophy of Kantz in regards to the selection of an appropriate time delay. The

dozens of methods available for the determination of the time delay attempt to exploit the

same feature of state space: that a state vector is fundamentally comprised of independent

variables. The best choice of τ is generically one which maximizes the independence, in some

linear or nonlinear sense, of the delay separated components of our time series, s(n). The

methods differ in the ways they characterize this independence but ultimately produce τs

on the same order of magnitude [69, 70, 75, 78, 82]. Kantz argues that results should not

depend too sensitively on τ since this suggests the properties of the reconstructed attractor

are not invariant under smooth transformations [60]. A violation of this invariance suggests

one is not analyzing a signal generated on an attractor. Thus the use of a preferred method

is suggested to generate a working estimate. If desired the performance of invariants can be

optimized in practice by variation of τ [60].
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The simplest tool for quantifying the independence of the delayed time series is the linear

autocorrelation function where the value at lag τ is given by

C(τ) =
< s(n)s(n− τ) > − < s >2

σ2
,

<s > ≈ 1

N

N∑
n=1

s(n),

σ2 ≈ 1

N − 1

(
N∑
n=1

s(n)2 −N < s >2

)
,

(4.15)

where the time series has been used to estimate the mean, < s >, and variance, σ2. To

within some factors of N the autocorrelation function may be seen as a ratio of variances,

C(τ) ≈ < s(n)s(n− τ) > − < s(n) >2

< s(n)s(n) > − < s(n) >2
.

The autocorrelation function is then the weighted variance of the delayed series with respect

to the original normalized by the variance of the original. This ratio quantifies how points

are distributed in the {s(n), s(n − τ)} series. C(τ) = 0 suggests the points are distributed

evenly over the plane, C(τ)! = 0 suggests they crowd towards the appropriate diagonal. A

good choice of τ may be argued to be the first zero crossing of C(τ) [60, 61, 84].

The autocorrelation function estimates the linear correlation between two time delayed

state vectors, neglecting any nonlinear correlations present in the data. A more general

characterization of the correlation is given by the average mutual information. The amount

of information two measurements share is defined as the mutual information. This is a

measure of how much knowing the first measurement influences our knowledge of the second.

The mutual information is defined as

IAB(ai, bj) = log2

(
PAB(ai, bj)

PA(ai)PB(bj)

)
, (4.16)

where A and B are discrete random variables, ai and bj correspond to specific values. The

probability and joint probabilities are defined in the usual way. Then the average mutual

information is the mean of the mutual information across all choices of ai and bj. In the
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context of our time series the probability distributions will have to be generated by binning

and A = s(n), B = s(n− τ). We can then define the average mutual information as

I(τ) =
∑
n

P (s(n), s(n− τ)) log2

[
P (s(n), s(n− τ))

P (s(n))P (s(n− τ))

]
. (4.17)

The average mutual information is positive definite and will approach zero when P (s(n), s(n−

τ))→ P (s(n))P (s(n− τ)), or when the two measurements are statistically independent. As

τ increases the two signals will have less and less to do with each other, so it is expected

I(τ) will be inversely proportional to the time delay. The first zero of the average mutual

information is a good choice for τ [60, 61, 84, 85].

With several meaningful ways to determine τ we now want to focus on the remaining

embedding parameters: the delay window and embedding dimension. The most common

method for evaluating the embedding dimension is the false nearest-neighbor statistic, which

is not utilized in this work [60]. We choose instead to focus on the delay window, from which

an embedding dimension may be indirectly determined by the relation τw = mτd where

we’ve adopted the subscripts w and d to indicate window and delay, respectively. We focus

on one popular methodology, the C-C method [67]. There have been recent attempts to

improve upon this algorithm in the so called C-C-3 method, but this is not investigated in

this work [83]. The C-C method relies on the so called BDS statistic [86]. The BDS measures

the significance of calculations of correlation dimensions from the correlation integral as a

dimensionless measure of nonlinear dependence [67, 83, 86]. The correlation integral will be

discussed in depth in the following section. The C-C method evaluates the the BDS statistic

for a variety of embedding dimension and length scales, and records the mean and variance as

a function of τ . The minimum of the absolute sum of these quantities is argued to represent

the optimal time of the dynamical system responsible for the time series analyzed, or in our

language the delay window.
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4.2.4 Phase Space Invariants

Now that we have reconstructed the attractor underlying the dynamics of our time series

we want to classify the system. This is done through the identification of and quantification

of invariants. We start by acknowledging the invariants are functions of the dynamical

systems’ attractor and are therefore dependent in some sense on our choice of of embedding

parameters. Regardless of the appropriateness of these parameters one may easily apply

the measures described here and arrive at numerical estimates of any number of invariants

under the most erroneous of circumstances. Even infinite-dimensional noise can easily be

construed as finite-dimensional dynamics under simple miss steps of analysis. That is to

say that the methods of nonlinear time series analysis are not robust and are in fact prone

to misinterpretation and superfluous characterization. The issue of naive application is so

prevalent in the literature that many authors caution against any published numerical result

not accompanied by am explicit discussion of the reconstructed phase space and the plateau

measurements [60]. The previous sections were thorough regarding the motivations and

underlying assumptions of this analysis so that we may now be perfectly explicit about the

appropriate use of the following methods.

The two common invariants studied in the literature are dimension and the Lyapunov

exponent, which describe the geometry and dynamics of the attractor, respectively. In this

work we focus on estimations of dimension, which while subject to miss steps of analysis, are

robust measures. Estimates of Lyapunov exponents, λk, which measure how quickly nearby

trajectories in phase space separate are inherently unstable. First, for a D dimensional

system there exist D distinct Lyapunov exponents. If the observed dynamics occur on an

attractor of dimensionality, m, then there exist D−m so-called spurious Lyapunov exponents

which do not describe the dynamics on the attractor. The general solution to this issue is

assuming the largest Lyapunov exponent describes dynamics on the attractor and seeking

only to estimate that. However, algorithms which estimate the largest Lyapunov exponent

are explicitly sensitive to choices to in embedding parameters and are also highly sensitive
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to noise and the size of the recorded data series. The estimation in separation of nearby

trajectories requires the isolation of nearby trajectories in the reconstructed phase space,

and also that the (super)norm of their separation is accurate. Features on the scale of a single

trajectory are going to be harder to measure than those on the scale of the entire attractor.

While careful estimation (with convergence as a function of m) of Lyapunov exponents is no

doubt possible and sometimes useful, we do not consider it in this work.

We seek instead to estimate the dimensional of the reconstructed attractor. This is most

commonly done by the use of a generalized correlation integral as defined

Cq(ε) =

∫
x

dµ(x)

[∫
y

dµ(y)Θ(ε− ‖x− y‖)
]q−1

, (4.18)

where µ is some measure defined in a phase space, x and y are phase space points and Θ is

the Heaviside step function [60, 61, 84].

Θ(x) =

{
0 : x ≤ 0
1 : else

(4.19)

For a self-similar set we have,

Cq(ε) ∝ ε(q−1)Dq , ε→ 0, (4.20)

so that we define the generalized dimension, Dq as,

Dq = lim
ε→0

1

q − 1

lnCq(ε)

ln ε
. (4.21)

For a sequence of space time points, y(n), we estimate the correlation integral by the corre-

lation sum, also known as the Grassberger and Procaccio algorithm [55–57],

Cq(ε) = lim
N→∞

(N − 2nmin − 1)1−q

N − 2nmin

N−nmin∑
i=nmin

 N∑
|j−i|<nmin

Θ(ε− ‖y(i)− y(j)‖)

q−1 , (4.22)

where ‖X‖ is a norm and nmin is the Thieler correction used to eliminate the spurious effect

of temporal correlations from the time series by eliminating the nmin closest points. Since

the delay time embedding procedure involves the reconstruction of state-space vectors from

a single time series, s(n), points close in time will be highly correlated. Estimates of the
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correlation dimension will be significantly underestimated if temporal correlation is assumed

to be geometrical structure on the attractor [60, 61, 84, 87]. We define tmin = nmints and

exclude all pairs closer than tmin in the correlation sum. This results in the loss of a fraction

2nmin/N of all pairs. The preferred method for determining a reasonable value for tmin is the

space time separation plot, but won’t be discussed here [60]. In practice a reasonable choice

for nmin is
√
N unless there are significant concerns about the amount of data available. A

choice on this order will also eliminate any spurious temporal correlations that result from

oversampling.

One might notice that in the definition of Equation 4.21 there are two limits which will

cause us problems with real data sets. The limit N →∞ is violated explicitly by any finite

data set and ε→ 0 will have a lower bound imposed by the numerical quality of the signal.

In practice the violation of N →∞ is generally not an issue so long as there is enough data

to clearly define the reconstructed attractor. Any limit on ε → 0 will impose a restriction

on on our ability to estimate Equation 4.20 on small scales. For values of q 6= 2 we also have

to take the bracketed sum to nontrivial powers, which results in biased estimations of Cq 6=2.

There are three dimensions which are typically considered corresponding to q = 0, 1, 2 in

equations 4.20 and 4.22. These are known as the box-counting dimension, information dimen-

sion and correlation dimensions, respectively. In practice the box-counting dimension (the

number of boxes of size ε needed to cover all data) is unusable as an algorithm as it requires

extremely high resolution data. The desirable information dimension (the average Shannon

information needed to locate a point with accuracy ε) is computationally intractable. The

correlation dimension is by far the easiest to compute and estimate for finite data sets. In

general Dq is not strongly dependent on q and D2 is a reasonable approximation of D1. If

there is a strong Dq dependence then the underlying data is called multi-fractal and D2 is

not a particularly useful measure for the system. For these reasons we focus entirely on the

estimation of the correlation dimension through the correlation sum with q = 2.
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4.2.5 Practical Implementation Of Dimension Estimation

In practice the task of estimating the correlation dimension is ultimately one of identifying

scaling regions in the behavior of the correlation sum. Where for q = 2 from equations 4.20

and 4.21 we have

C2(ε) ∝ εDq , ε→ 0, (4.23)

and

D2 = lim
ε→0

lnC2(ε)

ln ε
. (4.24)

This is an inherently subjective process where one looks looks at a log(C2) vs log(ε plot

and attempts to visually identify scaling regions, then measure their slope. One may also

look at d log(C2)/d log(ε) and identify scaling regions via the local slope. This subjective

process is another reason demonstrating saturation in the dimension estimate over increasing

embedding dimension is so important - it gives one means of establishing error bars on the

estimate.

It is important to keep in mind that there will be, generally, four distinct regions in a

log(C2) vs log(ε plot. (1) For ε on the scale of the attractor the correlation sum has no

scaling behavior, as the sum is now a function of the attractor’s large scale geometries which

are ε and m > 2da (so that the attractor is unfolded) independent. (2) At smaller values of

ε the true scaling region, if present, will be identifiable. In practice it is at most 2-3 octaves

wide. (3) As ε is decreased further a regime dominated by noise is identifiable. As noise is

space filling this region as scaling approaching m. Note that noise is present for all length

scales, but usually only dominates at small length scales. If overall noise levels approach 2%

then it is often impossible to identify even one octave of true scaling. The present of noise

at all levels also means that estimations for the dimension will have some m-dependence

for all m > 2da and generally increase as embedding dimension is increased. The use of

a time-delay window rather than a time delay can accomodate for this by increasing the

effective time-delay for embeddings in higher dimensions. The use of a sup or maximum
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norm measure can also impact this scaling. (4) At the lowest length scales statistics fail due

to lack of neighbors. A good rule of thumb is to expect true scaling from, at best, roughly

1/4 attractor size down to 3 times the noise level. The relative location of the true scaling

region will vary as one increases the embedding dimension, this is an artifact both of having

finite data and the presence of noise. Using a sup norm or maximum norm will also lower

this affect by introducing m scaling directly into the measure. While in theory the choice

of norm should not impact the determination of the correlation dimension, in practice you

should never quantitatively compare dimensions computed via different norms.

It is important to state that the issues and methods of this section are far from settled in

the literature, the seminal works of Lorenz received over 2000 citations since 2018 and the

works of Grassberger received over 400 citations. New methods for estimating embedding

parameters and of computing dimensions are also actively being proposed including the use

of machine learning and complex networks. To make matters even more complicated there

is now significant research into so-called non-chaotic strange attractors, or attractors with

fractal dimension but that do not represent chaotic dynamics. In the opinions of the authors

of this work the best overall practices for estimating correlation dimension are simply to

minimize assumptions, be open about parameters and quantify error. At a bare minimum

anytime a correlation dimension is reported you should also supply the saturation of that

estimate as a function of embedding dimension. If one is being completely thorough it also

illuminating to conduct the same analysis you did on your actual data on surrogate data, or

randomly generated data sets that have the same (1) distribution and (2) spectral properties.

One may also examine a randomly sorted version of the original data to inspect a phase-

randomized set with the same spatial distribution. Any of these, or the set of these, should

provide an excellent null hypothesis to verify your estimates on correlation dimension.

Of on going research in the area of nonlinear timeseries analysis the authors would like to

highlight the 0-1 method, which as its name suggests, provides a means of labeling dynamics

as chaotic, or not. The method is exceedingly intuitive and beyond simple to implement,
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requiring no complex overhead of any kind. It is also as robust to noise as the measures

presented in this chapter, and has even shown some promise in identifying low dimensional or

weak chaos. It is particularly useful for identifying chaotic regions as one varies parameters,

which can serve as filter before one spends the time necessary to complete the careful analysis

discussed above. Most importantly it can provide a quick, visual identification of potentially

chaotic behavior. The underlying transformation of the 0-1 test produces variables which

behave as a random walk in the presence of chaos (or sufficient noise), so one can quickly

visualize the underlying behavior by plotting these variables and seeing if they are bounded.

The formal process of identifying chaotic behavior in the 0-1 test is a robust estimation of

the diffusion constant for the transformed variables.

4.2.6 Characterizing a Chaotic Soliton

Here we provide a step-by-step worked example of estimating the correlation dimension

for the 3.0 dB ring gain Chaotic Soliton presented in Section 7. This is intended only to

illustrate the points made above, and provide more useful. This is a higher ring gain than

was reported in the collaborative PRL with CSU, but was recorded at the time [31]. At this

higher ring gain, as discussed in detail in Section 7, there are now two solitary waves prop-

agating within the ring and the dynamic may no longer be called a chaotically modulating

soliton.

1) Decide on a repeatable procedure.

Estimates on dimension are, typically, only useful when compared to others produced with

the same underlying procedure. The reality is, especially when choosing fitting regions, that

the results are easily tunable. Use the same methods when you determine the time delay and

Theiler windows across multiple time series and to justify your choice in scaling region. If

working on data which exhibits multiple scales of complexity make educated guesses before

conducting any nonlinear time series analysis on where you expect the scaling regions to

appear. Be upfront, demonstrate saturation with increased embedding dimension. Provide
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information on how many octaves you are fitting in your scaling region, and how good those

fits are.

2) Familiarize yourself with the data.

Naive or batch processing for nonlinear time series measures is, at best, done in poor taste.

Data should at a minimum be evaluated to ensure there are no transient effects, or that

it is all the the result of evolving on a single attactor. The data should also be verified to

have, at some scale, a broadband power spectra and to be of general high quality and high

signal-to-noise ratio. Remember that any measure on the underlying dynamical variables

should also be chaotic, so consider if there are alternatives to processing the raw data (e.g.,

energy) which may reduce the length of the time series and therefore the computation times.

Consider pre-processing options including the 0-1 test. Beware oversampling, which can even

render the 0-1 test moot (spurious temporal correlation making the data appear bounded).

Our data is two solitary waves propagating around the ring, both modulating, but with

very different group velocities and amplitudes. The faster soliton is circling the ring every 5

round trips. Maximum soliton high will miss most of the dynamics, and round trip energy

is quasi-conservative in this system so not an ideal chaos measure. We will use the full data

binned to reduce the effective sampling rate by 10.

3) Determine embedding parameters

Choose an embedding parameter, typically either using the autocorrelation or mutual in-

formation. Verify visually via return plot (scatter plotting two reconstructed time-delay

vectors) that the dynamics are unfolded. Estimates should be robust against reasonable

variation in the choice of time delay. Visually verifying the first zero of the auto mutual

information as a reasonable time delay choice is shown in Figure 4.4. The dynamics are well

spread out in (a) where the time delay is the first zero crossing. In (b) and (c) the time delay

is prime multiples of the first zero crossing and dynamics are pushed into the axes and the
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diagonal, respectively.

(a) (b) (c)

Figure 4.4: Visualizing time delays with return plots. All plots feature 1000 round trips of
data from the 3.0dB CSU chaotic soliton experiment. (a) Return plot with the time delay
set to the first zero of the average mutual information. Orbits occupy the available space.
(b) Time delay set to 3x the delay used in (a), dynamics are now being pushed toward the
axes and not evenly spread. (c) 11x the delay in (a), dynamics are completely unfolded and
only occupy the diagonal.

4) Compute the correlation sums.

Compute the correlation sums for the data up to a reasonably embedding dimension. Usually

20 or 30 will suffice. Ideally you would like 10 or 15 embedding dimensions above the

minimum. I.E. for an attractor of dimension da = 5 where a minimum embedding dimension

of m > 2 ∗ da = 10 is necessary computing up to embedding dimension 25 or 30 will allow

you compute error bars on your estimate. Once you have the sums computing try to identify

scaling regions. Computed correlation sums for the 3.0 dB chaotic soliton time series is

shown in Figure 4.5. In (a) correlation sums corrsponding to even embedding dimensions

are shown for clarity. In (b) the local derivative of the correlation sum, an pointwise estimate

of correlation dimension, is shown. This is computed via triple point derivative and smoothed

via moving average. The same scaling regions can be observed in both with noise dominating

below ln(ε) = 2.5 and the scale of the attractor dominates above ln(ε) = 1.5. A true scaling

window lies in the middle.
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Figure 4.5: Correlation sums for 3.0 dB Chaotic Soliton (a) correlation sums for the even
embedding dimensions (2-30). A true scaling region may be identified at roughly 2.5 >
ln(ε) > 1.5 above the the scale of the attractor may been seen to dominate and below noise
and loss of neighbors dominates. (b) The local derivative of the correlation function for
embedding dimension 30. The same scaling regions as before may be identified. Note the
derivative is computed via triple-point and has been smoothed via moving average. This is
a fairly convincing plateau for experimental data.
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There are a few important points which should be emphasized here. (1) The relative

location of the scaling region as a function of ε can be seen to shift as the embedding dimen-

sion is increased. As discussed above, this is an artifact of a finite data set, the presence of

noise and the use of euclidean norm. (2) As we shift from the true scaling region towards

either ε → 0 or ε → −∞ the correlation sum curves towards D2 → 0 or D2 → m as the

local scaling becomes dominated by geometric features of the attractor or noise in m space.

Fitting a linear line to a curve allows for complete tunability of the slope where one can

increase the slope by shifting their fit towards smaller ε or lower it by shifting towards larger

ε. This is why it is so important include shifts like this in your error bars for estimation, as it

will indicate the region you are fitting is not on a curve. (3) The local dimension estimations

from triple point derivative appear fairly noisy. This is very common and is again an artifact

of finite data and the fact that when computing the correlation sum one does not include all

possible neighbors for the sake of tractability. It is also important to realize we are looking

for a scaling region of the correlation integral and a pointwise definition is not illuminating.

(b) Serves as an additional way to verify the location of scaling regions and can offer some

insight into the error of the estimation. Note that the scaling region shown in (b) is a fairly

clean and convincing plateau for real data, which should reinforce ones skepticism about

reported dimensions without supplimental information or saturation. Other examples with

experimental data are shown in Kantz [60].

4) Fit the identified scaling region.

Linear fits should be made to the identified scaling regions and goodness of fit measures used

to explicitly justify the choice of scaling region. In general scaling regions should be identified

individuality for each embedding dimension. We recommend refitting with ±5% shifts on the

edges of the scaling region as another means of quantifying error for this highly subjective

step. This is to demonstrate the fitting region does not line on a curve, as discussed above.

Saturation of correlation dimension across embedding dimension is shown in Figure 4.6. A
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saturation in the measure of our invariant D2 as a function of embedding dimension is shown

in (a) and estimated to be 5.27±0.08 including variations caused by fitting location choice.

The saturation is seen to begin at m = 10 ≈= 2da, but only embedding dimensions 15-30

were used for the estimation.
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Figure 4.6: Correlation Dimension for 3.0 dB Chaotic Soliton (a) Saturation of estimation of
correlation dimension from computed correlation sum for increasing embedding dimension.
Saturation is seen to occur at m = 15. (b) R2 = 0.999 for each the linear fit at each em-
bedding dimension. Correlation dimension is estimated to be 5.27±0.08 including variations
caused by fitting location.

4.2.7 TISEAN

A majority of the time series analysis tools used in this work are part of the TISEAN

software package which includes implementations of all methods discussed above [60, 85].
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The principle benefit of the TISEAN package is its implementation of a fast nearest neigh-

bor search reduces the task from N2 to an asymptotic limit N logN . This allows for the

practical evaluation of data sets orders of magnitude larger than a traditional Grassberger

and Procaccio algorithm.

The algorithm d2 in the TISEAN package includes several novel optimizations for cal-

culations of the correlation sum. It uses nearest neighbor searching at small length scales,

where the algorithm’s efficiency approaches O(N) and for large length scales only portions

of the data are evaluated. The algorithm demands a minimum number of points, which is

specifiable, for each length scale that is evaluated. This allows one to ensure the statistical

quality of each length scale while avoiding excessive calculations times.

The TISEAN package also includes implementations of Lyapunov spectrum, recurrence

plots, surrogates data, nonlinear noise reduction, nonlinear modeling, space time separation

plots, entropy and box counting, information dimension and traditional GP correlation sums.
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CHAPTER 5

COMPLEX SOLITARY WAVE DYNAMICS, PATTERN FORMATION, AND CHAOS IN

THE CUBIC QUINTIC COMPLEX GINZBURG-LANDAU EQUATION

This chapter contains a manuscript in its entirety which was previously published in the

New Journal of Physics and contains work conceived and executed by myself with analysis

help from Rachel A. Ryan. This work was conducted under the advisement of Lincoln. D.

Carr and Mingzong Wu. Note that in this work the CQGLE is referred to as the gain-loss

nonlinear Schrödinger equation.

Associated reference [34]: Justin Q. Anderson, Rachel A. Ryan, Mingzhong Wu, and Lin-

coln D. Carr. Complex solitary wave dynamics, pattern formation and chaos in the gain-loss

nonlinear Schrödinger equation. New Journal of Physics, 16(2):23025, 2014. ISSN 13672630.

doi: 10.1088/1367-2630/16/2/023025. Supplemental materials, including animations, are

available at the journal:

https://iopscience.iop.org/article/10.1088/1367-2630/16/2/023025.

5.1 Abstract

A numerical exploration of a gain-loss nonlinear Schrödinger equation was carried out

utilizing over 180000 core hours to conduct more than 10000 unique simulations in an effort

to characterize the model’s six dimensional parameter space. The study treated the problem

in full generality, spanning a minimum of eight orders of magnitude for each of three linear

and nonlinear gain terms and five orders of magnitude for higher order nonlinearities. The

gain-loss nonlinear Schrödinger equation is of interest as a model for spin wave envelopes in

magnetic thin film active feedback rings and analogous driven damped nonlinear physical

systems. Bright soliton trains were spontaneously driven out of equilibrium and behaviors

stable for tens of thousands of round trip times were numerically identified. Nine distinct

complex dynamical behaviors with lifetimes on the order of ms were isolated as part of six
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identified solution classes. Numerically located dynamical behaviors include: (1) Low di-

mensional chaotic modulations of bright soliton trains; (2) spatially symmetric/asymmetric

interactions of solitary wave peaks; (3) dynamical pattern formation and recurrence; (4)

steady state solutions and (5) intermittency. Simulations exhibiting chaotically modulating

bright soliton trains were found to qualitatively match previous experimental observations.

Ten new dynamical behaviors, eight demonstrating long lifetimes, are predicted to be ob-

servable in future experiments.

5.2 Introduction

Related forms of the nonlinear Schrödinger equation are used to explore nonlinear phe-

nomena in many distinct physical systems: Ginzburg-Landau equations describe the envelope

evolution of mode-locked lasers, and superconductivity [35]; the cubic nonlinear Schrödinger

equation treats deep water waves [1] and the dynamics of spin wave envelopes in magnetic

thin films [36, 37]; a driven damped nonlinear Schrödinger equation models exciton-polariton

and magnon Bose-Einstein condensates (BECs) [38]; and the Gross-Pitaevskii equation mod-

els the mean field of atomic and molecular BECs [39, 40]. With the increasing supply of

cheap computing power these systems have become the subject of extensive and sometimes

rigorous numerical study.

Magnetic thin films have demonstrated potential as a versatile toy system for experiments

on fundamental nonlinear dynamics [41]. Over the past two decades yttrium-iron-garnet

(Y3Fe5O12, YIG) magnetic thin films have been fruitfully studied by numerous experimental

groups and have demonstrated a rich variety of nonlinear phenomena. These include bright

and dark envelope solitons [4–10, 10–19], soliton trains [20, 21], möbius solitons [22], Fermi-

Pasta-Ulam and spatial recurrence [23, 24], soliton fractals [25], random solitons [26], chaotic

spin waves [27–29], multiple solitons [30], and chaotic solitons [31, 32].

A majority of these phenomena were observed on active feedback rings; such feedback

structures are ubiquitous within science and physics in general. Rings in particular are

commonly used to study wave dynamics when one seeks a quantized wavenumber, periodic
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pumping, self-generation, or other resonant phenomena. Active rings, so called for the

presence of periodic linear amplification, allow for the direct compensation of the major

loss mechanisms present within a system. This permits one to drive the system into quasi-

conservative regimes, enabling the observation of dynamics on scales of several to tens of

thousands of round trip times. Dynamics with lifetimes of this order would otherwise be

prohibited by the presence of dissipation.

Yet, within the context of spin waves in magnetic thin films, little work has been carried

out to develop an adequate theory for describing the rich range of behaviors evident within

these recent experimental works. The integrable cubic nonlinear Schrödinger equation (NLS),

while successful in quantitatively describing both dark and bright soliton trains, is unable

to reproduce more complex phenomena such as the chaotic oscillation of soliton envelopes.

However, there has been significant effort within the mode-locked laser community to study

analogous driven and damped systems. Works on dissipation terms and saturation [88–91],

the study of dissipative solitons dynamics [92–96] and other numerical studies of the cubic

quintic complex Ginzburg-Landau equation [97, 98] are highly relevant to the development

of a driven damped model for spin waves in magnetic thin films. These works explore

the dynamics of solitary waves and their associated wave equations under the influences of

gain and loss. For example, the dynamics of near steady-state dissipative solitons have been

considered in detail; such studies include rigorous mappings of stable and unstable regions of

parameter space [94–96]. There have also been significant investigations made into complex

soliton dynamics in optical lattices [99, 100]. Similarly, initial transient behaviors have been

the subject of significant research efforts by the mode-locked laser community. Transients

are of interest for potential applications in signal processing and communication. To date

there have been no efforts towards the characterization of long lifetime (> 1 ms) dynamics

of soliton trains driven from equilibrium within active feedback rings. The work presented

here demonstrates such an effort for a generalized nonlinear Schrödinger equation with a

focus on applications to nonlinear spin waves propagating in an active feedback ring.
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Our paper is outlined as follows. Section 5.3 introduces the model to be studied along

with the associated operating limits; here the methodology and scope of the simulations are

explicitly defined. Experimental contexts for the work are also considered in Section 5.3.

Results in the form of eleven unique complex dynamical behaviors are presented and cate-

gorized in sections 5.4-5.8. Section 5.4 contains simulations of chaotically modulating soliton

trains. Spatially symmetric and asymmetric solitary wave interactions are presented in Sec-

tion 5.5. Four examples of dynamical pattern formation are given in Section 5.6. Two cases

of steady state evolution are reported in Section 5.7. Intermittent solutions are discussed

in Section 5.8. Finally, a discussion of numerical convergence and solution robustness is

given in Section 5.9. The work is summarized in Section 5.10.

5.3 Model Overview

To study the long lifetime dynamics of soliton trains driven from equilibrium, motivated

by the works discussed in Section 5.2, we propose a generalized governing equation for

spin waves in magnetic thin film active feedback rings: the gain loss nonlinear Schrödinger

equation (GLNLS),

i
∂u

∂t
=

[
−D

2

∂2

∂x2
+ iL+ (N + iC)|u|2 + (S + iQ)|u|4

]
u (5.1)

where u = u(x, t) is a dimensionless complex magnetization amplitude defined as |u(x, t)|2 =

m(x, t)2/2Ms
2; here m(x, t) is the dynamic magnetization while Ms

2 is the saturation mag-

netization; D is the dispersion coefficient; N and S are the cubic and quintic nonlinearity

coefficients, respectively; t is the ‘temporal’ evolution coordinate; x is the ‘spatial’ coordinate

of propagation boosted to the group velocity of the envelope; and L, C, and Q are the linear,

cubic, and quintic gains (losses) if positive (negative). All parameters are taken to be real as

the complex nature of the coefficients is explicitly accounted for in Equation 5.1. The local

intensity of the magnetization amplitude is given by |u(x, t)|2. The norm and energy at a
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given time, t, are defined as

‖u(t)‖2 =

∫ L

0

dx |u(x, t)|2, (5.2)

and

E(t) =

∫ L

0

dx

[
D

2

∣∣∣∣∂u(x, t)

∂x

∣∣∣∣2 + (N + S|u(x, t)|2)|u(x, t)|2
]
, (5.3)

respectively, where the integrals are taken over the length or circumference, 2πR, of the

feedback ring. All norms, intensities and energies given within figures and animations are

scaled by ||u(0)||2, max [|u(x, 0)|2] and abs [E(0)] respectively where t = 0 corresponds to the

initial condition used during numerical simulation. Numerical values given within the text

are not scaled. The specific choice of initial condition is discussed later in this section.

The gain and loss present within the GLNLS may be viewed as an expansion of sat-

urable loss expressions studied separately by Ablowitz and Akhmediev [89, 90, 94, 95]. The

higher order nonlinearity, S, may be used either as a saturation of cubic nonlinearity or an

additional self-steepening; both cases are studied in the literature [1]. The GLNLS omits

other terms commonly included in cubic quintic complex Ginzburg-Landau equations such

as spectral filtering, periodic pumping, and integral mean terms, as they are not needed in

this physical context. We are likewise compelled by Occam’s Razor to choose the simplest

possible model which nevertheless reproduces measurements in magnetic thin film active

feedback rings. NLS-like equations may be derived in magnetic thin films by use of a slowly

varying envelope approximation [2], more rigorously through conservation considerations and

a Hamiltonian formalism [3, 4], or directly from Maxwell’s equations using multi-scale meth-

ods [101]. The operating limits of the GLNLS are motivated principally by experimental

work on the excitation of chaotic solitons in YIG strip-based active feedback rings [31]. A

block diagram of the active feedback ring experiment is shown in Figure 5.1. The ring is

comprised of a nonlinear propagation medium, in this case a magnetically saturated crys-

talline YIG thin film, connected via two transducers to an electronic feedback loop. The

electronics loop is constructed of a directional coupler, allowing real time observation at
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Figure 5.1: Diagram of active feedback ring experimental apparatus. Reprinted with per-
mission from Elsevier [41].

an oscilloscope and/or spectrum analyzer, and an amplifier/attenuator pair for real time

adjustment of ring gain. The GLNLS demonstrated qualitative agreement with the low di-

mensional chaotic modulation of a bright soliton train, as will be discussed in Section 5.4.

Detailed experimental results are discussed in Wang et al . [31]. These experiments indicate

that nonlinearity and dispersion are the dominant sources of envelope shaping for chaotic

spin wave solitons and that the losses present in the ring are fully compensated for by the

amplifier. This imposed two constraints on modeling. (1) The coefficients N and D must

be orders of magnitude larger than L, C, and Q. (2) The linear amplifier must compensate

both the linear and nonlinear losses present in the film, requiring a net averaged (over many

round trips) linear gain, L > 0. Likewise, the dissipative terms represent the net gain and

loss processes occurring in the ring averaged over several round trip times. One expects

the use of this approximation, and therefore the model, to be valid when the time scale of

envelope modulation is much greater than the soliton round trip time.

All simulations of the GLNLS were performed using adaptive time step Cash-Karp Runge-

Kutta for temporal evolution and pseudospectral techniques for spatial propagation [50,

51]. Periodic boundary conditions modeled propagation around a ring. Note, a detailed

discussion on numerical convergence for complex dynamics may be found in Section 5.9.

Every simulation began as a bright soliton initial condition obtained via imaginary time
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relaxation [102], the ground state solution to the GLNLS with S, L, C, and Q set as zero,

with |u(x, t)|2 < 1. Experimentally this corresponds to a stable bright soliton circling within

a YIG strip-based active feedback ring, a solution analogous to a soliton train. Dynamical

results were generated by driving this bright soliton initial condition out of equilibrium

via numerical propagation under the influences of non-zero gain and loss terms. This is

a process analogous to active feedback ring experiments where gains are increased beyond

those which support stable bright soliton trains [14, 23, 25, 31, 103]. As previously motivated

in Section 5.2 we are interested in identifying dynamical behaviors which are stable on

timescales observable in magnetic thin film active feedback ring experiments, (> 1 ms) or

7000+ round trips, and analogous physical systems. For this reason any transient dynamics

which occurred as a result of driving the bright soliton train out of equilibrium were not

explicitly studied within this work, so long as such dynamics were numerically converged.

Finally, a rigorous study of transient dynamics is more appropriately done via an iterative

simulation method, rather than the slowly varying envelope approximation used here.

Physical GLNLS parameter values are obtained by fitting this initial condition to ex-

perimentally observed bright soliton train conditions. This choice of units also fixes the

ratio of N/D used in simulations, while the amplitude of N and D dictate the simulation

timescale. We assumed that the dimensionless spin wave intensity is directly proportional

to the spin wave power, |u(x, t)|2 ∝ Pout, since experimental measurements of voltage are

taken across a diode with quadratic behavior and are generally taken to be proportional

to power. Values typical for a chaotic soliton experiment are T = 165 ns, the round trip

time; d = 0.55 cm, the transducer separation; Te = 10 ns, the electronic loop propagation

time; Vg = d/(T − Te) = 3.5 × 106 cm/s, the group velocity; N = −9.24 × 109 rad/s, the

cubic nonlinearity; and D = 510 cm2/s, the dispersion. Using these parameters one finds

[t] ≈ 25 ns where t is the scaled temporal unit used in simulations. This relation may be used

to immediately transform code values for L, C, Q and S, which share units of inverse time,

to physical values. For example the largest studied linear gain is L = t−1 ≈ 0.05 ns−1 which
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matches the order of experimentally approximated linear losses for magnetostatic backward

volume spin waves in YIG thin films [103]. Experimentally a time series is recorded at the

detection transducer with the full waveform being captured once a round trip after the signal

has propagated a length d between the transducers and passed through the electronics loop.

The length of the ring, `, is taken to be the transducer separation, d, as the propagation

delay is orders of magnitude smaller than the round trip time, Te < T . Simulations explic-

itly model the entire feedback loop at the group velocity of the waveform. A time series

may be reconstructed from numerical data by concatenating the simulated waveform after

a temporal evolution of T or a spatial evolution of d = `. In this work we adopt the former

convention to ease the direct comparison of simulations to the power vs. time data often

observed experimentally for spin waves in magnetic thin films. Such a reconstructed time

series is labeled uts(t) throughout the paper. A time series of solitary wave peak intensity

at successive round trips is useful in studying modulating single solitary wave trains and is

defined by

|upeak(t)|2 = |max [u(x, nT )] |2, n = 0, 1, ..., NRT, (5.4)

where T is the round trip time and NRT is the total number of round trips.

Parameter space explorations were explicitly chosen to encompass the GLNLS operating

regime for magnetic thin film systems, while extending into other limits that could be of

interest to other systems where the GLNLS is a useful model. Along with the previously

mentioned restriction on the sign of L only cases with cubic losses, C ≤ 0, were considered.

Both instances of saturating1 quintic gains, Q ≥ 0, and supplemental quintic losses, Q ≤ 0,

were studied. No sign restrictions were placed on quintic nonlinearity, S. The terms were

explored in a decadal fashion across the GLNLS scaled values listed here

• L = 10n, n ∈ {0,−1,−2,−3,−4,−5,−6,−7},

1A typical expression for saturable gain is given by iSg

(
1 + |u(x,t)|

2

Is

)−1
where Is and Sg are control pa-

rameters. Expanding denominator to third order yields iSg

(
1− |u(x, t)|2I−1s + |u(x, t)|4I−2s + ...

)
, hence

positive quintic gain being named saturating.
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Table 5.1: Overview of identified long lifetime dynamical behaviors solution types and the
range of GLNLS parameters which support them. The signs of quintic nonlinearity, S,
and gain, Q, values are identified explicitly while the sign of linear gain is taken to be
positive and cubic gain is taken to be negative as discussed in Section 5.3. The order of the
quintic nonlinearity, S, is often directly compared to that of the cubic nonlinearity, N . The
statement O(x)± y is meant to be read order of x plus or minus y orders of magnitude. For
example the symmetric interaction dynamic is observed when the cubic loss, C, is within
plus or minus one order of magnitude of the linear gain term, L.

Dynamical Pattern Type Sec. |L| |C| Sign |Q| |S|

Chaotic modulation 3 O(10−7) ≤ O(L)
+
−

≤ O(L)
≤ O(L)

≤ 10−2

—

Symmetric interaction 4.1 10−3 − 10−5 O(L)± 1
+
−

< 10−2

< 10−2
≤ O(N)
≤ O(N)

Asymmetric interaction 4.2 1− 10−4 O(L)
+
−

≤ O(L)
≤ O(L)

≤ O(N)
≤ O(N)

Central peak recombination 5.1 10−1 − 10−3 O(L)− 1
+
−

—
O(1)

—
—

Complex co-propagation 5.2 ≥ 10−2 ≤ 10−1
+
−

—
≥ 1

—
≥ 1

Spatial shifting 5.3 10−1 − 10−3 O(10−1)
+
−

< 10−1

< 10−1
—
O(1)

Breathers 5.4 10−4 − 10−6 O(L) + 1
+
−

—
10−1

≤ 10−2

≤ 10−2

Multi-peaked solitary wave 6.1 < 1 O(L)± 3
+
−

≤ O(C)
≤ O(C)

≤ O(N)
≤ O(N)

Co-propagating solitary wave 6.2 10−3 − 10−5 O(10−2)
+
−

≤ O(C)
≤ O(C)

≤ O(N)
≤ O(N)
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• C ∈ {0,−10n} , n ∈ {0,−1,−2,−3,−4,−5,−6},

• Q ∈ {0,±10n} , n ∈ {0,−1,−2,−3,−4,−5,−6,−7},

• S ∈ {0,±10−1,±10−2},

for a total of eight possible values of L and C, five choices for S, and 17 unique choices

for Q. Ignoring cases with solely gains present we performed 5,470 unique simulations.

An additional 1,530 simulations were undertaken with random parameters. The value for

any single parameter in these simulations was generated by multiplying a pseudo random

number between zero and one, from the uniform distribution, by an order of magnitude and

sign chosen at random, again with uniform weight, from a parameter’s allowed values, as

defined above. To avoid ambiguity all statements in this paper concerning the relative size

of GLNLS parameters refer to the order of magnitude and not the sign.

Over 180000 core hours were utilized to conduct more than 10000 unique simulations and

convergence studies. An initial study of 3500 simulations was undertaken to explore the ex-

tent of transient effects and the numerical convergence behaviors of the GLNLS. A summary

and analysis of the subsequent 7000 simulations, corresponding to over 3 TB of data, are

presented in sections 5.4-5.8. Approximately 1500 simulations were evaluated in detail; the

remaining simulations were spot checked for consistency. Dozens of complex dynamical be-

haviors were identified during the course of simulation. We call this system complex because

it displays a rich variety of dynamical behaviors, including chaos, robust emergent solitary-

wave features, and generally multiple scales in both space and time. Solution types were

divided into three stability cases, with each case corresponding to roughly 30% of observed

dynamics. The three cases are temporally stable, intermittent and unstable. Temporally

stable solutions demonstrated substantial observable lifetimes, greater than 1 ms or 7000+

round trips, and robustness to variations in initial conditions of at least 10%. Evolution

was found to be least sensitive to changes in S and Q and most sensitive to perturbations

in L. In general the effect of changes in initial conditions tended to degrade the lifetime
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of dynamical behaviors and push solutions towards the intermittent case. Nine temporally

stable distinct dynamics and two separate cases of intermittency are discussed below. A

summary of the GLNLS parameter regimes which support these identified dynamics is given

in Table Table 5.1.

5.4 Chaotic Modulation

The chaotic modulation of stable solitary wave trains was observed for solutions con-

taining strongly saturated cubic nonlinearity, S ≥ 10−2, and the lowest studied ring gains,

L = 10−7, with matching orders of cubic and/or quintic losses. A single bright soliton is

observed to circulate within an active feedback ring while exhibiting complex modulations

in peak intensity. Low ring losses are anticipated for this solution type, as experimentally

observed chaotically modulating soliton trains have lifetimes measured in seconds. The

presence of a single stable bright soliton suggests that nonlinearity and dispersion are the

dominate forces in peak shaping. These are two conditions used during the derivation of the

GLNLS, Equation 5.1, as discussed previously in Section 5.3.

The chaotic nature of measured time series was verified by using standard phase space

reconstruction techniques available in the open source Nonlinear Time Series (TISEAN)

package to arrive at a stable correlation dimension, D2 [85]. The correlation dimension, a

phase-space invariant, was estimated via computation of the correlation sum for increasing

embedding dimensions of the time series [60]. The standard embedding procedure of Taken

and Sauer was followed using time-delayed reconstruction of the time series [65, 66]. The time

delay was chosen as the first minimum of autocorrelation to maximize the linear independence

of the time delayed vectors. As the phase space was reconstructed from a single time series, a

Theiler window of ten times the single round trip time was used to avoid the misinterpretation

of temporal correlation as geometrical structure on the attractor [87]. If the correlation

dimension was observed to saturate with increasing embedding dimension the time series

was said to have a stable correlation dimension. If the stable correlation dimension was not

an integer then the system was said to be chaotic.
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Figure 5.2: Low dimensional chaos of a modulated bright soliton train with 2.0% variation
about the mean of peak intensity.(a) Peak intensity over 2500 round trips. (b) Time series
over 100 round trip; each line shows the bright soliton during a single round trip. (c)
Two dimensional return plot of 100000 round trips with a delay time of 1. (d) Correlation
dimension vs. embedding dimension with a saturation at D2 = 1.26± 0.03. Dashed curve is
provided as a guide to the eye; points represent actual data. Reproduced from [31].

We further required the correlation dimension to be stable across a wide range of em-

bedding parameters as one expects the reconstructed attractor to be invariant under smooth

transformations. This requirement was extremely conservative as it was computationally

onerous and sensitive to noise. However, such a requirement forbids the optimization of

phase space invariants by the tuning of embedding parameters, and the requirement of sat-

uration across embedding dimension eliminates any assumptions required to study a single

reconstruction. Additional indicators of chaos include broadband spectra and positive Lya-

punov exponents [60]; note both these properties are shared with noise so a finite correlation

dimension is necessary to demonstrate chaotic, rather than random, motion. The principle

challenge to finding a stable correlation dimension was isolating a stationary solution.
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Figure 5.3: Low dimensional chaos of a modulated bright soliton train with 5.1% variation
of the peak intensity and D2 = 1.66± 0.07. Panels treat the same variables as in Figure 5.2.
Dashed curve is provided as a guide to the eye; points represent actual data. Reproduced
from [31].

Two examples, with peak variations of 2.0% and 5.1% about their mean, are shown

in Figure 5.2 and Figure 5.3, respectively. Percent peak variation is defined as

100
var (|upeak(t)|2)1/2

mean (|upeak(t)|2)
, (5.5)

where upeak was previously defined in Equation 5.4 and var is the sample variance. These

values are chosen to match the peak variation of two low ring gain chaotic solitary wave trains

observed experimentally by Wang et al . [31]. In both figures panel (a) shows the intensity of

the single soliton peak for 2500 consecutive round trips while panel (b) shows 100 round trips

as would be observed experimentally, as in Figure 5.4(d) below, and each vertical line is in

fact a bright soliton of finite width. The single soliton peak intensity is immensely complex

on inspection and is at worst random and at best chaotic or quasi-periodic. Figure 5.2(c)

and Figure 5.3(c) show the phase space reconstruction for an embedding dimension of 2 and

a time delay of 1, also known as a return plot, for 100000 round trips of the full time series.
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The finite width and structure of the reconstructed attractor is one indication of chaotic,

as opposed to random, motion. In Figure 5.2(d) and Figure 5.3(d) is shown correlation

dimension versus embedding dimension for each variation case. Both cases saturate above

an embedding dimension of 15 to a correlation dimension of 1.26 ± 0.03 and 1.66 ± 0.07,

respectively. Error estimates are 95% confidence intervals given by two times the standard

deviation for values of D2 for embedding dimensions above saturation. This low dimensional

chaos closely matches the low ring gain experimental observations by Wang et al where

2.0% variation yields a correlation dimension of D2 = 1.27± 0.12. However the numerically

generated 5.1% peak variation does not reproduce the high dimension chaos, D2 = 3.83±0.21,

observed experimentally at matching variations [31]. The cause of D2 collapse at embedding

dimensions 6, 16 and 26 for the 5.1% modulation case has not been rigorously determined

but is robust against reasonable perturbations in embedding parameters. The periodicity

of the effect suggests the cause is related to sensitivities in the correlation sum to temporal

correlations and finite time series. The embedding procedure is also sensitive to time series

periodicity, which is present in these low dimensional examples [65, 66]. Low dimensional

chaos often presents as widened Fourier peaks rather than pure broadband spectra. The

oscillation of D2 for low embedding dimension is a common phenomenon as the embedding

procedure is not an accurate reconstruction of phase space unless the embedding dimension

is at least twice the box counting dimension of the system’s attractor [60].

We find numerically that amplitude of peak modulation and the dimensionality of the

chaos are principally dependent on the magnitude of the saturating quintic nonlinearity, Q.

The presence of both a linear gain and nonlinear loss term is necessary for a stable correla-

tion dimension to be determined. Chaotic modulations of the train envelope are the most

complex examples of a more general modulation behavior. Parameter space explorations

yielded examples of bright soliton trains with no, periodic, multi-periodic or quasi-periodic

modulations. We note these types of deepening modulations were experimentally observed

as the first generations of soliton fractals [25].
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5.5 Symmetric and Asymmetric Interacting Solitary Waves

When more than one solitary wave propagate with differing group velocities, enabling

dynamics such as collisions, we say these waves interact. Two distinct cases where the

spatial features of solitary wave interactions are symmetric or asymmetric under rotation

are discussed below.

5.5.1 Symmetric interaction

Symmetric interaction solutions are highly complex, but ordered, gain driven interactions

between a number of intensity peaks varying from two to more than twenty. These solutions

evolve in intricate and complicated patterns but maintain symmetry in space under a rotation

of π rads. The solution intensity exhibits a constrained modulation about a stable mean, but

is energetically unstable. The energy of the system grows approximately linearly in time and

is closely correlated, with a correlation coefficient of r > .95, to the time-averaged number

of peaks present in the system. The sample correlation coefficient is a measure of the linear

correlation between two variables and is defined as

r(P,E) =
covariance(P,E)
√
σPσE

=

∑n
i=1

(
Pi − P̄

) (
Ei − Ē

)√∑n
i=1

(
Pi − P̄

)√∑n
i=1

(
Ei − Ē

) , (5.6)

where σx is the standard deviation of x; Pi and Ei are the number of peaks and system

energy at the ith round trip. This relationship suggests every intensity peak present in

the system has similar energy. Peaks undergoing symmetric interactions also demonstrate

persistence in time under collisions and have linear or constant phases, both characteristics

of bright solitons. Further, individual intensity peaks may also be fit to a sech2 profile

when they are spatially isolated from other peaks circulating the ring. A typical example

is illustrated in Figure 5.4(a) by a spatiotemporal plot of intensity across 800 round trips,

each vertical slice shows the waveform on the ring at a specific round trip. There exists

a stark symmetry in dynamics with respect to a rotation by π rads. Figure 5.4(b) and

(c) show the scaled norm and energy, respectively, for the same time frame. Over these
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800 round trips we note the norm varies about a stable mean by ±1% while the system

energy increases by 8%. A reconstructed time series of data presented in panel (a) is shown

in Figure 5.4(d) to indicate what the behavior would look like if measured experimentally at

a single observation point and discretely in time. We note that the symmetry demonstrated

by the spatiotemporal intensity plot, Figure 5.4(a), is not evident in what appears to be

a highly noisy time series. Whether the symmetry observed numerically persists when the

iterative nature of amplification and transmission delays in an electronic feedback loop are

considered remains an open question.
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Figure 5.4: Typical example of a symmetric interaction simulation over 800 round trips of
evolution. A stark spatial symmetry about the center of feedback ring, x = 2.75mm, is shown
in a spatiotemporal plot intensity in panel (a). Symmetric interactions are energetically
unstable, see panel (c). Spatial symmetry is not obvious in a reconstructed time series of
numerical data, panel (d), which mimics typical experimental data collection (temporally
discrete observation at a single point).

Symmetric interactions are observed to evolve in systems with linear gains between 10−5

and 10−3 and cubic losses of the same, or ±1, orders of magnitude. This long time stable

evolution requires a near-balanced system where linear gain is the dominant force and peak
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growth is meaningfully restricted by the presence of nonlinear losses. No solutions had initial

peak growth above 400% prior to the initial splitting event.

The dynamics within this regime demonstrate a characteristic splitting process, dia-

grammed in Figure 5.5(a)-(d). The initial bright soliton modulates and grows until the

domination of linear gain over nonlinear loss in low-intensity regions yields a nonzero inten-

sity floor. Energy enters the system until these low lying excitations reach intensities where

attractive nonlinearity and dispersion may shape the excitation into a stable solitary wave

close in form to the well-known hyperbolic secant. The new peak then begins to interact

with its neighbors. This same procedure results in the generation of a second, then third,

and so on, intensity peak. Thus, in contrast to more typical nonlinear partial differential

equations which give rise to fixed soliton dynamics for all times, the GLNLS here displays

a particular soliton dynamics on long but not infinitely long time-scales. This gives rise to

the possibility of a new form of integrability which is relevant on long but not infinite times,

and may require the development of new mathematical formalisms, in particular a multiscale

approach in time. The timing of the initial splitting event varies from 100 µs to 1 ms where

t = 0 is defined as the moment gain and losses are turned on. The effect of quintic loss/gain

is superficial to this solution category until orders above 10−2 when it begins to dominate the

dynamics. Quintic losses (gains) result in slower (faster) rates of initial splitting, but do not

have any meaningful impact on the rate of energy gain. This splitting process is stabilized

(weakened) by the addition of an attractive (repulsive) quintic nonlinearity term of the same

order as the cubic present in the system. Higher orders of quintic nonlinearity destroy the

stability, driving the dynamics into the intermittent regimes described later in Section 5.8.

This solution type demonstrates a high sensitivity to initial conditions, which is discussed

in Section 5.9. A single round trip of a symmetric interaction solution closely resembles the

multi-peaked solitons previously reported by Wu et al . [30].
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Figure 5.5: A schematic contrast of the splitting process for symmetric interactions, (a)-(d),
and asymmetric interactions, (e)-(h). Each subplot shows the intensity for a single round
trip at time t0 > t1 > t2 > t3. The series progress from left to right. (a)-(d): The symmetric
case illustrates a system with linear gain and nonlinear loss near balance, resulting in a
slow increase of low intensity regions while peaks are regulated by losses. Once the floor
reaches intensities where nonlinearity affects dynamics, additional solitary wave peaks form,
a gain driven process which often takes hundreds of microseconds. (e)-(h) In contrast the
asymmetric system has high linear gains and high nonlinear losses resulting in a flattening of
the peak into a plateau with |m|2 > 0 upon which dynamics occur. A fast splitting process
which occurs on the order of microseconds. Subplots (g) and (h) have been adjusted to the
plateau height.

5.5.2 Asymmetric Interaction

Asymmetric interaction solutions are loss driven solutions which behave similarly to the

symmetrical case discussed in Section 5.5.1 but do not maintain a spatial symmetry with

respect to rotations around the ring. The number of interacting peaks was observed to vary

from five to twenty depending on the parameters of the simulation. The total number of

peaks is constant, in an average sense, after spatial symmetry about the feedback ring center

breaks and is closely correlated, r > 0.98, to the system’s energy. Here r is the sample
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Figure 5.6: Typical example of a asymmetric interaction solution type over 10000 round
trips. Spatial symmetry about the feedback ring center, x = 2.75mm, can be seen breaking
near round trip 4300 in the spatiotemporal intensity plot, panel (a). A spatially symmetric
wave form intensity, of round trip 2000, is shown in panel (b) while an asymmetric waveform,
round trip 9000, is shown in panel (c).

correlation coefficient defined by Equation 5.6. An example is shown in Figure 5.6(a) by

a spatiotemporal plot of intensity over 10000 round trips. Symmetry about the feedback

ring center, x = 2.75 mm, can be seen breaking near round trip 4300. An animation of

this symmetry breaking is available online. A scaled intensity plot of a single symmetric

(asymmetric) round trip is shown in Figure 5.6(b) (Figure 5.6(c)). The interacting peaks are

seen to be node-less, and evolve about a non-zero, |u(x, t)|2 > 0, intensity floor. The stability

of the asymmetric interaction solution type is demonstrated in Figure 5.6(d) and (e) showing

scaled norm and energy, respectively, over the same 10000 round trips. Normalization varies

about a stable mean by ±0.001% while energy modulates by ±3%; this stands in contrast

to the energetic instability inherent to symmetric interactions, Section 5.5.1.

Asymmetric interactions are observed in systems with linear gains, L, between 10−4 and

1 and cubic loss, C, of the same order of magnitude. Quintic gains and losses, Q, are
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stable up to this same order of magnitude. The number of peaks and peak height increased

(decreased) with the presence of attractive (repulsive) quintic nonlinearity of the same order

as the cubic. Higher orders of quintic nonlinearity push the solution into intermittency,

a temporally unstable class of solutions discussed in Section 5.8. The solution intensity

floor varies with parameter choice, including nonlinearity, but trends towards the constant

intensity which satisfies the energy balance of the GLNLS. The balance is given explicitly

by the expression

L+ C|u(x, t)|2 +Q|u(x, t)|4 = 0 ⇒ |u(x, t)|2 =
−C ±

√
C2 − 4QL

2Q
, (5.7)

where L, C, Q and u(x, t) are the same terms as in Equation 5.1 discussed in Section 5.3

and we choose the smallest positive solution. For the simulation shown in Figure 5.6 we

have L = 0.1, C = −0.01, and Q = −1 corresponding to an average solution intensity

of |u(x, t)|2 = 0.3113 which closely matches the numerically observed value of |u(x, t)|2 =

0.3109±1.5×10−4. Error bounds are given by two times the standard deviation of intensity

across all available round trip data.

This regime demonstrates a characteristic splitting process, diagrammed in Figure 5.5(e)-

(h). An initial bright soliton initial condition grows and flattens into a plateau under the

influence of a strong linear gain and saturating nonlinear losses. Once the non-zero plateau

expands to fill the feedback ring the central peak undergoes a splitting procedure similar

to that observed for symmetric interactions, diagrammed in Figure 5.5(a)-(b). The domi-

nation of linear gain over nonlinear losses in low amplitude regions produces small peaks.

These smaller excitations grow until the system’s attractive nonlinearity and dispersion shape

them into solitary wave intensity peaks. Unlike the process for symmetric interactions, Sec-

tion 5.5.1, this splitting process occurs within the first 10 µs of evolution, where t = 0 is

defined as the moment gains and losses are turned on, and saturates within the first 1 ms

yielding an energetically stable excitation. The amplitude of intensity peaks relative to the

plateau intensity varies from 1% to 10%, but the peak heights measured from the plateau
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mean are of the same order as those observed in symmetric interactions.

This solution type demonstrates a high sensitivity to initial conditions, which is discussed

in Section 5.9. This sensitivity and the highly complex nature of the evolution are hallmarks

of chaotic dynamics. However, attempts to arrive at a converged correlation dimension using

the methods discussed in Section 5.4 were inconclusive. Such sensitivity is typically charac-

terized by a positive Lyapunov exponent [60]. While a careful determination of the largest

Lyapunov exponent requires a rigorous reconstruction of phase space we may estimate the

exponent numerically by evolving nearby trajectories in time. Direct measurement suggests

a Lyapunov exponent between λ = 2× 104 s−1 and λ = 1× 105 s−1. This rate of trajectory

separation is of the same order as that observed experimentally (λ = 1.9± 0.2× 105s−1 [31])

for the 5.1% modulating soliton train discussed previously in Section 5.4.

5.6 Dynamical Pattern Formation

Four distinct robust dynamical patterns which demonstrate lifetimes of at least 1 ms

or 7000 round trips were located during GLNLS parameter space exploration. Solutions of

this group differ from previously discussed solution behaviors in that they exhibit a periodic

recurrence of their characteristic dynamic. Self organization of this kind is common in open

nonlinear systems [104]. These examples are discussed to demonstrate the breadth of pattern

formation supported by the GLNLS under fixed choice of N and D. The regions of param-

eter space supporting dynamical pattern formation violates the assumptions underlying the

derivation of the GLNLS in the context of magnetic spin waves, as discussed in Section 5.3,

owing to the high order of quintic nonlinearity and losses which drive evolution. However,

the GLNLS is a useful model in a variety of systems including laser cavities, as discussed

in Section 5.2, and these dynamics may appear in such contexts.

5.6.1 Central Peak Recombination

Central peak recombinations exhibit a complex 5 peak solitary wave recombination pat-

tern with a periodicity of 180-250 round trips, depending on parameter choices. This behavior
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is driven by a strongly attractive quintic loss, Q = −1 and a linear gain of L = 10−2±1 with cu-

bic loss of C = −10−3±1. The presence of quintic nonlinearity has a severely negative impact

on the behavior lifetime. The median wave height of central peak recombination solutions

satisfies the energy balance equation, Equation 5.7. For the example shown in Figure 5.7

we predict an average intensity of |u(x, t)|2 = 0.0995, corresponding to the parameters have

L = 0.01, C = −0.001 and Q = −1, which closely matches the observed numerical average

intensity, |u(x, t)|2 = 0.0934± 6× 10−3. The error estimate is defined as in Section 5.5.2.
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Figure 5.7: Examples of dynamical pattern formation with experimentally observable life-
times. (a)-(b) Central peak recombination. (c)-(d) Complexly co-propagating solitary waves.
In panel (d) energy has been offset for clarity, ε(t) ≡ (E(t) + 142).

An example of central peak recombination is shown in Figure 5.7. Panel (a) shows

a spatiotemporal plot of scaled intensity over 3500 round trips and (b) shows the scaled

energy over the same round trips. The periodicity of the recombination is evident in the

spatiotemporal plot, which contains 16 periods. The dynamics are most readily described

starting when the central peak collapses. Immediately following the collapse, the peaks on

either side of the ring center propagate towards the middle of the ring and recombine into

a new central peak matching the original peak’s amplitude. At the same time the outlying
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peaks split into two. The innermost of these new peaks grows until one finds three central

peaks of equal amplitude. At this point the central peak undergoes collapse and the process

repeats. A single bright solitary wave propagates unperturbed along the edge of the ring.

This process is animated in an attached movie, available online.

5.6.2 Complex Co-propagation

The complex co-propagation solution was so named as it resembles the steady state

co-propagation solution (see Section 5.7.2 below) and is likewise energetically stable. It

differs primarily in that the waveform undergoes complex, but periodic, modulation. The

dynamics also occur on a non-zero density floor satisfying the GLNLS energy balance equa-

tion, Equation 5.7. The example shown in Figure 5.7(c)-(d) was simulated with the param-

eters L = 0.0987, C = −0.0505, Q = −7.6261, resulting in an anticipated average intensity

of |u(x, t)|2 = 0.1105. This prediction closely matches the numerically observed intensity

|u(x, t)|2 = 0.1104 ± 4 × 10−7, where the error is defined as in Section 5.5.2. Like central

peak recombination the complex co-propagation behavior is driven by a large quintic loss.

The dynamical patterns demonstrated by these solutions also require a large attractive quin-

tic nonlinearity. The parameter space region which supports these behaviors is characterized

primarily by large, negative quintic terms: S = Q ≥ −1. The smallest linear gain which

compensates these driving nonlinear losses is L = 0.01. These solutions are in general in-

sensitive to the choice of cubic loss, with any value smaller than C = −0.1 supporting the

observed dynamical pattern.

Figure 5.7(c)-(d) illustrates this behavior. Panel (c) shows a spatiotemporal plot of scaled

intensity over 12000 round trips and (d) shows the scaled energy over the same round trips.

In panel (d) the energy has been offset for clarity, ε(t) ≡ (E(t) + 142). The behavior is

characterized by the spatiotemporal plot which shows two spatially stable bright solitary

waves occupying the center and edges of the ring. The central solitary wave is flanked on

each side by a set of two periodically oscillating solitary waves for a total of six large peaks

being equispaced around the ring. Six additional small amplitude peaks occupy the space
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between each larger wave. The entire waveform breathes between two distinct energy states

with a period of 750 round trip times. The frequency of oscillation matches that predicted by

a simple two-level quantum system where ω = ∆E/h̄. For the GLNLS we have h̄ = 1 amd

t = 25 ns, as defined in Section 5.3. Taking the average energy difference between states,

see Figure 5.7, one predicts an angular frequency of ω = 7900s−1 compared to the observed

oscillation frequency of ω = 8100s−1. An animation of the breathing is available online.
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Figure 5.8: Examples of dynamical pattern formation. (a)-(b) Spatially shifting solutions.
(c)-(d) Egg carton solutions.

5.6.3 Spatial Shifting

Spatial shifting solutions are simulations which exhibit energetically stable evolution

with a well-defined and periodic shifting of the spatial location of the dynamical behaviors.

In all observed cases the underlying energetically stable dynamics are evenly distributed

bright solitary waves co-propagating on an intensity floor which satisfies the GLNLS energy

balance given by equation Equation 5.7. For the example shown in Figure 5.8(a)-(b) we have

L = 0.02899, C = −0.06219 and Q = 0.000648 corresponding to |u(x, t)|2 = 0.0438 which
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closely matches the numerically observed average intensity of |u(x, t)|2 = 0.0432± 2× 10−4.

The solitary waves spontaneously split at a constant periodicity and reform into an identical

set of co-propagating peaks with a spatial shift defined as L
2Ns

where L is the feedback ring

length and Ns is the number of peaks present in the simulation. All peak properties as well

as the splitting dynamics remain consistent through multiple periods. A strong attractive

quintic nonlinearity is required to support this dynamical behavior, as seen previously with

central peak recombinations and complex co-propagation in sections 5.6.2 and 5.6.1. Spatial

shifting is seen in simulations with quintic nonlinearities of S ' −0.8 and moderate linear

gains of L = 10−2±1. Cubic losses near C = 10−1 support this behavior, while quintic losses

were found to be unimportant until above values of Q = ±10−1 where they dominated the

dynamics.

An example of temporal shifting is illustrated in Figure 5.8(a)-(b). Panel (a) shows two

bright solitary waves co-propagating while undergoing a spatial shift of 5.5
4

mm every 22000

round trips. The shifting event occurs over 1500 round trips. Panel (b) shows the solution’s

scaled energy over these same round trips; the energetic stability of the co-propagation

regimes is demonstrated. The energy profile of each shifting event was found to be identical.

5.6.4 Breathers

Solitary wave breathers on a ring are characterized by a single solitary wave which un-

dergoes a periodic disappearance of the peak and reappearance at the other side of the ring.

The frequency of breathing increases with system energy. The solution is not energetically

stable and breathing frequency increases until the system reaches a new dynamical behavior.

Numerically observed lifetimes were never less than 20000 round trips, or 3 milliseconds.

The wave breathing is driven by a strong quintic loss, Q = 10−1, with comparatively weak

linear gain, L = 10−5±1, and cubic loss, C = 10−4±1, terms. The solution type is sensitive to

the presence of quintic nonlinearity with any magnitude above 10−2, whether attractive or

repulsive, pushing the dynamics into the intermittent regime, discussed later in Section 5.8.

Linear gain dominates during low intensity periods of the breathing behavior, resulting in a
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non-zero intensity floor which ultimately drives the collapse of stable breathing.

Figure 5.8(c)-(d) contains a typical example of solitary wave breathing. The periodic

spatial shifting of the bright solitary wave is seen as a relocation from the center of the ring

to the other side in panel (c). An average breathing period of 1200 round trips is observed

in this example. A positive linear trend in energy, see panel (d), is the result of linear gain

causing growth in low-intensity regions. A periodic high rate of energy growth matches the

low intensity period following the collapse of bright solitary waves. An animation of the

breathing behavior is available online.

5.7 Steady State Solutions

Simulations which evolved into energetically stable static wave forms were named steady

state solutions. Two distinct steady state solutions were isolated from the parameter space

exploration: multi-peaked solitary waves and co-propagating solitons.
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Figure 5.9: Example of a multi-peaked soliton solution type with Ns = 2 principle solitary
wave peaks.
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5.7.1 Multi-peaked Solitary Waves

Multi-peaked solitary waves were characterized by energetically stable, to machine pre-

cision, nodeless complex waveforms that evolve without exhibiting any time dependence in

their intensity. The shape of the wave and the number of principle peaks varies from two

to eight in studied cases, depending on parameter choice. Symmetric and asymmetric wave-

forms were observed. Multi-peaked solitary waves were observed for any linear gain, L, below

1 and cubic losses, C, of ±3 orders of magnitude. The impact of quintic losses and gains

principally affected the median wave height according to the GLNLS energy balance equa-

tion, Equation 5.7. For the multi-peaked solitary wave shown in Figure 5.9 we have L = 0.1,

C = −1 and Q = −1 corresponding to an estimated average intensity of |u(x, t)|2 = 0.0916

which closely matches the observed value, |u(x, t)|2 = 0.0916±7×10−7. The error was previ-

ously defined in Section 5.5.2. As with previous examples, high values of Q relative to L lead

to the term dominating dynamics and the solution leaving the steady state solution class.

Positive, or saturating, values of quintic nonlinearity lead to reductions in secondary peak

heights while attractive values leads to the presence of additional principal peaks via further

shaping of secondary peaks. The overall shape of the multi-peaked solitary wave, including

the number of principal and secondary peaks, is dependent on the choice of parameters.

A typical example is shown in Figure 5.9 of a symmetric multi-peaked solitary wave

with two principle and two secondary peaks. Figure 5.9(a) shows a spatiotemporal plot of

scaled intensity over 12000 round trips with each vertical slice showing the intensity across

a single round trip. Panel (b) is the scaled intensity plot of the final round trip and panel

(c) shows the static solution energy over the same evolution period. Not all multi-peaked

solitary waves travel at the group velocity as the example in Figure 5.9. This solution type

is the most commonly observed long time behavior in studied simulations and was one of the

behaviors present in a majority of the intermittent cases, discussed further in Section 5.8.
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Figure 5.10: An example of a co-propagation solution type with Ns = 4 bright solitary waves.

5.7.2 Co-propagating Solitary Waves

Co-propagating solitary waves are the second steady state isolated during parameter

space exploration. Co-propagating solitary waves are time independent solutions where Ns

identical bright solitary waves propagate alongside one another without interacting. Similar

Ns soliton solutions of the simple cubic NLS are well studied and the number of solitons

is found to be proportional to the power of the initial condition relative to the value of

N/D [1, 18]. Periodic boundary conditions require solutions have an even number of nodes.

Within studied solutions Ns was observed to vary from two to eight. Figure 5.10 shows the

same physical quantities as plotted in Figure 5.9, with panel (c) again demonstrating the

energetic stability of the solution type. The peak shape, shown in panel (b), is not consistent

with either bright or dark solitons. The example plotted in panel (a) exhibits a modulation

in peak heights with a variance of 10−3% about the mean. While the variation is not visible

in panel (a) it can be observed in an animation of the evolution, available online.
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Stable co-propagation was observed only in an isolated region of parameter solutions

with L = 10−4±1 and C = 10−2. Quintic gains, Q, of orders higher than the cubic present or

quintic nonlinearities, S, with magnitude higher than 0.01 (the lowest order studied) drove

the solution out of the steady state and in general pushed solutions into the intermittent

class, discussed in Section 5.8. Lower orders of quintic gain did not have any meaningful

effect on stability, the number of peaks or peak height.

5.8 Intermittent Solutions

Intermittent solutions demonstrate numerous distinct dynamical behaviors as the wave-

form evolves in time. The lifetime of these behaviors ranges from hundreds of round trips

to hundreds of thousands. This corresponds to up to 1 ms before the dynamics transitions

from one behavior to another. These solutions are robust to at least 10% variation of initial

conditions in the sense that they do not degrade to noise or experience blow-up. Such per-

turbations do have significant effects on the relative lifetime of each dynamical behavior and

even the types of behaviors a simulation exhibits. Quantitative matching of the intermittent

dynamics to experiment will offer a challenge due to their highly transient nature; however,

qualitative behaviors should be observable experimentally. In general, intermittent solutions

spend a majority of their time in aperiodic evolution between distinct dynamical behaviors.

Intermittent solutions can exhibit all of the behaviors previously described as temporally

stable for a finite numbers of round trips. Intermittency is the typical dynamic exhibited

when stable solutions are perturbed and is therefore not observed only in isolated regions of

parameter space. Stable solutions are robust to variations in initial conditions, as previously

stated in Section 5.3. Intermittency is observed when perturbations exceed 10%, however it

bears mention that the necessary value is ultimately highly dependent on both solution type

and the parameter being perturbed. Hundreds of intermittent simulations were identified

during the study.

Two illustrative examples are shown in Figure 5.11. The same physical quantities are

shown as in Figure 5.8. Panel (a) shows a typical simulation with three distinct multi-peaked
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Figure 5.11: Two examples of intermittent solutions, both exhibiting characteristic aperiodic
evolution between regions of well behaved dynamics. Panel (a) shows a solution with stable
regions of multi-peaked solitary waves, while panel (b) has periods of 4 peak co-propagation.

solitary wave regimes separated by two aperiodic regimes exhibiting splitting, modulation

and co-propagation behaviors. The energy is shown in plot (b) and was relatively constant

during each of the multi-solitary wave regimes. The aperiodic regimes demonstrate signifi-

cantly lower energy than the finite lifetime multi-solitary wave excitations. Panel (c) shows a

simulation which exhibits periods of complex four solitary wave co-propagation interspersed

with periods of aperiodic dynamics. The lengths of successive periods of dynamical behav-

ior are highly variable and sensitive to both parameter choice and initial condition. This

sensitivity makes numerical convergence difficult to demonstrate, as discussed below in Sec-

tion 5.9.

5.9 Numerical Convergence and Quantitative vs. Qualitative Robustness

Simulations used well established and understood algorithms, fifth order adaptive Cash-

Karp Runge-Kutta in time and pseudospectral methods in space [50, 51]. Detailed evaluation

of psuedospectral methods for similar nonlinear equations may be found in reference [51].
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Figure 5.12: Relative differences in energy over 25000 round trips for increased spatial
resolutions: 256 to 512 (512 to 1024) in solid blue (dashed red) line. (a) Bright soliton initial
condition. (b) Solitary wave breathers. (c) Multi-peaked soliton. (d) Co-propagation. (e)
complex co-propagation.

Simulations were run with a spatial grid of 256 and a single step truncation error of 10−12.

The maximum number of time steps performed in a single simulation was 108. Initial condi-

tions were generated using imaginary time propagation and a single step truncation error of

10−18. Stability of initial conditions was confirmed via real time propagation. To machine

precision all initial states exhibit zero change in energy when propagated in real time for 109

steps. Initial conditions for different spatial resolutions have fixed differences in energy own-

ing to discretization. This discretization error decreases exponentially for increasing spatial

resolution: |E256 − E512| = 10−7, |E512 − E1024| = 10−8 and |E1024 − E2046| = 10−9. Results

for each solution class were compared across grid sizes of 512 and 1024 and a single step

truncation error of 10−18 to verify numerical convergence for algorithms used for both space

and time propagation. We present convergence data for two distinct groupings of solution

classes, those which exhibit extreme sensitivity to initial conditions and those which do not.

The former demonstrate a qualitative robustness, while the latter are quantitatively robust.
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Convergence can be demonstrated by relative difference. Given two sets, {xn} and {yn},

of data consisting of N directly comparable observations then the relative difference at the

ith entry is defined as

Ei =

∣∣∣∣xi − yixi

∣∣∣∣ . (5.8)

This quantity offers a simple, unitless measure of the relative difference between two quan-

tities.

5.9.1 Quantitative Robustness

Solution classes which did not demonstrate a marked sensitivity to initial conditions

were numerically converged in a traditional manner. A distinct measurable, in this case

energy, is quantitatively compared across successive time steps under different spatial and

temporal resolutions. Convergence data is graphically displayed in Figure 5.12 for the initial

condition used during simulations, Figure 5.12(a), as well as four categorical behaviors,

panels (b)-(e). In each case the solid blue line compares spatial resolutions of 256 and 512

grid points, while the dashed red line compares the spatial resolutions of 512 and 1024 grid

points. Figure 5.12(a) shows the fixed discretization error discussed previously in Section 5.9

while Figure 5.12(b)-(e) demonstrate the spatial convergence of each dynamical behavior

over the entire evolution period is as good or better than that of the initial conditions. The

greatest observed single time step relative spatial resolution error was 10−3%. The greatest

observed single time step relative temporal resolution difference was 10−8%. The solution

types listed here were quantitatively converged:

• Complex co-propagation

• Spatial shifting

• Breathers

• Multipeaked solitary waves
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• Co-propagating solitary waves

5.9.2 Qualitative Robustness

A subset of observed dynamical behaviors, from both the temporally stable and inter-

mittent categories discussed in sections 5.4-5.8, demonstrate an extreme sensitivity to initial

conditions. These solutions were robust to variations in initial conditions and parameters of

at least 10% in the sense that such perturbations did not yield a shift in their categoriza-

tion. However, changes in initial energy or in loss parameters of the order 10−9 and lower

resulted in distinct dynamics within that categorical behavior and shifts in the starting and

ending times. We note shifts in spatial resolution introduce variations of this order to the re-

laxed initial condition. Therefore solutions exhibiting this sensitivity may not be converged

numerically in the traditional sense.

An illustrative example is given by the asymmetrical interaction behavior, discussed

in Section 5.5.2, after spatial symmetry about the feedback ring center has broken. Fig-

ure 5.13(a)-(c) depicts scaled intensity across the same 2500 round trips for three different

choices of spatial resolution: 256, 512 and 1024 spatial grid points respectively. The be-

haviors across the three spatial resolutions are qualitatively similar with each exhibiting an

asymmetric Ns solitary wave interaction which is characteristic of the solution type. How-

ever, the detailed dynamical behaviors of each case are quantitatively different. Further,

as shown graphically in Figure 5.13(d), the three solutions have energies which vary by less

than 0.32%. The behaviors listed below all demonstrated sensitivity similar to that discussed

here with a relative energy difference no greater than 0.1%:

• Symmetric interaction

• Asymmetric interaction

• Chaotic Modulation

• Central Peak Recombination
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Figure 5.13: Convergence of the asymmetric interaction solution type. (a)-(c) A spatiotem-
poral plot of solution intensity for the same 2500 round trips for spatial resolutions of 256,
512 and 1,024 spatial grid points demonstrating stability of solution class and marked sensi-
tivity to initial conditions. (d) Relative difference or in energy for the same round trips for
256 to 512 (512 to 1024) in solid blue (dashed red) line. Despite changes in initial conditions
yielding markedly different dynamics within the solution class energies differ by less than
0.03%.

This sensitivity is a typical property of evolution towards and around a strange attrac-

tor. Major attempts were made to quantify the dimensionality of the attractor as discussed

in Section 5.4 by the authors. No stable correlation dimensions were located for any of the

complex dynamical behaviors which demonstrated sensitivity to initial conditions, exclud-

ing chaotic envelope modulation. A Lyapunov exponent was estimated for the asymmetric

interaction case, see Section 5.5.2. Further quantification and exploration of the phase space

properties of GLNLS solution types and the GLNLS itself are warranted.

5.9.3 Unstable

Any simulation which evolved into a trivial result, degraded to noise, blew up or decayed

to zero is considered to be unstable. Approximately 30% of studied simulations are unstable.
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This is not surprising as the explored parameter space includes cases when either gain (or

loss) dominate the dynamics by orders of magnitude. A subset of simulations are observed to

degrade into noise due to spatial resolution issues. Pseudo-spectral methods rely on discrete

fast Fourier transforms (dFFT) which provide excellent convergence for well-behaved curves.

However, if the spatial features of u(x, t), the complex spin wave amplitude, approach the

length of the numerical lattice spacing singularities may appear and the dFFT algorithms

will no longer converge locally. These errors will continue to grow and propagate over time in

an L,Q > 0 evolution. Further exploration of these cases with finer spatial resolutions is pro-

hibited by computational resource constraints. In contrast, all results previously presented

in sections 5.4-5.7 are converged in both space and time, as demonstrated in Section 5.9.1

and 5.9.2.

5.10 Chapter Conclusions

We report the numerical identification of nine distinct long lifetime complex dynamical

behaviors as part of six broad solution classes of the gain-loss nonlinear Schrödinger equation

(GLNLS), Equation 5.1. Behaviors were located during an extensive numerical exploration of

six dimensional parameter space. A minimum of eight decades were examined for each gain

term while five decades of higher order nonlinearities were considered at fixed dispersion and

cubic nonlinearity. The GLNLS served as a driven damped model of long lifetime spin wave

dynamics in magnetic thin film active feedback rings and analogous driven damped nonlinear

physical systems. Agreement of GLNLS low dimensional chaotic modulating bright soliton

trains with experimental measurements [31] was discussed in detail. We predicted additional

GLNLS dynamical behaviors including two distinct steady state solutions, four unique exam-

ples of stable dynamical pattern formation and the intricate spatially symmetric/asymmetric

interactions of solitary wave peaks. Finally we reported the existence of intermittent regimes

within GLNLS parameter space, a phenomena typical of chaotic dynamical systems. Two

unique examples of intermittency were presented which demonstrated finite periods of two

distinct dynamical behaviors. The variety of presented GLNLS solution types matches the
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scope of dynamical behaviors observed experimentally in YIG film spin wave systems, as

well as predicting new behaviors that can be tested in present experiments. The GLNLS

thus presents a simple yet viable and fundamental model for driven, damped nonlinear waves

propagating in dispersive mediums.

We neglected the periodic effect of amplification within the feedback ring, so the gain and

loss terms presented in this work represented averaged quantities. Highly variable solution

types such as the symmetric and asymmetric interactions potentially violate the GLNLS

operating regime, with gain and loss driven dynamics occurring on the scale of a single

round trip. Future studies of this limit, adiabatically driven soliton trains and transient

dynamics are warranted. A fine grained exploration of parameter space may also be justified

to identify distinct domains of stability for each observed behavior. In the future a rigorous

study of GLNLS phase space would be useful to determine the cause of intermittency and

potentially locate chaotic attractors of higher dimension.

This material is based upon work supported under grants number NSF PHY-0547845,

NSF DMR-0906489, NSF PHY-1067973, and NSF PHY-1207881.
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CHAPTER 6

PHYSICAL REALIZATION OF COMPLEX DYNAMICAL PATTERN FORMATION IN

MAGNETIC ACTIVE FEEDBACK RINGS

This chapter contains a manuscript in its entirety which has been submitted to Physical

Review X and is under revierw and contains work conceived and executed by myself with

experimental help from Diego A. Alcala and P. A. Praveen Janatha. This work was conducted

under the advisement of Lincoln. D. Carr and Mingzong Wu.

Associated reference [33]: Justin Q. Anderson, P. A. Praveen Janantha, Diego A. Alcala,

Wu Mingzhong, and Lincoln D. Carr. Physical realization of complex dynamical pattern

formation in magnetic active feedback rings. Physical Review X [submitted], 2020. Preprint

on arXiv: 2003.10541.

6.1 Abstract

We report the clean experimental realization of cubic-quintic complex Ginzburg-Landau

physics in a single driven, damped system. Four numerically predicted categories of com-

plex dynamical behavior and pattern formation are identified for bright and dark solitary

waves propagating around an active magnetic thin film-based feedback ring: (1) periodic

breathing; (2) complex recurrence; (3) spontaneous spatial shifting; and (4) intermittency.

These nontransient, long lifetime behaviors are observed in microwave spin wave envelopes

circulating within a dispersive, nonlinear yttrium iron garnet waveguide operating in a ring

geometry where the net losses are directly compensated for via linear amplification on each

round trip O(100 ns). The behaviors exhibit periods ranging from tens to thousands of round

trip times O(µs) and are stable for 1000s of periods O(ms). We present 10 observations of

these dynamical behaviors which span the experimentally accessible ranges of attractive cu-

bic nonlinearity, dispersion, and external field strength that support the self-generation of

backward volume spin waves in a four-wave-mixing dominant regime. Three-wave splitting
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is not explicitly forbidden and is treated as an additional source of nonlinear losses. These

long lifetime behaviors of bright solitary waves span the categories of dynamical behavior

previously numerically predicted to be observable and represent a complete experimental ver-

ification of the cubic-quintic complex Ginzburg-Landau equation as a model for the study of

fundamental, complex nonlinear dynamics for driven, damped waves evolving in nonlinear,

dispersive systems. These observed behaviors are persistent over long times and robust over

wide parameter regimes, making them very promising for technological applications. The

dynamical pattern formation of self-generated dark solitary waves in attractive nonlinearity,

however, is entirely novel and is reported for both the periodic breather and complex re-

currence behaviors. All behaviors are identified in the group velocity co-moving frame. For

(1) periodic breathing, we find that four or fewer bright or dark solitary waves may exhibit

breathing with stable periods ranging from tens to hundreds of round trip times. The lo-

cation of the solitary waves within the ring are seen to shift predictably while maintaining

both peak solitary wave amplitudes and widths. For (2) complex recurrence, we find the

periodic recurrence of interactions of three or more bright or dark solitary wave peaks is

observed with stable recurrence times varying from hundreds to tens of thousands of round

trips. For (3) spontaneous spatial shifting, we find spontaneous relocation of otherwise stable

underlying ring dynamics is characterized by the instantaneous shift in location, in the group

velocity frame, of the solitary waves while maintaining all other characteristics of the behav-

ior. The time between shifts is unpredictable. Finally, for (4) intermittency, the dynamical

behavior observed within the feedback ring shifts between two or more stable underlying be-

haviors unpredictably, indicating the presence of two or more overlapping attractors within

the system.

6.2 Introduction and Motivation

Spin wave envelope (SWE) solitary waves in active magnetic thin film-based feedback

rings (AFRs) have proven to be an effective sandbox for the exploration of fundamental

nonlinear dynamics. Over the past two decades a rich variety of complex dynamical be-
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haviors have been observed in dissipative SWE solitary waves propagating in these nonlin-

ear, dispersive feedback rings. Examples include bright and dark solitary waves and wave

trains [4, 5, 7, 20], möbius solitons [22], Fermi-Pasta-Ulam and spatial recurrences [23, 24],

chaotic solitary waves [31, 32], and random solitons [26, 105].

AFRs are a notably useful system for the study of dissipative, nonlinear, dispersive wave

dynamics for a few fundamental reasons. First, the active feedback allows for the compensa-

tion, on average, of the losses that the SWE solitary waves experience during propagation.

Such quasi-conservative evolution allows for the observation of dynamical behaviors which

can persist for tens of thousands, or more, of the fundamental round trip time O(100 ns).

The experimental realization of such long life time, O(ms), dynamics is in fact in line with

the original goals of solitary wave research which focused on the viability of solitons as the

basis for long-distance high-bandwidth optical communication [48, 49, 106]. Research efforts

in this area slowed in the mid 2000s as dispersion-managed solitary waves were ultimately

abandoned in favor of multiplexing schemes which provided cheaper scalability. The varied

ecology of long lifetime dynamical behaviors present in these systems and the accessibility of

chaotic regimes, however, continues to make solitary waves an intriguing candidate for lower

bandwidth secure communication [107].

Second, the feedback ring geometry imposes a phase constraint in the form of a ring res-

onance. Geometries of this type are common within the optics, electromagnetic device and

magnonics communities [108–111]. Active research topics include optical solitary waves pro-

duced in micro-ring resonators [112]. These solitary waves are used as a source of broadband

(octave spanning) frequency combs for coherent parallel communication. The dynamics of

dissipative optical solitary waves within micro-ring resonators is also being investigated [113–

116]. Spin wave AFRs are additionally studied as delay lines for reservoir computing [117–

119].

Third, the dispersion and nonlinearity characteristics of SWEs in AFRs are highly tun-

able via two easily accessible experimental parameters: external field orientation and ampli-
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tude [2, 36, 41]. By adjusting these parameters one can vary the nonlinearity from three-wave

mixing to four-wave (Kerr) mixing and from attractive to repulsive. The sign and amplitude

of dispersion may also be manipulated this way. This allows for the study of both dark and

bright solitary waves dynamics in a single system.

Fourth, SWEs in AFRs are described by the cubic-quintic complex Ginzburg-Landau

equation (CQCGL), which in its nondimensionalized form, see Equation 6.2, is a gener-

alized nonlinear Schrödinger equation [36]. Various forms of the nonlinear Schrödinger

equation appear as governing models across a wide variety of physical systems. This in-

cludes the Lugiato-Lefever equation which describes lasers in nonlinear cavities [120], the

Gross-Pitaevskii equation for modeling the mean field of atomic and molecular Bose-Einstein

condensates [39, 40], and the Ginzburg-Landau equation which is used to describe super-

conductivity and the evolution of mode-locked laser envelopes [35, 95]. Driven, damped

nonlinear Schrödinger equations are additionally used to model deep water waves [1] as well

as magnon and exciton-polariton Bose-Einstein condensation [38]. The physics which are

accessible using SWEs in AFRs are then, up to the nontrivial issues of units, scaling, complex

potential and naming conventions, applicable to many physical systems which are described

by this important family of isomorphic partial differential equations. AFRs in fact provide

an accessible tabletop experiment from which one can study complex nonlinear wave physics

across many scales for driven, damped systems.

In this article we present the clean experimental realization of nontransient, long lifetime

(10,000s of round trips) complex dynamical behaviors for SWE bright and dark solitary

waves propagating within in an AFR. These results are distinct from the study of dis-

sipative solitons in the above mentioned systems where focus has generally remained on

exploring transient behaviors, periodic modulations and isolating extreme events [121–124].

The behaviors described here were previously predicted to be observable by a numerical

parameter space search which identified four distinct long lifetime examples of dynamical

pattern formation in bright solitary waves described by the CQCGL [34]. We emphasize that
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these numerical predictions involved an extraordinarily broad parameter space search which

spanned a minimum of five orders of magnitude for four distinct parameters (S, L, C and

Q in Equation 6.2). Across that parameter space only four categories of long lifetime dy-

namical pattern formation were predicted. We report on the observation of all four of these

behaviors for bright solitary waves and the first known realization of self-generation and

dynamical pattern formation for dark solitary waves evolving under attractive nonlinearity.

These behaviors are promising for potential technological applications due to their per-

sistently long lifetimes and robustness over wide parameter regimes. One likely application

is classical benchmarking for quantum simulator experiments, for example Sagnac interfer-

ometers in BECs [125]. Such devices have been explored in both attractive and repulsive

nonlinearity regimes, but a lack of understanding of the attractive case [126–128] has pre-

vented the field from moving forward technologically.

The observed dynamical behaviors are as follows. (1) We observe periodic breathing,

where solitary waves periodically relocate their position within the ring (in the group velocity

frame). We present examples of one and two waves undergoing this periodic relocation for

both bright and dark solitary waves. (2) We observe complex recurrence, where three or more

solitary waves undergo periodic spatial recurrence involving multiple frequencies. Examples

of complex recurrence are shown for both bright and dark solitary waves. (3) We observe

spontaneous spatial shifting, where a stable behavior undergoes a sudden repositioning within

the ring (in the group velocity frame) and then immediately continues its stable behavior.

(4) Finally, we observe intermittency, where the system jumps between two distinct stable

behaviors.

The paper is organized as follows. Section 6.3 discusses the active magnetic thin film-

based feedback ring experiment; here the experimental apparatus and accessible physics will

be detailed. Sections 6.4-6.8 focus on the key four behaviors as identified above: periodic

breathers, complex recurrence, spontaneous spatial shifting and intermittency. Conclusions

and outlooks are then provided in Section 6.9.
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6.3 Experiment and Methods

This section details the construction of the active magnetic thin film-based feedback ring

used to collect the data reported in this work as well as the basic physics of the spin waves

which we can access with it. We start with a description of the AFR, its components and an

overview of the merits and motivations behind the design of the experiment. We then explore

the relevant spin wave physics to the experiment and the subsequent analysis presented in

this work. Finally we discuss the experimental methods, procedure, and philosophy used to

isolate the dynamics reported here.

6.3.1 Active Magnetic thin film-based feedback Rings

An active magnetic thin film-based feedback ring is constructed of two main components:

(1) a yttrium iron garnet (Y3Fe5O12,YIG) thin film waveguide and (2) an electronic feedback

loop. These components are coupled via two transducers, one each for the excitation and

detection of spin waves within the YIG waveguide. The electronic loop is comprised of a

fixed, linear amplifier and variable attenuator pair which allows for the direct compensation

of the major loss mechanisms present within the thin film. An oscilloscope and spectrum

analyzer are coupled to the electronic feedback loop via a directional coupler for in-situ

observation and recording of time-domain and frequency-domain ring signals. An AFR is

schematically shown in Figure 6.1 detailing the construction of the electronic feedback loop

and the thin film waveguide. Figure 6.1 shows an external magnetic field applied parallel

to the waveguide. This orientation enables the generation of backward volume spin waves

(BVSW), the type of spin wave which is the main focus of this work. BVSWs will be

discussed in detail in Section 6.3.2, and any further mention of spin waves in this work will

refer to BVSWs unless explicitly stated otherwise.

As mentioned in Section 6.2 the active feedback component of AFRs allows for the study

of spin waves in a quasi-conservative regime, which can support behaviors with lifetimes

of tens or hundreds of thousands of the fundamental round trip time, O(100 ns). The
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Figure 6.1: Diagram of an active magnetic thin film-based feedback ring. A spin wave
feedback ring constructed of a nonlinear, dispersive waveguide (the YIG film) coupled to an
electronic feedback loop via two transducers. The ring has a linear, fixed amplifier and a
variable attenuator. Observation equipment is attached via a directional coupler. Reprinted
with permission from Elsevier [41].

periodic amplification also enables the self-generation of SWE solitary waves. Self-generation

is achieved by increasing the ring gain (through a decrease in attenuation) until the lowest

loss ring eigenmode begins to circulate. The ring eigenmodes are given by the phase condition

kn(ω)L+ φe = 2πn, n = 1, 2, 3..., (6.1)

where kn(ω) is the wavenumber of the nth eigenmode, L is the separation between the exci-

tation and detection transducers and φe is a phase delay caused by the signal’s propagation

through the electronic feedback loop. Typically φe � kn(ω)L. As the ring gain is increased

additional eigenmodes begin to circulate and their amplitudes increase until these modes

begin to interact nonlinearly through three and four-wave mixing processes (to be discussed

in Section 6.3.2). The number of eigenmodes present during a typical experiment is less than

10, though at higher ring gains up to a few hundred may circulate. All the solitary waves

presented in this work are self-generated. Adjustments to the attenuator are done manually

and occur on the order of seconds. This means all changes in ring gain occur over tens or
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hundreds of thousands of round trips and are adiabatic on that scale. Since no additional

microwave signals are introduced into the ring from an outside source, all behaviors recorded

from self-generated SWE solitary waves in AFRs have existed for at least O(105) round trips

and may be regarded as being in dynamic equilibrium. Transient behaviors are therefore

not studied during self-generation. We note that transient effects can be highly relevant to

applications such as communication, but they are not considered in this work.

Several other design features of the AFR warrant further discussions. First, YIG thin

films are used as a propagation medium owing to their extraordinarily low loss characteris-

tics at microwave frequencies [41]. These low losses, typically 3 orders lower than alternative

waveguide materials, support propagation distances on the order of centimeters and therefore

enable long excitation lifetimes. Long lifetimes maximize the interactions between nonlinear-

ity, dispersion and losses on ring dynamics. Amplitude dependent nonlinearities and losses

will have maximum relative influence on wave evolution close to the excitation transducer

where spin wave power is at its highest. Dispersion and lower order effects will have higher

relative influences the longer the spin wave propagates through the medium.

Second, an external magnetic field is applied to magnetize the YIG thin film to satu-

ration and thereby enable the excitation of spin waves. The direction and amplitude of

this field allows for the tuning of nonlinearity and dispersion and will be further discussed

in Section 6.3.2.

Third, all observation equipment is attached to the feedback ring via a directional coupler.

This eliminates the interference of observation on ring dynamics. Observation may instead

be treated as a fixed, linear attenuation within the AFR.

Fourth, the signal is fed into the oscilloscope through a microwave diode with quadratic

behavior. Thus, all recorded voltage data are taken to be proportional to power. The diode

further allows for sampling of ring voltage at lower frequencies. This is because data recorded

through the diode corresponds directly to the spin wave envelope, our principle interest,

rather than the underlying carrier wave. These slower sampling rates of O(1 Gsamp/s) as
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opposed to O(10 Gsamp/s) support the collection of longer time series which is crucial to

the identification of dynamical behaviors which occur over hundreds or thousands of round

trips. We do note that the reconstruction of phase is not possible without fully resolving

the underlying carrier wave. Both high and lower frequency sampling can be conducted

simultaneously using a splitter, however this comes at a significant cost of signal-to-noise

ratio. This would be particularly harmful during the work presented here which maximizes

spin wave propagation distances and thereby minimize power at the detection transducer.

Fifth, the physical length of the YIG film is much greater than the propagation length L

between the transducers. The ends of the film are additionally cut at 45 degree angles. These

considerations eliminate end reflections from reaching transducers and thereby impacting

ring dynamics.

Sixth, we use two-element U-shaped antennas as transducers for the excitation and de-

tection of spin waves within the film. These two-element antennas function as spectral filters

by reducing the passband in the AFR. The upper edge of the passband is not effected, how-

ever the lower bound now corresponds to the destructive interference condition where the

frequency in each of the elements is out of phase by π. The use of two-element antennas

generally results in a smoother, more linear passband and can limit the spectral distances

between ring eigenmodes at higher AFR gains [9, 129]. Long lifetime dynamics of SWE

solitary waves can more readily be isolated and identified when the range over which the

ring gain can be manipulated without introducing spin wave dynamics from vastly differing

eigenmode frequencies (and therefore group velocities) into the ring is maximized. This type

of filtering is a choice of convenience and experimental expediency, and is not necessary for

the generation of dynamics reported in this work. The transducers used in this experiment

are 50 µm wide and 2 mm long with a separation distance between the elements of 60 µm.

The maximum wavenumber excited by this transducer is given by kmax = 2π/d and here d

is the separation between the elements giving kmax = O(103 rad/cm). Note the wavenumber

of the lowest loss eigenmode is typically near 100 rad/cm.
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Finally, the variable attenuator and fixed amplifier pair have a linear response in the

frequency and power ranges used in the experiment.

6.3.2 Spin Waves in Magnetic Thin Films

As discussed above, an AFR with these components and design considerations supports

the self-generation of backward volume spin wave envelope solitary waves [41]. This is the

AFR configuration which has generated a majority of the previously observed dynamics

discussed above. BVSWs may be self-generated in an AFR where the propagation medium

has been placed in an external magnetic field that is applied parallel to the film, as shown

in Figure 6.1. BVSWs are so called due to their negative group velocity. They have positive

dispersion, D, and negative nonlinearity, N , coefficients. The opposite signs of dispersion

and nonlinearity indicate the effects of one may compensate the effects of the other. This

type of nonlinearity is called attractive, or self-focusing, and supports the generation of

bright solitary waves, see Equation 6.4 below.

The signs and amplitudes of the nonlinearity and dispersion are easily tunable for spin

waves propagating in magnetic thin films. This tunability is achieved primarily by rotating

the external field relative to the film. For example, forward volume spin waves may be excited

by applying the external magnetic field normal to the thin film. This type of excitation also

exhibits attractive nonlinearity, but contrary to BVSWs these waves have a positive group

velocity, a negative dispersion, and a positive nonlinearity. Surface spin waves may be

excited by placing the external field normal to the vector of propagation (or normal and

in-plane with the external field shown in Figure 6.1). Surface spin waves have repulsive

nonlinearity, with both the dispersion and nonlinearity coefficients being negative. This

type of nonlinearity supports the propagation of dark solitary waves, see Equation 6.5 below.

The sign and magnitude of dispersion may also be adjusted by choosing operating points on

either side of dispersion gaps for pinned surface waves [20]. Again, only the BVSW regime

is considered in this work, but interested readers are directed to these references for further

information [2, 13, 18, 41, 130]. We note there is also ongoing research into exciting multiple
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spin wave regimes at once [131].

Nonlinearity and dispersion coefficients for spin waves in nonlinear thin films are defined

in terms of the dispersion relation, ω(k) as

D =
∂2ω(k)

∂k2
,

N =
∂ω(k)

∂|u|2
,

where u is a dimensionless spin wave amplitude. These expressions for nonlinearity and

dispersion are results of deriving the governing equation of spin waves in thin films via a

slowly varying envelope approximation on the nonlinear dispersion relation, f(ω, k, |u|) [2].

The resulting equation is,

i
∂u

∂t
=

[
−D

2

∂2

∂x2
+N |u|2 + V (x, t, u)

]
u (6.2)

and when the potential V is set to zero we have a dimensionless form of the nonlinear

Schrödinger equation.

Higher order nonlinearity may be naturally included by keeping more terms of the ex-

pansion of the dispersion relation. Losses are introduced phenomenologically. If cubic and

quintic terms are kept then one arrives at the CQCGL equation where the potential is of

the form

V (x, t, u) = iL+ iC|u|2 + (S + iQ)|u|4, (6.3)

here L, C and Q are linear, cubic and quintic loss coefficients and S is a quintic nonlinearity

coefficient. All parameters are taken to be real with i’s explicitly stated, except the spin

wave amplitude u which is a complex scalar field. The inclusion of at least quintic terms is

necessary to model saturable losses that are experimentally observed in self-generated spin

waves which evolve under either three or four-wave mixing [28, 103]. Saturable losses are also

studied in dissipative optical solitons [89, 95]. Nonlinear Schrödinger governing equations

for spin waves in nonlinear thin films may also be rigorously derived through a Hamiltonian

formalism [3].
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When four-wave mixing, discussed below, is the dominant source of nonlinearity and

losses are negligible (or V=0) the ground state solitary solution to the nonlinear Schrödinger

equation may be reached via an inverse scattering transform [132]. For the case of attractive

nonlinearity (ND < 0) the ground state solution is the standard bright soliton given by

u(z, t) = µ0 sech

[
µ0

√
−N
D

(z − vst)

]
, (6.4)

where the phase is given by

φ(z, t) = exp i[ksz − ωst]

vs = vg + ksD

ωs = vgks +
1

2
Dk2s +

1

2
Nµ2

0

with u(z, t) = |u(z, t)| exp(iφ(z, t)). We highlight that for the bright soliton the phase

is constant over the soliton peak and there is no phase difference at (z − vs) → ±∞. The

hyperbolic secant shape and the phase characteristics across the peak are common identifiers

of bright solitary waves.

Dark solitary waves are the ground state solution for repulsive nonlinearity (ND > 0)

and are given by

|u(z, t)| = µ0

[
1− sech2

(
µ0

√
N

D
[z − vst]

)]
, (6.5)

and the phase across the soliton peak is

φ(z, t) = arctan

[
tanh

(
µ0

√
N

D
[z − vgt]

)]
(6.6)

Dark solitons are notches in the amplitude of a continuous wave background and possess

a π shift across their dips. If the final depth of the notch does not reach zero then the

soliton is called grey and the phase shift is less than π, somewhat modifying [133] the form

given in equations 6.5 and 6.6. As with bright solitary waves the hyperbolic secant dip and

the phase characteristics across the dip are common identifying features of dark and grey

solitary waves. Note that there is a phase difference at (z − vs) → ±∞ for dark and grey
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solitary waves. This means that if these waves are traveling within a ring there must always

be a minimum of two to satisfy phase continuity conditions unless there is a background

flow of −π to cancel the phase jump [134]. Typically bright (dark) solitary waves do not

exist outside of the attractive (repulsive) nonlinearity which supports them as a solution to

the nonlinear Schrödinger equation. Any exceptions to this suggest the influence of higher

order or other external effects [5]. As mentioned earlier, the sign of dispersion can also be

control by exciting spin waves on either side of a a dipole gap in a film with pinned surface

waves, thus modifying of the effective nonlinearity, ND, and enabling the excitation of dark

solitary waves [20]. Similarly an external periodic potential can also be applied to generate

negative mass and thus flip the sign of dispersion. It has also been demonstrated that

dark solitary waves may be observed in spin wave systems with attractive nonlinearity if one

injects carefully tuned carrier wave signals [5]. However, implementing a periodic potential is

impractical in many contexts including fiber optics, and the long lifetime dynamics presented

here are not observable when carrier wave signals are fed into a short film with no active

feedback.

There are two types of nonlinearity which affect spin waves in YIG waveguides: the

nonconservative three-wave splitting or confluence processes, and the conservative four-wave

mixing process [2, 41, 130] (known as three and four-magnon scattering in quantum mechan-

ics). The bright and dark solitary wave solutions above and the solitary wave dynamical

behaviors presented below are principally products of four-wave mixing. During the self-

generation of spin waves in an AFR if two or more eigenmodes are circulating the ring with

sufficient amplitude they interact via four-wave mixing to generate a third mode (ω3) with

the following frequency and wavenumber

2ω1 = ω2 + ω3 ,

2k1 = k2 + k3.
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Figure 6.2: Yttrium iron garnet transmission profiles (a) Transmission loss and (b) wavenum-
ber vs frequency profiles for a transducer-YIG thin film-transducer structure with parallel
external magnetization. The red and blue curves in (a) were measured at input powers
Pin=-24 dBm and 4 dBm, respectively. Additional transmission losses at high power indi-
cate three-wave mixing. The lowest loss ring eigenmode is shown as a black diamond at
2.987 GHz and corresponds to a wavenumber of k ≈ 114 rad/cm.
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As power is further increased additional modes will be generated through this four-wave

process, ultimately resulting in a uniform frequency comb with spacing fs = |ω1−ω2|. These

equispaced frequency combs are a spectral signature of bright and dark solitary waves and

importantly cannot be generated simply through exciting additional ring modes owing to

the spin wave nonlinear dispersion relation. An experimentally measured dispersion curve

can be seen in Figure 6.2(b), where the k = 0 point corresponds to the uniform mode or the

ferromagnetic resonance in the YIG thin film. The lowest loss eigenmode at 2.987 GHz is

shown as a black diamond and corresponds to a wavenumber of k ≈ 114 cm/ns. This data

was recorded at an external field strength of 496 Oe.

The three-wave splitting and confluence processes involve the splitting of one mode (ω0)

into two new half-frequency modes, or the combination of two half-frequency modes into a

new mode (ω3) and is inherently nonconservative. The splitting and confluence processes

are given by

ω0 = ω1 + ω2,

k0 = k1 + k2,

and

ω1 + ω2 = ω3,

k1 + k2 = k3,

respectfully. For BVSWs the three-wave process can be viewed as a source of nonlinear

loss where energy leaves the ring system by the splitting of self-generated ring eigenmodes,

with wavenumbers of O(10 rad/cm), into two half frequency modes with wavenumbers of

O(105 rad/cm) [28, 41]. These half frequency modes posses wavenumbers well beyond the

maximum wavenumber capable of being excited or detected by the transducers used in

this experiment, as explained above. Therefore the half modes do not circulate within the

ring. Without the active feedback these modes decay into heat and there is no associated
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confluence process to introduce power back into the higher frequency modes. Note, the major

linear losses in YIG thin films result from magnon-phonon scattering, an intrinsic relaxation

process, and from two-magnon scattering, an extrinsic relaxation process associated with

film defects [2].

An experimental example of transmission loss through the transducer-YIG thin film-

transducer structure (not including the feedback ring) is shown in Figure 6.2(a) with a

high power (4 dBm) transmission loss curve shown in blue and a low power (-24 dBm)

transmission loss shown in red. The loss caused by three-wave mixing is evident in the high

power data above 2.99 GHz. This closely matches with theory that predicts the lower edge

of the passband for BVSWs at 1.50 Ghz. Below 3 Ghz the three-wave splitting process is

forbidden by conservation law. Note that at sufficiently high external field strengths, no

half modes remain within the BVSW passband and the three-wave processes are entirely

forbidden. For BVSWs this occurs when ω(0) = 3.27 GHz or at an external field strength of

about 600 Oe [13]. The general shape of the low power transmission loss plot in Figure 6.2(a)

is typical. The transducers are generally less efficient for high-k modes, but this is directly

counteracted by the increase in group velocity of BVSWs at higher frequencies. An increase

in the group velocity decreases the round trip time, and thereby the overall losses. The

result is a fairly flat transmission loss curve spanning approximately 400 wavenumbers with

a minimum in the middle.

At lower external fields the loss from three-wave splitting will span more of the experimen-

tal passband. By 350 Oe the full passband will experience additional losses from three-wave

splitting. In practice this results in a saturation in the power-out vs power-in response, or

the addition of higher order loss. Note that it is well documented that BVSWs in AFRs

experience a saturation in power-out vs power-in even when three-wave processes are forbid-

den, so three-wave mixing can be viewed as an additional, and stronger, source of nonlinear

losses [28, 103].
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The data presented here were gathered at four distinct operating frequencies across dif-

ferent choices of transducer separation. Spin waves were self-generated at 2.5 GHz, where

the entire passband is subjected to additional nonlinear losses, at 3.0 GHz, where part of

the passband experiences three-wave splitting such as in Figure 6.2(a), and at 3.5 GHz and

4.5 GHz where three-wave splitting is explicitly forbidden. In practice, actual operating

points vary from these targets as external field strength and the location of the film on

the transducers is varied to isolate clean dynamics. Higher frequency excitations were not

explored in order to maximize the impact of ring losses on ring dynamics. We highlight

that this work presents the first observations of self-generationed dark solitary waves under

attractive nonlinearity, and the first example of long life time complex dynamical behaviors

in dark solitary waves.

6.4 Periodic Breathers

Periodic breathing is a stable dynamical pattern characterized by the smooth, periodic

amplitude modulation of SWE solitary waves matched with a simultaneous relocation of the

wave positions within the feedback ring. Three features define this behavior. (1) The am-

plitude and direction of the location shift are constant. This amount is always proportional

the number of solitary waves in the ring. For N solitary waves a full period is defined by

(N + 1) breaths with positional shifts of 2π/(N + 1) rad. (2) A minimum of one solitary

wave must have its amplitude drop to the background during a full breathing period. This is

necessary to draw a qualitative distinction between breathers and modulating solitary wave

trains where higher order solitons exhibit periodic or chaotic amplitude modulation but with-

out relocation [31, 41]. (3) The shift is not spontaneous but rather a smooth function of

round trips which remains consistent across all observed breathing periods. To summarize,

in scaled units, a periodic breathing SWE solitary wave oscillates between a magnitude of

zero and one while relocating predictably within the ring.

Periodic breathing for both bright and dark solitary waves are presented for two typical

examples of the behavior. (1) In periodic breathing solitary waves relocate at a single
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fixed period. (2) In multi-periodic breathing the solitary waves breathe at two or more

frequencies. We highlight, as mentioned in Section 6.3, that all data presented here were

recorded on an AFR with a parallel external magnetic field. This film geometry enables

the excitation of BVSWs with an attractive nonlinearity. The dark solitary wave dynamics

reported here occur in a geometry which traditionally supports the generation of bright

solitary waves via the compensation of dispersion with attractive nonlinearity and loss. The

only experimental parameters changed between observations are external field strength, AFR

gain and transducer separation. None of these parameters explicitly alter the sign of cubic

nonlinearity operating within the film.

6.4.1 Bright Solitary Wave Periodic Breathing

Periodic breathing is epitomized by a single, bright solitary wave modulating at one, fixed

frequency. In this representative case the behavior is easily observable and the consistency

of the wave’s predictable relocation within the ring is apparent. A typical example, recorded

through a diode at an external field strength of 311 Oe with a 2.39 GHz carrier wave, is

shown in Figure 6.3. The bright solitary wave breather is readily identifiable through its

reconstructed spatiotemporal amplitude plot, given in Figure 6.3(a), where each vertical

slice is a single round trip and we move through time (in the group velocity frame) from left

to right. Scaled spin wave power is shown as shading. Here we see a bright solitary wave

(with a scaled amplitude of one) centered in the ring which smoothly decreases in amplitude

to zero prior to undergoing a π shift to the edge of the ring. The wave then breathes back

to the center, completing a single period. The breathing process then repeats. The bright

solitary wave profiles for a single round trip at the maximum peak amplitude of a center

(dotted-blue) and edge (crossed-red) breath are plotted in Figure 6.3(b). Actual data is

binned for clarity and lines are a guide for the eye. We highlight that the plots in Figure 6.3

correspond to solitary waves circulating within the AFR but have been shifted into a frame

co-moving with the waves at their group velocity. This type of reconstructed spatiotemporal

plot will be used extensively throughout this work to highlight long lifetime solitary wave
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Figure 6.3: Spatiotemporal and single round trip plots of bright solitary wave periodic
breathing The stable periodic breathing of one bright solitary wave from the center to the
edge of the ring (π shift) is shown in the spatiotemporal plot (a) The bright solitary wave
nature of the dynamic is shown in the scaled power vs. ring position plots (b) and (c). Plot
(b) shows round trips with the peak in the center and edge of the ring as blue dots and
red crosses, respectively. A fit to a Jacobi elliptic CN, a periodic generalization of the sech
function [135], is shown in plot (c) with the peak centered in the ring as blue dots and the
fit as a red line. Actual data is binned for clarity, and lines in (b) are a guide for the eye.
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dynamics. Similarly through this work, unless stated otherwise, actual data is plotted and

lines are a guide for the eye.

115 230

Round Trip (x100)

0

2
R

in
g

 P
o

s
it
io

n
 (

ra
d

)

Figure 6.4: Peak locations of bright solitary wave breathing.Bright solitary wave breathing.
Peak locations for central (red dots) and edge (black diamonds) breaths for a bright solitary
wave undergoing stable periodic breathing.

A round trip time of 353.625 ns was identified visually by minimizing the change in the

central breathing location over all observed breathing periods. A total of 8.2 ms of data was

collected at 4 Gsamples/s yielding over 23,000 round trips of data. 1000 round trips are shown

in Figure 6.3(a). This data was collected through a diode so, as discussed in Section 6.3,

only the spin wave envelope was accurately captured. A peak finding algorithm was used

to isolate 261 individual peak locations, or 130 full breathing periods. These peak locations

are visualized in Figure 6.4 with the central peaks as red dots and the edge peaks as black

diamonds. These locations were then used to generate profiles across round trips (temporal)

and across ring position (spatial) for each of the peaks. A breathing period of 175.98 ±

17.68 round trips was identified from these statistics, suggesting 132 breathing periods were

recorded. This is consistent with our peak finding algorithm where we ignored the first and

last two breathing periods to ensure full temporal and spatial profiles could be isolated.

Some jitter in the group velocity is observed across the 23,000 round trips. The peaks can

be seen drifting around the ring relative to their original positions. Using all 261 isolated
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peaks the change in group velocity is found to be -7.95x10−7 ± 3.75x × 10−4 cm/ns per

breathing period, or -1.28x10−13±6.03×10−9 cm/ns2. The group velocity jitter is determined

to be normally distributed about this near-zero mean with an Anderson-Darling statistic of

0.270 (normality would be rejected at 0.750). Given a measured transducer separation of

1.233± 0.040 cm and a round trip time of 353.625 ns we can estimate the the group velocity

as −3.487 × 10−3 ± 1.1 × 10−4 cm/ns. The jitter, then, amounts to at most an order 10%

change in group velocity about the mean, or a total shift in ring location of less than 10%,

over a single breathing period.
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Figure 6.5: Reconstruced phase for bright solitary wave breathing. Reconstructed phase
data which demonstrates the solitonic nature of the stable periodic breathing wave. (a)
Ring power and reconstructed phase data in blue dots and red crosses, respectively. A flat
phase across the peak profile is a defining characteristic of bright solitary waves. (b) Power
spectrum around the principal carrier frequency and scaled by the comb spacing, fs. An
equi-spaced frequency comb generated via four-wave mixing is another defining feature of
solitary waves.

The solitonic nature of the underlying wave is readily verified by the fit shown in Fig-

ure 6.3(c) for a single of the 262 identified peaks (chosen at random). Here actual data is

plotted and the red line is a fit to the generalized bright soliton solution to the NLS given

in 6.4. Each of the 261 identified peaks was fit using nonlinear least squares in order to

generate goodness-of-fit statistics. The fits yielded a mean reduced χ2 of 2.65±2.22, a mean

adjusted r2 of 0.994±0.008 and with a Jacobi-elliptic parameter [135], m, of 0.6862±0.18. A
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value of m this close to 1 indicates the solitary wave is more hyperbolic than sinusoidal and

may be qualitatively described as a hyperbolic peak profile with tails which do not quite go

all the way to zero. Fits were made to purely solitonic and hyperbolic profiles with reduced

χ2 4 and 7 times larger than the Jacobi-elliptic fit, respectively.

Phase data, reconstructed from data collected at 40 Gsamples/s without a diode, also

confirms the solitonic features of the data. A single round trip is shown in Figure 6.5(a)

where the spin wave envelope is plotted as blue dots and a reconstructed phase is plotted

as red crosses. The flat phase across the peak profile is a defining characteristic of bright

soliton solutions to the NLS, including the general solution given previously in Equation 6.4.

The dynamics are additionally verified as being dominated by four-wave mixing by the

power spectrum given in Figure 6.5(b). A comb-like, evenly spaced spectrum with 3 iden-

tifiable side peaks around the central carrier frequency is observed with a fixed separation

of fs = 0.28292 MHz. This equispaced frequency comb is the defining characteristic of four-

wave mixing, generated by the conservative equations given in Section 6.3. This frequency

difference also corresponds to a round trip time of 353.456 ns, which agrees with the round

trip time identified visually from Figure 6.4. The dispersion and nonlinearity coefficients

were estimated from fitting recorded dispersion curves and found to be 1.49x10−6 cm2rad/ns

and −6.27 rad/ns, respectively.

It is important to note that an external field of 311 Oe is not large enough to drive the

AFR to a power which forbids the nonconservative three-wave splitting process from occur-

ring within the YIG film. As discussed in Section 6.3 for our AFR geometry, which supports

the self-generation of BVSWs, the three-wave mixing process generates half modes which

are not observable with the transducers used in this experiment. However, while a stable

solitary wave is circulating within the ring, four-wave mixing must remain the dominant dy-

namical process. Three-wave mixing is therefore considered an additional nonlinear loss. A

fully defined bright soliton typically propagates in rings with powers high enough to generate

6 or more four-wave mixing side peaks. The absence of these additional frequency modes
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Figure 6.6: Bright solitary wave periodic breathing for increasing ring gain. The breathing
profile of a single peak across round trips. Mean of all 262 observed breaths shown as a
dotted black line, with a confidence interval constructed from 2 times the standard deviation
shown as light blue. Active feedback ring gain is increased from (a) to (c) with the mean
RMS power of the observed peaks normalized to low power, (a), given as individual labels.
As ring gain is increased the breathing transition becomes sharper, with less time spent at
high amplitude.
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here, as well as the lower than unity Jacobi-elliptic parameter, indicate that this solitary

wave breathing dynamic occurs at lower ring gains than those which support bright soliton

wave trains and where higher order losses impact dynamics. This matches the numerical

predictions for regimes which support solitary wave periodic breathing where cubic losses

were the highest relative loss [34].

A total of three distinct bright single periodic breathers were observed experimentally at

increasing ring gain. All were observed at an external saturation field magnitude of 311 Oe.

Each breather shared their core characteristics including the following. (1) Their spatial

peak profiles fit to a Jacobi-elliptic with a parameter, m, within two standard deviations of

0.69. (2) Half-way through relocation, when both peaks are of equal amplitude, their spatial

profile is purely sinusoidal. (3) Parameters such as round trip time, breathing period and

group velocity jitter are all within 1% of one another.

As ring gain is increased the temporal profiles of the breathers evolve from purely sinu-

soidal to being best described by a sharper peak, given by the generic NLS Jacobi-elliptic

solution with a parameter of m = 0.22±0.11. The temporal profiles are shown in Figure 6.6

with scaled ring RMS round trip power at maximum peak height increasing from 1.00±0.04

in Figure 6.6(b) to 1.12±0.05 in Figure 6.6(c). Here the mean peak is given by a dotted line

and a confidence interval is shown as light blue shading. The interval is constructed by ±2σ

where σ is the standard deviation from all isolated peaks. This sharpening of the temporal

profile at higher ring gains is consistent with our hypothesis that three-wave mixing acts as

an additional nonlinear loss, impacting the evolution of peak amplitude over long times.

6.4.2 Dark Solitary Wave Periodic Breathing

A periodically breathing dark solitary wave was observed at an external field strength

of 446 Oe with a carrier frequency of 2.94 GHz. We again highlight that this dynamic was

observed on the same film, on the same day, using the same procedure and experimental

setup as was used to generate the bright solitary wave breathers presented in the previous

section, Section 6.4.1. The sole adjustment made between the observation of bright solitary
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waves and the observation of dark solitary waves was external field strength.

We reiterate that these waves are were not created by injecting carrier waves or from

exploiting surface pinning and are the first reported self-generation of dark solitary waves in

attractive nonlineary [5, 20].
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Figure 6.7: Spatiotemporal and round trip plots of Dark solitary wave periodic breathing.
A single dark solitary wave breathing at a fixed frequency from the center of the feedback
ring to the edge. (a) A spatiotemporal plot of the spin wave power. (b) A single round trip
of the dark solitary wave in the center of the ring (dotted blue) and at the edge of the ring
a half breath later (crossed red). (c) A fit of a single central round trip to the generalized
dark solitary Jacobi-elliptic solution to the NLS.

A dark solitary wave periodic breather is shown in Figure 6.7 where the breathing notches

are evident in the reconstructed spatiotemporal Figure 6.7(a) (low amplitude in black). The
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dark solitary wave smoothly modulates between a maximum (relative to the background)

amplitude of one to zero while undergoing a π positional shift within the ring. This meets

the qualitative requirements of a periodic breather discussed early in section 6.4.

A round trip time of 329.34 ns is identified by minimizing the variation in center peak

position across all observed 24,000 round trips, or 8.2 ms of data. A peak-fitting al-

gorithm was used to isolate 870 individual peaks and build statistics. A breathing pe-

riod of 57.18 ±5.01 round trips was determined from these data. A group velocity of

−3.74 × 10−3 ± 3.07 × 10−5 cm/ns was calculated using this round trip and the measured

transducer separation of 1.233 ± 0.040 cm. No notable jitter of the group velocity was ob-

served. A dispersion coefficient of 1.73 × 10−6 cm2rad/ns and a nonlinearity coefficient of

-7.23 rad/ns were measured by fitting to observed dispersion curves.
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Figure 6.8: Reconstructed phase of dark solitary wave periodic breathing. Reconstructed
phase data demonstrating the solitary wave nature of a single dark solitary periodic breather.
(a) Phase vs power for a single round trip with the characteristic sharp phase jump at the
dark solitary wave peak. (b) Power spectrum about the carrier frequency and scaled by the
comb spacing. A well developed four-wave mixing driven frequency combs with two equi-
powered eigenmodes, a characteristic of dark solitary waves in a feedback ring, is evident.

A maximum amplitude round trip for a center and edge breath are shown in Figure 6.7(b)

as dotted-blue and crossed-red curves, respectively. The solitonic nature of the notch is

confirmed by the fit shown in Figure 6.7(c) the solid red line is now a fit to the generic
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dark soliton NLS solution, given early in Equation 6.5. A random example of a maximum

amplitude round trip is shown here, but fits were made to all 870 identified peaks. A

reduced χ2 of 1.09 ± 0.42 with a reduced R̂2 of 0.98 ± 0.01 and Jacobi-elliptic parameter,

m of 0.95 ± 0.01 were measured for the fits to the generic dark soliton solution. A Jacobi-

elliptic parameter that close to unity indicates that the peaks are nearly identical to the

ideal hyberbolic solution, with only minor edge effects. We note the presence of a small

secondary notch located at the edge (center) of the ring for center (edge) breaths. This peak

is expected as there must always be a minimum of two notches within the feedback ring to

maintain phase continuity without an additional background linear phase increase of π, as

discussed previously in Section 6.3.

The dark solitary wave nature of the underlying signal was further confirmed by the spec-

tral and reconstructed phase data collected at 40 Gsamples/s that is shown in Figure 6.8. The

data presented here was gathered at the same external field as the data shown in Figure 6.7,

but at a slightly higher ring gain. This was to enhance the amplitude of the secondary peak

and illustrate the ring phase continuity across multiple dark solitary wave phase shifts. Fig-

ure 6.8(a) shows the reconstructed phase as red dots and the carrier wave envelope as solid

blue. Here we see the characteristic near π jump for a dark solitary wave with a zero mini-

mum, and lower jumps for smaller notches. The small (order 10 degree) difference in phase

across the entire round trip is accounted for by the time delay in the electronic feedback loop,

as discussed in Section 6.3. Also note that the phase across the peaks is not linear, indicating

that the alternative description of several bright solitary waves propagating around the ring

is not sufficient. The spectral data given in Figure 6.8(b) likewise shows the characteristic

feature of dark solitary waves propagating within AFSs: two principal eigenmodes of equal

amplitude generating a frequency comb via four-wave mixing [5].

The formation of dark solitons in an AFR geometry which supports attractive nonlin-

earity has previously been shown to be possible via sufficient nonlinear losses [5]. The field

studied here, 446 Oe, does not forbid the three-wave splitting process, as discussed early
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in Section 6.3. And as in the previous case for bright solitary periodic breathers (see Sec-

tion 6.4.1), three-wave mixing can be considered an additional source of nonlinear loss. We

also remind the reader that these experiments were designed to maximize the time waves

spend propagating within the ring by maximizing transducer separation. This design choice

explicitly requires higher ring excitation powers to compensate for the major linear loss mech-

anisms present in the ring. This maximizes the influence of any nonlinear effects, including

damping, on the evolution of the wave. As we approach the ring power which forbids three-

wave mixing, from below, we expect to maximize the effect of that additional nonlinear-loss

mechanism on the solitary wave evolution.

These considerations, taken with the previous observation that peridic breathing oc-

curs at AFR powers below that which support full spectral comb development, account for

dark solitary wave periodic breathers at field strengths above those of bright solitary wave

breathers.

6.5 Multi-periodic Breathing

Multi-periodic breathing is defined by bright or dark solitary waves which breath at two

or more commensurate frequencies. As with periodic breathers, discussed throughout Sec-

tion 6.4, the breathing behavior is characterized by the oscillation of scaled SWE solitary

wave amplitude between zero and one accompanied by a predictable and smooth relocation

within the active feedback ring. In this case it will only be necessary that these two events

occur once over the longest breathing period, as opposed to during each breath. All data

presented in this section was recorded on the same YIG thin film, and on the same day,

as the periodic breathers discussed in sections 6.4.2 and 6.4.1. Transducer separation was

likewise the same, fixed at 1.233 ± 0.040 cm. Envelope data was collected at 4 Gsamples/s

through a diode with a quadratic voltage response.

An example of five bright solitary waves breathing at four frequencies is shown in Fig-

ure 6.9. A total of 8.2 ms of data was collected at a saturating external field strength of

383 Oe. A round trip of 1372.82 samples was identified graphically, corresponding to a round
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Figure 6.9: Reconstructed phase and round trip data for muliperiodic bright solitary wave
breathers. (a) Reconstructed spatiotemporal plot of multi-periodic breathing for five bright
solitary waves. Five periods of the principle breathing are shown with white circles. (b) shows
the amplitude and phase of a single round trip in dotted blue and crossed red, respectively.
Flat phase across the wave peaks is an indication of their solitary wave nature. (c) Power
spectrum relative to the carrier frequency and scaled by the comb frequency spacing. The
three main peaks peaks associated with eigenmodes which have broadened due to three-wave
mixing. The development of a frequency comb from four-wave mixing is also evident, and
the fixed frequency spacing of these peaks is shown by the dotted grey lines.
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trip time of 342.2 ns. A total of 23, 892 round trips were recorded. Group velocity amplitude

may be easily estimated using the round trip time and fixed transducer separation, yielding

−3.59×10−3±1.02×10−4 cm/ns. Finally, coefficients for dispersion and nonlinearity were de-

termined by fitting to observed dispersion curves, giving values of D = 1.73×10−6 cm2rad/ns

and N = −7.23 rad/ns, respectively.

Four distinct frequencies of breathing with a common period of 238.7 round trips were

identified via the spectral analysis of the envelope data. The associated breathing periods

are found to be 17.04, 26.52, 47.69 and 59.98 round trip times, meaning a total of 14, 9, 5

and 4 cycles are required, respectively, to complete a common breath of 238.7 round trips.

White circles in the reconstructed spatiotemporal chart, shown in Figure 6.9(a), illustrate

five iterations of the highest power breathing frequency, given by a 2π/5 relocation of the

solitary wave train every 26.52 round trip times. The fastest breathing period, occuring

every 17.04 round trips, corresponds to the peak modulation time at any fixed ring position.

The remaining two periods correspond to the variability in peak profiles across round trips

at a fixed ring position and are difficult to isolate visually. It is worth highlighting the

non commensurate nature of the breathing frequencies. While each breathing behavior will

complete the number of cycles listed above over the duration of single common breath, that

does not suggest a total recurrence of the initial state. The common breath is the minimum

number of round trips required to complete an integer number of each of the four breathing

periods. For example, the 2π/5 relocation event completes a trip around the ring every 5

of its periods, but will complete 9 such relocations during a common breath resulting in a

2π/5 shift relative to the initial condition.

A single round trip of the bright multi-periodic breather is shown in Figure 6.9(b) where

crossed-red is phase in degrees, and dotted-blue is scaled amplitude. Binned data is marked

and solid curves are provided as a guide for the eye. Five distinct bright solitary waves may

be identified as present within the AFR. Flat phase across the bright SWE strongly suggests

that the waves are solitonic in nature.
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Individual peaks were not isolated. However, individual round trips were best fit by sums

of the general bright solitary wave solution to the NLS with Jacobi-elliptic parameters, m,

ranging from 0.20 to 0.9. These fits had reduced χ2 on the order of 10, but were significantly

better than fits of sums of hyberbolic and sinusoidal functions where reduced χ2 was routinely

above 50. All three options have mean reduced r2 above 0.95. Each individual peak maintains

its qualitative spatial and temporal profiles while breathing.

While the external field strength studied here, 383 Oe, yields a spin wave power which

is is too low to forbid the three-wave mixing process, we can be certain that the dynamics

present within the AFR are dominated by the four-wave mixing process. The frequency

spectrum relative to the carrier frequency, 2.644 GHz, reconstructed via data collected at

40 Gsamples/s, is given in Figure 6.9(c). Here the frequency axis has been scaled by a

characteristic frequency comb spacing, which is generated via the conservative four-wave

mixing of ring eigenmodes, fs = 2.92 × 10−3 GHz. The dashed grey lines indicate the

position of integer multiples of fcomb from the carrier frequency, and match the locations

of the spectral peaks. We highlight, as discussed in Section 6.3, that the spectral distance

between ring eigenmodes is not constant, so the presence of an equi-spaced frequency comb

is characteristic of four-wave mixing dominating the dynamics. The frequency comb present

in this case has much broader peaks than that of a single period bright soliton breather,

see Figure 6.5(b), which is indicative of the presence of a third ring eigenmode (higher ring

power) and in general with increased dynamical complexity. This type of peak broadening is

most likely attributable to three-wave processes acting at higher ring powers, as this behavior

has 220% increased average round trip rms power than the single frequency case. Also note

that this comb spacing corresponds to a round trip time of 341.67 ns which is within 1% of

our previously estimated value.

Multi-periodic breathing was also observed in dark solitary waves on the same film and

on the same day as the rest of the data in Section 6.4. These dark soliton wave multi-periodic

breathers were recorded with an external field strength of 460 Oe with an observed carrier
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Figure 6.10: Spatiotemporal and round trip plots for multiperiodic dark solitary wave
breathers. Reconstructed spatiotemporal plot of multi-periodic breathing for three dark
solitary waves. (b) Amplitude and phase of a single round trip in dotted blue and crossed
red, respectively. Data is binned for clarity. Near π phase jumps across the the wave peaks
is an indication of their solitary wave nature. (c) Power spectrum showing two peaks associ-
ated with eigenmodes which have developed a frequency comb from four-wave mixing. The
fixed frequency spacing of these peaks is shown by the dotted grey lines. Data shown here
is about the carrier frequency and scaled by the comb frequency spacing.
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frequency of 2.941 GHz. The round trip time was graphically identified to be 1316.484

samples by minimizing variance in group velocity across all 24,915 observed round trips.

These values correspond to a round trip time of 329.12 ns and an estimated group velocity of

−3.74×10−3±1.03×10−4 cm/ns. Dispersion and nonlinearity coefficients were also estimated

via fitting to observed dispersion curves, giving values of of D = 1.76× 10−6 cm2rad/ns and

N = −7.31 rad/ns, respectively. We highlight, as discussed in Section 6.4.2, that this

combination of attractive nonlinearity with dispersion does not predict the generation of

dark solitary waves without the presence of higher order effects. The carrier frequency

and external field strength here likewise does not forbid the three-wave processes which are

anticipated to contribute higher order losses to the peak evolution.

A reconstructed spatiotemporal plot is given in Figure 6.10(a) where three dark soli-

tary waves can been seen undergoing multi-periodic breathing involving a 2π/3 relocation

as the waves evolve through time. The dark solitary wave nature of the signal can be con-

firmed by examining the relative phase of a single round trip, reconstructed via sampling at

40 Gsamples/s without a diode, plotted in Figure 6.10(b). Dotted-blue is the wave ampli-

tude and crossed-red is phase. A signature characteristic of dark solitary waves is seen in

the near π phase jump at minimums.

An equi-spaced spectral comb located around the carrier frequency is shown in the power

spectrum plotted in Figure 6.10(c). Here the frequency has been scaled by the characteristic

comb width given by fs = 3.08×10−3 GHz, and integer multipliers of fs relative to the carrier

frequency are indicated with dotted-grey lines. A more robust comb structure is evident in

this example than was for the single period dark solitary wave breather (see Figure 6.8(b)),

driven by a 125% increase in average round trip rms power. We note that four-wave mixing

remains the principal driver of dynamical behavior with all additional spectral peaks falling

on integer multipliers of fs.

Three noncommensurate breathing frequencies were identified via spectral analysis of

the envelope. The associated breathing periods are given by 13.46, 16.82, 22.42 round trips.
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The minimum number of round trips necessary for all three periods to complete an integer

number of periods is 67.3 and requires 5, 4 and 3 completed cycles, respectively, from the

identified breathing periods. This common period corresponds to three 2π/3 relocations of

the maximum amplitude dark solitary wave. The remaining shorter periods correspond to

shifts in the relative depth of individual dark solitary waves prior to the relocation events.

6.6 Complex Recurrence

Recurrence is a common phenomenon in nonlinear systems and is defined by a long-

period pattern or replication of a key feature. The period for recurrence is longer than any

characteristic period in the problem, which distinguishes the behavior from the breathing

dynamics described in sections 6.4-6.5. The Fourier spectrum of a recurrence solution is

broadband around the recurrence frequency, whereas breathers are clean. This kind of

recurrence is not due to two or a few noncommensurate frequencies, but involves many

conspiring factors in pattern formation – this is why we call it complex. For example, consider

two solitary waves circulating the ring with different velocities so that they overtake each

other at a fixed frequency. This is not considered complex recurrence, nor are the multi-

periodic breathing dynamics of Section 6.5. Here we look at two examples of recurrence

observed in the system, one of bright solitary waves and one of dark solitary waves. We

observe varying degrees of complexity in the recurrence pattern, as well as frequency.

We note explicitly that our working definition for recurrence here excludes other types

of recurrence that have been previously reported within AFR such as Fermi-Pasta-Ulam

recurrence where two clean solitary waves undergo periodic recombination. This is a choice

we make consciously, as we are describing a family of increasingly complicated dynamical

behaviors that begin at a complexity stage above that of co-propagating solitary waves.

Moreover, these dynamics appear to occur at ring gains, fields, and powers which do not

support stable bright solitons. Rather they occur at a crossover point at lower ring powers

where novel dynamics are enabled by the peak broadening effects of three-wave mixing but

dynamics are still principally driven by four-wave mixing.
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Figure 6.11: Spatiotemporal and round trip data for dark solitary wave recurrence. (a)
A reconstructed spatiotemporal plot of three dark solitary waves undergoing a complex
recurrence. The nontrivial repeating shape can be identified easily, as can its periodicity.
(b) The single round trips of recurrence 1, 11 and 16. These plots have been shifted by 0, 0.5
and 1 in power, respectively, to aid with direct comparison. Actual relative errors between
these events is on the order of 10% which is expected since our resolution is by the round
trip, and we may not capture the exact recurrence trip.
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The recurrence of a dark solitary wave is shown in Figure 6.11(a) in a reconstructed

spatiotemporal plot. This particular data set has a recurrence time of 34 round trips. The

first, sixth, and eleventh recurrence event are shown in Figure 6.11(b) with a vertical offset

for later recurrence events to allow for a direct visual comparison. The relative error be-

tween these recurrence round trips is on the order of 5%, which is not unexpected since our

resolution is limited to a round trip and its unlikely we’ll fully observe the entire recurrence

event.

A round trip time of 1317.374 samples was identified graphically, or 329.34 ns, slightly

slower than that reported in the multi-periodic solution — but well within our margins of

error. 8.2ms of data was collected, or 24897 round trips and 730 distinct recurrence events.

This behavior was observed under the same conditions as the multi-periodic dark solitary

wave breather, above, only at a higher total ring gain resulting in an average RMS round trip

power 13% greater than in the previous example. The field strength and carrier frequency

remain the same.

A shift from multi-periodic breathing into a more complex dynamic such as recurrence as

ring gain is increased is not surprising. Higher ring gains result in additional eigenmodes cir-

culating the thin film, and further, since this data was collected in a regime where three-wave

mixing was not forbidden, we do expect higher powers to result in spectral peak broadening.

This example was included here not because of its particularly complex nature, but rather as

an illustrative example of how ring dynamics increase in complexity as the spin wave power

increases. The progression from a single solitary wave periodic breather, to multi-periodic

multi-peak breathers ultimately into the broadband reccurence shown here is natural.

At higher ring gains and fields even more complex recurrence events are common. An

example of this with five bright solitary waves circulating the ring is shown in Figure 6.12(a)

where a reconstructed spatiotemporal plot shows three periods of a highly intricate recurrence

event. This behavior exhibits a recurrence every 316.6 round trips. The individual round

trips for recurrences 1, 6 and 11 are plotted in Figure 6.12(b) with power offsets to allow for
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Figure 6.12: Spatiotemporal and round trip plots for bright solitary wave recurrence. (a) Four
bright solitary waves undergoing a complex recurrence. Format is the same as Figure 6.11.
The nontrivial repeating shape can be identified easily, as can its periodicity. (b) The single
round trips of recurrence 1, 11 and 16. These plots have been shifted by 0, 0.5 and 1 in
power, respectively, to aid with direct comparison.
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the visual comparison. The percent error between the first recursion and the 6th and 11th

recursions is on the order of 5% at each point. This is not unexpected since our resolution

is limited to individual round trips and the actual recursion time is not an integer.

This data was collected at a field strength of 773 Oe and a sampling rate of 1 Gsample/s

through a diode with a quadratic response to voltage. A round trip time of 245.485 ns was

identified graphically by minimizing the variation of the group velocity over the recorded

66,806 round trips covering 16.4 ms. The transducer separation was measured to be 1.147 cm

with a photo microscope. An estimate of group velocity may obtained from the round trip

time and the transducer separation, giving −4.68 × 10−3 cm/ns which closely matches the

group velocity obtained from recorded dispersion data of 4.77±0.32×10−3 cm/ns. Dispersion

and nonlinearity coefficients were also obtained via fitting to recorded dispersion data, giving

D = 2.9× 10−6± 1.8× 10−7 cm2rad/ns and N = −8.72 rad/ns both in close agreement with

other experiments of this kind.

6.7 Spontaneous Spatial Shifts

The most dramatic dynamical behavior observed is the spontaneous spatial shift. This

behavior is characterized by quick, unpredictable movement of an otherwise underlying be-

havior from one place in the ring to another (in the group velocity frame). Unique from the

previous two examples of periodic breathing and complex recurrence, spatial shifting does

not occur at a fixed frequency and involves an abrupt, unpredictable transition rather than

smooth, periodic relocation or recombination.

An example of spontaneous spatial shifts is shown in Figure 6.13 where two spatial shift-

ing events are observed over 12,000 round trips. The otherwise stable underlying dynamic

which undergoes the spontaneous spatial shifting is two co-propagating bright solitary waves

undergoing periodic modulation. A high amplitude main peak modulates alongside a smaller

side peak. The periods of the modulation are the same for each peak, 61.19 round trip times,

but are out of phase. The smaller peak modulates from a scaled power of 0 to 0.7, while

the larger peak modulates from a scaled power of 0.7 to 1. Note that the smaller peak is
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Figure 6.13: Detected peaks for spontaneous spatial shifting (a) All peaks detected for a
spontaneous spatial shifting behavior. Red dots indicate the short peaks which oscillate
between a normalized magnitude of 0.7 and 0, while black dots show the high peaks which
oscillate between 0.7 and 1. (b) Two shifting events when the relative location of the two
stable modulating solitons abruptly shifts within the ring.
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not undergoing the periodic breathing dynamic discussed earlier in Section 6.4, as it does

not undergo any predictable relocation within the ring. This behavior was also predicted

by our previous numerical phase space exploration [34] where we refer to it as “complex

co-propagation.” We found it occurred when all losses present within the AFR were roughly

of the same order. This means we expect this dynamical behavior to exist when additional

losses from three-wave splitting are forbidden, as is the case here where the external field

strength was 565 Oe resulting in a operating frequency of 3.37 GHz. This is above the min-

imum frequency required to forbid three-wave splitting as discussed in 6.3.2. Figure 6.13a

shows the isolated peak locations of the high amplitude modulating solitary wave as black

dots and of the low amplitude solitary wave as red diamonds. The two spontaneous spatial

shifts are isolated into reconstructed spatiotemporal plots b and c. Both relocation events

occur over less than 100 total round trips, with the first event being the less clean of the two.

The stability of the underlying complex co-propagation before and after the spontaneous

spatial shifts is evident.

This data were collected at a sampling rate of 4 Gsample/s and a round trip time of

324.917 ns was identified graphically by minimizing the variation of the group velocity over

the recorded 25,236 round trips covering 8.2 ms. The transducer separation was measured

to be 1.232 cm. An estimate of group velocity can be obtained from the round trip time

and the transducer separation, giving −3.9 × 10−3 cm/ns which closely matches the group

velocity obtained from recorded dispersion data of −3.79 ± 0.21 × 10−3 cm/ns. Dispersion

and nonlinearity were D = 1.9 × 10−6 cm2rad/ns and N = −7.85 rad/ns. The peaks for

both the main and side peaks were isolated and used to determine the jitter in group velocity

showing of change of 0.96 ± 2.6 × 10−4cm/ns per round trip. This amounts to a less than

1% change in group velocity per round trip, and the jitter is roughly normally distributed

with an Anderson-Darling statistic of 2.5 where normality is formally rejected at a level of

0.75. 402 major and minor peaks at maximum amplitude were best fit to a Jacobi-elliptic cn

with a χ2 = 0.29± 1 with a parameter m = 0.97± 0.11 and a mean adjusted r2 = .99± 0.01
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confirming the bright solitary wave nature of the underlying dynamic.

6.8 Intermittency

Intermittency is common in complex dynamical systems and occurs when two or more

nearby attractors in phase space overlap. This results in the seemingly random oscillation

between two or more distinct dynamical behaviors as the systems moves between attractors.

It is important to note that these attractors need not “physically” overlap in phase space,

but that drift in experimental parameters such as heating or noise can result in shifts of the

nearby basins of attraction that result in dynamical changes.

A typical example of intermittency is shown in Figure 6.14, where Figure 6.14(a) is a

reconstructed spatiotemporal plot showing 1500 round trips spanning 3 regions for each of

the two underlying dynamical behaviors. The first behavior, shown in crossed-red points

in Figure 6.14(b), is a principal peaks periodically modulating with 3 smaller peaks on a

floor of relative power 0.4. This type of evolution was also numerically predicted to be

observable in this system in previous numerical work [34], where it was called “asymmetrical

interactions” on an energy ’plateau’ whose amplitude satisfied the energy balance of the

CQCGL equation L + C|u|2 + Q|u|4 = 0. Figure 6.14(a) is reconstructed in the group

velocity frame of this dynamic, corresponding to a round trip time of 243.94 ns. Of the

66,000 recorded round trips the ring evolved in the crossed-red behavior for 81% of them.

The average occupation duration for this dynamic was 1053 round trips, but varied from

200 up to 3000. It is shown propagating within the ring from round trips 1-357, 682-961

and 1096-1401 in Figure 6.14(a). Figure 6.14(d) is the spatiotemporal plot of the same

1500 round trips as in Figure 6.14(a) but in the group velocity frame of the second dynamic

shown as the dotted-blue line in Figure 6.14(b). The second behavior has a round trip time of

245.2 ns and propagates the ring for an average of 260 round trips. The maximum observed

continuous lifetime of this behavior was 350 round trips, the ring existed in this regime

for 19% of the recorded round trips. The second dynamic propagates within the ring from

round trips 357-682, 961-1096 and 1401-1500. This second behavior is four solitary waves
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Figure 6.14: Reconstructed attractor and spatiotemporal plots for intermittency (a) Recon-
structed spatiotemporal plot showing the unpredictable shifting between two stable dynam-
ical behaviors. The two distinct dynamics are shown in (b) with four interacting solitary
waves (dotted-blue points) and 4 waves propagating on a floor of scaled power 0.4 (crossed-
red points). (c) Attractor reconstruction with round trip rms power, E(n). The delay, δ, is
chosen as the first minimum of the autocorrelation function and E(n) vs E(n + δ) is shown.
Data from 66833 recorded round trips shows the qualitative presence of two overlapping
attractors, with a majority of the time spent in the higher rms power state shown as the
crossed-red behavior in plot (b). (d) Spatiotemporal plot in the group velocity frame of the
second dynamic.

interacting. No clear, stable breathing behavior is observed but the waves do modulate and

move about the ring. A total of 102 transitions were observed in the 66,000 recorded round
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trips of data, corresponding to roughly over 50 distinct propagation periods for each of the

two dynamical behaviors.

Figure 6.14(c) shows an attractor reconstructed from the RMS nth round trip power,

Erms(n), via phase space time-delay embedding. Time-delay embedding process involves

creating ”independent” vectors from a single recorded time series using a delay which min-

imizes the correlation between success vectors defined as [Erms(n), Erms(n + δ), Erms(n +

2δ), ..., Erms(n + mδ)] where δ is the delay constant and m is the maximum number of vec-

tors which can be constructed for a finite length time series. The appropriate choice of

the delay constant is an active area of debate, but for our qualitative purposes the first

zero crossing of the autocorrelation function of Erms(n) will minimize the linear correlation

between successive vectors. Additional discussion of nonlinear time series analysis is well

beyond the scope of this paper, and curious readers are directed to these fine reviews as

introductions to the field [60, 62, 136]. Figure 6.14(c) shows, qualitatively, the existence

of two distinct attractors, where the density of points equates to their relative occupation

frequency. The most common ring behavior (crossed-red points in Figure 6.14(b)) has an

average scaled RMS round trip power near 1. The second behavior (dotted-blue points) has

an average scaled RMS round trip power near 0.9. These numbers are in complete agreement

with RMS round trip powers determined by isolating each individual behavior’s time within

the ring. The relative number of points in the upper right attractor, corresponding to the

first behavior, is 77%, while the fraction of points in the lower attractor is 17%. This agrees

closely with our relative frequencies above and also suggests roughly 6% of propagation time

is spent transitioning from one attractor to another.

This data were collected at the same field strength as the bright soliton complex recur-

rence above. That is given by 773 Oe and a sampling rate of 1 Gsample/s. Round trip times

for each behavior were identified graphically by minimizing the variation of the group velocity

over the recorded 66,000 round trips totaling 16.4 ms. The transducer separation was fixed at

1.147 cm. Group velocity estimates are obtained from the round trip time and the transducer
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separation, giving −4.52× 10−3 cm/ns and −4.49× 10−3 cm/ns for the first and second be-

haviors listed above, respectively. These are again in close agreement with the group velocity

determined from the experimentally measured dispersion curve, 4.77 ± 0.32 × 10−3 cm/ns.

Dispersion and nonlinearity coefficients were D = 2.9 × 10−6 ± 1.8 × 10−7 cm2rad/ns and

N = −8.72 rad/ns.

6.9 Conclusions and Outlook

We report the clean experimental realization of 10 complex behaviors across 4 distinct

categories of dynamical pattern formation that were previously numerically predicted [34]

to be observable for backward-volume spin waves (BVSWs) propagating within active mag-

netic thin film-based feedback rings (AFRs). These four regimes span (1) periodic and

multi-periodic breathing, (2) complex recurrence, (3) spontaneous spatial shifting, and (4)

intermittency. We provided experimental examples of all these behaviors and performed

quantitative analysis including reconstruction of the strange attractor underlying (4). Be-

sides these predicted behaviors, we also discovered dynamical pattern formation for dark

solitary waves which evolve under attractive instead of repulsive nonlinearity. Dark solitary

waves were observed in the regimes of periodic and multi-periodic breathing and complex

recurrence organically via self-generation and without any external potentials, sources or

other effects.

Our results confirm that the cubic-quintic complex Ginzburg-Landau equation (CQCGL)

is a simple yet viable model for the study of fundamental nonlinear dynamics for driven,

damped waves which propagate in nonlinear, dispersive media. We have demonstrated that

spin wave envelope (SWE) solitary waves in AFRs provide an approachable and flexible table

top experiment to study the emergence of many complex regimes in nonlinear dynamics.

Additionally, our experimental verification of these dynamical regimes show that such ideas

are not simply theoretical but in fact occur in the real physical world and are observable

in an approachable, tunable spin wave system which matches the conditions of many other

real-world physical systems and are therefore promising for technological applications. This
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provides for potential benchmarking and insight not only into fiber optics, hydrodynamics,

and the many other fields of nonlinear dynamics with classical waves, but can provide for

a classical benchmark on gain/loss open quantum systems such as attractive BEC Sagnac

interferometers.

Previous studies of dark and bright solitary wave train dynamics of SWE solitary waves

in AFRs explicitly occurred in regimes which forbade three-wave splitting. Our work demon-

strates that four-wave mixing can remain the dominant dynamical force even when three-

wave splitting is allowed for some or all of the spin wave passband. This opens up additional

spin wave regimes for studying solitary wave train dynamics and additional exploration of

this phase space. Similar explorations for forward volume and surface spin waves and mixed

excitation should yield intriguing and important dynamical behaviors. Transient dynamics

in these regimes also should be investigated. Further exploration of additional spin wave

regimes and numerical study of dark solitary wave dynamics are also warranted and verifi-

cation of the existence of similar dynamical behaviors in analogous physical systems would

be exceedingly valuable.

Work at CSU was supported by the U.S. National Science Foundation under Grants No.

DMR-1407962 and No. EFMA-1641989.
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CHAPTER 7

OTHER SPIN WAVE CONTRIBUTIONS AND CALCULATIONS

This chapter contains additional work done which has not yet been published or was

published or associated with co-author papers not explicitly included as chapters. Detail of

the context of each work is provided below.

7.1 Chaotic Modulation of Envelope Solitons in Active Feedback Rings

This section details the collaborative effort of analyzing and modeling chaotic solitary

wave data from Wu’s system which ultimately resulted in the publication of a PRL [31].

That work contained numerical simulations of the GLNLS for chaotic solitons with high and

low envelope modulations. Details of those simulations were later included as part of the

NJP detailed in Section 5, and have also been published in Wu’s book chapter and Wang’s

PhD Thesis [34, 41, 43]. This chapter contains thorough analysis of the experimental data,

including for ring gains higher than were included in the PRL.

Associated reference [31]: Zihui Wang, Aaron Hagerstrom, Justin Q. Anderson, Wei

Tong, Mingzhong Wu, Lincoln D. Carr, Richard Eykholt, and Boris A. Kalinikos. Chaotic

spin-wave solitons in magnetic film feedback rings. Physical Review Letters, 107(11), 2011.

ISSN 00319007. doi: 10.1103/PhysRevLett.107.114102.

The data analyzed in this section was generated by Mingzhing Wu’s group at CSU in

the manner described in the preceding section. Following the phenomenology of CSU’s gain

labeling, where G = 0.0 dB corresponds to single self-generated eigenmode, we focus on

results from five distinct ring gains: 2.00 dB, 2.25 dB, 2.50 dB, 2.75 dB, and 3.0 dB. We

note these gain values are recorded by eye from an analog attenuator and are principally

useful as a means of comparison within this single experiment. All of the data presented here

were generated from a single active feedback ring experiment in which gain was incrementally
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increased and all other parameters were fixed. Only gains 2.00 dB, 2.25 dB and 2.50 dB

were presented in the paper [31].

An overview of the data for all gains is shown in Figure 7.1. Here observed ring signal is

shown at increasingly fine time scales from left to to right across a row, and for increasing

ring gain from top to bottom along a column. The top row, (i), corresponds to a ring gain

of 2.0 dB, the bottom row, (v), to 3.0 dB. Ring gain increases in steps of 0.25 dB down

a column. The leftmost column, (a), demonstrates modulation on the scale of the train’s

envelope or hundreds of round trips. The middle column, (b), demonstrates the solitonic

train nature of low gain signals and modulations on the scale of 10 round trip times for high

gains. The right most column, (c), shows the observed signal for a single round trip with

actual data presented as points. Magnitude has been normalized to one.

Several important trends are evident from the time series. First, in the longest time

scales, column (a), the complexity of modulation is seen to increase dramatically with ring

gain. Second, the solitonic nature of the signal is seen to degrade with increasing ring gain

in columns (b) and (c). While the bright soliton train is robust at gains 2.25 dB and below,

it begins to degrade at 2.5 dB is completely lost by 2.75 dB. At 3.0 dB multiple peaks are

circulating the ring. This suggests three distinct evolution regimes within the system. At

ring gains lower than 2.5 dB modulations are not severe enough to distort the underlying

bright soliton state. While at gains lower than 3.0 dB and higher than 2.25 dB modulations

are severe enough introduce significant asymmetries into the bright soliton evolution. In

these two regimes we note that increasing ring gain principally manifests itself as an increase

in the magnitude of modulations at long time scales, as in column (a). Finally at high gains,

above 2.75 dB, the underlying solitonic nature of the evolution is destroyed and multiple

solitary waves evolve within the ring.

The degradation of underlying bright solitary wave train is of principle concern for the

study of chaotic solitons and has serious implications on any attempts to numerically simulate

the behavior. Fundamentally if the timescale of the dynamics approach the timescale of a
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Figure 7.1: Overview of observed ring signals for increasing ring gain.Overview of observed
ring signal for increasing gain. Left, (a), to right, (c), is the same experimental time series at
decreasing time scales. Gains increase in steps of 0.25 dB from top to bottom: (i) 2.0 dB, (ii)
2.25 dB, (iii) 2.5 dB, (iv) 2.75 dB and (v) 3.0 dB. The (a) series shows the long time envelope
modulation behavior, (b) shows medium scale train behavior and (c) shows a single round
trip. From (ii)(a) to (iii)(a) we note a jump in modulation amplitude, and from (iv)(a) to
(v)(a) we note a reduction in modulation period. In the (b) series we note the soliton train
degrades until two peaks circulate the ring in (v)(b). Likewise we see the degradation of the
bright soliton envelope in the (c) series until the twin peak waveform in (v)(c). All columns
share temporal axes, and all rows share scaled power axes. Plots along a row are generated
from the same time series.
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single round trip, as in the 3.0 dB case, then any any attempts to model that behavior must

be able to account for dynamics on the same time scale. Previous attempts at simulating

dynamics within the ring, see Chapter 7 and Chapter 5, while fruitful did not examine

behaviors on the timescale of the a single round trip. The results in this section suggest

an iterative model, conceptually introduced in Chapter 3, may ne necessary to full explain

chaotic solitons.

We have identified that by 2.75 dB the soliton evolution has degraded to point where

examining single peaks is no longer meaningful. Figure 7.2 examines the soliton nature of

single round trips, again with increasing down a column beginning with 2.0 dB and increasing

in steps of 0.25 dB. Column (a) shows the peaks with the highest, dashed red line, and

lowest, dotted red line, heights observed at a given ring gain. Included in solid blue is a

soliton generated by averaging all those observed for a given ring gain, termed the mean

soliton. The right column, (b), contains similar information. However in this case the top,

dashed red, and bottom, dotted red, five percent of observed solitons, by height, are averaged

to demonstrate the extreme cases plotted in column (a) are indicative of a trend rather than

exceptions. For gains 2.0 dB and 2.25 dB the secant shape of the underlying dynamics are

well preserved. At 2.5 dB sharp asymmetries are evident in the shape of the train. Despite

these distortions the average peak is still secant shaped. This suggests a regime change at

gains above 2.25 dB.

Hallmarks of chaotic evolution and regime changes are also apparent from further analysis

of the full time series. Figure 7.3 shows power spectrum data where ring gain increases in steps

of 0.25 dB moving down a column, and all figures within a row are different frequency scales.

Reported frequencies are about the carrier wave frequency. A development of a broadband

power spectrum with increasing ring gain is evident in Figure 7.3. A wide frequency scale is

shown in column (a) while the principal peak is plotted in column (b).

The above analysis of the observed time series at increasing ring gains point strongly

towards either a deterministic chaotic or random evolution of the spin wave envelope. We
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Figure 7.2: Solitary wave train variance with increasing ring gain.Examination of the soliton
nature of ring evolution at ring gains below 2.75 dB. Gains increase in steps of 0.25 dB from
top to bottom: (i) 2.0 dB, (ii) 2.25 dB and (iii) 2.5 dB. Column (a) shows the highest, dashed
red, and lowest, dotted red, observed soliton, by height, for a given time series. Column (b)
shows the mean of the tallest five percent of observed peaks, dashed red, and the shortest,
dotted red. Both columns share the same mean soltion, solid blue, for a given ring gain
which is generated by averaging all observed peaks. All columns share temporal axes, and
all rows share scaled power axes. Plots along a row are generated from the same time series.
Power has been normalized to one.
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Figure 7.3: Solitary wave train envelope power spectra for increasing ring gain.Overview of
observed ring signal power spectrum for increasing gain. Gains increase in steps of 0.25 dB
from top to bottom along a column: (i) 2.0 dB, (ii) 2.25 dB, (iii) 2.5 dB, (iv) 2.75 dB and (v)
3.0 dB. Across a single row columns (a) and (b) show the same signal at different frequency
scales. As gain increases, down column (a), we note a severe widening of spectral peaks and
increasing complexity. Column (b) highlights these effects about the principal peak. These
behaviors are indicative of chaotic evolution. All plots in a column share common frequency
scales All plots share amplitude scales. Plots along a row are generated from the same time
series and frequencies are reported relative to the carrier wave frequency.
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now seek to quantify the chaotic nature of the time series following the methodology laid

out in Chapter 4. We begin by reiterating that the results of nonlinear time series analysis

are only useful for comparison purposes if produced from the same underlying method and

assumptions. All analysis presented in this section will use the full observed timeseries and

not the reconstructed envelope. As discussed above, distortions in the underlying bright

soliton train at gains above 2.25 dB indicate that significant information on evolution is

present at the resolution of single round trips, including deformation of the underlying bright

solitary train, and should not be ignored. Further, at gains above 2.5 dB reconstructing an

envelope is entirely nontrivial and would ignore the presence of multiple solitary waves. The

time delay parameter will be chosen as the first minimum of the mutual information, and

verified with the C-C method and visual inspection. The time delay window will not be

used during calculations of the correlation sum. This procedure stands in contrast to the

methodology used in the PRL [31] where chaos was quantified solely within the envelope and

estimated using a time delay window correlation sum. This choice reflects the inclusion of

higher gains in the analysis and the authors belief that the presented methodology includes

fewer assumptions and is less prone to mis-characterization. A detailed work through of the

quantification of the correlation dimension for a ring gain of 3.0 dB is shown in Chapter 4.

Table Table 7.1 shows estimations of the correlation dimension for all ring gains, including

error bars and the R2 values from each individual fit. The number of dimensions and time

delay used as well as the length of the linear fitting region (out of a possible 500 ε bins) are

likewise included.

Table 7.1: A summary of correlation results for all measured ring gains.
Gain(dB) τ D2 ± 2σD2 R2 ± 2σR2 Mrange εmax

2.00 22 1.122±0.018 0.999±4e−4 5 to 30 60
2.25 24 1.136±0.064 0.999±5e−5 10 to 30 50
2.50 16 2.761±0.070 0.999±4e−4 15 to 30 40
2.75 13 3.480±0.099 0.999±5e−4 15 to 30 40
3.00 13 5.273±0.075 0.999±1e−4 15 to 30 70
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Figure 7.4: Chaotic Soliton Correlation Dimension. (a) Estmates of correlation dimension
with increasing ring gain showing saturation as a function of embedding dimension. (b)
Correlation dimension vs ring gain including error estimates. Evidence of regime chance at
2.5 dB is evident with the shift in correlation dimension.

7.2 Simulating the Iterative Model

Motivated by the results above we seek to develop and evaluate an iterative numerical

model of spin wave envelope solitons in magnetic thin film-based feedback rings. We numer-

ically investigate the cubic-quintic complex Ginzburg-Landau equation, a model which has

previously demonstrated predicted and descriptive power when evaluated in a continuum

approximation. The model, given originally in Equation 3.15, is restated here for clarity.

i
∂u

∂t
=

[
−D

2

∂2

∂x2
+ iL+ (N + iC)|u|2 + (S + iQ)|u|4

]
u (7.1)

where u = u(x, t) is a dimensionless complex magnetization amplitude defined as |u(x, t)|2 =

m(x, t)2/2Ms
2; here m(x, t) is the dynamic magnetization while Ms

2 is the saturation mag-

netization; D is the dispersion coefficient; N and S are the cubic and quintic nonlinearity

coefficients, respectively; t is the ‘temporal’ evolution coordinate; x is the ‘spatial’ coordinate

of propagation boosted to the group velocity of the solitary wave envelope; and L, C, and

Q are the linear, cubic, and quintic gains (losses) if positive (negative). All parameters are

taken to be real as the complex nature of the coefficients is explicitly accounted for in Equa-

145



tion 7.1. The local intensity of the magnetization amplitude is given by |u(x, t)|2. The norm

and energy at a given time, t, are defined as

‖u(t)‖2 =

∫ L

0

dx |u(x, t)|2, (7.2)

and

E(t) =

∫ L

0

dx

[
D

2

∣∣∣∣∂u(x, t)

∂x

∣∣∣∣2 + (N + S|u(x, t)|2)|u(x, t)|2
]
, (7.3)

respectively, where the integrals are taken over the length or circumference, 2πR, of the

feedback ring. All norms, intensities and energies given within figures are scaled by ||u(0)||2,

max [|u(x, 0)|2] and abs [E(0)] respectively where t = 0 corresponds to the initial condition

used during numerical simulation. Numerical values given within the text are not scaled.

The specific choice of initial condition will be discussed later in this section. A thorough

discussion of the GLNLS and its application to spin wave dynamics in active magnetic

feedback rings may be found in a previous exploratory and experimental chapters [33, 34].

Earlier numerical investigations of the GLNLS ignored the periodic nature of amplifi-

cation and losses present within active magnetic feedback rings in favor of investigating

dynamical patterns on scales much longer than a single round trip. The numerical work

presented here, as previously discussed, will explicitly account for both the instantaneous

periodic linear amplification present within the electronic feedback loop and the sustained

losses experienced by spin waves propagating through a nonlinear, dispersive YIG waveguide.

This is accomplished numerically via a renormalization of the wavefunction, u(x, t), every M

timesteps such that |u(Tn(M+1))|2 = αe2LM |u(TnMn)|2 where α is a renormalization constant

and Mn corresponds to the nth round trip around the feedback ring. The renormalization

constant is defined such that α = 1 corresponds to a direct compensation of the linear loss

experienced by a bright solitary over a single round trip, given explicitly as e−2LM . We note

that choice of α > 1 (α < 1) will be numerically unstable without the presence of non-zero

nonlinear loss (gain) terms in the GLNLS. We further define a special case of α = 0 such

that |u(nM)|2 = |u(0)|2 for any n, corresponding to an enforced conservation of the norm
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regardless of which loss/gain terms are active within the GLNLS. In the absence of nonlinear

terms α = 1 and α = 0 represent the same periodic renormalization scheme.

We identify four potential numerical schemes, listed in order of increasing computational

complexity, which mimic the experimental increasing of ring gain:

1. In a forced conservation regime, α = 0, losses, L, C and Q, are increased.

2. Using forced conservation dispersion, D, is increased at fixed losses.

3. Under forced conservation and fixed GLNLS parameters the initial condition ampli-

tude, |u(T0)|2, is increased.

4. With fixed losses the renormalization constant, α is increased incrementally.

The work presented here will explore the simplest numerical scheme (1) with only linear

loss, L, active. We considered increasing linear losses, under forced conservation, from zero

to the value corresponding to a five order of magnitude decrease in the norm of the magneti-

zation wavefunction per round trip. The latter value was chosen explicitly as an excessively

high limit. As linear loss is increased the effective relative magnitudes of dispersion and non-

linearity within the GLNLS, see Equation 7.1, will change dramatically over a single round

trip. This may drives dynamical behaviors not observable in the continuum approximation.

Numerical scheme (2) could be viable as dispersion has been previously posited to in-

crease with ring gain in active feedback rings [25]. Dispersion jumps and ramps are a well

studied driver of dynamical wave behaviors including fractal development. Scheme (3) mim-

ics increasing ring gain via an increased initial condition amplitude in the simpler numerical

environment of forced conservation. The most directly physically analogous scheme, (4),

involves eight free parameters (L,C,Q,D,N ,α,|u(T0)|2,M) and may only be considered in

extremely limited contexts where the parameter space is reduced via direct fitting to exper-

imental results. A general evaluation of scheme (4) is not realistic owing to finite time and

computational resources.
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All simulations of the CQCGL were performed using adaptive time step Cash-Karp

Runge-Kutta for temporal evolution and pseudospectral techniques for spatial propagation

as discussed in Chapter 4. Periodic boundary conditions were used to numerically mimic

propagation around a ring. Note, a complete discussion on numerical convergence for com-

plex dynamics may be found in chapters 4 and 5. Each simulation began as a bright soliton

initial condition obtained via imaginary time relaxation [102], the ground state solution to

the GLNLS with S, L, C, and Q set as zero, with |u(x, t)|2 < 1. This IC corresponds ex-

perimentally with a stable bright soliton circling within a YIG strip-based active feedback

ring. This solution is analogous to a soliton train. Dynamical results were generated by

driving this bright soliton initial condition out of equilibrium via numerical propagation un-

der the influences of non-zero gain or loss terms and periodic renormalization under scheme

(1) above. This is a process analogous to active feedback ring experiments where gains are

increased beyond those which support stable bright soliton trains [14, 23, 25, 31, 103].

Experimentally a time series is recorded at the detection transducer with the full wave-

form being captured once a round trip after the signal has propagated a length d between

the transducers and passed through the electronics loop. The length of the ring therefore, `,

is taken to be the transducer separation, d, as the propagation delay is orders of magnitude

smaller than the round trip time, Te < T . Simulations explicitly model the entire feedback

loop at the group velocity of the waveform. A time series may be reconstructed from nu-

merical data by concatenating the simulated waveform after a temporal evolution of T or a

spatial evolution of d = `. In this work we adopt the former convention to ease the direct

comparison of simulations to the power vs. time data often observed experimentally for spin

waves in magnetic thin films. Such a reconstructed time series is labeled uts(t) throughout

the chapter. A time series of solitary wave peak intensity at successive round trips is also

useful in studying modulating single solitary wave trains and is defined by

|upeak(t)|2 = |max [u(x, nT )] |2, n = 0, 1, ..., NRT, (7.4)

where T is the round trip time and NRT is the total number of round trips.
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Physical GLNLS parameter values are obtained by fitting this initial condition to exper-

imentally observed bright soliton train conditions. This choice of units also fixes the ratio

of N/D used in generating initial conditions, while the amplitude of N and D dictate the

simulation timescale. We assumed that the dimensionless spin wave intensity is directly pro-

portional to the spin wave power, |u(x, t)|2 ∝ Pout, as experimental measurements of voltage

are taken across a diode with quadratic behavior and are generally taken to be proportional

to power. Values typical for a soliton fractal experiment are T = 165 ns, the round trip

time; d = 0.55 cm, the transducer separation; Te = 10 ns, the electronic loop propagation

time; Vg = d/(T − Te) = 3.5 × 106 cm/s, the group velocity; N = −9.24 × 109 rad/s, the

cubic nonlinearity; and D = 510 cm2/s, the dispersion. Using these parameters one finds

[t] ≈ 25 ns where t is the scaled temporal unit used in simulations. This relation may be used

to immediately transform code values for L, C, Q and S, which share units of inverse time,

to physical values. For example the largest studied linear loss is L = t−1 ≈ 0.1 ns−1 which

matches the order of experimentally approximated linear losses for magnetostatic backward

volume spin waves in YIG thin films [103]. Active feedback ring experiments indicate that

nonlinearity and dispersion are the dominant sources of envelope shaping for chaotic spin

wave solitons and that the losses present in the ring are fully compensated for by the ampli-

fier. This imposed an important constraint on modeling: the coefficients N and D should

be orders of magnitude larger than losses, L, C, and Q.

Over 111k node hours were used to execute over 6000 unique numerical simulations and

convergence studies generating 2.5 TB of data. The analysis of this data is presented in the

following sections where we examine two mechanisms for generating increasing solitary wave

complexity and ultimately identify soliton fractals.

7.2.1 Complex Wave Dynamics

Four distinct dynamical regimes were identified for bright solitary waves evolved under

enforced conservation at fixed dispersion (linear loss) as spin wave power was increased:
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1. Periodic Beating: The domination of a single principle eigenmode such that the soli-

tonic train nature of the signal is either not fully developed, or drowned out.

2. Multi-Periodic Modulation: The modulation of the soliton train envelope by one or

more non-commensurate frequencies of equal power.

3. Periodic Modulation: The modulation of the soliton train envelope by one or more

commensurate frequencies.

4. Higher Order Solitons: 2nd order and higher order solitons are reached at sufficient

spin wave power.

Figure 7.5: Regions of distinct solitary wave dynamics with increasing ring gan. Percent
envelope modulation, defined in Equation 7.5, shows four distinct dynamical regions as
spin wave power is increased within the ring. The regions are identified from left to right
as breathing (red, forward hatch), multiperiodic modulation (magenta, flat hatch), period
modulation (blue, back hatch) and 2nd order dynamics (black, vertical hatch).

These regions are shown in Figure 7.5, which shows the percent modulation, in log scale,

of the solitary wave envelope (defined as the maximum spin wave power within the ring for

each round trip). If En is the spin wave envelope at round trip n then the percent modulation

is defined as

%std = Log

(
stdev ({Ei})
mean ({Ei})

)
. (7.5)

The percent modulation does not provide for the unique identification of solitary wave

dynamics, but its trends strongly identify regions of dynamical behavior. The transitions
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between dynamical regions is indicated by discontinuities in the curve. In the language of

dynamical systems Figure 7.5 is often referred to as a bifurcation diagram, a figure which

shows the qualitative changes in dynamical behaviors as one smoothly adjusts a system

parameter (a bifurcation). The parameter being adjusted here, linear loss, impacts not only

the amplitude of the periodic renormalization but also introduces a time dependence to the

effective strength of the local nonlinearity. Adjustments to spin wave power may also directly

impact the effects or presence of three and wave mixing on dynamics, which can result in

effective modifications to multiple parameters in the GLNLS. The global and systemic effects

of this parameter as well as our fundamental lack of knowledge on the underlying phase space

of the system prevents any serious attempts at classifying the nature of these bifurcations.

Our choice of language for these dynamical regimes is intentional, as we wish to focus on

the distinct dynamical behaviors identifiable in these regions, rather than imply any formal

application of bifurcation theory.

The results presented here will explore the simplest numerical schemes (1) with only

linear loss, L, active. We considered increasing linear losses, under forced conservation, from

zero to the value corresponding to a five order of magnitude decrease in the norm of the

magnetization wavefunction over a single round trip. The latter value was chosen explicitly

as an excessively high limit.

A strong correlation exists between the effects of dispersion and linear loss under enforced

conservation. The same progression of dynamical behaviors may be observed by either

increasing linear loss or linear gain. Figure 7.5 shows a semilog % standard deviation curve

as linear loss is increased at a fixed dispersion. The plot illustrates the sharp transitions

at the dynamical behavior boundaries. Examples of each dynamical behavior are shown

in Figure 7.6, with their relative positions on the loss vs % standard deviation plot being

indicated by their subplot number.

This relationship was further established by a study of 1315 simulations which explored

40 distinct dispersion values. By isolating the location of the false plateau as a function of
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Figure 7.6: Examples of numerically identified behaviors in the iterative model Each of the
dynamical regions shown in Figure 7.5. In each case the top plot is the spin wave envelope,
and the bottom plot is a spatiotemporal plot of spin wave power over the same round trips.
Of particular interest is example (4), which demonstrates a stable soliton train under periodic
amplification and loss.

L and D a direction relationship was found for an effective loss:

Lef = (−L+ 0.11303)
√
D, (7.6)

where L and D are the linear loss and dispersion as given in the GLNLS, 7.1, and Lef is the

new effective loss. The false plateau transition was found to occur at Lef = 0.0714 and the

transition from multi-periodic modulation to beating occurs at Lef = 0.0917. The family of

curves created at fixed Lef and varied D, L are expected to be statistically identical outside

of a rescaling of |u0|2 and M .

The dynamical regions identified are shown in Figure 7.6 and are, from left to right,

(1) breathing, (3) multiperiodic modulation, (5) periodic modulation, (6) 2nd modulation.

The dynamics identified in Figure 7.6 as (2) and (4) are the transition from breathing to

multiperiodic modulation and a no-modulation solution, respectively. Each dynamic is shown

in Figure 7.6 according to their label in Figure 7.5 and contain two plots. The top plot is

the spin wave envelope, En, and the bottom plot is a spatiotemporal plot of the same round

trips. One can easily observe the multiperiodic and periodic modulation in the spin wave

envelope plots of (3) and (5). Also of note is the characteristic 2nd order soliton modulations
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in the spin wave envelope plots of (6), with peak modulations of over 50%.

Of particular interest is dynamic (4), which is a stable soliton train existing in an envi-

ronment of sustained loss and periodic amplification. Further investigation has shown that

for any given choice of D,N and L there exists a bright soliton solution given by,

u(x, t) =
1

2

√
−N
D0

Sech

(
1

2

−N
D0

x

)
expitω, (7.7)

so long as D0 > D, or equivalently that N0 < N . We note this is the ground state solution

to the CCQGL equation with no loss terms, and a normalization of 1. We may further

generalize this solution to

u(x, t) = u0
1

2

√
−N
D0

Sech

(
w0

1

2

−N
D0

x

)
expitω, (7.8)

and identify a family of solutions as long as we do not impose a normalization constraint

of 1. This generalization allows us to systematically increase soliton width while holding

soliton height constant in a way which may be rescaled from the CCQGL.

We note that the solution given by Equation 7.7 is a bright soliton solution which is

wider and shorter than the one we would expect to propagate through our lossy system

with parameters D, N , and L. We find that the presence of linear loss and a periodic

amplification acts to compensate the system’s lack of dispersion directly. Indeed for fixed

D0 we can identify a linear loss, L, which produces the no-modulation solution for any

0 < D < D0. A general solution for any D0 and N is being sought. We also suspect a family

of no-modulation curves exists if one varies u0 and w0 within Equation 7.8. The solution

given by Equation 7.7 is unique as long as one imposes a normalization condition.

7.2.2 Spectral Fractals

The identification of the false plateau, discussed in section Section 7.2.1, enables the

study of spin wave dynamics on active feedback rings using a novel initial condition in

which the periodic nature of the amplification and the sustained film losses are explicitly

accounted for. Previous numerical works which examine perturbing bright soliton trains out
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of equilibrium, which has been done experimentally in the observation of chaotic solitons

and soltion fractals, used the ground state bright soliton solution of the NLS as a starting

point. The false plateau provides a bright soliton train initial condition which is explicitly

grounded in the underlying dynamics of active feedback rings. Presented here are the first

numerical results using the false plateau initial condition, which enabled the characterization

of a perturbation scheme to generate soliton fractals.

Experimentally a stable soliton train is established by tuning ring gain until a single

bright soliton circulates the ring. This initial stage is shown experimentally and numerically

in Figure 7.7 in the left and right figures, respectively. Dynamics at the envelope, train

and single round trip scales are shown as one moves down a column. The ring gain is then

increased until the power level reaches a critical threshold, given by 2 × |U0|2 and a 2nd

order soliton is generated within the feedback ring. This dynamic is characterized by a

periodic modulation of the envelope intensity with an amplitude of 0.5 of the normalized

power. The ring gain needed to produce this behavior is significantly higher than that used

to generate the false plateau. Finally the ring gain is increased slightly, yielding a second

order modulation on the original periodic modulation. These stages are evident in the central

and right columns of both subplots in Figure 7.7.

Numerically we may immediately identify the false plateau by solving for the appropriate

Leq, and the second order soliton may be generated by using a sufficiently amplified initial

condition. To generate the second order modulations we find two requirements: (1) disper-

sion must be increased and (2) the magnetization amplitude must be increased. We note

that a instantaneous jump in dispersion is not sufficient to generate fractal structure in the

spectra, but that linear ramps occurring over 5, 000 to 10, 000 round trips (on the order of

ms) produces the desired structure. We find that dispersion ramps on the order of 5% to

10% are sufficient to introduce additional structure. A similar jump in amplitude was also

found to be sufficient. Larger jumps in either amplitude or dispersion were too destructive

to the underlying dynamic and drove the system out of modulating soliton regimes. The
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Figure 7.7: Numerical generation of soliton fractals. A proposed explanation for the gen-
eration of soliton fractals. From left to right we have (1) the no-modulation bright soliton
train, (2) the 2nd order soliton, and (3) the grand-daughter fractal. The top figure is a time
series for that solution with a inset showing the solitonic nature of the solution. The bottom
figure is the powerspectrum with an inlet showing three 10x amplifications of the principle
peak. As one moves from left to right the development of soliton fractals is evident.

appropriate ramp values and initial condition is the subject of ongoing work, as the second

order modulations so far produced numerically do not quantitatively match the temporal

modulations observed experimentally in real space.

Using the no-modulation initial condition defined in Equation 7.7 and Equation 7.8 we

were able to quantitatively reproduce soliton fractal breathing using the CCQGL equation

under a forced conservation regime, as described earlier. This initial condition is the fractal

generator, and is shown in Figure 7.7 (numerical). The daughter is identified as a 2nd order

soliton, which can be generated by increasing the amplitude of the initial condition by 200%.

The daughter is shown again in Figure 7.7 as the middle column, and may be identified by

the periodic modulation of the soliton train with a modulation amplitude of at least 50%.

The granddaughter is observed as an additional spatial modulation of the 2nd order soliton.

We generate the granddaughter numerically by increasing the initial condition amplitude

beyond 200% by an additional 5 − 10% or by increasing the soliton width by a similar

amount. The granddaughters are shown again in Figure 7.7 in the right most column.
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We note the strong qualitative agreement in the magnitude and period of the additional

modulation which shows a 20% modulation from peak power and a period of two 2nd order

soliton modulations. This scheme produces prefractal structure in frequency space identical

to that observed experimentally.

We note that the presence of periodic amplification was necessary to produce second

order prefractal structure in frequency space. Perturbing a 2nd order bright soliton within a

conservative NLS did not replicate these results. We also note that increasing the amplitude

of the initial condition is equivalent to a rescaling to a lower dispersion within a conservative

NLS. The increase of dispersion with increasing ring gain is posited to counteract this effect,

allowing the formation of 2nd order solitons at amplitudes lower than 200% of that observed

at the false plateau. Experimentally we observed an increase of 154% between false plateau

and the periodic modulation, whereas an amplitude increase of only 115% was observed

between first and second order modulation [25].
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CHAPTER 8

CONCLUSIONS

We reported on the development, implementation and experimental verification of a

model for studying the complex dynamical behaviors exhibited by spin wave envelope soli-

tary waves in active magnetic thin film-based feedback rings. This model was numerically

evaluated under two distinct schemes corresponding to: (1) continuum approximation where

forces acting on the SWEs was taken to be averaged over many round trips; and (2) an

iterative approach where each round trip was explicitly modeled.

Initial numerical work under the continuum approximation identified nine dynamical

behaviors including four distinct examples of dynamical pattern formation. Until that work

no one had predicted long time dynamical behaviors at all, or explained previously observed

long time complex soliton wave train modulations.

The clean experimental realization of these four numerically predicted classes of dy-

namical pattern formations was then demonstrated for bright solitary waves. We highlight

that the above numerical exploration involved an extraordinarily broad parameter space

search which spanned a minimum of seven orders of magnitude for linear, cubic and quintic

gain/loss terms and five orders of magnitude for an additional quintic nonlinearity. It is in-

deed remarkable that we experimentally realized each of those predicted classes of dynamical

pattern formation.

We further reported on the first experimental observation of the self-generation of dark

solitary waves under attractive nonlinearity, and the first known observation of long lifetime

dynamical pattern formation for the same. Dark solitary waves are traditionally believed

to occur only for defocusing, or repulsive nonlinearity. We note that it is also possible to

observe dark solitary waves in spin wave systems with attractive nonlinearity if one injects

carefully tuned carrier wave signals. Our work has shown that a wide variety of dark soliton
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behaviors appear organically via self-generation for purely attractive nonlinearity without

any external potential and without any external sources.

Finally, motivated by the destruction of the underlying stable bright solitary wave train

for chaotically modulating solitons at high gain we developed and evaluated a numerical

scheme for the CQCGL equation which explicitly modeled each round trip. Analysis of this

model yielded a robust solution for the location of a stable bright solitary wave train for

any given level of ring dispersion and linear loss. This solution class was used to propose a

mechanism for the development of bright soliton fractals.

We highlight that most common and widely used model in the literature for these sorts of

phenomena, the nonlinear Schrödinger equation, failed to describe fractals, dynamical pat-

tern formation, multi-periodic solitons, and many other emergent behaviors in spin waves

with gain and loss. Further, the vast literature on nonlinear optics and nonlinear hydrody-

namics have not produced a viable model for the behaviors we have observed and predicted

in the gain-loss context. Most literature in these fields was previously focused on conserva-

tive systems, in particular the nonlinear Schrodinger equation, Korteweg-de Vries equation,

and sine-Gordon equation. Here we have shown that stable and long-term dynamical pat-

tern formation ranging from multi-periodic solitons to intermittency to chaos and strange

attractors after transients die away, are well-described by the relatively simple cubic-quintic

complex Ginzburg-Landau equation.

Thus we have established a new nonlinear paradigm and demonstrated that experiments

spanning numerous physical system may be well served to make use make use of this simple

model, including e.g. Bose-Einstein condensates with attractive interactions, where a host

of models in the literature have proven unable to match experiments. Additionally, our

experimental verification of these dynamical regimes show that such ideas are not simply

theoretical but in fact occur in the real physical world and are observable in an approachable,

tunable spin wave system which matches the conditions of many other real-world physical

systems.
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Our research argues for the use of the CQCGL and AFRs as approachable toy systems for

the study of fundamental nonlinear dynamics with broad applications across numerous dis-

tinct fields of physics. This includes important open questions such as the possible extension

of Kolmogorov-Arnold-Moser theory into open systems. The CQCGL has been totally vin-

dicated as a model for complex dynamical behaviors in such systems, and therefore provides

a suitable model for examining the effects of perturbing away from integrability for several

distinct forms of gain and loss. The CQCGL and AFRs also provide a means to study these

fundamental questions in quasi-conservative regimes where perhaps integrability, in average

sense, is preserved.

More approachable areas for additional research include: (1) Numerical explorations of

the CQCGL under repulsive nonlinearity, and more generally, the explanation and simula-

tion of dark solitary dynamics under both repulsive and attractive nonlinearities. There is

no reason not to expect cross-over effects such as dark solitary wave fractals and chaotic dark

solitons. (2) Analaytical (or numerical) work to see if the robust location of stable bright soli-

ton trains under arbitrary dispersion and linear loss for the iterative model can be expressed

in terms only fundamental and scaling units. (3) Further exploration of the iterative model

to see if higher-order chaotically modulating soliton can be identified numerically and tuned

via ring gain. (4) Further experimental explorations of solitary wave dynamics in regimes

where three-wave mixing is not forbidden. (5) Numerical and experimental identification of

complex dynamical behaviors for forward volume spin waves where the signs of dispersion

and nonlinearity are reversed. The interactions of those forces with gains and losses may

provide novel examples. (6) Evalutions of the iterative model under forced conservation with

nonlinear losses. (7) Collaborations with groups studying analog systems to experimentally

identify predicted dynamical behaviors.
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