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ABSTRACT

We report the development, implementation and complete experimental vindication of
a model for complex dynamical behaviors in spin wave envelopes propagating in nonlinear,
dissipative driven, damped systems. These backward volume spin waves evolve under at-
tractive nonlinearity in active magnetic thin film-based feedback rings where the major loss
mechanisms present in the film are directly compensated by periodic linear amplification.
Such a quasi-conservative evolution allows for the self-generation of spin waves and the ob-
servation of long-time behaviors O(ms) which persist for hundreds to tens of thousands of
the fundamental round trip time O(100 ns).

The cubic-quintic complex Ginzburg-Landau equation is developed as a predictive, de-
scriptive model for the evolution of spin wave envelopes. Over 180000 nodes hours of com-
putation are used to execute more than 10000 simulations in order characterize the model’s
six dimensional parameter space. This exploration of parameter space was conducted in full
generality, spanning a minimum of eight orders of magnitude for each of three loss terms and
five orders of magnitude for higher order nonlinearities. Nine distinct classes of behavior were
identified, including four categories of dynamical pattern formation. This work contains the
first predicted long time dynamical behaviors for spin waves and analogous physical systems.

All four categories of dynamical pattern formation that were identified numerically were
then cleanly realized experimentally. Additionally we observed the first known examples
of dynamical behaviors for dark solitary waves self-generated under attractive nonlinearity.
Our experimental verification of these dynamical regimes show that such ideas are not simply
theoretical but in fact occur in the real physical world and are observable in an approachable,
tunable spin-wave system which matches the conditions of many other real-world physical
systems. It further established that the relatively simple cubic-quintic complex Ginzburg-

Landau equation provides a highly accurate, effective, and predictive description of complex
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spin wave dynamics and should replace the commonly used nonlinear Schrodinger equation
for these systems.

Finally, simulations which model the ring dynamics on the scale round trips were con-
ducted using 130000 node hours over 3000 unique numerical simulations. This yielded a
robust general solution for stable bright solitary wave trains evolving under periodic ampli-
fication which is the numerical equivalent to the bright solitary wave train initial condition
perturbed experimentally to generate soliton fractals and chaotic solitons. Using this novel
dynamical equilibrium as an initial condition we developed a mechanism for the generation
of bright soliton fractals.

Our experimental and numerical works on complex spin wave envelopes in magnetic
thin films suggest these systems provide for an approachable, table top, experiment for
the study of fundamental nonlinear wave physics. The cubic-quintic complex Ginzburg-
Landau model further provides for means for both prediction and verification of results. The
physics reported here are expected to be wildly applicable to related fields of physics that
are described by isomorphic forms of our model.  This includes fields such as nonlinear

optics, nonlinear hydrology and Bose-Einstein condensation.
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the fool on the hill
sees the sun going down
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see the world spinning round.

- Paul McCartney
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CHAPTER 1
MOTIVATION AND CONTEXT

We report on the development, evaluation, and experimental vindication of a driven
damped model for spin wave envelopes in magnetic thin film-based active feedback rings
(AFR); a problem with applications across an extraordinary range of physical systems and
fundamental nonlinear dynamical studies. Such systems have typically been modeled by an
integrable nonlinear Schrédinger equation (NLS) derived either via a slowly varying envelope
approximation or through conservation considerations and a Hamiltonian formalism on an
infinite and lossless thin film [1-3]. These conservative models, however, are fundamentally
unable to reproduce the complex and chaotic dynamical behaviors that have been experi-
mentally observed in magnetic thin films over the past two decades. Previously observed
dynamics include bright and dark envelope solitons [4-10, 10-19], soliton trains [20, 21],
mobius solitons [22], Fermi-Pasta-Ulam and spatial recurrence [23, 24|, soliton fractals [25],
random solitons [26], chaotic spin waves [27-29], multiple solitons [30], and chaotic soli-
tons [31, 32].

Most of these phenomena were observed on AFRs as such feedback geometries are ubiqui-
tous across science and physics in general. Rings are commonly used to study wave dynamics
when one seeks to study resonant phenomena such as quantized wavenumber, periodic pump-
ing, self-generation. AFRs, so-called for the presence of periodic linear amplification, allow
for the direct compensation of major loss mechanisms present within a propagation medium.
This permits one to drive a system into quasi-conservative regimes where the major loss
mechanisms are directly compensated on the time scale of a single round trip (O(100 ns).
This enables the observation of dynamics on scales of several to tens of thousands of round

trip times O(ms). Dissipation would otherwise prohibit dynamics with lifetimes of this order.



A driven, damped model is necessary to account for both the periodic nature of amplifi-
cation within feedback rings and the sustained losses, nonlinearities and dispersions present
within magnetic thin film propagation media. To date, significant research efforts have been
made into studying solitons in dissipative physical systems governed by analogous models.
A growing body of experimental evidence indicates these systems exhibit strong saturable
gains [5, 28]. These considerations, along with an overall desire to develop the simplest model
which nonetheless reproduces observed experimental results, suggests that a suitable model
may be generated via the phenomenological introduction of gain and loss terms to a standard
NLS. This driven damped model, to be called the cubic-quintic complex Ginzburg-Landau
equation (CQCGL), was developed and evaluated numerically to determine its merit both
as a descriptive and predictive modeling equation for the study of spin wave envelope soliton
trains driven from equilibrium in active magnetic thin film-based feedback rings.

Significant work, including over 300,000 node hours of computation generating 10 TB of
data, have been completed to verify the efficacy of the CQCGL within the context of mag-
netic thin film-based active feedback rings. This includes the modification and verification
of existing NLS evolution codes to include gains and losses as well as the development of
scripts for efficiently executing this code on high-performance computing (HPC) environ-
ments. HPC was necessary to fully examine the dynamical behavior of solitary waves driven
out of equilibrium across a massive six or higher-dimensional parameter space. Robust pro-
cedures for post-processing, data management, and the rigorous quantification of complex
dynamical behaviors have also been established. This work has resulted in three collabora-
tive publications with an experimental research group at Colorado State University as well
as two distinct numerical schemes [31, 33, 34].

This new model has wide applications as isomorphic forms of the nonlinear Schrodinger
equation are used to simulate nonlinear phenomena across many distinct physical systems.
This includes Ginzburg-Landau type equations that describe the envelope evolution of mode-

locked lasers, and superconductivity [35]; the cubic nonlinear Schrodinger equation treats



deep water waves [1] and the dynamics of spin wave envelopes in magnetic thin films [36, 37];
a driven damped nonlinear Schrédinger equation models exciton-polariton and magnon Bose-
Einstein condensates (BECs) [38]; and the Gross-Pitaevskii equation models the mean field
of atomic and molecular BECs [39, 40].

This thesis is organized as follows. In Chapter 2 the necessary background on spin waves,
thin films and AFRs will be introduced. The derivation and motivation behind the cubic-
quintic complex Ginzburg-Landau equation will be given within Chapter 3. The numerical
and analytical methods used to generate and quantify the complex dynamical behaviors
reported in this work are introduced in Chapter 4. A numerical exploration of the CQCGLs
parameter space is presented in Chapter 5 and the experimental verification of those results
is given in Chapter 6. A summary of unpublished work including the development and
evaluation of an iterative numerical scheme for the GLNLS is given in Chapter 7. Finally, a

summary of results and an outlook on future work are given in Chapter 8.



CHAPTER 2
OVERVIEW OF SPIN WAVES: EXPERIMENT AND THEORY

All of the work presented in this thesis is focused on the excitation, detection or numerical
simulation of spin wave envelopes (SWEs) propagating in active magnetic thin film-based
feedback rings. This chapter introduces the underlying and important physical features of
these waves and the apparatus and film in which they propagate. The information presented
in this chapter is influenced significantly by Stancil’s Theory of Magnetic Waves, MZ Wu's
Nonlinear Spin Waves in Magnetic Film Feedback Rings and by PhD theses from MZ Wu’s
group from Scott, Wang and Janantha[2, 41-44]. Those works, and the references therein,

are highly recommended for additional reading on the topic.
2.1 Physics of Spin Waves

Spin waves are fundamentally an excitation of a collection of magnetic moments which
may then propagate through a material. These waves are called spin waves due to the fact
that magnetic moments in most materials are primarily determined by the angular momenta
of electron spins. Such moments precess if exposed to a fixed external magnetic field. This
precession is described by the magnetic torque equation first introduced by Landau and
Lifshitz [45],

% = —|7v[M x H, (2.1)
where here M is the total magnetization vector, H is the external magnetic field and ~ is the
absolute electron gyromagnetic ratio. This type of precession is diagrammed in Figure 2.1
where a magnetic moment M precesses around an external magnetic field H applied in the z
direction (up). The z-component of the magnetization may be written as M, = vM?2 — m?

and here m is the variable component of the precession given by the sum of the x and y

components. We note that if the dynamical component is circular, or m(t) oc exp™! where



w is the frequency of precession, then it follows from Equation 2.1 that the magnitude of the

magnetization, |[M|, is constant.

Figure 2.1: Diagram of Magnetic Moment Precession where a magnetization M is seen
precessing about an external field H applied in the z direction. The z component and
variable component of the magnetization are shown as M, and m, respectively.

A precession of coupled magnetic moments which propagate within an ordered magnetic
medium is termed a spin wave. These coupled moments precess at the same frequency, w,
but typically out of phase, and interact with their neighbors through either magnetic dipolar
or exchange effects. Spin waves which are dominated by magnetic dipolar interactions are
called magnetostatic spin waves or dipolar spin waves and spin waves which are dominated by
exchange interactions are called exchange spin waves. Magnetostatic spin waves are the focus
of this work and will be discussed in further detail below. A diagram of a spin wave, given by
a collection of coupled magnetic moments, is shown in Figure 2.2 where the wavelength A and
propagation vector k are illustrated by arrows. This is a typical example where neighboring
magnetic moments are coupled causing them to precess at a fixed frequency but out of phase.

An initial analysis of spin wave dynamics may be made by solving the magnetostatic
Maxwell equations within an infinite arbitrary magnetic material. These may be arrived

at by applying the limit where dipolar fields dominate the coupling between spins and the
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Figure 2.2: Diagram of a Spin wave where nearby magnetic moments coupled via exchange
or magnetic dipolar interactions precess at a fixed frequency but slight of phase with their
neighbors. The wave length A\ and propagation vector k£ are shown.

exchange interaction can be ignored, given by kg < k < m/a where a is the spacing between
spins in the material and ko ~ w(k)/c and c is the speed of light. Under this approximation
only the slow waves which are strongly coupled to the magnetic material are considered and

fast electromagnetic waves that have weaker coupling and vastly lower wavenumbers at the

same frequency are ignored. The magnetostatic approximation to Maxwell’s equations are

given by
Vxh=0,
V-b =0,
V X e = iwb.

Here h is the variable component of the full magnetic field, H = HyZ + h and H, is the
external field amplitude along the Z direction. The associated variable electric field is given

by e and b and h are related by
b=pg-h, (2.5)
where @, the permeability tensor, is defined by
= (T+%). (2.6)

Here I is the unit matrix and X is the magnetic susceptibility tensor. The magnetostatic

Maxwell equations are derived assuming constant tensors and uniform plane wave solutions:



{h,e} x exp (—k - r —iwt). The permeability tensor in the absence of exchange interaction

and anisotropy is

1+x —iw 0
p=pu| ik 1+x 0f. (2.7)
0 0 1

Here x = wywh/(wi — w?) and k = wyw/(wf — w?) and the characteristic frequencies, wy

and wy are given by

WH = |7|H

where v is the absolute electron gyromagnetic ratio and py is the permeability of free space

and M is the saturation magnetization. Equation 2.2 suggests we may define a scale potential
h=-V. (2.9)
Combining equations 2.3, 2.7, and 2.9 one may obtain a differential equation for the magne-
tostatic scalar potential
(L4 X) (Ona¥ + Oyy¥) — ik0:0y1) + ik0y0uth + 0.0 = 0,
assuming 1 is a well behaved function we have d,,1 = 0y, and may write
(14 %) (g:f + a;;f) + (Z:f =0, (2.10)

which is the well known Walker equation that describes magnetostatic modes in homogeneous

magnetic media, and we have assumed y and k are independent of position.
Assuming plane wave solutions, 1) oc exp®™, to Equation 2.10 we may derive the dispersion

relation for an unbounded magnetic sample without exchange interactions
(1+x) (k2 +E) + k2 =0. (2.11)
Ultimately yeilding an expression for the spin wave dispersion relation

w® = wy (wy + wysin® (9)) (2.12)



where one makes use of the magnetic susceptibility for an unbounded magnetic sample in
the absence of exchange interactions and we have 6 as the propagation angle with respect
to 2. Note there are two limiting cases for # = 0 and 6§ = 7/2 corresponding to an external
field perpendicular and parallel to propagation. It is also worth highlightning that the
frequency degeneracy in Equation 2.12 is completed addressed by including finite boundaries
or exchange interaction. Both are considered below. Equation 2.12 may also be found by
looking for nontrivial solutions of the constitutive relationship between m and h in the
magnetostatic limit, or by solving the maxwell boundary problem in a finite sample for the
so called uniform precession modes that are characterized by a magnetization that precesses

in-phase throughout the entire sample.
2.1.1 Magnetostatic Approximation

The magnetostatic approximation warrants further discussion before we move forward,
as it underpins all derivations present in thesis including that of our models. If one fully
treats a plane wave propagating parallel to an applied field within a magnetic material
you arrive at two sets of propagating waves with opposite polarization. The polarization
which matches the natural precession of the magnetization, given by Equation 2.1, interacts
strongly with the medium while the opposite polarization does not. The functional result is
these two sets of waves can have vastly different wavenumbers for a given frequency, or vastly
different frequencies for a given wavenumber. The waves that couple with the medium are
usually called slow spin waves while the waves which do not are called fast electromagnetic
waves. Qualitatively the magnetostatic approximation is the process of ignoring the fast
electromagnetic waves in favor of the slow spin waves. This is justified since at a given
wavenumber their excitation frequencies can vary by orders of magnitude.

More formally if we write down Maxwell’s equations for a uniform plane wave propagating

within a magnetized medium at any arbitrary direction we arrive at



kim — kk - m

h = , (2.13)
k? — k2
wipk X m
0
k2k
V xh= ﬁ (2.15)
0

In the limit of |k| > |ko| that Equation 2.13 remains finite so long as k - m # 0 since
there are terms quadratic in &k in both the numerator and denominator. On the other hand
equations 2.14 and 2.15 decay as 1/k in this limit. The application this limit, to first order,
yields the magnetostatic approximation to Maxwell’s equations given in equations 2.2, 2.3
and 2.4. We note both that this approximation is also valid in the |ko| > |k| limit and if
k - m = 0 since both Equation 2.13 and Equation 2.14 still vanish for large k.

As mentioned earlier dipolar spin waves or magnetostatic spin waves propagate when the
coupling between spins is dominated by dipolar fields rather than the exchange interaction.
Again, this given by the limit kg < k < 7/a where a is the spin spacing. This is most readily
visualized if one solves the full, non-magnetostatic Maxwell’s equations to find a version of
the spin wave dispersion, Equation 2.12, where the effects of exchange are included. This is

given by,
w® = (wi + wadexk?) (Wi + W (Aexk® +sin?6)) | (2.16)

where again 6 is the propagation angle with respect to z and A\ is an exchange constant.
As Aexk? — 0 we return to the expression for dispersion derived from the magnetostatic
approximation, Equation 2.12. The exchange term A.k? will begin to impact dispersion as
the magnitude of k increases.

This is shown in Figure 2.3 where the # = 7/2 is shown as dashed red and § = 0 as
solid blue. We set wy/wy = 0.5 and use Ao,y = 3.2 x 107 2rad/cm, the value measured
for YIG films at microwave frequencies. We see that frequency does not develop a strong

wavenumber dependence until well after & = 10* rad/cm. The region without wavenumber
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Figure 2.3: Effect of exchange interaction on spin wave dispersion where the case of § = 0
is shown in solid blue and 6 = 7/2 as dashed red. In both cases the frequency does not
develop a strong dependence on wavenumber until after & = 10* rad/cm, well beyond where
the magnetostatic approximation remains valid. Spin waves below this threshold are dipolar

spin waves and those in the exponential region are exchange spin waves. wy/wy = 0.5 and
Aex = 3.2 X 107'% rad/cm for YIG films.
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dependence, A\ k? < 1, is where dipolar spin waves or magnetostatic spin waves propagate,

and exchange spin waves propagate in the exponential tail.
2.2 Spin Waves in Magnetic Thin Films

Consider now a magnetostatic spin wave propagating within a finite geometry (a thin
magnetic film) of thickness d surrounded by dielectrics. We seek to solve Walker’s Equation
within the limiting case of a tangentially magnetized film with k || Hy. Such a geometry,
corresponding to § = 0 in equation 2.12, and supports the propagation of backwards volume
spin waves which are the focus of this thesis. The case of k 1. Hy supports surface spin waves
while a normally, = 7, magnetized film supports forward volume spin waves. Neither of
these cases are explicitly considered here but are covered in detail in the works of Stancil
and Wu [2, 41]. All three excitation types will be briefly discussed below.

If a spin wave is excited within a fully saturated thin film and allowed to reach a steady
state one can solve the boundary condition problem assuming the propagation of guided plane
waves and their reflections. This yields a transcendental form of the dispersion relation for

backward volume spin waves in a thin film,

tan (2 _kd _(n= 1>7T> =v—(1+x). (2.17)

(14 x) 2

Kalinikos derived an approximate dispersion relation for the lowest order mode (n = 1)

which may be explicitly solved for w [46]. His result is

9 1 — e kd
w” = wy {WH + Wy (T)} ) (2.18)

We note that in the limit of an infinite thin film, d — oo, Equation 2.18 reduces to Equa-
tion 2.12 in the appropriate § = 0 case. The approximation is valid only in the small
precession angle limit where the variable magnetization is much less than the saturation
magnization, m < Mj;. This approximation was further derived under the magnetostatic

condition and remains strictly valid only when ky < k < 7/a.
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Figure 2.4: Dispersion for (a) forward volume, (b) backward volume and (c) surface spin
waves in magnetic thin films. Reprinted with permission from Elsevier [41].

The geometry and Kalinikos derived expressions for the lowest order mode dispersion
relation are plotted for (a) forward volume, (b) backward volume and (c) surface spin waves
in Figure 2.4. In each case the orientation of the external magnetic field is illustrated relative
to the film and the direction of propagation. The dispersion relations were calculated for a
YIG film where 47M; = 1750 G with an external saturation field magnitude of H = 1500 Oe.
This figure is reprinted with permission. wy is given in 2.8 and the remaining characterstic

frequences which describe the spin wave passbands are

wp = [7[v/H(H + 47Ms),

(2.19)
ws = |y|(H+ 47Mg/2).

We highlight that the forward volume spin waves are so called due to having a positive
group velocity, whereas backward volume spin waves have a negative group velocity. This is
evident in the dispersion curves in Figure 2.4(a) and (b). Surface spin waves also exhibit a

positive group velocity. We define group velocity as,

~ Ow(k)
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It is also crucial to note that the spin wave passband for backward and forward volume
spin waves is entirely defined by the characteristic frequencies wg and wy which are both
highly dependent on the magnitude of the external magnetic field. This allows for the direct
tuning of spin wave frequency. The dispersion coefficient may also be tuned by varying the
direction of the external magnetic field where the dispersion coefficient is defined as,

0Pw(k)
D= (2.21)

This results in negative dispersion for forward volume and surface spin waves, and positive
dispersion for backward volume waves. This an important degree of freedom for designing

and running experiment.
2.3 Spin Wave Nonlinearity

There are two main sources of nonlinearity for spin waves in magnetic thin films. The
first we will consider is the shift in frequency due to spin wave amplitude. Qualitatively if
one considers the precession of a single magnetic moment, such as in Figure 2.1, any increase
in precession angle (and thereby the magnitude of m) will result in a decrease in M, through
the expression M, = VM2 — m2. This change in M, can then result in a frequency shift of
the dispersion curve.

Thus, when the precession angle becomes appreciable one must replace My in the disper-
sion relation with M,. Equation 2.18’s dependence on Mg comes from the wy; term, defined
by Equation 2.8. The relation between Mg and M, is simply derived. In a saturated sample

one has,
M,* = M2 + M; + M; (2.22)

which may be readily solved for M, for the case of circular precession,

| ML [* + |ML |2 m?
M, = Ms\/l - Ve =M. [1- s (2.23)
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Here m is the variable magnetization. We may define a unitless magnetization amplitude as

2
2_m

H|I* = . 2.24

u(z, )P = oo (2.24)
Assuming |u| < 1 one may further reduce Equation 2.23 to

M, = My/1 — [ul> = M (1 — |u]?). (2.25)

The case of elliptical precession for backward volume spin waves is considered by Wu and

Boardman and gives,

1 2
M, = M, {1 - (1 + ”—5’) |u|2} (2.26)
2 Wi

This frequency shift is most easily identified by examining the dispersion relation for
magnetostatic spin waves given in Equation 2.12 with § = 7/2 corresponding to backward

volume spin waves, our case of interest, and with M, substituted for Mg. This gives,
w? = wy(wg + M,). (2.27)

In both the elliptical and circular precession cases we can see how an increase in spin wave
power |u|? results in a decrease in M,, which would result in a decrease in frequency. This
implies that nonlinearity is negative for backward volume spin waves. We may confirm this
by substituting My in the dispersion relation with M, and then directly evaluating the spin
wave nonlinearity coefficient given by,

B Oow
Ol

(2.28)

For the elliptical precession of backward volume spin waves with w close to wg we have,

WHWM

IZ—I

N =—
The axis of the elliptical precession was chosen arbitrarily to derive Equation 2.29. The
other equally valid choice results in the swaping of wg and wy in Equation 2.26 which yields

the following expression for the nonlinearity coefficientm

2
WHWM Wy

N = — 1+ —=). 2.30
4wy ( + w%l> ( )
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When O(wn) =~ O(wg) both are close to —wywy /4ws.

As with dispersion, the sign of the nonlinearity coefficient for spin waves in magnetic
thin films can be adjusted by varying the direction of the external magnetic field. We
determined above that the nonlinearity coefficient is negative for backward volume spin
waves. It is also negative for surface spin waves, but is positive for forward volume waves.
The sign of the effectively nonlinear N D will be important to determining the type of spin
wave envelope excitation which can observed in magnetic thin films, and will be discussed
in detail in Chapter 6. For now we mention again this tunability is a powerful degree of
freedom for designing and running experiment.

The type of nonlinearity discussed so far and described by Equation 2.28 is a result of
conservative four wave mixing. For spectrally narrow peaks in magnetic thin films the four

wave mixing conservation equations are given by,

2&)1 = (,dg—f—u}g, (231)
2/{71 = k2+l€3, (232)

and describe two modes, ko and k3 with sufficient amplitude interacting to generate a third
mode, k3. If ring power is further increased additional modes may be generated via this four
wave mixing process, resulting in a uniform frequency comb with spacing f; = |w1 — ws|.
This development process for increasing ring gain is shown in Figure 2.5 where 