
A NEW LENS ON ART HISTORY: USING COMPLEX

NETWORK ANALYSIS AND UNSUPERVISED

MACHINE LEARNING

by

Khloe N. Downie



© Copyright by Khloe N. Downie, 2022

All Rights Reserved



A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of

Mines in partial fulfillment of the requirements for the degree of Master of Science (Applied

Physics).

Golden, Colorado

Date

Signed:
Khloe N. Downie

Signed:
Dr. Lincoln D. Carr

Thesis Advisor

Signed:
Dr. Dorit Hammerling

Thesis Advisor

Golden, Colorado

Date

Signed:
Dr. Frederic Sarazin
Professor and Head

Department of Physics

ii



ABSTRACT

Visual art is a wholly complex and inherently human creation not easily analyzed and

interpreted by digital technology. The subjectivity of art makes its interpretative

understanding elusive to machines while virtually instantaneous to the human viewer. This

project attempts to demonstrate that there is a relationship between the measurable visual

characteristics and the communicative characteristics of art. In doing so, we hope to offer a

machine-based software tool that supplements the traditional critical approach to historical

art found in art history and art theory. This AI-generated perspective will offer innovative

insights to the inherent interpretative information found in art.

This project’s methods are seated in the creation of a python-based feature extraction

software. The software is an analog to the pluralistic critical approach of art theory. It

abstracts images of historical paintings into complex network representations that contain

the digital equivalent of formalist elements and principles of design present therein. By

measuring the images’ network representations, we obtain quantitative descriptions of their

innate visual features. We, then, reduce the dimensionality of the measurement data set

and find a clustering of the images. From those clusters, we can draw mathematical

conclusions about the interpretative characteristics of the images held within. We postulate

that the evaluative conclusions enabled by our method’s AI-generated art movements will

reach beyond those present in traditional art theory.

We measure the interpretative precision of the clustering we obtain using the precision

and recall performance measures. We compare the resulting performance from our software

to that of a random clustering of images. In doing so, we prove that our software indeed

performs better and is statistically distinct from a random grouping of paintings in terms

of critical and formalist evaluation. Beyond that, we show that our resulting clustering has

greater success in terms of the performance metrics than the critically accepted historical
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art movements.

These results show that, using complex networks to embody formalist elements and

principles of design, measuring those networks, and clustering the paintings based on that

data, we are not only able to create distinct groupings of images with common formalist

components but common critical interpretations as well. Because of this, we can confirm

the existence of an untapped empirical relationship between machine-measurable visual

characteristics of images and the communicative concepts held within those images. That

we obtained performance better than the historical movements shows that our methods

offer the first steps to discerning and building on this correlation.
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CHAPTER 1

INTRODUCING COMPLEXITY SCIENCE TO VISUAL ART ANALYSES

Visual art—the free expression of emotion, events, concepts, and ideas—is a wholly

complex and inherently human creation, one not easily transferable to or understood by

digital technology. The subjectivity of art, in both the creation and interpretation aspects

of the field, makes the foundational understanding of visual art elusive to machines while

virtually instantaneous to humans. How can this dichotomy be bridged? Is there a way for

a computer to understand or, at the very least, discriminate between the different messages

and concepts within visual art? Can we mathematically describe the artistic lexicon? This

project attempts to construct this bridge—to form a pathway for machines to detect the

visual subtleties within art that hint at an underlying emotional, contextual, or historical

meaning. The hope is for this project, and subsequent projects on the matter, to eventually

lead to a greater visual sentiment analysis technique for computer vision problems.

To generate a meaningful automated understanding of visual art, this project builds on

complex network analysis, a compilation of machine learning tools, art theory, and

information theory to create a python-based feature extraction software that organizes

given images into groupings that are internally similar and externally dissimilar. In this,

the art to be “understood” by the machine are digitized paintings whose historical art

movement is known. Ultimately, our project is a proof of concept for a computer vision

categorization problem. We require the machine to create groupings of the input images

based on what it can understand—color space, spatial composition, and so on. In

performing this analysis, we hope to confirm that there is a relationship between visual

characteristics and human interpretations of art.

Our objective is to outline an algorithmic blueprint that introduces an artificial

intelligence perspective to art history that supplements the traditional art theory
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perspective. We want to probe the inherent information of visual art and use that to

investigate whether critical art theory excludes the consideration of certain features

fundamental to a comprehensive description of art. We choose to do this investigation

using unsupervised machine learning. We use unsupervised techniques at every available

opportunity. This is done in order to obtain that artificial intelligence perspective that we

seek. We want to work strictly within the machine’s self-contained capabilities, avoiding a

human or art theory bias–a bias that would naturally come about with supervised learning.

By doing so, we theorize that our software could offer interpretative insights uninfluenced,

and potentially undiscovered, by traditional, qualitative art analyses.

1.1 Research Questions

We would like to answer the following questions:

1. Is there a way for a computer to catalog the interpretive concepts exemplified in

visual art strictly using the inherent visual information contained within? In other

words, is there a relationship between the measurable visual characteristics and the

qualitative, communicative, and meaningful characteristics of art?

2. Does art history neglect features necessary for a complete description and

interpretation of art? Can we create a new, machine-based interpretive tool to

supplement those that already exist?

3. How can we measure the inherent information in art?

4. How do we bridge the subjectivity of art and the objectivity of science?

1.2 Motivation: Computer Science And Linguistics

The work in this project was inspired by other works combining art and science,

particularly in the fields of computer science and linguistics.
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1.2.1 Semantic Networks

A semantic network is a complex network that represents a body of text, that uses

nodes to represent the words in the text and edges to represent the relationships between

those words. Our project can attribute a significant part of its inspiration to the work done

in [1]. This project uses semantic networks to identify literary movements. Diego et al use

complex networks to represent historical prose, and though a multi-step process involving

network measurement, dimensionality reduction, and clustering, they ultimately obtain

results that accurately cluster the texts into their respective literary movements. Our

project loosely builds upon the algorithmic structure provided by this paper.

1.2.2 Natural Language Processing

Natural language processing (NLP) is a type of computational research used to

understand human language. NLP is commonly used for sentiment analysis–an approach to

linguistic science that uses ML models to investigate evaluative statements (opinions and

emotions) of the public for predictive or feedback purposes. Semantic sentiment analysis

corroborates our belief that visual sentiment analysis is possible. Semantic sentiment

analysis uses lexical (vocabulary) and syntactic (spatial and contextual relationships

between words) information found in text or speech for computation [2]. Our theory is that

the translation of semantic to artistic/visual sentiment analysis would involve using the

artistic lexicon, i.e., the elements of design, and the relationships between those techniques,

i.e., the principles of design, for computation.

It is important to note that, because evaluative statements are subjective in nature and

conditional to individual words, it is inefficient to use simple NLP text classification

methods, like those used for objective statements, for semantic sentiment analysis. Instead,

complex networks have offered a more precise method for sentiment analysis, due to their

ability to maintain a rich informational structure, by utilizing their local and global

properties [3]. Since visual art is highly subjective, this leads us to believe that employing

3



complex networks for computation could be advantageous for our purposes, as well.

The use of probabilistic models to examine language, like with NLP, has led to an

improved linguistic science in general. NLP has allowed researchers to find important new

applications in understanding human language processing and in modelling linguistic

semantics and pragmatics. Because of this, linguistic science has since turned to more

empirical methods of investigation [2], indicating the potential for computational

approaches to improve upon and offer new analyses in art theory and art history.
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CHAPTER 2

BACKGROUND: COMPLEXITY, ART, AND INFORMATION THEORIES

This project works heavily with complex network analysis, art theory, and information

theory. To fully understand the steps taken and calculations done in our project, we

provide here a sufficient overview those fields.

2.1 Complex Network Analysis

Complex network analysis (CNA) is a type of modelling used to algorithmically

examine many-body systems containing some form of interaction. Due to the versatility of

its methods, one can apply CNA’s paradigm to virtually any desired system, if that system

has discrete elements that can interact or are connected in some way. CNA abstracts a

system into a relational representation [4]. The elements in the system are represented as

nodes, and the connections between the elements are represented as edges. These networks

(otherwise known as graphs) can contain a high amount of specificity; it is possible for the

graph to contain specific properties for each individual node and edge. That is, it is not

necessary for all elements in a system to have the same characteristics or for all the

interactions to be homogeneous. A key postulate to CNA is there is generally some

emergence associated with the representational systems; behaviors and characteristics

non-obvious with traditional modelling become apparent with the evolution and/or

measurement of their complex network representation [5].

2.2 Art Theory and Art History

Our project builds upon the idea of a pluralistic critical interpretation of art.

Throughout art history, there have been many noteworthy critical approaches to art theory

and history, each focusing on how the art community should think about a work of art.

Generally, these theories focused exclusively on one of two predominant outlooks: to
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interpret art strictly in terms of visual form, or to interpret art contextually (in terms of

historical, social, or psychological contexts). Formalism was the leading theory that

championed the former, coming into popularity in the early 20th century and offering

elements and principals of design as the lexicon with which a critic should evaluate art [6].

As time progressed, art evolved and, with it, so did its interpretative theories. In the

mid-20th century, critical theory came into focus, emphasizing the need to follow a

semiotic (symbol-based) and contextual evaluative method for art [7]. The formalist and

critical theories lived in conflict with one another until the late 20th century, when

pluralistic interpretation–an evaluative method that synthesizes both visual form and

semiotics–came into popularity. The critics that supported pluralistic theory argued that

products of culture can have many valid interpretations and that one cannot have a

complete understanding of a work of art without considering both concepts [7], [8].

The method in this project works to combine formalism and critical art theories to

interpret art, much like the pluralistic approach does. However, unlike the traditional

methods, we will evaluate art using the theories in serial. As introduced in Section 1.1, one

of our objectives is to investigate whether there is an innate and consistent connection

between the visual forms in an image and the emotional, contextual, social, etc. concepts

exemplified in the art. Instead of synthesizing the two theories in parallel, we instead look

at an image with regard to formalist terms–elements and principles–to have our machine

(theoretically) sort images in critical terms, into groupings that are internally symbolically

and/or contextually similar and externally dissimilar. It is important to note that, though

we use formalist ideas to build our software, we are not having the machine define or assign

meaning to those terms, as a formalist critic would do. In other words, we have our

machine look at the art as surfaces, measuring the inborn color, spatial distribution, and

relative angular composition, and return what it sees as significant groupings, from which

we will attempt to capture the relationship between face-value characteristics and human

meaning. By doing this, we are doing as [6] suggests; we are defining a new empirical and
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consistent evaluative method with potential usefulness for modern artistic analyses.

Another theory important to our project is the Gestalt theory of visual perception and

psychology. Essentially, this theory states that human psychology makes it so, when

viewing an image, the sum of its parts is greater than its whole, called a gestalt. This is a

common occurrence in our everyday lives. Examples of this would be simultaneous

contrast, when a color looks different when placed on different colored backgrounds, or

similarity/proximity grouping, when we associate elements that look alike/are close

together as belonging together. This tendency is innate in humans and can affect the way

we evaluate art [9]. Machines, on the other hand, do not experience this phenomenon since

they do not have a human psychology. They view images at face-value, allowing our

technique to go beyond the natural human bias that comes with art evaluation and

strengthening our argument of our method’s consistency.

Because our software is loosely based on the formalist lexicon, we will outline these

concepts. A composition is governed and formed by the elements and principles of design.

Elements of design are the basic components found in art, such as color or line. Principals

of design are the use of elements in a specific way to create a certain visual effect, such as

balance or movement. Any element can be used to create any principal; there is no

elemental exclusivity in how principals are formed. We capitalize on the relationship

between the elements and principles when we create our complex network representations

of the images, discussed in detail in Section 3.4. A list of the different elements and

principles of design and their descriptions can be found in Table 2.1.
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Table 2.1: Elements and Principals of Design

Elements of Design

Element Description

Point Specific position, no extension

Line 1D; Can have length and direction, but no depth

Shape 2D; A closed contour

Form 3D; A combination of line, point, shape; Describes a volume

Color Hue and saturation

Value Relative lightness and darkness

Texture Surface quality (physical or simulated)

Space Area between and around objects

Principals of Design

Principle Description

Balance
Visual equilibrium of similar, opposing or contrasting elements
that make a unified whole; Symmetrical or asymmetrical

Emphasis
Marks location in a composition which most strongly draws the
viewer’s attention

Movement
Visual flow through the composition; Forces movement of
viewer’s eye

Pattern Repeated object, symbol, or element

Repetition
Reuse of the same, similar, or different objects throughout the
design

Proportion
Comparative relationship between 2 or more elements; Creates a
sense of order between elements used

Rhythm
Alternation of elements with defined intervals; Establishes
pattern, texture, and/or movement

Variety
Complex relationship between elements; Creates visual interest
in specific area

Unity
Uniform relationship between elements and the composition;
Creates a sense of completeness

Contrast
Difference within an element or between elements; Makes element
stand out
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The analysis of our results requires some familiarity with critical theory. Ultimately,

critical theory looks at abstraction level, genre, and message in unison. The abstraction

level of any given painting can be one of four options, listed below.

• Wholly Abstract: The painting contains content with no resemblance to natural

shapes.

• Organically Abstract: The painting contains content with some resemblance to

natural organic forms.

• Semi-abstract: The figures and other objects within the painting are discernible to an

extent.

• Naturalistic: The figurative and other content within the painting is instantly

recognizable.

For the organically abstract, semi-abstract, and naturalistic abstraction levels, one can

determine genre. The options for genre are as follows: historical (the portrayal of an actual

event), portraiture, genre (the portrayal of an everyday event, with no recognizable

characters), landscape, and still life.

Historical movements are groupings of art in which the ideas, concepts, emotions

portrayed therein are similar. Historical movements have a general message or purpose,

such as a reaction to contemporary society or a rejection of tradition, that are decided and

agreed on by prominent critics or schools of art. We use these movements as a basis for

comparison for the groupings our machine creates, or AI-generated movements as we will

call them. Our project examines work from the following historical movements, listed in

chronological order: Renaissance, Baroque, Rococo, Neoclassicism, Romanticism, Realism,

Impressionism, Post-Impressionism, Fauvism, Expressionism, Cubism, and Surrealism.

These movements span from the 1400s to the 1970s. (Note: We only look at paintings that

are qualified as fine-art.) We also examine randomly pixelated images, images of randomly

9



chosen shapes, and uniform color images in serial with the actual art as a sort of sanity

check of our results. For the sake of clarity in reading this report, we will refer to these

images as simple movements and the actual art as complex or historical movements. Art

history characterizations of the complex movements as well as example images from each

can be found in Appendix A.

2.3 Information Theory

Information theory is used extensively in our project, specifically in results analysis.

Information theory is applied probability, mathematically examining the inherent

information in communicative processes. Since art is essentially a form of communication,

information theory is perfect for our project’s purposes. For the main body of our thesis,

we only use information theory in idea. When doing our arrow of time analysis (located in

Appendix E), we use information theory in practice, building upon the following metrics:

information content and entropy.

Information content, sometimes called the surprisal or Shannon information, is a

relatively simple measure involving the probability of a random variable. It can be thought

of as the ”surprise” of or information gained from an outcome. Given an event x with

probability Px, the information content is defined in Equation 2.1.

IX = − log2(Px) (2.1)

The base of 2 means that the information content is in units of bits. A probability of

100% would return a surprisal of 0, meaning we have gained no information from that

measurement. The lower the probability of an event, the greater its surprisal.

Entropy builds on information content. It is the expected value of the the information

content of a random variable, quantifying how surprising–how much information we

gain–measuring an event is on average. The lower the entropy, the more information is

inherent in the system, and the surprise is low upon measurement [5]. Given a set of events

X with probabilities p(x), the entropy of the system is given by Equation 2.2.
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HX = −
∑
x∈X

p(x) log2 p(x) (2.2)

Again, base 2 means the entropy is in terms of bits. A set of events with equal

probability would return the maximal entropy.
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CHAPTER 3

METHOD: PROBING FORMALIST ART THEORY USING COMPLEX NETWORKS

3.1 Method Outline

To examine the connections between the visual information and contextual information

of art, we built a python-based feature extraction software, using a compilation of

programming and modeling techniques. Our software takes the following steps:

1. Decompose an image with image segmentation to obtain the nodes in its

representative complex network.

2. Create edges between the nodes, based on a user-chosen image characteristic.

3. Take and record measurements of the network. Repeat steps 1-3 for all sampled

images.

4. Perform a dimensionality reduction on the measurement data set.

5. Cluster the images in the reduced measurement space.

3.2 Data Preparation

Our work requires a large data set of paintings of which the movement and general

interpretation is defined and known. We collected 49 digital image samples from each

movement (both simple and complex) listed in Section 2.2. The images of the complex

movements were not normalized in their resolution nor color gamut, which introduces

potential noise. To reduce some of this inconsistency, before creating their complex

network representations, we normalize all images to the same resolution, 500x500 pixels,

using the Pixel Area Relation interpolation method. Though there may be some

informational benefit to maintaining the original shape of an image (not all paintings are

square originally), we chose to normalize size to simplify our results’ interpretations.
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3.3 Network Creation: Nodes

After normalization, our software proceeds by creating a representative complex

network for an image. Section 2.1 states that, for CNA modelling to be feasible, we require

discrete elements to act as nodes in the network. The most obvious choice for the

network’s nodes would be the image’s individual pixels. Though this may be efficient for

small images, we work with relatively large images–containing thousands of pixels–so this

choice would be computationally inefficient. It would also be informationally inefficient,

since formalist visual forms (the elements listed in Table 2.1), what we are attempting to

capture, live in a space larger than a single pixel. Hence, we must transform the image into

a representational object that is easier to manage. To do this, we use image segmentation.

In short, image segmentation is a machine learning tool that divides an image into clusters

of pixels, known as superpixels, based on certain characteristics of the local pixel

neighborhoods. Instead of creating thousands of nodes, image segmentation allows us to

create only tens to hundreds of nodes while capturing and maintaining the key visual

information of the image.

There is a variety of segmentation techniques to use, each creating the superpixels

based on different pixel characteristics. There are supervised and unsupervised algorithms

available, as well. This project focuses on three unsupervised techniques: Felzenszwalb,

Quickshift, and Simple Linear Iterative Clustering (SLIC). We chose to use unsupervised

techniques to avoid introducing human bias (remember that we want an AI-perspective on

art). Since we are working in a novel space and are unsure of what visual forms have the

most significant relationship to human interpretation, we chose to examine all three

segmentation techniques as hyperparameters in our software. Later, we will determine

which, if any, techniques return the most relevant results. See [10], [11], and [12] for more

information on the segmentation techniques we use. Figure 3.1 shows the resulting

segmentation (and re-scaling) for each of the before-mentioned segmentation techniques for

an example image. The yellow lines indicate the borders of each superpixel, and the red
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dots mark their centers.

3.4 Network Creation: Edges

Our next step is to determine the edges between the nodes. This is where we capitalize

on the relationship between the elements and principles of design. As stated, principles are

different combinations of elements to create a particular visual effect. To implement this

idea in our complex network representations, we think of the visual/image characteristics

of the superpixels–represented as nodes in our network–as elements, and we think of those

characteristics’ similarities or dissimilarities between nodes as principles. Theoretically, if

we view the superpixel visual characteristics as elements, then the relationships between

those characteristics should embody the principles of design. Then, when we measure a

network, we should actually be measuring the principles in use in that work of art. Thus,

we look at the similarities between a chosen visual characteristic of the superpixels to

create the edges between their representative nodes.

As one can see in Table 2.1, principles are not determined by the presence of

similar/dissimilar elements alone but by their presence and their spatial proximity. Hence,

in addition to using visual similarities to create edges, we introduce a spatial embedding to

the network. We use a radial distance threshold (with a lower and upper bound) for this.

Simply put, if the centers of any two superpixels are found to be within this radial distance

interval and their characteristic of focus is determined to be ’similar enough’ (based on

chosen binning methods), those nodes in the network will have an edge between them. Not

only does this allow us to more accurately represent the principles, it also grants us the

ability to look at both short and long range visual relationships of the image.

We look at three superpixel characteristics for edge creation: pixel size, color, and

angular orientation. We call these the edge creation techniques (ECTs), and they are

treated as hyperparameters when the software is run.

14



(a) Original Image (b) Felzenszwalb

(c) Quickshift (d) SLIC

Figure 3.1: Segmentation Example for The Crucifixion of St. Peter by Caravaggio
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3.4.1 Pixel Size

The simplest of the ECTs is the pixel size ECT. When this technique is called, the

software creates a histogram from the distribution of superpixel pixel sizes (total count of

pixels within). The number of bins for the histogram is chosen using Equation 3.1, where

B is the number of bins and N is the number of superpixels within the image.

B = round(
√
N) (3.1)

From there, the bin edges determine the similarity threshold in which nodes will have

an edge between them. In other words, if and only if any two nodes are found to be within

the same bin in the pixel size histogram (and are within the chosen radial distance

interval), they will have an edge between them. Our theory is that this ECT will be best at

detecting principles created from the shape, space, and form elements. One can find an

example network (and original image) for the Pixel Size ECT in Figure 3.2. The nodes in

this and the following ECT example figures are generated by the Felzenszwalb

segmentation technique.

(a) Original Image (b) Pixel Size Complex Network

Figure 3.2: Example Image and Pixel Size Complex Network Representation
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3.4.2 Color

When called, the color ECT uses the superpixels’ average color identity to create edges.

Inherent to a pixel is its color, given by a three-integer vector. Generally, digital

technologies use the RGB color space to describe a pixel, but this space is not intuitive to

how a human, and especially not an artist, thinks about color. Hence, after finding the

average red, green, and blue value for each superpixel from the individual pixels it contains,

we convert to a more intuitive color space, hue-saturation-light (HSL). Then, the software

uses a predetermined binning to identify that average HSL color vector. We use three

different binning metrics for this ECT, each associated with an axis in the HSL space. The

hue binning reflects the 12 primary, secondary, and tertiary colors found on the traditional

color wheel. The saturation axis is binned to correlate to high, intermediate, and low

saturation, and the lightness axis’ binning correlates to dark, precise, and light value1. If

any two superpixels are found to be within the same bin for all three HSL axes, there is an

edge placed between their representative nodes. Of course, the radial distance interval

applies in this ECT, as well. We predict that the color ECT will excel at detecting

principles generated by the color and value elements.

It is important to note that these bins were created by eye in the HSL space, hence

introducing a high amount of personal bias into the software. (Recall from Section 2.2 the

concepts of the gestalt and simultaneous contrast.) This is the difficulty of combining art,

inherently subjective, with science, which requires consistency and reproducibility. Because

color is so foundational to the interpretations of art, we found it necessary to bin according

to traditional color divisions (at least to the best of our ability).

1The exact binning metrics for the color ECT can be found in Appendix B.
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(a) Original Image (b) Color Complex Network

Figure 3.3: Example Image and Color Complex Network Representation

3.4.3 Orientation

The final ECT looks at the relative angular orientation of the superpixels in the image.

Specifically, the orientation ECT examines the angle between the rows of the pixels and the

major axis of the superpixel’s equivalent ellipse. An equivalent ellipse is one that has the

same second image moments as the superpixel [13]. The angle can be between −π
2
and π

2

(other half is ignored due to angular symmetry). As usual, we use a binning metric to

create edges between the representative nodes. We divide the angular space evenly into

four sections, best described as points on a compass: north-northeast, east-northeast,

east-southeast, south-southeast.

We exclude the consideration of angles within π
24

radians from perfectly horizontal or

vertical. We do this to create a differentiation between images within more angular

features and those with more horizontal or vertical features. Because the movement

principle, a key concept in formalist interpretation, is generally associated with angular

features, we wanted an ECT that can detect whether the image contains more or less

diagonal features. The exclusion of those angles ensures that the software will not create
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edges for those superpixels with perfectly or nearly perfect horizontal/vertical angles; thus,

images with more movement will have more edges and vice versa. We anticipate that the

orientation ECT will be most strongly correlated with the line and shape elements. As

usual, an example of this complex network representation can be found in Figure 3.4.

(a) Original Image (b) Orientation Complex Network

Figure 3.4: Example Image and Orientation Complex Network Representation

3.5 Measurement

Once we create a complete complex network representation of the image, we can take

measurements. We have little sense of what (if any) visual forms differentiate between

human interpretations; because of this, we must extract those features from what we

have–the complex networks. The first step of this feature extraction process is to collect a

highly descriptive, and even redundant, initial set of measured data. Thus, we instruct the

software to take several measurements to ensure we obtain an exhaustive description of the

networks. The size of the data set will be quite large because of this, but we will mediate

this issue with a dimensionality reduction (the second step of feature extraction), discussed

later. Table 3.1 describes each of the measurements taken.
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Table 3.1: Network Measurements

Measurement Type
Degree, k Distribution

Clustering Coefficient, C Distribution
Cliques, q Count, Clique Number

Components, p Count, Component Number
Assortativity, r Spectrum [-1, 1]

Degree Centrality, cd Distribution
Betweenness Centrality, cb Distribution
Closeness Centrality, cc Distribution

Bridges, b Count
Edge Density, σ Spectrum [0, 1]

Number of Nodes, N Count

Each of the network measurements in Table 3.1 are commonly found in complex

network analysis literature. If the measurement type is distribution, that means that the

measurement is microscopic (specific to each element) and requires us to take a

distribution over the nodes or edges to get an overall description of the network. For all

distribution measurement types, we take the first four moments of the distribution: mean,

variance, skew, and kurtosis. A count measurement type means we find the number of the

focus concept in the network. A spectrum measurement type means the concept of interest

can describe the overall network with one value, with the endpoints of that scale given by

the tuple next to it. See [5] for detailed descriptions of each.

3.6 Post-Measurement Processing

After creating and measuring the representative network for each image, using a chosen

segmentation and edge creation technique, we are left with a large array of measurements.

Eventually, we want the machine to find emergent groupings of the networks, based on that

measurement data we found. Before such clustering, though, we need to complete the

second step of our feature extraction process by reducing the dimensionality of the data set

(while maintaining its core statistical information). To do this, we use principal component

analysis (PCA). PCA is a linear dimensionality reduction technique. In short, PCA works
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to find new set of variables from a series of linear combinations of those that already exist,

that maximize the variance of the data and are uncorrelated with each other [14]. These

new variables–the principal components–are not defined by a priori, but by the data set

itself, which makes it quite adaptive and perfect for our use.

Before applying PCA, we must, first, rescale the data within each measurement

dimension. Since this tool finds the principal components that maximize variance, having

one measurement set with more variance than another could lead the technique to find a

false direction of maximal variance, weighted more toward the variable with greater

variance. We use a standard scalar to do this, shifting the data to have a mean of 0 and a

standard deviation of 1. After rescaling, we perform PCA on the dataset. Instead of

choosing an arbitrary number of principal components to reduce to, we allow scikit-learn

(Python package) to choose the minimum number of components such that a chosen

fraction of the original variance (in our case, 0.95) between data is retained.

As stated, reducing the dimensionality of the data sets using PCA essentially creates

axes on which the data is maximally interpretable. We capitalize on that variance to take

our final processing step, by clustering the data. There are several clustering techniques to

use, and each has their own benefits and drawbacks. The algorithm we chose was

agglomerative hierarchical clustering. It is important to note that this algorithm does not

require number of clusters as a parameter, meaning the algorithm itself determines the

optimal number of clusters for the data based on other metrics; we chose a clustering

technique with this capability since instructing the algorithm to look for a specific number

of clusters would introduce bias and arbitrariness. As mentioned before, we want the

software to return an AI perspective on art history, meaning we must allow the model to

determine important parameters, such as optimal number of clusters, through and through.

After clustering, we construct a table that shows cluster assignments, or what images

belong to what clusters. The cluster tables are, then, used for our results analysis.
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CHAPTER 4

EVALUATIVE PERFORMANCE AND STATISTICAL ANALYSIS

We now have a clustering–an AI-generated grouping–of images for each radial distance

interval, segmentation choice, and ECT combination. We call these groupings AI-generated

movements (AIGM). These AIGM were generated from examining the digital equivalent of

formalist elements and principles only. Recall that our objective is to prove that there is an

empirical relationship between the innate and measurable visual features of the images and

the critical evaluation of those images (see Section 1.1); to satisfy this objective, we must

now find a way to determine if the clusters are interpretatively similar internally and

dissimilar externally. To do this, we must collect external data of the painting’s critical

interpretations, on what the paintings are displaying and/or trying to communicate; we

will call this evaluative data descriptors. Once we have the decided descriptors of each

painting, we can translate over to find the statistically significant descriptors in each

cluster and, hence, use those descriptors as a tool to measure the software’s ability to

categorize critical theory evaluations. In addition, we collect external information for the

formalist evaluations of the images for the sake of comparing the divisional power of the

software in the two artistic theories.

To determine the descriptors for each painting, we decided to follow an interpretative

decision tree in each of the evaluative paradigms (critical and formalist). Visual

representations of these decision trees can be found in Figure 4.1 and Figure 4.2. The

formalist descriptor assignment process looks at four basic groups of elements of design:

shape, space, and perspective; brushstrokes and texture; line, form, and value; and color.

For each element group, we ask basic formalist questions. For example, in the shape, space,

and perspective element group, we evaluate and record whether an image is balanced in

space, the level of movement of the eye through the image, etc. Because these concepts
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generally lie on a continuous spectrum, i.e., perfectly balanced to perfectly imbalanced, we

binned these options to maintain consistency throughout all descriptor assignment. A more

detailed explanation of this binning process and descriptor definitions can be found in

Appendix C.

Our critical descriptor assignment process breaks the critical evaluation process into

discrete steps. For each image, we first ask the level of abstraction. If the painting is given

a wholly abstract abstraction level, no other descriptors are given since the critical

interpretation is generally too ambiguous and subjective. Then, for all other abstraction

levels, we move on to determine the genre of the image. (See Section 2.2 for a list of all

possible abstraction levels and genres.) From there, we go into assigning genre-specific

descriptors. These are generally broken down into content–what is physically there or

happening–and message–what the artist is attempting to say or portray with the painting.

Out of all the descriptors, both formalist and critical, we care most about the genre-specific

descriptors in our analysis, since we want to prove that there is a machine-measurable

relationship between visual form and critical interpretation.
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Figure 4.1: Formalist Theory Descriptors Evaluation Tree: This evaluation tree is used to
determine the formalist descriptors for each image. We evaluate each painting element by
element. We ask a set of questions for each of the element groups listed. The possible
answers to each question listed can be found in Appendix C.
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Figure 4.2: Critical Theory Descriptors Evaluation Tree: We follow this evaluation tree to
assign appropriate critical descriptors for each painting. We, first, determine the abstraction
level of the image. If not wholly abstract, we move onto determine the genre of the painting.
Based on that genre, we assign genre-specific descriptors. For all genres, with the exception
of still life, we eventually assign message descriptors–the descriptors that we care most about.
(Message descriptors are not listed here due to the size of the set. All descriptors are listed
in Appendix C.)
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It is important to note that the descriptors were decided upon and assigned to the

paintings by the researcher, with help from various, publicly available art history resources

(particularly [15], [16], and [17]). The researcher is not an art history expert. Hence, there

is a significant opportunity for error introduced here. This is discussed more in Chapter

4.5. More detailed explanations of the descriptors as well as an analysis of the overall

distribution (over all images) of the descriptors can be found in Appendix C.

Recall that we include randomly pixelated, random shapes, and uniform images in our

analysis. For these images, we chose the following descriptive assignments. For the critical

descriptors, we simply assigned those images’ abstraction levels as wholly abstract.

(Wholly abstract images are given no other assignments.) For the formalist descriptors, the

images are given their corresponding image type (random, random shapes, or uniform) as

that element group’s descriptor.

To determine the significant descriptors for each cluster in an iteration2, we, first, divide

the descriptors by type, found in Table 4.1.

Table 4.1: Painting Descriptor Types and Their Corresponding Artistic Theories

Descriptor Type Artistic Theory
All Formalist Descriptors Formalist
All Critical Descriptors Critical

Abstraction Level Critical
Genre Critical

Genre-Specific Critical
Shape, Space, and Perspective Formalist
Texture and Brushstrokes Formalist
Line, Form, and Value Formalist

Color Formalist

For each type, we find the frequency of occurrence (count) of each descriptor within the

cluster. We find the statistical significance of each descriptor by standardizing the count

2By iteration, we mean a specific hyperparameter combination, i.e. a specific edge creation technique,
segmentation choice, and radial distance interval combination. In other words, an iteration means one run
of the software over a set of images.
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data: we subtract the mean and divide by the standard deviation of the count distribution

for each data point. This standardized data can be read as standard deviations from the

mean. We define a significant descriptor as one whose standardized count is 1.5 standard

deviations greater than the mean. A visual representation of the significant descriptor

process can be found in Figure 4.3.

Figure 4.3: Visual Representation of Significant Descriptors Calculation: (a) This represents
all the clusters for a specific hyperparameter iteration. (b) We work with one cluster at a
time, finding all descriptors for all images in the cluster. (c) First, we split the descriptors
in the cluster into their specific types. (d) Then, we count all the unique descriptors in that
type. (e) Next, we standardize the data. (f) If the standardized data for a descriptor of
any type is greater than 1.5, it is marked as significant (green). Otherwise, the descriptor
is insignificant (red). (g) Finally, we export the significant and insignificant descriptors of
each type for that cluster and move onto the next cluster in the iteration.
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Notice that we do not consider the overall (over all images in the dataset) frequency of

the descriptor when determining its significance. This could have some effect on the

representational accuracy of a significant descriptor. This is because those descriptors with

a greater overall representation in the entire data set will more likely have a greater

representation in any one cluster, leading the more-frequent descriptors to overshadow

those less-frequent descriptors in the significance calculation. We chose to ignore this point

for the sake of simplicity and because, when deciding the dictionary of descriptors for

assignment, we eliminated any descriptors with an overall count of less than 10.

Table 4.2 displays the decided significant descriptors (for all descriptor types except

overall) for the historical movements that we study. After an examination of the

historically accepted interpretations of the movements, the significant descriptors decided

by our methods tend to be quite accurate to reality, though not perfect. This confirms that

both our descriptor assignment process and significance calculations are somewhat reliable,

reducing some perceived error. See Appendix A to compare the descriptors in the table to

those accepted historical movement evaluations decided upon by traditional schools of art.
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Table 4.2: Historical Movement Significant Descriptors

Movement Significant Descriptors

Renaissance
Naturalistic, Harmonious, Religious, Outdoors, Spirituality, Great-
ness, Private, History, Distinct Lines, Direct Perspective, Small
Empty Space

Baroque
Naturalistic, Blended Color, Indoors, Private, Public, Morality, Re-
ligious, Conflict, Drama, History, Distinct Lines

Rococo
Naturalistic, Harmonious, Private, Recreation, Joy, Abundance,
Outdoors, Rural, Genre, Distinct Lines

Neoclassicism
Naturalistic, Blended Color, Outdoors, Conflict, Communication,
Drama, Private, Antiquity, Morality, History, Distinct Lines, Inter-
mediate Perspective

Romanticism
Naturalistic, Outdoors, Rural, Conflict, Nature, Public, Violence,
Drama, Government, Distinct Lines, Highly Dynamic

Realism Naturalistic, Genre, Distinct Lines, No Outlines

Impressionism
Capture of Conditions, Harmonious, Outdoors, Public, Recre-
ation, Occupation of Time, Urban, Intermediate Perspective, Small
Empty Space, No Outlines

Post
Impressionism

Harmonious Color, Expressionistic, Outdoors, Public, Rural, Oc-
cupation of Time, Nature, Private, Genre, Distinct Lines, Highly
Dynamic

Fauvism
Deconstruction, Lively, Color, Texture, Beauty, Landscape, Visible
Brushstrokes

Expressionism
Semi-Abstract, Expressionistic, Blended Color, Outdoors, Public,
Color, Genre, Direct Perspective, Mix Controlled Brushstrokes

Cubism
Expressionistic, Color, Deconstruction, Flat Depth, Direct Perspec-
tive, Mostly Controlled Brushstrokes

Surrealism
Harmonious, Blended Color, Outdoors, Private, the Mind, Decon-
struction, Genre, Distinct Lines, Highly Dynamic, Intermediate
Perspective, Blended Brushstrokes

Once we have a list of all significant and insignificant descriptors per cluster for each

type, we are ready to evaluate the performance of our software.

4.1 Precision and Recall

We now have a list of significant and insignificant descriptors for each cluster. To

quantify our software’s ability to find pronounced and compelling groupings of paintings

with a common critical interpretation, we need to contrast the significant descriptors to all
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those that are present. More specifically, we would like to look at the number of images

within the cluster that are defined by its significant descriptor(s) and compare that to both

those outside of that cluster, and to the number of images held within that are without the

significant descriptor(s). To do this, we use the precision and recall metrics. These

measures are commonly used to gauge performance in classification problems.

Precision and recall generally calculate the precision and sensitivity of machine-assigned

labels. They look at the ratios of relevant (assigned for a group) and retrieved (all in a

group) labels. Specifically, precision asks how many of the retrieved instances are relevant,

and recall calculates how many relevant items are retrieved. Both measures are calculated

over all groups in the set (clusters in an iteration) through averaging and weighted

averaging. To do this calculation, the metrics require us to mark the data as true positives

(TP), false positives (FP), or false negatives (FN). The TP are the number of relevant

instances retrieved per group, FP are the number of retrieved instances in a group that

aren’t relevant, and FN are the number of relevant instances not retrieved per group. For

our purposes, the TP will be those images that are defined by the significant descriptor of

the cluster they’re contained within. The FP will be the images within the cluster that

aren’t defined by its significant descriptor. The FN will be those images defined by the

significant descriptor of one cluster but are contained in another cluster (unless that other

cluster has the same significant descriptor). The expressions used to find precision and

recall can be found in Equations 4.1 and 4.2. The measures can range from 0 to 1.

Precision =
TP

TP + FP
(4.1)

Recall =
TP

TP + FN
(4.2)

For a particular iteration, we calculate the average and the weighted average of the

precision and recall over all the clusters present (for a particular descriptor type). For the

weighted average, we use the cluster size frequency (cluster size divided by the total

number of images) as the weight. The expressions for these can be found in Equations 4.3
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and 4.4, where K is the number of clusters present, ci is the size frequency of cluster i, and

(P/R)i is the precision or recall of cluster i.

Average =

∑K
i=1(P/R)i

K
(4.3)

Weighted =
K∑
i=1

ci(P/R)i (4.4)

4.2 Null Hypothesis and Bootstrap Testing

We use precision and recall to determine how good our software is at creating distinct

critical theoretic divisions in the paintings. But what does ”good” mean in our case? We

have no means of determining how well the software performs in terms of our objective

without a basis of comparison. To give the returned precision and recalls from our software

relevance, we must compare to the performance measures of an arbitrary grouping of

paintings. Put another way, we need a statistical authentication that our software creates

groupings of paintings (AIGMs) that are more critically distinct than a random grouping of

the same paintings. Hence, for this project’s statistical analysis, we decided to perform a

null hypothesis test through bootstrapping and comparing real (from our software) and

random precision and recall distributions.

Our null hypothesis states that our software’s precision and recall (for either average or

weighted) generally performs worse or the same as a random clustering of the sampled

images and that the real and random precision and recall distributions come from the same

underlying distribution. Our alternative hypothesis states that the two distribution sets do

not come from the same underlying distribution, and the real data consistently performs

better than the random data. By rejecting our null hypothesis, we would obtain a

statistical confirmation that our software has created groupings of the paintings that have

a non-trivial common contextual/critical interpretation, beyond what would be possible

with a random clustering of the same images. Because our software creates clusters based

strictly on inherent and measurable visual characteristics, this would essentially mean that
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there does exist an empirical relationship between visual form and critical interpretations

and that our software extracts that relationship, at least to some extent. All in all, a

rejection of our null hypothesis would confirm our theory outlined in research question one

in Section 1.1.

To reject or sustain the null hypothesis, we require large amounts of data. This is where

we implement the bootstrapping technique. For a particular sample size M , we sample M

images with replacement from the total set of 734 images (including the randomly

pixelated, random shapes, and uniform images). We create the complex network

representations, take measurements, and cluster the data for all hyperparameter iterations.

Then, for all those hyperparameter iterations, we calculate the significant descriptors and

the average and weighted precision and recall for each descriptor type listed in the first

section of this chapter. This data is recorded, and we repeat this process 99 more times.

(Note that with each trial, we resample M new images with replacement.)

After collecting all performance data for the real case, we do the same for a random

condition. For each trial, we use the same set of sampled images as in the real case. For

each hyperparameter iteration in that trial, we find the average cluster size, the cluster size

standard deviation, and the number of clusters of the real data cluster assignments. We

create a normal distribution from the mean and standard deviation and decide cluster sizes

from that (same number of clusters from the real data). Then, we shuffle the sampled

images, and assign each image to a random cluster, maintaining the cluster sizes obtained

from the normal distribution. From this random cluster assignment, we follow the same

analysis steps as with the real data: we find significant descriptors and average and

weighted performance measures for each descriptor type, record the data, and repeat the

process 99 more times.

From the different trials, we acquire distributions of the performance measures that we

can use to compare our software’s performance to the random performance, i.e., to conduct

our null hypothesis test. To do this comparison, we split the data–both real and
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random–by hyperparameter focus and descriptor type. We split by hyperparameter for two

reasons. First, if we don’t split like this, we risk washing the data. The hyperparameters

treat the image data differently, and if we were to look at the distributions over all

hyperparameters, any possible distinction from random may be lost in the data. Second,

we split by hyperparameter because we want to discover if there is a way for a machine to

catalog interpretative concepts in art strictly using visual information. Treating all

hyperparameters as one would eliminate our ability to determine which visual factors (i.e.,

which hyperparameters) play a key role in this. We split by descriptor type, again, because

we want to see what evaluations our methods perform best in.

After splitting the entire 100-trial data set by hyperparameter focus and descriptor

type, we examine the real and random distributions together. First, we look at the

histograms and density curves of both data sets for each performance measure3. We do this

to get a visual idea of performance and distribution shape, as well as to obtain the samples’

probability distributions for the subsequent calculation. Then, we perform a Two-sample

Kolmogorov-Smirnov (KS) Test on the two probability distributions just obtained. This

test is a nonparametric statistical test that answers the question of whether two samples

could’ve been drawn from the same underlying probability distribution; this is perfect for

our use, since it answers one of the questions of our own null hypothesis. The KS Test uses

the empirical cumulative distributions, F1,n and F2,m, of the samples to determine rejection

of the null hypothesis: whether the two distributions come from the same (but unknown)

distribution. The KS statistic is given in Equation 4.5, where n and m are the sizes of the

first and second samples, respectively, and supx is the supremum function.

Dn,m = supx|F1,n(x)− F2,m(x)| (4.5)

The null hypothesis for the KS Test is rejected at level α if Equation 4.6 is satisfied.

Dn,m >

√
− ln

(α
2

) 1 + m
n

2m
(4.6)

3Keep in mind that the performance measures we look at average recall, average precision, weighted recall,
and weighted precision.
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We also determine the p value with this calculation, interpreted as how likely it is to

have found the real distribution if the null hypothesis were true. If found to be less than

0.05, it is generally accepted that the two distributions are not from the same underlying

distribution, and the null hypothesis is rejected.

We performed our statistical analysis–from data collection to p value–for a sample size

of 100 images. Summary plots for the KS statistics for all performance measures for the 100

samples sample size can be found on the following pages. Note that the α level we chose for

our KS test is 0.05. The descriptor type index key for the plots can be found in Table 4.3.

Table 4.3: Descriptor Type Index Key for KS Test Summary Plots

Descriptor Index Descriptor Type
0 All Formalist Descriptors
1 All Critical Descriptors
2 Abstraction Level
3 Genre
4 Genre-Specific
5 Color
6 Line, Form, and Value
7 Shape, Space, and Perspective
8 Texture and Brushstrokes
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Figure 4.4: Kolomogorov-Smirnov Two-Sample Test Summary for Average Precision
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Figure 4.5: Kolomogorov-Smirnov Two-Sample Test Summary for Average Recall
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Figure 4.6: Kolomogorov-Smirnov Two-Sample Test Summary for Weighted Precision
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Figure 4.7: Kolomogorov-Smirnov Two-Sample Test Summary for Weighted Recall

As mentioned previously, the KS test only answers one part of our null

hypothesis–whether the random and real data come from the same underlying distribution.

We want to find those hyperparameter focus/descriptor type combinations that perform

better than random in addition to having statistically distinct distributions. We define

better performance as those combinations whose mean performance measure is greater

than that of the random data. All combinations that pass the KS test and whose real data

mean is greater than that of the random are considered to reject our null hypothesis.
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A comprehensive table for those combinations that reject the null for each sample size

can be found in Appendix D. Table D.1 in said Appendix shows that a significant amount

of our combinations indeed reject our null hypothesis, showing that our methods are

successful in distinguishing critically distinct and non-trivial clusters of images, strictly

using visual form. Out of all descriptor types, abstraction level, genre-specific, and, in

particular, shape and space elements tend to perform best (i.e., have the most

hyperparameter counterparts that reject the null).

In addition to looking at specific hyperparameter/descriptor type combinations, we

would like to examine the performance of the critical descriptor types in comparison to the

formalist descriptor types over all hyperparameters. Table 4.4 displays the fractions of null

rejecting cluster systems for each performance metric. We have split the descriptor types

by their corresponding theory; the types and their corresponding art theories can be found

in Table 4.1. We combined the hyperparameter focuses in the fraction calculation.

Table 4.4: Fraction of Null-rejecting Iterations Split by Artistic Theory

Performance Metric:
Average
Precision

Average
Recall

Weighted
Precision

Weighted
Recall

Formalist Descriptors 0.98 0.34 0.08 0.02
Critical Descriptors 0.53 0.34 0.14 0.25

Table 4.4 shows that the average precision performance metric tends to find the most

AIGM that reject our null hypothesis. In other words, on average, we find more

interpretative distinction, in both formalist and critical paradigms, between clusters when

looking through the lens of average precision. This table also shows that the formalist

descriptor types tend to have better performance than the critical descriptor types. We

discuss this more in Chapter 5. Ultimately, though, non-trivial fractions of all the

descriptor types analyzed do end up rejecting our null hypothesis, confirming this project’s

success in terms of our objective.
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As a final analysis, we would like to inspect the absolute performance metrics of each

hyperparameter/descriptor type combination that rejects the null hypothesis, rather than

their performances relative to their random counterparts. Table 4.5 displays the average

performance metrics for the different null-rejected combinations. Due to the large volume

of passing combinations, we only display those performance metrics greater than 0.6.

Recall that all performance metrics range from 0 to 1, where 1 would be perfect

performance. Thus, Table 4.5 shows the most successful hyperparameter/descriptor type

combinations. Appendix D contains the probability distributions of the mean for the

(null-rejecting) performance measures.

Table 4.5: Average Performance Metrics for Most Successful Hyperparameter/Descriptor
Combinations

Hyperparameter Focus Descriptor Type Performance Metric Average Value
Orientation ECT Color Average Recall 0.605
Pixel Size ECT Genre-Specific Average Recall 0.621

0 to 100 Radial Interval Texture and Brushstrokes Average Recall 0.628
400 to 500 Radial Interval Genre-Specific Average Recall 0.631
200 to 300 Radial Interval All Formalist Descriptors Average Recall 0.632

Orientation ECT All Formalist Descriptors Average Recall 0.643
200 to 300 Radial Interval Genre-Specific Average Recall 0.657
0 to 100 Radial Interval All Formalist Descriptors Average Recall 0.666

Orientation ECT Genre-Specific Average Recall 0.672
0 to 100 Radial Interval Genre-Specific Average Recall 0.686

Notice that genre-specific descriptor type, the type that contains the content and

message descriptors for the critical theory paradigm, appears frequently in the table of top

performers. On top of that, the corresponding average values for the descriptor fall in the

upper half of possible performance, indicating successful performance in terms of evaluative

distinguishability. All this together suggests that, beyond the fact that the empirical

relationship between measurable visual characteristics and the quantitative,

communicative, and meaningful characteristics of art does exist (which was confirmed by a

rejection of our null hypothesis), our proposed methods allow a machine to pick up on and
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capitalize on that relationship to some level of success4.

For the sake of comparison, Table 4.6 displays the top performance metrics for the

historical movements that we analyze in this project. For the sake of space, we only display

those metrics with a value greater than 0.4. Note that these metrics were calculated in the

same way as with the clustering data.

Table 4.6: Most Successful Descriptor Types for the Historical Movements

Descriptor Type Performance Metric Value
Line, Form, and Value Average Recall 0.416
Line, Form, and Value Weighted Recall 0.417

Color Average Recall 0.417
Color Weighted Recall 0.418
Color Average Precision 0.422
Color Weighted Precision 0.422

All Formalist Descriptors Average Recall 0.432
All Formalist Descriptors Weighted Recall 0.432

Genre-Specific Average Precision 0.440
Genre-Specific Weighted Precision 0.441
Genre-Specific Average Recall 0.498
Genre-Specific Weighted Recall 0.499

Table 4.6 shows that, though the genre-specific descriptor does consistently appear in

the top performances for the historical movements, the actual performance does not reach

quite to the level of that of the our software’s returned data, displayed in Table 4.5.

Firstly, the fact that our genre-specific descriptor type appears consistently in the top

performance for the historical movements confirms that our descriptor assignment method

(described in the first half of this chapter) is sufficient. In critical theory, the definition of

historical movements is the collections of paintings with common philosophies or messages.

The genre-specific descriptors hold the philosophical ideas of the paintings. Hence, having

that descriptor type as a top performer–meaning that it is best differentiated in the

4Though Table 4.5 only shows average recall metrics, this is only because average recall happens to be the
only metric that obtains values greater than 0.6. We only showed those metrics greater than 0.6 for the sake
of space. There exist examples of other performance metrics that perform better than 0.5. See Appendix
D.
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groupings of images–confirms that our descriptor assignment is in some measure accurate.

Secondly, the fact that our (non-random) clustering data returns performance metrics

that consistently perform better than the historical movements, especially in terms of the

genre-specific descriptor types, shows that our software creates AIGM more interpretatively

distinct than the critically accepted historical movements. This has great implications in

terms of our second research question. We will discuss this in more detail in Chapter 5.

Recall that in Chapter 3 we predicted that certain ECTs would perform best with

certain formalist elements. We postulated that the Pixel Size ECT would perform best

with shape, space, and form, the Color ECT with color and value, and the Orientation

ECT with Line and Shape. Table 4.7 shows the mean precision metrics for those

(null-rejecting) combinations for our sample size of 100 images.

Table 4.7: Null Rejecting Formalist Descriptor Types For the Edge Creation Techniques

ECT Descriptor Type Performance Metric Mean

Color

Shape, Space, and Perspective
Average Precision 0.333
Weighted Recall 0.508
Average Recall 0.525

All Formalist Descriptors Average Precision 0.361
Color Average Precision 0.368

Line, Form and Value Average Precision 0.385
Texture Average Precision 0.394

Orientation

Shape, Space, and Perspective
Average Precision 0.317
Average Recall 0.500

Color
Average Precision 0.364
Average Recall 0.605

All Formalist Descriptors
Average Precision 0.365
Average Recall 0.643

Line, Form, and Value Average Precision 0.373

Texture
Average Precision 0.394
Average Recall 0.593

Pixel Size

Shape, Space, and Perspective Average Precision 0.320
Color Average Precision 0.364

All Formalist Descriptors
Average Precision 0.372
Average Recall 0.599

Line, Form, and Value Average Precision 0.377
Texture Average Precision 0.391
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Table 4.7 rejects the predictions we made. None of the ECTs display best performance

for the formalist descriptor types we predicted. This shows us that, though we based our

methods on the ideas of formalist elements, the mapping we created in our software does in

edge creation not totally embody those ideas.

4.3 A Case Study: New Insights to Expressionism

To show the evaluative benefit of our software, this section presents a brief case study

of a cluster system returned from our methods. The set of AIGM that we will examine was

created (from a sample of 100 images) with the Color ECT, Quickshift segmentation, and

the 0 to 100 radial distance interval. Table 4.8 shows the performance metrics for all

descriptor types for this AIGM set.

Table 4.8: Case Study Performance Metrics

Descriptor
Type

Average
Precision

Average
Recall

Weighted
Precision

Weighted
Recall

All Formalist
Descriptors

0.707 0.919 0.405 0.919

All Critical
Descriptors

0.104 0.319 0.212 0.656

Abstraction
Level

0.723 0.632 0.470 0.458

Genres 0.0 0.0 0.0 0.0
Genre-
Specific

0.719 0.907 0.419 0.899

Color 0.660 0.669 0.322 0.451
Line, Form,
and Value

0.729 0.950 0.448 0.993

Shape,
Space, and
Perspective

0.653 0.768 0.288 0.625

Texture and
Brushstrokes

0.700 0.950 0.399 0.993

This example was chosen because of its relatively high performance across all

performance metrics. Note that, when compared to Table 4.6, this iteration performs
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significantly better than the historical movements with regard to the genre-specific

descriptor type. As stated in the previous section, a higher performance in this type means

that the AIGM are more interpretatively distinct than the critically accepted historical

movements. Essentially, a higher performance indicates an informational gain in terms of

the critical evaluation of the new groupings of images. This leads us to ask: what

information are we gaining from this new representation of the paintings? We must look at

the clustering assignments to answer this.

Table 4.9 shows how the sampled images’ corresponding historical movements are split

into the clusters. Note that, in Table 4.9, we are only displaying the movement count for

clusters 0 and 2; we do this because clusters 1, 3, and 45 do not contain any of the

historical paintings, only those from the simple movements6. In fact, the simple

movements’ images are perfectly divided into clusters that only contain that type. That is,

cluster 1 only contains random shape images, cluster 3 only contains uniform images, and

cluster 4 only contains randomly pixelated images. This tells us that our software can not

only distinguish between different orders of random information (random images), but

between that and ordered (uniform images) and/or complex (historical paintings)

information, as well, at least to some extent7.

5There are five clusters in total in this iteration.
6Recall that the simple movements are those containing randomly pixelated, random shapes, or uniform
color images.

7We can only say this to some extent because we did not perform a statistical confirmation of this statement.
This is a good sanity check for us, though.
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Table 4.9: Case Study Movement Divisions

Movement Cluster 0 Cluster 2
Romanticism 3 2

Cubism 3 3
Neoclassicism 8 2
Impressionism 6 1
Expressionism 3 5

Rococo 3 3
Realism 6 1
Baroque 5 2
Surrealism 4 3
Renaissance 3 4

Post Impressionism 2 1
Fauvism 0 8

As Table 4.9 shows us, the historical movements are spread between the two non-simple

clusters, with the exception of the Fauvism movement. The similar distributions between

the two clusters shows us that our methods are not finding critical distinction along the

same lines as the historical movements. The fact that (almost) all movements are spread

among both clusters tells us that our software has found an alternative way of diving the

images, of making critically distinct groupings of the paintings, to the traditional,

qualitative analyses done in art theory. To give tangible evidence to this claim, we would

like to compare the paintings in either cluster that come from a single historical movement.

Doing so will allow us to inspect the new qualitative division–i.e., the new lens through

which we can examine art–that our software has made. Table 4.10 gives a brief summary of

the accepted critical evaluations of those paintings from the Expressionism movement in

either cluster, found in Figure 4.88.

8Because these images are used strictly for non-profit and academic purposes and because they are used
sparingly, they fall under Fair Use copyright policy.
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(a) Cluster 0

(b) Cluster 2

Figure 4.8: Paintings from the Expressionism Movement in Clusters 0 and 2
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Table 4.10: Evaluations for Expressionism Paintings in Clusters 0 and 1

Painting Interpretation
Cluster 0

The Red Studio - Matisse - 1911 A play with the spatial composition of an
image; Deconstruction of spatial illusion

Harmony in Red - Matisse - 1908 Deconstruction of linear space; flatness
Street, Dresden - Kirchner - 1908 Observation of urban bustle; A

deconstruction of the jarring experience of
modern urban life

Cluster 2
Grazing Horses IV - Marc - 1911 Animals represent human spirituality; the

The Little Blue Horse - Marc - 1911 eternality of nature and our human
Dog Lying in the Snow - Marc - 1911 relationships with it

Dance of Life - Munch - 1900 The cycle of life; ”life’s dance”
Death and Fire - Klee - 1940 A painting of his own death; abstraction of

sad mortality

A quick look at Table 4.10 gives insight to the new interpretative lens that our software

offers. Though both groups belong to the Expressionism art periods, our methods have

found key communicative differences between the two groups of paintings. Though the

main ideas may be different, all the paintings in cluster 0 have a common sub-theme of

deconstruction, whether that be of linear space, like with the Matisse paintings, or of a

concept, like with the Kirchner painting. Cluster 2, on the other hand, tends to deal more

with spirituality and mortality. Though not obvious upon first inspection, each painting in

cluster 2 has a core element that deals with the human relation with life and death. In

short, there is a key interpretative difference between the Expressionist paintings in cluster

0 and cluster 2. All in all, this newfound interpretative difference demonstrates that our

software has taken paintings that historically belong to the same group and has found finer

critical differentiation within. In other words, our methods have allowed us to gain a

non-obvious critical perspective to art.
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4.4 Two-Point Correlations

As part of our analysis, we thought to examine the two-point correlations of images

within the clusters. In other words, we want to ask how often any two ”similar” images are

found in the same cluster. To do this, we need to determine what ”similar” means.

Looking only at the overall descriptor types (all formalist and all critical descriptors), we

decided that the similar images are those with the most descriptors in common in either

overall descriptor type. We set the cut off for similarity as the 50 most common pairs of

images in the type. Note that the total set of similar images for either type does not

necessarily mean all images are equally similar with every other image; just the image pairs

we collected are highly similar (as we define it). We do this to have some sort of image

differentiation for clustering purposes.

We calculate two-point correlation in the following way. We work with one overall

descriptor type at a time. We use the set of similar images from the chosen descriptor type

to create a cluster system, using the same methods described in Chapter 3. For any two

images i and j within that system, we find the empirical probability of those two images

belonging to the same cluster using Equation 4.7, where nc,i/j is the count of image i or j

in cluster c, Ni/j is the total count of image i or j in the entire sampled data set, and S is

the set of clusters that contain both images.

PC(i, j) =

∑S
c=1 nc,i + nc,j

Ni +Nj

(4.7)

Equation 4.7 is the two-point correlation that we seek. We want to know how often our

software will place any two similar images in the same cluster, and hence, we again apply

the bootstrapping method to obtain a distribution of the two-point correlation. Focusing

on one overall descriptor type at a time, we run our software 100 times, obtaining 100 trials

of each hyperparameter iteration (ECT/Segmentation/Radial Distance combination). We

will analyze the statistics of co-occurrence for similar images in both the formalist and

critical realms. This will be completed after the presentation of this thesis.
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4.5 Error Considerations

Our software has a high opportunity for uncertainty since not all factors necessary to

this type of investigation are considered. In this section, we will outline the factors not

considered in practice, listing them in order of what we think of having the most to the

least effect on the results.

1. Art Descriptors: As discussed in Chapter 4, the researcher decided upon the set of

descriptor types and descriptors therein and defined the paintings according to those

descriptors independently, with help from art history resources. The researcher is not

an expert in art history, and thus, the choice to do this independently does introduce

some personal bias into the results analysis. However, when we look at Table 4.2 in

Chapter 4 and compare those descriptive distributions to critically decided definitions

of the movements themselves (found in Appendix A), there is a notable equivalence.

The exception to the match would be the Realism and Expressionism movements.

For each of these movements, I would add in some descriptors to obtain an evaluation

more accurate to the critical. The additions can be found in the list below.

• Realism: pain/strife, nature, ugliness, uneasiness/anxiety

• Expressionism: drama, uneasiness

These exceptions are likely an issue with the sampling we did for the movements. I

predict that we did not collect enough paintings to accurately represent the

movements. With that being said, the movements not mentioned in the list have

more exact critical evaluations to the ones we found with our assigned descriptors,

allowing for more confidence in our results. Nevertheless, we must still keep this in

mind. To counter this issue, one would need to consult an expert in the art history

field to determine the best, most representative images to use per historical

movement, the proper set of descriptors to use, and the best assignments per image.
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Even then, due to the subjectivity of art, no one definition will be strictly

reproducible with every observer. Such is the incongruity of art and science.

2. Original Images, Image Capture, and Resolution: Because no single comprehensive

resource for historical artwork exists, we were not able to obtain images with

normalized characteristics like resolution or color gamut. Generally, none of the

images used were captured by the same devices nor in the same conditions, meaning

the spatial and color resolutions are variable [18]. This will affect the image

segmentation and edge creation in our software, which could have some effect on

results.

3. Binning Metrics: : In our color ECT, we identify the average color of a superpixel

and create edges from that. The color identification is done by binning all possible

colors in HSL space to correlate to the primary, secondary, and tertiary colors found

on the traditional color wheel. The binning was done by eye; there was no rigorous

nor strictly repeatable process we used for this. Because our project is a meeting

point between art theory and scientific computation, there exists little precedent for a

meticulous binning of colors for our use. Our variable binning leaves room for

inaccurate and/or imprecise results.

4. Linear Dimensionality Reduction: We use a linear dimensionality reduction in this

project. It is possible that it would be best to use a non-linear technique, such as

diffusion maps.

5. Image Re-scaling and Interpolation: We use Pixel Area Relation to interpolate our

images to a standard size before analysis. It is possible that the initial re-scaling can

affect results since image segmentation and our ECTs are so dependent on the spatial

composition of the image. A different interpolation method could be best for this

analysis. There could be some informational benefit to maintaining the original

shape, as well. Answering this question would require more extensive research into
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interpolation methods and their effect on image processing. See [19] for more

information.

6. Western culture Focus: This project focuses on paintings from strictly Western

cultures. We may obtain more relevant results if we were to obtain paintings from

various cultures, rather than from our Euro-centric data set.
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CHAPTER 5

DISCUSSION, CONCLUSIONS, AND OUTLOOK

The analysis done in Chapter 4 demonstrates that our software has potential as a

powerful supplemental tool for both the formalist and critical art theories. The statistical

testing we have completed enables us to answer the research questions set forth in Section

1.1. Our principal objective was to complete a proof of concept, answering the following

questions: Is there a relationship between the measurable visual characteristics and the

qualitative, communicative, and meaningful characteristics of art, and can we train a

machine to discern and utilize that relationship? To answer this question, we conducted a

null hypothesis test. Our null hypothesis stated that our software would return a

distribution of performance measures that were of the same underlying distribution as a

random clustering and that those measures would perform worse or at the same level as the

random case. We found that a significant fraction of our hyperparameter/descriptor type

combinations indeed rejected this null hypothesis, meaning they behave statistically

different from random. The hyperparameters of our software determine how we identify the

images’ visual forms for computation (segmentation), what visual elements to test as

having some relation to critical interpretation (edge creation techniques), and what range

of interaction within the image to investigate (radial interval). Put another way, the

hyperparameters are our independent variables. The descriptor types are the different

artistic lexicons that we are testing for significant correlation with visual form. A rejection

of our null hypothesis for a particular hyperparameter/descriptor type combination means

that our software has created groupings of images, using those specific visual characteristics

and in that specific artistic lexicon, that are of notable critical differentiation, beyond what

would be possible with a random clustering assignment. Fundamentally, this indicates that

not only does a non-trivial relationship exist between those specific independent variables
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and that artistic lexicon (whether it be of the formalist or critical paradigms), but it also

proves that our software has detected and implemented that relationship to some extent.

In summary, we have shown that those specific visual characteristics and artistic lexicons in

the hyperparameter/descriptor type combinations that reject our null hypothesis do have

an empirical relationship that can be capitalized on for visual sentiment analysis.

In addition to this discovery, we found that our genre-specific descriptors, those that

contain the philosophical information about each painting, consistently return performance

measures that are not only distinct from random but achieved the greatest success in terms

of creating interpretatively distinct AIGM. Many of the performance metrics for this

descriptor type return average values greater than 0.5. For these reasons, we can confirm

our hypothesis that there exists a relationship between visual form and, specifically, critical

evaluation. It is important to note, however, that the formalist descriptors did return a

better performance in terms of rejecting our null hypothesis. This makes sense since we

based our complex network creation strictly on those formalist ideas. The important

consequence of our conclusions, though, is that we did find success with the critical

evaluations, as well, without using that critical evaluation data in our modelling system.

As a disclaimer, we’d like to highlight the fact that our methodology does not have the

capability to detect any three-dimensional aspects of the paintings. Often, artists

purposely apply thick layers of paint to their work, creating a physical texture on the

canvas. This additional dimension can be (and generally is) a pertinent part of the overall

evaluation of the work. Because we work strictly with digitized scans of the paintings, it is

not possible to obtain this information, which could have some effect on the efficacy of our

results. Three-dimensional scans containing additional information on paintings would

provide source data for a future extension of our work to take texture into account.

Our second research question asks whether we can supplement the traditional,

qualitative critical approach to art analysis. Based on the comparison between the

historical movements and the AIGM done in Chapter 4, we would argue that the methods
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we have presented do offer new insights to art–particularly, new critical/interpretative

divisions of paintings–that could add to the traditional analyses of works of art. Historical

movements are groupings of paintings with a common philosophical message or goal.

Hence, the genre-specific descriptors should and do perform best in terms of evaluating the

interpretative distinguishability of the critically decided and accepted groups of paintings.

The AIGM generated by our software, however, tend to outperform the historical

movements in terms of this descriptor. This means that our software creates AIGM that

are more philosophically distinct than the historical movements, ultimately validating the

idea that traditional art theory neglects certain factors that would, when added to those

evaluations that already exist, provide a new lens through which to understand art. This

also verifies that our methods offer the first step into tapping into that undiscovered

information.

With the next research question, we ask how to measure the inherent information in

art. The methods proposed in this project offer a first insight into this pursuit–a

confirmation that information theory is applicable to artistic pursuits. Though we do have

some success in the implementation of the software, there are ambiguities and ample room

for error. In particular, the descriptor system that we use was created by the researcher,

who is not an art history nor art theory expert. Though there is some evidence that leads

us to believe that the descriptor assignment process was sufficient for our current purposes,

we believe the analyses done can be improved with the involvement of art historians or art

theory experts. The same can be said with the binning metrics used in the edge creation

techniques. In addition to that, our analysis would be improved if the original images were

all collected with the same methods, at the same time and in the same conditions, rather

than collected from online resources. Finally, the use of a different programming tool could

be beneficial. We believe that an even better and more conclusive analysis can be done if

one were to experiment with different clustering and dimensionality reduction techniques,

or even with a neural network analysis.

54



Our final research question addresses a question that we maintain throughout this

report–how to bridge the subjectivity of art and the objectivity of science. Unfortunately,

there is no clear answer to this yet. Many of the choices made in this report were arbitrary.

Because of the utter volume of choices one can make–color bins, descriptors, original

images, etc.–and the ever-present human subjectivity that comes with visual perception

and artistic interpretation, it’s not clear that there can ever be a strictly reproducible

analysis of art. With that being said, we argue that reproducibility is not the most

important concept in this project. The pillar we build this project on is the creative

exploration of art through technological means. Art will always be subjective. Hence, we

argue that it does not matter how subjective our means are, as long as the ends are

explainable and offer insights previously unseen in the art world.

One condition we’d like to address in more detail is that the linear dimensionality

reduction technique works. Due to the novelty of our objective, it was unclear what

features of the complex network representations would return the greatest correlation with

critical interpretation. Hence, we implemented a feature extraction process, with the

second step being to reduce the dimensionality of our measurement data set, creating a

smaller, non-redundant data space. This reduced space allowed for an optimized clustering

of the images into similar critical interpretation. The axes in the new space—the principal

components—were created from a linear combination of the original 28 measurement

dimensions. The question is why this worked for us. Linear dimensionality reduction has

limitations. The principal component analysis (PCA) technique will not work if the joint

distribution of the measurement data does not follow a multivariate normal distribution. In

other words, if the data has any nonlinear correlations, PCA does not have the capabilities

to handle that behavior.

Why did this relatively simple transformation of the measurement data allow for a

confirmation of our hypothesis i.e., for a critically distinct clustering of the images? We

argue that this is because the measurement data already had a regularized structure before
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dimensionality reduction. The art that we analyze obviously contains some nonlinear

spatial relationships in the visual features that we investigate. (Otherwise, the artworks

wouldn’t be very interesting to look at.) When we convert an image into its complex

network representation, however, we are regularizing those correlations. Those

nonlinearities are detected with image segmentation, deconstructed with our superpixel

measurement9, and reconstructed into a more regular relational form with our binning/edge

creation methods. This is the power of the complex network analysis modelling system;

any nonlinear spatial features present in the images are collapsed into associative features

that, when measured, can be handled by the linear transformation that PCA performs.

We would like to note that our analysis only looks at visual features on a relatively

large scale. The edge creation techniques (ECTs) outlined in Section 3.4 look at low order

visual characteristics of the images. We do this on purpose; as stated, our work is

unprecedented, and because of that, we wanted to look at the simplest artistic/visual

features available as a first step. However, when we do this—when we strictly focus on low

order visual characteristics—we lose information about the small-scale attributes of the

images. Take the color ECT for example. To create the complex network representation for

this ECT, we found and used the average hue, saturation, and light values of the

superpixels. However, when we do this averaging, we eliminate access to the finer

variations in color which could hold valuable interpretative information.

Part of this loss in descriptive resolution has to do with the image segmentation step of

our methods10. Though the image segmentation does divide the image into smaller,

meaningful components, it does not divide to the scale, of say, brushstrokes. The divisional

scale of the segmentation algorithms (for the way we configured them) is more on the order

of object detection—not brushstroke detection. This does not mean, however, that it is not

possible to detect small-scale features using our methods. All it would take is to modify

9By measurement, we mean of the pixel size, average color, or angular orientation of each individual pixel.
10Another part could be attributed to the resolution of the images we work with. We predict that 500 by
500 pixels is too small to accurately detect brushstrokes.
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different parts of the software. As said when this project was introduced, our working

objective was to outline an algorithmic blueprint with which one can conduct a creative

investigation of art. In other words, this project’s methods are a framework that can be

adjusted at any step and for any particular use. For instance, to detect brushstrokes in an

image, one could, first, modify the image segmentation algorithms’ hyperparameters to

detect smaller features of brushstroke scale. Next, one could create a new ECT that

embodies whatever desired visual feature of those small-scale components, such as color,

color gradient, shape, size, path variation, etc. Beyond that, it is not necessary to use a

binning method to create edges. Any similarity/dissimilarity logic could be used for edge

creation. In summary, with the work presented, we have offered a versatile framework with

which one can pursue any visual investigation of information in art. We predict that, based

on the preliminary success of our methods, one could apply the modifications just outlined

for fraud detection in or a materials analysis of works of art.
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APPENDIX A

HISTORICAL MOVEMENT CHARACTERIZATION

This appendix outlines the critical and formalist theory evaluations of the historical art

movements that we use in our analyses. We also list representative paintings from each

movement.

A.1 Renaissance

• Timeframe: 1400 - 1600 A.D.

• Thematic Characteristics:

– Idealized beauty

– Religious depictions with a realistic perspective

– Humanism: heightened influence of classical (Greek and Roman) antiquity

– Naturalism: accurate depiction of the observable world

– Depiction of proper/preferred gender roles

• Artistic Characteristics:

– Linear Perspective

– Perfected anatomical depiction of humans; complex poses and postures of

humans

– Humans in complex group formats

• Representative Artists:

– Sandro Botticelli

– Leonardo da Vinci
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– Michelangelo

• Representative Paintings:

– The Baptism of Christ by Verrocchio c. 1475

– Mona Lisa by da Vinci c. 1503

– La Primavera by Bottecelli c. 1482

– Danae by Correggio c. 1530

A.2 Baroque

• Timeframe: 1585 - 1730 A.D.

• Thematic Characteristics:

– Powerful, dramatic realism

– Excuberant Ornamentation

– Replication of observed reality

– Emotional intensity

– Instability, intensity, vividness

– Directed involvement of viewer

• Artistic Characteristics:

– Bold contrasts of light and dark

– Tightly cropped compositions to enhance physical and emotional immediacy of

narrative

– Vibrant palette

– Balanced compositions

– Dynamic movement: Diagonals
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– Idealized forms

• Representative Artists:

– Rembrandt

– Caravaggio

– Rubens

• Representative Paintings:

– The Crucifixion of St. Peter by Caravaggio c. 1600

– The Calling of Saint Matthew by Caravaggio c. 1660

– The Proposition by Leyster c. 1631

– Judith and her Maidservant with the Head of Holofernes by Gentileschi c. 1623

A.3 Rococo

• Timeframe: 1700 - 1775 A.D.

• Thematic Characteristics:

– Lack of seriousness

– Fashionable ideal

– Perpetual youth

– Pleasure, indulgence, and sexual gratification

• Artistic Characteristics:

– Pastel color palette

– Overflowing presence of nature

– Loose brushstrokes
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– Asymmetrical curves

• Representative Artists:

– Fragonard

– Boucher

– Le Brun

• Representative Paintings:

– The Lock by Fragonard c. 1779

– Diana After the Hunt by Boucher c. 1745

– The Blue Boy by Gainsborough c. 1770

– The Bathers by Fragonard c. 1765

A.4 Neoclassicism

• Timeframe: 1700 - 1850 A.D.

• Thematic Characteristics:

– Enlightenment: clear-headed thinking, rationality, seriousness, ethics, austerity

– Patriotism, civic virtue, ethics, purpose, reason, discipline

– Criticism of corruption of monarchy and aristocracy

– Appreciation of Greek and Roman political systems

• Artistic Characteristics:

– No evidence of brushstrokes

– Clarity of form

– Sober colors
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– Shallow space

– Strong horizontals and verticals

• Representative Artists:

– David

– Ingres

– West

• Representative Paintings:

– Achilles Receiving the Ambassadors of Agamemnon by Ingres c. 1801

– Burial of Atala by Trioson c. 1808

– Napoleon Crossing the Alps by David c. 1805

– The Oath of Horatii by David c. 1784

A.5 Romanticism

• Timeframe: 1800 - 1848 A.D.

• Thematic Characteristics:

– Emotionally expressive

– Physically direct; involving the viewer

– Focus on nature; fear of the unknown; nature’s dominance over man

– Dramatic scenes: horrific images, revolution

– Passion, sensitivity, imagination

– A reaction against industrialism

• Artistic Characteristics:
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– Vivid colors

– Visible, unrestrained brushstrokes

– Unrefined outlines

– Emphasis on color over form

– Emphasis on the sky

• Representative Artists:

– Courbet

– Delacroix

– Turner

• Representative Paintings:

– The Shipwreck by Turner c. 1805

– The Desperate Man by Courbet c. 1845

– Lady Liberty Leading the People by Delocroix c. 1868

A.6 Realism

• Timeframe: 1840 - 1900 A.D.

• Thematic Characteristics:

– Portrayal of artists’ contemporary environment

– The accurate, detailed, un-embellished depiction of nature or contemporary life

– Humble, serious tone

– Raw and natural (like a photograph)

– Portrayal of the ugliness, grittiness of the world

• Artistic Characteristics:
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– Dark, warm, Earthy color palettes

– Emphasis on correct reflection of shadow, light, depth, perspective

• Representative Artists:

– Repin

– Manet

– Courbet

• Representative Paintings:

– Barge Haulers on the Volga by Repin c. 1873

– Ivan the Terrible and His Son Ivan by Repin c. 1885

– Portrait of an Unknown Woman by Kromskoi c. 1883

A.7 Impressionism

• Timeframe: 1860 - 1886 A.D.

• Thematic Characteristics:

– Landscape and genre scenes

– Attempt to capture a particular moment in time by pinpointing specific

atmospheric conditions

– Capturing the rapid pace of contemporary life and the fleeting conditions of light

– Color over form

• Artistic Characteristics:

– Optical blending: vibrant colors

– Quickly shifting light on the surface of forms

– Highly visible (patchy) brushstrokes
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– Light, pastel color palette

– Unbalenced compositions

• Representative Artists:

– Degas

– Monet

– Renoir

• Representative Paintings:

– Women Walking on the Beach by Sorolla c. 1909

– The Ballet Class by Degas c. 1874

– The Water Lilies by Monet c. 1880

– At the Races in the Countryside by Degas c. 1869

A.8 Post Impressionism

• Timeframe: 1886 - 1905 A.D.

• Thematic Characteristics:

– The extension and rejection of Impressionism: brought ”scientific rigor” to the

period

• Artistic Characteristics:

– Pointilism and optical mixture: chromatic intensity

– Avoided mixing complementary colors

– Clearly defined, intensified color

– Flattened (shallow) space

– Asymmetry; imbalanced compositions
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• Representative Artists:

– van Gogh

– Gauguin

– Cezanne

• Representative Paintings:

– A Wheatfield with Cypresses by van Gogh c. 1889

– Breton Girls Dancing by Gauguin c. 1888

– The Card Players by Cezanne c. 1895

– The Starry Night by van Gogh c. 1889

A.9 Fauvism

• Timeframe: 1904 - 1915 A.D.

• Thematic Characteristics:

– The rejection of naturalism

– Making art for art

• Artistic Characteristics:

– Bold colors; limited color choices, emphasizing bright shades

– Flat plane

– Monochromism

– Simplified representation/abstraction

– Inconsistent brushwork

• Representative Artists:
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– Derain

– Matisse

– Vlaminck

• Representative Paintings:

– Landscape Near Chatou by Derain c. 1904

– Portrait of Matisse by Derain c. 1905

– Dance by Matisse c. 1909

– The River Seine at Chatou by Vlaminck c. 1906

A.10 Expressionism

• Timeframe: 1905 - 1920 A.D.

• Thematic Characteristics:

– Portraying emotion to the fullest intensity

– Expression of what artists’ felt, not saw

– Reaction to the surrounding world

• Artistic Characteristics:

– Flattened forms

– Reduced detail

– Heavy outlines

– Solid geometry

– Intense color

– Rough brushwork

• Representative Artists:
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– Kandinsky

– Picasso

– Munch

– Kirchner

• Representative Paintings:

– Blue Horse I by Marc c. 1911

– Street Berlin by Kirchner c. 1913

– The Old Guitarist by Picasso c. 1903

– The Scream by Munch c. 1893

A.11 Cubism

• Timeframe: 1907 - 1937

• Thematic Characteristics:

– Disassembling of an observation/form

– The depiction of forms over time, from different perspectives

– Reduced content, color, emotion

• Artistic Characteristics:

– Pale tones and darker shadows, much like with a relief

– Monochromatic color

– Focus on line, form, structure

– Shallow space

• Representative Artists:

70



– Picasso

– Gris

– Braque

• Representative Paintings:

– Bottle and Glass on a Table by Gris c. 1914

– The Round Table by Braque c. 1929

– Three Women by Picasso c. 1908

– Nature Morte au Compotier by Picasso c. 1914

A.12 Surrealism

• Timeframe: 1922 - 1970

• Thematic Characteristics:

– Looks to the mind as a source of liberation

– Subconscious thought and identity: influenced by Freud

– Unexpected/illogical juxtaposition of objects

– ’Surrendering’ control to the art-making process

– Primitive, child-like symbolism

• Artistic Characteristics:

– Distorted figures and biomorphic shapes

– Randomness

• Representative Artists:

– Dali

71



– Ernst

– Magritte

– Kahlo

• Representative Paintings:

– Persistence of Memory by Dali c. 1931

– The Barbarians by Ernst c. 1937

– The Broken Column by Kahlo c. 1944

– The Son of Man by Magritte c. 1964
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APPENDIX B

COLOR ECT BINNING METRICS

Table B.1, Table B.2, and Table B.3 show the exact binning metrics for the different

HSL axes. As mentioned, we work in HSL since the color space is more intuitive to how we

think about color (in terms of the visible spectrum). Keep in mind that these bins were

differentiated by eye. As explained by the Gestalt theory of color perception, we view

colors differently based on the background they are placed upon, so these bin edges can be

variable depending on the person.

Table B.1: Hue Axis Bin Labels and Edges

Hue Bin Hue Axis Interval [0 - 360)
Red-orange 11 - 26
Orange 26 - 36

Yellow-orange 36 - 46
Yellow 46 - 61

Yellow-green 61 - 91
Green 91 - 151

Blue-green 151 - 201
Blue-violet 251 - 271

Violet 271 - 291
Red-violet 291 - 341

Red 341 - 11

Table B.2: Saturation Axis Bin Labels and Edges

Saturation Bin Saturation Axis Interval [0 - 100]
True grey 0 - 6

Low Saturation 6 - 41
Medium Saturation 41 - 71
High Saturation 71 - 100
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Table B.3: Lightness Axis Bin Labels and Edges

Lightness Bin Lightness Axis Interval [0 - 100]
True Black 0 - 6

Dark 6 - 31
Precise 31 - 70
Light 70 - 95

True White 95 - 100
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APPENDIX C

ART DESCRIPTORS

Table C.1 shows how we conduct the binning for the different formalist questions we

ask in the descriptor assignment process. Note that if any question did not have an obvious

answer for an image, that image was given no descriptor for that particular question.

Table C.2 shows all possible critical descriptors for assignment. Figure C.1 through

Figure C.4 display the count distribution for all formalist descriptor types (and the options

therein) over all the images we collected. Figure C.5 displays the descriptor distributions

for the critical descriptors over all images. Note that the genre-specific descriptors do not

have labels, since there were too many to list.
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Table C.1: All Formalist Descriptors

Question Formalist Descriptors
Shape, Space, and Perspective

Balance? Highly Balanced
Space

Mostly Balanced
Space

Mostly
Imbalanced Space

Highly
Imbalanced Space

Movement? Highly Dynamic
Movement

Intermediate
Movement

Highly Static
Movement

-

Empty
Space?

Small Empty
Space

Intermediate
Empty Space

Large Empty
Space

-

Perspective? Direct Perspective Intermediate
Perspective

Removed
Perspective

-

Brushstrokes and Texture
Brushstroke
Control?

Mostly Controlled
Brushstrokes

Mixed
Brushstrokes

Mostly Wild
Brushstrokes

-

Outlines? Light/No
Outlines

Mix Outlines Heavy Outlines

Brushstroke
Visibility?

Blended
Brushstrokes

Mixed Visibility
Brushstrokes

Visible
Brushstrokes

-

Line, Form, and Value
Depth? Flat Depth Shallow Depth Regular Depth Deep Depth
Value

Contrast?
Low Value
Contrast

Intermediate
Value Contrast

High Value
Contrast

-

Average
Value?

Light Overall
Value

Balanced Overall
Value

Dark Overall
Value

Distinct
Lines

Between
Objects?

Indistinct Lines Intermediate
Lines

Indistinct Lines -

Color
Color
Mode?

Naturalistic Color Capture Color Expressionistic
Color

-

Color
Diversity?

Monochrome Hue Similar Hue Somewhat
Diverse Hue

Highly Diverse
Hue

Tone? Vibrant Tone True Tone Muted/Tinted
Tone

-

Color
Relation-
ships?

Harmonious Color Friction in Color - -

Proximity
Contrast?

Blended Color
Contrast

Stark Color
Contrast

- -
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Table C.2: All Critical Descriptors

Critical Descriptors
Abstraction Level

Wholly Abstract Organically Abstract Semi-Abstract Naturalistic
Genre

Historical Portraiture Genre Landscape
Still life - - -

Action, Location, Person, or Object
Indoors Outdoors Public Domain Private Domain

Rural Realm Urban Realm Recreation Rest/Liesure
Work Dining Religious Action Education

Chores/Travel Festivity Violence Conflict
Communication Historical subgenre Religious subgenre Mythological

Subgenre
Literary Subgenre Allegorical Subgenre Royalty Government/Military

Aristocracy Commoner Thinker/Artist Religious
Other/Self Farm/grassland Mountain Sea/ocean
Forest River/lake City Beach

Human(s) Animals Buildings Food
Furniture Tools Flowers/Plants -

Message
Community/family Spirituality Cycle of life Science

Government Social Consciousness the Body the Mind
Power Beauty/Ideal Love Morality

Occupation of Time Peaceful Mystery Danger
Bountiful Unforgiving Genius Strife/pain
Exhaustion Greatness Joy Youth/Sensitivity
Serious Dedication Sadness Mischievous

Thoughtfulness Harmony New
Directions/Change

Primativism

Fast Pace Lively/Energetic Nature Interaction Deconstruction
Sensuality Sexuality Minimalism Casual
Drama Elegance Ugly Antiquity
Color Texture Abundance/Luxury Isolation

Detachment Vacancy/Boredom Antiquity Revolution
Patriotism Strength Confidence Cross Culturalism

Fear Hope Warm/Inviting Peace
Loss Uneasiness/Anxiety Comfort Gender

Discipline Independence Momentary Intimacy
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(a) Color Diversity Distribution (b) Color Harmony Distribution

(c) Color Intensity Distribution (d) Color Mode Distribution

(e) Proximity Contrast Distribution

Figure C.1: Descriptor Distributions For the Color Element Group
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(a) Average Value Distribution (b) Value Contrast Distribution

(c) Distinctive Lines Distribution (d) Depth Distribution

Figure C.2: Descriptor Distributions For the Line, Form, and Value Element Group
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(a) Balance Distribution (b) Movement Distribution

(c) Perspective Distribution (d) Empty Space Distribution

Figure C.3: Descriptor Distributions For the Shape, Space, and Perspective Element Group
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(a) Outline Distribution (b) Brushstroke Visibility Distribution

(c) Brushstroke Control Distribution

Figure C.4: Descriptor Distributions For the Texture and Brushstrokes Element Group
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(a) Abstraction Level Distribution (b) Genre Distribution

(c) Genre-Specific Distribution

Figure C.5: Descriptor Distributions for Critical Descriptors
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APPENDIX D

SUPPLEMENTAL RESULTS

D.1 Null Rejected Performance Metric Distributions

Figure D.1 shows the distributions for the different null-rejected performance metrics

for the 100 sample size. We do not specify descriptor type nor hyperparameter focus.

Figure D.1: Null Rejected Performance Metric Distributions

D.2 Null Rejected Hyperparameter-Descriptor Combinations

Table D.1 shows all combinations of the hyperparameter focus, descriptor type, and

performance measures that end up rejecting our null hypothesis. Recall that a rejection of

the null hypothesis means that, for a particular hyperparameter/descriptor/performance

combination, the real data from our bootstrap data collection performs better than the
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corresponding random data and that we are statistically certain the two distributions were

not drawn from the same underlying distribution.

Table D.1: Hyperparameter and Descriptor Combinations that Reject the Null Hypothesis

Hyperparameter Focus Descriptor Type Performance Measure

Color ECT

All Formalist Descriptors Average Precision

Abstraction Level
Average Precision
Weighted Precision
Weighted Recall

Genre-specific Average Precision
Color Average Precision
Line, Form, and Value Average Precision

Shape, Space, and Perspective
Average Precision
Average Recall
Weighted Recall

Texture and Brushstrokes Average Precision

Orientation ECT

All Formalist Descriptors
Average Precision
Average Recall

Abstraction Level
Average Precision
Average Recall
Weighted Precision

Genre-specific
Average Precision
Average Recall

Color
Average Precision
Average Recall

Line, Form, and Value Average Precision

Shape, Space, and Perspective
Average Precision
Average Recall

Texture and Brushstrokes
Average Precision
Average Recall

Pixel Size ECT

All Formalist Descriptors
Average Precision
Average Recall

Abstraction Level
Average Precision
Average Recall

Genres Weighted Recall

Genre-specific
Average Precision
Average Recall

Color Average Precision
Line, Form, and Value Average Precision

Shape, Space, and Perspective
Average Precision
Average Recall

Texture and Brushstrokes Average Precision

84



Table D.1: Continued.

Hyperparameter Focus Descriptor Type Performance Measure

Felzenswalb Segmentation

All Formalist Descriptors Average Precision
All Critical Descriptors Average Precision

Abstraction Level
Average Precision
Weighted Recall

Genre-specific
Average Precision
Weighted Precision

Color Average Precision
Line, Form, and Value Average Precision
Shape, Space, and Perspective Average Precision
Texture and Brushstrokes Average Precision

Quickshift Segmentation

All Formalist Descriptors Average Precision

Abstraction Level
Average Precision
Average Recall

Genres Weighted Recall

Genre-specific
Average Precision
Average Recall

Color Average Precision
Line, Form, and Value Average Precision

Shape, Space, and Perspective
Average Precision
Average Recall

SLIC Segmentation

All Formalist Descriptors
Average Precision
Weighted Precision

Abstraction Level

Average Precision
Average Recall
Weighted Precision
Weighted Recall

Genre-specific Average Precision

Color
Average Precision
Weighted Precision

Line, Form, and Value
Average Precision
Weighted Precision

Shape, Space, and Perspective Average Precision
Texture and Brushstrokes Average Precision

0, 100 Radial Interval

All Formalist Descriptors
Average Precision
Average Recall

Abstraction Level
Average Precision
Average Recall
Weighted Recall

Genres Weighted Recall

Genre-specific
Average Precision
Average Recall

Color Average Precision
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Table D.1: Continued.

Hyperparameter Focus Descriptor Type Performance Measure

0, 100 Radial Interval

Line, Form, and Value Average Precision

Shape, Space, and Perspective
Average Precision
Average Recall

Texture and Brushstrokes
Average Precision
Average Recall

200, 300 Radial Interval

All Formalist Descriptors
Average Precision
Average Recall

Abstraction Level

Average Precision
Average Recall
Weighted Precision
Weighted Recall

Genre-specific
Average Precision
Average Recall

Color Average Precision

Line, Form, and Value
Average Precision
Weighted Precision

Shape, Space, and Perspective
Average Precision
Average Recall

Texture and Brushstrokes Average Precision

400, 500 Radial Interval

All Formalist Descriptors
Average Precision
Average Recall

Abstraction Level
Average Precision
Weighted Recall

Genre-specific
Average Precision
Average Recall

Color Average Precision
Line, Form, and Value Average Precision

Shape, Space, and Perspective
Average Precision
Average Recall

Texture and Brushstrokes Average Precision
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APPENDIX E

ARROW OF TIME ANALYSIS

As a tangent to our project, we also conducted an arrow of time analysis, using

entropical measures. Due to our null result for this investigation, it was decided to place

this investigation in the appendix, rather than as apart of the main body of this report.

This analysis is outlined below.

E.1 Theory

In our research, we looked extensively at Shannon entropy and its generalization to

digital images. As stated in Section 2.3, with Shannon entropy, the lower the value, the

more information is inherent in the system, and the “surprise” is low. This idea can be

extended to images. Fundamentally, entropy should measure the uncertainty of an image.

If totally one color, our generalized entropy would be zero, and if totally randomized, the

entropy would be maximal. The paintings that we analyze would lie somewhere in between

these extremes, where meaningful information lies. Classical paintings–those from the

Renaissance, Baroque, Neoclassical, and Realism movements–tend to illustrate a specific

event or situation. They tend to have a (relatively) well-communicated message, tone, or

feeling that is easily understood by the viewer. The paintings of these movements also tend

to be more visually ordered (though this varies, depending on context) [15], [16]. Thus, our

prediction is that these movements will have a lower generalized entropy–a lower surprise

factor.

To break away from tradition, the later movements–Surrealism, Expressionism, Cubism,

and Impressionism–introduced disorder to art. This is not the classically defined disorder

of displaying chaotic events but a totally stylistic disorder. These movements brought

painting styles, color schemes, shapes, and ideas previously unseen in fine art; they were

rejecting traditional forms of expression and escaping order [16], [17]. With this came less
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explicit information; the intended meaning became more opaque [8]. Recall that classical

movements generally had easily interpretable subject matter and explicit tone. Hence, the

movements had more inherent interpretative information. For the later movements, the

interpretation is more subject to the viewer. The tone, feeling, and content is intended to

be less unanimously interpretable. Thus, I predict that these movements will have a higher

entropy–a higher uncertainty.

This theory, if true, coincidentally follows the second law of thermodynamics: the law

that entropy tends to increase over time. What does this mean, philosophically? As society

becomes more complex, as it has over the past half millennia, does our art mathematically

reflect the new uncertainties and diversities of thought? This idea, if confirmed, would

return powerful conclusions on society, philosophy, art, and their evolutions.

The generalized entropy we use for this analysis can be found in Equation E.1, where

PR,G,B indicates the probability of a particular color vector within the image being

examined.

HR,G,B = −
∑

PR,G,B(r, g, b) log256 PR,G,B(r, g, b) (E.1)

We use base 256 for the logarithm since there are 256 possible red, green, and blue

states for a color vector. The above entropy is known as 1st order entropy. In this

investigation, we also look at 0th and 2nd order entropy. The 0th order entropy is simply a

count of all the different states (color vectors) present. The 2nd order entropy, known as

Rényi entropy, can be found in Equation E.2.

H2,(R,G,B) = − log256
( ∑

PR,G,B(r, g, b)
2
)

(E.2)

The 2nd order entropy is known as the Rényi Entropy. This entropy is commonly

thought of as an entropic measure of diversity, where the sum inside of the log is true

diversity. Ultimately, we can use 2nd order entropy to look at the categorical diversity

between color vectors.
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E.2 Results

We found the 0th, 1st, and 2nd order entropies as well as the true diversity for all the

images that we used in our main analysis, including those from the simple movements. The

results from this investigation can be found in Figure E.1. For each of the plots in

Figure E.1, we also performed a linear regression on the data (black line). The regression

metrics can be found in Table E.1.

The R-value, p-value, and standard error found in Table E.1 tell us that we cannot

confirm our hypothesis that the color-based generalized Shannon entropy of paintings

increases over time, at least linearly. R-values act as a goodness-of-fit test, with possible

values ranging from 0–the worst possible fit for the data–to 1–a perfect fit of the data. The

R-values for all measures are less than 0.2, indicating a poor fit of the least-squares linear

regression. The p-values act as a null hypothesis test, testing whether the data as a true

slope of zero. The minuscule p-values that we obtained seem to indicate the null hypothesis

can be rejected, but we would prefer to conduct more tests to confirm this.
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(a) Zeroth Order Entropy (b) First Order Entropy

(c) Second Order Entropy (d) True Diversity

(e) Legend

Figure E.1: Arrow of Time Results
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Table E.1: Arrow of Time Linear Regression Metrics

Measure Slope Intercept R-value p-value
Zeroth Order Entropy 70.019 5577.090 0.0811 0.0491
First Order Entropy 2.5E-4 1.389 0.1531 0.0001
Second Order Entropy 4.0E-4 0.878 0.1751 1.9E-5

Diversity 38.360 -47652.903 0.1485 3.0E-4

E.3 Remarks

Alas, we cannot confirm our theory that the generalized Shannon entropy of images

increases over time, but hope is not lost. We will list some investigations one could do to

continue the search into the theory.

• Introduce color binning. One may want to consider implementing the same binning

metrics that we use in our color ECT (see Section 3.4) for this entropic investigation.

Instead of computing the information measures with individual color vectors as states,

one would use the color identities (the combined hue, saturation, and light bins) as

the states. The number of states would decrease dramatically, and the correlated

probabilities would likely be significantly larger. The motivation behind this is that,

generally, artists don’t think of color in terms of a discrete spectrum, like digital color

spaces do, but in terms of a continuous spectrum that gradually changes from one

color to another. For instance, an artist may create an monochromatic painting that

contains various hues of red. Treating this image as we have, the entropy would likely

be very similar to a non-monochromatic artwork, since all the different color vectors

corresponding to the hues of red are treated as independent states. Introducing the

color binning would make it so that monochromatic painting has fewer independent

states than the non-monochromatic painting, potentially reducing the entropy.

• Collect more data. We work exclusively with Western fine art from the 1400s through

the 1970s. How would this analysis change if we increased the time span from
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prehistoric periods through modern art? What if we explored the art from other

cultures?

• Look at the rise and fall of civilizations. One of the postulates of our theory is that

art reflects the increasing disorder of society. One way to explore this idea is to look

at the art of a specific area of the world where civilizations would rise, collapse, and

restart over centuries. Assuming we have access to the art from the different

civilizations, we could investigate how the generalized entropy of those civilizations’

art changes with the changes in their societal structure. Is there a lower artistic

entropy when the civilization is budding? Does it increase with the growth of the

society? Does it come to a climax and fall as the civilization collapses and restarts?

• Use the interpretability of the art instead. Instead of looking at the color for entropy,

what if we looked at the relative ambiguity of the human interpretations of that art?

Do the classical historic movements–those with clear messages and intent–have a

lower evaluative entropy? Do the artworks with a more opaque message have a higher

(semantic/evaluative) entropy?
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