
EXPLORATIONS IN COMPLEX NETWORK THEORY: INTERFEROMETER NETWORKS AND

THE APPLICATION OF GENERATING FUNCTIONS TO MATRICES

by

Benjamin A. Krawciw



c© Copyright by Benjamin A. Krawciw, 2023

All Rights Reserved



A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial

fulfillment of the requirements for the degree of Master of Science (Computational and Applied

Mathematics).

Golden, Colorado

Date

Signed:

Benjamin A. Krawciw

Signed:

Dr. Cecilia Diniz Behn
Thesis Advisor

Signed:

Dr. Lincoln D. Carr
Thesis Advisor

Golden, Colorado

Date

Signed:

Dr. Gerrald Greivel
Professor and Department Head

Department of Applied Mathematics and Statistics

ii



ABSTRACT

Complex network theory examines the structures that arise from systems like neurons in the brain,

members of societies, and pages on the world wide web. I push the field forward in two distinct areas: I

address the current inability of complex network theory to handle networks weighted with complex

numbers; and I introduce a novel way of expressing networks through the generating function technique.

The interest in networks based on complex numbers is motivated by a desire to extend complex network

theory to problems in physics which involve traveling signals with phase, such as waves traveling through

networks, interfering constructively and destructively depending on their phase at the point of interaction.

My new analysis of this class of networks centers around the case of interferometry. I call these

complex-valued networks interferometer networks. The work combining generating functions and matrices

is motivated by the success generating functions have had in treating large sequences with recursive

structure. Large networks can be similarly constructed as a sequence with recursion, making generating

functions a possible tool for examining networks.

I explore interferometer networks with structures very different to traditional interferometers. Most

interferometers compare the phases of only two beams of light. They function by counting the difference in

the number of cycles of light waves, which occur at a rate of 1 cycle per 2π radians of phase shift. For more

complicated interferometers, I prove that they still only produce 1 cycle per 2π radians of phase shift as

long as the phase shift occurs at only one site in the network. However, if this phase shift is split up over

multiple places in the network, this limitation no longer holds. I produce an interferometer model, called

the N -stage skew-cycle interferometer, which breaks this limitation. The N -stage skew-cycle interferometer

serves as a demonstration that large changes in output phase can arise from small changes in inputs.

To incorporate the traditional tools of complex network theory, I take two well-known measures in

complex network theory, path length and clustering, and generalize them to interferometer networks.

These measures are extended to the complex numbers, creating versions that account for the constructive

and destructive interference of waves travelling over the network. I call my newly-defined measures

apparent path strength and interferometric clustering.

There are instances of interferometer networks for which apparent path strength is undefined, especially

in the case of feedback loops. This chapter identifies a real-world case where this can arise: the cavity of a

Fabry-Perot interferometer. Subsequently, I prove that unique signal solutions exist and are bounded if the

`1 norm of the weighted adjacency matrix is less than one. This allows the interferometer network research

to continue with a guarantee that my newly-defined measures exist and are bounded.

iii



I explore the small-world effect in the context of interferometer networks. The small world effect is a

phenomenon that occurs in real-world networks. In the language of clustering and path length, small-world

networks tend to have high clustering and short path lengths. This behavior is quantified by a measure

called the small-world coefficient. I adapt a model for this behavior to produce interferometer networks.

Then, I computationally test those networks using my newly-defined measures. I found that the

small-world coefficient, adapted for interferometer networks, depends heavily on the presence of phase in

the networks. The small-world coefficient computed with the generalized measures ranges from slightly

lower than the small-world coefficient computed with real-valued network measures to several times higher,

demonstrating that interferometric network measures are necessary to capture the behavior of the model.

This result concludes the investigations into interferometer networks.

Subsequently, I explore the application of generating functions to adjacency matrices. I create two

representations of networks: the array generating function and the transformation operator. The array

generating function stores the entries of an adjacency matrix on a power series of x and y, where powers of

x correspond to rows and powers of y correspond to columns. The transformation operator acts on the

coefficients of a generating function the same way that matrices act on the entries of a column vector.

After defining the array generating function and the transformation operator, I establish some of their

properties and demonstrate how to convert between adjacency matrices, array generating functions, and

transformation operators. The result of this work is the creation of new ways of expressing networks, which

allows convenient ways of generating networks and performing calculations on them.

Finally, I discuss the discoveries made throughout the thesis and consider what those results mean for

future network research. Interferometer networks, with their associated interferometric measures, have

potential applications in quantum random walks, condensed matter models, complex-valued neural

networks, and network analysis of alternating-current circuits. Particular problems include analytically

modeling the small-world coefficient of the small-world interferometer model and demonstrating the

applicability of interferometric measures by applying them to an existing data set. The application of

generating functions to matrices likewise creates opportunities for new research: using array generating

functions to compute network measures, using generating function techniques to find matrix

decompositions, and using repeated applications of the transformation operator to create a generating

function that enumerates path lengths on an unlabeled network.

iv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 INTERFEROMETER LIMITATION AND THE N -STAGE SKEW-CYCLE
INTERFEROMETER (NSCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

CHAPTER 3 GENERALIZED NETWORK MEASURES . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Path Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Interferometric Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

CHAPTER 4 FEEDBACK IN INTERFEROMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 A Simple Example of Feedback, and its Correspondence to the Fabry-Perot Interferometer . . . 30

4.2 Conditions for Well-Behaved Interferometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

CHAPTER 5 THE SMALL-WORLD EFFECT FOR INTERFEROMETER NETWORKS . . . . . . . 37

CHAPTER 6 THE APPLICATION OF GENERATING FUNCTIONS TO MATRICES . . . . . . . . 45

CHAPTER 7 DISCUSSION AND CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

APPENDIX A SMALL-WORLD EFFECT PLOTS ACCOUNTING FOR SELF LOOPS . . . . . . . . 71

APPENDIX B NETWORK ALGORITHMS MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

APPENDIX C CODE THAT RUNS INTERFEROMETER TESTS ON HPC . . . . . . . . . . . . . . . 81

APPENDIX D DATA VISUALIZATION CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

v



LIST OF FIGURES

Figure 1.1 An example of a directed network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Figure 1.2 The Michelson interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.3 Sagnac interferometer network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 2.1 The archetypal interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 2.2 Example interferometer with single variable edge . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.3 Diagram of finding the center of E0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.4 Diagram of the NSCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.5 A skew-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.6 Demonstration of the NSCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.1 Example network for path measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.2 Diagram of triangles measured by interferometric clustering . . . . . . . . . . . . . . . . . 26

Figure 3.3 Examples of triangles introduced by allowing self-loops . . . . . . . . . . . . . . . . . . . . 27

Figure 3.4 Physical example of self-loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.5 Example network for clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 4.1 Simple example of feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 4.2 A Fabry-Perot interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 4.3 The Fabry-Perot interferometer as an interferometer network . . . . . . . . . . . . . . . . . 32

Figure 5.1 Small-world interferometer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 5.2 Peak Sint over φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 5.3 Sint over β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 5.4 Histogram of Sint ratios from randomized small-world interferometer tests . . . . . . . . . 41

Figure 5.5 Scatter plot of randomized network parameters tested . . . . . . . . . . . . . . . . . . . . . 43

Figure 6.1 The binary tree, labeled breadth-first, drawn out to two layers below the root node. . . . . 49

Figure 6.2 Demonstration of the recursive step for generating a binary tree. In particular, this
figure goes between depth 1 and depth 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vi



Figure A.1 Peak Sint over φ, with self loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure A.2 Sint over β, with self loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure A.3 Histogram of Sint ratios from randomized small-world interferometer tests, with self loops . 72

Figure A.4 Scatter plot of randomized network parameters tested, for self-loop tests . . . . . . . . . . 73

vii



LIST OF TABLES

Table 6.1 Vector and matrix notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 6.2 Sequence and generating function notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

viii



LIST OF SYMBOLS

A matrix with a single entry at row k, column l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∆kl

A vector b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~b

The (complex or real number) weighted adjacency matrix . . . . . . . . . . . . . . . . . . . . . . . . . . W

The `1 norm of an expression (vector or matrix), [·] . . . . . . . . . . . . . . . . . . . . . . . . . . . ‖[·]‖1

The clustering coefficient at node j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cj

The coefficient of xm in the power series f(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [xm]f(x)

The complex conjugate of a complex number z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . z†

The constant source term supplying vertices in an interferometer network . . . . . . . . . . . . . . . . . ~S

The end of a proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �

The entry on row i, column j of a matrix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bij

The entry on row i, column j of a matrix expression · . . . . . . . . . . . . . . . . . . . . . . . . . . . [·]i,j

The error of a variable x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . δx

The formal power series antiderivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Î

The formal power series derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D̂

The matrix of apparent path lengths of a network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lP

The matrix of apparent path strengths of a network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P

The maximum value of a set A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . maxx∈A x

The nth entry of a sequence a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . an

The signals traveling around an interferometer network . . . . . . . . . . . . . . . . . . . . . . . . . . . ~E

The supremum of a set A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . supx∈A x

The unweighted adjacency matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A

f(x) =
∑∞
n=0 anx

n is the ordinary power series (OPS) generating function of the sequence

{an} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {an}
OPS←−−→ f(x)

ix



LIST OF ABBREVIATIONS

Apparent Path Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . APL

Apparent Path Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . APS

Array Generating Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AGF

Ordinary Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OPS

Strongest Path Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPL

Strongest Path Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPS

The N-stage Skew-Cycle Interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NSCI

Transformation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TO

x



ACKNOWLEDGMENTS

First and foremost, I am thankful for the cadre of mentors I have gathered over my time at Mines: Dr.

Lincoln Carr, Dr. Cecilia Diniz Behn, and Dr. Antwan Clark. I owe a tremendous debt of gratitude to Dr.

Lincoln Carr, who snatched me up into research during a group advising session during my freshman year,

and has driven me to succeed at every stage of research. I am likewise indebted to Dr. Cecilia Diniz Behn,

who has been a tremendous advocate and advisor throughout my time in the math department, and even

before then. I would like to express my gratefulness for Dr. Antwan Clark, who, without any previous

connection to me, found me out of the blue and brought me to the Laboratory for Physical Sciences. I had

a great time exploring network theory deeply with him during the summer of 2022. Additionally, I thank

Dr. Dinesh Mehta for serving as the chair of my thesis committee.

I am personally grateful for my parents, who have nurtured and provided for me from birth through

college. I will never be able to repay that debt, but I suppose that is the nature of unconditional love. I am

likewise grateful to the Navigators, who have been like a family to me during my time at the Colorado

School of Mines. May I never lose the vision of knowing Christ, making him known, and helping others do

the same.

This research was funded by National Science Foundation Grant DCCF 1839232. Also, I acknowledge

the Colorado School of Mines High Performance Computing resources (https://ciarc.mines.edu/hpc/)

made available for conducting the research reported in this thesis.

xi

https://ciarc.mines.edu/hpc/


CHAPTER 1

INTRODUCTION

Complex network theory has been used to describe large interacting systems in diverse contexts

including sociology [1, 2], the analysis of technological networks like electrical grids [3] and the internet

[4, 5], and neuroscience [6, 7]. I seek to expand the field in two broad ways: first, in Chapters 2-5, I extend

complex network theory to networks based on complex numbers, which I call interferometer networks.

Second, in Chapter 6, I apply the generating function technique to matrices, which serves as a novel way to

express networks. In this Chapter, I introduce the language of complex networks, interferometer networks,

and generating functions, then I outline the rest of the thesis.

Before I begin to discuss the new discoveries, I must introduce the language of complex network theory

[8]. A network is a set of objects called vertices, which are connected to one another by edges. These edges

can be directed, going either from vertex A to vertex B, or they can be undirected, connecting A and B in

no particular order. Networks are often depicted with vertices as dots and edges as lines between the dots.

Directed edges are drawn as arrows. An example of a directed network is shown in Figure 1.1.

0

1

2

5

3

4

Figure 1.1 An example of a directed network. The vertices in the network are indexed with natural
numbers. The vertices are connected by arrows, denoting directed edges.

If we index the vertices with distinct numbers, we can represent the edges in the network with an

adjacency matrix. In an adjacency matrix, the position of the row of an entry corresponds to the vertex an

edge is entering, the position of the column of an entry represents the index of the vertex the edge is

coming from, and an entry of 1 denotes the existence of an edge, while an entry of 0 denotes the absence of

1



an edge. The adjacency matrix for the network in Figure 1.1 is

A =


0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 1 0 1
0 0 0 0 0 0
0 0 1 0 0 1
0 0 0 0 1 0

 . (1.1)

Networks where edges simply exist or do not exist are called binary networks. Networks that have edges

of varying connection strength have weights, which, traditionally, are real numbers. The weight often

quantifies the strength of a connection, but it can also quantify the distance between two vertices, or any

other number that one may want to associate with an edge. These weights can be stored in a weighted

adjacency matrix, usually called W instead of A, where entries are real numbers instead of just 1 or 0. The

number 0 is still usually associated with the absence of an edge.

Now that I have introduced the basic notation of networks, I can clarify the meaning of a complex

network. Complex networks are networks that have too many vertices to examine by mere inspection, have

edges that are too disordered to fit into simple patterns like rings and lattices, yet also have too much

structure to fit into a completely random network model. This field is necessitated by the structure of

real-world systems like societies and the brain, which are large and structured, but also variable. Thus, the

field simultaneously involves problems of computing with large systems, defining measures to quantify

structural properties, and the use of statistical analysis to examine variability in these systems.

Current network-theoretic explorations of interfering systems are limited by the need to exclude phase

information so that those networks can be quantified by existing real-valued measures. Three especially

pertinent examples of works that face this limitation are the “Complex-network description of thermal

quantum states in the Ising spin chain” [9], the “Real-space visualization of quantum phase transitions by

network topology” [10], and “Detecting quantum critical points in the t-t′ Fermi-Hubbard model via

complex network theory” [11]. In all of these works, a quantum problem is examined, which exhibits

interfering complex numbers, but the phase information stored by those complex numbers is thrown away

so that the results can fit into traditional network measures. Other phase-based problems include

interferometry, the Aharonov-Bohm Effect [12], and the “Quantum Interference Effect Transistor” [13]. To

accommodate these problems, network models and network measures need to be created with

complex-number edge weights. After these generalizations are introduced, they can analyze optical and

quantum systems of sizes that were previously intractable while also accounting for interference effects.

The tools we develop here have uses in modeling complex optical systems, detecting phase transitions in

statistical mechanics, and quantifying decoherence in quantum computers.

2



To adapt complex network theory to complex-valued problems, I begin by considering the physical

problem of interferometry. In an interferometer, light from a source is split into multiple paths. Each path

travels differently, and accumulates its own distinct phase. At other points in the interferometer, the

distinct paths of light are recombined. Since light takes the form of waves, these paths with their distinct

phases create waves that do not align perfectly with each other. When they are added together, they

interfere, meaning that the light observed at the output of an interferometer does not necessarily have the

combined strength of all the beams that combine. The example of the Michelson interferometer [14], which

was used to attempt to measure a difference in the speed of light in two orthogonal directions, is depicted

in Figure 1.2. The measurement takes place by having light split into the paths at a half-silvered mirror.

On each path, the light encounters a regular mirror, the light reflects back into the half-silvered mirror, and

the light recombines. The intensity of the light leaving the half-silvered mirror is measured. The difference

in travel time causes a difference in the phase of the light beams when they recombine.

Figure 1.2 Left: the Michelson interferometer, which measures the difference in light’s travel time between
two paths (red and blue). The left is the light source. The center of the interferometer is a half-silvered
mirror. Each of the two paths includes a regular mirror. The bottom is the observer. Right: two waves of
differing phase being added together, illustrating interference.

I define interferometer networks as follows: interferometer networks are directed networks with edges

weighted by a complex number. The weighted adjacency matrix W contains these complex edge weights.

Each vertex has an associated value, corresponding to some kind of signal. In the case of interferometer

networks, this signal is the electric field strength at the vertex. The vertex indexed at i has a signal value

Ei. The signal vector ~E contains the signals at each vertex. The signal Ei is the sum of two inputs: signals

traveling over edges to the vertex and a constant source term. The incoming edges carry a signal equal to

the edge weight Wij times the incident vertex’s signal Ej . The constant source terms, Si for each vertex i,

are contained in a source vector ~S. In total, this produces Equation 1.2.

Ei = Si +
∑
j

WijEj . (1.2)

3



The entire system is then described by a matrix equation, Equation 1.3, the vertex signal equation:

~E = W ~E + ~S. (1.3)

To demonstrate the creation of an interferometer network, we start with a well-known type of

interferometer: the Sagnac interferometer [15]. This interferometer measures the speed of its rotation by

splitting a beam of light into two paths. The first beam travels in a clockwise loop. The other beam travels

the same loop, but counter-clockwise. When the Sagnac interferometer spins, the rotation makes one of the

directions of travel a shorter distance than the other. These differences in distance create a difference in

the number of wavelengths traveled by each beam, which results in a difference of phase. When the beams

are recombined, the interference between the two beams allows the angular velocity to be calculated.

Example 1.1. The Sagnac interferometer as an interferometer network

Consider the Sagnac interferometer. I depict the Sagnac interferometer as an interferometer network in

Figure 1.3, then I use the vertex signal equation (Equation 1.3) to solve for the observed electric field

strength at the output. The parameters for the Sagnac interferometer are the wavenumber k, the speed of

light c, the radius of the interferometer loop r, and the interferometer’s angular velocity ω.

0

1

2Source Observer

Figure 1.3 The Sagnac interferometer expressed as an interferometer network. On the network diagram,
the source is indicated with red text and lines, the blue vertices are intermediary vertices, and the green
vertex is the observer vertex. The parameters for are the wavenumber k, the speed of light c, the radius of
the interferometer loop r, and the interferometer’s angular velocity ω.

The Sagnac interferometer network’s weighted adjacency matrix is expressed by Equation 1.4.

W =

 0 0 0
0 0 0

exp
(
i4kcπr
c+rω

)
exp

(
i4kcπr
c−rω

)
0

 . (1.4)

4



The constant source supplied to the network is represented by the vector in Equation 1.5.

~S =

1/2
1/2
0

 . (1.5)

When we solve the vertex signal equation (Equation 1.3) for the vertex electric field strength vector ~E, we

get the vector in Equation 1.6.

~E =

 1/2
1/2

1
2

(
exp

(
i4kcπr
c+rω

)
+ exp

(
i4kcπr
c−rω

))
 . (1.6)

This matches the established output of the Sagnac interferometer [15], which can be expressed as Equation

1.7.

Eout =
1

2

(
exp

(
i4kcπr

c+ rω

)
+ exp

(
i4kcπr

c− rω

))
. (1.7)

Although the definition of interferometer networks is inspired by the specific problem of interferometry,

its simple form is quite versatile. Interferometer networks can be adapted to other complex-valued signal

transfer problems. Recontextualizing the interferometer network formalism primarily involves

reinterpreting or slightly changing the vertex signal equation (Equation 1.3) to match the problem. The

vertex signal equation can be easily adapted to model the time evolution of state vectors in quantum walks

[16–18]; inputs, states, and observables in complex-valued observability and controlability problems [19, 20];

and the matrix analysis of node voltages in alternatring-current circuits with complex impedance [21, 22].

Now that I have defined interferometer networks, the next important mathematical idea to define is the

generating function technique. Generating functions encode a sequence of numbers in the coefficients of a

power series [23]. Generating functions traditionally find use in combinatorics and probability theory [24].

Notably, generating functions are used to prove the central limit theorem [25]. To illustrate their usefulness

in addressing large sequences with recursion, we will find an explicit formula for the nth Fibonacci number

using generating functions.

Example 1.2. Finding the nth term of the Fibonacci sequence The Fibonacci sequence is defined by a

recursion relation and the first two terms.

F0 = 0, F1 = 0. (1.8)

For all n > 0,

Fn+1 = Fn + Fn−1. (1.9)

We will find an explicit expression for the nth term of the Fibonacci sequence using a generating function

(per a derivation adapted from [23]).

5



First, we will define the generating function for this series. Then, we will solve for it by using the

recursion relation.

F (x) =

∞∑
n=0

Fnx
n = 0 + x+ x2 + 2x3... (1.10)

Since the recursion relation holds for each individual term, it also holds for the sum of terms times xn+1.

∞∑
n=1

Fn+1x
n+1 =

∞∑
n=1

Fnx
n+1 +

∞∑
n=1

Fn−1x
n+1. (1.11)

⇒
∞∑
n=2

Fnx
n = x

∞∑
n=1

Fnx
n + x2

∞∑
n=0

Fnx
n. (1.12)

⇒ F (x)− x = xF (x) + x2F (x). (1.13)

Therefore,

F (x) =
x

1− x− x2
. (1.14)

This simple rational expression has encoded the entire Fibonacci sequence. Now, to find the explicit

expression for each term, we need to find the coefficient of each power of x. We will start by splitting the

denominator with the quadratic formula, then by performing partial fraction decomposition.

F (x) =
x

1− x− x2
(1.15)

=
x

−
(
x+ 1+

√
5

2

)(
x+ 1−

√
5

2

) (1.16)

=
x(

1− x 1+
√
5

2

)(
1− x 1−

√
5

2

) (1.17)

=
1√
5

 1

1− x
(

1+
√
5

2

) − 1

1− x
(

1−
√
5

2

)
 . (1.18)

This is still a pair of rational functions, and we need a power series. However, we have manipulated this

expression into a form similar to that of the geometric series [24], which takes the form

1

1− z
=

∞∑
n=0

zn. (1.19)

With this form in mind, we can express the generating function as

F (x) =
1√
5

[ ∞∑
n=0

(
x

1 +
√

5

2

)n
−
∞∑
n=0

(
x

1−
√

5

2

)n]
. (1.20)

Finally, taking the coefficients from both power series together, we see

Fn =
1√
5

[(
1 +
√

5

2

)n
−

(
1−
√

5

2

)n]
. (1.21)

6



This process of taking a recursive sequence, treating it as the coefficients of a power series, and performing

computations on that power series is the essence of generating functions.

In Chapter 6, I adapt the generating function technique to apply to adjacency matrices, then I explore

the properties of these new objects. The motivation for this is that large networks can be constructed from

smaller networks through a recursive algorithm. This process of growing a network from a smaller one

resembles the kind of series the generating function technique is useful for.

The novelty of the approach we take to generating functions and matrices arises from presenting

generating function objects as alternatives to matrices. The precursors to this work include other

multivariate generating functions, which are similar to the array generating function, but do not exist to

encode the entries of matrices [26, 27], and previous work employing generating functions to study the

properties of matrices, including the distribution of Toeplitz matrix eigenvalues [28], the generation of

normal Toeplitz matrices [29], and the use of the transfer matrix method for ennumerating graph walks [30]

Now, I outline the rest of the thesis. Chapter 2 explores the possibility of creating interferometers more

sensitive than basic interferometers measuring the difference between only two paths. Chapter 3 explains

the well-known network measures of path length and clustering, then adapts those measures for

interferometer networks. Chapter 4 explores amplification in signals due to feedback loops and describes

how to limit that feedback. Chapter 5 visits the small-world effect, which describes how real-world

networks simultaneously form tight clusters while still having short paths between distant parts of the

network [31]. I apply the newly adapted measures to a version of small-world networks created for

interferometers. The small-world effect looks very different for interferometer networks; destructive

interference due to large phase causes the breakdown of signal transfer between neighbors and distant parts

of the network, while constructive interference due to small phases can strengthen signal transfer greatly.

The results in Chapters 3 and 5 arise from joint work with my advisors, Cecilia Diniz Behn and Lincoln

Carr. A manuscript reporting these results is in preparation and will be submitted to the Journal of

Physics: Complexity. Chapter 6 departs from interferometer networks. Instead, I develop a new technique

for expressing networks using an existing technique called generating functions. This work was undertaken

with Antwan Clark at the Laboratory for Physical Sciences. Here, I define two new ways of expressing

networks: the array generating function and the transformation operator, then I prove some of their basic

properties, show how to convert between them, and give examples of using them to describe networks.

Finally, Chapter 7 discusses the results, further connections to the rest of the field, and ways to build upon

this work in future research.

7



CHAPTER 2

INTERFEROMETER LIMITATION AND THE N -STAGE SKEW-CYCLE INTERFEROMETER (NSCI)

In its simplest form, an interferometer splits a beam of light, adds a phase to one of the paths, and

compares the two paths at an observer. This simple scheme is depicted in Figure 2.1. The signal at the

observer is written out in Equation 2.2.

Eobserver =
1

2

(
Esource + eiφEsource

)
(2.1)

= eiφ/2Esource cos(φ/2). (2.2)

For each applied phase shift of 2π, this interferometer produces one fringe (a signal of zero). To take a

measurement, the phase would be applied gradually, and the fringes would be counted. Well-known

interferometers like the Michelson interferometer [14] or the Sagnac interferometer [15] can be expressed in

the form of this archetypal interferometer, where the particulars of the problem merely change the

expression for the phase φ. One of the first research questions that intrigued me was, “For an applied phase

φ, is there an interferometer that produces more than one fringe per 2π phase shift?” My initial conjecture

was that there was not such an interferometer. I called this conjecture “interferometer limitation.” I proved

a special case of this–the case where phase can only be applied to one edge (Figure 2.2)–but I found an

interesting counterexample for when the measured phase is allowed to be split up and applied over many

edges. In this chapter, I will give the proof of the special case, then I will explain the counterexample for

the general case, which I have called the N -stage skew-cycle interferometer (NSCI).

0

1

2Source Observer

Measurement

Figure 2.1 The archetypal interferometer, with a source, splitting, an applied phase, and recombination at
an observer

8



For a certain type of interferometer, no improvement can be made over the archetypal interferometer of

Figure 2.1. To be more specific, I will prove that any interferometer network with only one variable edge

phase cannot produce more than one fringe per 2π applied phase shift. This proof will have two steps.

First, I will prove that this holds true when the input to the variable edge is fixed. Second, I will extend

this to the general case, when the input to the variable edge is not fixed.

0Source

Figure 2.2 Example of a network where only one edge has a variable phase, φ, and the input to this
variable edge is held fixed. For convenience, the destination of this variable edge is indexed at zero.
Theorem 2.1 applies to networks like these.

Theorem 2.1 (Interferometer Limitation for Single Edge with Fixed Source). Suppose we have an

interferometer network with n vertices and m edges. This network has a constant complex weighted

adjacency matrix W , but the zeroth term of the source vector ~S is allowed to rotate such that

S0 = Aeiφ. (2.3)

Also assume that the vertex-signal equation (Equation 1.3) has a unique solution for all source vectors.

Then, the signal vector takes the form

Ej = A
[
(I −W )

−1
]
j,0
eiφ +Bj , (2.4)

where

Bj =

n−1∑
k=1

[
(I −W )

−1
]
j,k
Sk. (2.5)

The result of this theorem is that each vertex signal changes like a constant times eiφ plus another

constant. For an interferometer that improves upon the archetypal interferometer, we would want the

vertex signals to change like eigφ, where g > 1. So, interferometers of the form described in Theorem 2.1 do

9



not contradict the interferometer limitation hypothesis.

Proof. Since we have assumed that the vertex-signal equation (Equation 1.3) has a solution for every source

vector ~S, the fundamental theorem of invertible matrices [32, 172] tells us that Equation 1.3 is invertible.

~E = (I −W )
−1 ~S. (2.6)

Writing the matrix multiplication in index notation, this becomes

Ej =

n−1∑
k=0

[
(I −W )

−1
]
j,k
Sk (2.7)

=
[
(I −W )

−1
]
j,0
S0 +

n−1∑
k=1

[
(I −W )

−1
]
j,k
Sk. (2.8)

Equation 2.4 arises when we make the substitutions S0 = Aeiφ, Bj =
∑n−1
k=1

[
(I −W )

−1
]
j,k
Sk.

Now, I must extend this to the case where the variable edge is not attached to the fixed source, but

occurs within the network itself, as a part of the adjacency matrix W .

Theorem 2.2 (Interferometer Limitation for Single Edge). Suppose we have an interferometer network

with n vertices and m edges. The network has a fixed source vector ~S. One of the edges in the network is

variable, with edge weight Aeiφ. The rest of the edge weights are fixed, with the whole network having

adjacency matrix W . Without loss of generality, assume that the edge comes from vertex 0 and goes to

vertex 1, such that W1,0 = Aeiφ. Finally, also assume that the vertex-signal equation (Equation 1.3) has a

unique solution for every source vector ~S. Then, the vertex signals take the form

E0 =
1

seiφ + t
, (2.9)

Ej 6=0 =
uje

iφ + vj
seiφ + t

, (2.10)

where s, t, uj , vj are constant complex numbers.

Proof. The idea of this proof is to transform the vectors in the vertex-signal equation to artificially fix the

signal at the source vertex of the variable edge. Then, we can apply the previous theorem. We must first

lay out two cases for our network: If E0 = 0, the input to the variable edge is also zero, and the outputs

cannot change as the phase shifts. This case is trivial. If E0 6= 0, the variable edge is allowed to influence

the network, and we can also divide everything in the vertex signal equation (Equation 1.3) by E0. For this

second case, we can begin manipulating the vertex signal equation (Equation 1.3).

To aid in our algebraic manipulation, we will use partitioned matrix notation to split up the elements of

the vertex signal equation (Equation 1.3) into smaller pieces so we can rearrange them later. First, in

10



Equation 2.11, we partition the vector 1
E0

~E into the scalar 1 and a new vector ~F with one fewer entry than

~E. [
1
~F

]
=

1

E0

[
E0

Ej 6=0

]
=

1

E0

~E. (2.11)

Note the use of partitioned matrix notation; a solid line splits a matrix into sub-matrices, and splits a

vector into sub-vectors. In Equation 2.12, we also partition the weighted adjacency matrix W into the

scalar w00, the row vector ~bT , the column vector ~a, and the matrix H.
w00

~bT

~a H

 = W. (2.12)

Finally, we partition the vector 1
E0

~S in Equation 2.13 into the scalar S0/E0 and the vector ~V .[
S0/E0

~V

]
=

1

E0

[
S0

Sj 6=0

]
=

1

E0

~S. (2.13)

The vertex-signal equation (Equation 1.3) has a unique solution, by assumption. This implies that

Equations 2.14 through 2.17 also have a unique solution.

1

E0

~E = W
1

E0

~E +
1

E0

~S (2.14)

⇒


1

~F

 =


w00

~bT

~a H




1

~F

+


S0/E0

~V

 (2.15)

⇒ 1 = w00 +~bT ~F +
S0

E0
, (2.16)

~F = ~a+H ~F + ~V . (2.17)

Rearranging Equations 2.16 and 2.17, they become Equations 2.18 and 2.19.

1

E0
= (S0 − 1)

1

E0
+~bT ~F + w00 − 1, (2.18)

~F = ~V
1

E0
+H ~F + ~a. (2.19)

We re-express these as partitioned matrices in Equation 2.20.
1/E0

~F

 =


S0 − 1 ~bT

~V H




1/E0

~F

+


w00 − 1

~a

 . (2.20)

Notice that this takes the form of the vertex signal equation (Equation 1.3). By dividing everything by E0,

we have artificially fixed vertex 0, making it a part of the constant source, but we have made the source

11



vary with E0. In this new matrix equation, the variable edge weight w1,0 is a part of the vector ~a. So, this

is now the case laid out in Theorem 2.1. Theorem 2.1 allows us to express the solution to Equation 2.20 as
1/E0

~F

 =


seiφ + t

~ueiφ + ~v

 , (2.21)

where s, t ∈ C and ~u,~v ∈ Cn−1 are all constant. This allows us to reach the final form of our solution.

E0 =
1

seiφ + t
, (2.22)

Ej 6=0 =
uje

iφ + vj
seiφ + t

. (2.23)

The result of Theorem 2.2 gives us an expression for the vertex signals of a general interferometer with

a single variable edge phase. We still need to interpret this result to see if interferometer limitation holds

for the general case. We shall start by trying to understand the geometry of E0, then we will build off of

that to examine the geometry of every other Ej . The conclusions from Theorem 2.1, that interferometer

limitation holds, would still hold for Theorem 2.2 if Equations 2.9 and 2.10 also traced a circle in the

complex plane with period 2π. This is because the signal would still only take its minimum value once

every 2π radians, never creating more fringes than the archetypal interferometer. Thus, it is natural to

attempt to show that Equations 2.9 and 2.10 trace out circles. This intuition is further encouraged by

manually plotting the results for a few values of s, t, uj , and vj on a graphing calculator.

For E0, the first step is to find the center of the circle. Since the center lies at the midpoint of any

diameter, the first step is to find two points on opposite sides of the circle. The form of the denominator in

Equation 2.9, reveals that |E0| is maximized and minimized at the values of φ where t and seiφ align. If E0

does, indeed, trace a circle, the center ought to lie at the midpoint between these points. A depiction of

this setup is show in Figure 2.3. The extremal points lie at

p1 =
1

t− |s| t|t|
, (2.24)

p2 =
1

t+ |s| t|t|
. (2.25)

The proposed center lies at

c =
1

2

(
1

t− |s| t|t|
+

1

t+ |s| t|t|

)
. (2.26)

12



We can manipulate this into a more convenient form,

c =
t∗

|t|2 − |s|2
. (2.27)

Re

Im

C

t*

p1

p2

Figure 2.3 Depiction of the method used to find the center of the circle traced by E0. The points p1 and p2
are the extremal values of E0, drawn in green. The point t∗ is colinear to these points and drawn in blue.
The proposed center c of the circle lies at the midpoint between p1 and p2, and it is marked in red. The
circle we hope to show E0 traces over the different values of φ is drawn in magenta.

Now, we check to see that a circular form arises by subtracting this center point (Equation 2.27) from E0.

E0 − c =
1

seiφ + t
− t∗

|t|2 − |s|2
. (2.28)

After manipulating Equation 2.28 algebraically, it becomes

E0 =
s

|s|2 − |t|2

∣∣seiφ + t
∣∣2

(seiφ + 1)
2 e
iφ. (2.29)

The expression s
|s|2−|t|2 is constant with respect to φ. Let us call it R.

R =
s

|s|2 − |t|2
. (2.30)

The expression
|seiφ+t|2
(seiφ+t)2

eiφ has magnitude 1. We can define a function θ(φ) such that

eiθ(φ) =

∣∣seiφ + t
∣∣2

(seiφ + t)
2 e
iφ. (2.31)

13



Thus, we have finally shown that E0 can be expressed in the form of Equation 2.32.

E0 = Reiθ(φ) + c. (2.32)

Equation 2.32 could break interferometer limitation if θ rotated faster than φ, such that more fringes

were made over the course of the entire circle. However, we can rule out this possibility by recalling two

things: First, each point on E0 = 1
seiφ+t

corresponds to one unique value of seiφ + t. Second, E0 is

continuous, meaning that θ cannot skip around to cover each point on E0 by completing several rotations.

Thus, though the instantaneous rate of change for θ may be above that of φ, they must complete the same

number of total cycles. So, interferometer limitation holds for vertex 0 in particular.

We can show that interferometer limitation holds for all other vertices too. We use Equation 2.32 to

express Ej as

Ej 6=0 =
uje

iφ + vj
seiφ + t

(2.33)

=

uj
s

[
seiφ + t−

(
t− svj

uj

)]
seiφ + t

(2.34)

=
uj
s

+
t− svj

uj

seiφ + t
(2.35)

=
uj
s

+

(
t− svj

uj

)(
Reiθ(φ) + c

)
(2.36)

= R

(
t− svj

uj

)
eiθ(φ) +

uj
s

+ c

(
t− svj

uj

)
. (2.37)

Once again, Equation 2.37 is a circle that completes a full rotation once every time φ goes from 0 to 2π.

Interferometer limitation holds whenever there is only one variable edge in a network. For an

interferometer to be more sensitive to changes in φ than the archetypal interferometer, it cannot have only

one variable edge weight phase.

The proofs for Theorems 2.1 and 2.2 give hints for how to break interferometer limitation. I proved

that a single variable edge cannot do it, so I must split the variation across multiple edges. With one

variable edge, I was able to trace circles in the complex plane such that certain parts of the circle traced

arc length faster with respect to φ, but it was not enough to accumulate more total cycles, since other

parts of the circle would compensate with slower accumulation of arc length. The idea for the N -stage

skew cycle interferometer (NSCI) is that each of the N phases has a variable edge with a small phase shift,

φ/N . Each skew-cycle stage takes advantage of tracing a circle with irregular arc length speed. This is

done by only tracing the part of the circle that is fastest; since each stage only rotates through φ/N , there

is no need to also use the part of the circle that accumulates arc length more slowly. Accumulating over N

stages, this produces an output that oscillates quickly. The diagram of an NSCI is shown in Figure 2.4.

14



Source Observer

...

Skew Cycle

N

Figure 2.4 Diagram of the NSCI. A source (red) feeds two paths: one directly to the observer (green) and
another through N stages (blue), each acting as a skew cycle. An individual skew cycle is highlighted by
boxing it in magenta.

I will make an approximation now, and I will justify it later. Let us assume for now that, at each

skew-cycle stage,

Eout

Ein
≈ exp

(
i
(1 + d)φ

N

)
. (2.38)

Then, after N stages, the output should be

Eout ≈ Eine
i(1+d)φ. (2.39)

The result at the observer will be

Eobs = Esource
1

2

(
1 + ei(1+d)φ

)
, (2.40)

|Eobs| = |Esource|
∣∣∣∣cos

(
(1 + d)φ

2

)∣∣∣∣ (2.41)

Now, I must justify the approximation in Equation 2.38 by examining an individual skew-cycle stage

more closely. Figure 2.5 shows an individual skew cycle, with its output plotted on an argand diagram.

The actual output is a circle of radius (1 + d), centered at −d. However, for small θ, the output is

approximated by a circle of radius 1 centered at 0. The arc length along the original circle is (1 + d)φ/N . If

we assume that Eout
Ein

is also moving along the circle of radius 1, it moves the same arc length there, but

with radius 1. This implies that the angle relative to the origin is approximately

θ ≈ (1 + d)φ/N. (2.42)

15



Hence the approximation in Equation 2.38. Note that the approximation grows worse as φ/N grows. This

error can be kept in check in three ways: keeping d small, keeping φ small, and adding more stages

(increasing N).

Ein Eout
Re

Im

-d

1+d

Figure 2.5 On the left, a sketch of the skew cycle stage. On the right, a plot of Eout/Ein. Notice that
dθ
dφ > 1 when φ is small.

After designing the NSCI with the approximation from Equation 2.38 in mind, I found an alternative,

more rigorous demonstration that the NSCI produces output phase 1 + d times faster near φ = 0. The

exact output for the NSCI is

Eout =
1

2
+

1

2

[
(1 + d)

(
eiφ/N

)
− d
]N

. (2.43)

Taking d
dφ of Equation 2.43, we have

dEout

dφ
=

1

2
(1 + d)i

[
(1 + d)

(
eiφ/N

)
− d
]N−1

eiφ/N . (2.44)

Evaluating at φ = 0, we have

dEout

dφ

∣∣∣∣
φ=0

=
1

2
(1 + d)i. (2.45)

Compare Equation 2.45 to the result of making the same calculation with the archetypal interferometer

(starting with Equation 2.2).

dEout

dφ

∣∣∣∣
φ=0

=
1

2
i. (2.46)

The complicated form of the NSCI and its construction based on an approximations warrants a

demonstration of the NSCI producing the desired output. The following code produces this demonstration.

"""

Simulates and plots the output of an NSCI, to ensure that it behaves as

16



predicted.

"""

#Library imports

import numpy as np

import matplotlib.pyplot as plt

#Parameters

N = 10000

d = 9

phis = np.linspace(0.0, 2.0 * np.pi, num = 500)

source = 1.0

#Define a function for calculating the output of the NSCI

def NSCIout(phi):

#The signal that passes through the skew cycles

signal = 0.5 * source

#Each skew cycle scales the signal by this much

skewCycle = (-d) + ((1 + d) * np.exp(1.0j * phi / N))

#Apply that scaling N times

signal = signal * (skewCycle**N)

#Recombine the direct signal to the observer and the skew cycle signal

observer = np.abs(signal + (0.5 * source))

#Return the magnitude of the signal seen at the output

return(observer)

#Calculate the value for all values of phi

testObservers = NSCIout(phis)

#Create the plot

17



fig, ax = plt.subplots()

#Plot the NSCI output

ax.plot(phis, testObservers, label = ’NSCI’)

#Plot archetypal interferometer as a control

archetype = source * np.abs( np.cos(phis / 2.0) )

ax.plot(phis, archetype, label = ’archetypal’)

#Label the axes and create a title

ax.set(

xlabel = r’$\phi$’,

ylabel = r’$E_{out} / E_{in}$’

)

#Add a legend

ax.legend()

#Save the figure

fig.savefig(’NSCIsanity.pdf’)

Figure 2.6 is the plot produced by this code. Notice that the NSCI does, indeed, oscillate faster than

the archetypal interferometer, but the curve deforms as φ grows, since the approximation

(1 + d)eiφ − d ≈ ei(1+d)φ breaks down.

Interferometers are tools of precision measurement; it is natural to ask how precise an NSCI would be if

constructed in the real world. I use the standard tools of error propagation [33] to approximate how a few

sources of error would impact the precision of measurements by an NSCI, and use that to speculate about

its usefulness as an actual device. I find that some hypothetical sources of error scale with
√
N , making the

NSCI seem difficult to implement practically. I will examine the effect of introducing errors to edge-weight

magnitude, total phase φ, and individual skew-cycle phase φ/N .

First, let us analyze the effect of introducing error to edge-weight magnitudes. If we are sure to include

terms for all edges in the NSCI, the signal at the output is equal to

Eout =
1

2
(1)(1) +

1

2

[
(1 + d)

(
eiφ/N

)
− d
]N

. (2.47)

18



0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

E o
ut

/E
in

NSCI
archetypal

Figure 2.6 Demonstration of the NSCI, with parameters d = 9 and N = 10, 000.

Let us introduce an error ±δw. The error for the reference signal is

δ

[
1

2
(1)(1)

]
=

[
1

2
(1)(1)

]√(
δw

1/2

)2

+

(
δw

1

)2

+

(
δw

1

)2

(2.48)

= δw

√
3

2
. (2.49)

The error for each skew cycle is

δ
[
(1 + d)

(
eiφ/N

)
− d
]

=

√[
δ
(
(1 + d)

(
eiφ/N

))]2
+ (δ(d))

2
(2.50)

=

√√√√√(1 + d)

√(
δw

1 + d

)2

+

(
δw

1

)2
2

+ δw2 (2.51)

= δw
√

2 + (1 + d)2. (2.52)

The error from all skew-cycle stages is

δ

(
1

2

[
(1 + d)

(
eiφ/N

)
− d
]N)

=

∣∣∣∣12 [(1 + d)
(
eiφ/N

)
− d
)N ∣∣∣∣

√√√√( δw
1/2

)2

+N

[
δ
(
(1 + d)

(
eiφ/N

)
− d
)

|(1 + d)
(
eiφ/N

)
− d|

]2
. (2.53)

Expressing this as a relative error, we can manipulate the expression into a simpler radical form.

19



δ
(

1
2

[
(1 + d)

(
eiφ/N

)
− d
]N)∣∣∣ 12 [(1 + d)

(
eiφ/N

)
− d
]N ∣∣∣ =

√
4δw2 +Nδw2 [2 + (1 + d)2] (2.54)

= δw
√

4 + 2N + (1 + d)2N. (2.55)

For small φ, the intended regime of this interferometer,
∣∣∣ 12 [(1 + d)

(
eiφ/N

)
− d
]N ∣∣∣ ≈ 1/2. This implies

δ

[
1

2

(
(1 + d)

(
eiφ/N

)
− d
)N]

≈ δw
√

1 +
N

2
+

(1 + d)2

2
N. (2.56)

Finally, the estimated error for the output of the interferometer is

δEout =

√
δw2

3

2
+ δw2

[
1 +

N

2
+

(1 + d)2

2
N

]
(2.57)

=
δw√

2

√
5 +N + (1 + d)2N. (2.58)

The error from edge weight magnitude grows like
√
N , and it grows linearly with respect to δw and (1 + d).

This linear growth is to be expected; after all, the NSCI amplifies phase by (1 + d). The root growth with

N introduces a tradeoff between managing this edge weight error and ensuring that the small angle

approximation holds for the necessary range of φ. This tradeoff would make the NSCI difficult to

implement in practice.

If we introduce an error to the total phase, δφ, the error takes the form

δEout =

∣∣∣∣∂Eout∂φ

∣∣∣∣ δφ. (2.59)

Our next step is to calculate the partial derivative.

∂Eout
∂φ

=
∂

∂φ

1

2

{
1 +

[
(1 + d)

(
eiφ/N

)
− d
]N}

(2.60)

=
1

2
i(1 + d)

[
(1 + d)

(
eiφ/N

)
− d
]N−1

eiφ/N . (2.61)

If we assume (1 + d)
(
eiφ/N

)
− d ≈ 1, which will hold for small φ/N (the intended regime of the NSCI), and

take the magnitude, we can make the substitution∣∣∣∣∂Eout∂φ

∣∣∣∣ ≈ 1

2
(1 + d). (2.62)

Therefore,

δEout ≈
1 + d

2
δφ. (2.63)

20



This source of error grows linearly with (1 + d). This is unsurprising, since the NSCI essentially serves to

amplify φ by (1 + d).

Now let us consider an error between stages of the interferometer, such that each skew cycle has an

error δα added to its phase φ/N . Each stage has the term
[
(1 + d)

(
eiφ/N

)
− d
]
. The error here will be

δ
(

(1 + d)
(
eiφ/N

)
− d
)

=
∂
∣∣[(1 + d)

(
eiφ/N

)
− d
]∣∣

∂(φ/N)
δα (2.64)

=
∣∣∣i(1 + d)eiφ/N

∣∣∣ δα (2.65)

= (1 + d)δα. (2.66)

After all of the stages are taken together, the output will have the relative error

δEout
|Eout|

=

√√√√N

[
(1 + d)δα∣∣(1 + d)
(
eiφ/N

)
− d
∣∣
]2

(2.67)

≈ (1 + d)(δα)
√
N. (2.68)

This source of error scales linearly with (1 + d) (like the others analyzed in this section) and like
√
N .

Since we want N to be very large for this interferometer, this introduces a tension between keeping error in

check and ensuring that the small angle approximation holds.

If building an NSCI involves sources of error like those in the three hypothetical situations I have

explored here, controlling error would be a significant engineering challenge. Especially if real-world

designs incurred error scaling with
√
N , a physical NSCI would be impractical. This does not mean that

the NSCI is a pointless concept. It serves as a counterexample to general interferometer limitation. The

NSCI shows that arbitrarily small changes to the total phase in a network can create arbitrarily large

changes to the phase of vertex signals. If interferometer limitation had held for the general case, one could

say that the change in signal phase is bounded above by the total edge weight phase change in a network.

This is not the case. Phase can change quickly in large networks, obfuscating attempts to predict and

bound those changes.

21



CHAPTER 3

GENERALIZED NETWORK MEASURES

This chapter introduces the interferometric adaptations of two standard complex network measures:

path length and clustering. The path length measures the distance between two vertices by counting the

number of edges required to travel from one vertex to another, while the clustering coefficient quantifies the

tendency of a network to form triangles. The meanings of these concepts change for interferometer

networks, so building up to the interferometric measures starts with generalizing these concepts in ways

amenable to interferometers. For both of these measures, I discuss the meaning of the measure, I give the

interferometric definition, and I perform an example calculation to show the measures at work and explain

the decisions made defining them.

In the section on path strength, I argue that a path in an interferometer is best understood as the path

strength: the product of edge weights, instead of a count of edges along the path (as is the case with path

length). The most important individual path between a pair of vertices is the path with the strongest path

strength. To capture interference, we introduce the apparent path strength (APS), which sums the signal

transfer over all possible paths between two vertices. From the APS, we recover the apparent path length

(APL), which allows us to create a path length measure that accounts for interference.

In the section on interferometric clustering, I develop a definition of clustering that focuses on triangles

made of two paths: one with two edges, the other with a single edge. These two paths interfere, and my

new definition of clustering quantifies this level of interference. I explain the process of starting with an

existing definition of weighted clustering in the literature [34], tuning that measure to focus on the

particular type of triangles that interfere, and adapting that measure to quantify interference.

3.1 Path Strength

As interferometer networks are meant to characterize the transfer of signals between vertices, a natural

starting point for measuring an interferometer network is the measuring of paths in the network. The

concept of path length on a network already exists to quantify travel along a network. The most basic

definition of path length involves starting at one vertex and traveling edge-by-edge to other vertices,

counting the steps along the way. When generalizing path length to real-number weighted networks, past

works have proposed a sum of the form in Equation 3.1 [35], where α is a parameter that describes how

much edge weight contributes to signal transfer or detracts from it.

l =
∑

edges in path

(Wij)
α
. (3.1)

22



Because of the sum in Equation 3.1, I call networks with this kind of path length additive networks. This is

not the only way to think about travel.

Paths in interferometers are best characterized by the path strength, which is the product in Equation

3.2, since the edge weight in an interferometer network amplifies, attenuates, and phase-shifts the signal it

carries.

p =
∏

edges in path

|Wij |. (3.2)

We call networks of this kind multiplicative networks because of the product in Equation 3.2. An additive

path length measure can be recovered by taking a logarithm of base w, where w is some characteristic edge

weight (e.g., a maximum or mean edge weight magnitude), as shown in Equation 3.3.

lp = logw(p). (3.3)

For additive networks, a typical metric is the shortest path length between a pair of vertices. The

diameter of a network is the maximum shortest path length between any pair of vertices [8]. The analogous

measure for shortest path lengths in multiplicative networks is the strongest path strength. Note that the

strongest path strength corresponds to computing the shortest path lengths if edges are weighted by

logWij and Equation 3.1 is employed with α = 1. I take advantage of this correspondence when computing

averages. This is because the average strongest path strength and the average shortest path length do not

correspond to one another, even though the individual path strengths and path lengths correspond. This

effect occurs because an average of path strengths is biased towards strong paths, which correspond to

short paths. However, an average of path lengths is biased towards long paths, which correspond to weak

paths. For the sake of corresponding properly to previous work with additive networks, I chose to compute

averages with path lengths, computed by taking logarithms of path strengths.

Strongest path strength works well enough for real-number weighted interferometers. However, this

does not involve interference or complex numbers, which are the core features of interferometer networks.

A measure focused on a single path cannot capture this; we need a path measure that captures multiple

paths. The total signal between sent from vertex j to vertex i is the sum of the signals sent over all

possible paths between them. In practice, for all but the simplest networks, this is impossible to compute

directly. However, Equation 1.3 can be algebraically manipulated into Equation 3.4.

~E = (I −W )
−1 ~S. (3.4)

The entries
[
(I −W )−1

]
ij

lend themselves to the straightforward interpretation of the apparent path

strength (APS) between vertices i and j, Pij .

Pij =
[
(I −W )

−1
]
ij
. (3.5)

23



An apparent path length (APL) can be computed by taking a logarithm.

(lP )ij = logw(|Pij |) (3.6)

Example 3.3 (Path measure calculations for a simple interferometer network). I will show the calculations

for the shortest path length, the strongest path strength, the APS, and the APL for the interferometer

network depicted in Figure 3.1. This will elucidate the choices I made in defining our path measures.

i j

Figure 3.1 Example network for demonstrating the calculation of path measures.

I will start with the shortest path length. As a naive sum of edge weights, the path in gray is the

shortest, with a length of 1. This demonstrates the inadequacy of the shortest path length measure for

interferometers, since I know the least signal transfer will occur over this path; it is the least important

path. If I had decided to depict an edge between i and j with weight 0, that would be the shortest path,

but no signal transfers over it at all. I could try to rescue the additive path length measure by using α < 0

in Equation 3.1, but this still would not quantify the amount of signal transfer as faithfully as a

multiplicative measure.

The path strengths in this network are
√

2/4 for the path in green, 1 for the path in blue, and 0.25 for

the path in gray. Thus, the strongest path strength from i to j is 1. This measure correctly identifies the

most important path in the network. However, I have not yet accounted for the full effects of interference.

For the APS, I can start by expressing the network as a weighted adjacency matrix. Let us chose vertex

0 to be vertex i, 1 and 2 for the green vertexs, 3 for the blue vertex, 4 for the gray vertex, and 5 for vertex

j. The adjacency matrix is

W =


0 0 0 0 0 0√
2/4 0 0 0 0 0
0 eiπ/4 0 0 0 0
i 0 0 0 0 0

0.5 0 0 0 0 0
0 0 1 1 0.5 0

 . (3.7)

24



According to Equation 3.5, I have

P =



0 0 0 0 0 0√
2/4 0 0 0 0 0√

2/4eiπ/4 eiπ/4 0 0 0 0
i 0 0 0 0 0

0.5 0 0 0 0 0
0.5 + 1.25i eiπ/4 1 1 0.5 0

 . (3.8)

The APS from i to j is P0,5 = 0.5 + 1.25i. The magnitude of the APS is 0.25
√

29 ≈ 1.35. This is higher

than the strongest path strength, but not quite as high as a mere sum of all path strengths, because the

interference between the paths is not entirely constructive.

Now I can calculate the APL. We choose a characteristic edge weight of 0.5, though this is somewhat

arbitrary. It only matters that we choose some characteristic edge weight so we can take a logarithm,

allowing me to get an additive measure, and that we use the same characteristic edge weight for any other

analysis we do on this network.

(lP )ji = log0.5

(
0.25
√

29
)
≈ −0.43. (3.9)

A negative path length measure seems strange at first, but it is justified when considering that I chose a

characteristic edge weight less than one. If I were to construct a path with a sequence of edges weighted

0.5, the signal would attenuate as path length increases. However, I have a net amplification of 1.35. If an

attenuation corresponds to a positive path length, amplification is a negative path length.

3.2 Interferometric Clustering

Next, I build up to the interferometric clustering coefficient. Using the traditional clustering coefficient

as a starting point, I develop an easily-computed local measure, which, in addition to the apparent path

strength, I will use to characterize small-world interferometers. The clustering coefficient exists to measure

the propensity of a network to form triangles. This property is significant in social networks, as it measures

the probability that a friend of a friend is a friend, and it has applications in physical models, because such

triangles can produce feedback or allow a vertex multiple paths to influence another vertex. Traditional,

unweighted, undirected local clustering is defined as

Ci =
number of triangles connected to vertex i

number of triples centered on vertex i
, (3.10)

where a “triple centered on vertex i” is a pair of vertices connected to i, which may or may not be

connected to each other themselves [8]. This measure essentially means the number of actual triangles

divided by the number of possible triangles.

Interferometer networks are directed, but the clustering coefficient is traditionally defined for

undirected networks [8]. For directed networks, several types of triangles can form, and those triangles

25



serve different functions. The first choice I had to make for interferometric clustering was which triangles

the measure would apply to. Fagiolo [36] divides these triangles into four classes: cycle, middleman, in, and

out. A clustering measure can be defined with any of these triangle types (or combinations thereof), but

middleman triangles lend themselves particularly well to an interferometric interpretation. As depicted in

Figure 3.2, a middleman triangle forms two paths between a pair of vertices j and k: one direct, which we

call the shortcut, and one indirect, passing through vertex i, which we call the through-path. The

interferometric clustering at vertex i will compare these two paths. The interferometric clustering will be

an average quantifying how much the shortcuts constructively interfere with the through-paths.

i

j

k

Through-Path Shortcut

Figure 3.2 Schematic for the computation of the interferometric clustering at vertex i. The path through i
is called the through-path, and is highlighted in blue. The path from j to k without i is called the shortcut,
and is highlighted in red.

For weighted networks, there is a plethora of generalizations for the clustering coefficient [37], each with

their own advantages and disadvantages. I have chosen to generalize the interferometric clustering

coefficient from the weighted clustering coefficient presented in Zhang & Horvath [34], which takes the form

Ci =

∑
j,k,j 6=k wkiwijwkj∑
j,k,j 6=k wkiwij

. (3.11)

This version lends itself to interpretation as a weighted average of the shortcut edge’s edge weight, where

the average is weighted by the path strength of the through-path. This is justified in this context, since

interference is most important for signal transfer when it takes place between the strongest paths.

The definition of the interferometric clustering is given in Equation 3.12.

Ci =

∑
j,k ‖WkiWij‖ (‖Wkj +WkiWij‖ − ‖WkiWij‖)∑

j,k,j 6=k ‖WkiWij‖
(3.12)

Norms are taken to deal with the phase in the complex numbers. The simple Wkj in Equation 3.11 is

replaced by (‖Wkj +WkiWij‖ − ‖WkiWij‖), which serves to measure how much the magnitude of the total

signal from j to k increases when the shortcut is included. The function of this term is conceptually similar

to the reverse triangle inequality. It is worth noting that this version of clustering can take a negative

26



value. This happens when the shortcut interferes destructively with the through-path, meaning that the

signal from j to k is actually less than if there had been no shortcut at all.

I was faced with an interesting decision while defining interferometric clustering: I had to decide if it

ought to include self-loops. This would happen by allowing the sum in Equation 3.12 to include cases

where j = k. Traditionally, motifs like those depicted in Figure 3.3 are not counted, particularly because

self edges are not a normal feature of networks. However, one can imagine an interferometric context where

a beam is reflected back on itself, such as in Figure 3.4. These situations arise in other contexts too. For

instance, one may want to apply network measures to density matrices in quantum mechanical problems.

Density matrices usually have diagonal terms. Diagonal terms (of the form Wii) correspond to self loops. I

decided to make Equation 3.12 exclude j = k, conforming to tradition. Note that the results of this thesis

do not depend on this decision. Appendix A contains the plots in Chapter 5, but run with self-loops

allowed in the interferometric clustering coefficient. The differences between the plots in Appendix A and

Chapter 5 are nearly imperceptible.

i
i

ji=j=k j=k

Figure 3.3 Examples of network motifs that are considered “triangles” by Equation 3.12, but are not
traditionally counted in the clustering coefficient.

A simpler alternative to the (‖Wkj +WkiWij‖ − ‖WkiWij‖) term was previously considered. Another

potential definition of the interferometric clustering coefficient was

Ci =

∑
j,kWkiWijW

†
kj∑

j,k ‖WkiWij‖
, (3.13)

where W †kj is the notation for the complex conjugate of Wkj . This version of the clustering was

complex-valued; the magnitude matched the weighted clustering coefficient of Equation 3.11, while the

phase of Ci captured the interference. The way this would have worked is that the phase of WkiWijW
†
kj

equals the phase of the through-path minus the phase of the shortcut. While this definition resembled the

original weighted clustering coefficient more closely, it did not capture the interference information in a way

that would be easy to involve in the future calculation of the small-world coefficient. Instead, I opted for

27



Equation 3.12, which captures the extent of interference in the magnitude of the measure.

I conclude this section with an example of clustering calculations. After performing the calculations, I

will use the results as a starting point for discussing our choices in defining the interferometric clustering.

Example 3.4. For the network depicted in Figure 3.5, I will demonstrate clustering calculations. First, I

will take the magnitudes of all edges and use them in Equation 3.11 to get a weighted clustering. Then, I

will try the rejected definition for a complex-valued interferometric clustering in Equation 3.13. Finally, I

will compute the interferometric clustering (per Equation 3.12).

For the weighted clustering,

Ci =

∑
j,k,j 6=k wkiwijwkj∑
j,k,j 6=k wkiwij

(3.14)

=
1 + 0 + 1 + 0

1 + 1 + 1 + 1
(3.15)

= 0.5. (3.16)

For the rejected definition of interferometric clustering in Equation 3.13,

Ci =

∑
j,kWkiWijW

†
kj∑

j,k ‖WkiWij‖
(3.17)

=
i(−i)† + 0 + i(−i)† + 0

|i|+ |i|+ |i|+ |i|
(3.18)

= 0.5eiπ. (3.19)

As expected, the result has the same magnitude as the weighted clustering and reports that the shortcuts

are out of phase with the through-paths by π. For the interferometric clustering,

Ci =

∑
j,k ‖WkiWij‖ (‖Wkj +WkiWij‖ − ‖WkiWij‖)∑

j,k ‖WkiWij‖
(3.20)

=
2|i| (|i− i| − |i|)
|i|+ |i|+ |i|+ |i|

(3.21)

= −0.5. (3.22)

It happens that both proposed definitions of interferometric clustering give the same result, but for

different reasons. This time, the interferometric clustering is negative because the shortcut interferes with

the through-paths destructively. The interferometric clustering is real-valued, but it will return a negative

value when the signal transfer with the shortcuts is less than the signal transfer would have been if there

were no shortcuts at all.

28



Source Observer

Figure 3.4 An example of a setup which could be expressed with a self loop. On the top, a diagram of the
physical system is shown. From the left, a laser beam enters a cavity between two half-silvered mirrors.
Half of the light from the cavity escapes to the observer; the other half is internally reflected. For the
internally reflected light, half is reflected back into the cavity, and half escapes the system. On the bottom,
a network diagram is drawn, where the inside of the cavity is treated as a single vertex. Of the light
entering the cavity, half makes it to the observer, a quarter escapes the system (this is not depicted as an
edge), and a quarter remains in the cavity. This creates a self loop.

Figure 3.5 Example network for calculating interferometric clustering. The target vertex is highlighted in
magenta. The through-paths are highlighted in blue, shortcuts are highlighted in red, and a couple
nonexistant edges are indicated as dashed gray lines, to aid in the counting of triples.

29



CHAPTER 4

FEEDBACK IN INTERFEROMETERS

Interferometer networks have an apparent problem: feedback loops can create infinite signals from finite

inputs, and this leads to apparent path lengths that go to negative infinity. Before I can move onward with

developing models and drawing results, I need to be able to explain this behavior. I develop a simple

example of this type of feedback, then I compare this example to the real-world example of the Fabry-Perot

interferometer [38], demonstrating that this kind of feedback arises in edge cases of physical systems (and

not from a problem with the definition of interferometer networks). Then I prove theorems about avoiding

problematic feedback for future work. After setting these conditions for well-behaved interferometers, I can

continue to explore interferometer networks with a guarantee that the matrix inverses in Equations 2.6 and

3.5 exist with bounded entries.

4.1 A Simple Example of Feedback, and its Correspondence to the Fabry-Perot
Interferometer

S a b

Figure 4.1 A diagram of a simple two vertex network that exhibits feedback. vertex a, with vertex signal
Ea, has a fixed source input S. vertex b, with vertex signal Eb, is connected to vertex a with an incoming
and an outgoing edge, both weighted with a complex number w. Equation 4.1 is the vertex signal equation
for this network, and Equation 4.2 is the solution for the vertex signals.

To begin, let us examine a simple example of this runaway feedback. This phenomenon can arise in a

simple 2-vertex network, as depicted in Figure 4.1. The vertex signal equation for this network takes the

form [
Ea
Eb

]
=

[
0 w
w 0

] [
Ea
Eb

]
+

[
S
0

]
. (4.1)

This has the solution [
Ea
Eb

]
=

S

1− w2

[
1
w

]
. (4.2)

30



This solution diverges when w = ±1. At first glance, this seems like an absurd case for things to diverge.

For runaway feedback, this case requires only requires each edge to carry 100% of its signal without

dissipation. Perfect efficiency is certainly an idealization, but not one that typically causes models to give

totally non-physical results.

Now that I have demonstrated that runaway feedback arises in otherwise innocuous-seeming situations,

it is necessary to understand if this same situation arises in the physics of real-world interferometers. This

simple two-vertex network corresponds with the Fabry-Perot interferometer [38], which is depicted in

Figure 4.2. Going back and trying the vertex signal equation on it, it is shown that Equation 4.2 matches

the results of the original paper.

�
�

Figure 4.2 A simple Fabry-Perot interferometer. A light source (depicted as a candle) produces plane
waves. The plane waves hit a partial mirror (a plate with a wavy pattern), then some of the light is
transmitted to the observer (depicted as an eye), while the rest is reflected back. In the back, there is a
perfect mirror (depicted as a black plate), which reflects back all light that hits it.

The beam starts with electric field strength E0. It encounters the partial mirror, with reflectivity r, so

rE0 of the field reflects, while (1− r)E0 passes through. The part that reflects travels to the rear mirror,

then returns to the partial mirror, accumulating a phase of ei2φ over that distance. Then, some reflects and

some passes through the partial mirror. The process repeats with the reflected beam, splitting, reflecting,

and phase shifting repeatedly. In total, the electric field at the output is

E = E0(1− r)
∞∑
n=0

(rei2φ)n. (4.3)

As long as 0 < r < 1, this infinite series converges to

E = E0
1− r

1− rei2φ
. (4.4)

Since intensity I is proportional to |E|2,

I = I0
1

1 + 4r(1− r)−2 sin2 φ
, (4.5)

where I0 is the intensity of the light at φ = 0. Notice that 0 ≤ I ≤ I0, and that the infinite series for E

diverges when r = 1.

31



Source

Observer

Figure 4.3 The Fabry-Perot Interferometer as an interferometer network. The reflectivity of the partial
mirror r, the phase accumulated over the distance between the mirrors eiφ, and the transmitivity of the
partial mirror (1− r) create the edge weights.

As an interferometer network (depicted in Figure 4.3), the vertex signal equation is found by taking the

sum of the signals entering each vertex.

E = (1− r)Epartial, (4.6)

Epartial = eiφEperfect + E0, (4.7)

Eperfect = reiφEpartial, (4.8)

where E is the electric field strength at the observer, Epartial is the electric field strength at the

partially-silvered mirror, Eperfect is the electric field strength at the perfectly-reflective mirror, and E0 is

the strength of the source. Solving this system of equations for E gives

Epartial =
1

1− rei2φ
E0, (4.9)

Eperfect =
reiφ

1− rei2φ
E0, (4.10)

E =
1− r

1− rei2φ
E0, (4.11)

Note that the expression for E matches Equation 4.4, that the expressions for Epartial and Eperfect only

diverge in the same place as Equation 4.3, and that E is still always bounded by 0 ≤ |E| ≤ E0.

So, the only difference between the Fabry-Perot Interferometer and our simple test case is the presence

of an observer, with which the feedback loop must share its output. Adding the observer with a nonzero

edge limits the size of the output, and the output never exceeds the source signal.

The case of the Fabry-Perot Interferometer demonstrates that the vertex signal equation matches

interferometry in the literature, even in this case with divergence. It also reveals a very satisfying hint at

how to temper feedback: observers. Beyond simply requiring that edges in the network do not actively

amplify signals–edge weights greater than one are an obvious source of runaway feedback–one must require

that total output from a vertex must not exceed total input, and that the signal ought to reach a dead end

32



at an observer at some point. These ideas will be developed into theorems in the next section.

4.2 Conditions for Well-Behaved Interferometers

As seen earlier in the chapter, there are instances where runaway feedback produces unbounded signals,

meaning unbounded apparent path strength (APS). APS is only defined when the inverse of I −W exists,

and even when APS exists, it may exhibit extremely large values unless the problem is well-conditioned.

The goal of this chapter is to understand when the APS exists and how the APS can be bounded.

Before entering the theorems and proofs, it is beneficial to introduce the matrix and vector norms we

use in this chapter, found in [39]. For vectors, length is measured with the `1 vector norm. For an arbitrary

vector ~x ∈ CN ,

‖~x‖1 =

N∑
i=1

|xi|. (4.12)

Notice that ‖~x‖1 = 0 if and only if ~x = ~0. Also note that this norm obeys the triangle inequality.

‖~x+ ~y‖1 ≤ ‖~x‖1 + ‖~y‖1. (4.13)

Now, the norm of a matrix is defined based on how that matrix changes the norms of the vectors it acts on.

In particular, the norm of a matrix A is defined as the most A can possible scale an arbitrary vector when

acting on it.

‖A‖1 = sup
~x6=0

‖A~x‖1
‖~x‖1

. (4.14)

This is the `1 matrix norm, induced by the `1 vector norm. It can be shown that, for the `1 matrix norm of

A ∈ Cm×n,

‖A‖1 = max
1≤j≤n

m∑
i=1

|Aij |. (4.15)

These norms give the tools to evaluate the scale of matrices and vectors, which I used to find conditions

where I −W is guaranteed to be invertible.

Theorem 4.3 (Existence of P ). Let us have a network with N nodes, with each node having a maximum

of k outbound connections, with all edge weights bounded above in magnitude by a number w, such that

kw < 1. Let us call the adjacency matrix W , and the N ×N identity matrix I. Then the matrix I −W is

invertible, and the apparent path strength matrix P = (I −W )
−1

exists.

Proof. If it exists, P is the inverse of (I −W ). By the fundamental theorem of invertible matrices [32, 172],

it will suffice to show that, for all ~x 6= ~0,

(I −W )~x 6= ~0. (4.16)

33



This will be true if

‖(I −W )~x‖1 > 0, (4.17)

where ‖ · ‖1 is the `1 vector norm [39]. By the triangle inequality,

‖(I −W )~x‖1 + ‖W~x‖1 ≥ ‖~x‖1. (4.18)

⇒ ‖(I −W )~x‖1 ≥ ‖~x‖1 − ‖W~x‖1. (4.19)

We introduce the induced `1 matrix norm of W , ‖W‖1. This induced norm is consistent with the `1 vector

norm [39]; by the definition of consistency, it has the property

‖W~x‖1 ≤ ‖W‖1‖~x‖1. (4.20)

Introducing the matrix norm into our inequality, we see

‖(I −W )~x‖1 ≥ (1− ‖W‖1) ‖~x‖1. (4.21)

Therefore, (I −W ) is invertible and P exists whenever 1− ‖W‖1 > 0.

Now, we must calculate the norms and show that P exists for our particular problem. The norm ‖W‖1

is calculated as

‖W‖1 = max
1≤j≤N

N∑
i=1

|Wij |. (4.22)

Given the structure of the network, we know that each column has, at most, k entries bounded above by w.

This implies

‖W‖1 ≤ kw. (4.23)

We have stipulated that kw < 1. This implies ‖W‖1 < 1. Therefore,

1− ‖W‖1 > 0. (4.24)

So (I −W ) is invertible and P exists.

Corollary 4.4 (Bounding the entries of P ). Furthermore, the entries of the P matrix in Theorem 4.3 are

bounded. In particular, let us call Pmax = maxi,j |Pij |.

Pmax ≤
1

1− kw
.

34



Proof. By examining Equation 4.22, we can see that the `1 norm of P is an upper bound for Pmax. The `1

norm is defined [39] as

‖P‖1 = sup
~y 6=0

‖P~y‖1
‖~y‖1

. (4.25)

Let ~x = P~y. This means ‖P‖1 can be equivalently expressed as

‖P‖1 = sup
~x6=0

‖~x‖1
‖(I −W )~x‖1

. (4.26)

Now, as before, we use the triangle inequality and the consistency of the `1 matrix norm [39] to show

‖(I −W )~x‖1 ≥ (1− ‖W‖1) ‖~x‖1. (4.27)

Therefore,

Pmax ≤ ‖P‖1 ≤
1

1− ‖W‖1
. (4.28)

By the same reasoning as Theorem 4.3, we know

‖W‖1 ≤ kw. (4.29)

This implies

−kw ≤ −‖W‖1 (4.30)

⇒ 1− kw ≤ 1− ‖W‖1 (4.31)

⇒ 1

1− ‖W‖1
≤ 1

1− kw
. (4.32)

Therefore,

Pmax ≤
1

1− kw
. (4.33)

These proofs inform the definitions of the adapted small-world model in the next chapter. By limiting

the output of each node, I guarantee that these networks have well-defined and bounded APS. Furthermore,

it suggests a motivation for generalizing the notion of network degree for interferometer networks. For

unweighted networks, out-degree counts the number of edges coming out of a vertex. For real-weighted

networks, out-strength quantifies the total output from a vertex. Similarly, the new generalized

out-strength will quantify total node output. In particular, if we define the out-strength of a vertex to be

sout,i = ‖column i of W‖1, (4.34)

then the APS will exist and be bounded by

|Pij | ≤
1

1− sout,max
, (4.35)

35



where sout,max is the maximum out-strength of any node, if sout,i < 1 for all nodes.

36



CHAPTER 5

THE SMALL-WORLD EFFECT FOR INTERFEROMETER NETWORKS

In this chapter, we analyze the small-world effect in an interferometric context, employing our newly

defined measures to capture the changing behavior that arises due to interference. Small-world networks

have two properties simultaneously: they have a high clustering coefficient, i.e. neighbors in a network tend

to attach to their neighbor’s neighbors. Also, they have short path lengths, i.e. getting from one node to

another takes a small number of steps. Real-world networks with the small-world property often have other

properties too, but I am concerned with clustering and path length here, because these are the measures

needed to replicate the results in [31]. Random networks have short path lengths but low clustering. A ring

lattice, where each node is connected to k nearest neighbors, has high clustering but long path lengths.

Watts and Strogatz introduced a model that bridges this gap [31]. Starting with a ring lattice, they

randomly rewired a few of the edges. This compromise creates both high clustering and short path lengths.

This model captures an important network phenomenon and concerns itself with clustering and path

length. However, the effects of phase on small-worldness have not been explored. In this chapter, I create

an interferometric version of the Watts-Strogatz small-world model. Then, I show results from

computational studies which apply my adapted network measures to demonstrate the effect of interference

on the small world phenomenon and the importance of considering phase for complex-valued weights.

Finally, I discuss some of the details of creating this code.

To test the generalized network measures, I need an interferometer network model to test them on. We

use a generalized version of the Watts-Strogatz small-world model [31] As was the case with the

Watts-Strogatz small-world model, I begin with a ring, then reshuffle edges according to a probability β.

However, my model constructs the ring by drawing edges out from each node, and weighting the edges

based on a total out-strength parameter s (to satisfy the conditions in Chapter 4), an out degree k and a

phase φ. The model is depicted in Figure 5.1. The model’s parameters are N (the number of nodes in the

network), s (total output strength of nodes, which must be set ≤ 1 to control feedback, per Corollary 4.4),

k (the number of edges coming out of each node), φ (the phase of edges in the model), and β (the

probability than an edge’s destination is randomly reshuffled).

At β = 0, the model produces a ring. At 0 < β < 1, the model interpolates between order and disorder.

At β = 1, the model produces a random network, later used as the baseline for the complex small-world

coefficient.

37



Ring Small-World Random

Figure 5.1 Depiction of the small-world interferometer model. At β = 0, a ring is formed with N nodes and
degree k, with edges weighted with w = sk−1eiφ. Then, a small-world network is formed by randomly
rewiring edges according to a probability β. At β = 1, the small-world network becomes a random network.

A network is considered “small-world” if it has a high clustering coefficients and low vertex-to-vertex

path lengths. Humphries & Gurney [40] defined the small-world coefficient to quantify this property, using

a random network as a baseline. The small-world coefficient takes the form

S =
γ

λ
, (5.1)

where

γ =
C

Crandom
, λ =

l

lrandom
,

C is the mean clustering, l is the mean shortest path length between two nodes, Crandom is the mean

clustering of the random network baseline, and lrandom is the mean shortest path length of the random

baseline network. The idea is that if, compared to a random network, clustering is high but path lengths

are short, the network is quantifiably “small-world.”

To apply the small-world coefficient to interferometer networks, it must be able to handle both negative

clustering coefficients (arising from destructive interference) and negative path lengths (arising from a net

amplification in the apparent path length, explored in Example 3.3). Thus, the generalized small-world

coefficient is

Sint =
γ

λ
, (5.2)

γ =
C + |Crandom| − Crandom

|Crandom|
,

λ =
lA + |(lA)random| − (lA)random

|(lA)random|
.

The adapted γ and λ definitions are constructed to have a few key properties. For γ, it reduces to the

original definition of γ when all inputs are nonnegative numbers; the result is always nonnegative; if

38



C = Crandom, then γ = 1; if C > Crandom, then γ > 1; and if C < Crandom, then γ < 1. Analogous

properties hold for λ.

The interferometric small-world coefficient depends heavily on the phase of edge weights. To

demonstrate this, I ran a suite of computational tests. First, as an illustrative case, I examined networks

with N = 500, k = 12, s = 0.95. Note that s = 0.95 was chosen to satisfy the conditions from Chapter 4,

while the choices of N and k were arbitrary, and other N and k configurations are tested later. For each

selected configuration of β and φ, I ran at least 100 tests (more for sensitive values of β at φ = 0),

computed their strongest path strengths, apparent path strengths, real-weighted local clusterings, and

interferometric clusterings, then averaged them for each set of model parameters. To illustrate the way

phase impacts the small-world effect, for each tested φ value, I found the β value at which Sint was

maximized. Figure 5.2 plots these measurements. Figure 5.3 plots Sint values over β for a few key values of

φ, to convey what is happening behind the peak values of Sint in Figure 5.2.

0 1 2 3 4 5 6
0

50

100

150

200

250

S

Sint

Sreal

Figure 5.2 Peak Sint values for each configuration in φ. The traditional small world coefficient S (per
Equation 5.2) is plotted for reference; it is constant because it does not depend on phase. This plot shows
results for small-world interferometers with size N = 500 and k = 12.

39



12 10 8 6 4 2 0
log 

0

50

100

150

200

250

300

S i
nt

 = 6.21
 = 6.22
 = 0.00
 = 0.06
 = 0.13

Figure 5.3 The interferometric small-world coefficient (Equation 5.2) plotted over β for a few select values
of φ. This plot shows results for small-world interferometers with size N = 500 and k = 12.

While the example with N = 500, k = 12 serves to demonstrate that the small-world effect can change

as φ varies, it is only a particular case. To show that this effect holds for many configurations, I ran a

randomized suite of 100 tests with 100 ≤ N ≤ 1500 and 8 ≤ k ≤ 20. For each configuration of N and φ, we

ran 50 trials and averaged their measures. In particular, I examined the interferometric small-world

coefficient at φ = 0 and φ = π. Then, I computed the ratio of these two measurements. Figure 5.4 depicts

a histogram of the base-10 logarithm of these ratios. Notice that, for all configurations, the logarithm is

greater than zero, meaning that Sint(φ = 0) > Sint(φ = π) for all trials. This means that some version of

the effect in Figure 5.2 holds for all tested configurations.

All code used to generate the results of the Small-World Interferometer tests is posted on a public

GitHub repository: https://github.com/bkrawciw-mines/IntNets_Wendian. This chapter is not

intended to be an exhaustive discussion of all code, but I will give an explanation for the general structure

and methodology of the programming for this project. I will discuss the algorithms for generating and

measuring networks, the process of running the tests on HPC resources at the Colorado School of Mines,

the process of generating visualizations of the results, and performing additional randomized trials.

The full code for the network algorithms is included in Appendix B. The module nets.py defines the

function “ws”, which produces the adjacency matrix of a small-world interferometer. This function has the

child functions “makeRing”, which forms the adjacency matrix of a ring network (no rewiring), and

“rewire”, which rewires a ring matrix according to a probability β. In addition to generating networks for

the tests, nets.py also includes the implementations of interferometric clustering, apparent path length,

weighted clustering [34], and strongest path length.

40

https://github.com/bkrawciw-mines/IntNets_Wendian


0.0 0.5 1.0 1.5 2.0 2.5 3.0

log10(S( = 0)
S( = ) )

0

10

20

30

40

50

Fr
eq

ue
nc

y

Figure 5.4 Histogram of the logarithms of the ratio Sint(φ = 0)/Sint(φ = π). Notice thatbecause
logarithms are always greater than zero, Sint(φ = 0) > Sint(φ = π) for all tests.

The algorithms for computing the network measures warrant further discussion. In the clustering

algorithm, I take advantage of efficient outer product calculations to compute the summation terms in

Equation 3.12. For path length calculations, I switch between additive and multiplicative path lengths by

taking logarithms or exponentials, depending on what is most efficient at the time. For instance, I convert

to additive path lengths to take advantage of Dijkstra’s algorithm in the function for strongest path

lengths. It is also essential that paths are expressed additively (in log space) before averaging for the

statistics. Otherwise, I found that the variation of the clustering and path length over β did not match the

results from Watts and Strogatz [31]. This occurs because an average of additive path lengths is biased

towards longer path lengths, which correspond to weaker multiplicative paths. On the other hand, an

average of multiplicative paths is biased towards strong paths, with short path lengths. Thus, the two

averages concern themselves with different sets of paths, and the results from [31] are concerned with the

longer paths. The routines use sparse matrices when possible, which gives a considerable speed boost to

the calculations of clustering (in the computations of outer products) and strongest path lengths (in

Dijkstra’s algorithm). However, sparse matrices are a hindrance in the computation of apparent path

length. The matrix inverse of a sparse matrix is not necessarily sparse, and the sparse matrix format takes

significantly more space for matrices that have many entries. Therefore, it was prudent to convert the

adjacency matrix a dense matrix format in the apparent path length algorithm.

To collect data, I ran the code in Appendix C on the Wendian Cluster at the Colorado School of Mines.

To run this program, I executed the following SLURM script, “runIntTests.sh”:

41



#!/bin/bash

#SBATCH --partition lcarr

#SBATCH --ntasks=200

#SBATCH --cpus-per-task=1

#SBATCH --time=02:30:00 # time in HH:MM:SS

#SBATCH --mem=40GB

#SBATCH -o OutputIntTests # standard print output labeled with SLURM job id %j

#SBATCH -e ErrorIntTests # standard print error labeled with SLURM job id %j

# load python module

module load apps/python3/2020.02

module load compilers/gcc/9.3.1 mpi/openmpi/gcc-cuda/4.1.2

# activate conda environment required to run code

source activate IntNets

echo "Beginning interferometer tests"

cd bins

srun python -u -m mpi4py.futures IntTests.py

echo "Tests complete"

This script executes 300 parallel tasks, allowing the interferometer tests to execute within the

externally-imposed time limit. HPC policy requires a time limit, so 2 hours, 30 minutes was selected by

trial and error.

In “IntTests.py” itself, the following steps are taken: First, the parameter space, which enumerates all

desired combinations of N, k, β, φ, and s (per the small-world interferometer model) is defined. I include

redundancy when generating networks over these parameter combinations. During the rewiring stage of

generating small-world interferometers, randomness is introduced, so it is necessary to perform multiple

trials in order to capture the average behavior. This is especially important for small networks or networks

with few nearest neighbor connections, where a small number of rewirings can drastically change the

behavior of a single trial. Then, a function for running each individual test is defined. In the function, a

small-world interferometer’s adjacency matrix is generated, then the network measures are computed for

that adjacency matrix. These tests are run in parallel using the MPIPoolExecutor. Finally, the results are

42



recorded in a comma-separated-values (csv) file.

To produce the reported results, the data from the interferometer test csv file was run through the code

in Appendix D. This code cleans the data (removing any infinite values, for example), averages redundant

tests, computes the generalized small-world coefficient, and creates plots.

To confirm that the effects seen in Figure 5.3 and Figure 5.2 are not particular to the specific

parameters used in those trials, I re-ran the tests over a random suite of parameters. To generate the data

in Figure 5.4, I ran a very similar program to Appendix C, but over the random N and k values depicted

in Figure 5.5, a fine grid in β, and only φ = 0 and φ = π, which empirically seem to be near the

maxima/minima of the small world coefficient. I chose to use a randomized suite of N and k values instead

of a grid for two reasons: first, a grid would have required more total parameter sets to cover the same

number of N and k values. Second, I was concerned that a grid would bias the results to networks where

N and k were multiples of the same number.

200 400 600 800 1000 1200 1400
N

8

10

12

14

16

18

20

k

0.5

1.0

1.5

2.0

2.5

3.0

3.5

lo
g 

of
 S

 ra
tio

Figure 5.5 A scatter plot highlighting the randomized N and k values used to produce the data in
Figure 5.4. The results of the trials (the ratio of small-world coefficients) is indicated by a color map.

The way I wrote the code for these results ensures that the code runs efficiently enough for large sample

sizes, which in turn assures us that my results arise from the genuine behavior of interferometer networks

and not statistical anomalies. In addition, the code was written to be easily understood and replicated by

third parties, as much as possible with high-performance computing systems, which can differ from each

other greatly. This unfortunately increases the difficulty of replication, but I hope that this difficulty is

mostly relegated to the SLURM scripts, and that the python code itself is easily reused.

43



The notable results from these tests were that Sint changes with respect to φ, Sint is greater than the

traditional S at φ = 0, and Sint can dip below traditional S around φ = π. These results indicate that

destructive interference destroys long-range signal transfer near φ = π, while constructive interference

enhances long-range signal transfer near φ = 0. The constructive interference produces much more signal

transfer than the mere strongest path strength measure would have anticipated. In both cases, constructive

or destructive interference, strongest path strength fails to predict the behavior of signals on the network,

since it only accounts for ine path between each pair of nodes. In contrast, apparent path strength does

capture the interference behavior, because its form includes signals from all possible paths between each

pair of nodes, since it is defined with the matrix inverse form of Equation 3.5.

44



CHAPTER 6

THE APPLICATION OF GENERATING FUNCTIONS TO MATRICES

I have fused the concepts of adjacency matrices and generating functions to robustly study the effects of

large networks. Large networks are the domain of complex network theory. Much fruitful work has been

done on the statistics of large networks, including modeling the logarithmic growth of shortest path lengths

for random networks [41], explaining the small-world effect with a model that mixes ring lattices with

random rewiring [31], and modeling power law degree distributions in networks with preferential

attachment [42]. This work was done with the traditional tools of network science, often combinatorics or

adjacency matrices. Applying generating functions here will expand the tools available to network

scientists.

Adjacency matrices will be my starting point. They store edges between vertices as entries in a matrix.

The column corresponds to the vertex the edge is leaving, the row corresponds to the vertex the edge

enters, and the value stores the edge’s weight. Generating functions are a powerful tool for analytically

treating sequences when direct computation is infeasible [23]. Combined, we have the possibility of storing

and manipulating networks of immense size, sizes that would normally preclude exact numerical treatment

by human or machine.

I have created two tools for this study: The array generating function (AGF) and the transformation

operator (TO). The AGF represents the layout of terms in a matrix, treating the matrix as a

two-dimensional list of numbers. The AGF is useful for constructing matrices and performing network

measure calculations on a matrix. Constructing networks from recursive patterns will become as simple as

addition, multiplication, and function composition. The generating function toolbox makes the evaluation

of sums simpler, allowing the sums and averages of network measures to be computable where they

otherwise might not be. The TO captures the behavior of the adjacency matrix during matrix

multiplication. This can be useful for transforming AGFs as a step in network construction. For instance, a

spread TO (defined later) can space out the indices of a network, allowing new nodes to be introduced.

The TO can also be used for transforming state vectors on a network in lieu of an adjacency matrix. For

instance, this technique could be used with interferometer networks to create a generating function version

of the node-signal equation (1.3).

In this chapter, I begin with basic definitions and notations for working with matrices and generating

functions. I continue by introducing the AGF and the TO. I conclude this chapter by giving methods for

converting between adjacency matrices, AGFs, and TOs.

45



In this chapter, I lay out our basic matrix, vector, and generating function notation. Table 6.1 lays out

the notation used for matrices and vectors. The basis matrix ∆k,l is defined according to

[∆k,l]i,j =

{
1, i = k, j = l
0, otherwise

. (6.1)

This will be used later to decompose matrices into a sum of basis matrices, then to reconstruct them as

transformation operators (which will be defined later).

Example 6.5 (The basis matrices for R2×2). There are four distinct basis matrices for 2× 2 matrices,

corresponding to the four entries of a 2× 2 matrix.

∆0,0 =

[
1 0
0 0

]
,∆0,1 =

[
0 1
0 0

]
,

∆1,0 =

[
0 0
1 0

]
,∆1,1 =

[
0 0
0 1

]
.

(6.2)

Table 6.1 Vector and matrix notations

Example Definition

A Matrices
~b Vectors
Ai,j The entry of A at i, j

[AB]i,j The entry of AB at i, j
∆k,l Basis matrix (Equation 6.1)

I lay out the notation used for ordinary power series generating functions in Table 6.2.

Table 6.2 Sequence and generating function notations

Example Definition

an The nth entry of sequence a

{an}
OPS←−−→ f(x) f(x) =

∑∞
n=0 anx

n is the ordinary power series (OPS) generating function
of the sequence {an}.

D̂f(x) The formal power series derivative of f(x). If {an}
OPS←−−→ f(x), then

D̂f(x) =
∑∞
n=1 nanx

n−1.

D̂mf(x) The mth formal power series derivative of f(x).

Îf(x) The formal power series antiderivative of f(x). If {an}
OPS←−−→ f(x), then

Îf(x) =
∑∞
n=0

an
n+1x

n+1.

Îmf(x) The mth formal power series antiderivative of f(x).

[xm]f(x) If {an}
OPS←−−→ f(x), then [xm]f(x) = am.

Matrices can be thought of in two ways: s transformation, either on vectors or other matrices, or an

object to be transformed (usually by other matrices). The array generating function exists to be the second

46



kind of object. Array generating functions are a way of encoding the entries of a matrix so they can later

be summed, averaged, transformed, or otherwise manipulated. In this section, we will start by defining the

array generating function and giving the basic notation. Then we will explore the properties of array

generating functions to better understand how they can be acted upon.

The array generating function (AGF) is given by the following definition:

Definition 6.1 (Array Generating Function). Let A be a matrix in Rm×n. The array generating function

(AGF) of A, denoted as A
AGF←−−→ A(x, y), is defined as

A(x, y) =

m−1∑
i=0

n−1∑
i=0

Ai,jx
iyj . (6.3)

Next, I examine some of the basic properties of the array generating function (AGF). Operations like

left and right matrix multiplication act on the columns and rows of matrices. This means it will be

valuable to be able to extract individual rows and columns from the AGF. Then, we will look at the

multiplicative properties of the AGF. The AGF is not made to multiply like a matrix, so problems arise in

replicating matrix multiplication. AGFs exist as objects to be transformed, but do not adequately serve as

transformations themselves. Finally, we will see how AGFs lend themselves to the construction of

arbitrarily large matrices via shifting, adding, and using infinite series tools to make larger AGFs out of

smaller AGFs.

The columns and rows of a matrix can be readily extracted from the AGF. Let A
AGF←−−→ A(x, y). Then

[xi]A(x, y) is the ordinary power series of the ith row of A with respect to y, while [yi]A(x, y) is the

ordinary power series of the ith column of A with respect to x.

The AGF does not have the functionality of matrix multiplication. To demonstrate this, let us examine

the product of two AGFs. Let A
AGF←−−→ A(x, y) and B

AGF←−−→ B(x, y). If we treat them as acting on separate

pairs of variables x, y and w, z, then

A(x, y)B(w, z) =

∑
i,j

Ai,jx
iyj

∑
k,l

Bk,lw
kzl


=
∑
i,j,k,l

Ai,jBk,lx
iyjwkzl.

(6.4)

This is analogous to taking the tensor product.

[A⊗B]ijkl = AijBkl. (6.5)

47



If we try to take the product with each AGF using the same pair of variables, we apply the Cauchy

product rule to get

A(x, y)B(x, y) =

∑
i,j

Ai,jx
iyj

∑
k,l

Bk,lx
kyl


=
∑
i,j,k,l

Ai,jBk,lx
iyjxkyl =

∞∑
m=0

∞∑
n=0

xiyj
m−1∑
r=0

n−1∑
s=0

Ar,sBm−r,n−s.

(6.6)

Mimicking matrix multiplication is a desirable property, but not one that the AGF has. This necessitates

the TO.

Through a few examples, I will show the process of constructing AGFs. Adding terms to an AGF is as

easy as adding higher order terms to a polynomial. Additionally, once a simple AGF has been built, it can

be multiplied by powers of x and y to shift it right or down, then added together to make more complex

AGFs. Furthermore, AGFs can be recursively constructed by the same methods as ordinary power series

generating functions. AGFs using infinite power series can be used to describe infinite-dimensional

matrices (see Example 6.6). Then, they can either be converted into TOs, acted upon by TOs, or evaluated

at specific values of x and y to compute network measures. These features make AGFs a useful tool for

constructing complicated networks.

Example 6.6 (AGF of the Identity Matrix). The identity matrix consists of ones along the main diagonal

and zeros elsewhere. Let us call the n× n identity matrix En. Then En
AGF←−−→ En(x, y) is found by taking

the sum

En(x, y) =

n−1∑
i=0

xiyi. (6.7)

This is a finite geometric series, which allows simplification into the form

En(x, y) =
(xy)n − 1

xy − 1
. (6.8)

Alternatively, for the infinite-dimensional identity matrix E, E
AGF←−−→ E(x, y) takes the form

E(x, y) =

∞∑
i=0

xiyi. (6.9)

This infinite geometric series has the simplified form

E(x, y) =
1

1− xy
. (6.10)

Example 6.7 (AGF of the Breadth-First Binary Tree). The binary tree, labeled breadth-first, is depicted

as a network in Figure 6.1. Its adjacency matrix will be

48



0

1

3 4 5 6

2

...

Figure 6.1 The binary tree, labeled breadth-first, drawn out to two layers below the root node.

ABinary =



0 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0

. . .


(6.11)

Notice that the AGF of the part above the diagonal will take the form

Ahalf(x, y) =

∞∑
n=0

xny2n
(
y + y2

)
. (6.12)

Meanwhile, the part below the diagonal is symmetric, meaning its AGF will be the reflection of the upper

half, Ahalf(y, x). Therefore,

Abinary(x, y) = Ahalf(x, y) +Ahalf(y, x)

=

∞∑
n=0

xny2n
(
y + y2

)
+ ynx2n

(
x+ x2

)
.

(6.13)

This has a natural extension beyond the binary tree to the k-ary tree:

Ak-ary(x, y) =

∞∑
n=0

xnykn

(
k∑
i=1

yi

)
+ xknyn

(
k∑
i=1

xi

)
. (6.14)

Now, let us introduce the transformation operator (TO). I give the necessary definitions for TOs,

starting with their analogous basis (∆̂i,j), then the definition of a TO, and finally defining operator

equivalence. Afterwards, I will demonstrate the properties of TOs, which will elucidate some of the choices

made in defining the TO.

49



Definition 6.2 (The Basis Transformation Operator). The basis TO, ∆̂i,j , when applied to a formal

power series f(x) with respect to x, is defined as

∆̂i,j
x f(x) = xi−j Îj

(
1− ÎD̂

)
D̂jf(x). (6.15)

Definition 6.3 (Transformation Operator (TO)). Let A be a matrix in Rm×n. The TO of A, denoted as

A
TO←−→ Â, is defined as

Â =

m∑
i=0

n∑
i=0

Ai,j∆̂
i,j . (6.16)

Definition 6.4 (TO with Respect to a Particular Variable). If we need to specify the variable the TO is

taken with respect to, we write Â with respect to x as Âx. We may need to do this if, for instance, we

perform Âxf(x, y).

Definition 6.5 (Operator Equivalence). Two operators, Â and B̂, which act on formal power series, are

considered equivalent if, for any formal power series f(x),

Âxf(x) = B̂xf(x).

We write Â = B̂.

Since the definition of TOs involves the large (possibly infinite) summation of basis TOs in equation 6.16,

it may be difficult to evaluate in practice. However, using equivalence per Definition 6.5, it is often possible

to find an equivalent operator that is much easier to evaluate.

The way TOs are defined in Definition 6.3 does not make it immediately clear how they act like the

transformations of the matrices that generate them. In this subsection, we start by examining the

properties of the Î and D̂ operators, then we build up to a property of TOs called “analogous

representation.” This will make it clear that TOs really do act on functions like their related matrices act

on vectors. We begin by combining the Î and D̂ operators. This combination will allow us to remove the

first terms from a formal power series, as demonstrated in the ID Lemma below. Once we have shown this,

we will use it as a building block for the basis TOs, which are in turn used to construct all other TOs.

Lemma 6.5 (ID Lemma). Let f(x) be an arbitrary formal power series, and let {ai} be the sequence it

generates. Then

ÎD̂f(x) =

∞∑
i=1

aix
i = f(x)− a0. (6.17)

Furthermore,

ÎnD̂nf(x) =

∞∑
i=n

aix
i. (6.18)

50



Proof. This will be a proof by induction. First, we prove the base case, Equation 6.17. We prove this by

applying the definitions of Î and D̂ in Table Table 6.2 and performing algebraic manipulation. Then, we

will prove the inductive hypothesis, which proves that the ID lemma holds for n if it holds for n− 1. Since

we will have proven the case n = 1, the inductive hypothesis will subsequently prove the ID lemma for

n = 2, 3, 4, ...

ÎD̂f(x) = Î

∞∑
i=1

iaix
i−1 (6.19)

Let bi = (i+ 1)ai+1. Then

D̂f(x) =

∞∑
i=1

bi−1x
i−1

=

∞∑
i=0

bix
i.

(6.20)

So

ÎD̂f(x) = Î

∞∑
i=0

bix
i

=

∞∑
i=0

bi
i+ 1

xi+1 =

∞∑
i=0

(i+ 1)ai+1

i+ 1
xi+1

=

∞∑
i=0

ai+1x
i+1 =

∞∑
i=1

aix
i.

(6.21)

If we apply Î and D̂ twice, we have

Î2D̂2f(x) = Î2D̂

∞∑
i=0

bix
i. (6.22)

Let ci = (i+ 1)bi+1. Then

Î2D̂2f(x) = Î2
∞∑
i=0

cix
i

= Î

∞∑
i=0

ci
i+ 1

xi+1 = î

∞∑
i=1

bix
i

=

∞∑
i=1

bi
i+ 1

xi+1 =

∞∑
i=2

aix
i.

(6.23)

51



For each higher power of Î and D̂, we start with an expression of the form

În−1D̂n−1f(x) =

∞∑
i=n−1

aix
i. (6.24)

Thus, it can be shown that for any n ∈ N

ÎnD̂nf(x) = Î
(
În−1D̂n−1

)
D̂f(x)

= Î
(
În−1D̂n−1

) ∞∑
i=0

bix
i = Î

∞∑
i=n−1

bix
i

=

∞∑
i=n−1

bi
i+ 1

xi+1 =

∞∑
i=n−1

(i+ 1)ai+1

i+ 1
xi+1

=

∞∑
i=n−1

ai+1x
i+1 =

∞∑
i=n

aix
i.

(6.25)

Next, we can prove that the TO basis represents the basis matrices ∆i,j . In other words, just as ∆i,j

selects entry j from the input vector and adds it to entry i of the output vector, ∆̂i,j selects the coefficient

of xj in the input function and adds it to the coefficient of xi in the output function.

Theorem 6.6. Let b(x) be an arbitrary formal power series, and let {bj} be the sequence it generates. Then

∆̂i,jb(x) = xibj . (6.26)

Proof. From Definition 6.2 we have

∆̂i,jb(x) =
[
xi−j Îj

(
1− ÎD̂

)
D̂j
]
b(x)

= xi−j
(
ÎjD̂j − Îj+1D̂j+1

)
b(x)

(6.27)

Employing Lemma 6.5 yields

xi−j
(
ÎjD̂j − Îj+1D̂j+1

)
b(x) = xi−j

 ∞∑
j

bjx
j −

∞∑
j+1

bjx
j


= xi−jxjbj .

(6.28)

Therefore,

∆̂i,jb(x) = xibj . (6.29)

The following result illustrates the connection between TOs and matrix representations.

52



Theorem 6.7 (Analogous Representation). Let A be a matrix in Rn×m and Â be its TO. Then, for any

~b ∈ Rm, the matrix multiplication ~y = A~b is analogous to the TO operation

y(x) = Âb(x). (6.30)

with {bi}
OPS←−−→ b(x) and {yn}

OPS←−−→ y(x).

Proof. We will show by direct computation that the function produced by taking Âb(x) is equal to the

generating function for the vector ~y = A~b. Per Definition 6.3,

Âb(x) =

∑
i,j

Ai,j∆̂
i,j

 b(x)

=
∑
i,j

Ai,j∆̂
i,jb(x)

(6.31)

Applying Theorem 6.6 yields

Âb(x) =
∑
i,j

Ai,jx
ibj

=
∑
i

xi
∑
j

Ai,jbj =
∑
i

xiyj

= y(x).

(6.32)

TOs can be multiplied and added together to form other TOs, paralleling the matrices they represent.

The properties of TO addition are obvious and trivially provable given the way they are defined in

Definition 6.3. However, the multiplicative properties of TOs are not immediately clear, so they deserve

some attention. In this section, we will demonstrate that TOs are linear operators, then we will show that

TO multiplication is associative but non-commutative, then we will finally cap off this section by proving

that the product of TOs properly represents the respective product of matrices.

Theorem 6.8 (Linearity of TOs). Let Â be an arbitrary TO, let f(x) and g(x) be arbitrary formal power

series, and let α, β be arbitrary real numbers. Then

Â (αf(x) + βg(x)) = αÂf(x) + βÂg(x). (6.33)

53



Proof.

Â (αf(x) + βg(x)) =

∑
i,j

Ai,j∆̂
i,j

 (αf(x) + βg(x))

=
∑
i,j

Ai,j∆̂
i,j (αf(x) + βg(x))

=
∑
i,j

Ai,jx
i[xj ] (αf(x) + βg(x))

=
∑
i,j

Ai,jx
i
(
α[xj ]f(x) + β[xj ]g(x)

)
= α

∑
i,j

Ai,jx
i[xj ]f(x) + β

∑
i,j

Ai,jx
i[xj ]g(x)

= α
∑
i,j

Ai,j∆̂
i,jf(x) + β

∑
i,j

Ai,j∆̂
i,jg(x)

= αÂf(x) + βÂg(x).

(6.34)

Theorem 6.9 (Associativity of TOs). Let Â, B̂, and Ĉ be arbitrary TOs, and let f(x) be an arbitrary

formal power series. Then,

Â
(
B̂f(x)

)
=
(
ÂB̂
)
f(x), (6.35)

and, furthermore, (
ÂB̂
)
Ĉ = Â

(
B̂Ĉ

)
(6.36)

Proof. We start by proving equation (6.35).

Â
(
B̂f(x)

)
= Â

∑
k,l

Bk,lx
k[xl]f(x)

=
∑
i,j

Ai,jx
i[xj ]

∑
k,l

Bk,lx
k[xl]f(x)


=
∑
i,j,l

Ai,jx
iBj,l[x

l]f(x)

=
∑
i,j,l

xiAi,jBj,l[x
l]f(x).

(6.37)

54



(
ÂB̂
)
f(x) =

∑
i,j

Ai,j∆̂
i,j

∑
k,l

Bk,l∆̂
k,l

 f(x)

=

∑
i,j,k,l

Ai,jBk,l∆̂
i,j∆̂k,l

 f(x)

=

∑
i,j,l

Ai,jBj,l∆̂
i,l

 f(x)

=
∑
i,j,l

xiAi,jBj,l[x
l]f(x).

(6.38)

Therefore,

Â
(
B̂f(x)

)
=
(
ÂB̂
)
f(x), (6.39)

Now we prove equation (6.36).

(
ÂB̂
)
Ĉ =

∑
i,j,l

Ai,jBj,l∆̂
i,l

 Ĉ

=

∑
i,j,l

Ai,jBj,l∆̂
i,l

∑
m,n

Cm,n∆̂m,n

=
∑

i,j,l,m,n

Ai,jBj,lCm,n∆̂i,l∆̂m,n

=
∑
i,j,l,n

Ai,jBj,lCl,n∆̂i,n.

(6.40)

Â
(
B̂Ĉ

)
=

∑
i,j

Ai,j∆̂
i,j

∑
k,l,n

Bk,lCl,n∆̂k,n


=

∑
i,j,k,l,n

Ai,jBk,lCl,n∆̂i,j∆̂k,n

=
∑
i,j,l,n

Ai,jBj,lCl,n∆̂i,n.

(6.41)

Therefore, (
ÂB̂
)
Ĉ = Â

(
B̂Ĉ

)
. (6.42)

Theorem 6.10 (Non-Commutativity of TOs). TO multiplication is not commutative. It suffices to show

that there exist TOs Â and B̂ such that TO multiplication is non-commutative. That is to say

ÂB̂ 6= B̂Â. (6.43)

55



Proof. This is a proof by counterexample. Notice that

∆̂0,1∆̂1,1 = ∆̂0,1, (6.44)

but

∆̂1,1∆̂0,1 = 0. (6.45)

Therefore,

∆̂0,1∆̂1,1 6= ∆̂1,1∆̂0,1. (6.46)

Theorem 6.11 (Analogous Representation of TO Products). Let A be a matrix in Rn×m and B be a

matrix in Rm×l, with their respective TOs Â and B̂. Also let ~b be an arbitrary vector in Rl, with

{bi}
OPS←−−→ b(x), ~y = AB~b, and {yi}

OPS←−−→ y(x). Then

ÂB̂b(x) = y(x). (6.47)

Proof.

ÂB̂b(x) =
∑
i,j,k

xiAi,jBj,kbk

=
∑
i

xi
∑

j, kAi,jBj,kbk

=
∑
i

xiyi

= y(x)

(6.48)

These proofs about proper representation all assume that, for a TO of a matrix in Rm×n, we start with

a vector in Rn. Suppose we start with a vector of the wrong size, residing in Rl : l 6= n instead. In this

case, the matrix multiplication is not defined, but the TO operation is. If the vector is too small, the

nonexistent terms are treated as zeros. If the vector is too large, the extra terms are mapped to zero. One

consequence of this is that infinite-dimensional TOs do not have to be applied to infinite-dimensional

power series; they can be used just as well on finite-dimensional power series. The simplest example of this

is the identity TO, 1. This is infinite dimensional, but multiplying it by any finite-dimensional power series

returns a copy of that power series.

Example 6.8 (Example of the flexibility of TO size). As matrices, the multiplication

[
1 2
0 3

]0
2
5

 (6.49)

56



is not defined. However, if we convert the matrix to a TO and the vector to a formal power series, we can

perform the operation (
∆̂0,0 + 2∆̂0,1 + 3∆̂1,1

) (
2x+ 5x2

)
= 4 + 6x. (6.50)

Example 6.9 (Infinite-Dimensional Identity TO). A TO is meant to treat a generating function the same

way its matrix treats a vector. The simplest example is the identity matrix E. It turns out that the infinite

dimensional case is easiest to start with, since a finite-dimensional matrix would essentially truncate the

input generating function first. Now, the identity matrix returns the vector it takes in. Multiplication by

one does the same thing.

E =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. . .

 TO←−→ 1. (6.51)

If we apply this TO to any power series f(x), it always returns itself, since 1f(x) = f(x).

In contrast, the finite-dimensional identity TO, 1− ÎnD̂n, only acts as an identity on dimensions n and

fewer.

Example 6.10 (3D Identity TO). Let us apply the 3D Identity TO, 1− Î3D̂3, to two different formal

power series: f(x) = 2 + x+ 6x2 and g(x) = 1 + x2 + 5x5 + 6x7 to see how a finite-dimensional identity TO

acts on power series of different dimensions.

(
1− Î3D̂3

)
f(x) = (2 + x+ 6x2)− Î3D̂3(2 + x+ 6x2)

= (2 + x+ 6x2)− Î3(0)

= (2 + x+ 6x2)

= f(x).

(6.52)

(
1− Î3D̂3

)
g(x) = (1 + x2 + 5x5 + 6x7)− Î3D̂3(1 + x2 + 5x5 + 6x7)

= (1 + x2 + 5x5 + 6x7)− Î3(300x2 + 1260x4)

= (1 + x2 + 5x5 + 6x7)− (5x5 + 6x7)

= 1 + x2

6= g(x).

(6.53)

Another consequence of this size flexibility is that TOs can be expanded. The tools for this include

infinite-dimensional TOs, the spread TO (Example 6.14), and array generating functions.

The definitions in Section 6.3 of the TO and basis TO likely seem rather arcane when taken at face

value. The goal of this subsection is to explain the motivation behind those definitions through a series of

57



examples.

Example 6.11 (Lower diagonal). If multiplication by one is the identity, the next natural thing to try is

multiplication by x, since we are dealing with power series. Doing this shifts the power series down by one

entry. This corresponds to a matrix with ones in the lower diagonal.
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

. . .

 TO←−→ x. (6.54)

Furthermore, we can create even lower diagonals by using higher powers of x.

Example 6.12 (Upper diagonals). If multiplying by x creates a lower diagonal, does dividing by x create

an upper diagonal? Not quite. For example, if we start with f(x) = 1 + x+ x2, x−1f(x) = 1
x + 1 + x. That

first term is a problem; it takes us out of the realm of power series. If we were to remove it first, everything

would work out fine. Enter ÎD̂, which does just that (per Lemma 6.5).
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

. . .

 TO←−→ 1

x
ÎD̂. (6.55)

Example 6.13 (∆̂0,0). Infinite matrices are fine and dandy, but most of the existing matrices we would

want to convert to TOs are finite, and we might want to modify TOs term-by-term in infinite matrices too.

We need a way to isolate a single entry. This will involve another application of ÎD̂.

∆0,0 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

. . .

 TO←−→ 1− ÎD̂ = ∆̂0,0. (6.56)

Furthermore, we can construct single-entry TOs further down the diagonal with more consecutive uses of Î

and D̂.

∆j,j TO←−→ ÎjD̂j − Îj+1D̂j+1 = Îj
(

1− ÎD̂
)
D̂j = ∆̂j,j . (6.57)

Finally, all we need to do to get the basis TOs, per Definition 6.3, is to shift off the diagonal by

multiplying by xi−j . We do not even have to worry about using Î and D̂ to remove more terms first,

because |i− j| ≤ j, and j terms have already been removed by ∆̂j,j .

Example 6.14 (The Spread TO). In the recursive construction of large matrices, it is often useful to

spread out the entries of that matrix. This is done by creating rows and columns of zeros and splicing them

58



in between the rows and columns of an existing matrix. When applying the spread operator to an AGF,

this amounts to taking A(x2, y2) instead of A(x, y). It turns out that the operator that does this is

specifically a TO, which can be shown by writing out its analogous matrix. Let us begin by thinking about

how the spread TO ought to act upon a vector’s generating function. For {an}
OPSGF←−−−−→ f(x), the spread

TO Ŝ ought to give us

Ŝf(x) = f(x2). (6.58)

This amounts to taking each [xi]f(x) and mapping it to x2i. Therefore,

Ŝ =

∞∑
i=0

∆̂2i,i. (6.59)

This operator can be constructed from a sum of basis TOs, which are analogous to basis matrices. To

apply the spread TO to a matrix, we must spread both the rows and columns. For a matrix A, with TO

A
AGF←−−→ A(x, y), we apply the spread TO to both x and y.

A(x2, y2) = ŜxŜyA(x, y). (6.60)

Note that, since Ŝx and Ŝy act on different variables, they commute with each other.

Example 6.15 (Binary Tree by Recursion). This example demonstrates combining TOs and AGFs for

recursively constructing large matrices. We will start with the AGF of a primitive depth-1 binary tree,

then recursively grow it to arbitrary size using TOs. The AGF of a depth-1 binary tree is

A1(x, y) = y + y2 + x+ x2. (6.61)

The recursive step for each depth level conceptually does this: it applies the spread TO to make room for

two copies of the AGF, shifts them to fit between each other, adds them together into one AGF, and

connects both copies to a new root node. The process is depicted graphically in Figure Figure 6.2. As an

equation, the inductive step takes the form

An+1(x, y) = y + y2 + x+ x2 +
(
xy + x2y2

) (
ŜxŜyAn(x, y)

)
. (6.62)

In practice, neither the AGF nor the TO will be useful for all situations; they are both necessary. It will

be useful to be able to convert between them. The definitions of AGFs and of TOs allow us to take either a

TO or AGF, turn it back into the matrix that generated it, then construct the AGF or TO we want to turn

it into. However, this method is cumbersome, and we are in need of more elegant solutions.

To convert a TO to an AGF, the idea is that we have the TO act on the AGF of the identity matrix.

TOs happen to transform AGFs the same way they transform power series generating functions, only an

AGF is a list of column vectors, instead of only one.

59



0

0

1 2

1

3 5

2

4 6

New Root

Copy 1 Copy 2

Original

Figure 6.2 Demonstration of the recursive step for generating a binary tree. In particular, this figure goes
between depth 1 and depth 2.

Theorem 6.12 (Converting TO to AGF). Let A be a matrix in Rm×n, with A
TO←−→ Â. Then

A
AGF←−−→ Â

1

1− xy
. (6.63)

Proof.

Â
1

1− xy
=

∑
i,j

Ai,j∆̂
i,j
x

( ∞∑
n=0

(xy)n

)

=
∑
i,j

Ai,jx
i[xj ]

∞∑
n=0

(xy)n

=
∑
i,j

Ai,jx
iyj .

(6.64)

Therefore,

A
AGF←−−→ Â

1

1− xy
. (6.65)

Theorem 6.13 (Converting AGF to TO). Let A be a matrix in Rm×n, with A
AGF←−−→ A(x, y). Then

A
TO←−→ A

(
x,

1

x
ÎD̂

)
−A

(
x,

1

x
Î2D̂2

)
. (6.66)

Proof. First, we will prepare the AGF for the computation in Equation 6.66 by carefully expressing it in

terms of an x and y that do not commute. Then, we will substitute x and y with the operators in Equation

6.66. Finally, we will show that the operator that springs from this substitution is the TO.

Per Definition 6.1,

A(x, y) =
∑
i,j

Ai,jx
iyj . (6.67)

Note that it is essential to decompose A(x, y) into this precise form before continuing, because from this

point forward x and y are substituted for operators which do not commute. Thus powers of x must always

60



precede powers of y in each and every term.

A

(
x,

1

x
ÎD̂

)
=
∑
i,j

Ai,jx
ix−j ÎjD̂j

=
∑
i,j

Ai,jx
i−j ÎjD̂j .

(6.68)

A

(
x,

1

x
Î2D̂2

)
=
∑
i,j

Ai,jx
ix−j Îj+1D̂j+1

=
∑
i,j

Ai,jx
i−j Îj+1D̂j+1.

(6.69)

This implies

A

(
x,

1

x
ÎD̂

)
−A

(
x,

1

x
Î2D̂2

)
=
∑
i,j

Ai,jx
i−j ÎjD̂j −

∑
i,j

Ai,jx
i−j Îj+1D̂j+1

=
∑
i,j

Ai,jx
i−j Îj

(
1− ÎD̂

)
D̂j

=
∑
i,j

Ai,j∆̂
i,j .

(6.70)

By Definition 6.3, this implies

A
TO←−→ A

(
x,

1

x
ÎD̂

)
−A

(
x,

1

x
Î2D̂2

)
. (6.71)

61



CHAPTER 7

DISCUSSION AND CONCLUSION

In this thesis, I defined interferometer networks, which serve as an archetype for network problems

exhibiting phase. I explored the ways signals can change in an interferometer effect as edge-weight phases

are varied. Then, I defined interferometric versions of the clustering coefficient and path length. Since the

definition of apparent path strength involves taking a matrix inverse, which may or may not exist, especially

in the case of runaway feedback, I developed a deeper understanding of feedback (and how to avoid it).

After building up the foundation for analyzing interferometer networks, I applied what I had learned to

demonstrate that interferometric measures are necessary for understanding the behavior of interferometer

networks for the case of the small-world interferometer, and I introduced the intermingling of matrices and

generating functions. Now, I will draw conclusions from these results and discuss their implications.

Though I developed interferometer networks with optics in mind, their mathematical form is very

general. Any system in which signals are multiplied by edge weights and added together at vertices will

follow the vertex-signal equation exactly (Equation 1.3). For systems that deviate slightly from this

paradigm, the vertex signal equation can be modified to accomodate the new problem, but the essence of

complex numbers being added together (and thus interfering) will still be preserved.

Since interferometers were our physical inspiration for this investigation, my first foray into the network

theory of interferometers was towards the goal of using more complex interferometer networks to improve

the precision of interferometric measurements. My first intuition was that the archetypal interferometer

(Figure 2.1) was the best interferometer, a kind of platonic ideal, and that more complex interferometer

networks would only detract from this simple structure. This is why I tried proving interferometer

limitation. The creation of the N -stage skew cycle interferometer, which does outperform the archetypal

interferometer (by producing faster change at the output than the total change applied to inputs), came as

a surprise to me. The sensitivity of the N -stage skew cycle interferometer to a few hypothetical sources of

error indicated that the physical implementation of this device would likely be difficult, but it introduced

the possibility that a real-world network could be found where small changes to inputs could create rapid

changes to outputs. These systems would be extremely sensitive, and thus fascinating objects of study.

One avenue for future research would be the creation of models that exhibit this property, examining those

models to find the network features that create this sensitivity, and understanding why those properties

would (or would not) arise in real systems.

62



My next investigation was into the application of network measures to interferometer networks. In

defining our measures (apparent path length in Equation 3.5, and interferometric clustering in Equation

3.12), I wanted to ensure that their definitions captured the interferometric essence, with complex numbers

being added together and interfering. This is not the only way to generalize network measures to

complex-valued edge weights. Interestingly, while this thesis was being written, other researchers

conducted a similar investigation and posted a preprint of their findings to the arXiv [43]. While my work

generalized to complex-valued networks with a specific model of signal transfer in mind, Bottcher and

Porter did not base their generalizations on a particular problem. As a result, my measures capture the

behavior of interfering signals, while their measures remain more general. Both generalizations have their

place; using one or the other is context dependent. Their version of the local complex-weighted clustering

coefficient was defined as

cwi =
1

ki(ki − 1)

∑
j,k

w̃ijw̃jkw̃ki, (7.1)

where ki is the unweighted degree at vertex i and the edge weights w̃ij are normalized by the maximum

edge weight in the network. Equation 7.1 differs from my definition in a few ways. First, it is generalized

from a different definition of weighted clustering [44], which, among other things, differs from my source

[34] by employing a geometric mean instead of an arithmetic mean. Equation 7.1 also produces a complex

number, while interferometric clustering does not. Finally, the most substantial way Equation 7.1 differs is

that it does not capture the interference between competing paths like the interferometric clustering does.

If we interpret Equation 7.1 as being defined for directed networks, then it counts cycle triangles (instead of

middleman triangles, like our measure [36]). Through this lens, Equation 7.1 does account for interference

amongst different cycles via the sum, but it cannot account for interference within triangles themselves.

For path length, the preprint does not redefine it per se, but their definitions of quantum-random walk

centrality, closeness centrality, and betweenness centrality echo the apparent path strength idea of summing

paths to or from a vertex, and their discussion of matrix powers and walks involves interfering paths.

Interestingly, the apparent path strength happens to be the sum of all powers of the complex-weighted

adjacency matrix. To prove this, we only need the uniqueness of the matrix inverse [32], and we show that

the apparent path strength P (Equation 3.5) and the sum of all matrix powers both invert (I −W )

(I −W )P = (I −W )(I −W )−1 = I. (7.2)

(I −W )

∞∑
n=0

Wn =

( ∞∑
n=0

Wn

)
−

( ∞∑
n=1

Wn

)
(7.3)

= W 0 = I. (7.4)

63



Note that we had to assume that the infinite series in these equations converge. In this thesis, I only spend

significant time developing interferometric versions of path length and clustering. Future explorations

could involve creating interferometric counterparts to the plethora of measures in [43] and performing a

more thorough comparison of our measures.

After defining our new network measures, I noticed the potential problems that arise with defining

apparent path strength as a matrix inverse. Physically, these problems manifest as runaway feedback loops.

I demonstrated through analysis of the Fabry-Perot interferometer [38] that these problems are physical,

and not merely a quirk of our definition of the interferometer network, but Theorems 4.3 and 4.4 only

presented one way of preventing this: ensuring that dissipation occurs at every vertex. In the small-world

interferometer network model, I introduced a 5% dissipation at every vertex. However, other ways of

preventing feedback could arise from the structure of networks. Identifying these means of preventing

runaway feedback and finding those mechanics in real-world systems could be a fruitful avenue of future

exploration.

The purpose of the work in Chapter 5 was to demonstrate where interferometric measures are

necessary. I took the well-known phenomenon of the small-world effect, and recreated it on interferometers.

I found that the rich interference behavior is lost when carelessly applying real-valued measures to the

interferometers, but interferometric measures do capture this interference. Opportunities for future work

include analytically modeling S(β, φ,N, k), to grant a better understanding of how interference affects

signal transfer at all-possible regions of the parameter space; application of these measures to quantum

problems, including quantum random walks and condensed matter models; application of these measures

to neural networks as they act on models that exhibit phase transitions, to see if interferometric measures

coincide with phase transitions; introducing variability to edge weights, to see how interferometric

measures would change for interference problems in the real-world; and testing interferometric measures on

real-world data sets.

Array generating functions and transformation operators take on both the benefits and the challenges

of generating functions. The primary benefit of generating functions is that they can compress large,

recursive sequences down into short expressions. This is especially promising for modeling networks with

fractal geometry [45, 46], since the self-similarity of fractals is recursive. The primary challenge is that, for

sequences that deviate from recursive structure, the recursion benefit of generating functions is lost, and

the generating functions becomes tedious and cumbersome instead of helpful. It is clear that the generating

function is useful for modeling ordered networks like lattices, and that the method is not useful for random

networks. However, it is an open question when array generating functions are appropriate for networks

between the two extremes. For instance, the Watts-Strogatz model [31] takes the form of a ring lattice with

64



a small number of random rewirings.

In addition to this open question, the possibilities for future exploration of array generating functions

and transformation operators are plentiful. One possible exploration is converting common networks to

functions and common functions to networks. For example, it could be useful to find the counterparts to

lattices, Erdős-Rényi random networks, Watts-Strogatz small-world networks, Barabási-Albert scale-free

networks, Leguerre polynomials, Chebyshev polynomials, exponentials, gaussians, trigonometric functions,

and hyperbolic trigonometric functions. Furthermore, this could develop into creating different bases for

networks. It is possible that new network measures could arise from decomposing array generating

functions into a Fourier basis. Another sphere of function-related behaviors to explore is asymptotics. We

may learn about the common network structure of two networks that have asymptotically equivalent array

generating functions or transformation operators. It is possible that this could give rise to new ways to

approximate the structure of complex networks.

Another avenue of potential development is the use of transformation operators to analyze paths on

networks. The combinatorics of paths on networks can be examined by constructing a power series where

each coefficient is a power of the transformation operator, analogously to how apparent path strength is

related to a power series of the weighted adjacency matrix (Equations 7.2 and 7.4). This path generating

function could track all possible walks on a network, with each term corresponding to the multiplicities of a

particular path length. This could be further used to number the distinct walks of any path length by

evaluating the array generating function terms at x = 1, y = 1 (where x and y are the two variables in the

array generating function’s 2D power series), disposing of vertex indices. This becomes a graph invariant, a

network property that does not depend on a particular indexing scheme. Graph invariants are important

for both quantifying the properties of networks and for posing necessary (but not sufficient) criteria for the

graph isomorphism problem [47–49]. Current algorithms for solving graph isomorphism, the problem of

demonstrating that two networks are identical up to the order of vertex indices, rely on a combination of

graph invariants and brute force computation [50]. Further development of graph invariants based on

generating function objects that remove vertex index information may be key in constructing a sufficient

set of conditions for graph isomorphism. This will be especially necessary for solving graph isomorphism

for networks of infinite size, like those possible with array generating functions, since traditional algorithms

can only work on finite networks.

There is also the possibility of applying this generating function methodology to the mainstays of

complex network theory. Array generating functions and transformation operators could potentially be

used to compute network measures like degree, clustering, or assortativity. Since array generating functions

and transformation operators can easily handle networks of infinite size, they may provide useful

65



techniques for proving that network properties hold in the large size limit. Since transformation operators

capture the behavior of the adjacency matrix under matrix multiplication, they are a possible tool for

computing spectral measures of networks. These techniques could contribute to random matrix theory.

Potential subfields arise from bridging functional analysis and network theory. The generating function

methods provide an alternative to adjacency matrices, with the potential to represent unlabeled networks.

AGFs and TOs are potential tools for the more challenging problems of complex network theory. The

places generating functions and matrices can be taken together are myriad, and afford exciting

opportunities for future explorations.

The creation of interferometer networks allows the modeling of interfering physical systems. I have

explored how these networks create phase change, can be measured by path lengths and clustering, how

feedback loops behave, and where interferometric measures are necessary to characterize them. The

introduction of array generating functions and transformation operators allow the capture of large,

recursively structured networks, and create many possibilities for the mathematical analysis of networks.

This suite of tools extends the reach of network science.

66



REFERENCES

[1] Anatol Rapoport; William J. Horvath. A study of a large sociogram. Banks in Insurance Report, 6,
Jan 2007. doi: 10.1002/bs.3830060402.

[2] John F. Padgett and Christopher K. Ansell. Robust action and the rise of the medici, 1400-1434. The
American journal of sociology, 98(6):1259–1319, 1993. ISSN 0002-9602.

[3] Duncan J. Watts. Small Worlds: The Dynamics of Networks between Order and Randomness
(Princeton Studies in Complexity). Princeton University Press, 2003. ISBN 0691117047;
9780691117041.

[4] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships of the
internet topology. In ACM SIGCOMM’99 conference: applications, technologies, architectures, and
protocols for computer communication, volume 29 of SIGCOMM ’99, pages 251–262, NEW YORK,
1999. ACM. ISBN 1581131356.

[5] Andre Broido and kc claffy. Internet topology: connectivity of IP graphs. In Sonia Fahmy and Kihong
Park, editors, Scalability and Traffic Control in IP Networks, volume 4526, pages 172 – 187.
International Society for Optics and Photonics, SPIE, 2001. doi: 10.1117/12.434393.

[6] Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical analysis of structural and
functional systems. Nature reviews. Neuroscience, 10(3):186–198, 2009. ISSN 1471-003X.

[7] Andrea Avena-Koenigsberger, Bratislav Misic, and Olaf Sporns. Communication dynamics in complex
brain networks. Nature reviews. Neuroscience, 19(1):17–33, 2018. ISSN 1471-003X.

[8] M.E.J. Newman. The structure and function of complex networks. SIAM Review, 45:167–256, May
2003.

[9] Bhuvanesh Sundar, Marc Andrew Valdez, Lincoln D. Carr, and Kaden R. A. Hazzard.
Complex-network description of thermal quantum states in the ising spin chain. Physical review. A, 97
(5), 2018. ISSN 2469-9926.

[10] Shehtab Zaman and Wei-Cheng Lee. Real-space visualization of quantum phase transitions by
network topology. Phys. Rev. E, 100:012304, Jul 2019. doi: 10.1103/PhysRevE.100.012304.

[11] A.A Bagrov, M Danilov, S Brener, M Harland, A I Lichtenstein, and M.I Katsnelson. Detecting
quantum critical points in the tt fermi-hubbard model via complex network theory. Scientific reports,
10(1):1–9, 2020. ISSN 2045-2322.

[12] Y. Aharonov and D. Bohm. Significance of electromagnetic potentials in the quantum theory. Phys.
Rev., 115:485–491, Aug 1959. doi: 10.1103/PhysRev.115.485.

[13] Charles A Stafford, David M Cardamone, and Sumit Mazumdar. The quantum interference effect
transistor. Nanotechnology, 18(42):424014, Sep 2007. doi: 10.1088/0957-4484/18/42/424014.

[14] A. A. Michelson and E. W. Morley. On the relative motion of the earth and the luminiferous ether.
American Journal of Science, s3-34(203):333–345, 11 1887. doi: 10.2475/ajs.s3-34.203.333.

67



[15] Gianni Pascoli. The sagnac effect and its interpretation by paul langevin. Comptes Rendus Physique,
18(9):563–569, 2017. ISSN 1631-0705. doi: https://doi.org/10.1016/j.crhy.2017.10.010. Science in the
making: The Comptes rendus de l’Académie des sciences throughout history.

[16] Mauro Faccin, Tomi Johnson, Jacob Biamonte, Sabre Kais, and Piotr Migda l. Degree distribution in
quantum walks on complex networks. Phys. Rev. X, 3:041007, Oct 2013. doi:
10.1103/PhysRevX.3.041007.

[17] Dawei Lu, Jacob D. Biamonte, Jun Li, Hang Li, Tomi H. Johnson, Ville Bergholm, Mauro Faccin,
Zoltán Zimborás, Raymond Laflamme, Jonathan Baugh, and Seth Lloyd. Chiral quantum walks.
Physical review. A, 93(4), 2016. ISSN 2469-9926.

[18] Mark Goldsmith, Guillermo Garćıa-Pérez, Joonas Malmi, Matteo A C Rossi, Harto Saarinen, and
Sabrina Maniscalco. Link prediction with continuous-time classical and quantum walks. arXiv.org,
2022. ISSN 2331-8422.

[19] Yang-Yu Liu, Jean-Jacques Slotine, and Albert-László Barabási. Observability of complex systems.
Proceedings of the National Academy of Sciences - PNAS, 110(7):2460–2465, 2013. ISSN 0027-8424.

[20] Arthur N Montanari, Chao Duan, Luis A Aguirre, and Adilson E Motter. Functional observability and
target state estimation in large-scale networks. Proceedings of the National Academy of Sciences -
PNAS, 119(1):1–, 2022. ISSN 0027-8424.

[21] Paul Scherz and Dr. Simon Monk. Theory, chapter 2, pages 2–268. Practical Electronics for Inventors,
Third Edition. McGraw-Hill Education, New York, 3rd edition edition, 2013. ISBN 9780071771337.

[22] N.N. HANCOCK. Chapter 3 - application of matrix algebra to static electrical networks. In N.N.
HANCOCK, editor, Matrix Analysis of Electrical Machinery (Second Edition), pages 21–36.
Pergamon, second edition edition, 1974. ISBN 978-0-08-017899-8. doi:
https://doi.org/10.1016/B978-0-08-017899-8.50007-X.

[23] Herbert S Wilf. Generatingfunctionology. Academic Press, 2014. ISBN 9780127519555.

[24] Joy Morris. Generating functions, pages 61–68. Joy Morris, Lethbridge, Alberta, version 2.1 edition,
2022.

[25] Charles M. Grinstead. Generating functions, pages 365–404. American Mathematical Society, 1997.
ISBN 1-306-36906-1.

[26] Mireille Bousquet-Mélou and Marko Petkovšek. Linear recurrences with constant coefficients: the
multivariate case. Discrete Mathematics, 225(1):51–75, 2000. ISSN 0012-365X. doi:
https://doi.org/10.1016/S0012-365X(00)00147-3. FPSAC’98.

[27] Robin Pemantle and Mark C. Wilson. Twenty combinatorial examples of asymptotics derived from
multivariate generating functions. SIAM Review, 50(2):199–272, 2008. doi: 10.1137/050643866.

[28] N L Zamarashkin and E E Tyrtyshnikov. Distribution of eigenvalues and singular values of toeplitz
matrices under weakened conditions on the generating function. Sbornik. Mathematics, 188(7-8):
1191–1201, 1997. ISSN 1064-5616.

[29] N. L. Zamarashkin, E. E. Tyrtyshnikov, and V. N. Chugunov. Functions generating normal toeplitz
matrices. Mathematical Notes, 89(3-4):480–483, 2011. ISSN 0001-4346.

68



[30] Richard P. Stanley. The Transfer-matrix method, pages 241–262. Enumerative Combinatorics.
Wadsworth & Brooks/Cole Advanced Books & Software, Belmont, CA, 1st edition edition, 1986.
ISBN 978-1-4615-9765-0.

[31] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393:
440–442, June 1998. doi: https://doi.org/10.1038/30918.

[32] David Poole. Linear Algebra: A Modern Introduction. Cengage, Mason, OH, 2014. ISBN 1285463242.

[33] John R. Taylor. Chapter 3: Propagation of Uncertainties, page 45–91. University Science Books, 2nd
edition, 1997. ISBN 9780935702750.

[34] Bin Zhang and Steve Horvath. A general framework for weighted gene co-expression network analysis.
Statistical Applications in Genetics and Molecular Biology, 4, 2005. doi: 10.2202/1544-6115.1128.

[35] Tore Opsahl, Filip Agneessens, and John Skvoretz. Node centrality in weighted networks:
Generalizing degree and shortest paths. Social Networks, 32(3):245–251, 2010. ISSN 0378-8733. doi:
https://doi.org/10.1016/j.socnet.2010.03.006.

[36] Giorgio Fagiolo. Clustering in complex directed networks. Physical Review E, 76:026107, August 2007.
doi: https://doi.org/10.1103/PhysRevE.76.026107.

[37] Jari Saramaki, Mikko Kivela, Jukka-Pekka Onnela, Kimmo Kaski, and Janos Kertesz. Generalizations
of the clustering coefficient to weighted complex networks. Physical Review E, 75:1–4, February 2007.
doi: https://doi.org/10.1103/PhysRevE.75.027105.

[38] A. Perot and C. Fabry. On the application of the interference phenomena to the solution of various
problems of spectroscopy and metrology. Bulletin Astronomique, 16:87–115, January 1899. doi:
10.1086/140557.

[39] Larisa Beilina, Evgenii Karchevskii, and Mikhail Karchevskii. Chapter 6: Vector and Matrix Norms,
pages 209–229. Springer International Publishing, Cham, 2017. ISBN 3319573020.

[40] Mark D. Humphries and Kevin Gurney. Network ‘small-world-ness’: A quantitative method for
determining canonical network equivalence. PLoS ONE, 3, April 2008. doi:
https://doi.org/10.1371/journal.pone.0002051.

[41] Béla Bollobás. The diameter of random graphs. Transactions of the American Mathematical Society,
267(1):41–52, 1981. doi: 10.1090/s0002-9947-1981-0621971-7.

[42] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science
(American Association for the Advancement of Science), 286(5439):509–512, 1999. ISSN 0036-8075.

[43] Lucas Bottcher and Mason Porter. Complex networks with complex weights. arXiv, December 2022.
URL https://arxiv.org/abs/2212.06257.

[44] Jukka-Pekka Onnela, Jari Saramäki, János Kertész, and Kimmo Kaski. Intensity and coherence of
motifs in weighted complex networks. Physical Review E 2005-jun 13 vol. 71 iss. 6, 71, jun 2005. doi:
10.1103/PhysRevE.71.065103.

[45] Tao Wen and Kang Hao Cheong. The fractal dimension of complex networks: A review. Information
Fusion, 73:87–102, 2021. ISSN 1566-2535. doi: https://doi.org/10.1016/j.inffus.2021.02.001.

69

https://arxiv.org/abs/2212.06257


[46] K.-I. Goh, G. Salvi, B. Kahng, and D. Kim. Skeleton and fractal scaling in complex networks. Phys.
Rev. Lett., 96:018701, Jan 2006. doi: 10.1103/PhysRevLett.96.018701.

[47] Bogdan Nica. A Brief Introduction to Spectral Graph Theory. EMS Press, may 2018. doi: 10.4171/188.

[48] M Randic, Xiaofeng Guo, T Oxley, and H Krishnapriyan. Wiener matrix: Source of novel graph
invariants. Journal of chemical information and computer sciences, 33(5):709–716, 1993. ISSN
0095-2338.

[49] Terry Rudolph. Constructing physically intuitive graph invariants. arXiv.org, 2002. ISSN 2331-8422.

[50] Martin Grohe and Pascal Schweitzer. The graph isomorphism problem. Commun. ACM, 63(11):
128–134, oct 2020. ISSN 0001-0782. doi: 10.1145/3372123.

70



APPENDIX A

SMALL-WORLD EFFECT PLOTS ACCOUNTING FOR SELF LOOPS

As discussed in Chapter 3, the interferometric clustering can be slightly modified to account for

self-loops. There are reasons to make this inclusion, but it breaks with tradition, so I decided to exclude

self loops in the main results. However, as I will show with these plots, the results hardly change at all

from those in Chapter 5 when I make this inclusion. Figure A.1 recreates Figure 5.2, Figure A.2 recreates

Figure 5.3, Figure A.3 recreates Figure 5.4, and Figure A.4 is the counterpart to Figure 5.5.

0 1 2 3 4 5 6
0

50

100

150

200

S

Sint

Sreal

Figure A.1 Peak Sint values for each configuration in φ. The traditional small world coefficient S (per
Equation 5.2) is plotted for reference; it is constant because it does not depend on phase. This plot shows
results for small-world interferometers with size N = 500 and k = 12. This version of the plot was created
with a version of the clustering coefficient that accounts for possible self loops.

71



12 10 8 6 4 2 0
log 

0

50

100

150

200

250

300

S i
nt

 = 6.21
 = 6.22
 = 0.00
 = 0.06
 = 0.13

Figure A.2 The interferometric small-world coefficient plotted over β for a few select values of φ. This plot
is for small-world interferometers with size N = 500 and k = 12. This version of the plot was created with
a version of the clustering coefficient that accounts for possible self loops.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

log10(
S( = 0)
S( = ))

0

10

20

30

40

50

Fr
e
q
u
e
n
cy

Testing Small-World Dissipation for 
Randomized N and k

Figure A.3 Histogram of the logarithms of the ratio Sint(φ = 0)/Sint(φ = π). Notice thatbecause
logarithms are always greater than zero, Sint(φ = 0) > Sint(φ = π) for all tests. This version of the plot
was created with a version of the clustering coefficient that accounts for possible self loops.

72



200 400 600 800 1000 1200 1400
N

8

10

12

14

16

18

20

k

Networks tested for Small-World Dissipation

0.5

1.0

1.5

2.0

2.5

lo
g
 o

f 
S
 r

a
ti
o

Figure A.4 A scatter plot highlighting the randomized N and k values used to produce the data in
Figure A.3. The results of the trials (the ratio of small-world coefficients) is indicated by a color map.

73



APPENDIX B

NETWORK ALGORITHMS MODULE

This program includes the basic network methods for the small-world interferometer work. It generates

small-world interferometers and defines functions for computing path length and clustering measures. This

program makes calculations efficient through two primary methods: vectorization and sparse matrices. The

code uses vectorized calculations on adjacency matrices through the numpy library, which runs repeated

calculations through efficient, low-level algorithms in the c language. In addition, scipy sparse matrices are

used wherever matrices are anticipated to have few entries. This speeds up calculations, because sparse

matrices simply ignore empty entries instead of explicitly storing and calculating on zeroes. The exception

to this is the apparent path strength, due to reasons discussed in Chapter 5.

#!/usr/bin/env python3

# -*- coding: utf-8 -*-

"""

Nets

Benjamin Krawciw

9/29/22

The necessary network theory functions for performing the Interferometer Small-

World Tests

"""

#Library imports

import numpy as np

import numpy.ma as ma

import scipy.linalg as sp

import scipy.sparse as sparse

from time import time

#Create a random number generator

rng = np.random.default_rng(int(time()))

74



#Tolerance for numerical things

TOL = 1e-8

#Creates a ring network

def makeRing(N, khalf):

#Ensure that khalf is a valid input

if khalf <= (N // 2):

khalf_checked = khalf // 1

else:

khalf_checked = N // 2

#Function that determines if entry (i, j) is included in ring

def ringLogic(i, j):

dist = np.minimum((j - i) % N, (i - j) % N)

far_enough = np.greater(dist, 0)

close_enough = np.less_equal(dist, khalf_checked)

return(np.logical_and(far_enough, close_enough))

#Unweighted adjacency matrix

A = np.fromfunction(ringLogic, (N, N))

return(A)

#Function that randomly rewires ring according to beta

def rewire(A, beta):

N = (A.shape)[0]

#Select edges to rewire

B = (np.less_equal(rng.random((N, N)), beta)) * A

#Do not rewire self edges

B = (np.ones((N, N)) - np.eye(N)) * B

75



#Remove self-edges from rewire pool

candidates = ma.masked_array(B, mask = np.eye(N))

#Shuffle candidates

choices = rng.permuted(candidates[~candidates.mask], axis = 0)

Shuff = np.zeros_like(B)

Shuff[~candidates.mask] = choices

#Generate the rewired matrix

return(A.astype(int) - B.astype(int) + Shuff.astype(int))

#Returns the adjacency matrix of a small-world network with the given parameters

def ws(params):

#Unpack parameters

N, khalf, beta, phi, weighting = (params[0], params[1], params[2],

params[3], params[4])

#Generate ring

ring = makeRing(N, khalf)

#Rewire ring

rewired = rewire(ring, beta)

#Add phase

w = (weighting * (1.0 / khalf)) * np.exp(1.0j * phi)

W = rewired.astype(complex) * w

#Return adjacency matrix as a sparse matrix

return(sparse.csr_matrix(W))

#General clutering formula

76



def __clustHelper(W):

#These functions only work for dense matrices

Wsparse = W

if not(sparse.issparse(W)):

Wsparse = sparse.csr_matrix(W)

#Record the network size

N = np.min(W.shape)

#Compute the numerator

num = np.zeros(N)

with np.nditer(num, op_flags = [’writeonly’], flags = [’f_index’]) as iterator:

for entry in iterator:

#Record index

i = iterator.index

#Compare paths through node i to shortcuts

throughPaths = Wsparse[:, i] * Wsparse[i, :]

adjShortcuts = np.abs(throughPaths + Wsparse) - np.abs(throughPaths)

mat = (abs(throughPaths)).multiply(adjShortcuts)

#Sum all triads on node i

norm = mat.sum()

entry[...] = norm

#Compute the denominator

den = np.zeros(N)

with np.nditer(den, op_flags = [’writeonly’], flags = [’f_index’]) as iterator:

for entry in iterator:

#Record index

i = iterator.index

#Compare paths through node i to path of 1

throughPaths = Wsparse[:, i] * Wsparse[i, :]

adjShortcuts = np.ones(N)

adjShortcuts[i] = 0 #Do not anticipate self-loops

77



mat = np.abs(throughPaths)

#Sum and record

norm = mat.sum()

entry[...] = norm

#Meshing vector, scaled and shifted to match unweighted clustering

Mvec = np.divide(num, den + TOL, out=np.zeros_like(num), where = den != 0.0)

avg = np.mean(Mvec)

return avg

#Returns the traditional, real-valued clustering coefficient

def Creal(W):

return __clustHelper(np.abs(W))

#Returns the magnitude of the interferometric meshing

def Mesh(W):

return __clustHelper(W)

#Returns the real-valued strongest path strength

def SPL(W):

#Convert multiplicative path lengths to additive ones by taking a logarithm

Wlog = sparse.csr_matrix((-np.log(np.abs(W.data)),

W.indices,

W.indptr))

#Ensure the matrix is square

wlogShape = Wlog.get_shape()

newSize = min(wlogShape[0], wlogShape[1])

#print(Wlog.get_shape())

Wlog.resize(newSize, newSize)

#Use Dijkstra’s algorithm to solve for shortest paths in log space

logShorts = sparse.csgraph.shortest_path(csgraph = Wlog)

78



#Return the average

SPL = np.mean(logShorts, (0, 1), where = (np.abs(logShorts) != np.inf))

return(SPL)

#Returns the magnitude of the apparent path strength

def APL(W):

#This measure comes from treating the network as an interferometer

#This involves solving for the node-signal-value vector E

#A constant-source-to-node vector S is also supplied

#E is the solution to WE + S = E

#So, the apparent paths are the entries of the MP inverse of (I-W)

N = (W.shape)[0]

WI = sparse.eye(N, format = "csr") - W

#Ensure the matrix is square

wShape = WI.get_shape()

newSize = min(wShape[0], wShape[1])

WI.resize((newSize, newSize))

#Compute matrix inverse

P = sp.inv(np.nan_to_num(WI.todense()))

#print(P @ WI)

APL = np.mean(-np.log(np.abs(P) + TOL), (0, 1))

return(APL)

’’’

#Testing the functions

ring = makeRing(100, 18)

#print(ring)

rewired = rewire(ring, 0.1)

#print(rewired)

W = ws([100, 8, 1.0, np.pi / 4])

#print(W.diagonal())

79



#print(W)

Cr = Creal(W)

print(Cr)

M = Mesh(W)

print(M)

ap = APL(W)

#print(ap)

sps = SPL(W)

#print(sps)

’’’

80



APPENDIX C

CODE THAT RUNS INTERFEROMETER TESTS ON HPC

This program creates the list of tests to run (called the parameter space, or pspace for short), defines a

function for running a network trial, runs the trials in parallel through MPI, and records the results in a

comma-separated-values file. If one wished to implement this program in serial on a regular computer, they

would only need to replace the MPIPoolExecutor with a for loop. However, running this program in serial

would take a very long time.

Similar programs to this one run the supplemental tests for interferometers near φ = 0 and β = 1, and

also the randomized trials depicted in Figure 5.4 and Figure 5.5. Because they are so similar, they are not

included in this thesis. However, all code is publicly available on

https://github.com/bkrawciw-mines/IntNets Wendian.

#!/usr/bin/env python3

# -*- coding: utf-8 -*-

"""

Interferometer Small-World Tests

Benjamin Krawciw

9/30/2022

Creates a suite of watts-strogatz interferometers, computes their network

measures, and saves them using an HPC cluster.

"""

#Library imports

import numpy as np

import nets

import csv

import itertools

from mpi4py.futures import MPIPoolExecutor

from time import time

81

https://github.com/bkrawciw-mines/IntNets_Wendian


#Name for the output file

outFileName = ’full500.csv’

#Create the parameter space for testing

Nrange = [500]

#Redundancy for tighter statistics

redundancy = 100

Ns = []

#Small networks need more trials

for Nval in Nrange:

reps = redundancy * ((Nrange[-1]) // (Nval))

[Ns.append(Nval) for i in range(reps)]

Ns = np.array(Ns)

kRange = [6]

#Create a beta space

betaRange = np.logspace(-5.0, 0.0, num = 100, base = 10, endpoint = True)

#Create a phi space

phiRange = np.linspace(0.0, 2.0 * np.pi, num = 100, endpoint = False)

weighting = [0.95]

#Total parameter space for tests

pSpace = itertools.product(Ns, kRange, betaRange, phiRange, weighting)

#Function for each independent test

def Stest(params):

#print(’sTest’, params)

#Create a WS interferometer

W = nets.ws(params)

#Calculate small-world coefficients

C, M = nets.Creal(W), nets.Mesh(W)

SPL, APL = nets.SPL(W), nets.APL(W)

#print(psutil.virtual_memory().used)

82



return(params + (C, M, SPL, APL))

#Run all tests

if __name__ == ’__main__’:

#Start a timer

tStart = time()

#Run an MPI executor on the available nodes

with MPIPoolExecutor() as executor:

#Use the executor to run the Stest process on parameters in pSpace

results = executor.map(Stest, pSpace)

#Creating the file to log data

with open(outFileName, ’w’, newline= ’’ ) as csvFile:

writer = csv.writer(csvFile)

writer.writerow([’N’, ’kHalf’, ’beta’, ’phi’, ’weighting’, ’C’, ’M’, ’SPL’, ’APL’])

writer.writerows(results)

executor.shutdown(wait = False)

#Report the execution time

print("Tests completed. Time: %f s" % (time() - tStart))

83



APPENDIX D

DATA VISUALIZATION CODE

This program takes in the data generated by the code in Appendix C, calculates the small-world

coefficients, and creates the plots in Figure 5.3 and Figure 5.2. Similar code plots the results of the

randomized-parameter trials, which is not included here, but is included at

https://github.com/bkrawciw-mines/IntNets Wendian.

#!/usr/bin/env python3

# -*- coding: utf-8 -*-

"""

Data Visualization

Benjamin Krawciw

10/3/2022

This program plots the results for the small-world interferometer tests

"""

#Library imports

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from scipy import stats #For filtering outliers

#Numerical tolerance

TOL = 1e-8

#Reading in the CSV data

inFileName = ’full500.csv’

dataFrame = pd.read_csv(inFileName, delimiter = ’,’)

#Including data patches (supplemental data in sensitive areas)

betaPatch = ’betaPatch_redundancy.csv’

84

https://github.com/bkrawciw-mines/IntNets_Wendian


betaPatchFrame = pd.read_csv(betaPatch, delimiter = ’,’)

dataFrame = pd.concat((dataFrame, betaPatchFrame))

phiPatch = ’phiPatch.csv’

phiPatchFrame = pd.read_csv(phiPatch, delimiter = ’,’)

dataFrame = pd.concat((dataFrame, phiPatchFrame))

#Treat infinite values as invalid

dataFrame.replace([np.inf, -np.inf], np.nan, inplace = True)

#Find outliers in APL and M

MzScore = np.abs(stats.zscore(dataFrame[’M’]))

APLzScore = np.abs(stats.zscore(dataFrame[’APL’], nan_policy=’omit’))

dataFrame = dataFrame.loc[(APLzScore < 3) & (MzScore < 3)]

#Group trials by input parameters, then compute means

sortNets = dataFrame.groupby([’N’, ’kHalf’, ’beta’, ’phi’, ’weighting’],

as_index = False)

#Using a more stable version of the average to handle volatility in APL

measures = sortNets.mean()

measuresErrs = sortNets.std()

numTests = sortNets.count()

#Case study: How do N and kHalf change things?

#Select a particular beta and phi value

NkData = measures.loc[(measures[’beta’] == max(measures[’beta’]))

& (measures[’phi’] == 0)]

NkN, Nkk = NkData[’N’].to_numpy(), NkData[’kHalf’].to_numpy()

NkM, NkSPL = NkData[’M’].to_numpy(), NkData[’SPL’].to_numpy()

NkAPL = NkData[’APL’].to_numpy()

fig, ax = plt.subplots()

scat = ax.scatter(NkN, Nkk, c = NkM, s = 100)

ax.set(

title = "Clustering over kHalf and N",

85



xlabel = ’N’,

ylabel = ’kHalf’

)

fig.colorbar(scat, label = ’Clustering’)

fig.show()

fig, ax = plt.subplots()

scat = ax.scatter(NkN, Nkk, c = NkSPL, s = 100)

ax.set(

title = "SPL over kHalf and N",

xlabel = ’N’,

ylabel = ’kHalf’

)

fig.colorbar(scat, label = ’SPL’)

fig.show()

fig, ax = plt.subplots()

scat = ax.scatter(NkN, Nkk, c = NkAPL, s = 100)

ax.set(

title = "APL over kHalf and N",

xlabel = ’N’,

ylabel = ’kHalf’

)

fig.colorbar(scat, label = ’SPL’)

fig.show()

#Case study: How do beta and phi change things?

bpData = measures.loc[(measures[’N’] == max(measures[’N’]))

& (measures[’kHalf’] == 6)]

bpb, bpp = bpData[’beta’].to_numpy(), bpData[’phi’].to_numpy()

bpM, bpSPL = bpData[’M’].to_numpy(), bpData[’SPL’].to_numpy()

bpAPL = bpData[’APL’].to_numpy()

86



fig, ax = plt.subplots()

scat = ax.scatter(np.log(bpb), bpp, c = bpM, s = 100)

ax.set(

title = "Clustering over beta and phi",

xlabel = ’log(beta)’,

ylabel = ’phi’

)

fig.colorbar(scat, label = ’Clustering’)

fig.show()

fig, ax = plt.subplots()

scat = ax.scatter(np.log(bpb), bpp, c = bpSPL, s = 100)

ax.set(

title = "SPL over beta and phi",

xlabel = ’log(beta)’,

ylabel = ’phi’

)

fig.colorbar(scat, label = ’SPL’)

fig.show()

fig, ax = plt.subplots()

scat = ax.scatter(np.log(bpb), bpp, c = bpAPL, s = 100)

ax.set(

title = "APL over beta and phi",

xlabel = ’log(beta)’,

ylabel = ’phi’

)

fig.colorbar(scat, label = ’APL’)

#Recreating previous results

SmaxDat = measures.loc[(measures[’N’] == max(measures[’N’]))

& (measures[’kHalf’] == 6)]

SmaxErrs = measuresErrs.loc[(measuresErrs[’N’] == max(measures[’N’]))

87



& (measuresErrs[’kHalf’] == 6)]

SmaxCounts = numTests.loc[(measuresErrs[’N’] == max(measures[’N’]))

& (measuresErrs[’kHalf’] == 6)]

M = SmaxDat[’M’]

SPL = SmaxDat[’SPL’]

APL = SmaxDat[’APL’]

#Create set of random baselines

randDat = SmaxDat.loc[SmaxDat[’beta’] == 1.0]

randM = M.loc[(SmaxDat[’beta’] == 1.0)]

randSPL = SPL.loc[(SmaxDat[’beta’] == 1.0)]

randAPL = APL.loc[(SmaxDat[’beta’] == 1.0)]

#Function to compute gamma and lambda for a single config (real and complex)

def GammaLambda(row):

#Unpack row

N, kHalf, beta, phi, weighting, C, M, SPL, APL = row

#Reference row

ref = measures.loc[

(measures[’N’] == N) &

(measures[’kHalf’] == kHalf) &

(measures[’beta’] == 1.0) &

(measures[’phi’] == phi)

].to_numpy()[0]

refN, refK, refB, refPhi, refWeight, refC, refM, refSPL, refAPL = ref

#Create output row

out = np.array([

N,

kHalf,

88



beta,

phi,

weighting,

C / refC,

(M + np.abs(refM) - refM) / (np.abs(refM) + TOL),

SPL / refSPL,

(APL + np.abs(refAPL) - refAPL) / (np.abs(refAPL) + TOL)

])

return(out)

#Compute gammas and lambdas

GamLam = SmaxDat.apply(GammaLambda, axis = ’columns’, raw = True,

result_type = ’expand’)

#Compute small-world coefficients for a single config

def Scomp(gammaLamRow):

#Unpack row

N, kHalf, beta, phi, weighting, GamReal, GamComp, LambReal, LambComp = gammaLamRow

#Create output row

out = pd.Series([N, kHalf, beta, phi, weighting,

GamReal / (LambReal + TOL),

GamComp / (LambComp + TOL)])

return(out)

#Computing small-world coefficients

Svals = GamLam.agg(Scomp, axis = ’columns’)

#Relabeling svals

Svals = pd.DataFrame(Svals.values,

columns = [’N’, ’kHalf’, ’beta’, ’phi’, ’weighting’,

’Sreal’, ’Scomp’])

89



#Find maximum over beta for each phi

Smax = Svals.groupby(’phi’, as_index = False).max()

#Characterize S over beta

SmaxBeta = Svals.groupby([’N’, ’kHalf’, ’phi’], as_index = False).max()

SmaxBetaErr = Svals.groupby([’N’, ’kHalf’, ’phi’], as_index = False).std()

#Plot S over beta for a few interesting places

plt.figure()

#Identify all unique phi values

phis = Svals[’phi’].unique()

for i in [-2, -1, 0, 1, 2]:

index = i

phi = phis[index]

pDat = Svals.loc[Svals[’phi’] == phi]

#Estimate swcoeff error as the product of relative C and P errors times S.

Mdat = M.loc[Svals[’phi’] == phi]

Pdat = APL.loc[Svals[’phi’] == phi]

Cerr = (SmaxErrs.loc[SmaxErrs[’phi’] == phi])[’M’] / Mdat

Perr = (SmaxErrs.loc[SmaxErrs[’phi’] == phi])[’APL’] / Pdat

pDatErr = pDat[’Scomp’] * np.sqrt(Cerr**2 + Perr**2)

#Divide by sqrt(numTests) to get standard dev of the mean

nTests = min(SmaxCounts.loc[SmaxCounts[’phi’]==phi][’M’])

pDatErr = pDatErr / np.sqrt(nTests)

betax = np.log(pDat[’beta’].to_numpy())

plt.errorbar(betax, pDat[’Scomp’], pDatErr, label = (r"$\phi$ = %0.2f" %phi),

elinewidth=1,

capsize=5,

marker=’.’,

lw = 0)

plt.legend()

plt.xlabel(r"log $\beta$")

90



plt.ylabel(r’$S_{{int}}$’)

plt.ylim(0, 300)

plt.savefig("sw_overbeta.pdf")

#Plot Smax over phi

plt.figure()

plt.errorbar(SmaxBeta[’phi’], SmaxBeta[’Scomp’], SmaxBetaErr[’Scomp’], label = r’$S_{int}$’,

elinewidth=1,

capsize=5,

marker=’.’,

lw = 0)

plt.errorbar(SmaxBeta[’phi’], SmaxBeta[’Sreal’], 0, label = r’$S_{real}$’,

elinewidth=1,

capsize=5,

marker=’.’,

lw = 0)

plt.xlabel(r’$\phi$’)

plt.ylabel(’S’)

plt.legend()

plt.savefig("sw_overphi.pdf")

91


	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	Acknowledgments
	Introduction
	Interferometer Limitation and The N-Stage Skew-Cycle Interferometer (NSCI)
	Generalized Network Measures
	Path Strength
	Interferometric Clustering

	Feedback in Interferometers
	A Simple Example of Feedback, and its Correspondence to the Fabry-Perot Interferometer
	Conditions for Well-Behaved Interferometers

	The Small-World Effect for Interferometer Networks
	The Application of Generating Functions to Matrices
	Discussion and Conclusion
	References
	Small-world effect plots accounting for self loops
	Network algorithms module
	Code that runs interferometer tests on HPC
	Data Visualization Code

