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ABSTRACT

Following early breakthroughs for quantum algorithms in database search and integer factoring, over

recent years, quantum computing hardware technologies and quantum algorithms have undergone rapid

developments. Yet, the search for “killer” applications of quantum computing has remained elusive amidst

the noisy intermediate scale quantum computing (NISQ) era, where noise from the environment provides a

challenge for quantum algorithms requiring a fault-tolerant machine. Among prevalent applications such as

quantum simulation and quantum chemistry, hard optimization tasks provide a promising class of problems

where quantum algorithms hope to demonstrate advantage beyond quadratic speed-ups.

This work investigates the application of heuristic quantum algorithms to combinatorial optimization,

where we consider the class of binary constraint satisfaction problems. We introduce two new quantum

algorithms for exact and approximate optimization, and demonstrate our methods with extensive quantum

simulations that exhaust the capabilities of current supercomputers for classical simulation of quantum

dynamics. In particular, we investigate a well-known problem known as MAX-3-XORSAT, in the

complexity class, NP-hard. First, we introduce a new method called Spectrally Folded Quantum

Optimization (SFQO) which transforms the energy landscape of the problem, allowing approximate

solutions to be readily obtained with guaranteed approximation ratios. Secondly, we introduce a new

non-classical steering mechanism called Iterative Symphonic Tunneling for Satisfiability problems

(IST-SAT) which uses macroscopic quantum tunneling effects to guide the sufficiently good approximations

towards the true global optima.

The first work we present in this thesis, Spectrally Folded Quantum Optimization, investigates the

ability of quantum algorithms to find approximate solutions to the MAX-3-XORSAT hypergraph problem

class. We identify several distinct physical mechanisms associated to these problems, which make the task

of finding exact solutions hard for all previously known classical and quantum algorithms. However, we

find the same mechanisms that prevent quantum algorithms to find exact solutions, do not necessarily hold

for approximate optimization. Spectrally folded quantum optimization implements a classical deformation

of the constraint satisfaction problem energy landscape, which allows quantum algorithms to find constant

fractions of the optimal solution with increasing problem size. We provide theoretical performance

predictions for the algorithm, and benchmark our methods with extensive quantum simulations. Our

results demonstrate that all of our numerical simulations agree with our predictions at the system sizes we

can classically simulate using the best super-computing resources for classical simulation of quantum

dynamics. This work suggests that quantum algorithms may be more powerful than previously thought for
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the task of approximate optimization.

In the second work in this thesis, Iterative Symphonic Tunneling for Satisfiability problems, we present

a non-classical steering mechanism for quantum optimization algorithms based on the use of high frequency

oscillating “AC” drives. To demonstrate this mechanism we introduce an iterative quantum algorithm,

IST-SAT, which does not require computing gradients or extensive fine-tuning. Using an initial classical or

quantum algorithm to approximate the MAX-3-XORSAT problem, IST-SAT sets parameters in

single-qubit oscillating drives according to the bits in the initial solution, which induces further

macroscopic tunneling effects towards the true ground state(s) of the problem. IST-SAT converges to the

ground state in an iterative manner, measured by the number of spin flips away from the ground state(s),

also known as Hamming distance. We identify what it means to have a sufficient initial approximation for

the IST-SAT, which defines a radius of convergence for the algorithm. The numerical results we obtain

demonstrate that IST-SAT monotonically improves in performance, when provided initial states that are

closer and closer to the ground state of the problem. When provided with an initial approximation at or

above the radius of convergence, our results suggest that IST-SAT converges in polynomial time.

Together, the results presented in this work obtain exponential speed-ups for obtaining approximate

solutions, and polynomial speed-ups for exact problem solving, over the best known quantum and classical

algorithms. While NP-hard optimization problems remain hard to solve exactly, by combining the methods

in this work, we show that our algorithm can converge to the true ground state in polynomial time when

provided a sufficiently good initial state. The novel mechanisms in this work thus pave new pathways for

achieving quantum advantage on well-known hard problems, such as MAX-3-XORSAT. We expect the

methods in this work to be amenable for experimental demonstrations on current or near-term quantum

hardware, thus providing an exciting opportunity to demonstrate utility of quantum computers in the

NISQ era.
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CHAPTER 1

INTRODUCTION

1.1 Key mathematics of quantum computation and many-body physics

To begin, we introduce some mathematical notation to bridge a gap between the notation commonly

used in applied mathematics and the notation used in quantum physics and quantum computing.

Throughout this thesis, we use the latter notation used traditionally in the quantum computing literature

[1]. In this section, we introduce the four postulates of quantum mechanics, and the common notations

used throughout the rest of this thesis. Throughout this work, we use the Dirac (bra-ket) notation,

equivalent to matrix-vector notation by following relations

|v⟩ ≡ v, ⟨v| ≡ v†, ⟨u|A|v⟩ ≡ ⟨u, Av⟩ = u†Av, ⟨u|v⟩ ≡ ⟨u,v⟩ = u†v, (1.1)

where † denotes the Hermitian conjugate, and the standard ℓ2 scalar product and norm for vectors u and v

in Cd are defined by

⟨u,v⟩ =
d−1∑
j=0

u∗jvj , ∥v∥ =
√

⟨v,v⟩. (1.2)

The state of a closed quantum system (Postulate 1) is a complex vector in a Hilbert space H. We define

the Hilbert space by

H = {v ∈ Cd,v =


α1

α2

...
αd

 |αj ∈ C}, (1.3)

where quantum mechanical states are represented by v ∈ H with dim(H) = d as the dimension of the

Hilbert space. Throughout this work, we consider finite dimensional vector spaces, comprised of a set of

d-dimensional vectors, where the elements αi of the state vector are complex numbers. As d <∞, we

denote a basis for H as product of the standard basis (unit vectors), and complex amplitudes αj

êj =



0
...
1
...
0

 , ei =

{
1 if i = j
0 otherwise,

(1.4)

v =

d∑
j=1

αj êj , αj ∈ C. (1.5)
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Any vector v ∈ H can be written as a linear combination, also known as a superposition of states in

quantum mechanics. Furthermore, quantum states can easily be interpreted as probability distributions as

that the coefficients (amplitudes) αj are complex modulus squared |αj |2 gives a probability about the

quantum system being in a specific state. For closed quantum systems, quantum states also have unit

norm and ℓ2 scalar product for vectors u, v ∈ Cd

∥v∥2 = ⟨v, v⟩ =
d∑

j=1

|αj |2 = 1, (1.6)

⟨u, v⟩ =
d∑

j=1

ūjvj . (1.7)

We remark that quantum states can also be formally described by rays in a projective Hilbert space,

used in the C∗ algebraic formulation of quantum mechanics, where Hilbert spaces are emergent rather than

fundamental structures in the mathematical formulation of quantum mechanics [2]. In this work, we use

the “state vector” terminology to be consistent with the language used in the standard literature in

quantum computing [1].

Given two quantum systems with respective Hilbert spaces H1 and H2, the state space of the composite

quantum system H (Postulate 2) is the tensor product of the subsystems,

H = H1 ⊗H2. (1.8)

We define the first subsystem H1 to have the span {ui}d1
i=1 and the second subsystem H2 to have the span

{vj}d2
j=1, so the composite space H is equivalently the span of the tensor product {ui ⊗ vj}d1,d2

i=1,j=1. For two

states ψ ∈ H1 and ϕ ∈ H2, the composite state is given by

|ψ⟩ ⊗ |ϕ⟩ =

 ψ1

...
ψd1

⊗

 ϕ1
...
ϕd2

 =



ψ1

 ϕ1
...
ϕd2


...

ψd1

 ϕ1
...
ϕd2




. (1.9)

We note that the underlying Hilbert spaces can be completely different quantum systems and this

formalism is standard for describing open quantum systems [3]. In this thesis, we exclusively study closed

quantum systems, with absence of noisy system-environment interactions. For closed quantum systems,

quantum states evolve in time (Postulate 3) under a unitary operator U(t) that may be time dependent

given by the equation,

|ψ(t)⟩ = U(t)|ψ(0)⟩, t ≥ 0. (1.10)
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In other terms, quantum states evolve according to Schrödinger’s partial differential equation given by

∂|ψ⟩
∂t

=
i

ℏ
H(t)|ψ(0)⟩. (1.11)

Here, H(t) is an operator called the Hamiltonian. For closed quantum systems, the Hamiltonian is a

self-adjoint, Hermitian operator such that H = H†. Throughout this thesis, we take ℏ = 1, so the factor

1/ℏ cancels. For states that evolve under a time-independent Hamiltonian H, the state at time t is exactly

given by

|ψ(t)⟩ = eiHt|ψ(0)⟩, (1.12)

where |ψ(0)⟩ is the initial state, and U(t) = eiHt is a unitary operator which can be computed by

diagonalizing H. However, for n-qubit Hamiltonians, H has dimension d = 2n, making computing U(t)

intractable for systems with even a moderate number qubits. This problem, also known as the quantum

many-body problem, underlies much work in quantum many-body physics over the last several decades,

where the goal is to compute the spectrum of a Hamiltonian H representing the energy levels of an

arbitrary quantum system. Diagonalizing H produces the eigenvalues (energies) and eigenvectors (states)

of the physical system, so we may understand physical properties including phases of matter that the

system exhibits in ground state(s) and low energy configurations.

For very large matrices without structure, diagonalizing H on any classical computer with standard

tools from computational linear algebra, such as Lanczos iteration methods [4] quickly becomes intractable

for even moderately sized systems. This challenge provided much of the initial motivation for the field of

quantum computing and it is widely believed that there exists no classical algorithm which is sufficient for

the task. However, due to much progress on quantum hardware in the past decade, we can now ask

ourselves the following question: provided access to a programmable quantum computer, where can

quantum algorithms provide advantage over classical algorithms on hard optimization tasks? Much work

over the last several decades has made progress on developing quantum algorithms for both classical and

quantum problems that are believed to be intractable with only classical resources.

In this work, we use quantum algorithms to investigate hard classical problems believed to be

intractable for all known classical algorithms. To utilize a quantum computer, we employ elementary

quantum operations known as quantum gates to simulate the dynamics of a quantum system under the

time evolution under a k-local Hamiltonian H [5], defined by the sum of m terms acting upon at most k

qubits each

H =

m∑
i=1

Hi. (1.13)
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Here, k-local does not imply any notion of geometric locality. We only require that each Hi acts on at most

k of the total n qubits not restricted to neighboring qubits. To be more explicit, each Hi is the tensor

product of k non-trivial terms, padded by the tensor product of identity terms. For example, given an

arbitrary operator A, a local term Hi may be given by

Hi = Ai ⊗ I · · · ⊗ I ⊗Aj ⊗ I · · · ⊗ I ⊗Ak ⊗ I, (1.14)

where Ai, Aj , Ak acts on any three qubits with respective indices i, j, k ∈ [0, n− 1].

To evolve time under a time-independent Hamiltonian, one may naively compute the matrix exponential

eiHt. When the Hamiltonian H is given as a sum H = A+B of square matrices A and B representing

time-independent Hamiltonian operators, we then wish to compute the matrix exponential ei(A+B)t.

Throughout this work, we extensively use the Suzuki-Trotter decomposition [6, 7], an operator splitting

method commonly known as just the Trotter decomposition, or simply the exponential product formula

eδAeδB = eδ(A+B)+O(δ2). (1.15)

In other terms, the Trotter decomposition provides an approximation

ei(A+B)dt = eiAdteiBdt +O(dt2), (1.16)

to the exponential operator on the left-hand side of the equation with a correction term of second order in

dt denoted by Big-Oh notation. Here, we use the definition of Big-Oh notation provided in standard texts

on computational complexity [8]. Hence, the time evolution under H for a small time step dt becomes

exact in the limit as dt→ 0. It is also clear that when A and B commute, the error term of order dt2 is

zero. However, when A and B do not commute such that [A,B] = AB −BA ̸= 0, the correction terms add

in the iterative application U(t) for each discrete time step dt in the interval from t = 0 to the total

evolution time T . When the Hamiltonian is time-independent, the Trotter decomposition we discuss here is

straight forward to apply. However, when the Hamiltonian is time-dependent, the additional effect of

time-ordering must be considered, as Hamiltonians at different times t and t′ may not commute such that

[H(t), H(t′)] ̸= 0. In Chapter 2, we discuss time-dependent Hamiltonian simulation under the gate-model

of quantum computation.

Summarizing postulate four, quantum measurements are described by a set of measurement operators

{Mk}dk=1 which act on the state space of the system that is being measured, where k is the number of

measurement outcomes that can occur. Given a quantum system with a state |ψ⟩ ∈ H, the probability that

a measurement results in outcome k is given by

pk = ∥Mk|ψ⟩∥2 = ⟨ψ|M†
kMk|ψ⟩. (1.17)

If the outcome k was observed, that state of the system is transformed by
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ψ → Mk|ψ⟩√
pk

≡ |ψk⟩. (1.18)

As pk is a probability, the sum over all such probabilities must be equal to one, given by
∑

k pk = 1.

Furthermore, as |ψ⟩ is an arbitrary choice, measurement operators have the constraint

d∑
k

M†
kMk = I. (1.19)

In classical computing, bits are the fundamental object of information, taking possible states 0 or 1.

Quantum bits or qubits are mathematically represented by a complex vector in C2 provided by the notation

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
. (1.20)

Hence, qubits can be in either state |0⟩ or |1⟩. After we introduced classical and quantum bits, one might

ask the question: If bits and qubits both have two possible states, how are they different from each other?

In quantum mechanics, qubits can be in a linear combination of its possible states at once. In other words

quantum states can be in a superposition state, while classical bits are definitively just equal to zero or

one. As an example, we provide a simple qubit state in Eq. (1.21) by,

|ψ⟩ = α0|0⟩+ α1|1⟩, (1.21)

where α0 and α1 are complex amplitudes.

x
y

|0〉

|1〉

|ψ〉

Figure 1.1 The geometric representation of a single qubit system known as the Bloch sphere. The terminal
points of the z axis represent the |0⟩ and |1⟩ states respectively. The terminal points of the x and y axes
represent the {|+⟩, |−⟩} and {| − i⟩, |+ i⟩} states respectively. The vector of a single qubit pure state will
extend to the surface of the sphere. The state |ψ⟩ is a superposition state of |0⟩ and |1⟩. While the Bloch
sphere provides the natural representation of single qubit states, the geometric representation for n-qubit
states is more challenging to visualize.
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Generalizing to more than one qubit, multi-qubit states are the tensor product of single qubit states.

For example, the multi-qubit zero and ones states are given by

|00 . . . 0⟩ = |0⟩ ⊗ |0⟩ ⊗ · · · ⊗ |0⟩, |11 . . . 1⟩ = |1⟩ ⊗ |1⟩ ⊗ · · · ⊗ |1⟩. (1.22)

Similar to single qubits, multi-qubit states can be superpositions of their computational basis-states, or

simply the linearly independent vectors that span C2⊗n. For example, a two-qubit state

|ψ⟩ = α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩, (1.23)

has 2n computational basis states, where n = 2 in this case. It is clear that quantum states (in the qubit

setting) in superposition are exponentially more information dense that classical multi-bit states.

One fundamental object studied throughout this work is the Hamiltonian of a quantum system. The

Hamiltonian of a closed quantum system provides a description of the energies in terms of eigenvalues and

associated states given by the eigenvectors. The Hamiltonians we work with throughout this thesis are

defined by spin- 12 degrees of freedom, commonly known as quantum spin-Hamiltonians. Spin Hamiltonians

are commonly described using the set of Pauli matrices {X,Y, Z} and the 2× 2 identity matrix, given by

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, I =

(
1 0
0 1

)
. (1.24)

The Pauli matrices, together with the identity matrix, form a basis for the real vector space of 2× 2

Hermititan matrices. In quantum mechanics, Pauli matrices also represent observables, or linear operators

that act on a complex Hilbert space. The Pauli matrices also form the Pauli group G1, on one qubit

G1 ≡ {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ} ≡ ⟨X,Y, Z⟩. (1.25)

For n qubits, the Pauli group Gn is the group generated by the operators above in the tensor product

Hilbert space (C2)⊗n. For a quantum many-body system, the Pauli group is the generating set for the

Hamiltonian which describes the energy of the composite system.

1.2 Computational complexity of quantum and classical problems

To introduce the problems considered in Chapters 3 and 4, we introduce the class known as Boolean

satisfiability (SAT) problems. The primary object in SAT problems are Boolean formulas, which consist of

a set of variables {xi}mi=1 which are either TRUE or FALSE, and logical operators AND (∧), OR (∨), and

NOT(¬). The input to SAT problems are Boolean expressions, and the output is a YES/NO answer which

tells which determines if a sequence of variables can be evaluated to TRUE. If there exists a sequence

which outputs TRUE, the Boolean formula is deemed satisfiable. Otherwise, we say that the Boolean

formula is unsatisfiable. However, the fact that a problem is satisfiable does not imply that finding such a

sequence is computationally efficient.
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The canonical 3SAT problem is a special case of a SAT problem in which the formula contains at most

three variables between each pair of parentheses. In conjugate normal form (CNF), SAT problems are

generally expressed as

∧
i

∨
j

aij

 , (1.26)

where aij is a literal and (∨jaij ) are called clauses. For example, 3SAT takes the form

C1 ∧ C2 ∧ · · · ∧ Cn, (1.27)

where Ci is a clause exclusively consisting of OR logical operations between three literals {aj}kj=1 ∈ Ci. A

k-CNF is a CNF in which each clause has at most k literals. Each literal is chosen from the set of m

variables {xi}mi=1. For example, the expression

(a1 ∨ a4 ∨ ¬a2) ∧ (a3 ∨ ¬a2 ∨ a1) ∧ (a1 ∨ ¬a4 ∨ a3) (1.28)

is a 3-CNF with four literals. In this work, we consider the optimization of constraint satisfaction problems

(CSPs) on combinatorial objects, known as graphs. Classically, we define a constraint as a predicate in the

form ϕ : {±1}k → {0, 1}. The constraint is said to be satisfied if it evaluates to 1, and unsatisfied

otherwise. The CSP can be written as

Φ(x) =

m∑
i=1

ϕ(xSi
◦ yi), (1.29)

where constraints are represented by tuples S1, S2, . . . , Sm ∈ [n]
k
and y1, y2, . . . ym ∈ {±1}k specify whether

the variables will be negated in the constraint. CSPs provide a class of optimization problems, in which the

goal is to find the configuration of variables that maximize the number of satified constraints.

max
x∈{±1}n

φ(x). (1.30)

The CSPs we consider in this thesis are defined on random hypergraphs GH = (V, E), where V is the set of

N variables {x0, x1, . . . , xN−1}, and E is the set of hyperedges which encapsulate a many-variable

interaction. Constraints in the problem are represented by the hyperedge which encapsulates k-variable

interactions.

Throughout this thesis, we consider problems which are known to be in the complexity class NP. To

review the essentials of computational complexity, let us define the complexity classes and provide

examples problems in each class. A problem is said to be in complexity class P if there exists an algorithm

which provides an exact solution in polynomial time. Formally, the class P is defined to consist of all

decision problems which can be solved by a Turing machine in polynomial (poly) time. In less formal

terms, P represents the class of problems in which “efficient” programs can be written to provide exact
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solutions. The term “efficient” refers to the asymptotic scaling of the algorithm in the same motivation as

Big-Oh notation. However, even for problems known to be in P, large constant factors and many variables

(at large n) may result in long computation times in practice.

Often in quantum computing, we wish to diagonalize a quantum many-body Hamiltonian to obtain the

exact ground state, or some state that serves as an approximation to the ground state energy. The most

naive strategy is to iterate through every possible state, compute its energy using the terms in the

Hamiltonian and save the minimum energy state, therefore solving the problem. However, multi-qubit

Hamiltonians may contain up to 2n many basis states. Therefore, the brute-force strategy takes exponential

time in n, which motivates the use of other, more efficient, strategies for computing ground states.

By formulating an optimization problem as a Hamiltonian, thereby reducing the problem to computing

its spectrum, the complexity of the problem can analyzed by the time it takes to find ground state. The

problems for which it is believed there exists no efficient algorithms for computing ground states belong in

the class NP. As in the standard literature, we define the complexity class NP to contain all the decision

problems for which a solution can be verified by a non-deterministic Turing machine in polynomial time. It

is conjectured that the classes P ̸= NP, suggesting that P does not contain all problems, although no

proof has been found yet. However, among the theoretical computer science and mathematics communities,

it is widely believed that P ̸= NP, due to many decades searching for poly-time algorithms for

NP-problems, with no success. Naturally, one should ask: if it’s true that P ̸= NP, can quantum

algorithms at least provide a speed-up over classical algorithms with exponentially long run-times? In this

work, we consider this question by considering the ability, or lack thereof, of a broad class of classical and

quantum algorithms to solve NP-Hard problems.

Throughout the development of quantum computing, new complexity classes have been defined to

encapsulate quantum problems and classical problems defined as quantum Hamiltonians. The quantum

complexity class hierarchy lives in the setting of probabilistic computation, building on a branch of

computer science which defines bounded-error probabilistic polynomial time (BPP) as the class of decision

problems solvable by a probabilistic Turing machine in polynomial time, with an error probability bounded

by 1/3 for all instances. It is known that all problems in P are contained in BPP, although many

problems in BPP are not known to be in P. However, it is still conjectured that P = BPP [9].

The quantum analog of BPP is bounded-error quantum polynomial time (BQP), which is simply

defined by replacing the Turing machine with a quantum algorithm which solves the problem successfully

with a probability of 2/3. Finally, the complexity class Quantum-Merlin-Arthur (QMA) is the natural

quantum analog of MA, for Merlin-Arthur which is the probabilistic extension of NP. Throughout this

thesis, we make progress on problems which are known to be intractable for finding exact and approximate
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NP
QMA

QMA-C

QMA-Hard

BQP

NP-Hard

NP-C

 

P

Figure 1.2 Complexity class Euler diagram showing the conjectured overlaps of classical and quantum
complexity classes. The dashed lines around the class P represent the famous unresolved problem of

whether P
?
= NP.

solutions with a classical algorithm.

The k-local Hamiltonian problem is one such problem which encapsulates many efforts considered in

this thesis. Formally, the k-local Hamiltonian is the problem of estimating the ground state energy of the a

local Hamiltonian in which all interactions are k-local defined in Eq. (1.13). Given the k-local Hamiltonian

H defined on n qubits, the problem is to determine (YES) whether H has an eigenvalues less than α, or

(NO) all of the eigenvalues of H are larger than β. Hence, a YES-instance of the problem posits the

existence of some state |ψ⟩ such that ⟨ψ|H|ψ⟩ ≤ β, and a NO-instance is one such that for every |ψ⟩,

⟨ψ|H|ψ⟩ ≥ α. It was shown by [5] that the k-local Hamiltonian problem is in QMA. In satisfiability terms,

k-local Hamiltonians are the quantum analog of MAX-k-SAT, the problem of finding a solution that

maximizes the number of satisfied clauses in a k-CNF formula.

1.3 Quantum algorithms for discrete optimization

Given the hardness of finding exact or even approximate solutions to the local Hamiltonian problem,

the natural question of whether quantum algorithms can provide any advantage arises. Beyond the

quadratic speed-ups provided by amplitude amplification in Grover’s algorithm [10], the search for

quantum algorithms that provide exponential or super polynomial speed-ups is still an active area of

research at the time of this work in 2024 [11].
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Over recent years, two classes of quantum algorithms have been developed, known as variational

quantum algorithms (VQE) [12] and quantum adiabatic algorithms [13, 14]. While many of the algorithms

in these two classes lack rigorous performance gaurantees, heuristics commonly outperform the many of the

best known classical algorithms, such as simulated annealing. One of the algorithms that has shown

promise is known as the quantum approximate optimization algorithm (QAOA). Although QAOA has

several variations, here we introduce the initial algorithm that was proposed by Farhi et al. in 2014 [15].

. . .

. . .

. . .

. . .

q0 H

e−iβ1HP e−iγ1HD e−iβpHP e−iγpHD

q1 H

... H

qN H

Figure 1.3 Quantum circuit diagram for p-layer QAOA, in the purest form of the algorithm. The N qubit
state is initialized to the uniform superposition state using an initial layer of Haddamard gates. One layer
of QAOA consists of the application of HP and HD layers respectively. After p layers, the final state is
measured in the computational basis to obtain a solution in the form of a bitstring.

QAOA starts by initializing an n-qubit superposition state, which can be performed by a layer of

Haddamard gates on each qubit. Following the layer of Haddamards, the algorithm then applies

alternating rounds of a diagonal problem Hamiltonian denoted by HP and a mixing Hamiltonian HD. A

common mixing operator is a transverse field in the X direction that acts on single qubits. By fixing the

circuit depth, QAOA can be defined to a particular number of alternating problem and mixing

Hamiltonian layers, which is often denoted as p. After obtaining the superposition state |+⟩ and applying p

layers of HP and HD, the state obtained can be written as

|ψγ,β⟩ = e−iβpXe−iγpHP . . . e−iβ1Xe−iγ1HP |+⟩. (1.31)

Supposing the parameters β and γ were chosen appropriately, QAOA aims to maximize the overlap

between the state in Eq. 1.31 and the ground state or optimal solution to the problem Hamiltonian.

The Hamiltonian, HP , provided to QAOA can be an arbitrary optimization problem expressed as a

diagonal Hamiltonian. Combinatorial graph optimization problems are natural candidates for QAOA.

Indeed, early work on QAOA has explored NP-hard graph problems such as Max-Cut [16], and maximum

independent set [17]. Recent advances in reconfigurable atom arrays [17] and trapped ion quantum

computing devices [18] have also provided practical routes to experimental demonstrations of adiabatic
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quantum algorithms such as QAOA [19].

Given a constant depth QAOA circuit, recent work has explored the task of finding optimal parameters

by analyzing the performance of the algorithm with different total run-times discretized by various choices

of time-steps dt [20, 21]. Although QAOA has not been rigorously proven to have advantage over classical

algorithms, results have shown that by taking the limit of system size N → ∞, optimal parameters can be

found [21]. For circuit depths that are increasing with system size, finding optimal parameters is more

challenging because taking N → ∞ corresponds to infinite depth quantum circuits. We discuss this

problem in more detail in Chapter 5.

A close relative to the QAOA algorithm is adiabatic quantum computation (AQC), also known as the

adiabatic quantum algorithm. Here, AQC is constructed by defining HP and HD similar to QAOA. The

algorithm runs by interpolating between the two Hamiltonians along a path such that the total

Hamiltonian can be written as

H(s) = (1− s)HD + sHP , (1.32)

where H(0) = |+⟩ and H(1) = |z∗⟩. The total runtime of the algorithm is dominated by the minimum

spectral gap ∆−1
min of H(s). However, when ∆min is on the order of exp(−N), this induces an exponentially

increasing runtime with the size of the problem.

While we keep H(s) general here, one may define two functions f(t) and g(t) that act by defining the

total Hamiltonian H(t) in the following manner

H(t) = f(t)HP + g(t)HD. (1.33)

The initial conditions at t = 0 and final conditions at total run-time T are defined as f(0) = g(T ) = 1, and

f(T ) = g(0) = 0. We remark that more sophisticated routines can be used to optimize the way that AQC

smoothly interpolates between these functions [22].

As the goal of QAOA is to optimize a cost function HP over bitstrings, it is natural to ask whether

starting QAOA from a good configuration increases the performance of the algorithm. Such warm start

protocols for QAOA have been explored numerically and analytically at constant and near linear circuit

depth. In the standard formulation of QAOA, the state is initialized in a uniform superposition |+⟩.

Starting QAOA using in the computational basis state that represents a good string showed no

improvement in the algorithms convergence at constant and sub-linear circuit depths [23]. In Chapter 4, we

show how to improve trotterized adiabatic quantum computation (TAQC) algorithms, using the bits in the

classical strings to set parameters in a time-dependent Hamiltonian. We also discuss how our algorithm is

fundamentally different from warm start methods in Chapter 4.
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1.4 Quantum resources for large speed-ups

While we introduced the key mathematics of quantum mechanics in the previous sections, we emphasize

that quantum algorithms are also based upon key physical phenomena which provide resources for

attaining computational advantages over classical algorithms. Specifically, quantum entanglement,

interference, exponentially large search spaces via superposition of states, and quantum tunneling effects

are all fundamental resources which quantum algorithms can exploit to reach solutions using methods not

otherwise possible for classical algorithms.

The first resource, entanglement, is a property of quantum information that has no classical analog. An

entangled quantum state is a superposition of two or more variables, where the amplitudes corresponding

to each variable are correlated such that a measurement of one variable changes the probability

distribution of the other variable. In other terms, quantum entanglement is well-defined by states that are

not separable. Given the composite state ρAB of two systems ρA, and ρB , we say the state is separable if

and only if it can be written in the form

ρAB =
∑
i

pi|φiA⟩⟨φiA| ⊗ |ϕiB⟩⟨ϕiB |. (1.34)

If the state cannot be written in this separable form, we say it is entangled. The extent to which a pure

bipartite state is entangled, is commonly measured by the von Neumann entropy of its subsystem

S(|ψAB⟩) = −TrρA log(ρA) = −TrρB log(ρB). (1.35)

To define many-body entanglement for greater than two systems, the definition of separable states

generalizes to N parties. However, it may be the case that two subsystems are entangled with each other,

but not the third party, for example, which makes defining mult-partite entanglement a challenging task.

We leave further discussion on many-body entanglement in the following reference: [24]. Quantum

entanglement has also been characterized as a hardness mechanism for classical simulation methods such as

density matrix renormalization group (DMRG) [25], tensor networks [26], and other variational methods

based on neural networks [27]. We emphasize that quantum algorithms that exploit highly entangled

dynamics are often not classically simulable1.

The second resource that makes quantum algorithms fundamentally distinct from classical algorithms is

the phenomena of quantum interference. Observed in early works such as the double slit experiment [28],

quantum interference is the strange ability of the quantum wavefunction to interfere not only with other

wavefunctions representing the dynamics of other particles, but itself. In other words, even the

1Classicaly simuable in this context refers to the ability of classical methods to simulate the dynamics of the quantum algorithm
to large system size N . Any quantum algorithm that is classically simuable, is therefore not expected to provide quantum
advantage. We note that classical simulable does not refer to the small system size simulations which can almost always be
performed, provided N is sufficiently small.
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wavefunction of a single particle can interfere with itself, thereby manipulating the probabilities of

observing the particle into high and low density areas. These high and low density of probabilities

represent the concepts of constructive and destructive interference respectively. When quantum algorithms

exploit these effects, more favorable solutions can be found with higher probability as a result of

constructive interference [29]. Destructive interference, on the other hand can be burdensome to the

dynamics of a quantum algorithm. We note the latter resource, quantum tunneling, is intimately connected

to interference, where constructive interference provides a mechanism that allows for macroscopic quantum

tunneling through large energy barriers [29].

Lastly, exponentially large Hilbert spaces provide a natural exponential advantage in the ability of an

n-qubit state to encode 2n complex amplitudes that act upon a basis of dimension 2n. Conversely, a

classical n-bit state only has the representational power of a single state. The power to represent

exponentially many more possible states, can be interpreted as the power to search an exponentially larger

space of solutions, when the quantum state is not confined to a particular symmetry sector. Superposition

is related to the quantum parallelism, which we can interpret in accordance to the application of quantum

algorithms searching across many states, or possible solutions, at once.

While these fundamentally-quantum resources provide mechanisms for quantum algorithms to achieve

advantage, decoherence on real devices provides a challenge for demonstrating the full capabilities of

quantum algorithms in the NISQ era. Decoherenece occurs as a result of unwanted noise from the

environment effecting the dynamics of the algorithm. While the state of an isolated system maintains

perfect coherence, quantum simulations performed on any physical hardware are inevitably effected by

noise from the external environment. The dynamics of the quantum algorithm can be treated as a

system-environment interaction, where the desired dynamics are represented as the primary system, and

the external environment is treated as a bath which is coupled to the primary system. This interaction

results in a loose coupling to the environment, where unwanted entanglement can be generated between the

two systems, thus effecting the solutions obtained in the final measurement of the circuit. The effect of

decoherence therefore limits the circuit depths we can run on real quantum hardware, where error

proliferates throughout the dynamics eventually resulting in a completely de-cohered state. In the NISQ

era especially, but also in the development of future quantum algorithms, low circuit depths may avoid the

inevitable effects of decoherence. We emphasize that there exists a trade-off, where quantum algorithms

with a small time-step dt may avoid error terms from Trotter decomposition, while at the same time, too

small of a time-step dt results in deep circuits which are more vulnerable to the effects from noise. While

all the simulations done in this work are performed on a classical computer with no real or simulated noise,

we note that future experimental demonstrations of our algorithms would benefit from the consideration of
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quantum error correction and quantum error mitigation. In the next section, we outline the contributions

in this thesis, and the author’s specific role in each work.

1.5 Contributions and thesis outline

In Chapter 2, we introduce methods for time-dependent Hamiltonian simulation under the gate model

of quantum computing. We provide an accessible example, which is relevant to constructing gate-based

simulations of the quantum algorithms later in the thesis. Following these technical methods, in Chapters 3

and 4, we include two primary results by the author, Brandon A. Barton, and his colleagues.

In Chapter 3, we make progress on the approximation of the MAX-3-XORSAT problem with a quantum

adiabatic inspired algorithm. We introduce a new method called spectrally folded quantum optimization

(SFQO) which delivers a new method for approximating NP-Hard p-spin glass problems which are known

to be exponentially hard to solve exactly or even approximately. In this work, the author, Brandon Barton

developed software for quantum simulation, performed extensive benchmarking for the SFQO algorithm

and previous methods – trotterized adiabatic quantum computation (TAQC), and contributed to a journal

article currently in review at Physical Review X (PRX) Quantum. Chapter 3 is the based off the original

manuscript submitted to PRX Quantum. The analytic performance predictions performed by co-authors

Eliot Kapit and Vadim Oganesyan in this work are included in Appendix B for the reader’s reference.

In Chapter 4, we further explore the MAX-3-XORSAT CSP. We introduce a new quantum algorithm

called Iterative Symphonic Tunneling for Satisfiability problems (IST-SAT) which provides a new quantum

steering mechanism for adiabtic quantum algorithms such as QAOA to find exact and approximate

solutions to traditionally hard problems. In this work, the author’s Brandon A. Barton contributions

consist of: conceptualization the IST-SAT algorithm in collaboration with co-author Eliot Kapit,

development of software for quantum simulation alongside co-first-author Jacob C. Sagal, execution of

quantum simulations on high performance computing (HPC) classical devices for the IST-SAT algorithm

and it’s input model–TAQC. The results for the classical input algorithms to IST-SAT were performed by

Jacob C. Sagal. In addition, the author lead the writing of the initial manuscript, which is currently under

revision to be submitted to Physical Review Letters (PRL).

Following the two main results presented in this thesis, in Chapter 5, we conclude by connecting the

results from Chapters 3 and 4. We discuss how the novel mechanisms presented in SFQO and IST-SAT

may be combined together in order to demonstrate exponential speed-ups over the best known quantum

and classical algorithms for the problem we consider. Finally, we conclude and discuss opportunities for

future work.
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CHAPTER 2

TECHNICAL METHODS

2.1 Gate-based quantum computation

In gate-based quantum computation, the time evolution of a quantum state is described by a quantum

circuit, consisting of many qubits q0, q1, . . . qn. In this work, qubits are represented as “wires” and unitary

operations are represented by gates (denoted by boxes) acting on the qubit wires. In quantum circuits,

time marches forward to the right of the page. We note that alternative formulations of gate-based

time-evolution exist such as graphical ZX calculus [30], however, we use the circuit wire diagrams used

most commonly in the literature. We provide examples of the common quantum gates used throughout

this work in Table 2.1.

Table 2.1 Commonly used quantum gates, with one and two-qubit matrix representations, and example
input and output quantum states. The state |ψ⟩ = α0|0⟩+ α1|1⟩ is used for example in action column for
single qubit gates.

OPERATOR GATE NOTATION MATRIX ACTION

Pauli-X (X)
X (

0 1
1 0

)
X|ψ⟩ → α1|0⟩+ α0|1⟩

Pauli-Y (Y )
Y (

0 −i
i 0

)
Y |ψ⟩ → −iα0|0⟩+ iα1|1⟩

Pauli-Z (Z)
Z (

1 0
0 −1

)
Z|ψ⟩ → α0|0⟩ − α1|1⟩

Identity (I)
I

(
1 0
0 1

)
I|ψ⟩ → α0|0⟩+ α1|1⟩

Haddamard (H)
H

1√
2

(
1 1
1 −1

)
H|ψ⟩ → α0

|0⟩+|1⟩√
2

+ α1
|0⟩+|1⟩√

2

Controlled-NOT (C-NOT)


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


CNOT |00⟩ → |00⟩,
CNOT |01⟩ → |01⟩,
CNOT |10⟩ → |11⟩,
CNOT |11⟩ → |10⟩

Unitary evolution of the state |ψ⟩ has equivalent in mathematical and quantum circuit diagram

representations. For example, given two arbitrary unitary matrices U1, U2 applied to the state |ψ⟩, we

denote this operation as
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U2U1|ψ⟩ = U2|ϕ⟩, |ϕ⟩ = U1|ψ⟩. (2.1)

The corresponding circuit diagram for Eq. (2.1) is provided in Figure 2.1.

q0 Rx/y/z(θ)

q0

U1 U2

q1

Figure 2.1 Examples of two quantum circuits. (left) A single qubit rotation gate in the x, y or z basis with
angle θ, followed by a measurement gate. (right) a general two-qubit quantum circuit for two unitary
applications U1 and U2, followed by two single qubit measurement gates.

2.2 Numerical methods for time-dependent Hamiltonian simulation

Throughout the work presented in Chapters 3 and 4, we consider quantum algorithms governed by a

time-dependent Hamiltonian H(t). Here, we introduce the numerical methods for simulating H(t) using

gate-based quantum computing. We showed in Chapter 1 that when H is time-independent, the solution to

the Schrodinger equation is given by

|ψ(t)⟩ = exp(−iHt)|ψ(0)⟩. (2.2)

Therefore, we might expect that when H(t) varies with time, the solution is given by the integral

|ψ(t)⟩ = exp

(
−i
∫ t

0

dt′H(t′)

)
|ψ(0)⟩. (2.3)

However, this solution is not correct unless [H(t), H(t′)] = 0 for all times {t, t′} ∈ T . If we consider the

limit as dt→ 0, we can still write the solution in the form of Eq. 2.2 as

|ψ(t+ dt)⟩ = exp(−iH(t)dt)|ψ(t)⟩ = (1− iH(t)dt+O(dt2((|ψ(t)⟩. (2.4)

By slicing the total evolution time T into S slices, and taking the limit as S → ∞, we can find a general

solution given by

|ψ(t)⟩ =
[
lim

S→∞

S∏
k=1

exp

(
−iH

(
kt

S

)
t

S

)]
|ψ(0)⟩, (2.5)

given an initial state |ψ(0)⟩ at t = 0. The expression in Eq. 2.5 provides a time-ordered product, which can

be interpreted as an iterative application of H(t). We note that this method can be useful when numerically

integrating the Schrodinger equation for a small number of particles. More sophisticated numerical

integration techniques such as Runge-Kutta methods can also make numerical integration more accurate.
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In the gate-based model of quantum computing, simulating the dynamics of a time-dependent

Hamiltonian is often straight-forward when there exists a sequence of gates that construct the Hamiltonian

operator H(t) over the total evolution time (t = 0) → (t = T ). To provide a concrete example, we can

consider the transverse-field Ising model, a standard work-horse in quantum many-body physics, given by

the Hamiltonian

HTFIM = J

N∑
⟨i,j⟩

ZiZj + κ

N∑
i=1

Xi. (2.6)

Here, ⟨i, j⟩ denotes interactions between nearest neighboring spins, J is the Ising interaction or

spin-coupling strength, and κ is the strength of the transverse-field along X. It is clear that the terms in

HTFIM do not commute and the ordering of operators matters. Of course, this Hamiltonian is

time-independent as well. To make the HTFIM time-dependent in this example, we consider the addition

of an oscillating transverse field along Y given by HST = α
∑

i sin(ωt)Yi. Combining these terms, we

obtain the total time-dependent Hamiltonian

H(t) = HTFIM +HST (t). (2.7)

We use HST to denote a symphonic tunneling drive term as considered in previous work [31, 32]. We

outline the steps for applying simulating a time-dependent Hamiltonian using the example in Eq. 2.7.

Before applying any Hamiltonian operator, qubits are initialized in the all-zero state |0⟩⊗N . In the

algorithms we consider in this work, we then initialize the state |ψ⟩ to the uniform superposition by

applying a Haddamard gate to each qubit. To simulate the dynamics of Eq. 2.7, we then apply a sequence

of quantum gates in a layered manner by applying each term in the Hamiltonian at each time-step.

q0

RZZ

Rx Ry(α sin(ωt))

q1

RZZ

Rx Ry(α sin(ωt))

...
RZZ

Rx Ry(α sin(ωt))

qN Rx Ry(α sin(ωt))

Figure 2.2 Quantum circuit for simulating a time-dependent transverse field Ising Hamiltonian in
one-dimension, with an oscillating Y perturbation. This circuit initializes all the qubits to zero, applies the
Ising interaction RZZ to all nearest neighboring qubits, the transverse field Rx, and the oscillating
perturbation Ry(α sin(ωt). This sequence is repeated for every time step, until a measurement is applied to
all qubits at the end of the simulation.
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The following quantum circuit looks similar to that of “vanilla” QAOA in Figure 1.3, without the

Haddamard gates to initialize the uniform superposition. When the terms of the Hamiltonian are native

gates, the gate-based model for quantum computation is rather straight-forward. When the Hamiltonian

contains more complex terms outside of the gate set in Table 2.1, more sophisticated techniques must be

used to decompose the complex operator into smaller gates. However, the work presented in Chapters 3

and 4 comprise of Hamiltonians native to the gate set of most quantum computers. More sophisticated

quantum simulation techniques are relevant, though beyond the scope of this thesis.

2.3 Implementation of Trotterized adiabatic quantum computation

In the two main works in this thesis, extensive computational simulations were performed on a

combination of high-performance computing resources. Small simulations were performed on the author’s

laptop2, while larger system-size simulations were performed on a combination of group work-stations, the

Mines Wendian3 HPC, and the Fujitsu Quantum Simulator4 (FQS). To simulate the dynamics of the

quantum algorithms presented in this work, we use exact state-vector simulations following the principles

we present in the example of the transverse field Ising model with an oscillating field (see Figure 2.2). For

the problems we consider in this work, we use similar methods for quantum simulation where the total

Hamiltonian H can be decomposed into a sum of terms given by

H = HD +HP . (2.8)

Here, HD is the driving or “mixing” Hamiltonian, HP is the problem Hamiltonian of interest to

optimization. In Chapter 4, we consider the introduction of a time-dependent term HST (t) to the total

Hamiltonian, which makes the total Hamiltonian, therefore, also time-dependent. In a similar manner to

AQC, we also consider the addition of time-dependent interpolation functions giving a total general

Hamiltonian

H(t) = f(t)HD + g(t)HP . (2.9)

2An Acer laptop with 16GB of random access memory (RAM), and 512GB of storage. Large amounts of data were stored on
external devices including 4TB external hard-drives, and cloud storage service platforms.

3The Mines Wendian HPC is a high performance computer consisting of 87 compute nodes. These nodes are comprised of nine
Nvidia GPU nodes, two OpenPower nodes, while the remaining nodes are SkyLake Intel processors. Simulations submitted to
Wendian were submitted as jobs using the SLURM scheduler.

4The results in this thesis were obtained from a super-computer developed by Fujitsu Limited. The Fujitsu Quantum Simulator
is a 39-qubit CPU-based state vector quantum simulator system consisting of 512 FX700 nodes using A64FX processors. The
simulator utilizes a software package called Qulacs [33] developed by Osaka University and the QunaSys Corporation. This
work was performed using Fujitsu’s enhanced version of Qulacs, which uses message passing interface (MPI), and scalable vector
extension (SVE) to execute operations in a parallel and distributed manner. This enhanced version of Qulacs optimizes memory
bandwidth by distributing the state vector over several nodes, allowing for large-system-size simulations. These specifications
were provided by Fujitsu Limited during the 2023 Fujistu Quantum Simulator Challenge. Some of the results presented in this
thesis were obtained during and in the months following the competition. We thank Fujitsu for the computational resources
the author was granted to after the competition, where valuable simulations were performed with additional parameter sets.
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To benchmark previous quantum methods on the problems we consider in this work, we use a hybrid

version of AQC and QAOA, called Trotterized Adiabatic Quantum Computation (TAQC). This method

works by simulating the dynamics of a Trotterized Hamiltonian in the form of Eq. 2.9 through gate-based

simulation methods. In the results we present in this work, we perform the simulation of TAQC through

exact state-vector simulation using a software for gate-based quantum simulation called Qulacs [33].

Quantum circuits can be constructed in Qulacs using the following code written in the Python

programming language:

Listing 2.1: Example of a basic quantum circuit that creates the uniform superposition state |+⟩⊗N using

the Qulacs package written in the Python programming language.

from qu lac s import QuantumState
from qu lac s import QuantumCircuit

# Construct a ba s i c four−q u b i t c i r c u i t
num qubits = 4
c i r c u i t = QuantumCircuit ( num qubits )
s t a t e = QuantumState ( num qubits , u se mul t i cpu=False )

g a t e l i s t = [ ] # Empty l i s t o f g a t e s t h a t comprise c i r c u i t

# Construct a ba s i c c i r c u i t which a p p l i e s a H−ga te to each qu b i t
for i in range ( num qubits ) :

g a t e l i s t . append (H( i ) )

# Concatenate l i s t o f g a t e s in t o the c i r c u i t
for gate in g a t e l i s t :

c i r c u i t . add gate ( gate )

# Apply c i r c u i t to the s t a t e
c i r c u i t . update quantum state ( s t a t e )

# Sample the s t a t e in the z−b a s i s
samples = 1000
samp l e r e su l t = s t a t e . sampling ( sampl ing count=samples , random seed=1234)

In Listing 2.1, the state-vector is the primary mathematical object of interest, and quantum circuits are

a sequence of quantum gates that act on the state as a unitary matrix. This matrix operation can be

completed as a sparse matrix-vector multiplication, where the sparsity of the unitary matrix is determined

by the gates in the circuit. For exact state-vector simulation, we can consider measurements of a quantum

state as sampling of state vector, since the square-magnitude of all the complex amplitudes
∑2N

j=1 |αj |2 = 1

is a probability distribution given by the Born rule. For other software packages, not specifically designed

for exact state-vector simulation, measurements are typically denoted by measurement gates (see

Figure 2.1). By drawing a sufficient amount of samples from the state-vector simulation, the discrete

probability distribution of samples provides an approximation to what measurement(s) are expected when
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a measurement is applied to an evolving quantum state.
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Figure 2.3 Adiabatic ramping functions f(t) and g(t) in the solid and dashed lines respectively. The
driving Hamiltonian interpolation function starts at f(0) = 1, and is ramped down to the final condition
f(T ) = 0, while the problem Hamiltonian is ramped up from g(0) = 0 to g(T ) = 1. In this figure, we use
the interpolation functions f(t) =

√
1− t/T and g(t) =

√
t/T , although other suitable choices may also be

used depending on the problem.

Listing 2.2: Functions to construct layers of Hamiltonian operations written in Qulacs. The functions

implement the interactions from the spin Hamiltonians (HP , HD) in the Pauli basis. Here, we use a transverse

field Ising model in one dimensional open-boundary condition chain as the problem Hamiltonian HP with

ZiZi+1 nearest neighbor interactions in 2.6. The full circuit for TAQC can be constructed using the “build

full circuit” function, which implements the application of the total Hamiltonian for each time-step.

# Haddamard l a y e r
def Hlayer ( ) :

g a t e l i s t = [ ]
for i in range ( s e l f . num qubits ) :

g a t e l i s t . append (H( i ) )
return g a t e l i s t

# Problem Hamiltonian H P lay e r
def Hp layer ( ang ) :

g a t e l i s t = [ ]
for i in range ( num qubits ) :

g a t e l i s t . append (RZZ( [ i , ( i +1)%(num qubits−1) ] , ang ) )
return g a t e l i s t

# Driv ing Hamiltonian H D lay e r
def Hd layer ( ang ) :

g a t e l i s t = [ ]
for i in range ( num qubits ) :

20



g a t e l i s t . append (RX( i , ang ) )
return g a t e l i s t

def b u i l d f u l l c i r c u i t ( ) :
g a t e l i s t = [ ]
g a t e l i s t . extend ( Hlayer ( ) )
while ( t<T) :

g a t e l i s t . extend ( s e l f . Hp layer ( g ( t ) ) )
g a t e l i s t . extend ( s e l f . Hd layer ( f ( t ) ) )

for gate in g a t e l i s t :
c i r c u i t . add gate ( gate )
t = t+dt

We can also use Python to implement the interpolation functions f(t) and g(t) which are used to ramp

up/down the problem Hamiltonian HP and the driving Hamiltonian HD. At each time-step, we can apply

a layer of gates which comprise HP , followed by a layer of single qubit rotations which comprise HD.

Listing 2.3: Full circuit for TAQC. The algorithm can be implemented by choosing a total evolution time

T , a time-step dt, a total number of qubits. Using Qulacs, we construct a quantum QuantumCircuit, and

initialize the quantum state using the QuantumState function. For large number of qubits, the state-vector

can be distributed over multiple CPUs. To run the TAQC algorithm, the full circuit is constructed, and

applied to the state using the “update quantum state” function. Following the application of the circuit to

the state, measurements are obtained by sampling the circuit with the “sampling” function.

# Construct a TAQC c i r c u i t f o r a 4−q u b i t TFIM
T = 10 # Total e v o l u t i on time
dt = 0 .1 # Time s t ep
num qubits = 4
c i r c u i t = QuantumCircuit ( num qubits )
s t a t e = QuantumState ( num qubits , u se mul t i cpu=False )

g a t e l i s t = [ ] # Empty l i s t o f g a t e s t h a t comprise c i r c u i t

g a t e l i s t . extend ( b u i l d f u l l c i r c u i t ( ) )
for gate in g a t e l i s t :

c i r c u i t . add gate ( gate )

# Apply c i r c u i t to the s t a t e
c i r c u i t . update quantum state ( s t a t e )

# Sample the s t a t e in the z−b a s i s
samples = 1000
samp l e r e su l t = s t a t e . sampling ( sampl ing count=samples , random seed=1234)

Once measurements are obtained, the distribution of samples can be analyzed. The expectation value of

the state obtained with the problem Hamiltonian gives an energy E = ⟨ψ|HP |ψ⟩. When measuring in the

z-basis, the measurements of |ψ⟩ will be a binary string (bitstring). By sampling the state produced from

exact state-vector simulation, average energies ⟨E⟩ can be obtained. By normalizing the average energy by

the ground state energy ⟨E⟩/EGS, system size effects are accounted for when the problem energy of HP is
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normalized to −N (see Chapter 3).

In Chapter 3 and 4, we simulate our novel quantum algorithms using similar methods as we present

here for TAQC. We note that these simulation methods could be improved by considering more

sophisticated methods of gate placement that reduce circuit depth. Quantum gates can be implemented in

parallel at the same time step, or layer of the circuit. For example, a Z1Z2 gate can be completed in

parallel to a Z3Z4 gate, as these two gates act on a disjoint set of qubits. To experimentally implement the

circuits for TAQC, or the quantum algorithms we present is this thesis, specific hardware platform

constraints should be further considered.
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CHAPTER 3

ON THE APPROXIMABILITY OF RANDOM-HYPERGRAPH MAX-3-XORSAT PROBLEMS WITH

QUANTUM ALGORITHMS

This chapter is based on a manuscript under review at Physical Review X (PRX) Quantum. The excerpts

below reflect my primary contributions to the work. Additional materials from the manuscript are included

in Appendix B. The authors of the manuscript are listed below.

Eliot Kapit1,2,, Brandon A. Barton2,3, Sean Feeney2, George Grattan2,4, Pratik Patnaik3,

Jacob Sagal2, Lincoln D. Carr1,2,3, Vadim Oganesyan5,6

3.1 Abstract

Constraint satisfaction problems are an important area of computer science. Many of these problems

are in the complexity class NP which is exponentially hard for all known methods, both for worst cases and

often typical. Fundamentally, the lack of any guided local minimum escape method ensures both exact and

approximate classical optimization are hard, but the intuitive mechanism(s) for approximation hardness in

quantum algorithms are poorly understood. For algorithms simulating Hamiltonian time evolution, we

explore this question using the prototypically hard MAX-3-XORSAT problem class. We conclude that the

mechanisms for quantum exact and approximation hardness are fundamentally distinct. We qualitatively

identify why traditional methods such as quantum adiabatic optimization are not good approximation

algorithms. We propose a new spectral folding optimization method to escape these issues, and study it

analytically and numerically. We consider random rank-3 hypergraphs including extremal planted solution

instances, where the ground state satisfies a much higher fraction of constraints than truly random

problems. We show that, if we define the energy to be E = Nunsat −Nsat, spectrally folded quantum

optimization will return states with E ≤ qaEGS (where EGS is the ground state energy) in polynomial

time, where conservatively, qa ≃ 0.6. This is in contrast to qa → 0 for the hardest instances with classical

searches. We thoroughly benchmark variations of spectrally folded quantum optimization for random

classically approximation-hard (planted solution) instances in simulation, and find performance consistent

with this prediction. We do not claim that this approximation guarantee holds for all possible hypergraphs,

1Department of Physics and Quantum Engineering Program, Colorado School of Mines, 1523 Illinois St, Golden CO 80401
2Quantum Engineering Program, Colorado School of Mines, 1523 Illinois St, Golden CO 80401
3Department of Applied Mathematics and Statistics, Colorado School of Mines, 1500 Illinois St, Golden CO 80401
4Department of Computer Science, Colorado School of Mines, 1500 Illinois St, Golden CO 80401
5Department of Physics and Astronomy, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
6Physics program and Initiative for the Theoretical Sciences, The Graduate Center, City University of New York, New York,
NY 10016, USA
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though our algorithm’s mechanism can likely generalize widely. These results suggest that quantum

computers are more powerful for approximate optimization than had been previously assumed.

3.2 Introduction

In combinatorial optimization, the class of constraint satisfaction problems (CSPs) are well-studied, and

known for being hard [34]. These problems instances are capable of representing a large class of problems

in applications ranging from from machine learning, cybersecurity, portfolio optimization, and other high

dimensional problems where one does not expect to find optimal solutions, but can rather be satisfied with

a good approximation. In the large N limit of these problems, providing an algorithm that demonstrates a

speed-up over the best known algorithms is thus highly sought after.

Constraint satisfaction problems can be understood as a set of N variables that participate in a large

collection of M few-body constraints. The energy landscape of these problems tend to be rough, with an

abundance of many local-minima that scale exponentially with N . Furthermore, the cost functions of these

problems are often equivalent to the Hamiltonian disordered spin glass, where the hardness of the problem

lies in the inability to escape local minima by only changing a few variables at each step of optimization

[35–46]. Thus, finding the global optima, or any low-energy solution is said to be an exponentially difficult

task for optimization algorithms, both for classical and quantum methods to date.

In the hardest of cases, CSPs can be both hard to solve exactly and approximately, where an

approximate solution is defined as any constant fraction of the global optima [47]. Thus, when there is no

hope to find exact solutions, attempts to improve such approximation ratios can characterize a large body

of approximate algorithm works. Some examples include approximation ratios which have been proven

theoretically for problems such as Max-Cut and quantum Max-Cut (QMC). These approximation ratios

can be theoretically guaranteed using classical approximation methods such as semi-definite programming

(SDP) based on Lasserre’s and sum-of-squares hierarchies [48]. Naturally, many works have asked the

question of whether quantum approximate algorithms can provide speed-ups over classical methods?

Progress over recent years have introduced quantum methods including adiabatic quantum computing

[49, 50], analog quantum annealing [51–57], and a diverse set of quantum approximate optimization

algorithms (QAOA) [15]. Recent work has also combined classical methods with variational quantum

algorithms, by using the classical method to set parameters in the quantum algorithm, thus providing a

lower-bound on performance.

While previous methods discussed here have made promising progress, the exponential difficulty scaling

of these hard spin glass problems remains, and is widely believed to hold true, yet no guarantees can be

made unless the P ̸=NP conjecture can be proven. In previous work, the spin glass Hamiltonian which is
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typically diagonal in the z-basis, is combined with a transverse field, typically written as a uniform field

along the x direction. The transverse field term, turns the problem into a quantum Hamiltonian, which can

be used to induce macroscopic quantum tunneling events that guide the system to good solutions by

escaping large energy barriers, typically insurmountable by a classical algorithm that makes local steps

along the energy landscape. In experimental demonstrations, polynomial speed-ups have been observed for

locally connected graphs, with short range connections [17, 57–60]. However the search for quantum

algorithms that demonstrate beyond quadratic speed-ups for optimizations problems in NP still remains a

outstanding problem in the NISQ era of quantum computing [61].

In this work, we investigate the approximation hardness of CSPs from a physically motivated point of

view, with the goals of identifying the mechanisms for hardness, and opportunities to obtain exponential

quantum advantage. In particular, we choose to investigate a well-known problem known as

MAX-3-XORSAT defined in Section (3.3), and present the following arguments in this work:

• The hardness characteristics associated with finding the ground state of a given problem Hamiltonian

HP can be identified with heuristic quantum methods. Such mechanisms of hardness are furthermore

not likely to be surmounted in the worst case.

• Classical algorithms that optimize by local steps are distinct from way quantum algorithms approach

solutions via tunneling effect. Hence, mechanisms for hardness are distinct between classical and

quantum methods.

• Quantum algorithms such as AQC and QAOA may still not be effective methods for returning

low-energy approximations in polynomial time, in the worst case.

• The method presented in this work called spectrally folded quantum optimization (SFQO) provides

intuition to the hardness of approximation for MAX-3-XORSAT. For random hypergraphs, SFQO

provides an exponential speed-up for returning approximate solutions.

The arguments presented in this work are supported with theoretical analysis and numerical

simulations, out to the large N , where asymptotic exponential scaling is observed in classical algorithms.

We thoroughly benchmark classical methods based on local updates, trotterized adiabatic quantum

computation based (TAQC) methods, and SFQO, the new method presented in this work. We show that

classical methods and TAQC do not provide meaningful quantum advantage for finding exact or

approximate solutions on the hard MAX-3-XORSAT instances we consider in this work. Our results

demonstrate that SFQO significantly outperforms these methods, by finding approximate solutions in a

linear number of cost function evaluations.
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The structure of this Chapter is as follows: In Section 3.3, we review previous work, discuss hardness of

approximation for MAX-3-XORSAT, and introduce the problem with a detailed construction. In Section

3.4, we introduce the spectrally folded quantum optimization and propose two variations of the algorithm.

We include analytical performance predictions performed by the author’s colleagues (E.K. and V.O.) in

Appendix B, that establish a rigorous approximation ratio for SFQO. Our benchmarking results are

presented in Section 3.5.3 for all methods we consider in this work. Finally, in Section 3.7, we conclude and

provide an outlook for future work.

3.3 Problem definition and previous work

In this Chapter, we discuss the inability of previous methods to find exact or approximate solutions at

large system size N , identify mechanisms for quantum solution hardness, and review the approximation

hardness for AQC and QAOA-like algorithms.

We first establish the qualitative reasons for why classical and quantum approaches to the

MAX-3-XORSAT and other NP-hard problems are unable to efficiently produce exact or even approximate

solutions. A characteristic of hardness for both classical and quantum methods for these problems lies in

the highly non-convex energy landscape, which contains a high density of poor quality local minima. This

characteristic creates a high “clustering” of local minima, which we describe as a rough energy landscape,

with several neighboring local minima and elusive ground states which are not easy to find, even when

given a good initial starting point. For classical methods, there does not exist a known mechanism to

escape local minima as it is not possible to know how far the optimization process is away from the true

ground state(s). Methods such as stochastic gradient descent and simulated annealing furthermore, do not

overcome this issue due to the exponential scaling of poor local minima. For quantum methods, this rough

problem energy landscape does provide a challenge for exact optimization, although we argue for the

existence of a hardness separation for approximate optimization between classical and quantum approaches.

In this work, we are concerned primarily with an approximation guarantee, defined by a fraction of the

optimal solution, also known as an approximation ratio. We are interested in producing an approximation

ratio in addition to observing the performance of the algorithm in-practice. For random problems, the

ground state energy can often be predicted using arguments from statistical physics, such as the Parisi

solution to the Sherrington-Kirkpatrick (SK) model [62]. However, this prediction is not sufficient for

predicting extremal behavior of random problems, which might contain global optima far away from the

predicted value in the worst case. Thus, producing a solution close to a predicted ground state may be

good in practice or on average, but this performance does not satisfy all problem instances. Furthermore,

the existence of an efficient classical algorithm for predicting this extremal problem characteristic would
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imply P=NP [47].

Due to the exponential scaling of poor local minima producing a “clustering” of sub-optimal solutions,

the basin of attraction to the ground state(s) in NP combinatorial optimization problems represents an

exponentially small fraction of the total energy landscape. This phenomenon introduces a what has been

referred to as “entropic barriers” [45] to solving the problem, where it becomes more efficient to start the

optimization process over from the beginning, once caught in a local minima where local steps in simulated

annealing or parallel tempering[63] do not produce any meaningful improvements. We find this mechanism

of hardness to be a generic feature of the hardest CSPs, which applies not only to finding the optimal

solution(s), but to approximations as well. For classical algorithms, we thus emphasize that approximate

and exact problem solving for a given CSP class, are both exponentially difficult in the number of variable

(system size). Given the hardness mechanisms we’ve discussed for classical methods, we now ask which of

these mechanisms hold true for quantum problem solving methods?

We consider a class of heuristic quantum algorithms derived from quantum annealing, AQC and QAOA.

These type of algorithms have been well-studied in the literature, where gate model simulation techniques

have provided accessible methods for experimental demonstrations at small N on NISQ devices. These

algorithms can also gain polynomial speed-ups by supplementing with Grover type amplitude amplification

[19]. In the barest form of these algorithms, the system is initialized in the ground state of a trivial

Hamiltonian, usually in the form of a transverse field. Then, the system is slowly evolved via interpolation

functions into the problem Hamiltonian HP , followed by a multi-qubit measurement, producing a desired

solution. Other variations of these algorithms can be initialized using a prior known low-energy states of

HP or a planted solution, where collective tunneling is used to find more optimal solutions.

The quantum methods discussed here are fundamentally distinct from classical algorithms in the

following two ways: First, the mechanism for quantum advantage, multi-qubit tunneling where energy

barriers that trap classical algorithms in local minima can be effectively surmounted. Second, while

classical algorithms start at high-energy (sub-optimal) solution and try to optimize via local updates,

quantum algorithms start below the energy of the problem Hamiltonian and attempt to tunnel into the

global minimum or other low-energy states through the interpolation process.

However, in the search for promising applications of quantum technologies, quantum optimization

algorithms based on macroscopic tunneling tend to provide only modest speed-ups, leaving the applications

of Hamiltonian simulation a leading candidate for quantum advantage. In the worst case, the macroscopic

tunneling rate into the ground state of NP problems decays exponentially with system size. This

expectation implies an exponential run-time of such algorithms, which removes the quantum advantage

obtained from such methods. Often times, these tunneling rates can be computed via Nth order
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perturbation theory providing analytic expressions for the convergence of the algorithm. For p-spin

problems, this exponential decay may sometimes be circumvented by introducing additional terms into the

time-dependent Hamiltonian, such as ramping down transverse field terms one-by-one [64], although this

method is not expected to generalize other realistic disordered problems [56, 65–69].

For a given class of problems, if one can show the gap at the paramagnet-to-spin-glass transition decays

only as a polynomial with the size of the problem, as recent work on the SK model [70, 71] and Max-Cut

[72, 73] problem have shown, unfortunately this friendlier decay still does not guarantee the algorithm will

find the ground state in polynomial time. Here lies a second mechanism of hardness for quantum

algorithms, known as transverse field chaos (TFC) [74, 75], where energetic corrections from the transverse

field push the system into a quantum spin-glass phase, thus creating false local minima below the ground

state of the true problem HP . This effect from TFC consequently steers optimization algorithms toward

false optima first, weakening the performance to the true solution [46, 76–81]. Furthermore, the effect of

TFC is seen even at weak transverse field strengths, where transitions are generically exponentially slow,

which has allowed some to even engineer this effect as way of crafting hard problems for benchmarking

quantum optimization algorithms [82]. The combination of exponentially small gaps and present two

challenges that make quantum algorithms of this type unlikely to produce the global optima for

NP-complete problems.

While we have demonstrated that finding exact ground states in challenging for quantum algorithms of

the AQC/QAOA type, we argue that finding approximate solutions may be easier. For many NP-hard

problems, it turns out that getting any approximation ratio better than random guessing is also NP-hard

[47, 83, 84]. We ask the following: do the mechanisms for hardness in exact optimization explain the

hardness for approximate problem solving? While TFC can effect the ability to find exact solutions by

creating pseuo-ground states below the true optima of HP , we don’t expect this mechanism to effect

approximate solutions as much. To provide an example, if we consider a class of problems where random

guessing produces an average energy of zero, and the ground state energy is normalized to be −N , an

algorithm that returns solutions in polynomial time within an energy ≤ r(−N) for some constant r > 0 for

all instances, this would imply an exponential speed-up over classical algorithms. Thus, such an algorithm

that reliably produced solutions with an energy ≤ −N/3 would still provide an exponential speed-up if

TFC reduced the constant to r = 1/4, for example. We conclude that TFC cannot be a mechanism for

approximate hardness when the problem exhibits a clustering phase of exponentially many states close to

the ground state |G⟩, though well separated in Hamming distance DH .

Given the severe overhead of fault tolerance [61], quantum hardware is expected to exhibit enormous

prefactor disadvantages as compared to parallel silicon, particularly when the comparison is made to
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hardware with equivalent financial value (e.g. millions of USD). Quantum algorithms thus have the most

promise when the problem is hard or outright impossible for classical machines. NP-hard constraint

satisfaction problems are no exception, so when benchmarking a proposed quantum algorithm it is

important to ensure that the problem classes we consider are sufficiently hard for classical machines, and in

the present NISQ era, exhibit their exponential difficulty at small enough N that numerical simulations of

quantum algorithms can demonstrate meaningful improvements. MAX-3-XORSAT problems are ideal for

benchmarking quantum algorithms because their exponential difficulty scaling is obvious at small N for

both classical and prior quantum approaches, in contrast to other problems where the asymptotic

exponential scaling often does not set in until system sizes that are prohibitively large for simulation.

Figure 3.1 Graphical representation of a random 3-uniform hypergraph GH = (V, E) used in the
MAX-3-XORSAT problem. The set of vertices V labelled {v1, . . . , v6} are connected to a hyperedge (i.e.,
constraint) from the set E on the right labeled {c1, . . . , c8} if the vertex is in constraint. Each constraint
necessarily contains a random set of three unique vertices. The legend specifies the value of the variable
Vijk = ±1 where the grey and white filled cj boxes denote a (+1), and (−1) valued constraint respectively.
This example has a constraint density of NC = 4

3N for 6 vertices and 8 constraints, although we use other
values of NC throughout this work.

To prototype our quantum algorithms, we thus consider MAX-3-XORSAT [47], a well-studied problem

that consists in the Pauli basis of a hypergraph of NC three-body constraint terms, as sketched

in Figure 3.1:

HP = −
NC∑
ijk

VijkZiZjZk, Vijk = ±1. (3.1)
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A constraint is said to be satisfied if, for a given bitstring, ⟨VijkZiZjZk⟩ = 1, and unsatisfied otherwise.

This is called a hypergraph because Vijk has three indices rather than the usual two found in graph theory.

Thanks to the linearity of the problem, one can use Gaussian elimination to check if a solution exists that

satisfies all the constraints in O
(
N3
)
time, but if the problem is not fully satisfiable, finding the lowest

energy state(s) is NP hard. A random state satisfies half the constraints on average and is thus energy

zero. Further, it was shown by H̊astad [84] that if the true ground state satisfies a fraction (1− ϵ) of the

constraints, then finding any configuration that satisfies more than (1/2 + ϵ) of the constraints is also

NP-hard (see also [85–87]). The hardest instances are thus those with small but finite ϵ, e.g. almost

satisfiable problems, as both finding the true ground state, and even finding an approximate solution, is

exponentially difficult. Note that if the problem graph is sparse (e.g. NC/N is on the order of 1) finding

approximate solutions can still be easy, since one can randomly select a fraction of the constraints < cN

(for some O (1) constant c), and solve that new, much easier problem; solutions to this sub-problem will

satisfy half the remaining constraints, on average.

To ensure that we are studying problems that are both hard to solve and hard to approximate for all

known methods, inspired by Refs. [85–88] we consider a family of instances we call planted partial solution

problems (PPSPs). To construct a PPSP, we choose a small unsatisfied fraction ϵ and pick a random

hypergraph of NC ≫ N unique triplets; we use ϵ = 0.1 in all simulations here. We then pick a random

bitstring G and randomly select (1− ϵ)NC of the constraints to be satisfied in G, by picking the sign of

Vijk appropriately, with the rest unsatisfied. If ϵ is small and NC/N ≫ 1, G will be the problem ground

state with very high probability, as the SAT/UNSAT transition for this problem is at NC/N ∼ 0.92 [89]

and at densities much higher than the SAT/UNSAT threshold ground states for random graphs satisfy

NC/2 +O
(√
N ×NC

)
constraints. This property also ensures that G is a unique ground state with high

probability at large N . When we refer to random hypergraph problems throughout this work, we refer to

this construction rule: a random, potentially fairly dense, hypergraph where one can optionally randomly

chose an anomalously large fraction of constraints to be satisfied by matching the signs to a randomly

chosen ground state bitstring. We note that [87] recently discovered a hardness threshold at NC ∝ N3/2,

where at higher densities the problem again becomes amenable to classical optimization.

Our PPSP construction is necessary because truly approximation hard problems–where the practical

polynomial time approximation difficulty approaches the random guessing limit of the complexity class

separation–are rare in the space of all possible instances. Sufficiently sparse problems are

approximation-easy, and for denser random problems one can always find strings that satisfy

NC/2 +O
(√
N ×NC

)
constraints in polynomial time [88, 90], with a smaller prefactor in front of the

√
N ×NC than the prefactor in the average satisfied in the ground state. We formulated our PPSP
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construction to ensure our algorithm was being benchmarked on instances with a plausible claim to true

classical approximation hardness. We note that commonly studied 3-regular problems [45, 91] do not

display strong approximation hardness, as they are sparse, and can be solved efficiently if satisfiable. And

intriguingly, we show that, by some metrics, the performance of our novel algorithm progressively improves

with increasing NC/N in this regime, at constant ϵ.

3.4 Spectrally folded quantum optimization

The core idea of spectral folding (and related, more general spectral deformations) is to modify how the

Hamiltonian is applied to the quantum state through the introduction of a filter function, somewhat

analogous to the methods used in [92, 93], though our goals and filtering choices are very different.

Specifically, the algorithms we consider solve problems through simulating the time evolution of a quantum

state, as |ψ⟩ → e−iH(t)dt |ψ⟩, with the exponentiated Hamiltonian discretized as a series of layers e.g.

eiaHDeibHP . The driver Hamiltonian, and any other additional Hamiltonian terms, are not changed by

spectral folding, so we will ignore them for now and focus on the problem Hamiltonian itself. Specifically,

we write |ψ⟩ in the computational basis as |ψ⟩ =∑2N−1
m=0 cm |m⟩, where m is the decimal integer

representation of a given bitstring. Then, for (arbitrary) control angle γ:

eiγHP |ψ⟩ =
2N−1∑
m=0

eiγE(m)cm |m⟩ , (3.2)

E (m) = ⟨m|HP |m⟩ = −
NC∑
ijk

⟨m|VijkZiZjZk |m⟩ . (3.3)

In other words, the phase of each component state advances proportionally to its energy under the problem

Hamiltonian, and that energy is computed at each step by applying a sequence of gates to implement each

constraint.

In spectral folding, the phase of each component instead advances proportional to an arbitrary function

f of the diagonal HP ,

|ψ⟩ → eiγf(HP ) |ψ⟩ =
2N−1∑
m=0

eiγf(E(m))cm |m⟩ . (3.4)

This can be accomplished by introducing a register of auxiliary qubits, applying a gate sequence that maps

the sum of the constraint terms to a fraction of that register to store E, using a second fraction of that

register to compute f (E), applying a sequence of controlled-phase gates to advance the phase by f (E),

and then uncomputing the previous steps to return the register to its initial state. The entire process is

sketched in Figure 3.2. Provided f is a relatively simple function, this adds a multiplicative overhead which
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is polylogarithmic in N , since E (m) is bounded by a polynomial in N and each arithmetic operation takes

O (logN) steps.5
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Figure 3.2 A schematic for implementing spectrally deformed time evolution U = exp(if(HP )dt). A set of
gates maps the value of each of the NC constraint to adding or subtracting 1 to a register of ancilla qubits,
using binary signed adder circuits controlled by the value of VijkZiZjZk. A sequence of additional gates
computes f (E) from E (likely using more ancilla qubits), and then a set of local Z rotations is applied to
the register storing f (E) to advance the phase of each component of |ψ⟩ proportionally. The computation
of f (E) and entangling with “constraint-controlled” gates are then uncomputed, returning the ancillas to
their initial state and disentangling them from the N primary qubits over which the problem is defined.
The net result of this entire process is to enact the operation in Eq. (), evolving time under an arbitrary
function of the diagonal Hamiltonian (transverse field layers and other operations on the primary qubits
are not shown). For relatively simple functions, the net overhead of this entire process (compared to
enacting exp (iHP dt) directly) is polylogarithmic in N .

We define spectral warping as any f which applies a nonlinear rescaling of E, such as f (E) = cE2, and

spectral folding as a choice of f that mirrors E about a specific value, e.g. f (E) = |E − Et|. The core idea

is sketched in Figure 3.3, and these two methods can of course be composed. Incorporating this operation

enormously expands the space of quantum optimization algorithms we can define; in this work we focus on

two choices, linear and quadratic spectral folding. Specifically, if we choose our problem normalization via

including a multiplicative constant6 so that the ground state energy is EGS = −N , and let Et = AN for a

constant A, then we define linear and quadratic spectral folding as

5We note that for any choice of f more complex than multiplying E by a constant (something that does not require auxiliary
qubits to begin with), any spatial locality the graph might have is lost in this step, since E (m) is a global quantity which we
are deforming with f .

6Formally, this choice assumes that we know the fraction of the NC constraints which are satisfied in the ground state, something
that we cannot know in advance of running our quantum optimization algorithm! However, we can simply repeatedly run the
algorithm with different normalization choices to guess its value, a prefactor overhead of at most O (NC).
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flin (E) =
|E +AN |

A
, fquad (E) =

(E +AN)
2

A2N
(3.5)

Here, A < 1 defines the approximation target. And critically, it is defined using the conventions that

random states have energy zero, so returning a state with energy AEGS approximates, by a factor of A, the

degree to which the true ground state itself improves on random states. These normalization choices ensure

that the energy difference between the new ground states of the folded problem, and random states, is N

as in the original re-normalized problem. Making this choice simplifies the analysis significantly.

A good choice of A is important for spectrally folded quantum optimization to succeed; if A is chosen to

be too close to 1, then we risk failing to well-approximate HP due to the interference effects. A choice of A

which is too small will return a sub-optimal approximation ratio, and if A is too close to zero, cause

instabilities from having a poorly defined problem to solve. Fortunately, for random hypergraph

MAX-3-XORSAT instances–and here random refers to the graph itself and not, critically, on how many

constraints are satisfied in the ground state–we can predict the threshold A for which we expect a

polynomial depth circuit to return states with E ≃ AEGS from first principles. The ideal value of A

depends both on the problem class and on the variation of spectral folding employed; for

MAX-3-XORSAT, A ≥ 0.6 is achievable as derived below in section B.4. This is a significant leap over the

best known classical approximation algorithm for this problem [88], which offers a weaker guarantee with

much more restricted viability, in the worst case, equivalent to A→ 0 in our notation. It is also a

significant leap over recent quantum approaches to this problem [94, 95]. We note that minimizing

(H − E)
2
is not itself a novel idea and has been used in classical and quantum algorithms for finding states

close to specific energies in chemical and many-body systems [96–102]. To our knowledge, however, the use

of spectral folding for approximate optimization of CSPs is novel, both in concept and in the analysis we

present below to choose A and understand at a deeper level why it presents significant advantages over

optimizing the problem HP directly.

From hereon, we let Hfold be the spectrally folded problem Hamiltonian. Having defined it, there are a

number of ways we can attempt to find its ground states. The simplest choice, and one that performs well,

is AQC/QAOA-inspired state preparation, where we interpolate in Trotterized evolution between the

transverse field driver and the folded problem over a time tf :

H (t) = f (t)HD + g (t)Hfold, HD = −
∑
j

Xj , (3.6)

f (0) = g (tf ) = 1, f (tf ) = g (0) = 0. (3.7)
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This prescription, with the quadratic folding choice in Eq. (3.5), is the most straightforward to benchmark

using standard quantum simulation packages as each call requires O
(
N2

C

)
multiqubit ZiZjZkZl... rotations.

Classically simulating the linear folding prescription requires auxiliary qubits to implement the absolute

value operation or, much more practically, saving the phase oracle as a pre-computed diagonal operator.

We can also consider trial minimum annealing (TMA), originally proposed in [103]. We explore the

TMA formulation in depth because we can predict its scaling analytically. In this scheme, a simple classical

algorithm is used to find an initial local minimum of HP ; the quality of the minimum does not particularly

matter and for approximation-hard instances we assume it is far above the true ground state energy, in the

worst case asymptotically approaching random guessing. Let this classical minimum state be |L⟩. We will

use the linear folding prescription in Eq. 3.5 for HP itself, and add to it a new, diagonal lowering

Hamiltonian HL which has |L⟩ as its ground state, and assign to it a time-dependent coefficient C (t). Our

total cost function Hamiltonian is

Hcost (t) =
|HP +AN |

A
+ C (t)HL. (3.8)

Recall that HP is normalized so that its ground state energy is −N . To go further, we need to specify a

form for HL. For this analysis will choose a new random hypergraph of NC triples which, critically, has no

correlation to the hypergraph of HP ; we choose the same NC as the problem for convenience here but any

O (N) quantity should be fine. We choose the signs of all constraints so that |L⟩ satisfies all of them. HL is

not included in the folding procedure so applied separately in time evolution. We then choose C (t = 0)

such that the initial energy of |L⟩ (defined by Hfold + C (t)HL) is well below −N but remains O (N). Our

algorithm simulates appropriately discretized time evolution in the following sequence:

• Initialize |L⟩, with Hcost always on, and evolve time smoothly ramping up the transverse field from 0

to κ in time tr. We assume tr increases linearly with N and choose κ ≤ κc; κc ≃ 1.3 for

MAX-3-XORSAT but can vary for other problems, and we expect weak variation from one instance

to the next. We want to choose κ at or just below this value, so we remain in the dressed problem

phase (DPP, defined in Appendix B) at all times. Leaving and then re-entering the DPP does not

mean the algorithm will fail but makes predictions harder. This smoothly evolves the state to |LD⟩,

the dressed version of |L⟩.

• Evolve time for a total time T , likely also O (N), where C (t) is smoothly ramped down to zero,

ensuring that |L⟩ crosses the hyperspherical shell of ground states of Hfold = |HP +AN | /A. Note

that this crossing occurs when the ground state energy of C (t)HL is O (−N), and if we assume the

initial minimum was uncorrelated with the true ground state |G⟩, the mean Hamming distance
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between |L⟩ and any of the ground states of the folded Hamiltonian is N/2 flips. Consequently, HL

adds an O
(√

N
)
energy uncertainty to these states that has no meaningful impact on the

approximation ratio.

• Finally, ramp the transverse down to zero smoothly over tr and measure the system in the z basis.

For an appropriate O (1) choice of A and a random problem hypergraph, this algorithm will return

states with energies close to AEGS with constant probability. We can optionally repeat the algorithm

many times, starting from different choices of |L⟩, to ensure a fairer sampling of states in that energy

range.

The total gate count of this algorithm is as follows. We have a factor of O (N +NC polylog (N)) per

time-step for the layers of transverse field, Hfold and HL terms, which we simplify to NC polylog (N). We

obtain, in the worst case, a factor of O (NC) for the number of guesses one needs to make to correctly set

the normalization for a chosen A. We assume, on empirical grounds, that the total quantum evolution time

is O (N).This choice works well in practice in our simulations, and more intuitively, the very simplest

classical optimization routine, steepest descent, requires O (N) Hamiltonian calls to halt. We do not think

it reasonable, ultimately, that a quantum algorithm should perform well with fewer steps per shot. Finally,

in the worst case we expect a time-step dt ∼ 1/N , for graphs where a small number of variables connect to

significant fractions of the NC constraints, but dt constant or increasing logarithmically is empirically and

intuitively fine in the typical case. Taken together, and we emphasize assuming that the algorithm is

capable of returning states with E < AEGS in constant probability, we estimate a total runtime between

O
(
N2

CN
2 polylog (N)

)
in the worst case and O (NCN polylog (N)) in more typical cases.

All that said, justifying the assumption of constant success probability is the central task of the paper.

We now provide a theoretical analysis of the performance of this formulation of spectral folding on random

hypergraph PPSPs, and a more qualitative analysis of the expected performance of other variations.
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Figure 3.3 Illustration of the spectral folding procedure. (Left) Sketch of the rough energy landscape of an
approximation-hard CSP, with a single deep minimum whose basin of attraction is an exponentially small
fraction of the configuration space. Directly optimizing this cost function through quantum approaches
often misses the deep minimum entirely, for reasons explained in the text. (Right) Spectrally folded energy
landscape, where the problem Hamiltonian energies are mirrored around an approximation target
E = AEGS. This can be implemented in a gate model algorithm with modest overhead, as shown in the
text. Doing so promotes the states near the fold to an exponentially large ground state band while
eliminating an interference effect that reduces tunneling into them from trivial initial states; for a wide
range of problem instances (and likely, low-order problem classes), this works out to an approximation
guarantee. Detailed performance predictions, and numerical benchmarking, are shown in the text.

3.5 Simulation results

To confirm our predictions–or at least, verify that any serious issues with our calculations and

interpretation of the problem are subtle and not apparent at system sizes within reach of present or

near-future classical simulations–we performed a series of numerical simulations of various classical and

quantum algorithms applied to our PPSPs. For all quantum simulation tasks we used the Qulacs package

[33]. For smaller systems and algorithm prototyping we ran our simulations on local workstations; this

includes all the spectral folding TMA simulations. For all QAOA and spectral folding AQC simulations

presented, we used the Fujitsu Quantum Simulator, a classical HPC system. This allowed us to probe

larger system sizes while still averaging over enough instances to have reliable statistics for the problem

class. Unless otherwise stated, each data-point represents the average over 960 or 1000 (for the QAOA and

spectral folding AQC results) random problem instances constructed with the prescriptions outlined in

Section 3.3. In all cases in this work we used an unsatisfied fraction ϵ = 0.1 for our partial planted

solutions; we expect similar phenomenological behavior for other constant ϵ values, though we expect the

precise thresholds we measure will vary with ϵ for classical optimization algorithms and QAOA (but not
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folded optimization, below its predicted performance floor).

The results of our simulations are summarized in Table 3.1, which lists the best per-shot polynomial

time approximation ratio achievable through each algorithm studied, both classical and quantum. To

estimate these values, we measured the average per-shot probability Pq (N) = P (E ≤ qEGS) of returning

states with energies at or below qEGS, where q ≤ 1 is the approximation ratio and EGS is negative in our

conventions. These probabilities were computed by choosing bins of size 0.05 EGS.

To determine the polynomial time hardness threshold, we applied a very simple rule where we fitted

Pq (N) to a simple exponential function, assuming any observed decay faster than 2−0.005N corresponded

asymptotically to exponential decay, and any positive exponents, e.g. exponential growth, represent

small-N growth toward some constant saturation value. This threshold of 2−0.005N was chosen to reduce

the influence of uncertainty from fitting in a small handful of cases. For the greedy algorithm with

NC/N = 1.5
√
N we fitted decay to an exponential in

√
N as discussed below. The polynomial time

approximation hardness threshold for a given algorithm, unsatisfied fraction ϵ and NC/N scaling choice is

defined to be qa, the largest values of q for which we do not observe exponential decay. For

NC/N = 3
√
N/2 this threshold is decaying with system size, and the asterisk next to the result for QAOA

is to highlight the fact that we only ran these simulations out to N = 28 so are likely not capturing the

asymptotic threshold. As discussed elsewhere, the number of cost function calls is O (N) for all approaches

studied. Cases for which a range is quoted are where we felt there was some ambiguity to the fitting, and

all values are the result of extrapolating fits to numerical simulations and are naturally somewhat

approximate.

Table 3.1 Approximation hardness thresholds for the classical greedy search, high-depth QAOA and
spectral folding variations. This table lists qa, the largest value of the approximation ratio q before
exponential decay is reported, drawn from the numerical experiments. Spectral folding results are labeled
as protocol/A (where A is the approximation target); AQC is quadratic spectral folding in the AQC
formulation, TMA-3 is trial minimum annealing with a linear folded Hamiltonian and 3-XORSAT lowering
Hamiltonian, and TMA-L is the same with local Z biases for the lowering Hamiltonian. These
results–where the threshold decays for traditional methods but not folded optimization–support the
predictions that random hypergraph problems are efficiently approximable through spectrally folded
quantum optimization.

NC/N Classical QAOA AQC/0.75 AQC/0.85 TMA-3/0.75 TMA-3/0.85 TMA-L/0.75
2 0.75-0.8 0.75 0.75 0.75 0.75 0.75 0.7
4 0.55 0.55 0.7 0.7 0.75 0.8 0.75
6 0.45 0.45 0.75 0.7 0.8 0.8 0.75

3
√
N/2 decay 0.25/decay* 0.75 0.75 0.8 0.8 0.75-0.8
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3.5.1 Performance of quasi-greedy classical algorithms

To explore the classical difficulty of our PPSPs, we applied a greedy local search algorithm adapted

from [45]. This algorithm is straightforward; we start with a random bitstring. Then, beginning at each

step, we calculate k = ”number of unsatisfied constraints minus the number of satisfied constraints”

associated with each bit. We then calculate the fraction of bits, fk, belonging to each k value. Note that

we only care when k > 0 because these are the cases where flipping a particular bit will lower the energy.

Using some weight function, w(k), we select a k value with normalized probabilities ∝ w(k) ∗ fk and flip a

bit with that k value. If there are multiple bits belonging to the k value chosen, we choose a bit in this set

with uniform probability to flip. This is repeated until the configuration finds itself in a minimum, and the

algorithm halts.

We found the algorithm performed best with a weight profile quadratic with k, however this can be

experimented with for different results. Notably, [45] found that when applying a highly optimized version

of this search to 3-regular 3-XORSAT problems it performed well even when compared to more

sophisticated algorithms such as simulated annealing and parallel tempering. The intuitive reason for this

can be inferred from the typical energy landscapes of these problems, which are rough and contain

exponentially many high energy local minima. Once one is found, it is more efficient to simply restart the

algorithm from a new random configuration instead of attempting to “climb out” using penalized

operations in simulated annealing or parallel tempering. As the locations of these minima are uncorrelated

with the true ground state, finding one provides no useful information in a ground state search.

This expected inefficiency of simulated annealing/parallel tempering for this problem can easily be

inferred from the results plotted in Figure 3.4 and Figure 3.5. Namely, in all cases the algorithm will find a

single relatively deep minimum with high probability at each shot, leading to a super-polynomial cost to

escape from it in algorithms simulating a thermal bath. Interestingly, as NC/N increases for fixed

unsatisfied ground state fraction ϵ, we find that the decay exponent of the per-shot probability of finding

the ground state, PGS (N), monotonically decreases, suggesting that the basin of attraction of the true

ground state is widening as the problem becomes more extremal. In fact, for NC ≥ 2N , we empirically

observe that the per-shot probability of finding the planted ground state has the approximate scaling

log (PGS (N)) ≃ −cg
N2

NC
. (PPSPs, NC ≥ 2N) (3.9)

However, the approximation ratio qa–defined as the minimum energy for which the probability of finding

states at or below it stays constant as N increase–steadily worsens. We attribute this to there being a high

density of local minimia with energies ≥ qaEGS (recall EGS is negative in our conventions), but below that
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Figure 3.4 Per-shot probability of finding the true ground state with the quasi-greedy classical algorithm as
adapted from [45], for the four constraint densities studied in this work and planted solution unsatisfied
fraction ϵ = 0.1. The probability decays superpolynomially with N ; fits are to a2−bN for NC = {2, 4, 6}N
and a2−b

√
N for NC = 1.5N3/2. Each data-point is the average of 105 shots. As the constraint density

increases, the basin of attraction widens, and the problem becomes easier–though still exponentially
scaling–for local update classical routines. Each shot consists of O (N) local updates so the time to solution
scales essentially as the inverse of this probability.

threshold the number of minima quickly decreases and the probability of finding one decreases

exponentially. This results in the scaling collapse seen in Figure 3.5–for sufficiently low energy there are no

minima aside from the ground state, so the approximation probability scales nearly identically to PGS (N).

This high energy clustering phase is a feature of our PPSP construction, and is responsible for its classical

approximation hardness. We again contrast this to problems near the statistical SAT/UNSAT threshold

such as three-regular instances, where the clustering energy, the lowest energy where there are still

exponentially many local minima and they are thus easy to find, is close to EGS and they are not

approximation-hard in practice as a result. We conjecture that high energy clustering behavior is a generic

feature of low-degree constraint problem classes that are approximation-hard for local update algorithms.

As shown in Figure 3.5, these construction rules yield in a set of instances which are hard to

approximate in practice. If we let NC/N grow slowly with N , e.g. as ln (N) or
√
N , then as N → ∞, the

probability of finding any states with energies any O (1) fraction better than random guessing, decays

superpolynomially7 in N . And since the unsatisfied fraction ϵ in the ground state is small but nonzero,

Gaussian elimination cannot be used to efficiently find the solution, forcing classical computers to rely on

7We note again the recent result of [87], who showed that for NC/N > O
(
N1/2

)
the problem can be efficiently approximated

classically; our PPSPs with NC/N = 1.5N1/2 are close to this threshold but do not cross it.
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local update algorithms stymied by entropic barriers. It is of course possible that some clever algorithm

could be written to exploit our PPSP structure to efficiently solve or approximate these instances

classically; we merely claim hardness for generic methods based on local updates. Our PPSP construction

rules can easily be generalized to other CSPs, and we suggest that they could prove to be a useful tool for

exploring practical approximation hardness in other contexts.
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Figure 3.5 Classical approximation hardness of PPSPs using the quasi-greedy classical algorithm, for
constraint densities (clockwise from top left) NC =

{
2N, 4N, 6N, 1.5N3/2

}
. In each figure we plot the

probability that a given shot returns an energy below qEGS for various choices of q. For all the fixed NC/N
problem classes we find an empirical approximation threshold q = Ag below which finding states becomes
superpolynomially hard, and that this value decreases as NC/N increases. For the case NC = 1.5N3/2

(bottom left), this value steadily drops, as discussed in the text.

3.5.2 Performance of high depth TAQC

To make firm points of comparison, alongside the simulations of spectrally folded optimization itself we

extensively benchmarked high-depth QAOA and quasi-greedy [45, 91] classical algorithms on these

instances. For our high-depth QAOA simulations, we formulated our algorithm to mimic trotterized time

evolution over a total time tf , with:
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Figure 3.6 Performance of QAOA as an approximator for NC =
{
2, 4, 6, 3

√
N/2

}
N (clockwise from top

left), with problem and algorithm parameters described in-text. Plotted are the probabilities
Pq (N) = P (E ≤ qEGS) for q running from 0.5 to 0.85 in steps of 0.05 (top panels) and 0.25 to 0.6 (bottom
panels). The results for the larger constraint densities thus plot a weaker approximation range. Thick
straight lines correspond to simple exponential fits where Pq (N) is not decaying, dashed straight lines
correspond to exponential decay, and thin lines between points are included for visual clarity. As
summarized in Table 3.1, these results do not represent a meaningful improvement over the classical greedy
result (Figure 3.5), though in some cases where Pq (N) decays exponentially for both approaches, the
exponent for QAOA may be better. These results were obtained using the Fujitsu Quantum Simulator, a
classical HPC system.
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|ψ (t+ dt)⟩ = e−2πif(t)dtHDe−2πig(t)dtHP |ψ (t)⟩ , (3.10)

f (t) =
√
1− t/tf , g (t) =

√
t/tf .

In all the presented data we used tf = N/32 and dt ≃ 0.05. Individual shots use a random evolution time

between 2tf/3 and 4tf/3; this runtime averaging produces substantially more reliable scaling, particularly

when probabilities are small. These parameters were chosen by trial and error for smaller systems; we

observed that the probabilities of finding the ground state and other low-energy states increased

sublinearly with tf beyond this point. The relative improvements of the probabilities of returning low-lying

states were similarly sublinear. No sophisticated numerical or iterative optimization methods were used

throughout, as we emphasize no fine tuning is necessary.

The results of our QAOA simulations, of 1000 random PPSPs for each choice of N running from 8 to

30, are shown in Figure 3.6. The probability of finding the ground state, shown in Figure A.1, decays

exponentially with an exponent very close to that in Eq. (B.7), which we find remarkable given the

simplifying assumptions in that derivation, and that it does not use the more sophisticated techniques used

to compute tunneling rates between semi-classical minima. Further, this exponent displays only small

variations with constraint density and is nearly identical in all four cases. Smaller system studies for other

constraint densities all yielded very similar results for PGS, as predicted by Eq. (B.7).

Turning to approximation hardness, being relatively sparse, the NC = 2N problems are fairly

well-approximated by QAOA, with the algorithm returning strings within q = 0.75 with constant or

saturating probability; we attribute this to the presence of many competing minima with energies not far

from EGS. In contrast, for NC = 4N the algorithm’s performance for approximation degrades, with clear

exponential decay for approximation ratios better than q = 0.55. For higher constraint densities

approximation becomes even more difficult, decaying exponentially below q = 0.45 for NC = 6N and 0.25

for NC = 3N3/2/2. We expect decay at sufficiently large N for any constant fraction in that case, but

cannot simulate larger system sizes. Crucially, the thresholds qa we measure are nearly identical to those

found by the classical greedy algorithm Figure 3.5, and no signatures of an exponential quantum advantage

in these instances can be seen.

Interestingly, as NC/N increases, the probabilities of finding states comparatively close to |G⟩ in

Hamming distance improve (see Figure A.1), but the probabilities of finding states close in energy worsen.

We attribute this behavior to the high energy clustering phase. Empirically for our PPSPs there is a high

density of local minima with energies E ≥ qaEGS, and if qa is relatively close to 1 it becomes harder for

high-depth QAOA to find local excitations near the planted ground state, as the probability amplitudes
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will be spread over increasingly many competing minima and their own basins of attraction. Conversely, as

qa decreases with increasing NC/N , the probability of finding local excitations relatively near |G⟩ increases

though still decays exponentially, as the low energy minima far from |G⟩ are at proportionally higher

energies and thus do not compete directly with few-flip states. That the thresholds qa for QAOA match

those of the greedy classical algorithm further supports the interpretation of an energy threshold above

which local minima become common.

Comparing the classical and established quantum methods, we find that, for these approximation hard

instances, QAOA performs very poorly for finding the ground state but less poorly for approximation

below the classical hardness threshold qa (see Table 3.1), with decay exponents that are much closer to the

classical result. In some higher constraint density cases our fits produced favorable exponents for

approximation with QAOA but our range of N here is smaller than we would prefer to claim any relative

quantum advantage absent theoretical justification. Nonetheless, both methods show clear

super-polynomial decay per-shot for approximate optimization below the energy range where local minima

are dense. With these results in hand, we now turn to folded quantum optimization, which maintains an

approximation guarantee regardless of the problem’s constraint density.

3.5.3 Performance of SFQO and its variants

Having numerically confirmed the expectation that our PPSPs are superpolynomially hard for classical

and prior quantum approaches, for both exact and approximate optimization, we now present the results of

our folded quantum optimization simulations. We simulated both the trial minimum annealing and

interpolation (e.g. AQC) variations. In all cases we chose run-times increased linearly in N , albeit with

larger prefactors than in the QAOA simulations (which used tf = N/32). A longer runtime further helps

reduce the potential influence of diabatic local heating as the Hamiltonian parameters are varied. Run and

ramp times that are too short can lead to artificially poor scaling, arising from the formation of local

excitations as the transverse field is turned on or off too quickly. This is fundamentally a different, and

much more prosaic, issue, than decaying collective tunneling rates, but can be difficult to distinguish when

our only measures are energy and Hamming distance from |G⟩.

We first present simulations of the AQC variation of spectral folding in Figure 3.7. For the AQC

variation, we followed the procedure in Eq. (3.10), with a quadratic Hfold (Eq. 3.5) in place of HP and

f (t) = (1− t/tf )
1/4

instead of
√

1− t/tf , with an average runtime tf = N/24. This schedule modification

was found to improve scaling at higher approximation ratios. In all cases individual shots are runtime

averaged between 2tf/3 and 4tf/3 as in our QAOA simulations.
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All these parameter choices are the result of intuition, trial and error, and a desire for simulations to

complete in reasonable amounts of time; none are particularly optimal. Nonetheless, as shown

in Figure 3.7, in all but one case we were able to meet the approximation target A = 0.75, but not exceed

it; for NC = 4N . Our spectral folding methods are also much better at reliably returning states close to G

in Hamming distance, consistent with the approximation guarantee. We likewise tested increasing A to

0.85 in simulations up to N = 24 with this variation, and found improved prefactors but no improvement

in scaling. This suggests that we have found the performance ceiling for this approach. Interestingly, the

worst case qa = 0.7 observed for this method is very close to the approximation ratio of ∼ 0.68 predicted,

using a more simplified analysis than was employed for the TMA variation.
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Figure 3.7 Performance of the quadratic AQC formulation of spectral folding, for NC =
{
2, 4, 6, 3

√
N/2

}
N

(clockwise from top left), with N running from 10 to 27 (top row) or 26 (bottom row), A = 0.75,
dt = 0.0325, tf = N/24 and other parameters as stated in text. In each plot the 8 curves plot
Pq (N) = P (E ≤ qEGS) for q running from 0.5 to 0.85 (top to bottom) in steps of 0.05. Thick straight lines
correspond to simple exponential fits where Pq (N) is not decaying, dashed straight lines correspond to
exponential decay, and thin lines between points are included for visual clarity. In all four cases spectrally
folded optimization is able to meet its approximation target of A = 0.75, returning states at or below this
energy with constant probability in a linearly growing number of cost function calls. This is in stark
contrast to our classical greedy algorithm (Figure 3.5) and QAOA (Figure 3.6) results, where the
achievable polynomial time approximation ratio steadily worsens with increasing NC/N , and supports the
theoretical analysis of Appendix B. These results were obtained using the Fujitsu Quantum Simulator, a
classical HPC system.
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We also tested the TMA formulation of spectral folding–the formulation for which we can make the

most reliable analytical predictions–as plotted in Figure 3.8. For these variations we used run-times

tf = N/12 and dt = 0.025; note that this choice of tf is a factor of 8/3 larger than in our QAOA

simulations but with the same scaling. In smaller system studies similar qualitative performance was

observed for shorter tf (such as N/24 or N/32). For this variation we used a 3-XORSAT HL–the

formulation for which we could predict performance in Appendix B–with the minimum energy set to −2N

via C (t), which was linearly ramped down to zero by tf , and simple sinusoidal ramp profiles with

tr = N/24; the transverse field strength κ during the main evolution was 1.3. The careful reader may note

that choosing C (t) to set the minimum energy to −2N instead of −N is naively sub-optimal, as all other

things being equal sweeping over a larger energy range increases W in Eq. (B.21), and should reduce the

returned probabilities Pq (N) by an appropriate prefactor. However in our simulations this choice

consistently improved both the prefactors and scaling, e.g. the value of qa, as compared to choosing a

minimum energy −N for HL. We suspect this has to do with the band structure considerations, but due to

the complexity of the problem, we are unable to make a quantitative prediction.

The performance of the two approaches is qualitatively similar with subtle differences as we vary the

returned approximation ratio q. At lower approximation ratios the AQC formulation returns higher

probabilities, at lower total gate count since there are no ramping steps and no additional gates associated

with adding HL. However, at higher approximation ratios the TMA formulation appears to be better able

to approach the approximation target A = 0.85. As discussed in the algorithm definition, folded

optimization will definitionally fail to consistently return energies significantly below AEGS, and we expect

it to break down as A gets too close to 1 given that QAOA and similar methods fail to reliably approximate

these problems. Choosing the best value for A is thus a subtle issue that depends on the problem class; for

extensions of this method to hard CSPs it will necessarily change from one problem class to the next.

Likewise, as mentioned in Appendix B.5, one can replace the random 3-XORSAT lowering Hamiltonian

in TMA for a simpler set of linear Z biases, reducing the gate count per time-step and, potentially,

increasing the per-state tunneling rate by implementing a shallower cost-per-flip curve. In comparison to

the 3-XORSAT variation discussed in the previous paragraph, to achieve good performance we needed to

double the ramp time. This protocol seemed to be more sensitive to performance degradation from heating

during ramps. The algorithm also benefited from adjusting C (t) so that the minimum energy of HL was

−3N , as compared to −2N for the 3-XORSAT HL. Relative performance for A = 0.75 is comparable to

the other variations, as illustrated in Figure 3.9, though the individual Pq (N) show more significant

non-monotonicity that makes reliable curve fitting challenging. This issue is even more pronounced for

A = 0.85 (data not shown), to the point that we did not report qa values for that variation in Table 3.1.
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Figure 3.8 Performance of the trial minimum annealing formulation of spectral folding with a 3-XORSAT
lowering Hamiltonian HL, with A = 0.85, plotted for constraint densities (clockwise from top left)
NC =

{
2N, 4N, 6N, 1.5×N3/2

}
and approximation ratios between q = 0.5 and 0.85 with N running from

10 to 24, for the parameters detailed in the text. All data is derived from averaging over 960 random
instances and choices of tf . Compared to the AQC formulation shown in Figure 3.7, the achievable
approximation ratio qa is often slightly higher, though the total gate count in this formulation is larger by a
constant prefactor. In all cases qa well exceeds the value of 0.6 conservatively predicted for this formulation.
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Figure 3.9 Performance of the trial minimum annealing formulation of spectral folding with a local Z bias
HL, with A = 0.75, for N running from 8 to 25. qa in each case is comparable to other variations, though
greater non-monotonicity in the individual Pq (N) curves makes fitting more difficult.
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3.6 Discussion

Our simulations of SQFO and its variants demonstrate that the algorithm targets approximate

solutions in the range from A = 0.75 to A = 0.85, which is significantly larger than the theoretical

prediction of A ∼ 0.6. While not presented in this work, we did test A = 0.65 for small system size, which

did not have any meaningful improvements over larger approximation targets of A = 0.75 or higher. While

our simulations with A = 0.75 demonstrated constant probability of obtaining meeting the target, while

increasing A = 0.75 → 0.85, did not return constant probability. However, in the A = 0.85 case, we did

observe some performance increases for achievable approximation ratios qa. These results suggest that

there exists an approximation target ceiling Aceil. Below Aceil, the algorithm is expected to reach the

target approximation with constant probability, while above Aceil, we expect the algorithm to fail on

returning constant probabilities of reaching the target approximation. Our results demonstrate a minimum

achievable approximation ration of at least 0.7 for the quadratic AQC formulation, and at least 0.75 for the

3-XORSAT TMA variation of SFQO.

In Table 3.1, we demonstrate that at high approximation ratios, SFQO returns constant probabilities of

reaching the target approximation, while both classical and TAQC methods exhibit super-polynomial

decay. This results for SFQO are shown in Figure 3.7-Figure 3.9, while the classical and TAQC results are

presented in Figure 3.5, and Figure 3.6 respectively. Our results demonstrate no exponential separation

between the quasi-greedy classical methods and TAQC algorithms tested in theis work. At low constraint

densities, we expect that the clustering of poor local minima is relatively close the ground state. In this

regime, SFQO does provides no benefits for approximation, although the convergence in Hamming distance

(to the PPS) tends to scale well with increasing system size shown inA. However, at higher constraint

densities, our results show that SFQO returns solutions that are close in energy and Hamming distance to

the PPS, with constant probability. The variations of SFQO we present in this work perform similarly,

with the 3-XORSAT TMA variation returning the highest approximation ratio. While the TMA variation

performs best, it also has the highest prefactor cost in gate count.

Given the separation demonstrated by SFQO, how can we understand the mechanism for the observed

speed-up? For established methods, polynomial time approximation is governed by the structure of the

problem. In particular, we are interested in the relationship between the ground states (including the PPS)

and the high energy clustering of local minima. As the PPS become more extremal, the relative energy

difference grows, and the target threshold approximation ratio becomes a smaller. Our results illustrate the

novelty of collective tunneling effects in spectral folding, which are not exploited in the previous methods

we consider in this work. The search space for previous TAQC methods remains negatively affected by

48



interference and TFC that result in a failure to produce the ground state or even approximate solutions,

demonstrated by asymptotic exponential decay. However, we expect that SFQO is not limited by these

mechanisms for hardness in the exponentially large hyper-spherical shell, provided by the spectral folding

and spectral warping procedures. Thus, the search space that our method defines, allows the a more robust

effect of collective tunneling to approximate solutions, where the probabilities of reaching the target

approximate are constant for the system sizes we can simulate classically.

In the run-time cost analysis, all routines demonstrate an O(N) complexity of Hamiltonian evaluations.

In this linear scaling, our results demonstrate that exponential scaling for time to solution is not visible

from the figures or numerical fits to our simulation data. Of course, it may be the case that beyond our

simulation capabilities at large N , a small decay exponent may set in, so we cannot rule out this possibility

from numeric results alone. Rather, these results suggest that the theoretical predictions derived from

tunneling rates in Appendix B agree with our numerical results over the wide range of parameters we

bechmarked in this work.

Lastly, would we expect classical methods to benefit from the spectral folding procedures in this work?

As discussed in Section 3.3, classical methods attempt to cool towards the ground state by local

optimization steps from an initial high-energy state. While the folding methods we present in this work are

not quantum in nature, we only expect quantum algorithms to benefit from the procedure, due to entropic

barriers that make reaching any approximation better than random guessing still NP-hard for the

MAX-3-XORSAT problem we tested. Furthermore, we expect classical simulations of the procedure to be

inefficient for current methods, due to the non-local interactions in the problem graph and volume-law

entanglement we expect in the low-energy state of the quantum spin-glass. One exception that deserves

further exploration is whether quantum Monte Carlo (QMC), could efficiently simulation the spectrally

folded spin-glass, due to the problem being stoquastic. Although QMC is still based on local update rules,

however, we conclude that such a discovery would be very interesting in it’s own right. In what follows, we

conclude and discuss possible extensions of these results for future work.

3.7 Conclusion and outlook

In this work, we investigated the MAX-3-XORSAT problem class, and explored opportunities for

classical and quantum optimization methods to approximate the problem. We concluded that mechanisms

of hardness make these problems hard to approximate classically, although these same mechanisms do not

translate to quantum methods, due to the way in which quantum algorithms approach the ground state

and low-lying approximate solutions to the problem. However, we found that previous quantum algorithms

still face other mechanisms for hardness of exact optimization, most notably: exponentially small gaps and
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transverse field chaos. However, the same mechanisms that make the problems hard to solve exactly, may

not contribute to hardness of approximation. Guided by these physical mechanisms, we proposed a class of

partial planted solution problems (PPSPs), which are hard to approximate for all previously known

classical and quantum methods.

Using these PPSPs, we proposed a novel mechanism called spectral folded quantum optimization

(SFQO), which does not suffer from the same mechanisms of hardness we identify for previously known

methods. The spectral folding procedure applies a classical deformation to the energy landscape of the

problem, thus allowing the algorithm to find approximate solutions more readily.

Guided by theoretical predictions of the tunneling rate between the paramagent and spin-glass phases

of the problem, derived by the author’s colleagues (E.K. and V.O.), we showed that previously known

quantum methods based on trotterized adiabatic quantum compution (TAQC) are bottle-necked by

transverse field chaos and destructive interference. Furthermore, analytic predictions based on resummed

Nth order perturbation theory allowed us to predict a constant fraction which serves as an approximation

guarantee to random hypergraph PPSPs. This approximation gaurantee is an exponential speed-up for

spectral folding in the classicaly hard regime. To test these predictions numerically, we performed extensive

quantum simulations to large N . We simulated system sizes where we could gather sufficient statistics,

with super-computing classical computing resources for trotterized evolution of quantum dynamics.

We find the approximation guarantee provided by spectral folding a profound result. This guides to ask

the question: Are there types of extremal hypergraph instances in which we would expect SFQO to fail at

reaching the approximation target? A notion of failure here would imply that the approximation target A

that can be reached in polynomial time would be effectively zero. We note that a significant decrease in the

target approximation would still not be entirely a failure, and our numerical simulations do not

demonstrate this to be the case for the system sizes we simulated in this work. However, it may be the case

that there exists a dense problem hypergraph that can be constructed in such a way that spectral folding

does not provide an approximation guarantee. Such a PPSP would need to be constructed in a rather

specific way. Such a hypergraph would need to be constructed in a dense way, such that it cannot be solved

by partitioning into smaller problems. We leave the problem of identifying extremal instances to future

work.

Lastly, we expect our methods to be general to other problems not explored in this work. By

formulating problems with a normalized ground state energy, further analytical predictions of the tunneling

rate which defines the time-to-solution may be found for other NP-Hard optimization problems. For

example, one could try spectral folding on well-studied problems in the literature such as the Max-Cut,

quantum Max-Cut, or low auto-correlation binary sequence (LABS) problems. We leave this exciting

50



direction open to future work.
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CHAPTER 4

ITERATIVE OPTIMIZATION OF HARD SPIN GLASS PROBLEMS WITH HIGH FREQUENCY AC

DRIVES

To be submitted to Physical Review Letters.

Brandon A. Barton1,2,7, Jacob Sagal2,7, Sean Feeney2, George Grattan2,3, Pratik Patnaik4,

Vadim Oganesyan5,6, Lincoln D. Carr1,2,4, Eliot Kapit2,4

4.1 Abstract

Binary constraint satisfaction problems represent a promising opportunity to achieve practical quantum

advantage in real-world problems. These problems are in the worst case, and often, the typical case,

exponentially hard to solve or even approximate for classical machines. Therefore, an efficient solution

mechanism would have broad applicability to many problems in optimization, artificial intelligence, and

cryptography. So far however, demonstrating consistent quantum advantage with heuristic algorithms has

remained elusive. In particular, many variational algorithms offer only modest speedups and are made less

efficient in practice by the cost of calculating gradients to guide the algorithm. In this work, we introduce a

new algorithm, called IST-SAT (where IST stands for Iterative Symphonic Tunneling), which solves

optimization problems by simulating the dynamics of quantum spin glasses in high-frequency oscillating

transverse fields. IST-SAT operates as a sequence of rounds where the individual bitstrings returned from

one round are used to choose the phase pattern of the AC drives in the next, steering the system toward

the problem ground state through a novel mechanism not seen in other algorithms. We thoroughly

benchmark IST-SAT on sets of hard MAX-3-XORSAT instances and report polynomial speedups over both

trotterized adiabatic quantum computation (TAQC) and the best known classical algorithm. We expect

that combining IST-SAT with more sophisticated future classical or quantum approximation algorithms,

larger gains may be achieved. The mechanism we present in this work thus presents a new path toward

achieving quantum advantage in optimization.

1Department of Applied Mathematics and Statistics, Colorado School of Mines, 1500 Illinois St, Golden CO 80401
2Quantum Engineering Program, Colorado School of Mines, 1523 Illinois St, Golden CO 80401
7B.B. and J.S. share co-first-authorship on this work.
3Department of Computer Science, Colorado School of Mines, 1500 Illinois St, Golden CO 80401
4Department of Physics, Colorado School of Mines, 1523 Illinois St, Golden CO 80401
5Department of Physics and Astronomy, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
6Physics program and Initiative for the Theoretical Sciences, The Graduate Center, City University of New York, New York,
NY 10016, USA

52



4.2 Introduction

A wide array of heuristic quantum algorithms, such as analog quantum annealing [51–57], adiabatic

quantum computing (AQC) [49, 50], QAOA [15], and more exotic variations such as ADAPT-QAOA [104],

recursive QAOA [105], QAOA supplemented with amplitude amplification [19], and energy

matching/population transfer algorithms [106–109], have been proposed for spin glass optimization. Their

empirical performance, however, has been decidedly mixed, and the frequently observed quadratic speedups

from schedule optimization (a scheme dating back to the adiabatic formulation of Grover’s search [110]) are

fragile and likely not feasible at large N [111]. Furthermore, the problem can often be simulated with

quantum Monte Carlo [112–116] for small systems sizes in the quadratic (incoherent) scaling limit,

provided that the underlying Hamiltonian is stoquastic. In the search for applications of quantum

algorithms to machine learning, recently, variational quantum algorithms have also been applied to spin

glass optimization problems [117]. Yet, large gains from these methods may be limited by the cost of

computing gradients and may often encounter barren plateaus in optimization procedure [118, 119]. Thus,

the full capabilities of quantum computing in this space, and potential asymptotic limits for very general

algorithms in this class, deserve further exploration. Given that beyond-quadratic speedups are critical to

achieve useful quantum advantage [61], new mechanisms that expand the quantum optimization toolbox

for reaching exact solutions, or even approximate solutions therefore have significant impacts.

In this work, we propose a non-classical steering mechanism that guides quantum optimization

algorithms towards the true ground state in spin glass problems. We demonstrate this mechanism by

introducing a new heuristic quantum algorithm which we call IST-SAT, standing for Iterative Symphonic

Tunneling for Satisfiability problems. The IST-SAT algorithm modifies quasi-continuous time Trotterized

AQC (TAQC), with total evolution time increasing linearly with N , by adding a monochromatic fast

oscillating field along Y to all spins. The addition of the oscillating field is inspired by a recent mechanism

termed symphonic tunneling (ST) which has demonstrated exponential acceleration of macroscopic

quantum tunneling (MQT) times between ground states of transverse field Ising ferromagnets [31, 32].

In this work, we asked the question: how can the accelerated tunneling provided by symphonic

tunneling be used in quantum optimization algorithms? In particular, we identify disordered spin glass

optimization as a well-known hard problem, and demonstrate its promise as a good candidate problem for

extending extend symphonic tunneling. In particular, we study a combinatorial optimization problem, in

the class of constraint satisfaction problems (CSPs), known as MAX-3-XORSAT. In our results, we

empirically observe that when fast AC drives are applied to hard MAX-3-XORSAT instances, the

probabilities of finding both the true ground state G, and classical excited states near to G (in Hamming
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distance), are very sensitive to the local relative phase offsets φj ∈ {0, π} inside single-qubit AC drives

oscillating by a sinusoidal function sin(ωt+ φj)Yj . As the pattern of phases P = {φ1, φ2, . . . , φN} more

closely align with the bit values (bj ∈ ±1) in G = {b1, b2, . . . , bN}, we observe monotonically increasing

probabilities of reaching G and states nearby to the global optima. When the phase patterns are

uncorrelated to the ground state’s bit pattern, we observe no benefit, while a perfect match finds ground

states in polynomial time with constant probability. This relationship suggests an iterative algorithm

strategy, where bitstrings from one round of shots are used to seed phase patterns in the next round. To

test this strategy, we benchmark IST-SAT over a range of problem parameters from the partial planted

solution problem (PPSP) class [120]. The results we demonstrate obtain significant polynomial speedups in

some regimes, over both TAQC and the best known classical algorithm for this problem. In addition to the

speed-ups that may be obtained using IST-SAT, our results provide new intuition for understanding the

classical energy landscape in the set of MAX-3-XORSAT PPSP instances we study in this work. Finally,

our numerical results thus suggest a new avenue for achieving quantum speedups in hard spin glass

optimization.

4.3 Methods

a)

b)

c)

d) e)

f)

Figure 4.1 Schematic of the IST-SAT algorithm. An approximate algorithm–which can include random
guessing and high-depth TAQC–in (a) is used to find “seed strings” (b) for the phase pattern in the HST

drive Hamiltonian. The local phases {φ1, φ2, . . . , φN} in HST are set from bits of the seed states using the
key (c), which we denote with colored Ry rotations in (d). After providing the algorithm an initial phase
pattern P0, the iterative process described in (e) continues, where the circuit is ran for M shots, generating
new seed strings which are converted to phase patterns. A new pattern Pi is selected, which is then used in
the next iteration. IST-SAT may be ran in a parallel branching process described in (f), to avoid local
minima due to a poor initial seed string.

In contrast to many problems where asymptotic exponential scaling is not observed until prohibitively

large system sizes for classical computers and NISQ era devices, 3-XORSAT problems have exponential

scaling that is obvious at small N which makes them ideal for benchmarking quantum algorithms. We

specifically work with the MAX-3-XORSAT [47] problem, defined on a random 3-uniform hypergraph
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consisting of NC three-body constraint terms. The problem Hamiltonian is given by

HP = −
NC∑
ijk

VijkZiZjZk, Vijk = ±1, (4.1)

where for a given bitstring a constraint is satisfied if ⟨VijkZiZjZk⟩ = +1, and unsatisfied otherwise. As the

problem is linear, one can use Gaussian elimination to check if the problem is satisfiable in polynomial

time. However, when not all the constraints can be satisfied, finding the lowest energy state(s) is known to

be NP-hard [84].

This work utilizes a family of instances called planted partial solution problems (PPSPs), used in recent

work on approximating MAX-3-XORSAT with quantum algorithms [120]. To construct a PPSP we first

pick a random hypergraph with N variables that participate in NC constraints with NC ≫ N , a fixed small

fraction ϵ (we use ϵ = 0.1 in this work), and a random bitstring G to be the planted ground state. We

randomly select (1− ϵ)NC constraints to be satisfied in G (by choosing the signs of the Vijk) with the rest

unsatisfied. For small ϵ and NC ≫ N , this makes G a unique ground state with high probability (the

SAT/UNSAT transition here is at NC/N ∼ 0.92 [89]). These instances are more difficult than the 3-regular

instances typically studied in the literature [45, 91], which are in practice easy to approximate and can be

solved efficiently if they are satisfiable. Throughout this work, we studied constraint densities

NC/N ∈ {1.5, 2, 4} to demonstrate the results of the algorithm over range of problem instances.

The schematic work-flow of the IST-SAT algorithm is shown in Figure 4.1, which begins by using an

approximate algorithm to set parameters in the Hamiltonian. The initial approximation algorithm can be a

greedy classical approach, simulated annealing, or a quantum algorithm such as AQC/TAQC or QAOA.

The algorithm starts from the “standard” quasi-continuous time AQC method of interpolating between a

transverse field “driver” Hamiltonian and the problem Hamiltonian with Trotterized evolution from t = 0

to t = tf :

H (t) = f (t)HD + g (t)HP , HD = −
∑
j

Xj , (4.2)

f (0) = g (tf ) = 1, f (tf ) = g (0) = 0.

Throughout this work we use the the interpolation functions

f (t) =
√

1− t/tf , g (t) =
√
t/tf . (4.3)

which empirically outperforms simple linear interpolation for this problem, producing a better prefactor

and modestly better scaling with N , though we expect the asymptotic scaling of the two schedules may
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converge. We let the total evolution time tf grow linearly with N .

IST-SAT modifies the base Hamiltonian in (4.2) by adding a high-frequency monochromatic AC field

HST (t) = α
∑

j Yj sin (ωt+ φj), producing the total Hamiltonian

H (t) = f (t)HD + g (t)HP + h (t)HST (t), (4.4)

where h (t) is a smooth function with initial and final conditions h(t = 0), h(tf ) = 0. Within HST (t),

single-qubit phases φj = {0, π} form patterns P = {φ1, φ2, . . . , φN}, and a drive strength α = αs lnN . In

this work, we used h (t) = 4
√

(1− t/tf ) (t/tf ), αs = 0.6 and ω = 2π × 6 lnN . The choice of α and ω both

increasing logarithmically with N minimizes heating [121, 122] while ensuring that the novel low-frequency

terms generated by the high frequency drive have constant magnitude.

The initial approximate algorithm in IST-SAT is used to find “seed” strings which are used to set

phases in the high frequency AC drive HST (t), which we call the symphonic tunneling Hamiltonian. We

note that this set-up is distinct from warm start methods [23], which prepare a good initial state, defined

by a large overlap with the ground state. IST-SAT still starts from the initial superposition state |+⟩⊗N ,

and instead, sets parameters in the time-dependent Hamiltonian HST (t). In one iteration of IST-SAT, the

binary configuration of the “seed states”, is used to form a phase pattern defined by the list of single qubit

phases {φ1, φ2, . . . , φN}, which is then ran using our Trotterized protocol to generate M new phase

patterns, which can be used in further iterations of the algorithm.

We used a mean evolution time of tf = N/32, with dt = 0.4/ω to ensure high frequencies are

appropriately sampled; the total circuit depth thus scales as N lnN problem Hamiltonian applications. All

data is averaged over 1000 random problem instances for each N . We also average over total run-times

between T = 2tf/3 and T = 4tf/3, for all simulated cases. We have found [32] that this averaging

effectively smooths out unpredictable diabatic effects that can make reliably estimating scaling difficult.

The parameters we use in this work are the result of trial and error on small system sizes, with an eye

toward testing on NISQ devices. Therefore we do not expect these parameters to be optimal, and

emphasize that fine tuning is not necessary for IST-SAT to succeed.
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4.4 Results

Figure 4.2 Convergence of IST-SAT. We seed the algorithm for one iteration with random phases chosen
correctly (relative to the PPS) with probability (1− r), we plot the probability of returning bitstrings
within DH ≤ rN flips away from G. A “radius of convergence” rc can be readily identified by starting from
a single seed state DH ≤ rcN . For the ∗r = 0 case, we plot the probability to any ground state, along with
the probability to the particular PPS in the r = 0 case.

Our results, shown in Figure 4.2, demonstrate that an appropriately chosen phase pattern will

dramatically accelerate collective rearrangement at the transition from the paramagnetic initial state to the

problem ground state. Of course, this choice of phase pattern is not obvious since the ground state G is

generally not known, and the purpose of the algorithm is to find it. If we choose the phases φj randomly,

the protocol in Eq. 4.4 shows no scaling advantage over the uniform field protocol in Eq. 4.2 with a modest

prefactor disadvantage. Conversely, if we let φj = πsj , where sj = {0, 1} is the value of bit j in G, PGS (tf )

is empirically constant with linear runtime tf ∝ N (see the r = 0 data in Figure 4.2), as compared to

exponential decay in the uniform field case. Making this choice requires knowledge of G, and thus the

solution to the problem, so it’s not obvious that this discovery will help us. The observation that motivates

IST-SAT is the following: let’s say we guess the phases φj correctly with some probability r ≥ 1/2 (based

on the values of each bit in G, and note that it’s the relative phases that matter here). As r increases

toward 1, the probabilities (at equivalent total evolution time) of finding both the ground state, and states

comparatively close to it in Hamming distance, monotonically increase as shown in Figure 4.2. If the

bitstrings returned from early iterations of IST-SAT are used to choose the phase pattern for subsequent

iterations, then the solutions returned from those shots will be closer still and the algorithm can converge

quickly to the ground state.

The results obtained from large scale quantum simulation in this work consistently presents an

empirical radius of convergence rc, which depends on NC/N and the unsatisfied fraction ϵ in the ground

state. We define rc in the following way: let’s say we guess each local phase correctly with probability

1− r. Then, for linearly growing tf , rc is defined to be the largest value of r such that the probability of
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returning states with a Hamming distance ≤ rN is constant with increasing N . For NC/N = {1.5, 2, 4}

and ϵ = 0.1, we observe respective rc ≃ {1/8, 1/4, 1/3} and simulations of smaller systems with larger

NC/N (data not shown) seem consistent with rc ≃ 1/3 above this. When r ≤ rc the probability of

returning states substantially closer to the ground state, e.g. closer than rN/2, scales nearly identically to

rN (see supplementary material). Of course, if a bitstring of distance rN from the true ground state is

used to set the phase pattern, that is equivalent to guessing correctly with probability 1− r.

Table 4.1 Inferred time to solution (TTS) defined by the average number of trials (shots to run the circuit)
to reach the ground state. In this table we report the exponent b obtained from fits to numerical data of
the form a2bN . We test different algorithm set ups including: quasi-greedy classical (GC)[45], TAQC[15],
and spectrally folded quantum optimization (SFQO)[120]. For the algorithms respective use as seed
algorithm for IST-SAT, we assume that the probabilities from IST-SAT are constant once the approximate
state obtains a fraction in the radius of convergence such that r ≤ rc. Therefore, we report the exponent b
at each seed algorithm’s approximation distance corresponding to the radius of convergence d = rc (other
distance fractions d are provided in Appendix C).

Algorithm set-up NC/N = 1.5 NC/N = 2 NC/N = 4
Quasi-greedy classical -2.3e-1 -1.9e-1 -7.5e-2

TAQC -3.0e-1 -2.5e-1 -2.8e-1
GC + IST-SAT -1.5e-1 -8.3e-2 -4.5e-2

TAQC + IST-SAT -1.1e-1 -5.5e-2 -2.6e-2
SFQO + IST-SAT -7.0e-3 -5.6e-3 3.4e-3

Therefore, if the approximate “seed” strings are within some r < rc, the bitstrings returned each round

in IST-SAT will get closer and closer to the global optimum; with rc defined in this way, we expect

convergence from a state less than rcN flips to the true ground state in a polynomial number of algorithm

iterations. If we start from states which are more than rc flips away, iterating phase patterns still is

expected to converge to the true ground state faster (e.g. a smaller scaling exponent) than the “DC”

TAQC algorithm IST-SAT uses as a starting point, as can be inferred from the smaller slopes for the

curves with rc < r < 1/2 in Figure 4.2 as compared to the TAQC data, though the quantitative analysis of

scaling is more complex in that case.
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TAQC

Figure 4.3 Average energy ⟨E⟩ returned from IST-SAT and TAQC, normalized by the ground state energy
EGS. Energy is obtained using HP as the cost function. Here, we run a single iteration of IST-SAT, and
use 10,000 samples (bitstrings) from the wave function in exact state vector simulation. The legend in the
center figure specifies the fraction of incorrect bits rN used in the seed state protocol.

To examine the quality of strings returned from IST-SAT, we plot the average energy ⟨E⟩ (normalized

by EGS) in Figure 4.3. Interestingly, the rapid convergence to the ground state is based only on Hamming

distance DH and remains uncorrelated with the energies E of the returned states. However, we still

observe monotonically increasing average string qualities as IST-SAT is seeded with better phase patterns.

Our very first formulation of IST-SAT used a variation of the quasi-greedy algorithm in [45] to gather the

initial seed states, and we saw no improvement over random guessing in making this choice. This is

supported by the fact that, unless r is very close to one, the average energy returned by IST-SAT is

somewhat worse than that of TAQC for all other parameters equal (see the supplemental information for

figures). We attribute this fact to there being many local minima with energies close to EGS, and the effect

of the high frequency AC drive is to steer the evolving state away from them and toward |G⟩ and its local

excitations, which may be higher in energy even if they are much closer in Hamming distance.

It may be the case that other classical algorithms could prove better for the purpose of seeding

IST-SAT; for example, an algorithm that broke the problem into sub-problems and solved those exactly to

get sets of relative phase patterns could potentially yield more significant improvements, though we have

not yet explored this possibility in detail. One could also try versions of IST-SAT which assigned each

group of spins a different frequency (not just a different phase pattern), for better averaging, as in the

earlier multi-frequency AC optimization schemes [32, 82, 111, 123] that inspired this work.

While naive classical seeding was unsuccessful, matching the observed rc ≃ {1/8, 1/4, 1/3} with the

corresponding distance probabilities for TAQC yields significantly reduced asymptotic time to solution if

strings from TAQC (or equivalently, random phase patterns) are used for initial seeding. Selecting fractions

of the TAQC strings based on their energies yielded no benefit (reflecting the low correlation between

distance and energy unless one is very close to the ground state, as expected from Eq. B.3 derived below)
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over randomly sampling the TAQC output distribution.

Interestingly our results demonstrate that at low constraint density NC/N = {1.5, 2}, the performance

for r = 0 degrades at large N . We computed the exact ground states over all 1000 problems at each system

size through N = 24, and find that the decay in performance is likely due to more degeneracy in the

ground state manifold, leading to an energy landscape with more ground states. In the Supplementary

Material, we show that the probability that IST-SAT reaches any ground state does not decay with

increasing problem size, and improves radii of convergence compared to those rc we identified for reaching

the planted ground state in particular. Thus, these results demonstrate that even when IST-SAT is seeded

with the phase pattern from a different ground state, the solutions obtained maintain a high probability of

reaching a state within the ground state manifold.

4.5 Conclusion

In conclusion, IST-SAT is a unique feedback-based quantum algorithm that does not require the

calculation of any gradients or averages (as in the original variational QAOA proposal, or more recent

versions such as recursive QAOA [105]), which are costly as they require hundreds to thousands of shots to

calculate accurately. The core mechanism for how the phase pattern appropriately guides the optimization

is only understood by analogy to other work in a simpler system [31], and we expect a careful analytical

derivation of its speedup would undoubtedly lead to further algorithm innovations. While in this work, we

choose the phase patterns as discrete offsets of {0, π}, we expect that more sophisticated phase pattern

selection protocols would further improve IST-SAT. In light of recent work which use semi-definite

programs to set the parameters of variational quantum circuits [124], future work may consider selecting

phases in the HST drive in a continuous interval φj = [0, π], which we expect may improve results for

MAX-3-XORSAT and other optimization problems such as Max-Cut.
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CHAPTER 5

CONCLUSION AND OUTLOOK

In this chapter, we recount on the main results in Chapters 3 and 4. In Section 5.1, we further

elaborate the connection between the works in this thesis. Finally, in Section 5.2 we provide an outlook for

the state of quantum approximation algorithms for constraint satisfaction problems, and provide several

concrete problems that may be considered in future work.

5.1 Conclusion

The primary Chapters 3 and 4 in this thesis investigate quantum algorithms for a combinatorial

optimization problem, known as MAX-3-XORSAT, in the class of constraint satisfaction problems. When

the problem cannot be fully satisfied, both finding the ground state, or any α-approximation of the ground

state better than random guessing (α = 1/2) is NP-hard. We investigate the ability of quantum

algorithms to do both tasks, including finding good approximations (α > 1/2) and the optimal solution

(α = 1). We specifically work with hard partial planted solution problem instances, beyond the

SAT/UNSAT threshold, where the ground state does satisfy all of the problem constraints.

In Chapter 3, we showed that the mechanism of spectrally folded quantum optimization increases the

availability of approximate solutions, thereby significantly increasing the probability of obtaining such

states. By applying a classical deformation to the energy landscape, the spectral folding mechanism allows

the algorithm to obtain approximate solutions with a guaranteed approximation ratio. We introduced the

algorithm in three variants: linear, and quadratic, and trial minimum annealing (TMA). We tested these

variants of SFQO using extensive quantum simulation on a combination of super-computing, and

high-performance computing resources. The numerical results obtained demonstrate that SFQO obtains

approximate solutions in polynomial time, where previously known classical and quantum algorithms are

expected to take exponential time in the size of the problem. Thus, we conclude that the mechanism

provided by SFQO is an exponential speed-up for approximating the MAX-3-XORSAT problem class.

In Chapter 4, we introduced a new non-classical steering mechanism inspired by recent results of

accelerated quantum tunneling [31] which we believe is applicable to a wide variety of optimization

problems. We demonstrate this steering mechanism by introducing a new iterative quantum algorithm

called Iterative Symphonic Tunneling for Satisfiability problems, or IST-SAT for short. IST-SAT uses an

oscillating Y perturbation whose parameters are set using the bits from an approximate algorithm. The

set-up for IST-SAT naturally motivates an iterative procedure, where the results from previous trials are

used in the next iteration. We tested the IST-SAT algorithm using different trial seed states from several
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classical and quantum algorithms. Namely, we performed large numerical simulation to benchmark the

performance of quasi-greedy classical approaches, adiabatic quantum algorithms, and spectrally folded

quantum optimization procedures. In our simulations of MAX-3-XORSAT partial planted solution problem

instances, over a set of constraint densities NC/N = {1.5, 2, 4}, we find extensive numerical evidence of

critical approximation ratios rc in terms of Hamming distance to the planted solution. When IST-SAT is

seeded with a sufficient approximation, as the iterations proceed, IST-SAT may converge to the ground

state in a logarithmic number iterations, which implies a polynomial number of samples. A sufficient

approximation is defined as a seed state that is a Hamming distance DH ≤ rcN away from the planted

solution. We showed that when IST-SAT is seeded with string from an approximate algorithm, the

distance of the solution we obtain to the ground state, measured in Hamming distance, improves

monotonically with quality of the seed state. In other words, the better state we give IST-SAT, the better

solution we obtain demonstrating a dependence on initial approximation.

Reflecting on the results in Chapters 3 and 4, we conclude and discuss the opportunity to combine the

methods provided in both SFQO and IST-SAT algorithms, therefore obtaining significant speed-ups over

the best known classical and quantum algorithms for the MAX-3-XORSAT problem. Shown in the

quantum simulations performed in these work, we obtained exponential speed-ups for approximating

MAX-3-XORSAT using spectrally folded quantum optimization. Then, using the novel steering mechanism

of high frequency AC drives, we showed that when IST-SAT is provided a sufficiently good initial

approximation, the algorithm can converge to the optimal solution in polynomial time. Thus, our two

results motivate combining both algorithms in the following way: First, use spectrally folded quantum

optimization to generate approximate solutions to the MAX-3-XORSAT problem. Then, using the

approximate solutions as seed strings from spectral folding, run IST-SAT to converge to the optimal

solution of the problem.

Provided that spectral folding returns states at or above the radius of convergence we identified in

Chapter 4, we expect to converge to the optimal solution in polynomial time. Of course, we don’t expect

that these methods will always return polynomial-time exact solutions on the hardest extremal problems.

Rather, the probabilities of reaching the global optima still demonstrated small exponential decay as

expected for an NP-Hard problem, as summarized in the various algorithm set ups for IST-SAT in

Chapter 4. However, this exponential decay is significantly smaller than previous classical and quantum

algorithms, thus demonstrating the novel combination of the work in this thesis.

5.2 Outlook

In this section, we conclude by providing several directions that may be considered for future work.
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For Chapter 3 in particular, future work may consist of the following:

• Define other variations of spectral folding. By defining a new class of deformation functions, one may

obtain further performance enhancements. Furthermore, we expect the suitable function to depend

on the problem one is wishing to solve. For example, if the problem is known to have a high

clustering of local minima close to the ground state, the appropriate choice of approximation target A

may need to be suitably chosen closer or further away from the ground state energy. New variations

should be considered on a problem-by-problem basis.

• Use spectral folding as a seed algorithm for warm-start quantum and classical algorithms. We note

that this direction is distinct from using SFQO as a seed algorithm for IST-SAT. It may be the case

that for some problems, obtaining approximate solutions remains hard, although converging to the

true ground state is relatively easier when provided with a sufficient initial approximation. This

direction could consider the ability of both classical and quantum methods to find exact solutions

using initial solutions from SFQO.

Similarly, for Chapter 4, we expect the following direction for future work to be promising:

• Refine the critical radius of convergence. In this work, we presented several radii of convergence for a

range of MAX-3-XORSAT problem constructions. It would be worthwhile to do a study that refines

the values of rc across a larger set of constraint densities. This would allow the exact relationship

between rc and the constraint density to shine through, via numerical simulations. Of course, we

expect these values to be dependent on the size of time-step and numerical simulation details that

would need to be further considered.

• Try IST-SAT with new approximation algorithms. As new classical and quantum approximation

algorithms arise in the literature, it would be interesting to test IST-SAT with new methods. While

we chose discrete values of {0, π} for the phase offsets in the AC drive, one could consider setting the

single-qubit phase offsets according to a more sophisticated routine. For example, several

improvements along the routes of semi-definite programming (SDP) may provide an interesting

direction for future work. The way in which SDP algorithms relax the discrete optimization values to

a continuous search space may allow one to choose phase offsets from a continuous interval [0, π],

allowing for more fine-tuning of the parameters. We expect further benefits may be obtained using

this method.

• Characterize the effect of problem structure on collective tunneling mechanisms to the ground state.

As discussed, the sparsity of the problem has a significant effect on the hardness of approximation and
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exact problem solving. We would like to understand the exact effect of problem structure, in terms of

graph metrics such as density, regularity, and the girth (largest cycle in the graph). By studying this

relationship, one may uncover the dynamical mechanisms of collective tunneling through large energy

barriers that otherwise prohibit classical methods from finding the true ground state(s).

As discussed in the conclusions of Chapters 3 and 4, we expect the mechanisms proposed in this work

to be general for a broad class of combinatorial optimization problems. Following promising work on

approximation guarantees for Max-Cut and quantum Max-Cut, we expect both of these problems to be

good candidates for further applying SFQO and IST-SAT. In both of these works, the question of classical

simulability is an important question. While we expect the entanglement to be volume-law scaling in both

algorithms, a further study of the entanglement dynamics would be illuminating.

Finally, as we expect these algorithms to be implementable on near-term quantum hardware,

gate-based compilation techniques may be used to perform an end-to-end cost analysis. We expect such a

cost analysis to inform future experimental demonstrations of SFQO and IST-SAT. As these problems

require highly non-local gates, we expect a quantum device with all-to-all coupling would be best suited for

the implementation of these algorithms. Namely, current neutral atom and trapped-ion devices would be

interesting candidate hardware platforms to test the viability of SFQO and IST-SAT under the presence of

noise.
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APPENDIX A

ADDITIONAL NUMERICAL RESULTS FOR SPECTRALLY FOLDED QUANTUM OPTIMIZATION

A.1 Convergence to the partial planted solution in Hamming distance

10 15 20 25 30
N

0.005

0.010

0.050

0.100

DH(N)

10 15 20 25 30
N

0.010

0.050

0.100

DH(N)

10 15 20 25
N

0.010

0.050

0.100

DH(N)

10 15 20 25
N

0.010

0.050

0.100

DH(N)

Figure A.1 Probabilities of returning states within Hamming distance DH = {2/5, 1/3, 1/4, 1/5, 1/8, 0}N
flips from the ground state G for QAOA (top to bottom curves), for NC =

{
2, 4, 6, 3

√
N/2

}
N (clockwise

from top left) and application parameters in text. As seen in the figures, the per-shot probability of finding
the ground state is essentially independent of constraint density and tracks the prediction N2−0.28N in
Eq. B.7. On the other hand, the probabilities of returning states at various extensive fractional Hamming
distances, e.g. N/4 or fewer flips, decay much more slowly, and the task of finding states comparatively
close to G becomes easier as NC/N increases. That said, these probabilities all decay exponentially with N
in all cases, consistent with the worsening approximation ratios observed.
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of returning states within fractional Hamming distance approximations for AQC formulation of
SFQO.]Probabilities of returning states within Hamming distance DH = {2/5, 1/3, 1/4, 1/5, 1/8}N flips
from the ground state G for the AQC formulation of spectral folding (top to bottom curves), for NC ={
2, 4, 6, 3

√
N/2

}
N (clockwise from top left) and application parameters in text. For NC = 2N some prob-

abilities decay slowly with system size, due to competition with other minima (though non-monotonicity
makes the fitting somewhat ambiguous here); for all other cases they are constant or increase toward some
large N saturation value, indicating that this variation is finding states near the global minimum with
constant probability. The probability of finding G is not plotted, as for spectrally folded optimization it’s
essentially zero.
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Figure A.2 Probabilities of returning states within Hamming distance DH = {2/5, 1/3, 1/4, 1/5, 1/8}N
flips from the ground state G for the TMA formulation of spectral folding (top to bottom curves), for

NC =
{
2, 4, 6, 3

√
N/2

}
N (clockwise from top left) and application parameters in text. For NC = 2N the

probabilities decay slowly with system size, due to competition with other minima; for all other cases they
are constant or increase toward some large N saturation value, indicating that this variation is finding
states near the global minimum with constant probability. The probability of finding G is not plotted, as
for spectrally folded optimization it’s essentially zero.
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APPENDIX B

THEORETICAL PERFORMANCE PREDICTIONS FOR SPECTRALLY FOLDED QUANTUM

OPTIMIZATION

B.1 Preliminaries

In this Appendix, we include the analytic performance predictions obtained through an Nth order

perturbation theory analysis done by co-authors (E.K. and V.O.). In this section, we will predict from first

principles the average macroscopic quantum tunneling rate–and thus, achievable approximation ratio–for

the TMA variation of spectrally folded quantum optimization. This version may not be the optimal choice,

and there are intuitive reasons to believe that other variations could offer better performance, but being

able to make direct analytical predictions enormously strengthens our argument and bolsters the scaling

expectations one can infer from our numerical results. To do so, we have developed a somewhat novel

resummed extensive order perturbation theory based on previous forward approximation

results [31, 106, 125–129].

For the random hypergraph problems we study here, the two key factors in determining the macroscopic

quantum tunneling rate are the transverse field strength κc where a phase transition occurs between the

paramagnet and the quantum spin glass, which we call the dressed problem phase (DPP) in this work, and

the energy cost E (x) for x random flips away from the ground state. We first derive the energy cost, and

remarkably, for random flip sequences it turns out to be graph independent [92]. Specifically, for

MAX-3-XORSAT, our problem is defined as a hypergraph of NC p-body constraints (e.g. VijkZiZjZk) over

N variables, where p = 3 here, and each constraint returns ±1 and flips to the opposite value when any one

of the spins flips. Let us say the system is in some classical configuration s; the energy is then given by

E (s) = NC (nunsat − nsat), where a sat constraint returns 1 in this notation, and n implies a density.

Now we flip one spin at random. Each spin participates in, on average, pNC/N constraints, and

consequently, the average energy change for a single spin flip is

∆Eavg = +2p
NC

N
(Nsat −Nunsat) = −2pE (B.1)

Now imagine we have flipped y spins from our initial configuration. If we flip one more spin at random,

once again ∆Eavg (y) = −2pE (y)∆y. However, we have already flipped y spins, so when we flip one more

at random, with probability 1− y/N we have flipped a spin back and are computing the energy change

associated with reducing y by 1. Consequently
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(
1− 2y

N

)
∆Eavg (y)

∆y
= −2pE (y) (B.2)

If we interpret this as a differential equation, it has a straightforward solution: starting from the ground

state G, for x unique random flips away the average energy is

Eavg (x) = EGS

(
1− 2x

N

)p

. (B.3)

Note that this statement is graph independent, and is only an average; individual trajectories will of course

display substantial variations. It is a rederivation of a familiar result for dense hypergraphs with Gaussian

distributed constraint energies [106, 130], but is applicable in much broader contexts and is easy to confirm

numerically. Throughout this work, we rescale all problems by a multiplicative constant so that the ground

state energy is −N .

B.2 Paramagnet to spin glass transition scaling for MAX-3-XORSAT

Before proceeding to our main calculation, we note that, from this result, we can predict the typical case

difficulty scaling of finding the ground state with AQC or QAOA, for random hypergraphs as defined in

section 3.3. To predict the phase transition rate, we will use high order perturbation theory to compute the

perturbative dressings to the problem ground state; call this state |GD⟩. Using fourth order perturbation

theory, for uniform transverse field strength κ, the energy of the dressed ground state is, again on average8

EGS ≃ −N
(
1 +

κ2

2p
+

κ4

8p3
+ ...

)
. (B.4)

This crosses the energy of the paramagnetic state, which is −Nκ and minimally perturbed by the problem

Hamiltonian, at κc ≃ 1.29 for our family of p = 3 PPSPs. The splitting 2Ω0 at the phase transition is

expected to be proportional to the overlap of the uniform superposition state |S⟩, the ground state of HD,

with the dressed state |GD⟩ [92]:

Ω0 ∝ ⟨S|GD⟩ . (B.5)

To compute Ω0, we must thus compute the perturbative corrections to |GD⟩, to high orders. Again using

Eq. (B.3), if we let
∣∣G(i,j,k...)

〉
≡ XiXjXk... |G⟩, and Ẽavg (k) ≡ Eavg (k)− EG, at the transition point we

8In this step the graph structure of HP can potentially be important. This is because the energy denominator 2p, the average
cost per flip just a few flips away from G, is more sensitive to the details of the graph than the energy cost many flips away,
which can in turn shift κc. We thus do not claim this result is valid for all graphs. However, we find that for our random
PPSPs the transition is consistently near the κc we predict here and the scaling of the uniform field result closely matches our
prediction.

79



have

|GD⟩ ≃ |G⟩+ κc

Ẽavg(1)

∑
j

∣∣G(j)
〉

+2!
κ2
c

Ẽavg(1)Ẽavg(2)

∑
i̸=j

∣∣G(i,j)
〉

+3!κ3c
∏3

m=1
1

Ẽavg(m)

∑
i ̸=j ̸=k

∣∣G(i,j,k)
〉
+ ... (B.6)

The factorials come from the combinatorics of ordering the m spin flips to reach each term. Now, since all

states are present in |S⟩ with equal amplitude 2−N/2 and all terms in |GD⟩ are positive definite, we can

immediately conclude

Ω0 (N) ≃ 2−N/2

(
1 +

N∑
m=1

κmc

(
N

m

)
m!

m∏
n=1

1

Ẽavg (n)

)
. (B.7)

For κc = 1.29, this function is well fit by Ω0 = a
√
N2−bN , where b ≃ 0.14, in decent agreement with the

result for a mean-field p = 3-spin ferromagnet derived in [131]. We note also the hardness equivalence

between dense and random sparse graphs drawn in [132], though we emphasize that the results we derive

here are not limited to completely random graphs. If we are in the diabatic regime for tf ≪ 1/Ω0 (N), the

probability of finding the ground state after a sweep is PGS (tf ) ≃ Ω2
0tf/W , where W ∼ O (N) is the energy

range swept over in the evolution; for tf ∝ N we thus have PGS (tf , N) ≃ N2−2bN . Our numerical

simulations for PPSPs, shown below, are in good agreement with this result. Note that this assumes a

single avoided crossing and does not consider transverse field chaos, e.g. crossings late in evolution between

states close in energy; such transitions can in principle be substantially more difficult [133], but are not

relevant to approximation hardness in this problem as argued earlier.

B.3 Scaling of inter-valley tunneling in a p = 3 quantum spin glass

This calculation is less easy to generalize to a spectrally folded Hamiltonian, however, where we have

exponentially many competing ground states, clustered in a thin hyperspherical shell around the true

minimum, at least in approximation-hard problems. So instead we will consider tunneling between two

p-spin wells in an N spin system, spaced N/2 flips apart, and show that the average per-state tunneling

rate in the TMA formulation of spectrally folded optimization should have near-identical scaling. Our total

N -spin Hamiltonian, consequently, is

H = − 1

Np−1

∑
j

Zjaj

p

+

∑
j

Zjbj

p
− κ

∑
j

Xj , (B.8)

80



where the aj and bj are all equal to ±1 and specify the minimum position for each of the two terms. We

assume for the remainder of this writeup that a and b correspond to bitstrings M = N/2 flips apart; we let

these states be |0⟩ and |1⟩. We will also define the bare classical energy, with no corrections from transverse

fields. We start from one of the two minima, and consider a state which is m+ n random flips away from

it. We let m of these flips be ones which move toward the other minimum (e.g. reduce the Hamming

distance to it), and the n flips be flips that move away from it. Then the bare energy E
(0)
m,n is given by:

E(0)
m,n = −N

[(
1− 2

m+ n

N

)p

+

(
2
m− n

N

)p]
. (B.9)

We assume that the transverse field strength κ is below κc, the p-dependent critical point where a

transition to the paramagnetic state occurs. The ground states are thus the symmetric and antisymmetric

combinations of the two dressed classical minima, with splitting 2Ω0, where Ω0 decays exponentially in N

and our goal in this section is to predict its decay rate.

Computing Ω0 proceeds through the following steps:

• We compute the renormalized cost per flip away from either minimum, incorporating transverse field

corrections, which we will then use in the energy denominators of our Mth order perturbation theory.

This step is analogous to commonly used resummation schemes in diagrammatic quantum field

theory, where self-energy corrections are incorporated into the propagators used to compute higher

order processes.

• We divide the system between primary spins, which flip between the classical minima, and secondary

spins, which do not. We then compute the dressed states |0D⟩ and |1D⟩ that comprise all the primary

flip sequences up to order M/2 away from each minimum. It is at this order that the two states have

nonzero overlap.

• These dressed states are then normalized; incorporating this normalization, their overlap gives the

primary spin contribution to the tunneling rate, Ω
(p)
0 .

• We then compute the secondary spin contributions to tunneling, which take two forms: an increase of

the tunneling rate from the constructive contribution of many additional tunneling sequences in

which secondary spins participate, and a decrease from normalization corrections and the spread of

the classical minima away from the core classical configurations from which the tunneling calculation

begins.

• Incorporating both sets of secondary spin contributions gives us a closed form expression for Ω0

which can then be evaluated numerically and compared to exact diagonalization.

81



We first want to compute the energy shifts, in second order perturbation theory, to these states. These

corrections arise from a single spin being flipped and flipped back, and are opposite in sign to the cost of

the local flip. Let um,n be the difference between energies of a state m,n and a ground state, incorporating

these corrections. Then

um,n = E(0)
m,n +N

(
1 +

κ2

2p

)
−
(
N

2
− 2m

)
κ2

∂mE
(0)
m,n

−
(
N

2
− 2n

)
κ2

∂nE
(0)
m,n

+O
(
κ4
)
. (B.10)

Note that ∂mEm,n|m,n=0 = ∂nEm,n|m,n=0 = 2p, so u0,0 = 0. One can observe that if p = 2,

∂mEm,0 = 4
(
1− 4m

N

)
, and the transverse field corrections to state energies are m-independent, so that the

energy barrier between the two competing ground states is not renormalized by the transverse field. But

for p = 3 and higher these corrections are nontrivial and act to reduce the effective energy barrier between

the states, increasing the tunneling matrix element. This process is effectively a resummation of higher

order corrections and is necessary to obtain quantitatively accurate results.

We start by computing the dressed states, summing over primary spin corrections only. They take the

form

|0D⟩ ≡ |0⟩+
∑
j

κ

u1,0
Xj |0⟩+

∑
j,k(j ̸=k)

2κ2

u1,0u2,0
XjXk |0⟩

+
∑

j,k,l(j ̸=k ̸=l)

3!κ3

u1,0u2,0u3,0
XjXkXl |0⟩+ ... (B.11)

The expression for |1D⟩ is identical. We stop our expansion at order M/2, which is the lowest nontrivial

order needed to connect the states. For simplicity we assume M is even though the argument is easy to

generalize to odd M as well. Note that this state is not normalized, and in fact the norm of the state

written above is exponentially large, so we will need to incorporate normalization corrections into the

definition of the states. Thanks to the dressing of the states, we obtain a primary-spin energy splitting

1

2
(⟨0D|+ ⟨1D|)HP (|0D⟩+ |1D⟩) = 2Ω

(p)
0 ,

1

2
(⟨0D| − ⟨1D|)HP (|0D⟩ − |1D⟩) = 0. (B.12)

Evaluating these expressions, the degeneracy splitting from only considering primary spins is:
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Ω
(p)
0 = κM

(
M

M/2

)
1

uM/2,0

M
2
!

M/2−1∏
k=1

1

uk,0

2

×N (p),

N (p) =

1 +

M/2∑
k=1

(
M

k

)κkk! k∏
j=1

1

uj,0

2


−1

. (B.13)

Here, Np is the normalization correction. This covers the primary spin portion of the macroscopic quantum

tunneling rate.

We now turn to the secondary spins. To introduce secondary spin corrections, consider a single

secondary spin j out of the (N −M) ∼ N/2 total, whose bit value is the same in both classical minima.

Since the same transverse field is acting on it as all other spins, when we consider the sum of all processes

that connect the two minima, we can now divide them between those where M/2 primary spins flip from

each minima to meet in the middle, with secondary spin j unchanged, and a new set of processes where

spin j flips starting from each minimum and the two wavefunctions overlap at the set of states where M/2

primary spins have flipped along with j. The first set of processes is what was considered in Eq. B.13; the

second is new, and we want to calculate its matrix element. It is most useful to express these matrix

elements as a ratio of the new term to the original, primary-spin-only process, since both decay

exponentially in M . Let the primary spin perturbative matrix element to reach M/2 flips be ξM/2, so that

ξM/2 = κM/2

M
2
!

M/2∏
k=1

1

uk,0

 . (B.14)

To define the analogous process where j flips, we need to sum over all the points during the perturbative

sequence when that can happen. We thus have:

ξsM/2 = κM/2+1M

2
!

M/2∑
n=1

n∏
k=1

1

uk,0

M/2∏
k=n

1

uk,1
. (B.15)

And noting that we have to make this insertion in the matrix elements from both minima, the total

tunneling term is increased by

Ω
(p)
0 →

(
1 +

(
ξsM/2

ξM/2

)2
)
Ω

(p)
0 , (B.16)(

1 +

(
ξsM/2

ξM/2

)2
)

≡ γT . (B.17)
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We now need to consider the rest of the secondary spins. Formally of course, the additional energy cost of

each secondary spin flip changes as more secondary spins flip, but since these corrections are fairly weak

(though they are appreciable and necessary for an accurate prediction of the scaling exponent) the total

tunneling rate is going to be dominated by the set of processes where a comparatively small fraction of

secondary spins have flipped, and we can thus approximate them as independent contributions. In this

limit, since there are N −M secondary spins,

Ω
(p)
0 → Ω

(p)
0 γN−M

T . (B.18)

Alongside this, the secondary spin corrections also spread the competing ground state wavefunctions

out over Hilbert space, which exponentially reduces the weight of the core classical configurations from

which the tunneling calculation begins. To be consistent with the independence approximation made

above, we simply compute all the corrections to the ground state from each secondary spin independently

and multiply them. Noting that we must apply this calculation to both competing ground states, this

reduces the tunneling rate by

Ω
(p)
0 → Ω

(p)
0

(
γT
γR

)N−M

, γR ≡ 1 +

(
κ

u0,1

)2

. (B.19)

Note that, if we set the cost per flip of a given secondary spin to some constant U , independent of the

configuration of the other spins, that would imply it is disconnected from the primary spins as there are no

couplings to shift the energy. In this limit a direct evaluation of the two functions shows that γT = γR (for

any choice of U) and this now disconnected spin plays no role in tunneling at all. This factorization of

disconnected spins is reassuring, and lends support to the correctness of this approach. Taking into account

all these effects, our total tunneling rate is

Ω0 = κM
(
M

M/2

)
1

uM/2,0

M
2
!

M/2−1∏
k=1

1

uk,0

2

×N (p) ×
(
γT
γR

)N−M

. (B.20)

Taking all of these effects into account yields a highly accurate prediction of the minimum gap scaling for a

wide range of values for p and κ, with only an O (1) discrepancy in the prefactor and few percent

discrepancies in the scaling exponent (empirically, Eq. B.20 tends to slightly overestimate the decay

compared to the exponent extracted from numerical diagonalization).
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B.4 Achievable approximation ratio with spectrally folded trial minimum annealing

With this result in hand, we will now predict the macroscopic quantum tunneling rate–and thus,

achievable approximation ratio–for the spectrally folded Hamiltonian. From this, we can calculate our

target value of A, assuming that there is a single deep minimum far below the energy of any local minima.

Relaxing this assumption will improve the performance of the algorithm by virtue of there being many

more target states, as confirmed in our simulations for lower constraint densities. We consider the protocol

in section 3.4, with an initial state |L⟩. We assume that the process of ramping the transverse field up and

down is itself at least roughly adiabatic, i.e., we can assume approximate spectral continuity with respect

to the folding and lowering Hamiltonians, noting that the lowering Hamiltonian will itself create O
(√

N
)

shifts to the energies of states near the fold. It follows from our assumption that the ramping process itself

does not meaningfully heat the system. We then consider the set T of all states within O (1) shifts of

−AEGS in HP , the states closest to the fold, and compute, as a function of all our various algorithm

parameters, the total probability of tunneling into any one of them.

Since the tunneling rate into any individual state is exponentially small, and the time over which we

slowly turn off the lowering Hamiltonian is T ∝ O (N), we can assume that tunneling will be diabatic with

respect to any individual state. A Fermi’s Golden rule analysis as in [111] suggests that

Ptot ∝
T

W

∑
j∈T

Ω2
0,Lj , (B.21)

where W ∼ O (N) is the energy range swept over by reducing C (t) to 0, and Ω0,Lj is the tunnel splitting

at degeneracy between |LD⟩ and the target state |jD⟩, which we assume are an average of ∼ N/2 flips

apart. To go further, we need to compute the average value of Ω2
0,Lj , noting that while of course there will

be substantial state-to-state variations, given that there are exponentially many states in T the average

value is going to dominate Eq. (B.21). As in the previous calculation, the most important quantity here is

the average cost per flip away from the typical ground state in the folded Hamiltonian, which remarkably

turns out to be A-independent.

To see this, we start from the average cost per flip away from |G⟩, given by Eq. (B.3), and note that we

can invert that equation to find the mean number of flips xAN for which ⟨E (xAN)⟩ = −AN . To be

specific,

xA =
1−A1/3

2
. (B.22)
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We can therefore assume that the typical state in T is xAN flips away from |G⟩. If we consider the

sequences of primary spin flips connecting |jD⟩ and |LD⟩, the typical flip sequence starts xAN flips away

from |G⟩, and notice that with probability 1− xA an additional random flip towards |L⟩ will also move

closer to |G⟩. Taking all these effects and the division by A into account, so that the bare unperturbed

energy of both |j⟩ and |L⟩ when they cross are both ∼ −N , a bit of algebra shows that for y flips away

from a ground state of the folded Hamiltonian, not only is the total average cost ∆E (y) A-independent, it

is precisely equal to the cost given by Eq. (B.3).

This is again only an average, but noting that since it appears the denominators of equations like

(B.20), variations about it are more likely to increase the tunneling rate than decrease it. And likewise,

since HL is a random 3-XORSAT problem itself the mean cost per flip away from |L⟩ is going to be given

by Eq. B.3 as well, so Eqns. B.8 through B.20 can faithfully predict the average tunneling rate between |L⟩

and a randomly chosen ground state of the folded Hamiltonian.9

Of course, this rate decays exponentially; assuming the two states are M ∼ N/2 flips away for κ = 1.29,

Ω0 ∝ 2−bN where b ≃ 0.2. But this is balanced by the fact that there are on the order of
(

N
xAN

)
target

states. We can further note that out of these states, while the mean distance to |L⟩ is M ∼ N/2, ones

which are k flips closer have tunneling rates which are larger by a factor of 22bk on average, and though

those states are proportionally rare their increased weight is enough to meaningfully impact our choice of

A. Since our total runtime is linear, simple diabatic scaling predicts that the probability of tunneling into

the typical state M − k flips away is proportional to Ω2
0, e.g. 2

−4b(M−k).

We now take this result and plug it into Eq. (B.21), so that we can determine the choice of A where the

returned Ptot provides an approximation guarantee. If we use Stirling’s approximation to write the

binomial coefficients as exponentials, and ignore slowly varying polynomial factors, the total number of

states in T scales as:

NT ∝ exp (− [xA lnxA + (1− xA) ln (1− xA)]N) . (B.23)

Likewise, if the average probability of tunneling into a target state k primary spin flips closer to |L⟩ is

increased by a factor of at least 24bk, the weighted per-state average of the diabatic tunneling rate into

states in T can be approximated as

log
〈
Ω2

0

〉
−N ≈ 2b ln 2− xA

(
ln
(
1 + 24b

)
− ln 2− 2b ln 2

)
. (B.24)

9We expect that using the average cost per flip in Eq. B.9 will if anything underestimate the per-state tunneling rate in real
disordered problems. This is because all of these energy costs appear in denominators, which leads to likely small asymmetries
in how much the deviations from the average in any individual flip sequence contribute to the total matrix element, giving
lower energy sequences proportionally higher weight. We do not really expect this effect to be significant but rather highlight
it as another point where our prediction is conservative by design.
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Note that this average comes from considering only xAN flips away from |G⟩ but varying Hamming

distance from |L⟩ and thus neglects the influence of comparatively rarer states larger distances from |G⟩.

Taking all these terms into account, the probability of returning a state with E ≃ AEGS as measured

relative to the original HP becomes constant, or at least stops decaying exponentially, when

− 2b ln 2− [xA lnxA + (1− xA) ln (1− xA)] + xA
(
− ln 2− 2b ln 2 + ln

(
1 + 24b

))
= 0. (B.25)

The achievable approximation ratio is thus determined by the per-state decay exponent b, computed in

section B.3 as a function of N and κ by fitting Eq. (B.20) to Ω0 (N) ∝
√
N2−bN , and then choosing xA

using Eq. (B.22) to solve Eq. (B.25). This analysis only counts states within O (1) shifts of AEGS (recall

that EGS = −N in our normalization) and ignores low-order polynomial prefactors; for b = 0.2, which

again depends on κ = 1.29 in this calculation, this is solved when xA ≃ 0.08, or A ≃ 0.59.

This means that if the true ground state satisfies a constraint fraction F beyond random guessing—e.g.

a total fraction 1/2 + F , so F is at most 1/2 here—our algorithm will return states which satisfy a fraction

1/2 +AF with high probability. If we choose A to be too large compared to the target value established by

expressions like Eq. (B.25), we risk failing to well-approximate the problem; conversely, choosing A below it

will reduce the returned approximation ratio to A and thus perform suboptimally. And, we emphasize

again, this prediction assumes a random, potentially dense hypergraph but is fundamentally independent of

the fraction satisfied in EGS itself and so applies to the planted partial solution instances we use for

numerical benchmarking below.

B.5 Further Comments and Caveats

We expect that this analysis underestimates the choice of A that will return states with E ≤ AEGS

with constant probability. This is because our counting here only counts states very close to the fold, when

in reality the probability of tunneling into states a small extensive fraction larger than AEGS is still going

to be appreciable due to the continued exponential growth of the number of targets, even if the per-state

tunneling rate does tend to decrease with increasing E due to the interference effect mentioned earlier, in

which perturbative corrections that mix with states of lower energy have opposite sign. In addition to this

consideration, because the target ground states and low lying excitations of the folded Hamiltonian in T

very roughly form a hyperspherical shell, any individual target state will have other states in T that are

relatively close to it in Hamming distance. Consequently we expect these states to have a band dispersion,

centered around the mean energy given by the corrections in Eq. (B.10). Since we are already assuming

off-resonant tunneling, i.e. a per-state tunneling rate ∝ Ω2
0, and so summing over squared matrix elements,

if we consider states near the band center where the density is highest this will alter the average tunneling
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rate by at most a prefactor. However, there are good reasons to suspect that tunneling into extremal states

near the bottom of the band can be substantially enhanced, enough to increase the optimal value of A.

This calculation is difficult to do quantitatively so we do not attempt it here; we instead see the

approximation of considering only states near the band center of T as another choice that likely

underestimates the achievable approximation ratio.

We also want to emphasize that this variation is not necessarily the optimal spectrally folded

optimization algorithm, but instead merely the one where we were able to analytically compute the

threshold A. For example, one can perform trial minimum annealing with a simple local Z bias lowering

Hamiltonian (e.g. HL =
∑

j hjZj), or standard AQC interpolation using the quadratic folding procedure in

Eq. (3.5) as the cost function. The linear lowering Hamiltonian is expected to have equal or better

tunneling rates to a 3-XORSAT-based minimum as the overall cost-per-flip curve is shallower, though the

local energy shifts to the ground states of Hfold from HL are expected to be larger. The total gate count at

each time step is lower. Empirical performance in testing up through N = 25 showed fairly similar

performance to 3XOR-based HL for all other parameters equal, but with more significant non-monotonic

behaviors that made fitting difficult; see Section 3.5.3 for details. That the two schemes could

asymptotically converge to the same achievable approximation ratios seems plausible to us but we cannot

simulate large enough systems to be sure.

For quadratic folding AQC as in Eq. (3.6), if we choose A = 1 the gap is efficiently computable using

the methods in [131] and decays as Ω0 ∼ 2−0.16N . Given that, like linear folding, the cost per flip curve is

A-independent, if we assume that the tunneling rate per state for A < 1 is basically equal to this, then the

total decay exponent vanishes if xA ≃ 0.06 and A ≃ 0.68 using the arguments of the previous few

paragraphs. We do not think that can be simply assumed as easily as with tunneling between semiclassical

minima and a linearly folded problem Hamiltonian, in the DPP, and more theoretical work is needed here

to analytically determine the optimal choice of A. Interestingly however, our simulation data in

Section 3.5.3 supports this conclusion, with a worst case polynomial time approximation ratio of 0.7 found

in our simulations. These simulations show that this method performs similarly to, or slightly worse than,

the 3XORSAT-TMA algorithm, which is better able to outperform the approximation guarantee of ∼ 0.6

derived here.10 We also expect that the average tunneling rate–and thus, achievable approximation

ratio–can likely be further increased by using other, potentially many-frequency, AC methods such as

RFQA [31, 32, 82, 111, 123]. For simplicity, we do not incorporate these methods in this work, but they

10For smaller systems we also tested linear folding AQC and quadratic folding TMA. In very preliminary studies we found that
quadratic AQC modestly outperformed linear AQC, and linear TMA more significantly outperformed quadratic TMA. So we
chose not to pursue those methods for larger simulations and do not present those results here, but they may be viable or
even superior for other problem classes.
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could be a novel way to further improve the performance of this algorithm and are worth exploring in

future research.

In summary, through a relatively novel resummed extensive order perturbation theory, we have shown

that random hypergraph MAX-3-XORSAT instances, including extremal ones with planted partial

solutions, are efficiently approximable to a fairly large constant fraction through the spectrally folded

quantum optimization algorithms. We do not expect this to be the case for QAOA, for the reasons

discussed earlier in Section 3.3 and supported by the numerical evidence we present below. We similarly do

not expect such guarantees to be possible for directly finding global optima, for the reasons set forth in the

introduction. Evidently, one cannot so easily summit a mountain in hyperspace, but one can reach the rim

of a crater. We now present a series of numerical simulations to further support these claims.

89



APPENDIX C

ADDITIONAL NUMERICAL RESULTS FOR IST-SAT WITH VARIOUS ALGORITHM SET-UPS

C.1 Identifying empirical radii of convergence for IST-SAT

In this section, we report the results obtained for IST-SAT with lower frequency of ω = 2π × 5 lnN and

shorter run-time that was simulated to larger system size (N = 30). While this parameter set under

performs higher frequency drives and with longer run-times as presented in the main text, the empirical

radii of convergence we identify do change significantly. One may consider a finer-grid search to identify

how exactly rc scales with the constraint density NC/N and fraction ϵ of unsatisfied constraints in the

ground state.

Figure C.1 Convergence of IST-SAT. Assuming we guess phases correctly with probability (1− r), in the
top (bottom) row we plot the probability of returning strings within DH ≤ rN (DH ≤ rcN/2) flips away
from G. A radius of convergence rc can be readily identified in these plots by dashed lines, which are
approximately the first fraction r to obtain constant probability with increasing N .

Shown in Figure C.1, we observe monotonically increasing probabilities of returning solutions that

approximate the PPS at different approximation ratios rN in terms of Hamming distance DH . We identify

an approximate radius of convergence rc for each constraint density NC/N = {1.5, 2, 4} respectively as

rc = {1/8, 1/4, 1/3}.

90



Table C.1 In this table, we report the exponent b obtained from fitting the function a2bN to the
probabilities for constraint densities of NC = {1.5, 2, 4}N . In (a), we report the fitting results to
P (DH ≤ rN), and in (b), we report the parameters fit to P (DH ≤ rN/2) of finding states close in
Hamming distance DH for different distances defined by a fraction r of {N,N/2} or fewer flips from the
ground state. In both (a) and (b), initial phase lists were chosen from seed states (1− r)N close in DH .
The exponential fit parameters reported here may be used to infer a time to solution (TTS) given an initial
approximation DH = (1− r)N for various fractions of r below.

Table C.2 Fractional Hamming distance approximation P (DH ≤ rN).

Guessing error r NC = 1.5N NC = 2N NC = 4N
1/3 3.4e-2 2.2e-2 -8.3e-5
3/10 3.0e-2 9.5e-4 -1.6e-2
1/4 1.4e-2 -8.9e-3 -3.9e-2
1/8 -1.0e-2 -3.6e-2 –

Table C.3 Fractional Hamming distance approximation P (DH ≤ rN/2).

Guessing error r NC = 1.5N NC = 2N NC = 4N
1/3 7.8e-2 4.4e-2 -3.0e-2
3/10 6.3e-2 2.4e-2 -2.2e-2
1/4 4.0e-2 1.3e-3 -4.7e-2
1/8 5.1e-3 -3.0e-2 –

91



C.2 Performance of IST-SAT to any ground state

Figure C.2 Convergence of IST-SAT to the any ground state in the degenerate energy manifold. Using seed
states which approximate the planted solution by some fraction r ∈ {1/8, 1/4, 3/10, 1/3}N in Hamming
distance (or the exact planted solution in the r = 0 case), we report the probabilities of approximating any
ground state (top row) P (DH ≤ rN), and (bottom row) P (DH ≤ rN/2).

As mentioned in the main text, we include the performance of IST-SAT to any ground state per

problem instance (averaged over 1000 random problem instances) for each constraint density. As shown

in Figure C.2, the results for NC/N = 1.5 shows that the empirical radius of converge we observe for

reaching the planted ground state, both exactly and approximately in Hamming distance, is distinct from

reaching any ground state. We report the exponents from lines of best fit below, which demonstrate that

finding any ground state is often easier than finding the planted solution, in particular. Hence, even when

IST-SAT is seeded with a bitstring that approximates the planted solution, the probability of reaching any

ground state remains robust. This result is supported by the statistics provided in Figure C.3, which report

the average the number of ground states per problem instance, and relative Hamming distance between

ground states. For lower constraint densities, the number of ground states is significant, while the planted

solution tends to be the unique ground state for NC/N = 4. We identify the constraint density of

NC/N = 2 to be an intermediate regime, where size of the degenerate manifold is non-zero, but not so

large that the performance of IST-SAT degrades significantly. Thus, these results further characterize the

energy landscape of MAX-3-XORSAT, which may be useful in the future development of quantum
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(approximation) algorithms.

Table C.4 Numerical fit exponents b using the same set-up as the tables above. Here we report the fits
from the probabilities reported to any ground state in Figure C.2.

Table C.5 Fractional Hamming distance P (DH ≤ rN) to any ground state.

Guessing error r NC = 1.5N NC = 2N NC = 4N
1/3 1.3e-2 -1.3e-2 -1.1e-2
3/10 1.2e-2 -3.1e-3 -1.1e-3
1/4 1.7e-2 2.2e-2 2.3e-2
1/8 4.5e-2 6.2e-2 5.8e-2
PGS 4.5e-2 5.3e-2 3.3e-2

Table C.6 Fractional Hamming distance P (DH ≤ rN/2) to any ground state.

Guessing error r NC = 1.5N NC = 2N NC = 4N
1/3 -2.4e-2 -3.8e-2 4.5e-4
3/10 -1.6e-2 -2.0e-2 2.1e-2
1/4 -8.7e-4 1.2e-2 4.6e-2
1/8 4.1e-2 6.0e-2 7.7e-2
PGS 4.7e-2 5.3e-2 3.9e-2

a) b) c)

Figure C.3 (a) Percentage of problem instances (from the total 1000 instances) with more than one ground
state, including the PPS. For each system size N = 8− 24, we computed exact ground states using
brute-force methods. (b) Average number of ground states per problem instance. (c) Pairwise Hamming
distance DH within the set of ground states. The N = 8, 9, 12 cases have only one ground state, which is
the PPS.
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C.3 Approximation performance for seed algorithms on MAX-3-XORSAT

Table C.7 In this table, we report the parameters b obtained from fitting the function a2bN to the
probabilities P (DH ≤ dN) of finding states close in Hamming distance DH for different distances dN or
fewer flips away from the ground state. We include the fitting results obtained from both (a) spectral
folding and (b) TAQC for the set of constraint densities NC = {1.5, 2, 4}N . For the particular case of no
distance from the ground state (d = 0), we report the parameters for PGS fit to the function aN2bN . We
denote the fraction d for each constraint density associated to rc in bold face text. In (a), we note the
probability to any degenerate ground state with an asterisk (*), for the particular case of NC = 1.5N . The
readers may refer to [120] for more details regarding quadratic SFQO.

Table C.8 Quadratic spectrally folded quantum optimization (SFQO) approximation performance.

Fractional Hamming distance d NC = 1.5N NC = 2N NC = 4N
2/5 *2.8e-3 5.5e-3 1.4e-4
1/3 *-2.5e-3 5.0e-3 3.4e-3
1/4 *-6.3e-3 -5.6e-3 6.1e-3
1/5 *-7.1e-3 -1.0e-2 9.1-3
1/8 *-1.5e-2 3.2e-3 1.9e-2

0(PGS) – -4.2e-1 -4.6e-1

Table C.9 TAQC approximation performance.

Fractional Hamming distance d NC = 1.5N NC = 2N NC = 4N
2/5 -3.0e-2 -2.6e-2 -2.0e-2
1/3 -5.0e-2 -4.1e-2 -2.6e-2
1/4 -7.0e-2 -5.5e-2 -2.9e-2
1/5 -8.4e-2 -6.4e-2 -3.2e-2
1/8 -1.1e-1 -8.2e-2 -4.0e-2

0(PGS) -3.0e-1 -2.6e-1 -2.8e-1

Table C.10 Greedy classical algorithm approximation performance.

Fractional Hamming distance d NC = 1.5N NC = 2N NC = 4N
2/5 -3.2e-2 -3.1e-2 -2.9e-2
1/3 -5.7e-2 -5.4e-2 -4.5e-2
1/4 -9.0e-2 -8.3e-2 -5.2e-2
1/5 -1.1e-1 -10.0e-2 -5.3e-2
1/8 -1.5e-1 -1.2e-1 -5.5e-2

0(PGS) -2.3e-1 -1.9e-1 -7.5e-2

C.4 Performance of TAQC and it’s use as a seed algorithm for IST-SAT

In this appendix, we examine the performance of TAQC as a seed algorithm for IST-SAT. In particular

we include the results for approximating the ground state in terms of Hamming distance in Figure C.4 and

energy in Figure C.5 obtained from quantum simulations in formulation of TAQC.
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Figure C.4 Probabilities of returning strings within a Hamming distance DH ≤ dN from the ground state
G with TAQC, for (left to right) NC = {1.5, 2, 4}N and other parameters listed in the text. Lines are fits
to a2bN (aN2bN for the probability of finding G). As discussed in the text, the probability of finding G is
roughly independent of NC/N but the probabilities of finding states close to it are much more sensitive it.

Figure C.5 Probability of TAQC returning states that approximate the ground state energy EGS by a
percentage d = {50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100(PGS)}%. We include constraint densities
NC = {1.5N, 2N, 4N} (left to right) denoted in the respective figure panels. Lines of best fit were
computed according to a simple exponential function f(N) = a2bN , where a is a constant. Exponentially
decaying fits are denoted by dashed lines, while fits with a positive exponent are denoted by solid lines. We
identify the highest percentages that are not exponentially decaying by qa = {90, 80, 55}% associated to
constraint densities NC = 1.5N, 2N, 4N respectively.

C.5 Quasi-greedy classical algorithm with warm starts

To further approximate the radius of convergence for our PPSPs we applied a classical greedy descent to

random problem instances of constraint densities 1.5N , 2N , and 4N . The algorithm is a modified version

of the simple greedy algorithm introduced in [45] and later applied to hypergraphs in [120]. To approximate

the radius of convergence, we ran the greedy algorithm on random hypergraphs for the stated constraint

densities. The initial states started from different values of r ∗N flips away from the planted solution to

show how well the algorithm performs when beginning at different distances away from the ground state.
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Figure C.6 Probabilities of finding the ground state of random hypergraphs for NC = {1.5N, 2N, 4N} using
100,000 trials on each constraint density and each value of rN . Also plotted are line fits to a2bN . The plot
demonstrates the increase in improvement as the classical algorithm is seeded with bitstrings closer in
hamming distance to the ground states.
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