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Abstract

Structural Health Monitoring (SHM) systems are critical for monitoring aging infrastructure (such as buildings or bridges)
in a cost-effective manner. Wireless sensor networks are particularly appealing for SHM applications due to their flexibility
and low cost. However, in order to extend the battery life of wireless sensor nodes, it is essential to minimize the amount
of data these sensors must collect and transmit. In this paper, we study two frameworks for Compressive Sensing (CS) in
SHM systems. In particular, we suppose that individual sensor nodes sample vibration data over time; our two CS frameworks
differ only in how the sample times are chosen (uniformly vs. randomly). We then suppose that the data is transmitted to a
central node, where modal analysis can be used to detect damage in the structure or to populate a model for simulation. In
particular, we examine the performance of a very simple technique for estimating the structure’s mode shapes without requiring
a traditional CS reconstruction of the vibration signals; all that is needed is to compute a single Singular Value Decomposition
(SVD). We provide new finite sample analysis characterizing conditions under which this simple technique—also known as
the Proper Orthogonal Decomposition (POD) in structural dynamics—can correctly estimate the mode shapes of the structure.

I. INTRODUCTION

A. Overview

Modal analysis plays an important role in Structural Health Monitoring (SHM) systems. Modal parameters of a structure
(such as its modal frequencies, mode shapes, and modal damping ratios) describe the vibrational characteristics when external
forces such as wind, earthquakes, or vehicle loadings are applied to the structure. Many damage detection algorithms make
use of modal parameters to detect, localize, and assess the severity of damage [1], [2].

We consider the problem of determining the modes shapes of a structure from a collection of vibrational time series
recordings as might be collected by a network of battery operated wireless sensor nodes deployed across the structure.
Our primary concerns are: (i) guaranteeing the accuracy of the estimated mode shapes, and (ii) minimizing the amount of
data that must be collected and then transmitted to a central node for processing, in order to extend the life of the sensor
network. As a technique for estimating the mode shapes from the matrix of collected data, we study a very simple method
known as the Singular Value Decomposition (SVD) in signal processing and as the Proper Orthogonal Decomposition (POD)
in structural dynamics. It has previously been shown that, under certain assumptions, the singular vectors (also known as
proper orthogonal modes) returned by such a technique converge to the true mode shapes asymptotically as the number of
observations goes to infinity [3], [4]. We believe that our work is new in two respects:
• When time samples are collected uniformly in time from the sensors, we quantify the accuracy of the estimated mode

shapes in terms of the sampling rate, total observation time, and spacing of the modal frequencies. This provides finite
sample bounds for the SVD/POD technique that, to the best of our knowledge, have not appeared in the literature.

• When time samples are collected randomly in time from the sensors, we quantify the accuracy of the estimated mode
shapes in terms of the number of samples, total observation time, and spacing of the modal frequencies. In some cases,
we show that mode shape estimates obtained using a given number of random samples can be more accurate than the
mode shape estimates obtained using an equivalent number of uniform time samples.

We support our analysis with representative experiments. Although the SVD/POD technique that we study is a simple one,
and although we restrict our analysis to idealized N -degree-of-freedom systems under free vibration and with no damping,
our goal is to extend our new understanding of this problem to more sophisticated techniques for modal analysis. Moreover,
even with these naive assumptions, our experiments demonstrate that under certain conditions, this method can accurately
recover the modal parameters on both synthetic data (see Section IV) and real data (see [5]).

This paper is closely related to our recently published work [5], where we also studied the two types of time sampling
above. As we explain in Section III, however, our accuracy bounds in [5] were sensitive to cases where two or more modes
were oscillating with the same (or nearly the same) amplitude. In this paper we extend our theorems from [5] to account for
such cases. As we show, while the simple SVD-based estimation technique fails to accurately recover individual mode shapes
in such instances, this technique can accurately recover the relevant subspaces spanned by the mode shapes of interest.

This paper is also related to [6], [7], which have explored the application of Compressive Sensing (CS) [8], [9], [10]
to SHM systems. CS is a new framework for capturing high-dimensional signals using small numbers of randomized time
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samples or other compressive measurement protocols. CS is typically applied to one signal at a time, where a receiver uses a
regularizing model (such as an assumption of sparsity in some basis) in order to recover each high-dimensional signal from
its low-dimensional compressive measurements. Unfortunately, these recent works [6], [7] have found that a relatively high
number of CS measurements can be required for signal-by-signal reconstruction to be accurate enough to permit adequate
assessment of the structural health. Although our acquisition framework can be viewed as being CS-like in its motivation
to minimize the requisite number of samples for modal analysis, our algorithmic framework for processing the samples is
very different from traditional CS papers. In particular, we do not attempt to reconstruct the individual vibration signals and
then perform modal analysis. Rather, we apply a single SVD to a matrix formed by concatenating the (low-dimensional)
measured samples, and this immediately provides our estimates of the mode shapes.

B. Paper Organization

Section II lays the groundwork for our analysis, beginning with the modal superposition equation for the idealized N -
degree-of-freedom systems that we consider. This section also details our uniform and random sampling strategies and
explains how the SVD/POD can be used to estimate mode shapes from the vibrational time sample data. Section III presents
and discusses our new theoretical results concerning the accuracy of this SVD-based technique for modal analysis. Section IV
uses a series of simulations to demonstrate the relative tradeoffs of mode shape accuracy with the number of samples, the
duration of sampling, and the closeness of the amplitudes of the oscillating modes. These simulations confirm that, while
the SVD-based estimation technique may fail to accurately recover individual mode shapes in situations where two modes
oscillating with nearly the same amplitude, this technique can accurately recover the relevant subspace spanned by the mode
shapes of interest.

II. PRELIMINARIES

A. Modal Superposition Equation

An unforced N -degree multiple-degree-of-freedom (MDOF) system1 can be formulated as

[M ]{ü(t)}+ [C]{u̇(t)}+ [K]{u(t)} = {0(t)}, (1)

where [M ] is an N ×N diagonal mass matrix, [C] is a symmetric N ×N damping matrix, [K] is an N ×N symmetric
stiffness matrix, and {u(t)} is an N × 1 vector of displacement signals. Note that

{u(t)} =


u1(t)
u2(t)

...
uN (t)

 ,

and each {u(t)}(l) = ul(t), l = 1, . . . , N , is a displacement signal. One can view ul(t) as the signal being observed at the
lth sensor node.

We consider an undamped system and set [C] = [0]. We also assume that the mass matrix [M ] is proportional to the
identity [I] (i.e., that all N masses are equal). If this is not the case, each displacement signal can be normalized by the
square root of the mass at that node (see [3], [4] for details); this yields an equivalent set of dynamic equations having a
mass matrix equal to the identity.

Under these assumptions, the general solution to (1) takes the form

{u(t)} =

N∑
n=1

{ψn}ρn cos(ωnt+ θn), (2)

where {ψ1}, . . . , {ψN} are a collection of real-valued N×1 spatial vectors known as the mode shape vectors. These vectors
are normalized to have unit energy (i.e., ‖{ψn}‖2 = 1) and—importantly—they are orthogonal to one another. In (2),
ω1, . . . , ωN are real-valued, positive numbers known as the modal frequencies. For simplicity in this paper, we assume the
modal frequencies are distinct. The parameters ρn and θn denote the magnitude and phase, respectively, of the oscillating
nth mode shape; these parameters may be affected by an input that induces vibrations in the structure prior to the observation
period (during which we assume the structure is unforced). In the structural dynamics community, (2) is known as the modal
superposition equation.

1Theoretically, a structure will have infinitely many degrees of freedom. However, the number of mode shapes that one can detect is equal to the number
of sensors placed on the structure. In the following, whenever we deal with an N -degree MDOF system, we are implicitly assuming that we have N
sensor nodes deployed on the structure.



B. The Analytic Signal of {u(t)}
Our framework and analysis will involve sampling what is known as the analytic signal of {u(t)}. A signal v(t) is said

to be analytic iff V (f) = 0 for f < 0, where V (f) is the Fourier transform of v(t) [Definition 1.2.1, [11]]. An analytic
signal can be obtained by removing all negative frequencies in a given signal. The analytic signal is a frequently used
representation in mathematics, signal processing, and communications; in some problems (such as ours) it can simplify the
mathematical manipulations.

To discuss the analytic signal of {u(t)}, let us examine each entry in {u(t)}, i.e., ul(t). Extending the derivation in
Section II-A, each ul(t) can be written as

ul(t) =

N∑
n=1

{ψn}(l)ρn cos(ωnt+ θn)

=

N∑
n=1

{ψn}(l)
ρn
2

(
ei(ωnt+θn) + e−i(ωnt+θn)

)
=

N∑
n=1

{ψn}(l)(Aneiωnt +A∗ne
−iωnt),

where An = ρn
2 e

iθn is a complex amplitude encoding the magnitude and phase of the oscillating nth mode shape. Thus,
the analytic signal of ul(t), represented as vl(t), is simply

vl(t) =

N∑
n=1

{ψn}(l)Aneiωnt,

and the analytic signal of the entire vector {u(t)}, denoted as {v(t)}, can be written as

{v(t)} =

N∑
n=1

{ψn}Aneiωnt. (3)

Note that {v(t)} is no longer real but complex.
Obtaining an analytic signal in practice involves the application of a Hilbert transform. However, detailed discussion of

this matter is out of scope of this paper and we will refer interested readers to [12] for more information. For the remainder
of this paper, we will assume that we have successfully extracted the analytic signal from each ul(t). Thus, all derivations
from here onwards will be in terms of {v(t)}.

C. Time Sampling and Matrix Formation

If certain modal frequencies have not been excited, it is possible that some of the complex amplitudes An may be zero.
We let K denote the number of nonzero amplitudes. While in general K may be as large as N , in some cases K may
be smaller than N and it will not be possible to estimate the modal parameters corresponding to the zero amplitudes.
Without loss of generality, we also assume the complex amplitudes are ordered from large to small, and thus we will have
|A1| ≥ · · · ≥ |AK | > AK+1 = · · · = AN = 0. (We do not assume any particular ordering to the modal frequencies.)

Let us suppose that we sample each component of the analytic displacement signal vector {v(t)} at M distinct points in
time t1, . . . , tM . We assume M ≥ K and denote the resulting N ×M data matrix as

[V ] =


v1(t1) v1(t2) . . . v1(tM )
v2(t1) v2(t2) . . . v2(tM )

...
...

. . .
...

vN (t1) vN (t2) . . . vN (tM )

 ∈ CN×M . (4)

We can write the analytic modal superposition equation (3) in matrix-vector multiplication format as

{v(t)} = [Ψ][Γ]{s(t)},

where [Ψ] = [{ψ1}, . . . , {ψK}] denotes an N×K matrix formed from the mode shape vectors corresponding to the nonzero
amplitudes (note that the columns of [Ψ] are orthonormal due to our assumption that the mass matrix [M ] is proportional
to the identity),

[Γ] =
√
M ·


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . AK





Algorithm 1: Pseudo-code for mode shape estimation
Input: Data matrix [V ] as defined in (4)
Output: [Ψ̂] (left singular vectors of [V ])
SVD([V]) = [Ψ̂][Γ̂][Ŝ]

denotes a K ×K diagonal matrix, and

{s(t)} =
1√
M
·


eiω1t

eiω2t

...
eiωKt


denotes a K × 1 modal coordinate vector. The sampling of {v(t)} at t1, . . . , tM implies the sampling of {s(t)} at the exact
same time points which leads us to define

[S] =
1√
M
·


eiω1t1 eiω1t2 . . . eiω1tM

eiω2t1 eiω2t2 . . . eiω2tM

...
...

. . .
...

eiωKt1 eiωKt2 . . . eiωKtM

 ∈ CK×M

and allows us to write the matrix of samples as
[V ] = [Ψ][Γ][S]. (5)

In the results that follow, we use δmin and δmax to denote lower and upper bounds on the minimum and maximum
separation of the modal frequencies. In other words, we assume that

δmin ≤ min |ωl − ωn|,

where the minimum is taken over all l, n ∈ {1, . . . ,K} with l 6= n, and that

δmax ≥ max |ωl − ωn|,

where the maximum is also taken over all l, n ∈ {1, . . . ,K}. Furthermore, we use tmax to denote the total sampling time
span. Finally for a, b ∈ [0, 1], the quantity

D(a||b) := a(log(a)− log(b)) + (1− a)(log(1− a)− log(1− b))

is known as the binary information divergence, or the Kullback-Leibler divergence [13].

D. Estimating Modal Frequencies via the SVD/POD

The method we consider for recovering the mode shape vectors from uniform time samples or from random time samples
is very simple and is described in Algorithm 1. In particular, one simply computes the SVD of [V ] and returns the truncated
matrix of left singular vectors [Ψ̂] = [{ψ̂1}, . . . , {ψ̂K}] as estimates of the true mode shape matrix [Ψ] = [{ψ1}, . . . , {ψK}].
(Although the full-size SVD of the N ×M matrix [V ] will return N left singular vectors, we use only the first K of these
as estimates of the mode shape vectors.) Informally, the intuition behind this technique is that (5) provides one way of
decomposing [V ] into a product of three matrices: one with orthonormal columns, one that is diagonal, and one that will
have nearly orthonormal rows under certain conditions on the sample times t1, . . . , tM (see Section III). Thus, since (5) is
itself nearly an SVD of [V ], the true left singular vectors of [V ] will nearly match the first matrix in the decomposition
appearing in (5), namely the matrix [Ψ] containing the true mode shape vectors.

Although it has not been considered in the context of CS, the use of the SVD for estimating mode shapes has also appeared
under the name of the Proper Orthogonal Decomposition (POD) in the structural dynamics literature. In fact, it has previously
been shown that, under certain assumptions, the singular vectors (also known as proper orthogonal modes) returned by such
a technique converge to the true mode shapes asymptotically as the number of observations goes to infinity [3], [4]. As
mentioned in Section I-A, we believe that our work is new in two respects:
• When time samples are collected uniformly in time from the sensors, we quantify the accuracy of the estimated mode

shapes in terms of the sampling rate, total observation time, and spacing of the modal frequencies. This provides finite
(non-asymptotic) sample bounds for the SVD/POD technique that, to the best of our knowledge, have not appeared in
the literature.

• When time samples are collected randomly in time from the sensors, we quantify the accuracy of the estimated mode
shapes in terms of the number of samples, total observation time, and spacing of the modal frequencies. In some cases,



we show that mode shape estimates obtained using a given number of random samples can be more accurate than the
mode shape estimates obtained using an equivalent number of uniform time samples.

III. ANALYSIS

A. Uniform Time Sampling
Let us now suppose that we sample {v(t)} uniformly in time with a uniform sampling interval denoted by Ts. The

sampling times are given by tm = (m − 1)Ts, m = 1, . . . ,M . We are therefore sampling within the time span [0, tmax],
where tmax := (M − 1)Ts.

In [5], we proved the following bound for recovering the mode shape vectors using the SVD on uniform time samples.
Theorem 1: Let [V ] = [Ψ][Γ][S] be as given in (5) (describing an N -degree-of-freedom with no damping, equal masses,

and K nonzero amplitudes in free decay) sampled according to the uniform sampling scheme described above. For 0 < ε < 1,
suppose we sample for a total time span of at least

tmax ≥
2π(logbK/2c+ 1.01)

εδmin
(6)

with sampling interval Ts ≤ π
δmax

and ensure that M ≥ K. Then, the mode shape estimates [Ψ̂] obtained via Algorithm 1
satisfy

|〈{ψn}, {ψ̂n}〉|2 ≥ 1− ε2(1 + ε)

1− ε
·max
l 6=n

|Al|2|An|2

min
c∈[−1,1]

||Al|2 − |An|2(1 + cε)|2
(7)

for n = 1, . . . ,K.
In (7), we see that the error bound for the nth estimated mode shape vector mainly depends on ε and what is essentially

the minimum separation between |An| and all other |Al|. Because the mode shape vectors {ψn} and their estimates {ψ̂n}
are normalized to have unit energy (i.e., ‖{ψn}‖2 = ‖{ψ̂n}‖2 = 1), the correlation |〈{ψn}, {ψ̂n}〉|2 cannot exceed 1. When
the nth largest amplitude |An| is well separated from all other amplitudes |Al| (for l 6= n), (7) states that the correlation
|〈{ψn}, {ψ̂n}〉|2 will be close to 1. The variable ε controls how close the rows of [S] are to being orthogonal; a small choice
of ε implies more orthogonal rows and leads to a better preservation of the mode shapes but requires more samples. Note
that the amplitudes |An| are dependent on the underlying structure and on the input that excited the structure prior to free
vibration observation period, and thus these parameters may be beyond our control. In order to guarantee a small error in
the nth mode shape when |An| is close to some other |Al|, one would need to make ε smaller.

In terms of the roles played by δmin and δmax (the minimum and maximum separation of the modal frequencies),
Theorem 1 essentially tells us that we need to sample for a time span that is inversely proportional to the minimum spacing
between the modal frequencies. Thus, the smaller the minimum spacing between the modal frequencies, the longer we must
sample to get an accurate estimate. Also, since the theorem requires that Ts ≤ π

δmax
, the maximum spacing between modal

frequencies determines how fast we need to sample.
Theorem 1 does not guarantee that the nth estimated mode shape vector can be accurately recovered when |An| is close

to some other |Al| (unless one chooses ε to be very small, which would require taking more samples). However, it is
possible to extend Theorem 1 to account for situations where |An| is close to some other |Al|. In particular, when there are
a set of amplitudes that are similar in size to each other, it may still be possible to recover the subspace spanned by the
corresponding mode shape vectors.

We can make this formal by using the concept of principal angles between two subspaces. For two P -dimensional
subspaces X1,X2 of CN , the principal angles between X1 and X2 are a set of angles θ1, θ2, . . . , θP ∈ [0, π/2]. These angles
are defined recursively, with the kth angle given by [14]

cos(θk) = max
{x1}∈X1

max
{x2}∈X2

|〈{x1}{x2}〉| = |〈{x1,k}, {x2,k}〉|,

subject to the constraints that ‖{x1}‖2 = ‖{x2}‖2 = 1, 〈{x1}, {x1,i}〉 = 0, and 〈{x2}, {x2,i}〉 = 0 for all i = 1, 2, . . . , k−1.
Our new theorem is stated below and proved in the Appendix.

Theorem 2: Let [V ], tmax, Ts, and M be as given in Theorem 1, and let [Ψ̂] denote the mode shape estimates obtained
via Algorithm 1. For any index set I ⊂ {1, 2, . . . ,K}, set P = |I|, let [ΨI ] denote the N ×P matrix formed by restricting
[Ψ] to the columns indexed by I, and let [Ψ̂I ] denote the N × P matrix formed by restricting [Ψ̂] to the columns indexed
by I. Let θ1, θ2, . . . , θP ∈ [0, π/2] denote the principal angles between colspan([ΨI ]) and colspan([Ψ̂I ]). Then

P∑
i=1

sin2(θi) ≤
ε2(1 + ε)

1− ε
·
∑
n∈I

max
l/∈I

|Al|2|An|2

min
c∈[−1,1]

||Al|2 − |An|2(1 + cε)|2
. (8)

This bound will be favorable (i.e., all θi will be guaranteed to be small) in situations where all |An| for n ∈ I are well
separated from all |Al| for l /∈ I. This bound does not depend on the proximity of amplitudes within the index set I, and
in fact all |An| for n ∈ I could even be equal.



B. Random Time Sampling
Let us now suppose that we sample {v(t)} at M time points t1, . . . , tM chosen uniformly at random in the time interval

[0, tmax]. We do not assume that these sample times are ordered (i.e., that t1 < t2 < · · · < tM ), although in practice there
is no harm in generating them randomly and then sorting them.

In [5], we proved the following bound for recovering the mode shape vectors using the SVD on random time samples.
Theorem 3: Let [V ] = [Ψ][Γ][S] be as given in (5) (describing an N -degree-of-freedom with no damping, equal masses,

and K nonzero amplitudes in free decay) sampled according to the random sampling scheme described above. Suppose we
sample for a total time span of at least

tmax ≥
40(logbK/2c+ 1.01)

εδmin
, (9)

and within this time span suppose we take a number of measurements satisfying

M > max

(
log(K) + log(2/τ)

min(D1, D2)
, K

)
(10)

where

D1 = D((1 + ε)/K||(1 + ε/10)/K),

D2 = D((1− ε)/K||(1− ε/10)/K).

Then with probability at least 1− τ all of the mode shape estimates [Ψ̂] obtained via Algorithm 1 will satisfy (7).
This result for random time sampling looks somewhat similar to Theorem 1 for uniform time sampling. The recovery

guarantee is the same and the required time span differs only by a constant.
However, Theorem 3 can differ from Theorem 1 in the number of samples M required for successful recovery of the mode

shape vectors. For Theorem 1, recall that tmax = (M − 1)Ts. If we set Ts = π
δmax

(the largest permitted by Theorem 1),
then in order to satisfy the lower bound on tmax given in (6), we would need to collect at least

M ≥ max

(
2(logbK/2c+ 1.01)

ε

δmax

δmin
+ 1, K

)
(11)

total uniform time samples, and if we were to reduce the sampling interval Ts we would need to take more total samples M
to cover the same time span tmax. The necessary condition (11) on M is fairly satisfactory in its logarithmic dependence on
K and its linear dependence on 1

ε (this assumes the left hand term dominates in (11)). However, it also scales with the ratio
δmax

δmin
, which depends on the structure. For some structures this ratio could in fact be large, and in the absence of additional

information about the structure, one may need to assume this ratio is large.
For Theorem 3, the requisite number of samples M in (10) no longer depends on the ratio δmax

δmin
. However, when K

is large and ε is small, the denominator in (10) will scale like ε2

K , and so the requisite number of samples will scale like
K log(K)

ε2 . This represents a stronger dependence on K compared to what appears in (11), but only by a logarithmic factor
(because the right hand term in (11) scales like K). It also represents a stronger dependence on ε compared to what appears
in (11). Ultimately, we see that in some cases random time sampling could provide a significant reduction in the number of
samples for systems where δmax

δmin
is large or unknown. For a given problem, the better choice between uniform and random

time sampling may depend on the particular circumstances and the parameters of the system under study. This is reflected
in our simulations in Section IV.

Like Theorem 1, Theorem 3 does not guarantee that the nth estimated mode shape vector can be accurately recovered
when |An| is close to some other |Al|. However, using the concept of principal angles between two subspaces, it is possible
to extend Theorem 3 to account for situations where |An| is close to some other |Al|. In particular, when there are a set of
amplitudes that are similar in size to each other, it may still be possible to recover the subspace spanned by the corresponding
mode shape vectors. We formalize this in the following new theorem.

Theorem 4: Let [V ], tmax, M be as given in Theorem 3, and let [Ψ̂] denote the mode shape estimates obtained via
Algorithm 1. Then with probability at least 1− τ , the following holds for any index set I ⊂ {1, 2, . . . ,K}: Set P = |I|, let
[ΨI ] denote the N ×P matrix formed by restricting [Ψ] to the columns indexed by I, and let [Ψ̂I ] denote the N ×P matrix
formed by restricting [Ψ̂] to the columns indexed by I. Let θ1, θ2, . . . , θP ∈ [0, π/2] denote the principal angles between
colspan([ΨI ]) and colspan([Ψ̂I ]). Then (8) is satisfied.

Like Theorem 2, this bound will be favorable (i.e., all θi will be guaranteed to be small) in situations where all |An| for
n ∈ I are well separated from all |Al| for l /∈ I. This bound does not depend on the proximity of amplitudes within the
index set I, and in fact all |An| for n ∈ I could even be equal.

The proof of Theorem 4 closely follows the proof of Theorem 2, which is provided in the Appendix. The only difference
is that we must argue that ‖[∆]‖2 ≤ ε with probability at least 1−τ when the time samples are chosen randomly, rather than
uniformly. Again, however, we have previously provided a proof of this fact in [5], and so we do not repeat the argument
here.



m1 m2 m3 m4
k1 k2 k3 k4 k5

Fig. 1: A simple 4-degree-of-freedom system made up of 4 box cars each of mass m1,m2,m3,m4. The box cars are connected via springs
of stiffness k1, . . . , k5. In the synthetic simulations, we simulate this particular system with m1 = m2 = m3 = m4 = 1kg, and k1 = 100,
k2 = 150, k3 = 100, k4 = 100, k5 = 200N/m.
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Fig. 2: Simulation results making use of the [Γ] matrix as given in (12) with a set of modal frequencies with δmin = 0.715π rad/s. (a)
Correlation |〈{ψn}, {ψ̂n}〉|2 of ground truth mode shapes and mode shape estimates using uniform (black) time sampling scheme. Average
correlation |〈{ψn}, {ψ̂n}〉|2 of ground truth mode shapes and mode shape estimates using random (blue) time sampling scheme over 100
trials for each value of tmax. The four subfigures correspond to the four mode shapes (n = 1, 2, 3, 4), and the results are plotted as a function
of the total sampling time tmax. (b) Plot of sum of sin2 of principal angles between colspan([{ψ̂2}, {ψ̂3}]) and colspan([{ψ2}, {ψ3}]) against
tmax. The plot of the random (blue) time sampling scheme has been averaged over 100 trials. The lowest and the highest point of the error
bars in the two plots correspond to the minimum and maximum value of correlations that occurred within each of the 100 trials, respectively.
Both plots illustrate that the mode shape estimates via uniform and random sampling schemes perform comparably.

IV. ILLUSTRATIVE SIMULATIONS

We demonstrate the effectiveness of the various methods using an idealized synthetic dataset. The system that we consider
is illustrated in Figure 1. It is a simple 4-degree-of-freedom system consisting of four objects of masses m1, . . . ,m4 arranged
in a line. Springs connect each adjacent pair of masses, where the springs have stiffness values of k1, . . . , k5. We do not
consider damping in this system; thus [C] = [0]. For the following simulation, we simulate the above system under free
vibration with m1 = · · · = m4 = 1kg, i.e., [M ] = I , and with k1 = 100, k2 = 150, k3 = 100, k4 = 100, and k5 = 200N/m.
The stiffness matrix corresponding to the above system can be written as

[K] =


k1 + k2 −k2 0 0
−k2 k2 + k3 −k3 0

0 −k3 k3 + k4 −k4

0 0 −k4 k4 + k5

 =


250 −150 0 0
−150 250 −100 0

0 −100 200 −100
0 0 −100 300

 .
Since [M ] = [I], the mode shape vectors [Ψ] are simply the eigenvectors of [K] and we use these mode shapes throughout
this subsection. The modal frequencies are simply the square roots of the eigenvalues of [K], which are ω1 = 6.635π,
ω2 = 5.920π, ω3 = 4.163π, ω4 = 2.220π rad/s. We also denote [Γ] as the matrix of amplitudes throughout this subsection.
Then, the modal superposition equation can be written as

{v(t)} = [Ψ][Γ]


eiω1t

eiω2t

eiω3t

eiω4t

︸ ︷︷ ︸
{s(t)}

.

In our first experiment, we demonstrate the uniform and random time sampling methods by plotting the correlations
|〈{ψn}, {ψ̂n}〉|2 of the true and the estimated mode shapes obtained from the SVD of the respective sampled matrix [V ].
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Fig. 3: Simulation results making use of the [Γ] matrix as given in (13) with a set of modal frequencies with δmin = 0.715π rad/s. (a)
Correlation |〈{ψn}, {ψ̂n}〉|2 of ground truth mode shapes and mode shape estimates using uniform (black) time sampling scheme. Average
correlation |〈{ψn}, {ψ̂n}〉|2 of ground truth mode shapes and mode shape estimates using random (blue) time sampling scheme over 100
trials for each value of tmax. The four subfigures correspond to the four mode shapes (n = 1, 2, 3, 4), and the results are plotted as a function
of the total sampling time tmax. (b) Plot of sum of sin2 of principal angles between colspan([{ψ̂2}, {ψ̂3}]) and colspan([{ψ2}, {ψ3}]) against
tmax. The plot of the random (blue) time sampling scheme has been averaged over 100 trials. The lowest and the highest point of the error
bars in the two plots correspond to the minimum and maximum value of correlations that occurred within each of the 100 trials, respectively.

We use the following [Γ] matrix

[Γ] =


1 0 0 0
0 0.45 0 0
0 0 0.15 0
0 0 0 0.01

 , (12)

which has a well-separated set of |An|. For the uniform time sampling scheme, we use a sampling interval of Ts = 0.22s.
This is just slightly faster than π

δmax
, which is the upper bound of what Theorem 1 prescribes. Using this fixed rate, we

collect samples over a total time span of duration tmax, and we repeat the experiment for values of tmax = [0 : Ts : 4.4]s
(the value of M therefore increases with tmax). Figure 2(a) plots in black curves the correlation between the true and the
estimated mode shape vectors against tmax. For the random time sampling scheme, we use the same values of tmax and
sample {v(t)} uniformly at random within the interval [0, tmax]. For each value of tmax, the total number of samples M we
collect is chosen to equal the corresponding value of M used for uniform time sampling above. For the random sampling
scheme we plot in blue curves the average correlations between the true and the estimated mode shapes over 100 trials.
The range of the error bars in the plot indicate the minimum and maximum value of correlations that occurred within the
100 trials. We see that overall, the performance of the two sampling schemes is comparable. This is in agreement with
Theorems 1 and 3, as they both suggest the same reconstruction guarantees given that we satisfy the sampling conditions.

In the second experiment, we use the following [Γ] matrix:

[Γ] =


1 0 0 0
0 0.55 0 0
0 0 0.5 0
0 0 0 0.01

 . (13)

Note that this matrix contains closely spaced amplitude values of |A2| = 0.55 and |A3| = 0.5. Thus, from our theorems
above we anticipate {ψ̂2} and {ψ̂3} will be less accurately preserved than in the previous experiment given the same values
of tmax. However, we do expect the estimates to get more accurate as we increase tmax (as increasing tmax would allow
for a decrease of ε). Furthermore, while we expect the estimates {ψ̂2} and {ψ̂3} to degrade in accuracy, we expect the
accuracy of the estimates {ψ̂1} and {ψ̂4} to stay more or less the same. All of this is in agreement with the simulation
results plotted in Figure 3(a), which shows the results obtained by repeating the previous simulation but with the [Γ] matrix
given in (13). As we can see from the second and third panes, the proposed method struggles to obtain accurate estimates
of {ψ2} and {ψ3}. When compared with the second and third panes of Figure 2(a) the difference is especially pronounced
when tmax ∈ [0.5, 1.5]. The accuracy, however, does generally increase with increasing tmax. The first and the fourth panes
illustrate that the estimates {ψ̂1} and {ψ̂4} remain accurate despite the change in [Γ].
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Fig. 4: Simulation results making use of the [Γ] matrix as given in (13) with a set of modal frequencies with δmin = 0.286π rad/s. (a)
Correlation |〈{ψn}, {ψ̂n}〉|2 of ground truth mode shapes and mode shape estimates using uniform (black) time sampling scheme. Average
correlation |〈{ψn}, {ψ̂n}〉|2 of ground truth mode shapes and mode shape estimates using random (blue) time sampling scheme over 100
trials for each value of tmax. The four subfigures correspond to the four mode shapes (n = 1, 2, 3, 4), and the results are plotted as a function
of the total sampling time tmax. (b) Plot of sum of sin2 of principal angles between colspan([{ψ̂2}, {ψ̂3}]) and colspan([{ψ2}, {ψ3}]) against
tmax. The plot of the random (blue) time sampling scheme has been averaged over 100 trials. The lowest and the highest point of the error
bars in the two plots correspond to the minimum and maximum value of correlations that occurred within each of the 100 trials, respectively.

Figure 3(a) confirms that the quality of the individual estimates {ψ̂2} and {ψ̂3} suffer when the corresponding amplitudes
|A2| and |A3| are closely spaced. As we have discussed in Section III, however, the perturbations of these vectors are
not completely arbitrary. More specifically, in Theorems 2 and 4 we have showed that the principal angles between the
space spanned by {ψ̂2} and {ψ̂3} and the space spanned by {ψ2} and {ψ3} should be small if |A2| and |A3| are well
separated from |A1| and |A4|. Figure 3(b) confirms this by plotting

∑2
i=1 sin2 θi versus tmax, where θ1 and θ2 are the two

principal angles between the two-dimensional subspaces colspan([{ψ̂2}, {ψ̂3}]) and colspan([{ψ2}, {ψ3}]). Again, the plot
of the random time sampling scheme (in blue) has been averaged over 100 trials and the range of the error bars indicate
the minimum and maximum value of correlations that occurred within the 100 trials. As we can see, for both uniform and
random sampling schemes the angles are reasonably small even for small tmax values, e.g., tmax ∈ [0.5, 1.5], even though
the individual estimates {ψ̂2} and {ψ̂3} were highly inaccurate in this range of tmax. For the sake of comparison, Figure 2(b)
plots

∑2
i=1 sin2 θi versus tmax for the simulation setup used in Figure 2(a).

Our third experiment highlights the role played by δmin (the minimum separation of the modal frequencies). We consider
two distinct systems. The first system is the same as above with [Γ] as given in (13). We simulate a second system that uses
the exact same mode shape vectors and [Γ] but has a slightly different set of modal frequencies, such that ω1 = 6.635π,
ω2 = 6.349π, ω3 = 4.163π, ω4 = 2.220π rad/s.2 Note that δmin = 0.715π in the first system, and δmin = 0.286π in
the second system. Based on Theorems 1 and 3, we anticipate the need to sample for a longer time span (larger tmax)
when δmin is smaller. The correlations of the uniform sampling scheme and the average correlations (over 100 trials) of the
random sampling scheme using the second set of modal frequencies are plotted in Figure 4(a). Comparing to the results
in Figure 3(a), we see that a longer sampling duration tmax is indeed needed to achieve comparable accuracy in mode
shapes. As in the previous simulation, in Figure 4(b) we again plot

∑2
i=1 sin2 θi versus tmax, where θ1 and θ2 are the two

principal angles between the two-dimensional subspaces colspan([{ψ̂2}, {ψ̂3}]) and colspan([{ψ2}, {ψ3}]). Again, for both
uniform and random sampling schemes the subspace of colspan([{ψ2}, {ψ3}]) is reasonably well-preserved even for small
tmax values.

For uniform time sampling, when Ts is fixed, increasing tmax will automatically increase the number of samples M
to be acquired. For random time sampling, however, tmax and M can be chosen independently of one another. While in
Figure 4 we have always used the same value of tmax and the corresponding M for random sampling as we used for uniform
sampling, this is not actually necessary. In fact, our Theorems 3 and 4 suggest that, for random sampling when δmin is small,
we can increase tmax without increasing the number of samples M . To demonstrate this, we conduct a fourth experiment,
and for this we use the second (more closely spaced) set of modal frequencies above. For several values of M , we collect
M samples using both uniform time sampling (for which tmax will be determined by M ) and random time sampling. For

2Note that this system may not have the same setup as the one illustrated in Figure 1. However, in order to focus on the effect δmin has on the mode
shape recovery we have developed this hypothetical scenario where we keep all parameters fixed except ω2 in order to achieve a smaller δmin. Similarly,
in the simulations that follow, where necessary, we will change the modal frequencies but always employ the same mode shapes and [Γ] matrix of (13).
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Fig. 5: Simulation results making use of the [Γ] matrix as given in (13) with a set of modal frequencies with δmin = 0.286π rad/s.
For each value of M , the tmax for random sampling is chosen to be 3 seconds longer than the tmax for uniform sampling. (a) Correlation
|〈{ψn}, {ψ̂n}〉|2 of ground truth mode shapes and mode shape estimates using uniform (black) time sampling scheme. Average correlation
|〈{ψn}, {ψ̂n}〉|2 of ground truth mode shapes and mode shape estimates using random (blue) time sampling scheme over 100 trials for each
value of tmax. The four subfigures correspond to the four mode shapes (n = 1, 2, 3, 4), and the results are plotted as a function of the number
of measurements M . (b) Plot of sum of sin2 of principal angles between colspan([{ψ̂2}, {ψ̂3}]) and colspan([{ψ2}, {ψ3}]) against M . The
plot of the random (blue) time sampling scheme has been averaged over 100 trials. The lowest and the highest point of the error bars in the
two plots correspond to the minimum and maximum value of correlations that occurred within each of the 100 trials, respectively.

each value of M with random time sampling, however, we choose tmax to be 3s longer than the value of tmax used for
uniform sampling with the same value of M . The correlation result of the uniform time sampling and the averaged result
(over 100 trials) of the random time sampling are shown in Figure 5. Both Figure 5(a) and (b) demonstrate that by simply
increasing tmax without affecting M , the random time sampling scheme can accommodate the decreased value of δmin.

APPENDIX

The proof of Theorem 2 closely follows the proof of Theorem 1 from [5]. Here we summarize the essential arguments.
To prove Theorem 2, we take a perturbation theoretic viewpoint. We start with the equation [V ] = [Ψ][Γ][S]. Let us note

that [V ][V ]∗ = [Ψ][Γ][S][S]∗[Γ]∗[Ψ]∗, where [Ψ] is an N ×K matrix containing the true mode shape vectors as orthonormal
columns, and [S][S]∗ is a K ×K matrix with entries

([S][S]∗)l,n =

{
1, l = n,
1
M

∑M
m=1 e

i(ωl−ωn)tm , l 6= n.

Thus, we can decompose this product as [S][S]∗ = [I] + [∆], where [∆] contains the off-diagonal entries of [S][S]∗. Then

[V ][V ]∗ = [Ψ][Γ][Γ]∗[Ψ]∗ + [Ψ][Γ][∆][Γ]∗[Ψ]∗. (14)

The above expression allows us to view [V ][V ]∗ as the summation of an “original” matrix [Ψ][Γ][Γ]∗[Ψ]∗ and a “perturbation”
matrix [Ψ][Γ][∆][Γ]∗[Ψ]∗. Noting that the eigenvectors of the original matrix [Ψ][Γ][Γ]∗[Ψ]∗ are given by [Ψ], our goal is
to show that the eigenvectors of [V ][V ]∗ (which equal the left singular vectors of [V ]) are close to those of this original
matrix. At this point, it is helpful to define

[G] := [Ψ]∗[V ][V ]∗[Ψ]

= [Ψ]∗[Ψ][Γ][Γ]∗[Ψ]∗[Ψ] + [Ψ]∗[Ψ][Γ][∆][Γ]∗[Ψ]∗[Ψ]

= [Γ][Γ]∗︸ ︷︷ ︸
[H]

+ [Γ][∆][Γ]∗︸ ︷︷ ︸
[δH]

. (15)

In this equation, we can view [G] as the sum of an original matrix [H] and a perturbation [δH].
Recall that we write the SVD of [V ] as [Ψ̂][Γ̂][Ŝ]. Since the rank of [V ] must be K or less—and in fact we explain below

conditions under which it is guaranteed to be equal to K—we can consider the truncated SVD of [V ] where [Ψ̂] has size
N ×K. Therefore, note that

[G] = [Ψ]∗[V ][V ]∗[Ψ] = [Ψ]∗[Ψ̂][Γ̂][Γ̂]∗[Ψ̂]∗[Ψ].



Since the column spans of [Ψ] and [Ψ̂] are the same, [Ψ]∗[Ψ̂] is a K ×K orthonormal matrix that contains the eigenvectors
of [G]. The following theorem allows us to relate the eigenvectors of [H] to those of [G].

Theorem 5 (Theorem 1, [15]): Let [H] = [R][Υ][R]∗ and [G] = [H] + [δH] = [R̂][Υ̂][R̂]∗ be K × K positive definite
matrices. Assume that [R] and [R̂] are unitary and that [Υ] = diag(υ1, . . . , υK) and [Υ̂] = diag(υ̂1, . . . , υ̂K) are diagonal.
Let [B] = [R]∗[R̂], and assume

η = ‖[H]−
1
2 [δH][H]−

1
2 ‖ < 1, (16)

where [H]−
1
2 = [R][Υ]−1/2[R]∗. Then for any n and for any set T ⊆ {1, . . . ,K} not containing n we have,∑

l∈T

|bl,n|2 ≤ max
l∈T

υlυ̂n
|υl − υ̂n|2

η2

1− η
. (17)

We apply Theorem 5 with [H] and [δH] as defined in (15), allowing us to take [R] = [I], [R̂] = [Ψ]∗[Ψ̂], and |bl,n| =

|〈{ψ̂n}, {ψl}〉| = |〈{ψl}, {ψ̂n}〉|.
Note that the columns of [Ψ] are orthonormal, the columns of [Ψ̂] are orthonormal, and the column spans of [Ψ] and

[Ψ̂] are equal. Without loss of generality, less us assume that the index set I = {1, 2, . . . , P} (e.g., so that [ΨI ] merely
corresponds to the first P columns of [Ψ]). This allows us to partition [Ψ] and [Ψ̂] as follows:

[Ψ] = [[ΨI ] [ΨIc ]]

and
[Ψ̂] =

[
[Ψ̂I ] [Ψ̂Ic ]

]
We also let [Ψ⊥] denote an N × (N − K) matrix with orthonormal columns spanning the orthogonal complement of
colspan([Ψ]). Our analysis will use the following theorem.

Theorem 6 ([14], [16]): Let [X] and [Z] be N×P matrices with orthonormal columns spanning the subspaces X and Z ,
respectively. Let θ1, θ2, . . . , θP ∈ [0, π/2] denote the principal angles between X and Z . Let [Z⊥] denote an N×(N−P ) ma-
trix with orthonormal columns spanning the orthogonal complement of Z . Let σ1([Z⊥]∗[X]), σ2([Z⊥]∗[X]), . . . , σP ([Z⊥]∗[X])
denote the first P singular values of [Z⊥]∗[X]. Then

σi([Z⊥]∗[X]) = sin(θP+1−i)

for i = 1, 2, . . . , P .
To apply Theorem 6 we can take [X] = [Ψ̂I ], [Z] = [ΨI ], and

[Z⊥] = [[ΨIc ] [Ψ⊥]] .

Note that by summing up the squared singular values of [Z⊥]∗[X], we obtain the Frobenius norm of [Z⊥]∗[X]:

‖[Z⊥]∗[X]‖2F =

P∑
i=1

σ2
i ([Z⊥]∗[X]) =

P∑
i=1

sin2(θP+1−i) =

P∑
i=1

sin2(θi).

We also note that, since the column spans of [Ψ] and [Ψ̂] are equal,

[Z⊥]∗[X] =

[
[ΨIc ]∗[Ψ̂I ]

[Ψ⊥]∗[Ψ̂I ]

]
=

[
[ΨIc ]∗[Ψ̂I ]

0

]
,

and so
‖[Z⊥]∗[X]‖2F = ‖[ΨIc ]∗[Ψ̂I ]‖2F =

∑
n∈I

∑
l/∈I

|〈{ψl}, {ψ̂n}〉|2.

Therefore, assuming (17) holds, we will have
P∑
i=1

sin2(θi) =
∑
n∈I

∑
l/∈I

|〈{ψl}, {ψ̂n}〉|2 ≤
∑
n∈I

max
l/∈I

υlυ̂n
|υl − υ̂n|2

η2

1− η
. (18)

Let us examine the term η which appears in (18) and is defined in (16). Note that

η = ‖ ([Γ][Γ]∗)
− 1

2 [Γ][∆][Γ]∗ ([Γ][Γ]∗)
− 1

2 ‖2

= max
{x}6=0

√
{x}∗ ([Γ][Γ]∗)

− 1
2 [Γ][∆]∗[∆][Γ]∗ ([Γ][Γ]∗)

− 1
2 {x}

{x}∗{x}

= max
{y}6=0

√
{y}∗[∆]∗[∆]{y}
{y}∗{y}

= ‖[∆]‖2.



In the second to last line we let {y} = [Γ]∗ ([Γ][Γ]∗)
− 1

2 {x} and note that {y}∗{y} = {x}∗{x}.
Our Theorem 2 relies on proving that ‖[∆]‖2 ≤ ε. For uniform samples collected as prescribed in the theorem statement,

we prove that ‖[∆]‖2 ≤ ε in [5], and so we do not repeat the argument here.
Once we have established that η = ‖[∆]‖2 ≤ ε, we can plug this inequality into (18) and obtain the bound

P∑
i=1

sin2(θi) ≤
∑
n∈I

max
l/∈I

υlυ̂n
|υl − υ̂n|2

ε2

1− ε
. (19)

We note that (19) depends both on the original eigenvalues of [H] (appearing as υ1, . . . , υK) and on the eigenvalues of the
perturbed matrix [G] (appearing as υ̂1, . . . , υ̂K). We can relate these two collections of eigenvalues as follows. First, note
that the eigenvalues of [G] are the same as those of [V ][V ]∗. Furthermore, the eigenvalues of [H] are the same as those of
[Γ][Γ]∗. We focus on relating the eigenvalues of [G] to those of [Γ][Γ]∗. Recall that we can write [G] = [Γ][Γ]∗+[Γ][∆][Γ]∗.
Thus, for any {x} 6= 0,

{x}∗[G]{x}
{x}∗[Γ][Γ]∗{x}

=
{x}∗[Γ][Γ]∗{x}+ {x}∗[Γ][∆][Γ]∗{x}

{x}∗[Γ][Γ]∗{x}

= 1 +
{x}∗[Γ][∆][Γ]∗{x}
{x}∗[Γ][Γ]∗{x}

.

Let us denote {y} = [Γ]∗{x} and use this to write

{x}∗[G]{x}
{x}∗[Γ][Γ]∗{x}

= 1 +
{y}∗[∆]{y}
{y}∗{y}

.

If we can show that ‖[∆]‖2 ≤ ε, this means −ε ≤ {y}
∗[∆]{y}
{y}∗{y} ≤ ε, giving us

1− ε ≤ {x}∗[G]{x}
{x}∗[Γ][Γ]∗{x}

≤ 1 + ε.

Applying Lemma 1 in [17] allows us to conclude that

1− ε ≤ υ̂l
υl
≤ 1 + ε (20)

for l = 1, . . . ,K. We note that, in order to apply Theorem 5 above, it is necessary that [H] and [G] be positive definite. The
requirement that [H] be positive definite will be satisfied by our assumption that the amplitudes A1, . . . , AK are nonzero.
The requirement that [G] be positive definite will then be satisfied as a consequence of (20). Note that this latter requirement
can only be satisfied if M ≥ K.

Supposing that (20) is satisfied, let us examine the term υlυ̂n
|υl−υ̂n|2 appearing in (19). An upper bound on this expression

is given by
υlυn(1 + ε)

minc∈[−1,1] |υl − υn(1 + cε)|2
.

Plugging this bound into (19) and using the fact that υl = M |Al|2 for l = 1, . . . ,K, we obtain the bound appearing in (8).
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