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1 Introduction

The task of recovering a video from compressive measurements can be very challenging due to
the sheer dimensionality of the data to be recovered. In streaming measurement systems such as
the Rice “single-pixel camera” [1, 2], this challenge can be particularly daunting, because we may
record as little as one measurement per time instant. Presented with this information, it would
be possible to follow standard Compressive Sensing (CS) formulations and set up a system of
linear equations that relate the measurements to the underlying high-rate video voxels. However,
since the video can change from one instant to the next, the number of unknown voxels in such
a formulation would unfortunately scale with the number of measurements collected. Moreover,
if the inter-measurement time interval were to go to zero, the size of the reconstruction problem
would apparently continue to grow.

There are reasons to believe that we should be able control this explosion of dimensionality.
Intuitively, for example, we know that as the inter-measurement time interval goes to zero, the
video should change very little between the times when adjacent measurements are collected. In
this document, we argue that underlying high-rate video voxels—despite growing in number—
actually have a bounded complexity, and that one way of characterizing their relatively few degrees
of freedom is to study the temporal bandlimitedness of the video. We argue analytically that, at the
imaging sensor, many videos should have limited temporal bandwidth due to the spatial lowpass
filtering that is inherent in typical imaging systems. Under modest assumptions about the motion
of objects in the scene, this spatial filtering prevents the temporal complexity of the video from
being arbitrarily high. Consequently, we conclude that under various interpolation kernels (sinc,
linear, etc.), the unknown high-rate voxels can be represented as a linear combination of a low-rate
(e.g., Nyquist-rate) “anchor” set of sampled video frames.

Our bandwidth analysis uses fairly standard arguments from imaging processing and commu-
nications theory but goes deeper than the “constant velocity” model commonly assumed for object
motion. Typical analysis under the constant velocity model reflects that the video’s temporal
bandwidth will be proportional to the object’s (constant) speed. For more representative motion
models, we show that that proportionality still basically holds true, but with a 2× higher con-
stant of proportionality, and with an additional additive factor due to the bandwidth of the signal
tracing the object’s path. Although there is room for debate in the assumptions we make, our
analysis reveals an interesting tradeoff between the spatial resolution of the camera, the speed of
any moving objects, and the temporal bandwidth of the video. We use a study of synthetic and
real videos to quantify how well this bandlimited/interpolation model fits. The mathematics that
appear in our analysis are similar to those that have appeared in the analysis of plenoptic [3] and
plenacoustic [4, 5] functions, which arise from measuring light and sound, respectively, at various
positions in a room.

After arguing that many videos have limited temporal bandwidth, we revisit the CS reconstruc-
tion problem. We explain how the problem can be reformulated by setting up a system of linear
equations that relate the number of measurements to the underlying degrees of freedom of the video
(specifically, the anchor frames). Notably, the number of anchor frames does not depend on the
temporal measurement rate, and so the reconstruction problem can be much more tractable than in
the original formulation described above. We demonstrate experimentally that the CS reconstruc-
tion performance depends on the type of factors that impact the video’s temporal bandwidth (e.g.,
spatial resolution of the camera, the speed of any moving objects, etc.), and we explore possible
tradeoffs in the design of a reconstruction algorithm. Using even a linear interpolation kernel, we
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also show that the reconstruction performance is is significantly better than what can be achieved
by raw “aggregation” of measurements, which corresponds to using a rectangular, nearest neighbor
interpolation kernel.

In the hypothetical case where no residual correlations remain among the anchor frames, there
would be little room for improvement upon this reconstruction approach. In real-world videos,
however, we do expect that significant correlations may remain. The question of how to exploit
these correlations has been addressed in the more conventional CS recovery literature. For example,
one could employ a linear dynamical system model to capture the restricted degrees of freedom
of the anchor frames [6]. Alternatively, we are currently developing an algorithm that will involve
estimating the motion of the video and then formulating the recovery of the anchor frames in
a motion-compensated sparse basis [7]; the details of this algorithm will be reported in a future
publication. As better solutions continue to be developed for exploiting such correlations, we
expect that they could be combined with the methods discussed in this paper to permit better
reconstruction from streaming or “single-pixel” measurements.

2 Videos with one spatial dimension

2.1 Problem setup

2.1.1 Signal model

We start our analysis by considering “videos” that have just one spatial dimension. We will use the
variable t ∈ R to index time (which we measure in seconds), and we will use the variable x ∈ R to
index spatial position (which for convenience we measure in an arbitrary real-valued unit we call
“pix”). Though we will begin by considering continuous-space, continuous-time videos, the “pix”
unit is intended to symbolize what might be the typical pixel size in a subsequent discretization of
this video. One could easily replace pix with meters or any other arbitrary unit of distance.

Now, let g(x) denote a 1D function of space (think of this as a continuous-space “still image”),
and consider a continuous-space, continuous-time video f(x, t) in which each “frame” of the video
merely consists of a shifted version of this prototype frame. More formally, suppose that

f(x, t) = g(x− h(t))

where h(t) is some function that controls how much (in pix) the prototype frame is shifted at each
time step.

2.1.2 Bandwidth considerations

Because we have an interest in video imaging systems with high temporal sampling rates, our
purpose in this document is to describe some conditions under which the model video f(x, t) will
have finite temporal bandwidth. This limited bandwidth, in turn, suggests that such videos can be
characterized in terms of a temporal Nyquist-rate sampling of frames, that one may characterize
the performance of various temporal interpolation procedures, etc.

We suggest that the limited temporal bandwidth of f(x, t) could arise in plausible scenarios
under which the prototype frame g(x) and translation signal h(t) have limited complexity. For
example, in a physical imaging system, we may envision f(x, t) as the video that exists at the
imaging sensor prior to sampling. It may be reasonable to expect that, due to optical blurring and
due to the implicit filtering that occurs from the spatial extent of each light integrator, the prototype
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frame g(x) may have limited spatial bandwidth. Similarly, if the camera motion is constrained or
due to the physics governing the movement of objects in the scene, one might expect that the
translation signal h(t) may have limited slope and/or limited temporal bandwidth. In the sections
that follow, we will explain how such scenarios can allow us to bound the approximate temporal
bandwidth of f(x, t).

2.1.3 Fourier setup

Let F (ωx, ωt) denote the 2D Fourier transform of f(x, t), and let G(ωx) denote the 1D Fourier
transform of g(x). Keeping track of units, ωx is measured in terms of rad/pix, and ωt is measured
in terms of rad/s. The following relationships will be of use to us.

First, let Fx{·} and Ft{·} denote operators on L2(R2) that perform 1D Fourier transforms in the
spatial and temporal directions, respectively. Due to the separability of the 2D Fourier transform,
we know that

F (ωx, ωt) = Fx{Ft{f}}(ωx, ωt) = Ft{Fx{f}}(ωx, ωt). (1)

Now, due to the shift property of the 1D Fourier transform, we have

Fx{f}(ωx, t) = Fx{g(x− h(t))}(ωx, t) = G(ωx)e−jωxh(t).

We note that this function is complex-valued and has constant magnitude in the temporal direction;
therefore it has only phase changes in the temporal direction. Following (1), F will be the result
of taking the 1D Fourier transform of this function Fx{f} in the temporal direction. We have

F (ωx, ωt) = Ft{G(ωx)e−jωxh(t)}(ωx, ωt) = G(ωx) · L(ωx, ωt),

where
L(ωx, ωt) := Ft{e−jωxh(t)}(ωx, ωt). (2)

For fixed ωx, L(ωx, ωt) equals the 1D Fourier transform of e−jωxh(t) with respect to time, evaluated
at the frequency ωt.

2.2 Temporal bandwidth analysis

The appearance of the h(t) term within an exponent in (2) can complicate the task of characterizing
the bandwidth of f(x, t) in terms of properties of h(t). However, by imposing certain assumptions
on h(t), this analysis can become tractable. In Section 2.2.1 below, we briefly discuss a “constant
velocity” model for h(t) that is commonly seen in textbook discussions of video bandwidth (see,
e.g., [8]). In Section 2.2.2, we then go more deeply into the analysis of a “bounded velocity” model;
while we are not aware of any such analysis in the existing image and video processing literature,
the concepts do borrow heavily from standard results in communications and modulation theory
(see, e.g., [9]). Except where noted, all subsequent discussion in this document will build on this
bounded velocity analysis, rather than the constant velocity analysis.

2.2.1 Constant velocity model for h(t)

Our analysis simplifies dramatically if we assume that h(t) = Γt for some constant Γ (having units
of pix/s). In this case we have L(ωx, ωt) = δ(ωt + ωxΓ), and so

F (ωx, ωt) = G(ωx) · δ(ωt + ωxΓ),
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which corresponds to a diagonal line in the 2D Fourier plane with slope (say, ∆ωt over ∆ωx) that
depends linearly on Γ.

To see the implications of this in terms of bandwidth, let us suppose that G(ωx) is bandlimited
(or essentially bandlimited) to the range of frequencies ωx ∈ [−Ωx,Ωx] rad/pix. (This may occur
if the profile g(x) has been blurred in the x direction, for example.) In this case, it follows that
F (ωx, ωt) must be bandlimited (or essentially bandlimited) to the range of frequencies (ωx, ωt) ∈
[−Ωx,Ωx]× [−ΓΩx,ΓΩx]. In other words, the temporal bandwidth of the video is no greater than
ΓΩx rad/s.

2.2.2 Bounded velocity model for h(t)

We now consider a more robust “bounded velocity” model for h(t); we note that similar mathematics
have appeared in the analysis of plenoptic [3] and plenacoustic [4, 5] functions, which arise from
measuring light and sound, respectively, at various positions in a room. We assume that the position
function h(t) has bounded slope, i.e., that for some Γ > 0,∣∣∣∣dh(t)

dt

∣∣∣∣ ≤ Γ pix/s

for all t. This corresponds to a bound on the speed at which the object can move in the video,
without requiring that this speed be constant. We also assume that the translation signal h(t) is
bandlimited, with bandwidth given by Ωh rad/s.

For any fixed ωx, we can recognize e−jωxh(t) as a phase-modulated (PM) sinusoid having carrier
frequency 0 and phase deviation (in radians)

φ(t) = −ωxh(t),

or equivalently, as a frequency-modulated (FM) sinusoid having carrier frequency 0 and instanta-
neous frequency (in rad/s)

ωi(t) =
dφ(t)

dt
= −ωx

dh(t)

dt
.

For an FM signal, we have
dφ(t)

dt
= ωdm(t),

where m(t) is known as the modulating signal and ωd is the frequency deviation constant. Thus,
we have

m(t) =
1

ωd

dφ(t)

dt
=
−ωx
ωd

dh(t)

dt
.

Let us also define the deviation term

D :=
ωd
Ωh

max |m(t)| = |ωx|
Ωh

max

∣∣∣∣dh(t)

dt

∣∣∣∣ ≤ |ωx|ΓΩh
.

From Carson’s bandwidth rule for frequency modulation, we have that for fixed ωx, at least 98% of
the total power of e−jωxh(t) must be concentrated in the frequency range ωt ∈ [−2(D+ 1)Ωh, 2(D+

1)Ωh] rad/s. Since D ≤ |ωx|Γ
Ωh

, we conclude that at least 98% of the total power of e−jωxh(t) must
be concentrated in the frequency range ωt ∈ [−(2|ωx|Γ + 2Ωh), 2|ωx|Γ + 2Ωh] rad/s. We note that
the dependence of this bandwidth on ωx is essentially linear.
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We conclude that L(ωx, ωt) will have a characteristic “butterfly shape” with most of its total
power concentrated between two diagonal lines that intercept the ωt-axis at ±2Ωh and have slope
approximately ±2Γ. This shape is illustrated in Figure 1(a). Though not shown, the corresponding
figure for the constant velocity model discussed in Section 2.2.1 would involve a single diagonal line
intersecting the origin and having slope −Γ (which is half as large as the slope that appears in our
more general bounded velocity analysis).

To see the implications of this in terms of bandwidth, let us again suppose that G(ωx) is
bandlimited (or essentially bandlimited) to the range of frequencies ωx ∈ [−Ωx,Ωx]. We must then
have that F (ωx, ωt) = G(ωx) · L(ωx, ωt) is also essentially bandlimited in the spatial direction to
the range of frequencies ωx ∈ [−Ωx,Ωx]. Because of the butterfly structure in L(ωx, ωt), however,
this will also cause F (ωx, ωt) to be essentially bandlimited in the temporal direction to the range
of frequencies

ωt ∈ [−(2ΩxΓ + 2Ωh), 2ΩxΓ + 2Ωh] rad/s. (3)

This fact, which is illustrated in Figure 1(b), exemplifies a central theme of our work: filtering a
video in the spatial direction can cause it to be essentially bandlimited both in space and in time.
Once again, we note that similar conclusions were reached in the analysis of plenoptic [3] and
plenacoustic [4, 5] functions.

2.3 Sampling implications

Based on the temporal bandwidth predicted in (3), where we assume that G(ωx) is bandlimited (or
essentially bandlimited) to the range of frequencies ωx ∈ [−Ωx,Ωx], the Nyquist theorem suggests
that in order to avoid aliasing, the video should be sampled a minimum rate of

2ΩxΓ + 2Ωh

π
samples/s.

As a point of reference, during a sampling interval of
(

2ΩxΓ+2Ωh
π

)−1
seconds, an object moving

with maximum speed Γ pix/s can traverse a maximum of

πΓ

2ΩxΓ + 2Ωh
pix. (4)

Let us plug in some plausible numbers to illustrate the implications of these bounds. First,
consider the spatial bandwidth Ωx of the prototype frame. In a reasonable imaging system, we
might expect the pixel size to be balanced with the spatial bandwidth of the frame so that spatial
aliasing is avoided. (This should occur naturally if we assume each pixel integrates spatially over a
window of size approximately 1 pix.) Thus, one might anticipate that Ωx will be on the order of π
rad/pix. (This corresponds to a spatial bandwidth of π

2π = 1
2 cycles/pix, which suggests a spatial

Nyquist sample rate of one sample per pix.)
Under the assumption that Ωx = π, (3) suggests the video will have temporal bandwidth limited

to approximately 2πΓ + 2Ωh. We note that Ωh, the temporal bandwidth of h(t), does not depend
on the amplitude or slope of h(t), but only on its shape and smoothness. The term Γ, in contrast,
increases with the amplitude or slope of h(t), which in turn could increase for objects closer to the
camera. We conjecture that in practice, the 2πΓ term will typically dominate the 2Ωh term.1 If

1A refined “Carson-type” analysis would permit the consideration of functions h(t) that are not strictly bandlim-
ited.
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this is indeed the case, (4) suggests that, in typical scenarios, to avoid temporal aliasing we should
not allow a moving object to traverse more than ≈ 1

2 pix between adjacent sampling times. While
this of course makes strong intuitive sense, we have arrived at this conclusion through a principled
analysis.

Let us make this even more concrete by further specifying some example parameter values.
For an imaging system with, say, 1000 pixels per row, a distant object might move a maximum of
Γ ≈ 10 pix/s, while a close object could move at up to Γ ≈ 1000 pix/s. These suggest minimum
temporal bandwidths of 20π rad/s and 2000π rad/s, respectively, which correspond to minimum
temporal Nyquist sampling rates of 20 samples/s and 2000 samples/s, respectively. As predicted
above, these sampling rates would allow the object to move no more than about 1

2 pix per temporal
sample.

Aside from exceptionally non-smooth motions h(t), we do strongly suspect that the influence of
the temporal bandwidth Ωh will be minor in comparison to the influence of the 2πΓ term, and so
in general a temporal Nyquist sampling rate of 2Γ samples/s will likely serve as a reasonable rule of
thumb. Certainly, this rule of thumb illustrates the direct relationship between the speed of object
motion in the video and the video’s overall temporal bandwidth.

2.4 Experiments within our model assumptions

In this section, we analytically define continuous-space, continuous-time videos that allow us to
test these behaviors and observe the tradeoffs between object speed, spatial filtering, and temporal
bandwidth. In all experiments in this section, we let the prototype function

g(x) = sinc

(
Ωxx

π

)
(5)

for some value of Ωx that we set as desired. This definition ensures that g(x) is bandlimited and
that its bandwidth equals precisely Ωx rad/pix.

We oversample the videos compared to the predicted spatial and temporal bandwidths and
show the approximate spectrum using the FFT. (All plots in fact show the magnitude of the FFT
on a log10 scale.) In some cases we apply a smooth Blackman-Harris window to the samples before
computing the FFT; this helps remove artifacts from the borders of the sampling region.

2.4.1 Constant velocity model for h(t)

For our first experiment, we let the translation signal

h(t) = Γt

for some value of Γ that we set as desired. As in (5), we let g(x) = sinc
(

Ωxx
π

)
for some value of Ωx

that we set as desired.
Based on our discussion in Section 2.2.1, we anticipate that for this video, F (ωx, ωt) will be

supported along a diagonal line in the 2D Fourier plane with slope (say, ∆ωt over ∆ωx) equal to
Γ. Figure 2 illustrates our estimated FFT spectrum for one experiment with Ωx = π rad/pix and
Γ = 25 pix/s; the solid blue box outlines the region (ωx, ωt) ∈ [−Ωx,Ωx] × [−ΓΩx,ΓΩx], and the
diagonal, dashed blue line indicates the predicted support of the spectrum. We do indeed see that
the estimated spectrum follows this diagonal line, and we see that this line ends at the spatial
bandwidth of approximately Ωx rad/s, giving rise to a temporal bandwidth of ΓΩx = 25π rad/s.
Tests with other values of Ωx and Γ also behave as predicted.
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Table 1: Video parameters used for experiments in several figures.

Test Video Spatial BW Motion BW Max. Speed Max. Predicted Temporal BW
Ωx Ωh Γ 2ΩxΓ + 2Ωh

Row 1 π rad/pix 15 rad/s 25 pix/s 187 rad/s

Row 2 3π rad/pix 15 rad/s 25 pix/s 501 rad/s

Row 3 π rad/pix 45 rad/s 25 pix/s 247 rad/s

Row 4 π rad/pix 15 rad/s 200 pix/s 1287 rad/s

2.4.2 Bounded velocity model for h(t)

In order to test our predictions in the case of bounded velocity, we set

h(t) =
5∑
i=1

aisinc

(
Ωh(t− di)

π

)
, (6)

where Ωh controls the total bandwidth (and can be set as we desire), the delays di are chosen
randomly, and the amplitudes ai are chosen somewhat arbitrarily but ensure that the maximum
value attained by |h(t)| equals some parameter Γ, which we can set as we desire. Note that we can
thus independently articulate the bandwidth and the maximum slope of this signal. This “sum
of sinc functions” model for h(t) was chosen to give this function an interesting shape while still
allowing us to ensure that it is perfectly bandlimited. As in (5), we let g(x) = sinc

(
Ωxx
π

)
for some

value of Ωx that we set as desired.
For several choices of our parameters (Ωx,Ωh,Γ), Figure 3 shows the video f(x, t) along with

its estimated spectrum. The blue lines in each case indicate the predicted “butterfly shape” which
should bound the nonzero support of F (ωx, ωt). Table 1 lists the values of our parameters (Ωx,Ωh,Γ)
used in each row of the figure. In these experiments, we see that, as we vary the bandwidth and
velocity parameters, the approximate support of the estimated spectrum stays within the “butterfly
shape” predicted by our theory in Section 2.2.2.

As another way to support this theory, we have computed for each video the empirical temporal
bandwidth based on our estimated spectrum. To do this, we determine the value of Ωt for which
99.99% of the energy in the FFT (or windowed FFT) falls within the range |ωt| ≤ Ωt. For each
of the four videos shown in Figure 3, we see that this empirical bandwidth Ωt equals roughly 48
to 52% of the bandwidth 2ΩxΓ + 2Ωh predicted by our theory. (There are occasional exceptions
where the unwindowed FFT gives a higher estimate, but this is likely due to sampling artifacts.)
We note that this behavior is consistent with our theory, since our bandwidth prediction is merely
an upper bound. Indeed, it is encouraging that such a high proportion of the empirical energy falls
within our predicted region, since Carson’s bandwidth rule considers only up to about 98% of the
signal power.

2.4.3 Sinusoidal model for h(t)

As one last interesting case that obeys all of our model assumptions, we let

h(t) = a cos(Ωht),
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where Ωh controls the bandwidth (and can be set as we desire), and the amplitude a is chosen to
ensure that the maximum value attained by |h(t)| equals some parameter Γ, which we can set as
we desire. As in (5), we let g(x) = sinc

(
Ωxx
π

)
for some value of Ωx that we set as desired.

Figure 4 shows the corresponding videos and estimated spectra, where the four rows correspond
to the same four parameter sets for (Ωx,Ωh,Γ) specified in Table 1. We see a distinct “striped”
pattern in the estimated spectra; this is to be expected given the temporal periodicity of the video.
(Sinusoidal functions h(t) are often chosen as a standard example in communications textbooks
since the spectrum of ejh(t) can be expressed analytically in terms of an impulse train with weights
determined by Bessel functions [9].) Still, this signal obeys all of our model assumptions and its
estimated spectrum generally does indeed stay within the “butterfly shape” predicted by our theory.
Moreover, for each of the four videos shown in Figure 4, we see that the empirical bandwidth Ωt

equals roughly 52 to 57% of the bandwidth 2ΩxΓ + 2Ωh predicted by our theory.

2.5 Experiments beyond our model assumptions

Our formal analysis and the experiments in Section 2.4 pertain specifically to translational videos
in which g(x) is bandlimited, h(t) has either constant velocity or bounded velocity and bandwidth,
and the entire contents of the frame translate en masse. However, real world videos may contain
objects whose appearance (neglecting translation) changes over time, objects that move in front
of a stationary background, multiple moving objects, and so on. We suspect that as a general
rule of thumb, the temporal bandwidth of real world videos will be dictated by the same tradeoffs
of spatial resolution and object motion that our theory suggests. In particular, the prediction of
2ΩxΓ + 2Ωh given by our theory may be approximately correct, if we let Ωx be the essential spatial
bandwidth of the imaging system, Γ be the maximum speed of any object moving in the video,
and Ωh be the essential bandwidth of any object motion. This last parameter is perhaps the most
difficult to predict for a given video, but we suspect that in many cases its value will be small and
thus its role minor in determining the overall temporal bandwidth.

To support these conjectures, we have identified the characteristic “butterfly” shape in the
following experiments. However, it remains an open problem to back this up with theoretical
analysis. We do note that we believe our results are largely consistent with the classical study by
Dong and Atick concerning the statistics of real-world videos [10]. Although the videos in that
study had relatively low temporal resolution, Dong and Atick did note a certain radial symmetry
to the spectrum (with one term depending on ωt/ωx) and observe that at low spatial frequencies
the power spectrum will have a strong decay as a function of the temporal frequency.

2.5.1 Removing the bandlimitedness assumption from g(x)

We now consider a non-bandlimited profile function g(x) constructed by convolving a Gaussian
bump having standard deviation σ (which we may set as desired) with the unit-step function
u(x). While g(x) is not strictly bandlimited, we may crudely approximate its essential bandwidth
according to the formula Ωx ≈ 6

σ . For the moment, we will continue to use a bandlimited model
for h(t), choosing the “sum of sinc functions” as in (6), where we can specify the bandwidth as Ωh

and the maximum value of |h(t)| as Γ.
Figure 5 shows the corresponding videos and estimated spectra, where the four rows correspond

to the same four parameter sets for (Ωx,Ωh,Γ) specified in Table 1. Although the video is not
strictly bandlimited spatially, we do see a reasonable decay of the spectrum in the vicinity of our
predicted bandwidth Ωx. Aside from this distinction, the behavior follows our theory very closely,
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and the estimated spectrum generally follows the predicted butterfly shape. For each of the four
videos shown in Figure 5, we see that the empirical bandwidth Ωt equals roughly 5 to 20% of the
bandwidth 2ΩxΓ + 2Ωh predicted by our theory. These lower ratios compared to our experiment
in Figure 3 likely result from the decay of the Gaussian spectrum (compared to the flat spectrum
of a sinc function) and due to our conservative formula relating Ωx to σ.

As a second experiment, we consider a non-bandlimited profile function2

g(x) =


0, x ≤ −σ

2
1
2 + x

σ , −
σ
2 < x < σ

2
1, x ≥ σ

2

where in this case σ denotes the width of the linear transition region from 0 to 1 and can be
set as we desire. This function has slower decay in the frequency domain, but we may crudely
approximate its essential bandwidth according to the formula Ωx ≈ 12

σ . We again use the “sum
of sinc functions” model for h(t). Figure 6 shows the corresponding videos and estimated spectra,
where the four rows correspond to the same four parameter sets for (Ωx,Ωh,Γ) specified in Table 1.
We notice that while the basic behavior is the same as above, the slower decay of the spectrum
in the spatial direction now gives rise to “longer wings” of the butterfly shape. Despite this, the
estimated essential temporal bandwidths remain quite modest, typically with Ωt equal to roughly
9 to 26% of the bandwidth 2ΩxΓ + 2Ωh predicted by our theory. However, one should take caution
in interpreting this comparison given the crudeness of our relation between Ωx and σ.

2.5.2 Removing the bandlimitedness assumption from h(t)

We can also construct with videos for which the motion function h(t) is not bandlimited. For
example, for each of the four parameter sets for (Ωx,Ωh,Γ) specified in Table 1, we construct
videos of the form f(x, t) = g(x − h(t)), where g(x) is the non-bandlimited Gaussian-filtered step
function with approximate bandwidth Ωx (as described in Section 2.5.1), and h(t) is a periodic
triangle wave having fundamental frequency Ωh and maximum slope Γ. We emphasize that this
triangle wave h(t) is not bandlimited, but for the sake of comparison with our other experiments,
we set its fundamental frequency to be equal to the desired Ωh.

Figure 7 shows the corresponding videos and estimated spectra. We see a distinct “striped”
pattern in the estimated spectra due to the temporal periodicity of the video (recall Section 2.4.3).
Although the video is not strictly bandlimited spatially or temporally, we do see a reasonable
decay of the spectrum in the vicinity of our predicted spatial and temporal bandwidths Ωx and
2ΩxΓ + 2Ωh, respectively. (The decay is less strong in the temporal direction due to the stronger
high-frequency content of h(t) compared to g(x).) Overall, the behavior still generally follows our
theory, and the estimated spectrum is somewhat concentrated within the predicted butterfly shape,
though this is less true than in some of our other experiments due to the high-frequency content of
h(t). For each of the four videos shown in Figure 7, we see that the empirical bandwidth Ωt equals
roughly 10 to 55% of the bandwidth 2ΩxΓ + 2Ωh predicted by our theory.

2.5.3 Videos with multiple moving edges

We now extend our experiments to account for videos with multiple moving edges. We let g(x) be
a Gaussian-filtered step function as described in Section 2.5.1, and we consider two moving edges

2It is debatable whether such a profile would be realistic for a physical imaging system.
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with translation signals h(t) obeying the “sum of sinc functions” model. Thus, our setup is exactly
as described in Section 2.5.1, except that we have two edges moving simultaneously, instead of one.

Figure 8 shows the corresponding videos and estimated spectra, where the four rows correspond
to the same four parameter sets for (Ωx,Ωh,Γ) specified in Table 1. Despite the presence of multiple
moving edges, the behavior of the estimated spectrum is virtually the same as that of the single-edge
experiment in Figure 5, with much of the spectrum falling within the predicted butterfly-shaped
region. Moreover, for each of the four videos shown in Figure 8, we see that the empirical bandwidth
Ωt again equals roughly 5 to 20% of the prediction 2ΩxΓ + 2Ωh.

2.5.4 Videos with occlusions

To examine the effects of occlusions, we now consider videos constructed as follows. We construct
h(t) using the “sum of sinc functions” as in (6), where we can specify the bandwidth as Ωh and
the maximum value of |h(t)| as Γ. We then consider a translated unit-step function u(x − h(t))
which moves in front of a stationary background consisting of a square wave taking values 0 and
1
2 and with period 8 pix. Wherever u(x− h(t)) = 1, the translated step occludes the background;
wherever u(x − h(t)) = 0, the background is unoccluded. This “occluded background” signal is
then filtered spatially with a Gaussian kernel having standard deviation σ. (We apply the filtering
after occlusion, rather than vice versa, because this seems more plausible in a real imaging system.)
For the purposes of our experiments, we estimate the spatial bandwidth of this filtered signal to be
Ωx ≈ 6

σ .
Figure 9 shows the corresponding videos and estimated spectra, where the four rows correspond

to the same four parameter sets for (Ωx,Ωh,Γ) specified in Table 1. Compared to Figure 5, we
do see somewhat slower decay in the estimated spectrum along the temporal direction. Despite
this, there does remain a distinct concentration of the spectrum in the predicted butterfly region,
and for each of the four videos shown in Figure 9, the empirical bandwidth Ωt equals roughly 5 to
15% of the prediction 2ΩxΓ + 2Ωh. It is interesting to note that the “temporal spreading” of the
spectrum appears to be less pronounced than in the experiment of Section 2.5.2, in which h(t) was
taken to be a triangle wave; one would expect both cases to suffer from the nondifferentiability of
the video.

2.5.5 Real world videos

We conclude this examination with a series of experiments on real-world videos. These videos
(courtesy of MERL) were collected in a laboratory setting using a high-speed video camera, but
the scenes being imaged contained natural (not particularly high-speed) motions. For each video,
we select a 2D “slice” of the 3D video cube, extracting one spatial dimension and one temporal
dimension.

We begin with the Candle video which features two candle flames in front of a dark background;
the video was acquired at a rate of 1000 frames per second. We extract 512 pixels from row 300 of
each video frame. Figure 10 shows the videos and estimated spectra, where from top to bottom,
we keep the first 512, 2048, 4096, and 8192 time samples of the video. In the estimated spectra, we
recognize the approximate butterfly shape and an approximate limitation to the video bandwidth,
both spatially and temporally. More specifically, we typically see a collection of lines with various
slopes, with the lines passing roughly through the origin. However, there is also a bit of “thickness”
near the origin due to a possible Ωh term. The slopes of these lines match what might be expected
based on an empirical examination of the video itself. For example, during the first 512 frames
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of the video, the candle flame moves relatively slowly. From the windowed FFT, we see that the
slope of the butterfly wings equals approximately 150 pix/s, whereas from the video itself, we see
that the maximum translational speed of the candle flame appears to equal roughly 100 pix/s. The
ratio of 1.5 between these estimates is within the maximum ratio of 2.0 predicted by our theory.
As we consider more frames of the candle video (2048 or more), we begin to see faster motion of
the candle flames. This increases the slope of the butterfly wings as expected. For example, at
roughly 2.6 seconds into the video, the candle flame appears to translate to the right with a speed
of roughly 1500 pix/s, and consequently we see a portion of the estimated spectrum oriented along
a line with slope of approximately 4000 pix/s. Overall, for the four videos shown in Figure 10, the
empirical temporal bandwidth (the value of Ωt for which 99% of the energy in the windowed FFT
falls within the range |ωt| ≤ Ωt) equals 50 rad/s, 117 rad/s, 348 rad/s, and 468 rad/s, respectively.
This suggests that the video’s temporal sampling rate (1000 frames/sec) may have been higher
than necessary.

Next, we consider the Pendulum + Cars video, featuring two translating cars and an occlusion
as one car passes in front of the other; the video was acquired at a rate of 250 frames per second.
We extract 640 pixels from row 390 of each video frame. Figure 11 shows the videos and estimated
spectra, where from top to bottom, we keep the first 512, 2048, 4096, and 8192 time samples of the
video. Once again, in the estimated spectra, we recognize the approximate butterfly shape and an
approximate limitation to the video bandwidth, both spatially and temporally, and once again, we
typically see a collection of lines with various slopes, but now with a bit more “thickness” near the
origin due to a possible Ωh term. The slopes of these lines match what might be expected based
on an empirical examination of the video itself. For example, the maximum slope appears to be
on the order of 140 pix/s, while the maximum translational speed of the cars appears to be on
the order of 70 pix/s; however, a closer inspection of the video would be warranted to make this
number more precise. The overall empirical temporal bandwidth is typically on the order of 25 to
35 rad/s, and consequently, this video’s temporal sampling rate (250 frames/sec) may also have
been higher than necessary.

Finally, we consider the Card + Monster video, featuring a playing card translating in front of
a dark background; the video was acquired at a rate of 250 frames per second. We extract 640
pixels from row 40 of each video frame. Figure 12 shows the videos and estimated spectra, where
from top to bottom, we keep the first 512, 2048, 4096, and 8192 time samples of the video. Our
conclusions are similar to the experiments above, though we do see a more significant “thickness”
in the butterfly shape for this video.

3 Videos with two spatial dimensions

3.1 Problem setup

3.1.1 Signal model

Our analysis is easily generalized to the more conventional case of videos having two spatial dimen-
sions. We will again use the variable t ∈ R to index time in seconds, and we will use the variables
x, y ∈ R to index spatial position in pix.

Let g(x, y) denote a 2D function of space (think of this as a continuous-space “still image”), and
consider a continuous-space, continuous-time video f(x, y, t) in which each “frame” of the video
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consists of a shifted version of this prototype frame. More formally, suppose that

f(x, y, t) = g(x− hx(t), y − hy(t))

where h(t) = (hx(t), hy(t)) is a function that controls how much (in pix) the prototype frame is
shifted in the x- and y-directions at each time step.

3.1.2 Fourier setup

Let F (ωx, ωy, ωt) denote the 3D Fourier transform of f(x, y, t), and let G(ωx, ωy) denote the 2D
Fourier transform of g(x, y). Keeping track of units, ωx and ωy are measured in terms of rad/pix,
and ωt is measured in terms of rad/s. The following relationships will be of use to us.

First, let Fx,y{·} denote an operator on L2(R3) that performs the 2D Fourier transform in
the spatial directions, and let Ft{·} denote an operator on L2(R3) that performs the 1D Fourier
transform in the temporal direction. Due to the separability of the 3D Fourier transform, we know
that

F (ωx, ωy, ωt) = Fx,y{Ft{f}}(ωx, ωy, ωt) = Ft{Fx,y{f}}(ωx, ωy, ωt). (7)

Now, due to the shift property of the 1D Fourier transform, we have

Fx,y{f}(ωx, ωy, t) = Fx,y{g(x− hx(t), y − hy(t))}(ωx, ωy, t) = G(ωx, ωy)e
−jωxhx(t)−jωyhy(t).

Again, this function is complex-valued and has constant magnitude in the temporal direction;
therefore it has only phase changes in the temporal direction.

Following (7), F will be the result of taking the 1D Fourier transform of this function Fx,y{f}
in the temporal direction. We have

F (ωx, ωy, ωt) = Ft{G(ωx, ωy)e
−jωxhx(t)−jωyhy(t)}(ωx, ωy, ωt) = G(ωx, ωy) · L(ωx, ωy, ωt),

where
L(ωx, ωy, ωt) := Ft{e−jωxhx(t)−jωyhy(t)}(ωx, ωy, ωt).

For fixed ωx, ωy, L(ωx, ωy, ωt) equals the 1D Fourier transform of e−jωxhx(t)−jωyhy(t) with respect
to time, evaluated at the frequency ωt.

3.2 Temporal bandwidth analysis

3.2.1 Constant velocity model for hx(t) and hy(t)

Suppose the translation has a constant velocity, i.e., that hx(t) = Γxt and that hy(t) = Γyt for some
constants Γx,Γy (having units of pix/s). In this case we have L(ωx, ωy, ωt) = δ(ωt− ωxΓx− ωyΓy),
and so

F (ωx, ωy, ωt) = G(ωx, ωy) · δ(ωt − ωxΓx − ωyΓy),

which corresponds to a diagonal line in the 3D Fourier plane.
To see the implications of this in terms of bandwidth, let us suppose that G(ωx, ωy) is ban-

dlimited (or essentially bandlimited) to the range of frequencies (ωx, ωy) ∈ [−Ωx,Ωx] × [−Ωy,Ωy]
rad/pix. In this case, it follows that F (ωx, ωy, ωt) must be bandlimited (or essentially bandlimited)
to the range of frequencies (ωx, ωy, ωt) ∈ [−Ωx,Ωx]× [−Ωy,Ωy]× [−(ΓxΩx + ΓyΩy),ΓxΩx + ΓyΩy].
In other words, the temporal bandwidth of the video is no greater than ΓxΩx + ΓyΩy rad/s.
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3.2.2 Bounded velocity model for hx(t) and hy(t)

In slightly more generality, we could assume that the position functions hx(t) and hy(t) have
bounded slope, i.e., that for some Γx,Γy > 0,∣∣∣∣dhx(t)

dt

∣∣∣∣ ≤ Γx pix/s and

∣∣∣∣dhy(t)dt

∣∣∣∣ ≤ Γy pix/s

for all t. This corresponds to a bound on the “speed” at which the object can move in the video.
We also assume that both translation signals hx(t) and hy(t) have bandwidths bounded by Ωh

rad/s. (This guarantees that for any fixed ωx and ωy, the bandwidth of φ(t) below is also bounded
by Ωh rad/s.)

For any fixed ωx and ωy, we can recognize e−jωxhx(t)−jωyhy(t) as a phase-modulated (PM) sinu-
soid having carrier frequency 0 and phase deviation (in radians)

φ(t) = −ωxhx(t)− ωyhy(t),

or equivalently, as a frequency-modulated (FM) sinusoid having carrier frequency 0 and instanta-
neous frequency (in rad/s)

ωi(t) =
dφ(t)

dt
= −ωx

dhx(t)

dt
− ωy

dhy(t)

dt
.

For an FM signal, we have
dφ(t)

dt
= ωdm(t),

where m(t) is known as the modulating signal and ωd is the frequency deviation constant. Thus,
we have

m(t) =
1

ωd

dφ(t)

dt
= −ωx

ωd

dhx(t)

dt
− ωy
ωd

dhy(t)

dt
.

Let us also define the deviation term

D :=
ωd
Ωh

max |m(t)| ≤ |ωx|
Ωh

max

∣∣∣∣dhx(t)

dt

∣∣∣∣+
|ωy|
Ωh

max

∣∣∣∣dhy(t)dt

∣∣∣∣ ≤ |ωx|Γx + |ωy|Γy
Ωh

.

From Carson’s bandwidth rule for frequency modulation, we have that for fixed ωx and ωy, at
least 98% of the total power of e−jωxhx(t)−jωyhy(t) must be concentrated in the frequency range

ωt ∈ [−2(D + 1)Ωh, 2(D + 1)Ωh] rad/s. Since D ≤ |ωx|Γx+|ωy |Γy

Ωh
, we conclude that at least 98% of

the total power of e−jωxhx(t)−jωyhy(t) must be concentrated in the frequency range ωt ∈ [−(2|ωx|Γx+
2|ωy|Γy + 2Ωh), 2|ωx|Γx + 2|ωy|Γy + 2Ωh] rad/s. We note that the dependence of this bandwidth
on ωx is essentially linear.

We conclude that L(ωx, ωy, ωt) will have a characteristic “polytope hourglass shape”. Con-
sidering the first octant of the 3D frequency space (in which ωx, ωy, ωt ≥ 0), most of the total
power of L(ωx, ωy, ωt) will fall below (in the temporal direction) a plane passing through the points
(0, 0, 2Ωh), (1, 0, 2Γx + 2Ωh), and (0, 1, 2Γy + 2Ωh). The other seven octants follow symmetrically.

To see the implications of this in terms of bandwidth, let us again suppose that G(ωx, ωy) is
bandlimited (or essentially bandlimited) to the range of frequencies (ωx, ωy) ∈ [−Ωx,Ωx]×[−Ωy,Ωy].
We must then have that F (ωx, ωy, ωt) = G(ωx, ωy) · L(ωx, ωy, ωt) is also essentially bandlimited in
the spatial direction to the range of frequencies (ωx, ωy) ∈ [−Ωx,Ωx] × [−Ωy,Ωy]. Because of the
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hourglass structure in L(ωx, ωy, ωt), however, this will also cause F (ωx, ωy, ωt) to be essentially
bandlimited in the temporal direction to the range of frequencies

ωt ∈ [−(2ΩxΓx + 2ΩyΓy + 2Ωh), 2ΩxΓx + 2ΩyΓy + 2Ωh]. (8)

Therefore, we see that filtering such a video in the spatial directions can cause it to be essentially
bandlimited both in space and in time.

3.3 Sampling implications

Based on the temporal bandwidth predicted in (8), where we assume that G(ωx, ωy) is bandlimited
(or essentially bandlimited) to the range of frequencies (ωx, ωy) ∈ [−Ωx,Ωx]×[−Ωy,Ωy], the Nyquist
theorem suggests that in order to avoid aliasing, the video should be sampled at a minimum rate
of

2ΩxΓx + 2ΩyΓy + 2Ωh

π
samples/s.

As a point of reference, during a sampling interval of
(

2ΩxΓx+2ΩyΓy+2Ωh

π

)−1
seconds, an object

moving with maximum speed of Γx pix/s in the x-direction can traverse a maximum of

πΓx
2ΩxΓx + 2ΩyΓy + 2Ωh

pix

in the x-direction. Similarly, an object moving with maximum speed of Γy pix/s in the y-direction
can traverse a maximum of

πΓy
2ΩxΓx + 2ΩyΓy + 2Ωh

pix.

Using the triangle inequality for the sake of simplicity, we conclude that the object can move no
more than

π(Γx + Γy)

2ΩxΓx + 2ΩyΓy + 2Ωh
pix (9)

in any direction.
Let us plug in some plausible numbers to illustrate the implications of these bounds. If we expect

that both Ωx and Ωy will be on the order of π rad/pix, and if we assume that the 2ΩxΓx + 2ΩyΓy
term will typically dominate the 2Ωh term, then (9) suggests that, in typical scenarios, to avoid
temporal aliasing we should not allow a moving object to traverse more than ≈ 1

2 pix in any
direction between adjacent sampling times.

Aside from exceptionally non-smooth motions h(t), we do strongly suspect that the influence
of the temporal bandwidth Ωh will be minor in comparison to the influence of the 2ΩxΓx + 2ΩyΓy
term, and so in general a temporal Nyquist sampling rate of 2(Γx + Γy) samples/s will likely serve
as a reasonable rule of thumb.3 Again, this rule of thumb illustrates the direct relationship between
the speed of object motion in the video and the video’s overall temporal bandwidth.

3.4 Experiments

It would not be difficult to conduct experiments analogous to those presented in Sections 2.4 and 2.5.
Due to time limitations, however, we have not included such experiments.

3It is possible that this could be reduced to 2
√

Γ2
x + Γ2

y through the natural modifications to our analysis.
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4 Sampling and interpolation principles

The insight we have developed in the past two sections suggests that many videos of interest
may indeed be exactly or approximately bandlimited in the temporal direction. For problems
involving CS of such videos, this implies that there may be a limit to the “complexity” of the
information collected by compressive measurement devices with high temporal sampling rates.
One way of exploiting this limited complexity is in the context of classical interpolation identities
for bandlimited signals. We briefly review these identities in this section before exploring their
applications for CS reconstruction in Section 5.

4.1 Interpolation theory

Before considering 2D or 3D video signals, let us first review the basic principles involved in sam-
pling, interpolation, and reconstruction of a bandlimited 1D signal. Suppose that f(t) is a signal
with temporal bandwidth bounded by Ωt rad/s. The Nyquist theorem states that this signal can
be reconstructed from a discrete set of samples {f(nTs)}n∈Z, where the sampling interval Ts ≤ π

Ωt

seconds. In particular, it holds that

f(t) =
∑
n∈Z

f(nTs)sinc

(
t− nTs
Ts

)
, (10)

where sinc(t) = sin(πt)
πt . Instead of actually reconstructing the continuous-time signal f(t), a more

important consequence of (10) for us will be the fact that, for any t0 ∈ R, f(t0) can be represented
as a linear combination of the discrete samples {f(nTs)}n∈Z.

With varying degrees of approximation, it is possible to replace the sinc interpolation kernel in
(10) with other, more localized kernels. We will write

f̃(t) =
∑
n∈Z

f(nTs)γ

(
t− nTs
Ts

)
, (11)

where γ(t) is a prototype interpolation kernel. In addition to the sinc kernel, for which

γ(t) = sinc (t) ,

other possible choices include the zero-order hold (rectangular) kernel, for which

γ(t) = rect (t) =

{
1, |t| ≤ 1

2
0, otherwise,

the first-order hold (triangular, or “linear interpolation”) kernel, for which

γ(t) = tri (t) =

{
1− |t|, |t| ≤ 1
0, otherwise,

and a variety of cubic interpolation kernels [11].
In general, a smoother choice for γ(t) will better approximate the ideal sinc kernel.4 However,

smoother kernels tend to have wider temporal supports, and it can be desirable in some applications

4The implications of this can be appreciated in the frequency domain. Since one can view the reconstruction

process as convolution of an impulse train with the scaled interpolation kernel γ
(

t
Ts

)
, in the frequency domain

we are windowing the periodic spectrum of f(t) with the frequency response of the interpolation kernel. Smoother
interpolation kernels better approximate the ideal lowpass filter.

16



(such as the CS recovery problem discussed below) to limit the temporal support of the kernel.
One way to improve the performance of the lower-order, more narrow interpolation kernels is to
decrease the sampling interval Ts.

5 However, for our CS recovery problem discussed below, this
too will increase the complexity of the recovery algorithm by increasing the number of “anchor
frames”.

For a 2D or 3D video with limited temporal bandwidth, the separability of the Fourier transform
implies that the interpolation formulas presented above should hold for each spatial location (i.e.,
for each pixel). For several of the approximately bandlimited test videos considered in Sections 2.4
and 2.5, we explore below the quality of these interpolation formulas as a function of the temporal
sampling rate and the interpolation kernel type.

4.2 Experiments within our model assumptions

First, we recall Section 2.4.2 and consider videos f(x, t) = g(x−h(t)) with bandlimited sinc profile
g(x) and bandlimited “sum of sinc functions” model for the translation signal h(t). In the right side
Figure 13(a), we show a video with parameters (Ωx,Ωh,Γ) drawn from the fourth row of Table 1; the
time axis runs vertically. We set Ts equal to 0.5 times the Nyquist sampling interval corresponding
to the predicted temporal bandwidth of 2ΩxΓ + 2Ωh rad/s. In the left side of Figure 13(b), using
a linear interpolation kernel γ(t), we plot as a function of time t the maximum interpolation error

max
x
|f(x, t)− f̃(x, t)|

over all x in our sampling grid; the times t are selected from a fine grid, and again the time axis runs
vertically and is presented for comparison with the video on the right. We see that interpolation
errors are greatest for times in the video at which h(t) has large slope.

For each of the four parameter sets (Ωx,Ωh,Γ) listed in Table 1, we also compute the maximum
interpolation error

max
x,t
|f(x, t)− f̃(x, t)|

as a function of the temporal sampling interval Ts. Using a linear interpolation kernel for γ(t),
Figure 13(b) plots the maximum interpolation error for each type of video, where the colored lines
represent each of the four video types (blue = row 1 in Table 1, green = row 2, red = row 3, and
cyan = row 4), and the horizontal axis represents the ratio of Ts to the Nyquist sampling interval
corresponding to the predicted temporal bandwidth of 2ΩxΓ + 2Ωh for each video. Figure 13(c)
repeats this experiment using a cubic interpolation kernel γ(t). In each case, we see that the
sampling near the predicted Nyquist rate allows interpolation of the missing video frames with
reasonable accuracy. Also, the similar nature of the four curves suggests that the actual values of
(Ωx,Ωh,Γ) are not critical in determining interpolation accuracy; what seems to be important is
how these values combine into a predicted Nyquist sample rate, and how fast the video is sampled
compared to this rate.

5Doing so provides more space in the frequency domain between the replicated copies of the spectrum of f(t),
permitting nonideal lowpass filters a better opportunity to select only the baseband copy and to do so with minimal
distortion.
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4.3 Experiments beyond our model assumptions

4.3.1 Removing the bandlimitedness assumption from g(x)

In Figure 14 we repeat all of the above experiments for the type of videos examined in Section 2.5.1,
with bandlimited sinc profile g(x) and bandlimited “sum of sinc functions” model for the translation
signal h(t). From panel (a), we see that interpolation errors are again typically highest at times for
which h(t) has large slope. From panels (b) and (c), however, we see that compared to Figure 13,
interpolation errors for these videos are relatively lower for a given sampling rate (as a fraction of
the predicted Nyquist rate). As discussed in Section 2.5.1, this is likely due to the decay of the
Gaussian spectrum (compared to the flat spectrum of a sinc function) and due to our conservative
formula relating Ωx to σ.

4.3.2 Removing the bandlimitedness assumption from h(t)

In Figure 15 we repeat all of these experiments for the type of videos examined in Section 2.5.2, with
non-bandlimited Gaussian-filtered step function g(x) and non-bandlimited triangle wave model for
h(t). From panel (a), we see that interpolation errors are typically highest at times where h(t) has
an abrupt change of slope (at the peaks of the triangles). Despite the non-bandlimited nature of
h(t) we do see from panels (b) and (c) that reasonable interpolation quality is achievable as long
as the video is sampled near the predicted (approximate) Nyquist rate.

4.3.3 Videos with occlusions

In Figure 16 we repeat all of these experiments for the type of videos examined in Section 2.5.4, with
f(x, t) containing a moving edge occluding a stationary background pattern. Similar conclusions
hold.

4.3.4 Real world videos

Finally, Figure 17, Figure 18, and Figure 19 present similar experiments conducted on the Candle,
Pendulum + Cars, and Card + Monster videos, respectively. The experiments are conducted by
subsampling the original high-rate videos and attempting to interpolate the values of the omitted
frames. Panel (a) of each figure illustrates, for each t, the maximum interpolation error over all x.
We see that moments of high speed motion present the most difficulty for accurate interpolation.
Panel (b) of each figure plots the maximum interpolation error over all x and t for both linear
interpolation (solid blue line) and cubic interpolation (dashed red line) as a function of the absolute
number of samples retained per second. It is clear that these videos contain some features beyond
our model assumptions, which prevents the maximum interpolation error from achieving a small
value. However, we do see characteristic improvements as we increase our sample rate.

4.4 A manifold-based interpretation

As a brief note, we mention that one could reinterpret these tradeoffs of bandwidth vs. interpolation
quality in the context of manifolds. In past work [12], we have shown that typical manifolds of
images containing sharp edges are non-differentiable. However, these manifolds contain a multiscale
structure that can be accessed by regularizing the images. The more one smoothes the images, the
smoother the manifold will become, and local tangent approximations will remain accurate over
longer distances across the manifold.
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In the context of this document, the spatial profile function g(x) is often assumed to be ban-
dlimited due to an inherent resolution limit in the imaging system. Thus, our translational video
model f(x, t) = g(x− h(t)) corresponds to a “walk” along a manifold consisting of blurred images
of the same object, but translated to different positions. From the manifold perspective, a decrease
in the bandwidth of g(x) corresponds to an increase in the amount of blurring, which smoothes the
manifold. From the perspective of this document, a decrease in the bandwidth of g(x) decreases
the anticipated temporal bandwidth of the video, which improves the quality of linear (and other)
interpolation schemes. The reason for the improved interpolation accuracy can be appreciated by
considering the increased smoothness of the manifold; in particular, linear interpolation improves
as the tangent spaces twist more slowly.

These intuitive connections could be explored more formally in future work. For example, the
performance of higher order interpolation methods (such as cubic interpolation) may be tied to the
rate at which higher order derivatives change along the manifold.

5 Reconstruction of temporally bandlimited videos from stream-
ing measurements

In this section, we will consider how the Compressive Sensing (CS) reconstruction problem can be
formulated in streaming scenarios, where we acquire one measurement of a video per time instant.

5.1 Measurement process

Consider a continuous-space, continuous-time video f(x, t) that has temporal bandwidth bounded
by Ωt rad/s. Let fd : {1, 2, . . . , Nx} × R → R denote a sampled discrete-space, continuous-time
version of this video, where for p = 1, 2, . . . , Nx,

fd(p, t) = f(p∆x, t). (12)

In the expression above, ∆x represents the spatial sampling resolution (in pix). We note that the
temporal bandwidth of fd will still be bounded by Ωt rad/s.

Now, let T1 denote a measurement interval (in seconds); typically T1 will be much smaller than
the Nyquist sampling interval of π

Ωt
suggested by the video’s bandwidth. Suppose that one linear

measurement is collected from fd every T1 seconds. Letting y(m) denote the measurement collected
at time mT1, we can write

y(m) =

Nx∑
p=1

φm(p)fd(p,mT1) = 〈φm, fd(:,mT1)〉, (13)

where φm ∈ RNx is a vector of random numbers, and we use “Matlab notation” to refer to a vector
fd(:, t) ∈ RNx .

Stacking all of the measurements, we have

y =


y(1)
y(2)

...
y(M)

 =


〈φ1, fd(:, T1)〉
〈φ2, fd(:, 2T1)〉

...
〈φM , fd(:,MT1)〉

 =


φT1

φT2
. . .

φTM


︸ ︷︷ ︸

M×MNx


fd(:, T1)
fd(:, 2T1)

...
fd(:,MT1)


︸ ︷︷ ︸

MNx×1

(14)
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Unfortunately, there are two difficulties with attempting to use this formulation for a CS recovery:
first, the recovery problem is very highly underdetermined, with the number of measurements
representing only 1

Nx
times the number of unknowns; and second, the size of the recovery problem,

with MNx unknowns, can be immense. (Both of these difficulties will be even more significant for
videos with two spatial dimensions.)

5.2 Simplifying the linear equations

Fortunately, the bandlimitedness of the video allows us to simplify this recovery process somewhat.
Let Ts denote a sampling interval no greater than the Nyquist limit ( πΩt

seconds) suggested by the
video’s bandwidth, and assume that Ts = V T1 for some integer V ≥ 1. Then for any integer j, we
can write

fd(:, jT1) =
∑
n∈Z

fd(:, nTs)γ

(
jT1 − nTs

Ts

)

=
∑
n∈Z

fd(:, nTs)γ

(
j TsV − nTs

Ts

)

=
∑
n∈Z

fd(:, nTs)γ

(
j

V
− n

)

=

[
· · · γ

(
j

V
− 1

)
INx γ

(
j

V
− 2

)
INx γ

(
j

V
− 3

)
INx · · ·

]


...
fd(:, Ts)
fd(:, 2Ts)
fd(:, 3Ts)

...

 ,

where INx denotes the Nx ×Nx identity matrix. Therefore,


fd(:, T1)
fd(:, 2T1)

...
fd(:,MT1)

 =


· · · γ

(
1
V − 1

)
INx γ

(
1
V − 2

)
INx γ

(
1
V − 3

)
INx · · ·

· · · γ
(

2
V − 1

)
INx γ

(
2
V − 2

)
INx γ

(
2
V − 3

)
INx · · ·

...
...

...

· · · γ
(
M
V − 1

)
INx γ

(
M
V − 2

)
INx γ

(
M
V − 3

)
INx · · ·




...
fd(:, Ts)
fd(:, 2Ts)
fd(:, 3Ts)

...


(15)

Assuming γ(t) has temporal support within some reasonable bound, the matrix above will have
size MNx × (MNx

V +O(1)) and so this allows a dimensionality reduction by a factor of V .
Putting all of this together, we have

y =


φT1

φT2
. . .

φTM


︸ ︷︷ ︸

M×MNx


fd(:, T1)
fd(:, 2T1)

...
fd(:,MT1)


︸ ︷︷ ︸

MNx×1
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=


φT1

φT2
. . .

φTM


︸ ︷︷ ︸

M×MNx


· · · γ

(
1
V − 1

)
INx γ

(
1
V − 2

)
INx γ

(
1
V − 3

)
INx · · ·

· · · γ
(

2
V − 1

)
INx γ

(
2
V − 2

)
INx γ

(
2
V − 3

)
INx · · ·

...
...

...

· · · γ
(
M
V − 1

)
INx γ

(
M
V − 2

)
INx γ

(
M
V − 3

)
INx · · ·


︸ ︷︷ ︸

MNx×(MNx
V

+O(1))



...
fd(:, Ts)
fd(:, 2Ts)
fd(:, 3Ts)

...


︸ ︷︷ ︸
(MNx

V
+O(1))×1

=


· · · γ

(
1
V − 1

)
φT1 γ

(
1
V − 2

)
φT1 γ

(
1
V − 3

)
φT1 · · ·

· · · γ
(

2
V − 1

)
φT2 γ

(
2
V − 2

)
φT2 γ

(
2
V − 3

)
φT2 · · ·

...
...

...

· · · γ
(
M
V − 1

)
φTM γ

(
M
V − 2

)
φTM γ

(
M
V − 3

)
φTM · · ·


︸ ︷︷ ︸

M×(MNx
V

+O(1))



...
fd(:, Ts)
fd(:, 2Ts)
fd(:, 3Ts)

...


︸ ︷︷ ︸
(MNx

V
+O(1))×1

(16)

Now we see that we have reduced the total number of unknowns, from MNx to MNx
V +O(1). Indeed,

the largest dimension of any matrix or vector in this formulation is now limited to MNx
V + O(1)

instead of MNx. Moreover, due to decay in γ, the matrix above will be banded, with zeros in
all positions sufficiently far from the diagonal. This facilitates storage of the matrix and possible
streaming reconstruction.

From the formulation above, we see that it is possible to focus the reconstruction process on
recovery of a relatively low-rate stream of “anchor frames”, rather than the high rate stream of
frames measured by the imaging system. If the anchor frames are defined at the video’s temporal
Nyquist rate, and if there are no additional assumptions made about the video, then one should not
expect any temporal correlations to remain among the anchor frames. In many real world settings,
however, there will be objects moving within the scene, and the smoothness of the object motion
can lead to temporal correlations, e.g., that can be captured via motion compensated transforms.
Thus, in order to impose the strongest possible model on the vector of anchor frames, it may be
necessary to look for sparsity in a motion compensated wavelet transform, to invoke a dynamical
system model for the changing anchor frames, or to find some other model for exploiting temporal
correlations. In many applications, this may indeed be the only way to reduce the number of
unknowns to some quantity smaller than M and thus to truly be able to solve the CS inverse
problem.

5.3 Experiments

5.3.1 Single moving pulse

Let us illustrate the basic idea through the following experiment. We consider a video f(x, t) =
g(x− h(t)) having one spatial dimension. The profile g(x) is taken to be a Gaussian pulse having
standard deviation σ = 0.5. Unlike earlier experiments in this document, we do not convolve the
Gaussian with a unit step function for this experiment. We may crudely approximate the essential
bandwidth of g(x) according to the formula Ωx ≈ 6

σ = 12 rad/pix. For the translational signal h(t)
we use the “sum of sinc functions” model (6), with Ωh = 8 rad/s and Γ = 50 pix/s. This video has
a predicted temporal bandwidth of 2ΩxΓ + 2Ωh = 1216 rad/s, and so Nyquist suggests a minimum
temporal sampling rate of approximately 387 samples/sec. We discretize this video in space, taking
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Nx = 50 pixels/frame at a spatial sampling resolution of ∆x = 1 pix/pixel. Following (12), we let
fd(p, t) denote the discretized video; the video is shown in Figure 20(a).

We then set T1 = 1
2·387 = 1

774 seconds, and letting m range from 1 to 774 (i.e., t ranges from 0
to 1 sec), we collect a total of 774 random projections of this video, one at a time in equispaced
intervals, as dictated by (13). To be clear, for each m, the measurement we collect at time mT1

represents the inner product of fd(:,mT1) against a length-50 random vector. In Figure 20(b), we
follow (14) and employ a standard CS reconstruction algorithm6 to reconstruct fd at all of the time
instants {mT1}774

m=1. In total, we are solving for 50 · 774 = 38700 unknowns using just 774 random
measurements, and since the sparsity level of this video in the canonical basis is clearly at least 774
(at least one pixel is nonzero at every time instant), there is no hope for a decent reconstruction.

For various values of V , then, we consider the formulation (16), using a linear interpolation ker-
nel γ(t), and reconstruct only the anchor frames. Since the anchor frames are spaced approximately
V

774 seconds apart, the number of unknowns we are solving for reduces to approximately 38700
V ; we

are attempting solve for these unknowns using the same 774 measurements. After solving for the
anchor frames, we employ (15) to recover an estimate for fd at all of the time instants {mT1}774

m=1.
Figures 20(c) through 20(g) show the resulting reconstructions for V = 8, V = 12, V = 16, V = 20,
and V = 24, respectively. Figure 20(h) plots the MSE of the discretized frames fd(:, t) as a function
of time, for each of the various values of V .

Across a wide range of V , we see in these experiments that the reconstruction error is signifi-
cantly improved compared to the full-scale reconstruction suggested by (14). However, we do see
that by choosing V too low, there is a degradation in performance, which is presumably due to
the fact that we must solve for too many unknowns given the available measurements. We also see
that by choosing V too large, there is a degradation in performance, which is presumably due to
the fact that the interpolation equation (15) on which we base our technique breaks down. For a
fixed V , we also see that the reconstruction error increases as the slope of h(t) increases, which is
to be expected and is again due to the fact that (15) is breaking down.

We can also examine the role played by the choice of interpolation kernel. In Figure 21 we
repeat the above experiment, using a rectangular nearest neighbor interpolation kernel γ(t) instead
of a linear interpolation kernel. With this choice of kernel, the accuracy of (15) is diminished, and
the reconstruction performance suffers as one would expect. By comparing Figure 21 to Figure 20
we see the true potential value in our kernel-based approach, as Figure 21 could be interpreted
as a simple “clustering” of the measurements in time, which is a natural approach that comes to
mind when one considers streaming measurements from an architecture such as the Rice single
pixel camera.

5.3.2 Two moving pulses

To test the performance of these techniques when the complexity of the video is increased, we
repeat the above experiment (using a linear interpolation kernel) for a video containing two moving
pulses. The results are shown in Figure 22. It is clear that the sparsity level of this video in the
canonical basis is roughly twice that of the video from our initial experiment above. Consequently,
the reconstruction performance is diminished in all cases. All of our relative statements about the
role of V and the implications of the slope of h(t) carry over, however.

6This video was chosen due to the fact that it is sparse in the canonical basis; in practice other sparse bases could
be employed for reconstruction.
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5.3.3 Real world video

We have also experimented with the Candle video discussed previously; see Figure 23(a). In this
case, we select Nx = 225 pixels from row 300 of the video. We consider 400 adjacent frames of the
video, which were collected at a sample rate of 1000 frames/sec. To construct streaming random
measurements of this video, we actually compute 5 random measurements of each recorded frame;7

thus the total number of random measurements collected is 5 · 400 = 2000.
In Figure 23(b), we adapt (14) to account for the fact that 5 (rather than 1) measurements are

collected at each time instant and employ a standard CS reconstruction algorithm8 to reconstruct
the 400 frames. In total, we are solving for 225 · 400 = 90000 unknowns using just 2000 random
measurements. Since the sparsity level of this video exceeds 10000, there is no hope for a decent
reconstruction.

For various values of V , then, we adapt (16) as appropriate and, using a linear interpolation
kernel γ(t), reconstruct only the anchor frames. In each case, the number of unknowns we are
solving for reduces to approximately 90000

V ; we are attempting solve for these unknowns using
the same 2000 measurements. After solving for the anchor frames, we employ (15) to recover an
estimate for all 400 original frames. Figures 23(c) through 23(g) show the resulting reconstructions
for V = 8, V = 12, V = 20, V = 30, and V = 40, respectively. Figure 23(h) plots the MSE of
the reconstructed frames as a function of time, for each of the various values of V . Overall, these
experiments illustrate the same issues concerning the role of V and speed of the motion in the
video.

5.4 Toward a general purpose reconstruction algorithm

The preceding experiments provide a promising proof of concept for interpolation-based simplifi-
cations of the CS recovery problem. There are many directions in which this basic idea may be
extended in developing a more general purpose CS reconstruction algorithm. Several such directions
are briefly surveyed below.

5.4.1 Streaming reconstruction

In practice, we may be presented with a long stream of measurements and wish to reconstruct
a video over a long time span. While it would be possible in theory to exploit the relationship
(16) over the whole video at once, it would also be possible to window the measurements into
smaller segments and reconstruct the segments individually using (16). If the segments are chosen
to overlap slightly, then the final anchor frames in one segment could be used as a prior to inform
the reconstruction of the initial anchor frames in the next segment. Or, when a start/end anchor
frame is not available for properly initializing a reconstruction based on (16), certain interference
cancellation schemes [13] could be exploited to account for the fact that those anchor frames may
not be properly recoverable.

7Roughly speaking, this would correspond to the operation of a “five pixel” camera. Though such an architecture
is perhaps not realistic in practice, we needed some way to construct more than 400 measurements for the 400 frames
of interest.

8Again, for simplicity this video was chosen due to its sparsity in the canonical basis. However, reconstruction of
this and other videos could likely be improved through the use of sparse transforms that exploit spatial correlations.
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5.4.2 Optimizing anchor spacing

In streaming or non-streaming reconstructions, one would have the option of changing the anchor
spacing (parameterized by V ) adaptively throughout the video, perhaps based on real-time esti-
mates of the speed of object motion in the video. Our plots in Figures 20(h), 21(h), 22(h), and
23(h), however, suggest that the favorable choices of V do not change significantly over time. A
deeper study of real world videos would be required to characterize the potential gains of changing
V on the fly.

5.4.3 Optimizing the spatial resolution of the measurements

One could also imagine a compressive imaging architecture that, in times of fast object motion,9

adaptively reduces the spatial resolution of the measurement vectors in order to artificially reduce
the spatial (and thus also the temporal) bandwidth of the video. The goal of throttling back the
measurement resolution in such a manner would be to better ensure that the identity (15) would
approximately hold. To test the viability of such an approach, we repeat in Figure 24 the same
experiment presented in Figure 20, but where each measurement vector has been lowpass filtered
and downsampled by a factor of 2. Similarly, Figure 25 shows the results for a video with two
moving pulses; it should be compared with Figure 22.

In general, we see that reducing the measurement resolution reduces the spatial resolution of the
reconstructed frames. Although we rarely see an overall gain in terms of mean square error, there
can occasionally be clear visual improvements in the lower resolution reconstructions. A deeper
study of real world videos would be required to better characterize the potential gains of changing
the measurement resolution on the fly. It would also be useful to consider whether it is possible to
adapt just the reconstruction resolution without changing the actual measurement resolution.

5.4.4 Exploiting residual correlations among anchor frames

In the hypothetical case where no residual correlations remain among the anchor frames, there
would be little room for improvement upon this reconstruction approach. In real-world videos,
however, we do expect that significant correlations may remain. The question of how to exploit
these correlations has been addressed in the more conventional CS recovery literature. For example,
one could employ a linear dynamical system model to capture the restricted degrees of freedom
of the anchor frames [6]. Alternatively, we are currently developing an algorithm that will involve
estimating the motion of the video and then formulating the recovery of the anchor frames in
a motion-compensated sparse basis [7]; the details of this algorithm will be reported in a future
publication. As better solutions continue to be developed for exploiting such correlations, we
expect that they could be combined with the methods discussed in this paper to permit better
reconstruction from streaming or “single-pixel” measurements. It may also be possible to combine
the insight gained from this paper with techniques for “manifold lifting” [14], building on the
connections discussed briefly in Section 4.4.

9The video could perhaps be probed periodically with repeated pairs of measurement functions to detect object
speeds.
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ω
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Figure 1: (a) Butterfly structure in the two-dimensional Fourier transform of a simple translational 1D
video. The slope of the lines is proportional to the maximum speed of the translation. (b) Bandlimiting
the video in space (e.g., by spatial lowpass filtering) will also bandlimit the video in time. The resulting
temporal bandwidth will be proportional to the spatial bandwidth times the maximum translational speed.
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(a) (b) (c)

Figure 2: (a) Video f(x, t) = g(x−h(t)) with bandlimited sinc profile g(x) and constant velocity translation
signal h(t); see Section 2.4.1. (b) Estimated spectrum. (c) Estimated spectrum with windowing to alleviate
border artifacts.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Left column: Videos f(x, t) = g(x − h(t)) with bandlimited sinc profile g(x) and bandlimited
“sum of sinc functions” model for the translation signal h(t); see Section 2.4.2. Each row corresponds to one
set of parameter values (Ωx,Ωh,Γ) as specified in Table 1. Right column: Estimated spectra.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Left column: Videos f(x, t) = g(x−h(t)) with bandlimited profile g(x) and bandlimited sinusoidal
model for h(t); see Section 2.4.3. Each row corresponds to one set of parameter values (Ωx,Ωh,Γ) as specified
in Table 1. Right column: Estimated spectra.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: Left column: Videos f(x, t) = g(x − h(t)) with non-bandlimited Gaussian-filtered step function
g(x) and bandlimited “sum of sinc functions” model for h(t); see Section 2.5.1. Each row corresponds to one
set of parameter values (Ωx,Ωh,Γ) as specified in Table 1. Right column: Estimated spectra with windowing
to alleviate border artifacts.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: Left column: Videos f(x, t) = g(x − h(t)) with non-bandlimited “triangular step” function g(x)
and bandlimited “sum of sinc functions” model for h(t); see Section 2.5.1. Each row corresponds to one set
of parameter values (Ωx,Ωh,Γ) as specified in Table 1. Right column: Estimated spectra with windowing
to alleviate border artifacts.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Left column: Videos f(x, t) = g(x − h(t)) with non-bandlimited Gaussian-filtered step function
g(x) and non-bandlimited triangle wave model for h(t); see Section 2.5.2. Each row corresponds to one set
of parameter values (Ωx,Ωh,Γ) as specified in Table 1. Right column: Estimated spectra with windowing
to alleviate border artifacts.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: Left column: Videos f(x, t) containing multiple moving edges with non-bandlimited Gaussian-
filtered step functions g(x) and bandlimited “sum of sinc functions” models for h(t); see Section 2.5.3. Each
row corresponds to one set of parameter values (Ωx,Ωh,Γ) as specified in Table 1. Right column: Estimated
spectra with windowing to alleviate border artifacts.

33



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9: Left column: Videos f(x, t) with a moving edge occluding a stationary background pattern; see
Section 2.5.4. Each row corresponds to one set of parameter values (Ωx,Ωh,Γ) as specified in Table 1. Right
column: Estimated spectra with windowing to alleviate border artifacts.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10: Left column: Sampled 1D rows from Candle video; see Section 2.5.5. From top to bottom, we
keep the first 512, 2048, 4096, and 8192 time samples of the video. Right column: Estimated spectra with
windowing to alleviate border artifacts.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11: Left column: Sampled 1D rows from Pendulum + Cars video; see Section 2.5.5. From top to
bottom, we keep the first 512, 2048, 4096, and 8192 time samples of the video. Right column: Estimated
spectra with windowing to alleviate border artifacts.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12: Left column: Sampled 1D rows from Card + Monster video; see Section 2.5.5. From top to
bottom, we keep the first 512, 2048, 4096, and 8192 time samples of the video. Right column: Estimated
spectra with windowing to alleviate border artifacts.
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(a)

(b) (c)

Figure 13: Interpolation experiments for videos f(x, t) = g(x−h(t)) with bandlimited sinc profile g(x) and
bandlimited “sum of sinc functions” model for the translation signal h(t); see Section 4.2 for details.
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(a)

(b) (c)

Figure 14: Interpolation experiments for videos f(x, t) = g(x−h(t)) with non-bandlimited Gaussian-filtered
step function g(x) and bandlimited “sum of sinc functions” model for h(t); see Section 4.3.1 for details.
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(a)

(b) (c)

Figure 15: Interpolation experiments for videos f(x, t) = g(x−h(t)) with non-bandlimited Gaussian-filtered
step function g(x) and non-bandlimited triangle wave model for h(t); see Section 4.3.2 for details.
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Figure 16: Interpolation experiments for videos f(x, t) containing a moving edge occluding a stationary
background pattern; see Section 4.3.3 for details.
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Figure 17: Interpolation experiments for Candle video; see Section 4.3.4 for details.
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(a)

(b)

Figure 18: Interpolation experiments for Pendulum + Cars video; see Section 4.3.4 for details.
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Figure 19: Interpolation experiments for Card + Monster video; see Section 4.3.4 for details.
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Figure 20: CS reconstruction experiments for a translational video with a single moving pulse using a linear
interpolation kernel; see Section 5.3.1 for details.
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Figure 21: CS reconstruction experiments for a translational video with a single moving pulse using a
nearest neighbor (rectangular) interpolation kernel; see Section 5.3.1 for details.
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Figure 22: CS reconstruction experiments for a translational video with a two moving pulses using a linear
interpolation kernel; see Section 5.3.2 for details.
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Figure 23: CS reconstruction experiments for Candle video using a linear interpolation kernel; see Sec-
tion 5.3.3 for details.
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Figure 24: CS reconstruction experiments for a translational video with a single moving pulse using a linear
interpolation kernel, and with lowpass filtered measurement vectors; see Section 5.4.3 for details.
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Figure 25: CS reconstruction experiments for a translational video with two moving pulses using a linear
interpolation kernel, and with lowpass filtered measurement vectors; see Section 5.4.3 for details.
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