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ABSTRACT

Random projections have recently found a surprising niche in sig- 91
nal processing. The key revelation is that the relewnicture 92

in a signal can be preserved when that signal is projected onto a
small number of random basis functions. Recent work has ex-
ploited this fact under the rubric of Compressed Sensing (CS):
signals that are sparse in some basis can be recovered from small @ ®)
numbers of random linear projections. In many cases, however,

we may have a more specific low-dimensional model for signals Fig. 1. Examples of parameterized signal models: (a) A
in which the signal class forms a nonlingmanifoldin R™ . This wedgelet [13] is a parameterized edge on a square image block.
paper provides preliminary theoretical and experimental evidence (b) Arbitrary view of a simple object; as the viewpoint changes,
that manifold-based signal structure can be preserved using smalthe images trace out a nonlinear, non-differentiable manifold [14].
numbers of random projections. The key theoretical motivation

comes from Whitney's Embedding Theorem, which states that a Rather than dealing with arbitrary clouds of points, CS exam-
K -dimensional manifold can be embeddediiff¢ ™!, We exam- ines classes of signals having sparse representations in some ba-
ine the potential applications of this fact. In particular, we consider gs, For an N-sample signal that is K -sparse,® only O(K log N)
the task of recovering a manifold-modeled signal from a small random projections of the signal are required to reconstruct the
number of random projections. Thanks to our more specific model, signal with high probability. A variety of algorithms have been
we can recover certain signals using far fewer measurements tharproposed for signal recovery [3-6], each requiring a slightly dif-

would be required using sparsity-driven CS techniques. ferent number of projections. CS has many promising applications
in signal acquisition, compression, medical imaging, and sensor
1. INTRODUCTION networks [3, 4, 7-12].

CS employs a specific model (sparsity) in order to distinguish
Random projections have recently emerged as a surprisingly use-&mong an infinite number of points (which comprise unions of lin-
ful tool in signal processing. The key revelation is that the relevant & subspaces — see Section 3.1) based on their random projec-
structurein a signal can be preserved when that signal is projected fions. The principle of sparsity is applicable to a variety of signal
onto a small number of random basis functions. Indeed, althoughtyPes and is central to agorithms in denoising and compression.
some information is lost through such a projection, that informa- However it is still somewhat generic: in many cases we may have

tion tends to béncoherentith the relevant structure in the signal. & More specific low-dimensional mode! for signals. Simple ex-
This fact (which can be formalized in various ways — see below) @MPles, illustrated in Figure 1, include straight edges in images

is useful for several reasons. For example, the process of acquir (Which can be parameterized by aslope and an offset) or muitiple
ing and compressing a signal can be greatly simplified. In fact, this Views of afixed object (which can be parameterized by the cam-
encoding process can proceed without knowledge of the structure®@ position). Nln these cases, the signal class forms a nonlinear
that makes the signal compressible — in this sense random pro-mar“foIOI in R

jections are ainiversalmeasurement tool. Another benefit is that This paper provides preliminary theoretical and experimen-
random projections provideimensionality reductionwhich can ~ tél evidence that manifold-based signal structure can be preserved
significantly simplify certain computations. using small numbers of random projections. The key theoretical

One very general application for random projections deals Motivation comes from Whitney’s Embedding Theorem (see Sec-
with a cloud of P points inR™. The Johnson-Lindenstrauss 110 2.2), which states that a ¢ -dimensional manifold can be em-
Lemma [1] establishes that usir@(log P) random projections, ~ Pedded in R"%™7. \We examine the potential applications of this
one can embed these points with minimal distortion of their pair- fact (extending the techniques introduced in [15, 16]). In particu-
wise distances (the “structure” that is preserved). This result is [ We consider the task of recovering a manif old-modeled signal
particularly useful for solving théearest Neighboproblem in from asmall number of random projections. Thanks to our more
computer science [2]. A primary benefit is that computation can SPEcific model, the bility to recover the signal can be far superior
be substantially reduced by operating in this lower-dimensional {0 Sparsity-driven CS techniques.
space. This paper is organized as follows. Section 2 introduces

Another, more recent field known as Compressed SensingManifolds as a useful model for low-dimensional signal structure

(CS) employs random projections in a more specific setting. ad discusses theimplications of Whitney's Embedding Theorem.
Section 3 considers the specific problem of recovering a signal

This work was supported by NSF, ONR, AFOSR, and the Texas In-
struments Leadership University Program. 1By K-sparse, we mean that the signal can be written as a sum of K
Email: {wakin, richb; @rice.edu. Web: dsp.rice.edu/cs elements from some basis or dictionary in R .
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from its random projections. Section 4 presents an experimental
application in image edge detection, and Section 5 concludes with
a summary of ongoing research directions.

9(t-8)

2. SIGNAL MANIFOLDS

2.1. Articulated signal models

In many cases where one has a low-dimensional notion of signal

structure, the resulting signal class manifests itself as a nonlinear :
submanifolcembedded in the signal space. Suppose, for example,

that one knew (or could conceive of) a low-dimensional param- p
eterd € © that somehow controlled the generation of the sig-

nal. Examples of this very generic notion include: images of a C, i i &9
straight edge (parameterized Pyariables: a slope and an off-

set — see Figure 1(a)), multiple views of a fixed objeeb(pa-

rameters for the camera position — see Figure 1(b)), signals of

unknown translation1( parameter for shift — see Figure 2), or

the output of some explicitly parameterized or articulated physical Fig. 2. Top row: The articulated signals (t) = g(t — 0) are de-

system [14,17]. In each of these cases, if we denotéby RY fined via shifts of a primitive functiog, whereg is (left) a Gaus-

the signal formed with a particular parameterthen the corre- sian pulse or (right) a step function. The resulting signals trace
sponding familyM = {fs : § € ©} forms a submanifold aR" . out 1-D manifolds inR™ . Bottom row: Projection of manifolds
We let K denote the dimension @, which under mild assump-  fromR” onto3 random functions; the color/shading corresponds
tions matches the dimension 8. to different values of € R.

The above are just a few example scenarios in which mani-
folds may arise in signal processing. Recent investigations haveof the manifold fromR™ to R**** will be invertible with high
examined the structural properties of particular signal manifolds, probability.
including the image manifolds in Figure 1 [14,17]. One surprising To fix notation, we will consider signals € R" and denote
finding is that manifolds generated by articulated images having the M -dimensional random projection operator By This op-
sharp edges amwhere differentiabtanstead they have an inher- ~ erator can be implemented by constructigrandom vectors in
entmultiscale structur¢hat can be characterized and exploited in R, which will span an)/-dimensional linear subspace Bf',
image processing. onto whichz is orthogonally projected. (The computations simply
involve inner products, and “signal processing” in this projected
space involves only thesk/ coefficients.) As an example, Fig-
ure 2 shows the random projection of two 1-dimensional (1-D)
This paper exploits another possibly surprising fact: much of a sig- manifolds fromR" to R* and reveals that the particular charac-
nal manifold’s structure is actually preserved when it is projected teristics of the manifold (such as differentiability) play a critical
from R onto a random lower-dimensional subspace. The result role. Although many interesting signal manifolds do not satisfy
follows from the proof of Whitney’s (Easy) Embedding Theorem. the criteria of Theorem 2.1, the theorem still provides a useful mo-

tivation; this paper provides empirical justification for scenarios
Theorem 2.1 [18] Let M be a compact HausdorfC"™ K- outside of the Whitney criteria.
dimensional manifold, wit < r < oo. Then there is &C"
embedding of\f in R2X+1,

2.2. Random projections of manifolds

3. APPLICATION: SIGNAL RECOVERY

The proof of this theorem is highly insightful and considers the

normalized secant set of the manifold Random projections have many potential applications in manifold-

based signal processing, including signal acquisition, sensor net-
z—x , works, and compression. In this paper, we focus on one fundamen-
= { FTL,T e M} ) tal task: reconstructing a signalfrom its projectionPz. This is
facilitated by assuming that lives near the manifold and by
Roughly speaking, the secant set form8Z&i-dimensional sub-  exploiting the injectivity of the projectioP M. The most rele-
set of the(V — 1)-dimensional unit sphere (which equates with vant questions include: How canbe recovered fromPz? How
the space of projections fro®”™ to RV ~1), and so there ex-  many dimensiond/ are required for stability? How accurate will
ists a projection fronRY to RV ! that projectsM injectively the reconstruction be? This paper provides preliminary theoretical
(without overlap). This can be repeated until reachRt§ ™. In insights into these topics and provides promising numerical exper-
signal processing, this secant set has been explicitly employed iniments.
order to find the optimal projection vectors for a given manifold
Sgrc]es[)ls, 16], which also provide interesting and insightful discus- 3.1 Recovering manifold-based signals
This paper builds upon the following useful observation: Us- When the signal is “noiseless” — thatisc M — then Whitney’s
ing identical arguments and assuming mild conditions on the sig- Embedding Theorem implies that should be recoverable from
nal manifold M, it also follows that aandomlychosen projection Pz (with high probability), assuming the dimensidh > 2K +1.

[z — 2"l



In some situations it may indeed to further redude though in
general we expea/ > K to be a strict requirement.

Concrete algorithms for recovery are beyond the scope of this
paper but essentially involve searching the projected manifold ~ (3) (b) (© (d)

@ Fig. 3. Estimating image edge structure fron2%s6-pixel block.

(a) Original 16 x 16 block. (b) Manifold-based recovery from
. . . . . 5 random projections. (c) Traditional CS recovery fréman-
Figure 3 (discussed further in Section 4) shows a simple demon- 4o, hroiections using OMP algorithm [6] with Haar wavelets. (d)
stration of recovery from K’ + 1 projections. OMP recovery front0 random projections. Perfect OMP recov-

Relation to Compressed Sensing: The 2K factor plays a very €y require§'0 or more random projections.

important role in CS, which can be reinterpreted in light of the . ) . )
manifold viewpoint. The signal “manifold” in the CS setting con- (Which will relate the expected to the properties of the manifold
sists of a union of< -dimensional hyperplanes. The secant set for SUch as curvature, volume, etc.); however, the next section pro-
this turns out to be a union afx -dimensional hyperplanes (which vides numerical e>§per|mepts to characte.rlze the performqnce of
loses1 dimension after normalization). It follows that a random OUr recovery algorithm. Finally, we mention that the algorithms
projection of a lengthy, K -sparse signal ontd/ = 2K dimen- introduced in [15, 16] aim specifically to find projection directions
sions is invertible with probability one [12]. (However, tractable that maximize the quantity. However these lack theniversal
recovery fromPz requires slightly more measurements [3-6].)  aPplicability of random projections.

Z = arg Irlrg/r\l/1 | Pz —Pa||,.

3.2. Recovering near-manifold signals 4. EXAMPLE: EDGE DETECTION

A potentially more interesting scenario arises when the manifold In order to illustrate the basic principles in action, we now con-

is only anapproximationfor the signal class. Examples include sider a simple image processing application. It is well known that
edges that are not entirely straight or manifold-based signals cor-much of the critical information in images is carried by the edges,
rupted by noise. We would like our recovery algorithm (1) to pro- which themselves have simple low-dimensional descriptions. One
vide robust recovery of such signals. Ensuring such robustnessocalized model for edge structure is provided byedgele{13],

now requires some notion of tlygiality of the manifold’s embed- a parameterized edge on a square image block (see Figure 1(a)).

ding intoR™ . Intuitively, if two far-away pointse, ' € M were We can consider the following task: given random projections
to be mapped onto nearby points, then accurate recovery of anyof a local image segment, recover an approximation to the local
signals falling betweer andz’ would be difficult. edge structure. This can be formulated in our setting if we consider
This notion can be made precise by defining [15, 16] x € RY as the original image a2 as the random observation.
, We can then search the projected wedgelet manifold for the
K — in [Pz — Px Hz. ) closest match to the observation. While the wedgelet manifold is
za eM; et ||x — 2! ||y known not to be differentiable [14, 17], we consider it to be an in-

teresting case and use this experiment to demonstrate the potential
for applications beyond the specific assumptions of Theorem 2.1.

For the first experiment (Figure 3), we examine a perfect edge
originating from a clean image € M. We measure a6 x 16
image block (256 pixels) using - 2 + 1 = 5 random projec-
tions. To recoveft we use a sampling of the projected manifold
and simply find the nearest neighbor/z:. (Note that this exper-
iment assumes the two grayscale values are known for the edge,

or equivalently, that the mean and energycaire provided along

7. ¢i _34 2\/i _1 with the measurements.) While the sampling grid for the manifold
0 — | k2 K2 ' search did not contai®z precisely, we see in Figure 3(b) that a
very close approximation is recovered. In contrast, using tradi-
tional CS techniques to recoverfrom its random projections (by

As k — 1, the bound on the right reduces simplytpand assuming that the image is sparse in the 2-D Haar wavelet domain)
ask — 0, the bound grows a8/x. We stress that this isworst requires an order of magnitude more measurements. This compar-
casebound and that the accuracy is often significantly better in ison is a bit artificial but emphasizes how manifold models can
practice (see Section 4). Moreover, we note thiself is a worst be useful for recovering structured information from few random
case bound relating to two points on the manifold. Many other measurements.
pairwise distances may in fact be much more well preserved. (This  For the second experiment (Figure 4) we analyze the robust-
suggests that there may exist more appropriate criteria for analysisness of the recovery process. For this we examig6ax 256

Using this quantity, we can bound the error in a recovered signal
relative to the original signal’s distance from the manifold. We
have the following theorem, with proof omitted for brevity.

Theorem 3.1 Letz € RY be an observation, and Iét be the
estimation recovered from the projecti@ via (1). Defined =
inf,rcpm |z — 2’|, and lety = ||z — Z]|,. Then

— a topic of ongoing work.) portion of thePeppergest image. We break the image into square
Another relevant topic of investigation is relatingo M in or- blocks of sizel6 x 16, measure each one using 10 random pro-
der to discern the number of measurements required for robust sigjections (plus we include the mean and energy of each block),
nal recovery. Clearly, the anticipatedncreases td asM — N. and then search the projected manifold to estimate a wedgelet on
However, arguments following Whitney’s Embedding Theorem each block. We see from the figure that the recovery is fairly ro-
imply only thatx > 0 with high probability whemM/ > 2K + 1. bust and accurately recovers most of the prominent edge structure,

A more rigorous theoretical investigation is currently underway even though none of the original image blocks perfectly fits the
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Fig. 4. (a) Original256 x 256 Peppersmage. (b) Wedgelet estimation @6 x 16 pixel tiles, using 10 random projections (plus the mean
and energy) on each tile, for a total@® + 2) - 256 = 3072 measurements. (c) Best-possible wedgelet estimation, which woulileequ
all 2562 = 65536 pixel values. (d) Traditional CS-based recovery (frd@i2 global random projections) using greedy pursduit to find a
sparse approximation in the projected wavelet (D8) basis.

wedgelet model. The recovery is also fast, taking less than one sec-[2] P. Indyk and R. Motwani, “Approximate nearest neighbdiswards
ond for the entire image. For point of comparison we include the removing the curse of dimensionality,” Rroc. 30th Ann. ACM Sym-
best-possible wedgelet approximation to the image, which would pos. Theory Compyt1998, pp. 604-613.

require all 256 numbers per block to determine. In spite of the [3] E. Canas, J. Romberg, and T. Tao, “Robust uncertainty principles:
relatively smallx generated by the random projections (approxi- Exact signal reconstruction from highly incomplete frequeimfor-
mately0.05 when computed using (2) over all pairs of wedgelets in mation,” 2004, Preprint.

our sampled grid), each Wt_edgelet estimate i_s no more than 3 times 4] E. Canas and T. Tao, “Near optimal signal recovery from random
worse than the best-possible wedgelet estimate (as measured b projections and universal encoding strategies,” 2004pritre

~/4 in Theorem 3.1). For a second point of comparison with the ) )

wedgelet estimates, we also include the CS-based recovery of the [5] D- Donoho, “Compressed sensing,” 2004, Preprint.

whole image from an equivalent number of total measurements, [6] J. Tropp and A. C. Gilbert, “Signal recovery from partiaformation
using (10 + 2) - 256 = 3072 global random projections. Though via orthogonal matching pursuit,” 2005, Preprint.

slightly better in terms of mean-square error, this approximation
fails to prominently represent the edge structure (it also takes sev-
eral minutes to compute using our software). We stress again,
though, that the main purpose of the wedgelet experiment is to [8] E. Cands and T. Tao, “Decoding by linear programming,” 2004,
illustrate the robustness of recovery on natural image segments, ~ Preprint.

some of which are not well-modeled using wedgelets. [9] D.Donoho and Y. Tsaig, “Extensions of compressed serisi@p4,
Preprint.

[7] E. Canes and T. Tao, “The Dantzig selector: Statistical estimation
whenp is much larger tham,” 2005, Preprint.

5 CONCLUSIONS [10] J. Haupt and R. Nowak, “Signal reconstruction from gaiandom

This paper has provided theoretical and experimental evidence that ~ Projections,” 2005, Preprint.
manifold-based signal §tru<_:ture can be preser\_/ed using a s_maltll] M. B. Wakin, M. F. Duarte, S. Sarvotham, D. Baron, and RBGra-
number of random projections. Thanks to this more specific niuk, “Recovery of jointly sparse signals from few randonojpc-
model, we can recover certain signals using far fewer measure- tions,” in Proc. Neural Inform. Processing Systems — NIP®5.
e Wlse=12] b, g, .. Wi, . D, S and R

) > : . ! niuk, “Distributed compressed sensing,” 2005, Preprintilable at
velop fast algorithms for signal recovery in the projected space (to www.dsp.rice.edu/cs.
deal with manifolds of dimension higher than two). We also aim o o
to supplement existing techniques in CS, which may require meth-[13] D. L. Donoho, “Wedgelets: Nearly-minimax estimation oged,’
ods for recovering local signal structure (such as wedgelets) from Annals of Statvol. 27, pp. 859-897, 1999,
global image measurements. Conversely, this approach could mo{14] M. B. Wakin, D. L. Donoho, H. Choi, and R. G. Baraniuk, “@h
tivate a somewhat localized CS measurement scheme. Finally, a multiscale structure of non-differentiable image manifdlis,Proc.

more rigorous theoretical investigation is underway, particularly Wavelets XI at SPIE Optics and Photonigan Diego, August 2005.
to quantify the necessary number of random measurements for ro{15] p. S. Broomhead and M. Kirby, “A new approach for dimensiity
bust signal recovery. reduction: Theory and algorithmsSIAM J. of Applied Mathematics

) ) ) ) vol. 60, no. 6, 2000.
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