
Compressive Imaging for Video Representation and Coding

Michael B. Wakin, Jason N. Laska, Marco F. Duarte, Dror Baron, Shriram Sarvotham
Dharmpal Takhar, Kevin F. Kelly, and Richard G. Baraniuk?

Dept. of Electrical and Computer Engineering
Rice University, Houston, TX, USA

Abstract. Compressive Sensing is an emerging field
based on the revelation that a small group of non-
adaptive linear projections of a compressible signal con-
tains enough information for reconstruction and pro-
cessing. In this paper, we propose algorithms and hard-
ware to support a new theory of Compressive Imaging.
Our approach is based on a new digital image/video
camera that directly acquires random projections of the
light field without first collecting the pixels/voxels. Our
camera architecture employs a digital micromirror array
to perform optical calculations of linear projections of
an image onto pseudorandom binary patterns. Its hall-
marks include the ability to obtain an image with a sin-
gle detection element while measuring the image/video
fewer times than the number of pixels/voxels; this can
significantly reduce the computation required for video
acquisition/encoding. Since our system relies on a sin-
gle photon detector, it can also be adapted to image
at wavelengths that are currently impossible with con-
ventional CCD and CMOS imagers. We are currently
testing a prototype design for the camera and include
experimental results.

Index Terms: camera, compressive sensing, imaging,
incoherent projections, linear programming, random
matrices, sparsity, video

1 INTRODUCTION

The large amount of raw data acquired in a con-
ventional digital image or video often necessitates
immediate compression in order to store or trans-
mit that data. This compression typically exploits
a priori knowledge, such as the fact that an N -pixel
image can be well approximated as a sparse linear
combination of K � N wavelets. These appropri-
ate wavelet coefficients can be efficiently computed
from the N pixel values and then easily stored or
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transmitted along with their locations. Similar pro-
cedures are applied to videos containing F frames
of P pixels each; we let N = FP denote the number
of “voxels”.

This process has two major shortcomings. First,
acquiring large amounts of raw image or video data
(large N) can be expensive, particularly at wave-
lengths where CMOS or CCD sensing technology is
limited. Second, compressing raw data can be com-
putationally demanding, particularly in the case of
video. While there may appear to be no way around
this procedure of “sample, process, keep the im-
portant information, and throw away the rest,” a
new theory known as Compressive Sensing (CS) has
emerged that offers hope for directly acquiring a
compressed digital representation of a signal with-
out first sampling that signal [1–3].

In this paper, we propose algorithms and hard-
ware to support a new theory of Compressive Imag-
ing (CI). Our approach is based on a new digi-
tal image/video camera that directly acquires ran-
dom projections without first collecting the N pix-
els/voxels [4]. Due to this unique measurement ap-
proach, it has the ability to obtain an image with a
single detection element while measuring the image
far fewer times than the number of pixels. Because
of this single detector, it can be adapted to image
at wavelengths that are currently impossible with
conventional CCD and CMOS imagers. Our camera
can also be used to take streaming measurements
of a video signal, which can then be recovered us-
ing CS techniques designed for either 2-dimensional
(2D) frame-by-frame reconstruction or joint 3D re-
construction. This allows a significant reduction in
the computational complexity of the video encoding
process.

This paper is organized as follows. Section 2 pro-
vides an overview of CS, the theoretical founda-
tion for our CI approach. Section 3 overviews our
CI framework and hardware testbed and Section 4
presents experimental results.



2 COMPRESSIVE SENSING

2.1 Transform coding

CS builds upon a core tenet of signal processing and
information theory: that signals, images, and other
data often contain some type of structure that en-
ables intelligent representation and processing. Cur-
rent state-of-the-art compression algorithms employ
a decorrelating transform to compact a correlated
signal’s energy into just a few essential coefficients.
Such transform coders exploit the fact that many
signals have a sparse representation in terms of
some basis Ψ , meaning that a small number K
of adaptively chosen transform coefficients can be
transmitted or stored rather than N � K signal
samples. For example, smooth images are sparse in
the Fourier basis, and piecewise smooth images are
sparse in a wavelet basis; the commercial coding
standards JPEG and JPEG2000 and various video
coding methods (c.f. Secker and Taubman [5]) di-
rectly exploit this sparsity.

The standard procedure for transform coding of
sparse signals is to (i) acquire the full N -sample
signal x; (ii) compute the complete set {θ(n)} of
transform coefficients θ(n) = 〈ψn, x〉, where 〈·, ·〉 de-
notes the inner product; (iii) locate the K largest,
significant coefficients and discard the (many) small
coefficients; and (iv) encode the values and locations

of the largest coefficients. In cases where N is large
and K is small, this procedure is quite inefficient.
Much of the output of the analog-to-digital conver-
sion process ends up being discarded (though it is
not known a priori which pieces are needed).

This raises a simple question: For a given signal,
is it possible to directly estimate the set of large co-
efficients that will not be discarded by the transform
coder? While this seems improbable, the recent the-
ory of Compressive Sensing introduced by Candès,
Romberg, and Tao [1] and Donoho [2] demonstrates
that a signal that is K-sparse in one basis (call it
the sparsity basis) can be recovered from cK non-

adaptive linear projections onto a second basis (call
it the measurement basis) that is incoherent with
the first, where where c is a small overmeasuring

constant. While the measurement process is linear,
the reconstruction process is decidedly nonlinear.

2.2 Incoherent projections

In CS, we do not measure or encode the K sig-
nificant θ(n) directly. Rather, we measure and en-
code M < N projections y(m) = 〈x, φT

m〉 of the sig-
nal onto a second set of basis functions {φm},m ∈

{1, 2, . . . ,M}, where φT
m denotes the transpose of

φm. In matrix notation, we measure

y = Φx, (1)

where y is an M × 1 column vector, and the mea-

surement basis matrix Φ is M × N with each row
a basis vector φm. Since M < N , recovery of the
signal x from the measurements y is ill-posed in
general; however the additional assumption of sig-
nal sparsity makes recovery possible and practical.

The CS theory tells us that when certain con-
ditions hold, namely that the basis {φm} cannot
sparsely represent the elements of the sparsity-
inducing basis {ψn} (a condition known as inco-

herence of the two bases [1, 2]) and the number
of measurements M is large enough, then it is in-
deed possible to recover the set of large {θ(n)}
(and thus the signal x) from a similarly sized set of
measurements {y(m)}. This incoherence property
holds for many pairs of bases, including for exam-
ple, delta spikes and the sine waves of the Fourier
basis, or the Fourier basis and wavelets. Signifi-
cantly, this incoherence also holds with high prob-
ability between an arbitrary fixed basis and a ran-
domly generated one (consisting of i.i.d. Gaussian
or Bernoulli/Rademacher ±1 vectors). Signals that
are sparsely represented in frames or unions of bases
can be recovered from incoherent measurements in
the same fashion.

2.3 Signal recovery

The recovery of the sparse set of significant coef-
ficients {θ(n)} can be achieved using optimization

by searching for the signal with `0-sparsest1 coef-
ficients {θ(n)} that agrees with the M observed
measurements in y (recall that M < N). Unfortu-
nately, solving this `0 optimization problem is pro-
hibitively complex and is believed to be NP-hard [6].
The practical revelation that supports the new CS
theory is that it is not necessary to solve the `0-
minimization problem to recover the set of signifi-
cant {θ(n)}. In fact, a much easier problem yields
an equivalent solution (thanks again to the inco-
herency of the bases); we need only solve for the
`1-sparsest coefficients θ that agree with the mea-
surements y [1, 2]

θ̂ = arg min ‖θ‖1 s.t. y = ΦΨθ. (2)

1 The `0 “norm” ‖θ‖0 merely counts the number of
nonzero entries in the vector θ.



This optimization problem, also known as Basis

Pursuit [7], is significantly more approachable and
can be solved with traditional linear programming
techniques whose computational complexities are
polynomial in N . Although only K + 1 measure-
ments are required to recover sparse signals via `0
optimization [8], one typically requires M ≥ cK
measurements for Basis Pursuit with an overmea-
suring factor c > 1.

Unfortunately, linear programming techniques
are still somewhat slow. At the expense of slightly
more measurements, fast iterative greedy algo-
rithms have also been developed to recover the sig-
nal x from the measurements y. Examples include
the iterative Orthogonal Matching Pursuit (OMP)
[9], matching pursuit (MP), and tree matching pur-
suit (TMP) [10] algorithms. Group testing [11] has
been shown to yield even faster reconstruction algo-
rithms. All of these methods have also been shown
to perform well on compressible signals, which are
not exactly K-sparse but are well approximated by
a K-term representation. Such a model is more re-
alistic in practice.

3 COMPRESSIVE IMAGING

In this paper, we develop a new system to support
what can be called Compressive Imaging (CI). Our
system incorporates a microcontrolled mirror array
driven by pseudorandom and other measurement
bases and a single or multiple photodiode optical
sensor. This hardware optically computes incoher-
ent image measurements as dictated by the CS the-
ory; we then apply CS reconstruction algorithms to
obtain the acquired images. Our camera can also
be used to take streaming measurements of a video
signal, which can then be recovered using CS tech-
niques designed for either 2D frame-by-frame recon-
struction or joint 3D reconstruction.

Other desirable features of our system include
the use of a single detector (potentially enabling
imaging at new wavelengths that are currently im-
possible with CCD and CMOS technology), univer-
sal measurement bases (incoherent with arbitrary
sparse bases), encrypted measurements (tied to a
random seed that can be kept secure), and scalable
progressive reconstruction (yielding improved qual-
ity with more measurements) [4].

3.1 Camera hardware

Our hardware realization of the CI concept is a sin-

gle pixel camera; it combines a microcontrolled mir-

Fig. 1. Compressive Imaging (CI) camera. Incident
lightfield (corresponding to the desired image x) is re-
flected off a digital micromirror device (DMD) array
whose mirror orientations are modulated in the pseu-
dorandom pattern φm supplied by the random num-
ber generators (RNG). Each different mirror pattern
produces a voltage at the single photodiode that cor-
responds to one measurement y(m).

ror array displaying a time sequence of M pseudo-
random basis images φm with a single optical sen-
sor to compute incoherent image measurements y as
in (1) (see Figure 1). By adaptively selecting how
many measurements to compute, we can trade off
the amount of compression versus acquisition time;
in contrast, conventional cameras trade off resolu-
tion versus the number of pixel sensors.

We employ a Texas Instruments digital micromir-
ror device (DMD) for generating the random basis
patterns. The DMD consists of a 1024×768 array of
electrostatically actuated micromirrors where each
mirror of the array is suspended above an individual
SRAM cell. Each mirror rotates about a hinge and
can be positioned in one of two states (+12 degrees
and −12 degrees from horizontal); thus light falling
on the DMD may be reflected in two directions de-
pending on the orientation of the mirrors.

With the help of a biconvex lens, the desired im-
age is formed on the DMD plane; this image acts
as an object for the second biconvex lens, which fo-
cuses the image onto the photodiode. The light is
collected from one of the two directions in which it
is reflected (e.g., the light reflected by mirrors in the
+12 degree state). The light from a given configu-
ration of the DMD mirrors is summed at the photo-
diode to yield an absolute voltage that yields a co-
efficient y(m) for that configuration. The output of
the photodiode is amplified through an op-amp cir-
cuit and then digitized by a 12-bit analog-to-digital
converter. These photodiode measurements can be
interpreted as the inner product of the desired im-
age x with a measurement basis vector φm. In par-
ticular, letting ρ(m) denote the mirror positions of
the m-th measurement pattern, the voltage reading



from the photodiode v can be written as

v(m) ∝ 〈x, φm〉+ DC offset, (3)

where

φm = 1{ρ(m)=+12 degrees} (4)

and 1 is the indicator function. (The DC offset can
be measured by setting all mirrors to −12 degrees;
it can then subtracted off.)

Equation (3) holds the key for implementing a
CI system. For a given image x, we take M mea-
surements {y(1), y(2), . . . , y(M)} corresponding to
mirror configurations {ρ(1), ρ(2), . . . , ρ(M)}. Since
the patterns ρ(m) are programmable, we can select
them to be incoherent with the sparsity-inducing
basis (e.g., wavelets or curvelets). As mentioned
previously, random or pseudorandom measurement
patterns enjoy a useful universal incoherence prop-
erty with any fixed basis, and so we employ pseu-
dorandom ±12 degree patterns on the mirrors.
These correspond to pseudorandom 0/1 Bernoulli
measurement vectors φm = 1{ρ(m)=+12 degrees}.
(The measurements may easily be converted to ±1
Rademacher patterns by setting all mirrors in ρ(1)
to +12 degrees and then letting y(m) ← 2y(m) −
y(1) for m > 1.) Other options for incoherent CI
mirror patterns include −1/0/1 group-testing pat-
terns [11]. Mirrors can also be duty-cycled to give
the elements of φ finer precision, for example to ap-
proximate Gaussian measurement vectors [2, 3].

This system directly acquires a reduced set of M
incoherent projections of an N -pixel image x with-

out first acquiring theN pixel values. Since the cam-
era is “progressive,” better quality images (larger
K) can be obtained by taking a larger number of
measurements M . Also, since the data measured by
the camera is “future-proof,” new reconstruction al-
gorithms based on better sparsifying image trans-
forms can be applied at a later date to obtain even
better quality images.

3.2 Streaming video acquisition

Our CI system is immediately applicable to video
acquisition. The key is that, as described above, the
measurements {φm} are taken sequentially in time.
Hence, one can view each measurement as a linear
projection against a snapshot of the scene at that
instant. Viewing the video as a 3D signal (in which
the 2D snapshots are stacked), the measurements
vectors {φ(m)} themselves are each localized onto
a different 2D snapshot for each m.

In order to recover a video sequence from these
measurements, we make some simplifying assump-
tions. Specifically, traditional CS considers an en-
semble of measurements taken from a single sig-
nal; in our streaming setting, however, each mea-
surement will act on a different snapshot. We can
overcome this problem by assuming that the image
changes slowly across a group of snapshots, which
we can then equate to a single video frame. The
number of snapshots assigned to a frame will be
determined by the speed of our acquisition system
and the desired temporal resolution of the recon-
structed video. Under this assumption, we represent
the video acquired as a sequence of F frames, each
one measured usingM/F measurement vectors that
we can group as rows of a matrix Φi, i = 1, . . . , F .

We have several options for reconstructing the
video from these measurements. First, we could re-
construct each frame using 2D wavelets, performing
a total of F CI reconstructions. Each reconstruction
would use the same 2D wavelet sparsity basis Ψ but
with a different measurement matrix Φi. We refer
to this process as frame-by-frame reconstruction.

Alternative methods more fully exploit the cor-
relation between frames. One solution is to use 3D
wavelets as a sparse representation for the video se-
quence; i.e., to define the joint measurement matrix

Φ =





Φ1 0 . . . 0
0 Φ2 . . . 0
...

...
. . .

...
0 0 . . . ΦF





for the video sequence and then perform joint re-

construction of the entire video sequence using a 3D
wavelet sparse basis Ψ for the frame ensemble. As
we see in Section 4, despite its block diagonal struc-
ture, the 3D measurement matrix Φ enjoys sufficient
incoherence with the 3D sparsity matrix Ψ .

Future work may consider extending our imaging
architecture to acquire full 3D measurements of a
video sequence (that is, where each φm has 3D sup-
port). Under this setting, we reconstruct the entire
video sequence using a single measurement matrix
Φ that operates on all of the frames and a suitable
3D sparse basis Ψ such as wavelets. In Section 4
we demonstrate that such a scheme would enjoy
better incoherence with the video structure. How-
ever, it also increases the complexity of both the
measurement and reconstruction processes. Possi-
ble solutions to this increased complexity include
partitioning the video into blocks, which are then
reconstructed separately.



3.3 Related work

Other efforts on CI include [12, 13], which em-
ploy optical elements to perform transform coding
of multispectral images. The elegant hardware de-
signed for these purposes uses concepts that include
optical projections, group testing [11], and signal
inference. Two notable previous DMD-driven appli-
cations involve confocal microscopy [14] and micro-
optoelectromechanical (MOEM) systems [15]. For
more about related work, see [4].

4 EXPERIMENTAL RESULTS

4.1 Still image acquisition

For our imaging experiment, we displayed a print-
out of the letter “R” in front of the camera; Fig-
ure 2(a) shows the printout. For acquisition and re-
construction, we use an imaging resolution of N =
64 × 64 = 4096. Since our test image is piecewise
constant (with sharp edges) it can be sparsely rep-
resented in the wavelet domain. Figures 2(b) and
2(c) show the best K-term Haar wavelet approxi-
mation of the idealized image in Figure 2(a) with
K = 205 and 409, respectively. Using M = 819 and
1,638 measurements (roughly 4× the K used in (b)
and (c)), we reconstructed the images shown in Fig-
ures 2(e) and 2(f) using the Dantzig Selector [16],
a robust scheme for CS reconstruction. This pre-
liminary experiment confirms the feasibility of the
CI approach; we are currently working to resolve
minor calibration and noise issues to improve the
reconstruction quality.

4.2 Video simulation

To demonstrate the potential for applications in
video encoding, we present a series of simulations
for video measurement/reconstruction. Figure 3(a)
shows a single frame taken from our F = 64 frame
video sequence that consists of P = 64× 64 images;
in total the video contains N = FP = 262,144 3D
voxels. The video shows a disk moving from top to
bottom and growing from small to large. We mea-
sure this video sequence using a total of M mea-
surements, either 2D random measurements (with
M/F measurements/frame) or 3D random mea-
surements. (For the 2D measurements, we make the
simplifying assumption that the image remains con-
stant across all snapshots within a given frame.) To
reconstruct the video from these measurements we
compare two approaches: 2D frame-by-frame recon-
struction using 2D wavelets as a sparsity-inducing

(a) ideal image (b) 205 wavelets (c) 409 wavelets

(d) image on DMD (e) 819 meas. (f) 1,638 meas.

Fig. 2. CI DMD imaging of a 64× 64 (N = 4096 pixel)
image. Ideal image (a) of full resolution and approx-
imated by its (b) largest 205 wavelet coefficients and
(c) largest 409 wavelet coefficients. (d) Conventional
320 × 240 camera image acquired at the DMD plane.
CS reconstruction using Dantzig Selector from (e) 819
random measurements and (f) 1,638 random measure-
ments. In all cases Haar wavelets were used for approx-
imation or reconstruction.

basis and 3D joint reconstruction using 3D wavelets
as a sparsity-inducing basis.

Figure 3 shows Matching Pursuit reconstruction
results using M = 20,000 (top row) and M =
50,000 (bottom row). Comparing columns (b) and
(c), we observe that 3D wavelets offer a signif-
icant improvement in reconstruction quality over
2D wavelets; we attribute this improvement to the
ability of 3D wavelets to capture correlations be-
tween frames. Comparing columns (c) and (d), we
also observe that full 3D measurements allow bet-
ter reconstruction than frame-by-frame 2D mea-
surements; we believe this improvement is due to
the better incoherency between the measurement
basis and the wavelet basis. Fortunately, this im-
provement is somewhat moderate, which indicates
that 2D frame-by-frame measurements (easily ob-
tained from our hardware) may contain sufficient
information for high-quality video reconstruction,
presuming that a joint 3D technique is used for re-
construction. Current work focuses on developing
better joint reconstruction techniques, perhaps by
extending our algorithms for Distributed CS [8].

5 DISCUSSION AND CONCLUSIONS

In this paper, we have presented a prototype imag-
ing system that successfully employs compressive



(a) frame 32 (b) 2D meas (c) 2D meas (d) 3D meas
2D recon 3D recon 3D recon

Fig. 3. Frame 32 from reconstructed video sequence us-
ing (top row) M = 20,000 and (bottom row) M = 50,000
measurements. (a) Original frame. (b) Frame-by-frame
2D measurements; frame-by-frame 2D reconstruction;
MSE = 3.63 and 0.82. (c) Frame-by-frame 2D measure-
ments; joint 3D reconstruction; MSE = 0.99 and 0.24.
(d) Joint 3D measurements; joint 3D reconstruction;
MSE = 0.76 and 0.18. The results in (d) are compara-
ble to the MSE obtained by wavelet thresholding with
K = 655 and 4000 coefficients, respectively.

sensing principles. The camera has many attrac-
tive features, including simplicity, universality, ro-
bustness, and scalability, that should enable it to
impact a variety of different applications. An in-
teresting and potentially useful practical feature of
our system is that it off-loads processing from data
collection into data reconstruction. Not only will
this lower the complexity and power consumption
of the sensing device, but it will also enable new
adaptive measurement schemes. Another intriguing
feature of the system is that, since it relies on a
single photon detector, it can be adapted to image
at wavelengths that are currently impossible with
conventional CCD and CMOS imagers. Finally, our
imaging system is immediately extensible to video
acquisition, providing streaming measurements that
can then be processed using frame-by-frame 2D or
joint 3D CS techniques.2
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