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ABSTRACT

Most wavelet-based image coders fail to model the joint coher-
ent behavior of wavelet coefficients near edges. Wedgelets offer
a convenient parameterization for the edges in an image, but they
have yet to yield a viable compression algorithm. In this paper,
we propose an extension of the zerotree-based Space-Frequency
Quantization (SFQ) algorithm by adding a wedgelet symbol to its
tree-pruning optimization. This incorporates wedgelets into a rate-
distortion compression framework and allows simple, coherent de-
scriptions of the wavelet coefficients near edges. The resulting
method yields improved visual quality and increased compression
efficiency over the standard SFQ technique.

1. INTRODUCTION

Edges are the dominant features in images, with great importance
both for perception and for compression. Edges are well known to
convey significant information to the viewer, but they have a dra-
matic impact on compression performance as well: edges account
for a significant amount of energy in the frequency domain.

Many of today’s leading image coders, ranging from the ze-
rotree (EZW) algorithm [1] to the new JPEG-2000 standard, rely
on wavelets to transform and compress the image. Nonetheless,
wavelets actually offer inefficient descriptions of edges in images:
many wavelet coefficients are required to describe a single edge.
A coherency exists among these coefficients which must be pre-
served during quantization in order to prevent ringing artifacts.
Modeling the joint behavior of the coefficients is actually quite
difficult, however, and most coders fail to fully capture the joint
dependency of wavelet coefficients near edges.

In a sense, edges are simple objects. They can generally be
described quite accurately with few parameters, many fewer in
fact than the number of pixels (or wavelet coefficients) which are
crossed by the edge contour. This inherent simplicity of edges,
combined with their importance in terms of compression perfor-
mance, motivates a search for a geometric tool which can help to
efficiently represent the relevant information near edges.

The dictionary of wedgelets developed by Donoho [2] offers
one convenient method for describing edges in an image. These
dyadic blocks, each containing a single straight edge with arbi-
trary orientation, can be chained together to approximate an edge
contour with desired accuracy. For certain classes of contours,
wedgelets have been shown to offer near-optimal nonlinear ap-
proximations. Unfortunately, due to errors introduced when ap-
proximating real edges with wedgelet step edges, the application
of wedgelets in natural image compression is not straightforward.
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Indeed, wedgelets have yet to yield a complete and viable tech-
nique for image compression.

A recent attempt [3] by our group involves coding an image�
as a mixture of textures separated by edges. Our approach uses

a wedgelet tree (pruned with the CART algorithm [2]) to create a
primitive “cartoon” sketch � which represents the dominant edges.
After efficiently coding the sketch, we wish to code the residual
texture ��� ��� � using standard wavelet techniques. Unfortu-
nately, residual artifacts created by wedgelet approximations pose
many of the same difficulties for wavelets that edges present. A
refinement can be made to the residual image [4], masking out
any possible artifacts located near edges in the cartoon sketch.
This makes the resulting residual image much easier to code us-
ing wavelets, and we see a noticeable improvement in visual qual-
ity over standard coding techniques. The destruction of informa-
tion, however, prevents the coder from being competitive in terms
of PSNR. Essentially, the use of wedgelets to create a primitive
sketch hampers the ultimate efficiency of the coder because the
method for residual coding is not simultaneously considered. For
a coder with improved PSNR performance, we conclude that the
decisions for placing wedgelets must instead be made in a rate-
distortion (R/D) framework, so that wedgelets are used only when
they actually improve the R/D performance of the full coder.

The key to such joint rate-distortion flexibility can be found in
the framework of Space-Frequency Quantization (SFQ) [5] cod-
ing. The SFQ coder is based on a zerotree [1] quantization frame-
work, with scalar quantization used to compress the significant
(non-zerotree) wavelet coefficients. Zerotrees are useful for com-
pressing large collections of low-energy wavelet coefficients using
very few bits. The key to the SFQ algorithm is its rate-distortion
optimization of the zerotree placements; a tree-pruning operation
weighs the rate and distortion consequences of each symbol.

In this paper, we propose an extension of the SFQ method:
the addition of wedgelets to the R/D optimization. Wedgelets offer
some of the same benefits as zerotrees – large collections of wave-
let coefficients can be described using very few bits – but wedge-
lets can do so in the high-energy regions near edges. Section 2
explains the use of wedgelets in describing an edge. Section 3 de-
scribes the relevant details of the SFQ coding strategy; the reader
is referred to [5] for a complete description of the SFQ algorithm.
Section 4 gives the details of our wedgelet-modified SFQ (W-SFQ)
algorithm. We note a distinct increase in coding efficiency through
the addition of the wedgelet symbols; Section 5 presents an exam-
ple comparing SFQ and W-SFQ performance. Finally, Section 6
offers conclusions and extensions to our current implementation.

2. WEDGELETS

A wedgelet is an 	�
�	 dyadic block that contains a drawing of
a single edge with orientation 
 and offset � (see Fig. 1(c)). The
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Fig. 1. (a) Artificial image. (b) Wedgelet decomposition. Each dyadic block is constant or contains a single straight edge. (c) Parameter-
ization of a wedgelet on an 	 
 	 dyadic block: 
 is the angular orientation of the edge, � is the normal distance from the edge to the
center of the block, and

�
is the difference in average intensities on each side of the edge.

edge separates two regions with grayscale intensities differing by
height

�
. An additional grayscale value (such as one of the two

intensities) is also necessary for creating a spatial-domain sketch
of the block, but it is not required for our application, which is the
prediction of wavelet coefficients.

The wedgelet dictionary is the dyadically organized collection
of all possible wedgelets. Donoho [2] considers a discrete set of
wedgelets for a given block, while we allow continuous parame-
ters. As illustrated in Fig. 1(a)(b), contours in an image may be
approximated by a wedgelet decomposition: a tiling of wedge-
lets chosen from this dictionary. In general, long, straight edges
are well-approximated using large wedgelets. A series of smaller
wedgelets may be required to approximate curved segments of an
edge.

For a given 	 
�	 block of pixelized data, several methods
exist for obtaining the best wedgelet fit – the set of parameters���
�� ���� � �	� which describe a wedgelet with the closest mean-squared
fit to the data. Aside from an exhaustive search over the space 
��
of possible parameters, estimates may also be obtained through
an analysis of the Radon transform or the complex wavelet trans-
form [6]. Fast estimation techniques using a discrete wedgelet dic-
tionary, as well as a further discussion of wedgelet analysis, are
provided in [7].

3. SPACE-FREQUENCY QUANTIZATION

The SFQ coder [5] is based on a zerotree quantization framework.
The dyadic quadtree of wavelet coefficients is transmitted in a sin-
gle pass from the top down, and each directional subband is treated
independently.1 Each node 
�� of the quadtree includes a binary
map symbol. A � symbol indicates a zerotree: all of the descen-
dants of node 
�� are quantized to zero. A � symbol indicates that
the node’s four children are significant: their quantization bins
are coded along with an additional map symbol for each. Thus,
the quantization scheme for a given wavelet coefficient is actually
specified by the map symbol of its parent (or a higher ancestor, in
the case of a zerotree); the map symbol transmitted at a given node
refers only to the quantization of wavelet coefficients descending
from that node. All significant wavelet coefficients are quantized
uniformly by a common scalar quantizer; the quantization stepsize� is optimized for the target bitrate.

A tree-pruning operation optimizes the placement of zerotree

1Scaling coefficients are coded separately; one approach is mentioned
in Section 5.

symbols by weighing the rate and distortion costs of each deci-
sion. The pruning starts at the bottom of the tree and proceeds
upwards. Initially, it is assumed that all coefficients are signifi-
cant, and decisions must be made regarding whether to group them
into zerotrees. The coder uses several bottom-up iterations un-
til the tree-pruning converges. At the beginning of each iteration,
the coder estimates the probability density � � �� � of the collection
of significant coefficients; this yields an estimate of the entropy
(and hence coding cost) of each quantized coefficient. Ultimately,
adaptive arithmetic coding is used to transmit these quantization
bin indices. The SFQ tree-pruning produces a near-optimal con-
figuration of zerotrees without requiring an exhaustive search over
all configurations.

Before describing the tree-pruning, we introduce some nota-
tion. Let � � be the wavelet coefficient at node 
�� , and let �� � de-
note the coefficient quantized by stepsize � . The set of the four
children of node 
�� is denoted ��� , and the subtree of descendants
of node 
�� is denoted ��� (note that this does not include node 
�� ).

Optimization in the SFQ framework begins with Phase I, where
the tree is iteratively pruned based on the rate and distortion costs
of quantization. Phase I ignores the bits required to transmit map
symbols, while Phase II adjusts the tree-pruning to account for
these costs. In this paper, we focus on Phase I and its adaptation to
include wedgelets; the adaptation for Phase II is similar. In each
iteration of the Phase I optimization, those nodes currently labeled
significant are examined (those already in zerotrees will remain
in zerotrees). The coder has two options at each such node: cre-
ate a zerotree (symbol � ) or maintain the significance (symbol � ).
Each option requires a certain number of bits and results in a cer-
tain distortion relative to the true wavelet coefficients. The first
option, zerotree quantization of the subtree beginning with node

�� , requires �����! � �"� bits because no information is transmitted
besides the map symbol. This option results in distortion

# ���! � � $%'&)(+*-,�.0/ � %01-2

The second option is to send a significance symbol for 
3� , as
well as the quantization bins corresponding to �� % , for 4 such that
 %�5 � � . Note that for this option, we must consider the (previ-
ously determined) rate and distortion costs of nodes in �6� as well.
Thus
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Fig. 2. Image coded using SFQ optimization. Rate = 0.146 bpp,
PSNR = 25.84 dB.

This option results in distortion
# �87� � � $%-& ( * , : /
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The decision between the two options is made to minimize
the Lagrangian cost

� � � # � C�� � � , where
�

is the optimization
parameter controlling the tradeoff between rate and distortion.

4. WEDGELETS AND SFQ

Despite its success, the SFQ coder fails to model the joint behav-
ior of wavelet coefficients along an edge. A standard SFQ opti-
mization generally results in the use of zerotree symbols to rep-
resent smooth regions of the image, with scalar quantization used
to code other features such as edges (see Fig. 3). In this section,
we propose wedgelets as a third option (symbol � ) in the SFQ
tree-pruning. With this extension, wedgelet symbols allow effi-
cient descriptions of the wavelet coefficients surrounding an edge;
scalar quantization can be reserved for more complicated texture
regions. Moreover, wedgelets implicitly model the joint behavior
of the wavelet coefficients, a property that should minimize visual
artifacts at low bitrates.

We first describe a method for coding a wedgelet at a node 
3� .
We then explain how it may be translated into a subtree of wavelet
coefficients. Finally, we describe the rate-distortion effects which
must be considered during the W-SFQ optimization.

We use a rate-distortion coding framework to transmit a
wedgelet block; this operates under the same R/D parameter

�

used in Section 3. We code each of the three wedgelet parame-
ters

� ��� 
�� �	� using scalar quantization; the quantizer stepsizes are
chosen to ensure the correct operating point on the R/D curve. To
perform such an optimization, the influence of each parameter’s
distortion on the squared-error image distortion must be estimated.
The height parameter

�
, for example, is coded first. For large val-

ues of
�

, errors in transmitting � and 
 will create significant dis-
tortion in the coded wedgelet block; more bits should be used to
quantize these parameters. We denote by ��� / the rate required to
code all of the wedgelet parameters for node 
�� .

Once coded for a node 
 � , a wedgelet may be used to predict
the wavelet coefficients at all descendants in �A� . This is due to the
approximate support of each wavelet basis function within its cor-
responding dyadic block. One way to obtain a prediction for these

Fig. 3. Multiscale segmentation from SFQ tree-pruning. Zerotrees
are represented in black; significant coefficients are gray.

coefficients is to create an image containing the coded wedgelet
at the appropriate location, take the wavelet transform, and extract
the appropriate coefficients. For each 4 such that 
 % 5 ��� , we
denote the predicted wavelet coefficient as ����	� % . Note that this
method may actually be used to predict wavelet coefficients in all
three subbands; at this time, however, we treat each subband inde-
pendently.

With an established strategy for coding wedgelet parameters
and for predicting the corresponding wavelet coefficients, the ad-
dition of wedgelet symbols to the SFQ tree-pruning is straightfor-
ward. When a node 
�� is transmitted with a wedgelet (symbol
� ), the wedgelet parameters are used to compute the values of all
coefficients in the subtree � � . The tree is considered pruned at
that point, and no further information is transmitted for any of the
node’s descendants.

Phase I of the SFQ coder ignored the possible rate cost of
transmitting map symbols because ultimately, the cost of � and� symbols would not differ by a great amount. We expect, how-
ever, many fewer wedgelet symbols to be transmitted, and so we
find it useful to consider in Phase I of W-SFQ a rough estimate
of the probability 
 1 (and hence rate cost) of sending symbol � .
Choosing a suitably low value for 
 1 , it follows that the Phase I
rate cost for the wedgelet option is given by

� � 1  � � �=<�>0? 1 @ 
 1 BDC � � /
and the resulting distortion is simply
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These costs are weighed against the costs of the other two symbols;
the option with the lowest Lagrangian cost is chosen.

As before, the tree-pruning decisions are made at nodes pre-
viously designated as significant (symbol � ). Ideally, our W-SFQ
implementation would be a true superset of the SFQ coder; that is,
every decision made with three symbols should do no worse than
the corresponding two-symbol decision from SFQ. We believe,
however, that the placement of wedgelet symbols, which prunes
a number of coefficients with large magnitude from the significant
collection, invalidates the guarantee that the W-SFQ will outper-
form the SFQ coder. We refer to the next section for evidence of
the efficiency of the W-SFQ strategy.



Fig. 4. Image coded using W-SFQ optimization. Rate = 0.146 bpp,
PSNR = 25.94 dB.

5. RESULTS

For an example of the effectiveness of our W-SFQ extension, we
compress the ������
 ����� Cameraman image using both SFQ and
W-SFQ. SFQ optimization is designed to compress wavelet coeffi-
cients; any efficient technique may be used to separately compress
the scaling coefficients. For both SFQ and W-SFQ, we compress
the scaling coefficients in a raster scan, predicting each coeffi-
cient from its quantized causal neighbors. The prediction errors
are quantized and transmitted.

Fig. 2 shows the SFQ compression of the Cameraman image.
At a bitrate of 0.146 bpp, a PSNR of 25.84dB is attained. The
tree-pruned segmentation is shown in Fig. 3. Black coefficients
belong to zerotrees while gray coefficients are significant. The
tree-pruning chooses to quantize a total of 3020 significant coef-
ficients. As expected, most of the significant coefficients in the
high-frequency subbands occur along edges.

At the same bitrate, Fig. 4 shows the Cameraman image com-
pressed using W-SFQ. A PSNR of 25.94dB is attained, an im-
provement of 0.10dB over the standard SFQ technique. Fig. 5
shows the tree-pruned segmentation; coefficients in white are de-
scribed by wedgelets. In this case, a number of previously signifi-
cant coefficients are now described by wedgelets. The tree-pruning
quantizes only 2724 significant coefficients, while transmitting 36
wedgelets at various scales and locations. A total of 1908 wave-
let coefficients (small and large) are described in these wedgelet
subtrees. Ringing artifacts in the wedgelet-pruned regions are no-
ticeably reduced compared to the SFQ result.

6. CONCLUSION

We have proposed a method for integrating wedgelets into a rate-
distortion image compression framework. This technique allows
us to take advantage of the simple parameterization of wedgelets,
as well as the natural coherency they imply among wavelet coeffi-
cients. By extending the SFQ tree-pruning with the addition of a
wedgelet symbol, we notice improved visual performance with an
increase in PSNR. Presently, though, the usefulness of such an ap-
proach is limited to low bitrates and to images containing strong,
sharp edges.

Our current research focuses on several improvements which
should make wedgelets much more efficient to code, and conse-

Fig. 5. Multiscale segmentation from W-SFQ tree-pruning. Ze-
rotrees are represented in black; significant coefficients are gray;
wedgelet trees are white.

quently improve the performance of W-SFQ. Instead of coding
wedgelets independently, for example, we could code them in sub-
quadtrees pruned with the CART algorithm [2]. This would help
to exploit the dependency among nearby wedgelets. We also be-
lieve that a cleverly chosen discrete wedgelet dictionary will help
to improve the compression performance by reducing the number
of bits required to code a wedgelet, and by helping to model the
multiscale dependencies among wedgelet fits [7]. Other possible
improvements are mentioned in [8], along with a more thorough
discussion of W-SFQ.
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