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Abstract—Our objective is to detect and localize potential
targets using stepped-frequency measurements consisting of both
wall and target return from multiple antenna elements. We
investigate the wall and target return subspaces both (i) for
each antenna element separately and (ii) jointly for all antenna
elements. Both the individual wall return subspace and the joint
wall return subspace can capture most of the energy of the wall
return, but the latter has much smaller dimensionality and thus
captures less energy from the target return. Then, in each step of
an iterative algorithm for detecting the target positions, we cancel
the return from previously selected targets using a joint target
return subspace model. The joint target return subspace offers
improved target detection since this is better able to capture the
return from a given target without capturing the energy of other
targets.

Keywords—radar imaging, wall subspace, wall clutter mitiga-
tion, subspace projection, target subspace, target detection, Discrete
Prolate Spheroidal Sequences

I. INTRODUCTION

There are several approaches for mitigating wall return
when detecting stationary targets through walls using stepped-
frequency radar [1–5]. One approach involves modeling and
subtracting wall return from the received data by estimating
the parameters of the front wall [1]. A second approach
uses spatial filtering to remove the direct current component
corresponding to the wall return [2]. By estimating the wall
return subspace via a singular value decomposition (SVD),
Tivive et al. [3] mitigate wall clutter by projecting the full data
onto the orthogonal complement of this subspace. A dictionary
of multiband modulated Discrete Prolate Spheroidal Sequences
(DPSS’s) [6, 7] can also be utilized to efficiently represent the
wall return for each antenna element separately [5, 8].

After the wall clutter is mitigated, the general approach
for detecting sparse point targets is to first divide the target
space in crossrange and downrange uniformly into a finite
set of pixels. Then one constructs a dictionary of candidate
return signatures based on these grid points and formulates the
radar imaging problem as a sparse recovery problem [4, 5]. If
a point target does not fall precisely on the grid, or in the
more general case, if the target is not a point, then the return
corresponding to the largest target reflectivity may dominate
and sparse solvers may fail to detect the other targets. In order
to detect and localize non-point targets, we recently [8, 9]
proposed a DPSS-aided matching pursuit (MP) algorithm that
uses a modulated DPSS basis to represent the target return
separately at each antenna.

In this paper, we exploit the fact that since all antennas are
observing the same wall and the same targets, jointly modeling
the wall return across all antennas and jointly modeling the
target return across all antennas yields subspace models with
much smaller dimension than their counterparts [5, 8, 9]
that arise with independent antenna-by-antenna modeling. The
dimensionality of a target return subspace indicates the fun-
damental number of degrees of freedom in detecting that
target and thus plays an important role in determining the
number of measurements needed, for example, when applying
compressive sensing (CS) techniques [10] to decrease the data
size [4, 5, 8]. Our approach for characterizing the wall return
subspace differs from [3] in that it is data-independent and
thus can be efficiently utilized in CS problems [5, 8], whereas
the [3] requires full data. We demonstrate the advantage of
jointly considering the wall returns or the target returns both
theoretically and experimentally. To be clear, throughout the
paper, the term “jointly” refers to modeling (the wall return
or the target return) across the antenna elements; we are not
considering the wall and target returns together.

The outline of this paper is as follows. The main problem
is illustrated in Section II. Section III investigates the dimen-
sionality of the wall return subspace and the mitigation of wall
clutter. Section IV discusses the dimensionality of the target
return subspace and presents a new algorithm for detecting
non-point targets. Section V presents simulations to support
our proposed methods.

II. PROBLEM SETUP

We consider an M -element synthetic linear aperture that
transmits waveforms and receives the reflected signals. We
assume that each transceiver transmits and receives a stepped-
frequency signal consisting of N frequencies equispaced over
the band [f0, fN−1] with the frequency step size ∆F :=
fN−1−f0
N−1 , i.e., fn = f0 +n∆F . Further, we assume monostatic

operation in which the transmitter and receiver are collocated
as viewed from the target (i.e., the same antenna is used
to transmit and receive) and after the antenna obtains the
measurements in one location, we move it to the next location.
To simply the notation, we suppose the antennas are parallel
to the wall. According to [5], we can model the wall return at
the m-th antenna and the n-th frequency as

rwm[n] :=

L∑
l=0

ϑle
−j2πfntl , ∀ m ∈ [M ], n ∈ [N ]. (1)



Here, [N ] denotes the set {0, 1, . . . , N − 1} for any natural
number N ∈ N; ϑ0 is the complex reflectivity of the wall;
ϑl, l ≥ 1 represents the complex reflectivity corresponding to
the l-th wall reverberation and decreases with l; L denotes the
number of wall reverberations; t0 is the direct two-way travel
time between the wall and the antenna; and tl, l ≥ 1 is the
delay associated with the l-th wall return to the antenna.

Suppose there are K targets behind the wall. The target
return observed by the m-th antenna at the n-th frequency can
be expressed as

rtm[n] :=

K∑
k=1

rtk,m[n], (2)

where rtk,m[n] :=
∫ τmax

k,m

τmin
k,m

σk(τ)e−j2πfnτdτ . Here, σk(τ) is the
complex reflectivity function of the k-th target (we assume the
target reflectivity is independent of frequency), and τmin

k,m and
τmax
k,m are the minimum and maximum two-way travel times

between the k-th target and the m-th antenna, respectively.
Note that the return from point targets degenerates to rtm[n] =∑K
k=1 σke

−j2πfnτk,m , where τk,m is the two-way travel time
between the k-th point target and the m-th antenna [5].

The measurement ym := rwm + rtm received by m-th
antenna consists both wall and target return. Define rw =
[(rw0 )H · · · (rwM−1)H ]H and rt = [(rt0)H · · · (rtM−1)H ]H .
Here H represents the conjugate transpose. The measurements
{ym}m∈[M ] are arranged into an MN×1 vector y = rw+rt.
From the measurements y, our goal is to detect or localize the
potential targets.

III. WALL RETURN SUBSPACE

A. A bandpass modulated DPSS basis

Given W ∈ (0, 1
2 ), the DPSS vectors {s(κ)

N,W }κ∈[N ] are
length-N vectors whose Discrete-Time Fourier Transform
have a certain concentration in the digital frequency band
[−W,W ] [6, 7]. Define

ef := [ej2πf0 ej2πf1 · · · ej2πf(N−1)]T ∈ CN

for all f ∈ R as the sampled exponentials, where T represents
the transpose operator. Let Efc := diag(efc) denote an
N × N diagonal matrix for any fc ∈ R. Define SN,W :=

[s
(0)
N,W s

(1)
N,W · · · s(N−1)

N,W ]. Now define Q := [EfcSN,W ]J
to be the first J modulated DPSS vectors for some value of
J ∈ {1, 2, . . . , N} that we can choose as desired. The columns
of Q are orthonormal. For any matrix Q with orthonormal
columns, throughout the paper we use PQ := IN −QQH to
denote an orthogonal projection from CN to the orthogonal
complement of the subspace formed by the columns of Q.
Taking J ≈ 2NW , the dictionary Q provides very accurate
approximations (in an MSE sense) for finite-length sample
vectors arising from sampling random bandpass signals [7].
In fact, as stated below, all sampled sinusoids in the targeted
band can be represented well by the dictionary Q.

Theorem III.1. [11] Fix W ∈ (0, 1
2 ) and fc ∈ R. DefineQ :=

[EfcSN,W ]J . For fixed ε ∈ (0, 1), choose J = 2NW (1 + ε).
Then there exist constants C1, C2 (where C1, C2 may depend
on W and ε) such that for all N ≥ N0

||PQef ||2 ≤ C1N
5/4e−C2N , ∀ f ∈ [fc −W, fc +W ].

In a nutshell, this result states that (i) the effective dimen-
sionality of the subspace spanned by {ef}f∈[fc−W,fc+W ] is
2NW , and (ii) the modulated DPSS vectors provide a basis
for this subspace.

B. The dimensionality of the wall return subspace

If we consider only the direct wall return, the wall return
defined in (1) reduces to

rwm[n] = ϑ0e
−j2πfnt0 = ϑ0e

−j2πf0t0e−j2πn∆Ft0 .

In this simple case, the wall return rwm lives in a 1-dimensional
subspace spanned by the basis vector e−∆Ft0 .

More generally, the wall return in (1) can be rewritten as

rwm[n] =

L∑
l=0

ϑle
−j2πf0tle−j2πntl∆F . (3)

From Theorem III.1, we expect that the wall return rwm at
one antenna will approximately live within a low-dimensional
subspace because (3) indicates that rwm can be viewed as
a linear combination of sampled exponentials ef with f ∈
[−tL∆F,−t0∆F ]. Accordingly, define the dictionary of mod-
ulated DPSS vectors

Dm := [E−∆F (tL+t0)/2SN,∆F (tL−t0)/2]Jw

for some value of Jw ∈ {1, 2, . . . , N}.
Corollary III.2. Fix ε ∈ (0, 1). Choose Jw = N(tL −
t0)∆F (1+ε). Then there exist constants C1, C2 and an integer
N0 such that for all N ≥ N0

‖PDmr
w
m‖2 ≤

L∑
l=0

ϑlC1N
5/4e−C2N .

The proof follows directly from Theorem III.1. The above
result indicates that rwm is approximately within SDm

, the
column space of Dm when we set Jw = N(tL − t0)∆F (1 +
ε). Define the MN × MJw block diagonal matrix D :=
diag(D0, . . . ,DM−1).

Corollary III.3. Fix ε ∈ (0, 1). Choose Jw = N(tL −
t0)∆F (1+ε). Then there exist constants C1, C2 and an integer
N0 such that for all N ≥ N0

‖PDr
w‖2 ≤M

L∑
l=0

ϑlC1N
5/4e−C2N .

In words, the complete wall return rw lives approximately
within SD, the subspace spanned by the columns of D. The
dimension of SD is MJw.

Before moving on, we note that the electrical properties
of the wall material, which directly determine {tl}Ll=1, may
not be known in advance. The dictionary Dm cannot capture
the wall return completely if tL is chosen too small. On the
other hand, choosing tL too large may result in a dictionary
Dm that also captures some energy from target returns behind
the wall. Since simulations have indicated that almost all walls
have dominant reverberations up to 1.5m behind the wall [5],
we use the same strategy as [5] in that we mitigate the wall
reverberations up to 1.5m behind the wall. Note that we can
still detect some targets located less than 1.5m behind the wall



as long as there exist some antennas that have distance larger
than 1.5m from these targets.

Because we assume the antennas are parallel to the wal-
l, the wall return rwm is identical for different m. There-
fore, the wall return rw actually lives within a subspace
which has much smaller dimension than SD. Define D̂ :=

1√
M

[DH
0 DH

1 · · · DH
M−1]H .

Corollary III.4. Fix ε ∈ (0, 1). Choose Jw = N(tL −
t0)∆F (1+ε). Then there exist constants C1, C2 and an integer
N0 such that for all N ≥ N0

‖PD̂r
w‖2 ≤M

L∑
l=0

ϑlC1N
5/4e−C2N .

We omit the proof due to limited space. The dimension
of SD̂ (the column space of D̂) is Jw, which is smaller than
the dimension of SD by a factor of M . The advantage of this
smaller dimension is that the projection operator PD̂ has less
effect on the target return rt than PD. We give an example
to illustrate this. We simulate one line target of length 0.5m
located at (x, y) = (−0.29m, 5.38m), with complex reflectivity
of 5. An M = 15-element synthetic linear aperture (located
along the x-axis) with interlement spacing of 4

M m is used. A
stepped-frequency signal consisting of N = 101 frequencies
from 1GHz to 3GHz is utilized to obtain measurements. A
front wall is located at y = 3.13m, i.e., 3.13m away from the
antennas.

We generate target return according to (2). On the basis of
(1), L = 5 wall reverberations are generated equally spaced
between the wall and 1.5m behind the wall with ϑ0 = 30 and
ϑl = 1

1+lϑ0 for all l = 1, . . . , L. We have N(tL − t0)∆F =
20.2 ≈ 20. Figures 1(a-b) respectively show the ability of
D (and D̂) to capture the energy in the wall return rw

through the quantification SNR1 = 20 log10( ‖rw‖2
‖PDrw‖2

)dB and
avoid the target return rt through the quantification SNR2 =

20 log10( ‖rt‖2
‖rt−PDrt‖2

) with various Jw near 20. As can be

observed, though D and D̂ capture the same energy in the
wall return, D̂ captures less energy in the target return.

Also, as anticipated, both D and D̂ may capture non-
negligible energy from the target return if we choose Jw too
large, whereas choosing Jw too small results in a dictionary
that cannot capture the wall return completely. There is a
tradeoff between cancelling the wall return and preserving the
target return. By changing Jw, we can balance this tradeoff.
In general Jw ≈ N(tL − t0)∆F is recommended for most
applications.

C. Wall clutter mitigation

Based on the discussion above, one could mitigate wall
clutter antenna-by-antenna by computing [8]

ỹm := PDm
ym = PDm

rwm + PDm
rtm.

Since PDmr
w
m ≈ 0, we get ỹm ≈ PDmr

t
m. The processed

measurements could then be written as

ỹ = PDy = PDr
w + PDr

t ≈ PDr
t.
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Fig. 1. (a) SNR1 captured for wall return as a function of Jw; (b) SNR2

captured for target return as a function of Jw .

Alternatively, one could mitigate the wall clutter jointly by
computing

ŷ = PD̂y = PD̂r
w + PD̂r

t ≈ PDr
t.

Since PD̂ has less effect on the target return rt than PD, we
adopt PD̂ for mitigating the wall return.

IV. TARGET RETURN SUBSPACE

A. The dimensionality of target return subspaces

The target return observed by the m-th antenna corre-
sponding to the k-th target can be rewritten as rtk,m[n] =∫ τmax

k,m

τmin
k,m

σk(τ)e−j2πf0τe−j2πnτ∆F dτ. This indicates that rtk,m
can be viewed as a linear combination of sampled exponen-
tials ef with f ∈ [−τmax

k,m∆F,−τmin
k,m∆F ]. Thus, from Theo-

rem III.1, we expect this vector to approximately live within a
low-dimensional subspace spanned by certain modulated DPSS
vectors. Define

Ψk,m := [E−∆F (τmin
k,m+τmax

k,m)/2SN,∆F (τmax
k,m−τ

min
k,m)/2]Jt

k,m

for some value of J tk,m ∈ {1, 2, . . . , N}.

Theorem IV.1. [11] Fix ε ∈ (0, 1). Choose J tk,m = N(τmax
k,m−

τmin
k,m)∆F (1 + ε). Then there exist constants C1, C2 and an

integer N0 such that for all N ≥ N0

‖PΨk,m
rtk,m‖2 ≤

√√√√∫ τmax
k,m

τmin
k,m

σ2
k(τ)dτC1N

5/4e−C2N .

The above result indicates that rtk,m is approximately
contained within the column space of Ψk,m. Define

Ψk := diag(Ψ0,k, . . . ,ΨM−1,k). (4)

Let rtk := [(rtk,0)H · · · (rtk,M−1)H ]H denote the joint target
return (across all antennas) corresponding to the k-th target.

Corollary IV.2. Fix ε ∈ (0, 1). Choose J tk,m = N(τmax
k,m −

τmin
k,m)∆F (1 + ε). Then there exist constants C1, C2 and an

integer N0 such that for all N ≥ N0

‖PΨk
rtk‖2 ≤

M−1∑
m=0

√√√√∫ τmax
k,m

τmin
k,m

σ2
k(τ)dτC1N

5/4e−C2N .

This result follows directly from Theorem IV.1. In words,
the target return rtk lives approximately within SΨk

, the
subspace spanned by the columns of Ψk. The dimension of
SΨk

is J tk :=
∑M−1
m=0 J

t
k,m.

Now, similar to the case of the wall return, if we utilize the
fact that {rtk,m}m correspond to the same target, we expect



that the joint target return rtk can be captured using a subspace
with dimension much smaller than SΨk

. Divide the k-th target
uniformly into P points and construct Gk,m ∈ CN×P with
entries given by

Gk,m[n, p] := e−j2πfnτp,m (5)

for n ∈ [N ] and p ∈ [P ]. Here τp,m denotes the two-way travel
time between the p-th point position and the m-th transceiver.
One can approximate rtk,m as a linear combination of the
columns of Gk,m. In fact, an approximate method to generate
the modulated DPSS basis Ψk,m (whose columns are also the
eigenvectors of the covariance matrix of a randomly chosen
sinusoid in the frequency band of interest, see [7]) is by
computing the left singular vectors of Gk,m.

Choosing P sufficiently large, the matrix Gk,m is approx-
imately low rank with effective rank ≈ N(τmax

k,m − τmin
k,m)∆F .

Arrange {Gk,m}m∈[M ] as

Gk := [GH
k,0 G

H
k,1 · · · GH

k,M−1]H . (6)

Now, one can approximate rtk as a linear combination of
the columns of Gk,m. The effective rank of Gk is upper
bounded by ≈

∑M−1
m=0 N(τmax

k,m−τmin
k,m)∆F and lower bounded

by maxmN(τmax
k,m−τmin

k,m)∆F . We use an example to illustrate
the low rank structure in both Gk,m and Gk. With the same
setup to that in Section III-B, we set P = 50. Figures 2(a-b)
display the singular values of G1,0 and G1, respectively. We
observe that the effective rank of G1 is only slightly larger
than G1,0. Here N(τmax

1,0 − τmin
1,0 )∆F = 2.04 ≈ 2. Although

not shown in the plot, we also note that the effective ranks of
Gk,m and Gk both scale proportionally with the size of the
target.

Let Gk,m = Uk,mΣk,mV
H
k,m be an SVD of Gk,m, where

Σk,m is a diagonal matrix with singular values γ(p)
k,m (which

are arranged in non-increasing order, i.e., γ(0)
k,m ≥ γ

(1)
k,m ≥ · · · )

along its diagonal. For given 0 < β < 1, define J
t

k,m as the
number of singular values that are greater than βγ

(0)
k,m, i.e.,

J
t

k,m := #{p, γ(p)
k,m ≥ βγ

(0)
k,m}. Define J

t

k :=
∑M−1
m=0 J

t

k,m.
Similarly, let Gk = UkΣkV

H
k be an SVD of Gk, where Σk is

a diagonal matrix with singular values γ(p)
k (which are arranged

in non-increasing order) along its diagonal. Let Ĵ tk denote the
number of singular values that are greater than βγ(0)

k . Define

Ψk := diag([Uk,0]
J

t
k,0
· · · [Uk,M−1]

J
t
k,M−1

),

Ψ̂k := [Uk]Ĵt
k
,

where [Uk,m]
J

t
k,m

is obtained by taking the first J
t

k,m columns
of Uk,m. Similar notation holds for [Uk]Ĵt

k
.

We add one more line target of length 0.5m located
at (1.55m, 6.38m), with relative complex reflectivity of 3.
Figure 2(c) shows J t1, J

t

1 and Ĵ t1 for various β. Here set
J tk,m = J

t

k,m and thus J t1 = J
t

1. We observe that the
effective dimensionality of the first target return subspace is
much smaller when we consider the antennas jointly. Fig-
ures 2(d-e) respectively show the ability of Ψ1 (and Ψ1, Ψ̂1)
to capture the energy in the first target return rt1 through

the quantification SNR1 = 20 log10(
‖rt

1‖2
‖PΨ1

rt
1‖2

)dB and to

avoid the second target return rt2 through the quantification
SNR2 = 20 log10(

‖rt
2‖2

‖rt
2−PΨ1

rt
2‖2

) with various β. As can be

seen, Ψ1,Ψ1 and Ψ̂1 have almost the same ability to represent
the first target return rt1. However, compared to Ψ1 and Ψ1,
Ψ̂1 captures less energy in the second target return rt2. This
advantage owes to the fact that Ψ̂1 has a much smaller number
of columns.

B. Target detection

Following the general approach for radar imaging [5], the
target space is divided uniformly into a grid of Lx×Ly pixels.
We arrange the pixels of the image into an LxLy × 1 vector
α. Define Θm ∈ CN×LxLy with entries given by Θm[n, q] :=
e−j2πfnτq,m for n ∈ [N ] and q ∈ [LxLy − 1]. Here τq,m
denotes the two-way travel time between the q-th grid and the
m-th transceiver. The target return can be written as rtm =
Θmα if the targets are points and located precisely on the
grid. Define Θ := [ΘH

0 · · · ΘH
M−1]H .

In order to detect and localize the non-point targets,
we [8, 9] modify the iterative, greedy matching pursuit (MP)
algorithm [12] so that the energy of exponentials with two-way
traveling time close to that of each selected point is cancelled
by using a modulated DPSS basis. To account for and cancel
off-grid target return, for each q ∈ [LxLy − 1], we generate
Ψq and Ψ̂q by uniformly dividing a region centered at grid
point q with size Rxm×Rym into Fx×Fy points, constructing
Gq,m as defined in (5) with P = FxFy , constructing Gq as
defined in (6), and finally computing the left singular vectors of
Gq,m andGq . Throughout the simulations, we choose Rx = 1,
Ry = 0.3, Fx = 12 and Fy = 6. Ψq is also generated for this
region according (4). The full subspace-based MP algorithm
for target detection is shown in Algorithm 1. As shown in the
merge step, in each iteration when we pick one pixel in the
grid, we also choose its neighbors (from two pixels to the left
to two pixels to the right). We note that this step (adding its
neighbors) is used only to improve the imaging result, but has
no effect in detection. The size of the neighbors can be adapted
to the particular application.

Algorithm 1 Subspace-based Matching Pursuit.
input: Θ with columns θj , ŷ, number of iterations I
initialize: r0 = ŷ, α̂ = 0, i = 0,Λ0 = ∅

1: while i < I do
2: identify: j0 = arg maxj |θHj ri|/||θj ||2
3: merge: Λi+1 = Λi∪{j0−2, j0−1, j0, j0 +1, j0 +2}
4: update: ri+1 = PΨj0

ri (or PΨj0
ri, PΨ̂j0

ri)
i = i+ 1

5: end while
6: return α̂ = Θ†Λŷ

V. SIMULATIONS

With the same setup to that in Section III-B, we simulate
eight line targets of length 0.5m as listed in Table I. The 4m×
5.5m region centered at (0m, 4.75m) is chosen to be imaged,
and it is divided into a grid of 33×77 pixels. The number Jw
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Fig. 2. (a) the singular values of G1,0; (b) the singular values of G1; (c) the effective dimensionality against β; (d) SNR1 captured for the first target return
against β; (e) SNR2 captured for the second target return against β.

for the bandpass modulated DPSS dictionary D is chosen to
be 30. We choose β = 10%.

Figures 3(b-d) respectively display the target reconstruction
result with 8 iterations of the subspace-based MP algorithm
involving Ψ, Ψ and Ψ̂ (which means we use Ψj0 , Ψj0 and
Ψ̂j0 respectively in Algorithm 1). We note that the wall clutter
can be captured well by D̂ and due to the limited space, we
only show the region containing the targets in Figure 3. Clearly,
we observe that the algorithm with Ψ̂ can find the second and
the fifth targets which are very close to each other, while the
algorithms with Ψ and Ψ miss the fifth target.

As we have explained, the wall and target return subspaces
have much smaller dimensionality when we consider them
jointly across all antenna elements than separately for each
antenna. This experiment demonstrates the advantage of using
the joint target subspace in target detection.

TABLE I. THE LOCATION AND REFLECTIVITY OF THE TARGETS

k 1 2 3 4 5 6 7 8
x(m) -0.29 1.55 -1.69 -1.78 1.67 0.29 1 -1.3
y(m) 5.38 6.38 6.58 4.93 5.03 6.6 4.97 3.63
σ 5 3 2 1 1 1 1 1
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Fig. 3. Illustration of (a) the true target locations; and wall mitigation with
D̂ and target detection with subspace-based MP algorithm involving (b) Ψ;
(c) Ψ; (d) Ψ̂.
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