Comment on “Elastic wave propagation in a solid layer with laser-induced point defects” [J. Appl. Phys. 110, 064906 (2011)]

P. A. Martin

Citation: J. Appl. Phys. 112, 056101 (2012); doi: 10.1063/1.4747830

View online: http://dx.doi.org/10.1063/1.4747830

View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v112/i5

Published by the American Institute of Physics.

Related Articles
Impact response and dynamic strength of partially melted aluminum alloy

Multifunctional solid/solid phononic crystal

Photoexcitation of gigahertz longitudinal and shear acoustic waves in BiFeO3 multiferroic single crystal

Inverted bi-prism phononic crystals for one-sided elastic wave transmission applications

Additional information on J. Appl. Phys.
Journal Homepage: http://jap.aip.org/
Journal Information: http://jap.aip.org/about/about_the_journal
Top downloads: http://jap.aip.org/features/most_downloaded
Information for Authors: http://jap.aip.org/authors

ADVERTISEMENT

Special Topic Section: PHYSICS OF CANCER
Why cancer? Why physics? View Articles Now
The title problem concerns waves in an isotropic solid in which there are atomic point defects. The density of the defects is \(n(\mathbf{r}, t) \), where \(\mathbf{r} = (x_1, x_2, x_3) \) is a point in the solid. (Although Ref. 1 starts with two kinds of defects, most of the analysis is restricted to one type.) The constitutive relation between the stresses \(\sigma_{ij} \), \(n \), and the displacement components, \(u_i(\mathbf{r}, t) \) \((i = 1, 2, 3) \), is

\[
\sigma_{ij} = \lambda \delta_{ij} \Delta + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \vartheta_d \hbar \delta_{ij},
\]

where \(\lambda \) and \(\mu \) are Lamé moduli, \(\Delta = \frac{\partial u_i}{\partial x_i} \) is the dilatation (with the usual summation convention), and the constant \(\vartheta_d \) controls the strain-defect interaction. We note, in passing, that Eq. (1) has the same structure as the constitutive relation for thermoelasticity, with \(n \) playing the role of temperature.

The governing equations of motion are

\[
\rho \frac{\partial^2 u_i}{\partial t^2} = \frac{\partial \sigma_{ij}}{\partial x_j}, \quad i = 1, 2, 3,
\]

\[
\frac{\partial n}{\partial t} = -\frac{\partial Q_i}{\partial x_i} + g - \gamma n.
\]

Here, \(\rho \) is the mass density, and \(g \) and \(\gamma \) are nonlinear functions of the dilatation,

\[
g = \mathcal{G} \exp(\vartheta_d \Delta/k_T), \quad \gamma = \tau^{-1} \exp(\vartheta_m \Delta/k_T),
\]

where \(\mathcal{G}, \vartheta_d, k_T = k_B T, \tau \), and \(\vartheta_m \) are constants. (In another paper, Mirzade\(^4\) has considered a simpler problem, with \(g = \mathcal{G} \) and \(\gamma = \tau^{-1} \).) The defect flux has components \(Q_i \) given by

\[
Q_i = -D \frac{\partial n}{\partial x_i} + v_i n,
\]

where \(D \) is a diffusion constant and the components of the defect-drift velocity are (see above Eq. (3) in Ref. 1 or above Eq. (4) in Ref. 2)

\[
v_i = \frac{D}{k_T} F_i = -\frac{D}{k_T} \frac{\partial U_{int}}{\partial x_i} = \frac{D}{k_T} \frac{\partial \Delta}{\partial x_i}.
\]

Thus,

\[
\frac{\partial Q_i}{\partial x_i} = -D \nabla^2 n + \frac{D}{k_T} \frac{\partial}{\partial x_i} \left(n \frac{\partial \Delta}{\partial x_i} \right).
\]

To make progress, Mirzade linearizes Eq. (3). Thus, assume small strains and put \(n = n_0(x, y, z) + N_1(x, y, z, t) \) with \(|N_1|/n_0 \ll 1 \). For Eq. (2) to be satisfied at leading order, we must have \(n_0 = \mathcal{G} \). Then, from Eq. (3) at leading order, we obtain \(n_0 = \mathcal{G} \).

At next order, Eqs. (1) and (2) give

\[
\rho \frac{\partial^2 u_i}{\partial t^2} = (\lambda + \mu) \frac{\partial \Delta}{\partial x_i} + \mu \nabla^2 u_i - \vartheta_d \frac{\partial n_0}{\partial x_i}, \quad i = 1, 2, 3.
\]

From Eqs. (3), (4), and (6), we obtain

\[
\frac{\partial n_0}{\partial t} = g_e \Delta - \tilde{g}_d \nabla^2 \Delta + D \nabla^2 n_1 - \tau^{-1} n_1,
\]

where \(\tilde{g}_d = D n_0 \vartheta_d/k_T \) and \(g_e = \mathcal{G} (\vartheta_d - \vartheta_m)/k_T \). Equation (8) should be compared with Eq. (9) in Ref. 1. Notationally, our \(g_e \) and \(\tilde{g}_d \) are Mirzade’s \(g \) and \(d \), respectively. As \(g_e \) and \(\tilde{g}_d \) have different dimensions, for later use, we define

\[
\tilde{g}_d = \mathcal{G} \vartheta_d/k_T \quad \text{giving} \quad \tilde{g}_d = D \vartheta_d.
\]

Using our notation, Mirzade’s equation (9) has \(\gamma \) instead of the constant \(\tau^{-1} \); see Eq. (4). For a consistent linearization, the approximation \(\gamma \approx \tau^{-1} \) should be used.

PLANE WAVES

Mirzade\(^1\) considers waves in a layer, in a half-space, and in an unbounded space. Here, we focus on the simplest problem of determining plane waves in an unbounded space. Mirzade introduces various potentials; we bypass this step. Thus, we try \(u = \mathcal{R} \{ A \mathcal{E} \} \) and \(n_1 = \mathcal{R} \{ N \mathcal{E} \} \) with \(\mathcal{E} = \exp \{ i(\mathbf{K} \cdot \mathbf{r} - \omega t) \} \). The constant vectors \(A \) and \(\mathbf{K} \) are allowed to be complex: they are *bivectors*.\(^4\) Also, \(\mathcal{N} \) is a complex constant. We have \(\Delta = \mathcal{R} \{ i(\mathbf{A} \cdot \mathbf{K}) \mathcal{E} \} \) and \(\nabla^2 \mathcal{E} = -q^2 \mathcal{E} \), where

\[
q^2 = \mathbf{K} \cdot \mathbf{K} = K_x^2 + K_y^2 + K_z^2
\]

\[
= K^+ \cdot K^+ - K^- \cdot K^- + 2i K^+ \cdot K^-.
\]
and we have written $K = (K_1, K_2, K_3) = K^+ + iK^-$ (see p. 16 of Ref. 4). We have used the notation q^2 so that we can compare with Ref. 1, but we emphasise that q^2 is complex unless K is real ($K = K^+$, $K^- = 0$). Substitution in Eqs. (7) and (8) gives
\[-\rho \omega^2 A = -(\lambda + \mu)(A \cdot K)K - \mu q^2 A - i\partial_x N K,\]
\[-i\omega N = -Dq^2 N + i(g_e + g_d q^2)(A \cdot K) - \tau^{-1} N.\]

We seek non-trivial solutions of this system. Simplify the notation by putting $X = \mu q^2 - \rho \omega^2$, $L = \lambda + \mu$, $G = g_e + g_d q^2$, and $H = i\omega - \tau^{-1} - Dq^2$. Then, the system becomes
\[L(A \cdot K)K + XA + i\partial_x N K = 0,\]
\[iG(A \cdot K) + HN = 0.\]

Write this system in matrix form as $C \mathbf{x} = 0$ with $\mathbf{x}^T = (N, A_1, A_2, A_3)$ and
\[C = \begin{pmatrix} H & iG K_1 & iG K_2 & iG K_3 \\ i\partial_x K_1 & X + L K_1^2 & L K_1 K_2 & L K_1 K_3 \\ i\partial_x K_2 & L K_1 K_2 & X + L K_2^2 & L K_2 K_3 \\ i\partial_x K_3 & L K_1 K_3 & L K_2 K_3 & X + L K_3^2 \end{pmatrix}.\]

Direct calculation gives
\[\det C = X^2 \Lambda \quad \text{with} \quad \Lambda = H(X + L q^2) + \partial_q G q^2.\]

Allowable solutions follow by setting $\det C = 0$. Thus, $X = 0$ or $\Lambda = 0$. The first of these gives $\omega^2 = c_T^2 q^2$, where $c_T^2 = \mu / \rho$ and c_T is the speed of transverse (shear) waves in an isotropic elastic solid: such waves propagate independently of any atomic point defects. This result was found by Mirzade; see Eq. (25) in Ref. 1.

The second option, $\Lambda = 0$, gives
\[[(\lambda + 2\mu)q^2 - \rho \omega^2](Dq^2 + \tau^{-1} - i\omega) - \partial_q g^2 (g_e + g_d q^2) = 0.\]

We compare this with Mirzade’s equation (25b). Thus, introduce a length ℓ defined by $D\tau = \ell^2$ and let $c_L^2 = (\lambda + 2\mu) / \rho$ so that c_L is the speed of longitudinal (compressional) waves in an isotropic elastic solid. In addition, introduce two independent dimensionless parameters, δ_c and δ_d, defined by (recall Eq. (9))
\[\delta_c = \frac{\partial_d g e}{\lambda + 2\mu} \quad \text{and} \quad \delta_d = \frac{\partial_d g d}{\lambda + 2\mu}.\]

Mirzade’s δ is our δ_c; see below Eq. (19) in Ref. 1. Then, Eq. (10) becomes
\[(q^2 - \omega^2 c_L^{-2})(q^2 + (1 + i\omega)\ell^{-2}) - \delta_c \ell^{-2} q^2 - \delta_d q^4 = 0.\]

This should be compared with Eq. (25b) in Ref. 1, namely,
\[(q^2 - \omega^2 c_L^{-2})(q^2 + (1 + i\omega)\ell^{-2}) - \delta_c \ell^{-2} q^2 = 0.\]

The difference between $(1 - i\omega)$ in Eq. (12) and $(1 + i\omega)$ in Eq. (13) is simply due to us assuming $e^{-i\omega t}$ and Mirzade taking $e^{i\omega t}$. However, the most striking difference is the absence of the last term in Eq. (12). This error can be traced to Eq. (13) in Ref. 1, where a term proportional to $V^2 g$ has been omitted. This omission implies that much of the analysis and computation in Ref. 1 for layers and half-spaces will require correction.

One could regard Eq. (13) as a special case of Eq. (12), obtained by putting $\delta_d = 0$. However, this case is not very interesting because it implies that $\delta_d = 0$, which means that there is no strain-defect interaction; see Eq. (7). In addition, $\delta_d = 0$ implies that $\delta_c = 0$ (see Eq. (11)), in which case Eq. (12) factors.

Mirzade also gives a perturbation analysis of Eq. (13) in which it is assumed that $\delta_c \ll 1$. One could presumably give a similar analysis of Eq. (12), but this would require both $\delta_c \ll 1$ and $\delta_d \ll 1$.

Further analysis of the dispersion relation Eq. (12) could be interesting. It can be regarded as a cubic equation for ω, given q, or as a quadratic equation for q^2, given the frequency ω. (Recall that q^2 need not be real.) It is noted that the case $\delta_d = 1$ is special because Eq. (12) contains a term $(1 - \delta_d) q^4$.

3Equation (4) in Ref. 1 and Eq. (3b) in Ref. 2 give $-c_{\rho l}$ in Eq. (5), but these are typographical errors, F. Mirzade, private communication (2011).