Explicit energy calculation for a charged elliptical plate

P.A. Martin

Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO 80401-1887, USA

Abstract

Potential problems for thin elliptical plates are solved exactly with emphasis on computation of the electrostatic energy. Expansions in terms of Jacobi polynomials are used.

1. Introduction

Let Ω denote a thin flat plate lying in the plane $z = 0$, where Oxyz is a system of Cartesian coordinates. The charge distribution on the plate is $\sigma(x)$, where $x = (x, y)$. The potential on the plate is

$$f(x') = \frac{1}{4\pi} \int_\Omega \frac{\sigma(x)}{|x - x'|} \, dx, \quad x' \in \Omega.$$

(1)

The electrostatic energy, I, is given by

$$I = \int_\Omega f(x') \sigma(x') \, dx' = \frac{1}{4\pi} \int_\Omega \int_\Omega \frac{\sigma(x') \sigma(x)}{|x - x'|} \, dx \, dx',$$

where the overbar denotes complex conjugation. In a recent paper, Laurens and Tordeux [1] showed how to calculate I when Ω is an ellipse and $\sigma(x, y)$ is a linear function of x and y. We generalize their result: we allow arbitrary polynomials in x and y, and we incorporate a weight function to represent singular behaviour near the edge of the plate.

2. An elliptical plate

When f is given, the function σ is infinite at $\rho = 1$, in general. In fact, there is a general result, known as Galin's theorem, asserting that if $f(x, y)$ is a polynomial, then σ is a polynomial of the same degree multiplied by $(1 - \rho^2)^{-1/2}$. In particular, if f is a constant, then σ is a constant multiple of $(1 - \rho^2)^{-1/2}$.

* Tel.: +1 3032733895.
E-mail address: pamartin@mines.edu.

© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.aml.2013.03.010
3. Fourier transforms

We start with a standard Fourier integral representation,

$$\frac{1}{|x - x'|} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\xi|^{-1} \exp\{i\xi \cdot (x - x')\} \, d\xi,$$

where $\xi = (\xi, \eta)$. Henceforth, we write \iint when the integration limits are as in (3). Thus

$$f(x') = \frac{1}{4\pi} \iint |\xi|^{-1} U(\xi) \exp(-i\xi \cdot x') \, d\xi \quad \text{and} \quad I = \frac{1}{2} \iint |U(\xi)|^2 \, d\xi,$$

where

$$U(\xi) = \frac{1}{2\pi} \int_{\Omega} \sigma(x) \exp(i\xi \cdot x) \, dx.$$

For an elliptical plate, we write the Fourier-transform variable ξ as

$$\xi = (\lambda/a) \cos \psi \quad \text{and} \quad \eta = (\lambda/b) \sin \psi.$$

Then, using (2), $\xi \cdot x = \lambda, \rho \cos(\phi - \psi)$. Hence,

$$\exp(i\xi \cdot x) = \sum_{n=0}^{\infty} \epsilon_n i^n J_n(\lambda, \rho) \cos n(\phi - \psi),$$

where J_n is a Bessel function, $\epsilon_0 = 1$ and $\epsilon_n = 2$ for $n \geq 1$.

In order to evaluate $U(\xi)$, defined by (6), we suppose that σ has a Fourier expansion,

$$\sigma(x) = \sum_{m=0}^{\infty} \sigma_m(\rho) \cos m\phi + \sum_{m=1}^{\infty} \tilde{\sigma}_m(\rho) \sin m\phi.$$

Then, using $dx = ab \rho \, d\rho \, d\phi$ and defining

$$S_n[g_n; \lambda] = \int_0^1 g_n(\rho) f_n(\lambda, \rho) \rho \, d\rho,$$

we obtain

$$U(\xi) = ab \sum_{n=0}^{\infty} i^n S_n[\sigma_n; \lambda] \cos n\psi + ab \sum_{n=1}^{\infty} i^n S_n[\tilde{\sigma}_n; \lambda] \sin n\psi.$$

We have $d\xi = (ab)^{-1} \lambda \, d\lambda \, d\psi$ and $|\xi| = (\lambda/b)(1 - k^2 \cos^2 \psi)^{1/2}$, where $k^2 = 1 - (b/a)^2$; k is the eccentricity of the ellipse.

From (4), we obtain

$$f(x) = f_0(\rho) + 2 \sum_{n=1}^{\infty} \left[f_n(\rho) \cos n\phi + \tilde{f}_n(\rho) \sin n\phi \right]$$

where

$$f_n(\rho) = \frac{b}{2\pi} \sum_{m=0}^{\infty} l_n^m(k) \int_0^\infty J_n(\lambda, \rho) \, S_m[\sigma_m; \lambda] \, d\lambda,$$

$$\tilde{f}_n(\rho) = \frac{b}{2\pi} \sum_{m=1}^{\infty} l_n^m(k) \int_0^\infty J_n(\lambda, \rho) \, \tilde{S}_m[\tilde{\sigma}_m; \lambda] \, d\lambda,$$

$$l_n^m(k) = i^n (-i)^n \int_0^\pi \frac{\cos m\psi \cos n\psi}{\sqrt{1 - k^2 \cos^2 \psi}} \, d\psi,$$

$$l_n^m(k) = i^n (-i)^n \int_0^\pi \frac{\sin m\psi \sin n\psi}{\sqrt{1 - k^2 \cos^2 \psi}} \, d\psi.$$
and we have noticed that |ξ| is an even function of ψ. The integrals \(\mathcal{I}_{m}^{(\nu)} \) and \(\mathcal{I}_{m}^{(\mu)} \) can be reduced to combinations of complete elliptic integrals, \(K(k) \) and \(E(k) \). They are zero unless \(m \) and \(n \) are both even or both odd. (See [5, p. 276] for a discussion of similar integrals.) Explicit formulae for a few of these integrals will be given later.

For the energy, \(I \), (5) gives
\[
I = \frac{1}{2\alpha} \int_{0}^{\pi} \int_{-\pi}^{\pi} \frac{d\psi \, d\lambda}{\sqrt{1 - k^2 \cos^2 \psi}}
\]
\[
= a b^2 \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \mathcal{I}_{m}^{(\nu)}(\xi) \int_{0}^{\infty} s_{m}[\sigma_m; \lambda] \, \delta_{n}[\sigma_n; \lambda] \, d\lambda + a b^2 \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \mathcal{I}_{m}^{(\mu)}(\xi) \int_{0}^{\infty} s_{m}[\tilde{\sigma}_m; \lambda] \, \tilde{\delta}_{n}[\tilde{\sigma}_n; \lambda] \, d\lambda. \quad (13)
\]

4. Polynomial expansions

To make further progress, we must be able to evaluate \(\delta_n[g_n; \lambda] \), defined by (8). We do this by expanding \(g_n(\rho) \) using the functions
\[
G_{ij}^{(\nu, \rho)}(\rho) = \rho^n (1 - \rho^2)^\nu P_j^{(\nu)}(1 - 2\rho^2),
\]
where \(P_j^{(\nu)} \) is a Jacobi polynomial. The parameter \(\nu \) controls the behaviour near the edge of the ellipse, \(\rho = 1 \). Thus, when \(\nu = 0 \), \(G_{ij}^{(n, 0)}(\rho) \) is a polynomial; this covers the case discussed in [1]. Setting \(\nu = -\frac{1}{2} \) gives appropriate expansion functions when the goal is to solve (1) for \(\sigma \). We note that Boyd [6, Section 18.5.1] has advocated using the polynomials \(G_{ij}^{(n, 0)}(r) \) as radial basis functions in spectral methods for problems posed on a disc, \(0 \leq r < 1 \).

The functions \(G_{ij}^{(\nu, \rho)} \) are orthogonal. To see this, note that Jacobi polynomials satisfy
\[
\int_{-1}^{1} (1 - x)^\alpha (1 + x)^\beta P_i^{(\alpha, \beta)}(x) P_j^{(\alpha, \beta)}(x) \, dx = h_i(\alpha, \beta) \delta_{ij},
\]
where \(h \) is known and \(\delta_{ij} \) is the Kronecker delta; see [7, Section 18.3]. Hence, the substitution \(x = 1 - 2\rho^2 \) gives
\[
\int_{0}^{1} G_i^{(\nu, \rho)}(\rho) G_j^{(\nu, \rho)}(\rho) \frac{\rho \, d\rho}{(1 - \rho^2)^\nu} = 2^{-\nu - 2} h_i(\nu, \nu) \delta_{ij}. \quad (14)
\]

Next, we use Tranter’s integral [8,9] to evaluate \(\delta_n[G_j^{(\nu, \rho)}; \lambda] \):
\[
\int_{0}^{1} j_n(\lambda, \rho) G_j^{(\nu, \rho)}(\rho) \, \rho \, d\rho = \frac{2^\nu}{\lambda^{\nu + 1} b^j} \Gamma(\nu + j + 1) J_{2j-n+\nu+1}(\lambda).
\]

Thus, if we write
\[
\sigma_n(\rho) = \sum_{j=0}^{\infty} \frac{j! \, s_j^n}{2^j \Gamma(\nu + j + 1)} \, G_j^{(\nu, \rho)}(\rho), \quad (15)
\]
where \(s_j^n \) are coefficients, we find that
\[
\delta_n[\sigma_n; \lambda] = \sum_{j=0}^{\infty} \frac{s_j^n}{\lambda^{j+1}} J_{2j-n+\nu+1}(\lambda). \quad (16)
\]

We also expand \(\tilde{\sigma}_n(\rho) \) as (15) but with coefficients \(s_j^n \).

If we substitute (16) in (9), we encounter Weber–Schafheitlin integrals; these can be evaluated. We give a simple example later.

If we substitute (16) in (13), we encounter integrals of the type
\[
\int_{0}^{\infty} \lambda^{-2\mu} J_{p+\mu}(\lambda) J_{q+\mu}(\lambda) \, d\lambda \quad (17)
\]
where \(\mu = n + 1 \), and \(p \) and \(q \) are non-negative integers. The integral (17) is known as the critical case of the Weber–Schafheitlin integral; its value is [7, Eq. 10.22.57]
\[
\frac{\Gamma\left(\frac{1}{2}[p + q + 1]\right) \, \Gamma(2\mu)}{2^{2\mu} \, \Gamma\left(\frac{1}{2}[2\mu + p - q + 1]\right) \, \Gamma\left(\frac{1}{2}[2\mu + q - p + 1]\right) \, \Gamma\left(\frac{1}{2}[4\mu + p + q + 1]\right)}. \quad (18)
\]
5. Three examples

We discuss three examples. In the first, we examine the dependence on the parameter ν but, for simplicity, we ignore any dependence on the angle φ. In the second example, we compare with some results of Roy and Sabina [2] for ν = −1/2. In the third example, we assume that σ(x, y) is a general quadratic function of x and y (so that ν = 0); this extends the calculations in [1], where σ was taken as a linear function.

5.1. Example: dependence on ν

For a very simple example, suppose that σ(x) = (1 − ρ^2)^ν for some ν > −1. Thus, as \(b^{(n, ν)}_0 = 1 \), (15) gives \(s^0_0 = 2^{-\nu} \Gamma(ν + 1) \). All other coefficients \(s^0_j \) and \(\tilde{s}^0_j \) are zero. Then, from (16), \(s_0[σ_0; λ] = s^0_0 \lambda^{−\nu − 1} J_{ν+1}(λ) \). Hence

\[
I(x) = f_0(ρ) = \frac{b s^0_0 j^1_0(k)}{2π} \int_0^∞ \lambda^{−\nu − 1} A(λ) dλ, \quad 0 \leq ρ < 1.
\]

(19)

From (11), we obtain

\[
l_0' = 2 \int_0^{π/2} \frac{dx}{Δ} = 2K(k),
\]

(20)

where \(Δ = (1 − k^2 \sin^2 x)^{1/2} \). From [7, Eq. 10.22.56], the integral in (19) evaluates to

\[
\frac{√π}{2^{ν+1} \Gamma\left(1 + \frac{1}{2} ν\right)} \Gamma\left(\frac{1}{2} + \frac{1}{2} ν\right) F\left(1, -\frac{1}{2} ν; 1, ρ^2\right),
\]

where \(F \) is the Gauss hypergeometric function. Hence

\[
I(x) = \frac{b}{2π} K(k) \frac{√π}{Γ\left(1 + \frac{1}{2} ν\right)} \Gamma\left(\frac{1}{2} - \frac{1}{2} ν\right) F\left(1, -\frac{1}{2} ν; 1, ρ^2\right), \quad 0 \leq ρ < 1.
\]

When ν = −1/2, \(F(1/2, 0; 1; ρ^2) = 1 \) and \(I(x) = \frac{1}{2} bK(k) \), a constant, in accord with Galin's theorem.

When ν = 0, we obtain \(I(x) = (2b/π^2) K(k) E(ρ) \) for \(0 \leq ρ < 1 \), using [7, Eq. 19.5.2]. Thus, for this particular f, the solution of the integral equation (1) is σ = 1. Although this solution is bounded, we see that adding a small constant to f adds a constant multiple of \((1 − ρ^2)^{-1/2} \) to σ. In other words, the integral equation (1) has bounded solutions for some f, but these solutions are not typical: singular behaviour around the edge of Ω should be expected.

5.2. Example: comparison with Roy and Sabina

Roy and Sabina [2] consider \(σ(x) = (1 − ρ^2)^{-1/2} g(x, y) \) where \(g(x, y) \) is a quadratic in x and y. As a particular example, let us take \(g(x, y) = 4πx = 4πaρ \cos φ \). Thus, \(n = 1, ν = −1/2 \) and \(j = 0 \) in (15), giving \(s^0_0 = 4πa√π/2; all other coefficients s^0_j \) are zero. Then, from (16), \(s^0_1[σ_1; λ] = s^0_1 λ^{−1/2} J_3/2(λ) \). Hence

\[
I(x) = 2f_1(ρ) \cos φ = \frac{b s^0_1}{π} J^1_0(k) \cos φ \int_0^∞ j_1(λ, ρ) J^{3/2}(λ) dλ, \quad 0 \leq ρ < 1.
\]

(21)

It is shown in Section 5.3 that \(l^1_0(k) = 2(K/E)/k^2 \). From [7, Eq. 10.22.56], the integral in (21) evaluates to \(\frac{1}{2} ρ √π/2 \). Hence \(I(x) = π b x^0 l^1_1(κ) \), in agreement with [2, Eq. (14b)].

5.3. Example: quadratic σ

Suppose that

\[
σ(x) = α_0 + α_1(x/a) + α_2(y/b) + 2α_3(x/a)^2 + 2α_4(xy)/(ab) + 2α_5(y/b)^2
\]

\[
= (α_0 + ρ^2(α_3 + α_5)) + α_1 ρ \cos φ + α_2 ρ \sin φ + (α_3 − α_5) ρ^2 \cos 2φ + α_4 ρ^2 \sin 2φ,
\]

with constants \(α_j \); Laurens and Tordeux [1] have \(α_3 = α_4 = α_5 = 0 \). Then (7) gives

\[
α_0 = α_0 + (α_3 + α_5) ρ^2,
\]

(22)

\[
σ_1 = α_1 ρ, \quad σ_1 = α_2 ρ, \quad σ_2 = (α_3 − α_5) ρ^2 \quad and \quad σ_1 = α_4 ρ^2. \quad All \quad other \quad terms \quad in \quad (7) \quad are \quad absent.
\]

Next, we use \(P^{(n, ρ)}_0 = 1 \) and \(ν = 0 \). These give \(s^0_0 = α_1, s^0_1 = α_2, s^0_2 = α_3 − α_5 \) and \(s^0_2 = α_4 \). For \(s^0_j \), we use \(P^{(0, 0)}_1(x) = P_1(x) = x \), giving

\[
σ_0(ρ) = s^0_0 ρ^0 + s^0_1 G^1_0(0, 0) = s^0_0 + s^0_1(1 − 2ρ^2).
\]
Comparison with (22) gives α_0 = s_0 + s_1 and α_3 + α_5 = -2s_1; these determine s_0 and s_1. Apart from the six mentioned, all other coefficients s_j and s_i are zero.

Then, from (16), we obtain
\[\lambda \delta_0[\sigma_0; \lambda] = s_0 f_1(\lambda) + s_1 f_3(\lambda), \]
\[\lambda \delta_1[\sigma_1; \lambda] = s_0 f_2(\lambda), \quad \lambda \delta_1[\sigma_1; \lambda] = s_1 f_4(\lambda), \]
\[\lambda \delta_2[\sigma_2; \lambda] = s_0 f_5(\lambda), \quad \lambda \delta_2[\sigma_2; \lambda] = s_1 f_6(\lambda). \]

We use these to compute the energy, I, given by (13). We will need the integrals (see (18))
\[\mathcal{J}_{pq} = \int_0^\infty \frac{1}{\lambda^2} I_{p+1}(\lambda) I_{q+1}(\lambda) \, d\lambda \]
\[= \frac{\Gamma \left(\frac{1}{2}[p + q + 1] \right)}{\Gamma \left(\frac{1}{2}[3 + p - q] \right) \Gamma \left(\frac{1}{2}[3 + q - p] \right) \Gamma \left(\frac{1}{2}[5 + p + q] \right)} \]
(23)

Thus
\[\frac{I}{ab^2} = I_{00} + 2 \Re \int_0^\infty |s_0|^2 \mathcal{J}_{00} + 2 \Re \left(s_0^2 \mathcal{J}_{02} + |s_1|^2 \mathcal{J}_{11} \right) + I_{11} \mathcal{J}_{11} + I_{22} \mathcal{J}_{22}. \]
(24)

From (23), we obtain
\[\mathcal{J}_{00} = \frac{4}{3\pi}, \quad \mathcal{J}_{11} = \frac{4}{15\pi}, \quad \mathcal{J}_{22} = \frac{4}{35\pi}, \quad \mathcal{J}_{02} = \frac{4}{45\pi}. \]

For \(I_{nn}' \) and \(I_{nn}'' \), we have \(I_{00}' = 2K(k) \) (see (20)), \(I_{11}' = I_{11}'' = I_{22}'. \)

\[I_{11}' - I_{11}'' = I_{02}' = 2 \int_0^{\pi/2} \frac{\cos 2x}{\Delta} \, dx = \frac{2}{k^2}(k^2 - 2)K(k) + \frac{4}{k^2}E(k), \]
\[I_{22}' - I_{22}'' = 2 \int_0^{\pi/2} \frac{\cos 4x}{\Delta} \, dx = \frac{32k^2 - 2K + 2K + 16}{3k^4}(k^2 - 2)E, \]
where \(k^2 = 1 - k^2 = (b/a)^2. \) Thus
\[I_{11}' = 2(K - E)/k^2, \quad I_{11}'' = 2(E - k^2K)/k^2, \]
\[I_{22}' = 2(8k^2 - 1)K + 4(k^2 - 2)E/(3k^4), \]
\[I_{22}'' = 8(2 - k^2)E - 2k^2K/(3k^4). \]

One can check that these all have the correct limiting values as \(k \to 0. \)

This completes the computation of all the quantities required in (24). In the special case considered by Laurens and Tordeux [1], we have \(s_0^0 = \alpha_0, s_1^1 = \alpha_1, s_2^0 = \alpha_2 \) and \(s_0^1 = s_1^2 = s_2^0 = 0, \) whence
\[I/(ab^2) = \frac{1}{15\pi} \left[5|\alpha_0|^2K + |\alpha_1|^2K - E/k^2 + |\alpha_2|^2E - k^2K/k^2 \right], \]
in agreement with [1, Theorem 1.1].

6. Discussion

The (weakly singular) integral equation (1) arises when Laplace’s equation holds in the three-dimensional region exterior to a thin flat plate \(\Omega \) with Dirichlet boundary conditions on both sides of \(\Omega. \) There are analogous (hypersingular) integral equations when a Neumann boundary condition is imposed. Explicit formulae for \(\sigma \) in terms of \(f \) are known when \(\Omega \) is circular; for a review, see [10].

Expansion methods of the kind used above for problems involving elliptical plates, screens or cracks have a long history. The author’s 1986 paper [5] gives references for Neumann problems, in the context of crack problems. For Dirichlet problems,
see [2–4]. Similar expansion methods have been used recently for the problem of internal wave generation in a continuously stratified fluid by an oscillating elliptical plate [11].

References