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Outline

• Overview of conservation laws

• Conservation laws for the Zakharov-Kuznetsov

equation

• Presentation of ConservationLawsMD.m, a

Mathematica program to compute conservation

laws

• Conservation laws for the Manakov-Santini System



Overview of Conservation Laws

• The computation of conservation laws was an

integral part of an in-depth study to find solutions

to the Korteweg-de Vries (KdV) equation

• An infinite set of conservations laws is a factor

determining that the PDE is completely integrable

• In a system described by a PDE, conservation laws

I show which physical quantities are conserved

I lead to discoveries toward finding solutions of

PDEs such as the Inverse Scattering Transform

I aid in the study of qualitative properties of a

PDE

I aid in the design of numerical solvers



Conservation Law

Dtρ + Div J = 0 on PDE

ρ is the “conserved density” J is the “flux”

The continuity equation is satisfied for all solutions of

the PDE.

In 1-D, J = J and Div J = DxJ

In 2-D, J = (J1, J2) and Div J = DxJ1 + DyJ2

In 3-D, J = (J1, J2, J3) and Div J = DxJ1 + DyJ2 + DzJ3



The Zakharov-Kuznetsov (ZK) Equation

and Conservation Laws

The ZK equation models ion-sound solitons in a low

pressure uniform magnetized plasma

The (2+1)-dimensional ZK equation:

ut + αuux + β(u2x + u2y)x = 0

Conservation Laws:
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More Conservation Laws:
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COMPUTER DEMONSTRATION



The Generalized Zakharov-Kuznetsov Equation

and Conservation Laws

ut + αunux + β(u2x + u2y)x = 0,

where n is rational, n 6= 0

Conservation Laws:
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The third conservation law:
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The Manakov-Santini System

and Conservation Laws

utx + u2y + (uux)x + vxuxy − u2xvy = 0

vtx + v2y + uv2x + vxvxy − vyv2x = 0

Conservation Laws:
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where f = f(t) is arbitrary



Dt

(
f(2u + v2

x − yuxvx)
)

+ Dx

(
f(u2 + uv2

x + uyv

− v2
y − v2

xvy − y(uuxvx − uxvxvy − uyvy))

− f ′y(vt + uvx − vxvy)− (2fx− f ′)y2(ut + uux − uxvy)
)

−Dy

(
f(uxv − 2vxvy − v3

x + y(uxv2
x + uxvy + uyvx))

− f ′(v − y(2u + vy + v2
x)) + (2fx− f ′y2)(uxvx + uy)

)
= 0,

where f = f(t) is arbitrary

plus 3 others



Conclusions and Future Work

• The conservation laws program is fast and has

computed conservation laws for a variety of

PDEs. Improvements to the code will allow for a

broader class of PDEs.

• Future research will include a study of integrability

of DDEs, IDEs and delay DEs, leading to

techniques, algorithms, and software to compute

conservation laws, symmetries, and recursion

operators.

• Software can be found at

http://inside.mines.edu/∼whereman


