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e Purpose

Design and implement an algorithm to compute polynomial conserva-
tion laws for nonlinear systems of evolution equations and differential-
difference equations

e Motivation

— Conservation laws describe the conservation of fundamental
physical quantities such as linear momentum and energy:.
Compare with constants of motion (first integrals) in mechanics

— For nonlinear PDEs and DDEs, the existence of a sufficiently large
(in principal infinite) number of conservation laws assures complete
integrability

— Conservation laws provide a simple and efficient method to study
both quantitative and qualitative properties of equations and
their solutions, e.g. Hamiltonian structures

— Conservation laws can be used to test numerical integrators



PART I: Evolution Equations

e Conservation Laws for PDEs

Consider a single nonlinear evolution equation
U = F(“? Ugy U2y « vy unx)

or a system of /N nonlinear evolution equations

w = F(u,u,,...,u,,)

where u = [uq, ..., uy]’ and
Loder OU Gy e 0"
t — aty — WUnx — O

All components of u depend on x and ¢

Conservation law:

Dip+D,.J =0
p is the density, J is the flux
Both are polynomial in u, t,, wo,, U3y, ...

Consequently
P = /_20 p dx = constant

if J vanishes at infinity



e The Euler Operator (calculus of variations)

Useful tool to verify if an expression is a total derivative

Theorem:
If
f:f(xayla"'7y£n)7°-'7yN7°'°7y](\7fl))

then

Ly(f)=0
if and only if

f — DiL’g
where

g:g(aj7y17'°'7y§n—1)7°'°7yN7°°'7y]<\771_1))
Notations:
y =1y, .., un]"
K'y(f) - [‘C?ﬂ(f)a s 7£?/N(f)}T
0=1[0,...,0"

(T for transpose)

and Euler Operator:
0 d 0 >, 0 a0
_ e (—1)
ayi daj<8y/> + de(ayi//) + + ( > dx”<8yi<”))

Eyz’ -



e Example: Korteweg-de Vries (KdV) equation
wy + ut, +ug, =0

Conserved densities:

2

U
pP1 = U, ()¢ + (2 + Ugy )y = 0
2 3
Py = U’ (u?); + (;L + 2utlg, — Uy )y = 0

3 2
ps = b —3u,’,

3
<u3—3u$2>t + (4u4—6uux2—|—3u2u2x—|—3u2x2—6uxU3x> =0

T

pe = u’ — 60u’u,” — 30u," + 108u uy,”

720 648 216
—|—7UQ$3 — 7UU31~2 + 2

7 7 7

Note: KdV equation and conservation laws are invariant under
dilation (scaling) symmetry

(z,t,u) — Az, Nt, \ %)

w and t carry the weights of 2 and 3 derivatives with respect to x
0? 0 ok

u ~ —— —_— e~ —
Ox?’ ot 03



e Key Steps of the Algorithm
1. Determine weights (scaling properties) of variables & parameters
2. Construct the form of the density (building blocks)
3. Determine the unknown constant coefficients

e Example: KdV equation

Wy + ul, + ug, =0

Compute the density of rank 6

(i) Compute the weights by solving a linear system

w(u) + w(gt) = 2w(u) + w(x) = w(u) + 3w(x)
With w(z) =1, w(Z) =3, w(u)=2.

Thus, (z,t,u) — (Az, N3t, \7%u)

(ii) Take all the variables, except (%), with positive weight and list all
possible powers of u, up to rank 6 :  [u, u*, u’]

Introduce x derivatives to ‘complete’ the rank

: : o4
u has weight 2, introduce 41
u? has weight 4, introduce K
y Ox?

u? has weight 6, no derivatives needed



Apply the derivatives and remove terms that are total derivatives with
respect to x or total derivative up to terms kept earlier in the list

[ugy] — |] empty list

[U$2,UU2$] — [uxz] since Uty = (Ully)y — Uy’

Combine the building blocks:  p = c1u?® + cou,?
(iii) Determine the coefficients ¢; and ¢y

1. Compute D;p = 3cruluy + 209Ut

2. Replace u; by —(uu, + us,) and uze by — (v, + usy ).
3. Apply the Euler operator or integrate by parts

3

D,p = —[4clu4— (3¢ —62)uui + 3c1uP U, — Coting > + 209U U3 4

—(3¢1 + co)uy”

4. The non-integrable term must vanish. Thus, ¢; = —%CQ.
Set ¢co = —3, hence, ¢ =1
Result:
p=u’ — 3u,’

Expression [...] yields

3
J = 4u4 — Gut, + 3utugy + gy’ — Uz,



e Example: Boussinesq equation
Uy — Uy + 3oy + 3> + iy, = 0
with nonzero parameter .. Can be written as
u+v, = 0

Vy + Uy — U, — Uz, = 0

The terms u, and a us, are not uniform in rank
Introduce auxiliary parameter  with weight.
Replace the system by
w+v, = 0
v + Bu, — 3uu, — aus, = 0
The system is invariant under the scaling symmetry

(z,t,u, v, B) — Az, N2t, A" 2u, A%, A720)

Hence
w(u) =2, w(f) =2, w(w) =3 and w<(§t) =2
or
P T
02’ ox3’ ot  Ox?

Form p of rank 6
_ 2 2 3 2 2
p=c1 B u+coPu”+c3u’+cy v°+ 5 UV + cp U

Compute the ¢;. At the end set § =1

2

p=1u —u’ v + au?

T

which is no longer uniform in rank!



e Application: A Class of Fifth-Order Evolution Equations

where «, 3,y are nonzero parameters, and u ~

U + o

Special cases:

e L L L

= 30

5

= 20

2

Uy + By, + yuts, + us, = 0

62
0z?

6 =20 v =10 Lax

B=5 v = Sawada — Kotera

0 =25 v =10 Kaup —Kupershmidt
6=06 v =3 Ito

Under what conditions for the parameters «, 3 and v does this equation
admit a density of fixed rank?

— Rank 2:

No condition

— Rank 4:

p=u

Condition: § =2y (Lax and Ito cases)

p=1u



— Rank 6:
Condition:
100 = —283* + 73~ — 37

(Lax, SK, and KK cases)

p = u’ 4 1o Uy
(—26+7)""
— Rank 8:
. B =2y (Lax and Ito cases)
§ §
p = ut — luuxz + *ngz
o o

2. a= —252_74%7_472 (SK, KK and Ito cases)

p—ul— 135 wi? + 675 o,
26+~ (28 +7)?

— Rank 10:

Condition:

B =2y
and
100 = 372
(Lax case)

50 100 500
0= u’ — —u2ux2 + 7211,11,23;2 — 77:3“3:62



What are the necessary conditions for the parameters «, 3 and ~ for
this equation to admit infinitely many polynomial conservation laws?

—Ifa= %72 and 3 = 2v then there is a sequence

(without gaps!) of conserved densities (Lax case)

—Ifa= %,yz and (3 = ~y then there is a sequence

(with gaps!) of conserved densities (SK case)

—Ifa= %72 and § = %7 then there is a sequence

(with gaps!) of conserved densities (KK case)

—If
0 _252 — 787 + 42
N 45
or
B =2y

then there is a conserved density of rank 8

Combine both conditions: a = %’f and 0 =27y (Ito case)



PART 1I: Differential-difference Equations

e Conservation Laws for DDEs

Consider a system of DDEs, continuous in time, discretized in space
u, = F(7 Up—1, Up, Up41, )

u, and F are vector dynamical variables

Conservation law:
pn — Jn - Jn+1
pn is the density, J, is the flux

Both are polynomials in u,, and its shifts

d :

dt(%: pn) - En:pn = %:(Jn - Jn+1)
If J, is bounded for all n, with suitable boundary or periodicity con-
ditions

> pn = constant

n

e Definitions

Define: D shift-down operator, U shift-up operator

Dm = m’n—m—l Um = m|n—>n+1

For example,

Dun+2vn = Up4+1Up—1 Uun—Qvn—l — Up—-1VUp



Compositions of D and U define an equivalence relation
All shifted monomials are equivalent, e.g.

Up—1Un+1 = Un42Unt4 = Up—3Un—1
Use equivalence criterion:

If two monomials, m; and msy, are equivalent, m; = ms, then

mp = mo + [Mn - Mn—l—l]

for some polynomial M,

For example, u,_su, = u,_1U,,1 since

Up—2Up = Up—1Upy1 T [un—2un - Un—lun—i—l] = Up—1Upt+1+ [Mn - Mn—i—l]
with M,, = u,,_su,,

Main representative of an equivalence class; the monomial with label

n on u (or v)

For example, u,u, o is the main representative of the class with ele-
ments Up—-1Un+1, Un+1Un+3, etc.

Use lexicographical ordering to resolve conflicts

For example, u,v,.2 (not wu,_sv,) is the main representative of the
class with elements w,,_3v,_1, U, 9V,14, etc.



e Algorithm: Toda Lattice
mij, = a[e(yn—ryn) _ e(yn—yn+1)]
Take m = a = 1 (scale on t), and set u, = g,, v, = eWn=¥n+1)
Uy = Vg1 = Uy U = Uy — Upy)
Simplest conservation law (by hand):

Uy = pn = Up_1— Up = Jy — Jn—l—l with Jn = Up—1

First pair:

Second pair:

:07(12) = %UHQ -+ Unp, J(2) — UpUn—1

Key observation: The DDE and the two conservation laws,

pn = Jn — Jn+1, with

are invariant under the scaling symmetry

(t, Up, V) — (A, A My, A0
Dimensional analysis:
u,, corresponds to one derivative with respect to ¢

d2
dt?

d

40> and similarly, v, ~

For short, u,, ~



Our algorithm exploits this symmetry to find conserved densities:

1. Determining the weights
2. Constructing the form of density

3. Determining the unknown coefficients

e Step 1: Determine the weights

The weight, w, of a variable is equal to the number of derivatives with
respect to t the variable carries.

Weights are positive, rational, and independent of n.
Requiring uniformity in rank for each equation

Up = Up1 = Un,  Up = Up(Uy — Upy1)
allows one to compute the weights of the dependent variables.

Solve the linear system

w(uy,) + w((i) = w(vy,)

w(vy,) + w(i) = w(v,) + w(uy)

Set w(4) = 1, then w(u,) = 1, and w(v,) = 2
which is consistent with the scaling symmetry

(t, U, vn) — (M, ATy, A 20,,)



e Step 2: Construct the form of the density

The rank of a monomial is the total weight of the monomial.
For example, compute the form of the density of rank 3
List all monomials in u,, and v,, of rank 3 or less:

G ={un’, un®, U, iy, 0, }

Next, for each monomial in G, introduce enough t-derivatives, so that
each term exactly has weight 3. Use the DDE to remove u,, and v,

d() 5 5 d()

dto(un ) = Up dto(unvn) — UnUp,

d d

o (Un”) = 2wty = 2uva, o (Un) = UV = Ung1Uy,
d2

dtg(un) = Up—1Up—1 — UpUp—1 — UpUp + Up4+1Un

Gather the resulting terms in a set
3
H = {un y UpUp—1, UpUp, Up—1Un—1, un—l—lvn}

Identify members of the same equivalence classes and replace them by
the main representatives.

For example, since u,v,_1 = u,41v, both are replaced by u,v,_1.
H is replaced by
1= {un37 UpUp—1, unvn}

containing the building blocks of the density.
Form a linear combination of the monomials in Z
Pn = C1 un3 + €2 UpUp—1 + C3 ULV,

with constant coefficients ¢;



e Step 3: Determine the unknown coefficients
Require that the conservation law, p, = J, — J,11, holds
Compute p,, and use the equations to remove , and v,,.

Group the terms

pn = (3cp — 02)un20n_1 + (c3 — SCl)un%n + (3 — €2)Vp_10p

2 2
TCoUp—1UpVUp—1 + C2Up—1" — C3URUR+1Vp — C3Uy
Use the equivalence criterion to modify p,
Replace w, 1upvy—1 DY Untni1Un + [Un1UnUn—1 — UpUpi1Uy).

The goal is to introduce the main representatives. Therefore,

pn = (3c1 — e)u*vu_1 + (c5 — 3¢y un vy,

+(c3 — 2)vpUn11 + [(c3 — 2)Vp—1Un — (C3 — C2)UpUn11]
+Colp U1V, + [C2Up—1UpVp—1 — CoUpUpi10Uy]

2 2 2 2
+ov,” + [CoUp_1” — vy — CaURURL 1V, — C3Uy,

Group the terms outside of the square brackets and move the pairs
inside the square brackets to the bottom. Rearrange the latter terms
so that they match the pattern [J,, — J,11]. Hence,

pn = (3¢1 — c)un*vu_1 + (c3 — 3cy)un vy,

+(e3 — C2)VpUps1 + (€2 — €3)UpUniiVy + (co — €3)0,°
+[{(c3 — C2)Vn—10n + Cottn—1UpVp—1 + CoUn—1"}

—{(€3 = C2)UnUns1 + CotinUp i1V + Co0,° }]



The terms inside the square brackets determine:

2
Jn — (C3 - C2)Un—1vn + CoUp—1UpVp—1 + C2Up—1

The terms outside the square brackets must vanish, thus

82{301—62:0,03—361:0762—03:0}

The solution is 3¢; = ¢o = ¢3. Choose ¢ = %, thus co = c3 =1

1

3 2
Pn = 3 Uy~ + un<vn—1 + vn)y Jn = Up—1UpUp—1 + Up_1

Analogously, conserved densities of rank < 5:

n n’ =2
B = %un?’ + U (Vp—1 + Uy

Pt = Tt w0t + V) F Untt1, + 30,7 F VU
oy = St U (Un 1 4 ) + UnUp 10 (U + U g1)

+unvn—1(vn—2 + Up—1 + Un) + unvn(vn—l + Up + U?”H—l)



e Application: A parameterized Toda lattice

Uy = QU1 — Un, Uy = Uy (6 Up — un+1>

a and 3 are nonzero parameters. The system is integrableif a = 8 =1

Compute the compatibility conditions for o and 3, so that there is a
conserved densities of, say, rank 3.

In this case, we have S:

{3aci—cy =0,8c3—3c1 =0,ac3—cy =0, Bca—c3 =0, aco—c3 =0}
A non-trivial solution 3¢y = ¢y = c3 will exist iff a =0 =1
Analogously, the parameterized Toda lattice has density

p) =, of rank 1if a =1

and density

p<2) = gunz +v, ofrank?2 if af=1

n

Only when a@ = 8 = 1 will the parameterized system have conserved
densities of rank > 3



e Example: Nonlinear Schrédinger (NLS) equation

Ablowitz and Ladik discretization of the NLS equation:
LUy = Up+1 — 20y + Up—1 + u;un<un+l + un—l)
where u is the complex conjugate of w,,.

Treat u,, and v,, = w as independent variables, add the complex con-
jugate equation, and absorb ¢ in the scale on ¢

u, = Un4+1 — 2un + Up—1 + unvn<un+1 + un—l)

@n - _(Un+1 - 2Un + Un—l) - unvn(vn—i—l + vn—l)
Since v, = u}, w(v,) = w(uy,).

No uniformity in rank! Circumvent this problem by introducing an
auxiliary parameter a with weight,

U, = Oé(“njtl — 2u, + un—l) + Un“n(“n—l—l + un—l)

v, = _a(vn—l—l — 2u, + vn—l) - unvn(vn—i—l + vn—l)-
Uniformity in rank requires that

w(u,) +1 = wla) + w(u,) = 2w(u,) + w(v,) = 3w(u,)
w(vy) +1 = wla) + wv,) = 2w(v,) + w(u,) = 3w(vy,)

which yields



Uniformity in rank is essential for the first two steps of the algorithm.
After Step 2, you can already set o = 1.

The computations now proceed as in the previous examples

Conserved densities:

1
10,2) = ClUpUp—1 + COURVp+1
2 1 2 2

1.2 2
+ 62(514” Un+1 -+ UpUp+1Un+1Un4-2 + unvn—l-Q)

Py = aliu, v,
+unun+1vn—1vn(unvn—1 + Up+1Up + un+2vn—|—1)
_"unvn—l(unvn—Q + un+lvn—1)
+unvn(un+1vn—2 + un—l—?”n—l) + unvn—?)]
+ CQ[%“ngvn—l—lg
+unun+1vn+1vn+2(unvn+1 T Up+1Un42 + un+2vn+3)
+unvn—|—2(unvn—l—1 + un+1vn+2)

+Unvn+3(un+1vn+1 + Un+2vn+2) + unvn+3]



PART III: Symmetries of PDEs and DDEs

— Symmetries of PDEs

Consider the system of PDEs
w = F(z,t,u,u,, w9, ..., W)
space variable x, time variable ¢
dynamical variables u = (uy, ug, ..., u,) and F = (Fy, F, ..., F},)
Definition of Symmetry

Vector function G(z,t, u, u,, us,, ...) is a symmetry if and only if
the PDE is invariant for the replacement

u—u+eG

within order €. Hence

gt(u +eG) =F(u+eG)

must hold up to order €, or

G
=[G

where F’ is the Gateaux derivative of F

F'(u)[G] = aaeF(u + €G)|c=o

Equivalently, G is a symmetry if the compatibility condition

—F(z,t,u,u;, sy, ..., 0y, ) = —G(z,t,u,u,, ugy, ...

or ot
is satisfied, where 7 is the new time variable such that

0
ou — G([,U,t,u,llg;,U-Qwa )

or



— Example: The KdV Equation

up = buu, + usy

has infinitely many symmetries:

G
GG
G4

GO)

Uy G® = 6uu, + Uz,

30uuy, 4+ 20u s, + 10uus, + Usy

= 140uu, + 70u,® + 280uu s, + 7Ou2u;),x + T0ugusg, + 42Uy,

+14uus, + ur,

630utu, + 1260uu,> + 25200 Uy, + 1302u,u0,> + 4200 s,
+966u, Uz, + 1260uts,Use + TH6UUL ULy + 252Usy sy
+126uus, + 168ugtis, + T2uUptiey + 18Utiny + Ugy

The recursion operator connecting them is:

R = D?+ 4u + 2u, D!

— Algorithm (KdV equation)
Use the dilation symmetry (¢, z,u) — (A3, A7z, M)

. . b
A is arbitrary parameter. Hence, u ~ 55 and & ~ 55

0? o3

Step 1: Determine the weights of variables
We choose w(z) = —1, then w(u) = 2 and w(t) = —3

Step 2: Construct the form of the symmetry

Compute the form of the symmetry with rank 7

List all monomials in u of rank 7 or less

L={1,uu*u’}
Introduce z-derivatives so that each term has weight 7
0 5 9 o>, fox ol
%(u ) = 3uu,, ﬁ(u ) = 6u,ug,+2uus,, %(u) = Usy, ﬁ(l) =0

Gather the non-zero resulting terms in a set

2
R = {u Uy, UgU2g 5 UU3y, u5x}

which contains the building blocks of the symmetry



Linear combination of the monomials in R determines the symmetry

2
G = g u uy, + ¢ UzpUo, + C3UUS3, + Cq Usy

Step 3: Determine the unknown coefficients in the symmetry

Requiring that

EF(% t,u, Uy, Uy, vy Uy ) = aG(aj, t,u,uy, gy, ...)
holds. Compute G; and F;
Use the PDE,
u; = F

to replace us, Uy Upzs, .-

Use

u, = G(z,t,u,u,, uy,, ...)
to replace u,, Ury, Urgy, ...
After grouping the terms
F,— Gy = (12¢1 — 18¢2)ulug, + (6¢1 — 18c3)uns, + (6¢1 — 18¢3)unus, +
(3co — 6004)u§$ + (3cg + 3¢z — 90¢y ) ugp gy + (3c3 — 30¢y ) uztis,
=0
This yields

S = {1201 — 1862 = 0, 601 — 1803 = O, 302 — 6064 = 0,
3¢y + 3c3 — 90¢y = 0,3c3 — 30cy = 0}

Choosing ¢4 = 1, the solution is ¢; = 30, ¢y = 20, c3 = 10

Hence
G = 30u’u, 4+ 20wty + 10uus, + usy

which leads to Lax equation (in the KdV hierarchy)

U 30u2ux + 20U U0, + 10uus, + us,



— x-t Dependent Symmetries
Algorithm can be used provided the degree in x or t is given
Compute the symmetry of the KdV equation with rank 2 (linear in x or t)

Build list of monomials in u, x and ¢ of rank 2 or less
L={1,u,x, zu,t, tu,tu’}

Introduce the correct number of x-derivatives to make each term weight 2

0 0, 5 o3
%(xu) = U + TUy, %(tu ) = 2tuu,, ﬁ(tu) = tug,,
2 3 5
L= = =0
Gather the non-zero resulting terms
R = {u, zu,, tuuy, tug, }

Linearly combine the monomials to obtain

G =ciu—+ coru, + cstuu, + cqtus,

Determine the coefficients ¢; through ¢y
Compute G; and F, and remove all ¢ and 7 derivatives (as before)
Group the terms
F. —G; = (6¢; + 6¢cy — c3)un, + (3cs — 18¢q)tus, + (3co — c4)ug, +
(3c3 — 18cq)tu ug, =0
This yields
S = {6¢; + 6¢9 — c3 = 0,3c3 — 18¢4 = 0,3co — ¢4 = 0}
1

The solution is ¢; = %, o =73,c3=0,¢c4=1

Hence

2 1
G = gu + garux + 6tuu, + tus,

These are two z—t dependent symmetries (of rank 0 and 2)

G =1+ 6tu, and G =2u+ xu, + t(6uu, + us,)



— Symmetries of DDEs

Consider a system of DDEs (continuous in time, discretized in space)
u, =F(.,u, 1, u,,u,41,...)
u,, and F have any number of components

Definition of Symmetry

A vector function G(..., u,_1, Uy, Uy, -..) is called a symmetry of the DDE
if the infinitesimal transformation

u—u+eG(.., w1, Uy, Wy, )

leaves the DDE invariant within order e

Equivalently
C?TF(, U1, Uy, Upyp g, . ) = :ftG(..., U1, Uy, Wy g, o)
where 7 is the new time variable such that
d
Eu = G(..., U1, Uy, U1, -
— Algorithm

Consider the one-dimensional Toda lattice

gn = €xp (yn—l - yn) — €XP (yn - yn—H)
Change the variables
Up = yna Up = €XPp (yn - yn—i—l)

to write the lattice in algebraic form

Up = Up—1 — Up, Up = Un(un - un+1)



This system is invariant under the scaling symmetry

(t, U, vn) — (AU, Aug, Aoy)

d
dt

Step 1: Determine the weights of variables
Set w(t) = —1. Then w(u,) =1, and w(v,) = 2
Step 2: Construct the form of the symmetry

d2

and v,, ~ T

A is an arbitrary parameter. Hence, u, ~

Compute the form of the symmetry of ranks {3,4}
List all monomials in u,, and v,, of rank 3 or less
El - {un37 un27 UpUp, Up, Un}

and of rank 4 or less

_ 4 3 2 2 2
EQ — {un y Up 5 Up Up, Up y UpUn, Up, Up 7Un}

For each monomial in both lists, introduce the adjusting number of
t-derivatives so that each term exactly has weight 3 and 4, resp.

For the monomials in £

d dY

dto(un3> = un3; @(unvn) = UpUp,

d d

&(urﬂ) = 2UpUy = 2UpVp-1 — 2unvn7 &(UH) = Up = UpUp — Un+1Un,
d? d, . d

——(up) = &(un) — &(vnq — Up) = Up—1Vp—1 — UpUp—1 — UpUp + Up41Vp
Gather the resulting terms in a set

Rl — {un37 Up—1Un—1, UpUp—1, UpUn, un—l—lvn}
Similarly

4 2 2 2 2
RQ = {un y Upn—1 Un—1, Up-1UnUp—1, Un Un—1,Un—-2Un—1,Un-1 , Upn Un,

2 2
UpUn+1Un, Un+1 Uny Un—1Up, Up Un'Un—H}



Linear combination of the monomials in R; and R determines

3
Gi = crup” + 2 Up—1Vp—1 + C3URUp—1 + C4 Uy + C5 Upp 10y

4 2 9
Gy = CeUyp + CrUn_1"Vp—1 + C8 Up—_1UpUp—1 + Co Up Vp_1 + C10 Vp—2Vp—1 +
9 9 9
C11 Up—1" + C12 Up Uy + C13 UpUp4-1Vn + C14 Upg1 Uy + C15 V-1V +

2
C16 Un~ + C17 UnUn+1

Step 3: Determine the unknown coefficients in the symmetry

Requiring that F; = G} holds

Compute %Gl, %Gg, —ddTFl and —ddTFg and remove all 1y, Uy, %un, %vn
Require that

d d d d

— N —-—G1=0, —F—-—G=0

dr' ' de T T drt de

which gives

Cl=C=Cr=C=Cy=C19p=C11 =C13=C16 =0,

—C = —C3 =0 = C = —C12 = Cl4 = —C15 = C17
With ¢;7 = 1 the symmetry is

Gl = UpUp — Up—1VUp—1 + Up4+1Vp — UpUp—1

2 2
Go = Uy Up — UpUp + VpUpg1 — Up_10y



e Scope and Limitations of Algorithm & Software

— Systems of PDEs or DDEs must be polynomial in dependent vari-
ables

— Only one space variable (continuous x for PDEs; discrete n for
DDEs) is allowed

— No terms should explicitly depend on = and t for PDEs, or n for
DDEs

— Program only computes polynomial conserved densities;
only polynomials in the dependent variables and their derivatives;
no explicit dependencies on = and ¢ for PDEs (or n for DDEs)

— No limit on the number of PDEs or DDEs.
In practice: time and memory constraints

— Input systems may have (nonzero) parameters.
Program computes the compatibility conditions for parameters such
that densities (of a given rank) exist

— Systems can also have parameters with (unknown) weight.
Allows one to test PDEs or DDEs of non-uniform rank

— For systems where one or more of the weights are free,
the program prompts the user to enter values for the free weights

— Negative weights are not allowed
— Fractional weights and ranks are permitted

— Form of p can be given in the data file (testing purposes)



e Conserved Densities Software

— Conserved densities programs CONSD and SYMCD
by Ito and Kako (Reduce, 1985, 1994 & 1996).

— Conserved densities in DELiA by Bocharov (Pascal, 1990)

— Conserved densities and formal symmetries F'S
by Gerdt and Zharkov (Reduce, 1993)

— Formal symmetry approach by Mikhailov and Yamilov
(MuMath, 1990)

— Recursion operators and symmetries by Roelofs, Sanders and Wang
(Reduce 1994, Maple 1995, Form 1995-present)

— Conserved densities condens.m by Hereman and Goktas
(Mathematica, 1996)

— Conservation laws, based on CRACK by Wolf (Reduce, 1995)
— Conservation laws by Hickman (Maple, 1996)

— Conserved densities by Ahner et al.
(Mathematica, 1995). Project halted.

— Conserved densities diffdens.m by Goktag and Hereman
(Mathematica, 1997)



e Conclusions and Further Research

— Two Mathematica programs are available:
condens.m for evolution equations (PDEs)
diffdens.m for differential-difference equations (DDEs)

— Usefulness
x Testing models for integrability

x Study of classes of nonlinear PDEs or DDEs

— Comparison with other programs

x Parameter analysis is possible
x Not restricted to uniform rank equations

x Not restricted to evolution equations provided that
one can write the equation(s) as a system of evolution equations

— Future work

* Generalization towards broader classes of equations (e.g. u¢)
* Generalization towards more space variables (e.g. KP equation)

« Conservation laws with time and space dependent coefficients

x Conservation laws with n dependent coefficients



* Exploit other symmetries in the hope to find conserved densities
of non-polynomial form

x Constants of motion for dynamical systems
(e.g. Lorenz and Hénon-Heiles systems)

— Research supported in part by NSF under Grant CCR-9625421
— In collaboration with Unal Goktas and Grant Erdmann

— Papers submitted to: J. Symb. Comp., Phys. Lett. A
and Physica D

— Software: available via F'TP, ftp site mines. edu
in subdirectories

pub/papers/math_cs_dept /software/condens
pub /papers/math_cs_dept /software /diffdens

or via the Internet

URL: http://www.mines.edu/fs_home /whereman/



e More Examples

e Nonlinear Schrodinger Equation
igr — qor +2]q’q = 0

Program can not handle complex equations
Replace by

Uy — Vg + 20(u? +0?) = 0

v+ Ugy — 2u(u +v%) = 0
where ¢ = u + v

Scaling properties

0 0 0?
Uu ~ U nv ~ —_— —
ox ot  0x?
First seven conserved densities:
p1 = u2 + U2
P2 = VU
p3 = ut 4 200 + ot + uxQ + va
2 L4 1

pr = UVU, + §U Uy — 6UU33;



P5

P6 =

P

16;42_324 16522122

—U — —U vV UV — =V — U U — =V Uy,
2 2 2 2 2 2
3 5 1 1
—2u21}x2 — 2?)2@552 + U g, — 4u2x2 — 4@25,;2
3 1 3 1 1
—4u4vux — 2u21)3ux — 2005% + 4vux3 — 4vu$vx2
L, I 4 1
FUVUL U2, + Zu VU3, + EU Ugy — ZOUUE”C
5 15 5 35
= 4u8 + 5ulv? + 2u4v4 + 5uo’ + 41)8 + 2u4ux2
5} 7 15
—5u2fu2ux2 + —v4ux2 — —u{l + 7,&4%2 + 25u21}21}x2
2 4 2
35 5) 7
—1—21}4%2 — 2%:2%2 — 4%4 — 1Ou3vzu2$ — 5uv4u2x
7 1 5
—5uvx2u% + —u2u2x2 + —v2u2x2 + —uzvggf
2 2 2
7 1 1

2 9 2 2 2 2
+§v Vo~ — VUV ULU3, + Zu&ﬁ + va + UV Uy,



e The Ito system

Uy — U3y — ouu, — 20v, = 0
vy — 2u,0 — 2uv, = 0
0? 0?
U~ —, v~ —
Ox? Ox?
p1 = ClUu + CU
P2 = u2 + U2
p3s = 2u’+ 2uv® — u,’?
ps = dut + 6uv? + vt — 10uu,” + 20%ug, + U,

p5 = 14u° 4 20uv? + 6uv®* — 7T0uu,? + 10v%u,>

— 400, 4 20uv*ug, + 1dutig, — usy’ 4 20Uy,

and more conservation laws



e The dispersiveless long-wave system

uy +vu, +uv, = 0

v +u, +ovv, = 0

u~2v wv) is free

0 0
choose u~ — and 2v~ —
X Ox
prL = v
p2 = U
p3 = uv
Py = u® + uv?
ps = 3u’v + uv’
1 1
P = 3u3 + utv® + 6uv4
1
3 2,3 5
= + + —uv
07 u’v + uv 1
ps = 1u4 + 2utv* + uPut + 1uv6
53 15

and more

Always the same set irrespective the choice of weights



e A generalized Schamel equation
2
n*u + (n -+ 1)(n + 2)unu, + uz, = 0
where n is a positive integer

2
pr=1u  p=u

. 2+
pP3 = [Uy — FU

2 2

1 n? 2
2 n

For n # 1,2 no further conservation laws



e Three-Component Korteweg-de Vries Equation

u; — buu, + 20v, + 2ww, — ug, = 0

vy — 20U, — 22UV, =

Scaling properties

First five densities:

P1

P2 =
p3 =

P4

P5

w; — 2wu, — 2uw, = 0
0> 0 o?
U~ v~ v 5 _— —
Ox? ot 0z3
= C1U + CU + c3w
w2 — 02 — w2
—2u? + 2uv® + 2uw? + ux2
——ut + 3ut? — 11)4 + 3utw? — v*w? — 1w4
2 2 2
1
+5uux2 + 'UQ’U,Qx + w2uQm — *U2x2

2

7 3 3 3
——u5 + UBU2 — —uv4 + u3w2 — —uv2w2 — —uw4
10 10 D 10

7 1 1 1
ot + vt + Swu, + vt

1 7
—5w2fvx2 + 5w2w$2 + uv2uzx + uwngx — muu2x2

1, .\ 1 . 1, ., 1,
5 20T op e Tyg” Mg ™M



e The Deconinck-Meuris-Verheest equation

Consider the modified vector derivative NLS equation:

aBJ_ (9 9 aBJ_ 82BJ_
+ BiB,)+aB (B, + e, X =0
ot 0$( 1B1)+aB Bl ox Ox?
Replace the vector equation by
U + (u(u2 +v%) + Bu — vx>x =0
v + (v(u2 +0?) + ux)x =0
u and v denote the components of B | parallel
and perpendicular to B o and 3 = aB?,
0 0 0
u2 ~ 5 U2 ~ a0 ﬁ ~ 5
ox Ox Oz
First 6 conserved densities
p1 = ClUu + CU
p2 = u® + v’
1
p3 = 2(u2 +v3)? — uv, + uv + Bu?
RPN S 2 3 3 By 4
04 —4(u + v%) +2(ux +v,7) — u’v, + v uerZ Ut — %)



P5

Pe =

1

2 4
= —(u2 + 112)4 — —(UpVoy — U2 V,) + —(uu, + vvm)2
4 5 5
6, 5 o, o 2 2 . 2\
+ (W 0w+ 07) = (@ 40w — wew)
s 9 3 6 49 o 0% 4
+5(2ux — 4u’v, + 2u” + 3u v — v )+5u
7 1
(@ 0P (g, +vy,)
D, 9 2 . 9 2
2(u + v7) (UpV9r — U2V, ) + B(u” + v7) (uuy, + vuy)
15, 9 59, 9 2 2 N3
—(u” +v) (" + ) — —(u” + v7) (uv, — u)
4 16
&

8(5u8 + 10uSv? — 1060 — 50° 4 200,

12u°v, + 60uv*v, — 20v%v,%)

T(u6 + %)



