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Calculation of Lie-point and Generalized Symmetries

• SPDE by Schwarz (Reduce, Scratchpad, 1986)

• Symmetries via exterior differential forms
by Kersten and Gragert (Reduce, 1987)

• Lie-Bäcklund symmetries by Fedorova, Kornyak and Fushchich
(Reduce, 1987)

• Crackstar by Wolf (Formac, 1987)

• CRACK by Wolf (Reduce, 1990)

• Lie-point symmetries by Schwarzmeier and Rosenau
(Macsyma, 1988)

• Special symmetries by Mikhailov (Pascal, 1988)



• LIE by Head (muMath, 1990)

• Lie program by Nucci (Reduce, 1990)

• PDELIE by Vafeades (Macsyma, 1990)

• DEliA by Bocharov (Pascal, 1990)

• SYM DE by Steinberg (Macsyma, 1990)

• SYMCAL by Reid (Macsyma, 1990)

• SYMMGRP.MAX by Champagne, Hereman and
Winternitz (Macsyma, 1990)

• Lie symmetries by Herod, Berube, Wilcox
(Mathematica, in development 1992)



Example 1 - Macsyma
Lie-point Symmetries

• System of m differential equations of order k

∆i(x, u(k)) = 0, i = 1, 2, ...,m

with p independent and q dependent variables

x = (x1, x2, ..., xp) ∈ IRp

u = (u1, u2, ..., uq) ∈ IRq

• The group transformations have the form

x̃ = Λgroup(x, u), ũ = Ωgroup(x, u)

where the functions Λgroup and Ωgroup are to be determined

• Look for the Lie algebra L realized by the vector field

α =
p∑
i=1
ηi(x, u)

∂

∂xi
+

q∑
l=1
ϕl(x, u)

∂

∂ul



Procedure for finding the coefficients

• Construct the kth prolongation pr(k)α of the vector field α

• Apply it to the system of equations

• Request that the resulting expression vanishes
on the solution set of the given system

pr(k)α∆i |∆j=0 i, j = 1, ...,m

• This results in a system of linear homogeneous PDEs
for ηi and ϕl, with independent variables x and u
(determining equations)

• Procedure thus consists of two major steps:

deriving the determining equations
solving the determining equations



Procedure for Computing the Determining Equations

• Use multi-index notation J = (j1, j2, ..., jp) ∈ INp,
to denote partial derivatives of ul

ulJ ≡
∂|J |ul

∂x1
j1∂x2

j2...∂xpjp
,

where |J | = j1 + j2 + ... + jp

• u(k) denotes a vector whose components are all the partial
derivatives of order 0 up to k of all the ul

• Steps:

(1) Construct the kth prolongation of the vector field

pr(k)α = α +
q∑
l=1

∑
J
ψJl (x, u(k))

∂

∂ulJ
, 1 ≤ |J | ≤ k

The coefficients ψJl of the first prolongation are:

ψJil = Diϕl(x, u)−
p∑
j=1

ulJjDiη
j(x, u),

where Ji is a p−tuple with 1 on the ith position and zeros
elsewhere



Di is the total derivative operator

Di =
∂

∂xi
+

q∑
l=1

∑
J
ulJ+Ji

∂

∂ulJ
, 0 ≤ |J | ≤ k

Higher order prolongations are defined recursively:

ψJ+Ji
l = Diψ

J
l −

p∑
j=1

ulJ+Jj
Diη

j(x, u), |J | ≥ 1

(2) Apply the prolonged operator pr(k)α to each
equation ∆i(x, u(k)) = 0

Require that pr(k)α vanishes on the solution set of the sys-
tem

pr(k)α ∆i |∆j=0 = 0 i, j = 1, ...,m

(3) Choose m components of the vector u(k),
say v1, ..., vm, such that:

(a) Each vi is equal to a derivative of a ul (l = 1, ..., q)
with respect to at least one variable xi (i = 1, ..., p).

(b) None of the vi is the derivative of another one in the
set.

(c) The system can be solved algebraically for the vi in
terms of the remaining components of u(k), which we de-



noted by w:

vi = Si(x,w), i = 1, ...,m.

(d) The derivatives of vi,

viJ = DJS
i(x,w),

where DJ ≡ Dj1
1 D

j2
2 ...D

jp
p , can all be expressed in terms

of the components of w and their derivatives, without ever
reintroducing the vi or their derivatives.

For instance, for a system of evolution equations

uit(x1, ..., xp−1, t) = F i(x1, ..., xp−1, t, u
(k)), i = 1, ...,m,

where u(k) involves derivatives with respect to the variables
xi but not t, choose vi = uit.

(4) Eliminate all vi and their derivatives from the ex-
pression prolonged vector field, so that all the remaining
variables are independent

(5) Obtain the determining equations for ηi(x, u) and
ϕl(x, u) by equating to zero the coefficients of the remain-
ing independent derivatives ulJ .



Example 2 – Macsyma

Painlevé Integrability Test

Integrability of a PDE requires that the only
movable singularities in its solution are poles

Definition: A simple equation or system has the Painlevé
Property if its solution in the complex plane has no worse
singularities than movable poles

Aim: Verify if the PDE satisfies the necessary criteria to
have the Painlevé Property

The solution f expressed as a Laurent series,

f = gα
∞∑
k=0

ukg
k

should only have movable poles.



u0(t, x) 6= 0, α is a negative integer
uk(t, x) are analytic functions in a neighborhood of the singu-
lar, non-characteristic manifold g(t, x) = 0, with gx(t, x) 6= 0



Steps of the Painlevé Test

• Step 1:

1. Substitute the leading order term,

f ∝ u0 g
α

into the given equation

2. Determine the integer α < 0 by balancing the most
singular terms in g

3. Calculate u0

• Step 2:

1. Substitute the generic terms

f ∝ u0 g
α + ur g

α+r

into the equation, retaining its most singular terms

2. Require that ur is arbitrary

3. Calculate the corresponding values of r > 0, called res-
onances



• Step 3:

1. Substitute the truncated expansion

f = gα
R∑
k=0

uk g
k, (4)

where R represents the largest resonance, into the com-
plete equation

2. Determine uk unambiguously at the non-resonance lev-
els

3. Check whether or not the compatibility condition
is satisfied at resonance levels

• An equation or system has the Painlevé Property and
is conjectured to be integrable if:

1. Step 1 thru 3 can be carried out consistently with α < 0
and with positive resonances

2. The compatibility conditions are identically satisfied for
all resonances



• For an equation to be integrable it is necessary but not
sufficient that it passes the Painlevé test

• The above algorithm does not detect the existence of es-
sential singularities

Demo Painlevé Test

Korteweg-de Vries equation

ut + 6uux + u3x = 0



Example 4 – Macsyma

Positioning of Equipment

A Trilateration Problem

Calculate the unknown 3D-position of a point,
given the distances from that point to a set of fixed points

x and y are the horizontal coordinates
z is the altitude of the unknown point

Questions:

• Is there a mathematical solution?

• What is the smallest number of beacons needed?

• Can the position of the bulldozer be determined “fairly
accurately” if the distances are inaccurate?

• What are the optimal positions of the beacons?

• What is the ‘best’ optimal algorithm for the solution?

• Can the algorithm be translated into a fast C-program?

• What are the possible applications of the problem?



A Mathematical Solution

Linearization

(xi, yi, zi) (i = 1, 2, ..., n) are the known coordinates of the n
beacons

(x, y, z) are the unknown coordinates of the bulldozer

ri are measured approximate slope distances from bulldozer to
beacons

Constraints

(x− xi)
2 + (y − yi)

2 + (z − zi)
2 = ri

2

Use the jth constraint as a linearizing tool

Add and subtract xj, yj and zj

(x−xj+xj−xi)2+(y−yj+yj−yi)2+(z−zj+zj−zi)2 = ri
2

Expand and regroup terms

(x− xj)(xi − xj) + (y − yj)(yi − yj) + (z − zj)(zi − zj)

=
1

2
[(x− xj)

2 + (y − yj)
2 + (z − zj)

2

−ri2 + (xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2]



=
1

2
[rj

2 − ri
2 + d2

ij]

where

dij =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

is the distance between beacons i and j

Select j = 1, thus for i = 2, 3, ..., n
linear system of (n− 1) eqs. in 3 unknowns:

(x− x1)(x2 − x1) + (y − y1)(y2 − y1) + (z − z1)(z2 − z1)

=
1

2
[r1

2 − r2
2 + d2

21] = b21

(x− x1)(x3 − x1) + (y − y1)(y3 − y1) + (z − z1)(z3 − z1)

=
1

2
[r1

2 − r3
2 + d2

31] = b31

...

(x− x1)(xn − x1) + (y − y1)(yn − y1) + (z − z1)(zn − z1)

=
1

2
[r1

2 − rn
2 + d2

n1] = bn1



In matrix form A~x = ~b, with

A =



x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1
... . . . ...

xn − x1 yn − y1 zn − z1



~x =


x− x1

y − y1

z − z1

 , ~b =



b21

b31
...
bn1





The Least Squares Method

The distances ri are only approximate
Determine ~x such that A~x ≈ ~b

Minimize the sum of the squares of the residuals

S = ~r T~r = (~b− A~x)
T
(~b− A~x)

Solve the normal equation

ATA~x = AT~b

If ATA is non-singular then

~x = (ATA)−1AT~b

Determine the effect of adding errors to the radii

Demo with the actual data from the coal mine


