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Calculation of Lie-point and Generalized Symmetries

e SPDE by Schwarz (Reduce, Scratchpad, 1986)

e Symmetries via exterior differential forms
by Kersten and Gragert (Reduce, 1987)

e Lie-Backlund symmetries by Fedorova, Kornyak and Fushchich
(Reduce, 1987)

e Crackstar by Wolf (Formac, 1987)
e CRACK by Wolf (Reduce, 1990)

e Lie-point symmetries by Schwarzmeier and Rosenau
(Macsyma, 1988)

e Special symmetries by Mikhailov (Pascal, 1988)



e LIE by Head (muMath, 1990)

e Lie program by Nucci (Reduce, 1990)

e PDELIE by Vafeades (Macsyma, 1990)
e DEIiA by Bocharov (Pascal, 1990)

e SYM DE by Steinberg (Macsyma, 1990)
e SYMCAL by Reid (Macsyma, 1990)

e SYMMGRP.MAX by Champagne, Hereman and
Winternitz (Macsyma, 1990)

e Lic symmetries by Herod, Berube, Wilcox
(Mathematica, in development 1992)



Example 1 - Macsyma
Lie-point Symmetries

e System of m differential equations of order &

Az, u™y =0, i=1,2,..,m

with p independent and ¢ dependent variables

r = (x1,29,....,2,) € R?

u = (u',u?, ..., ul) € R

e The group transformations have the form
T = Agroup(xa U), U= ngup@ja U)

where the functions A g, and 4.0, are to be determined

e Look for the Lie algebra L realized by the vector field

= ¥ w2t % ol u)
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Procedure for finding the coefficients

e Construct the k™ prolongation pr*)a of the vector field o
e Apply it to the system of equations

e Request that the resulting expression vanishes
on the solution set of the given system

prifa A’ Ajeg B =1,....m
e This results in a system of linear homogeneous PDEs

for n* and ¢, with independent variables z and u
(determining equations)

e Procedure thus consists of two major steps:

deriving the determining equations
solving the determining equations



Procedure for Computing the Determining Equations

e Use multi-index notation J = (j1, jo, ..., jp) € IN¥,
to denote partial derivatives of u'

Ol 71!

0x110x972...0x,r

)
where |J| =j1+ 52+ ... + Jp

e u'®) denotes a vector whose components are all the partial
derivatives of order 0 up to k of all the v’

e Steps:
(1) Construct the k' prolongation of the vector field
k ! J by 9
prie = a+l§1§¢z (2, u' )>au{]7 L<|J <k

The coefficients 1); of the first prolongation are:
lez = Diyi(x,u) — §:1 quDinj(x, u),
]:

where J; is a p—tuple with 1 on the ¢*" position and zeros
elsewhere



D; is the total derivative operator

G, G,
+zqu+Jau{], 0<|J| <k

D, =
Oxr; 1=17 - -

Higher order prolongations are defined recursively:

JJ b -
=D = 2 g Dap (@), ]2

(2) Apply the prolonged operator pr®a to each
equation A’(z, u®) =0

Require that pr® o vanishes on the solution set of the sys-
tem |
prifla Al i =0 4, 7=1,...m

(3) Choose m components of the vector u(’“)7

say v', ...,v™, such that:

(a) Each v’ is equal to a derivative of a u! (I = 1,...,q)
with respect to at least one variable x; (1 =1,...,p).

(b) None of the v' is the derivative of another one in the
set.

(¢) The system can be solved algebraically for the v' in
terms of the remaining components of u!®), which we de-



noted by w:
v' =Sz, w), i=1,..,m.

(d) The derivatives of v,

/US — DJSZ(.CIZ',UJ),

where D; = D{lD?...D}Zp, can all be expressed in terms
of the components of w and their derivatives, without ever

reintroducing the v* or their derivatives.
For instance, for a system of evolution equations
U (X1, ooy Tpo1,t) = F'(21, ...,xp_l,t,u( N, i=1,..,m,

where u'®) involves derivatives with respect to the variables
x; but not ¢, choose v* = ;.

(4) Eliminate all v’ and their derivatives from the ex-
pression prolonged vector field, so that all the remaining
variables are independent

(5) Obtain the determining equations for n'(z,u) and

@g(az, u) by equating to zero the coefficients of the remain-

ing independent derivatives .



Example 2 — Macsyma
Painlevé Integrability Test

Integrability of a PDE requires that the only
movable singularities in its solution are poles

Definition: A simple equation or system has the Painlevé
Property if its solution in the complex plane has no worse
singularities than movable poles

Aim: Verify if the PDE satisfies the necessary criteria to
have the Painlevé Property

The solution f expressed as a Laurent series,
oo
f=9"% upg"
k=0

should only have movable poles.



uo(t, ) # 0, o is a negative integer
uy(t, x) are analytic functions in a neighborhood of the singu-
lar, non-characteristic manifold ¢(¢,z) = 0, with g,(¢,x) # 0



Steps of the Painlevé Test
e Step 1:
1. Substitute the leading order term,

focug g*
into the given equation

2. Determine the integer @ < 0 by balancing the most
singular terms in ¢

3. Calculate uyg

e Step 2:

1. Substitute the generic terms

f X Up ga + Uy ch—r

into the equation, retaining its most singular terms
2. Require that wu, is arbitrary

3. Calculate the corresponding values of r > 0, called res-
onances



e Step 3
1. Substitute the truncated expansion
R
f — 9& 2. Uk gka (4>
k=0
where R represents the largest resonance, into the com-

plete equation

2. Determine u; unambiguously at the non-resonance lev-
els

3. Check whether or not the compatibility condition
1s satisfied at resonance levels

e An equation or system has the Painlevé Property and
is conjectured to be integrable if:

1. Step 1 thru 3 can be carried out consistently with @ < 0
and with positive resonances

2. The compatibility conditions are identically satisfied for
all resonances



e For an equation to be integrable it is necessary but not
sufficient that it passes the Painlevé test

e The above algorithm does not detect the existence of es-
sential singularities

Demo Painlevé Test
Korteweg-de Vries equation

wy + obuu, + ug, =0



Example 4 — Macsyma
Positioning of Equipment
A Trilateration Problem

Calculate the unknown 3D-position of a point,
given the distances from that point to a set of fixed points

x and y are the horizontal coordinates
z 1s the altitude of the unknown point

Questions:
e [s there a mathematical solution?
e What is the smallest number of beacons needed?

e Can the position of the bulldozer be determined “fairly
accurately” if the distances are inaccurate?

e What are the optimal positions of the beacons?
e What is the ‘best’ optimal algorithm for the solution?
e Can the algorithm be translated into a fast C-program?

e What are the possible applications of the problem?



A Mathematical Solution
LINEARIZATION

(x;,9:,2i) (i = 1,2,...,n) are the known coordinates of the n
beacons

(x,y, z) are the unknown coordinates of the bulldozer

r; are measured approximate slope distances from bulldozer to
beacons

Constraints

2 2 2

(r—z)+ (y—w)+(z—2)=n

Use the §™ constraint as a linearizing tool

Add and subtract z;,y; and z;

(x—zj+xj—2)  +(y—yj+y;—y) + (2 —2;+2—2) =1

Expand and regroup terms

(x —15179')(% — i)+ (Y —yi) (Wi — yj) + (2 — 2) (2 — 2)
= Sl =2+ (y—y)" + (= 2)°
—7’2'2 -+ <SEZ — CE’j)Q -+ (yz — yj)Q -+ (ZZ — Zj)Q]



= [ =1+ di)

dij = (@i — 2>+ (i — 92 + (21 — %))
is the distance between beacons ¢ and j

Select 7 =1, thusfort=2,3,....n
linear system of (n — 1) egs. in 3 unknowns:

(z —1$1>(932 —z1) + (Y —y) (2 —y1) + (2 — 21)(22 — 21)

= 2[7“1 —T22—|—d§1] = bgl
(z —x1)(@s —21) + (Y — 1) (Y3 —y1) + (2 — 21)(23 — 21)
1
= 2[7“12 — T32 + dgl] = b31

( —z1)(xn — 21) + (¥ — Y1) (Yo — ¥1) + (2 — 21)(20 — 21)



In matrix form AZ

A:

= g, with

To — X1 Y2 — U1
T3 — 21 Ys— Y1 23— 21

Ln — L1 Yn — Y1

r — T
y—1uy |,
Z — 21

29 — %1




The Least Squares Method

The distances r; are only approximate
Determine x such that Ax ~ b

Minimize the sum of the squares of the residuals
S—7T7— (b — A7) (b— A7)
Solve the normal equation
ATAz = ATh
If A" A is non-singular then
7= (ATA) ATy

Determine the effect of adding errors to the radii

Demo with the actual data from the coal mine



