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Motivation of the Research

Conservation Laws for Nonlinear PDEs

System of evolution equations of order M

u = F(u"(x))

with u = (u,v,w,...) and x = (x,y, 2).

Conservation law in (141)-dimensions

evaluated on the PDE.

Conserved density p and flux J.



Conservation law in (241)-dimensions

Dip+V-J =Dip+ DzJ1 +DyJo =0

evaluated on the PDE.
Conserved density p and flux J = (Ji, J2).

Conservation law in (341)-dimensions

Dtp—l—V'J:Dtp+D;CJ1—|—DyJ2—|—DZJ3:O

evaluated on the PDE.
Conserved density p and flux J = (Ji, J2, J3).



Notation — Computations on the Jet Space

Independent variables x = (x, vy, z)

Dependent variables u = (uM,u®, ... w0 . . u¥)
In examples: u = (u,v,0,h,...)

. . . 8k . ak—{—l
Partial derivatives wuy, = 8—$’§§, Ul = 8x—ky";, etc.
E I - . _ (95u

U = u = Ju
rryyyy — Y2z dy — 52,4

Differential functions
Example: [ = uvv; + azzui’jvx + U Vpp



Total derivatives: Dy, D,, Dy, ...

Example: Let f = uvv, + xngvx + uvee. 1 hen,

o9f  of of
D:U — i — Tx
/ ox T ou “ Ou,
of of of
+ Vg I + Vg v, ~ Uzxx S

+ Vg (UU:U) + Vgz (uv + CUQ’UJ?;) + Ua:a:x(ux)

3 2 92
= 22U, Vg + VUzVz + 3T°ULVzUze + Ugz Vs

2 2 3
‘|—va + UVVgy + I U, Vg + Uz Vgzx



An Example in (241) Dimensions
Example: Shallow water wave (SWW) equations
[P. Dellar, Phys. Fluids 15 (2003) 292-297]

u + (wV)u+2Q X u+ V(0h) — AV =0
hy + V(uh) =0

with constant €2



where u(x,y,t),0(x,y,t) and h(x,y,t).






First few densities-flux pairs of SWW system:

U
v
,0(2) — h@6 J(2) — h@6
v
v
U u2—|—’v2
p1) = h (u? + v* + ho) J& =h (
v (v? + u?

+ 2h0)

p5) = 0 (202 + ve — uy)

() 40u — 2uuy + 2uv; — ho,

1
=6
° 4Q0v 4 2vv, — 2vuy + ho,

- 2h0)



D (%g(@) (4Qu — 2uuy + 2uv, — hey))

+ D, (%g(@) (4Qv — 2uyv + 2vv, + h@m)) =0

for any functions f(0) and ¢g(60)



Conservation Laws for Nonlinear
Differential-Difference Equations (DDES)

System of DDEs

un:F( 57 ,un_17un’un_|_1’ 57 )

Conservation law in (1 + 1) dimensions

Dipn + AJ, = 0| (on DDE)

conserved density p, and flux J,
Example: Toda lattice
Unp = Up—1 — Un

Up = Un(un_un-l—l)



(2) §’U,2 + Up, J7g,2) — UnUn—1

,057, = l J ‘I‘ un('Ufn, 1+ ’Un) J( ) = Un—1UnUn—1 + U%_l



PART I. CONTINUOUS CASE
Problem Statement
Continuous case in 1D:

Example: For u(x) and v(x)

3

45

2

f =8V —u, SiN U 42Uz Uzr COS U — O6VV, cOS U + 33U,V SIN U

Question: Can the expression be integrated?
If yes, find F' = /f dr (so, f= D.F)

Result (by hand): F = 492 + u2 cosu — 3v* cosu



Continuous case in 2D or 3D:
Example: For u(x,y) and v(x,y)
J = uzVy — U2zVy — UyVg + UgpyUs
Question: Is there an F so that f =DivF?
If yes, find F.
Result (by hand): F = (uvy, — ugvy, —uvy + uzvy)
Can this be done without integration by parts?

Can the computation be reduced to a single integral
INn one variable?



Tools from the Calculus of Variations

Definition:
A differential function f is a exact iff f = DivF.
Special case (1D): f = D, F.

Question: How can one test that f = DivF?"

Theorem (exactness test):
f:DlVF|fr£u(])<X)fEO, ]:1,2,,N
N is the number of dependent variables.

The Euler operator annihilates divergences



Euler operator in 1D (variable u(x)):

8uk:1:
— 3 — D, 0 | D2 4 _ D3 O L.

Euler operator in 2D (variable u(x,y)):

o,
k 14
k=0 (=0 LY
9 0 8
ou Ou, Ouy
+ D2 -D,D 7 -D? 7 -D? 7




Application: Testing Exactness — Continous Case

Example:

3

T

2

f=8VsUzz —u, Sin U 42Uz Uy COS U — O6VV, cOS U + 33U,V SIN U

where u(xz) and v(x)
f Is exact

After integration by parts (by hand):

F:/fd:zjzélvf;—l—ui cosu — 3v? cosu



Lv(w)f:g_[)waf i D2

of

=0
ov O, YOV




Question: How can one compute F = Div™! f?

Theorem (integration by parts):
e In 1D: If f is exact then

F:Da_;lf:/fdw:Hu(x)f

e In 2D: If f is a divergence then

. . —1 (513)
F=Div " f=(H g f7 Hu(gg,y)f)

The homotopy operator inverts total

derivatives and divergences!



Homotopy Operator in 1D (variable x):

Méj) k—1 . 3](
Iu(])f _ Z Z U,E;) ( Dx)k—(z—l—l) n

(L, f)[Au] means that in I ¢ f one replaces

u— Au, u; — Au,, €etc.
More general: u — A(u — ug) + ug

u, — AN(ugy — uyg) +uyy etc.




Homotopy Operator in 2D (variables x and vy):

(x) L )
Hu(x,y)f: ; Z( () f)P‘u]_
71=1
1 N
() B d\
Pl T = | 00 DD
]:

where for dependent variable u(x,y)

S )
I(l‘)f _YY S:S:uwy —




Application of Homotopy Operator in 1D

Example:

3

45

2

=80,V —u, sin U +2Uz Uz COS U — O6VV, COS U + 33U,V SIN U

Compute
of of
= —uui sin u + 3uv® sinu + 2u526 COS U



1 dA
F=Huof = [ (Lf+10) ] T

1
— / (3)\211/02 sin(Au) — Auu? sin(Au)
0

+2Xu? cos(Au) — 6Av? cos(Au) + 8)\1)3;) dA

2

% cosu — 3v° cos u

402
= 4v; +u



Application of Homotopy Operator in 2D

By hand: F = (uv, — ugvy, —uvy + uzvz)

Compute
I?Sx)f — u i F (ugl — uDy) 2
8u;,; au:m:
of
1 1

_ 1 1
= UVy T 5UYVz — UgVy + 5UVzy



1
__ 1 1
— /0 A (uvy + SUyVr — UgUy + 5UVZy — UyV + uwyv) dA

_ 1 1 1 1 1 1
= S5UVy T UyVUz — 5UzxVy T 3 UVzy — 5UyV T 5UzyV



1 1 1

1 1
= —5UVz — JUVzz T UzVz T 53UV — SUzzV

2 4 2

So,

1 [ 2uvy + UyVz — 2UzVy + UVzy — 2UyU + 2UgyV

—2UVy — UVgr + UpVr + 2UV — 2UpqV



~

Let K=F—F then

I — 2UVy — UyUp — 2UgVy — UVgy + 2UyV — 2UgyV

1
4 —2UVy + UVzr + 3ULV: — 22UV + 2UppV
then DivK =0

(curl in 2D)

(2uv — vy — 2uzv)

H~ | =

After removing the curl term K:

~

F=F+ K = (uvy; — ugvy, —uvy + uzvz)

Avold curl terms algorithmically!



Why does this work?
Sketch of Derivation and Proof
(in 1D with variable x, and for one component u)

Definition: Degree operator M

of 9y of of
Z Uiy — = Uy U2y T UM

f is of order M in x

Example: f = vPuiu}, (p,q,r non-negative integers)

= (p+ q+7)vPulus,

g=Mf = Zuzx

OW;,

Application of M computes the total degree




Theorem (inverse operator) M~1g(u fo glAu] 5 i
Proof:

d

0g|A\ul al)\uwj JglAu] 1
—g|A — — 1 Uiy — A
Il ; A\tia Z Tuy a9

Integrate both sides with respect to A

/o %g[/\u]d/\ = g\l[}, = g(u) — g(0)

- d\ - d)\

Assuming g(0) = 0,



— P
U uq )\p+q+r P
p— q b
=0 U Uy Us,



Theorem: If f is an exact differential function, then
F=D.'f = [ fdo=Hys

Proof: Multiply

M
of

by u to restore the degree.
Split off u2.. Integrate by parts.

Split off u,2L. Repeat the process.

Oy *

of

8qu )

Lastly, split off wy,












M-1 M
Mf:ng (Zuzaj Z . )k (i+1) 8f )

k=1+1 8ukx

Apply M~! and use M~1D, = D, M.

M—1
( I > (D )

k=1+1 aukw

Apply D! and use the formula for M1,

F =D, 'f :/o (Z uig »_ (D) D o ) [Au %

6ukx

1 /M k—1 \
— /O Z (Zum(pw)k(ﬁ_l)) af P\U] d)\A

8uk:c )







Computation of Conservation Laws for SWW
Quick Recapitulation

Conservation law in (241) dimensions

Dip+ V- -J =Dip+ DgJ1 +DyJa =0 (on PDE)

conserved density p and flux J = (Ji, J2)

Example: Shallow water wave (SWW) equations
ur + uug + vuy — 200 4 %h(%-l—@haj =0

v + uvg + vy + 2 Qu + %hﬁy +0hy, =0
6)75 T U@x T ’U(gy =0
ht + hug + uhg + hvy + vhy =0







Algorithm for PDEs in (2+41)-dimensions

Step 1: Construct the form of the density

he SWW equations are invariant under the
scaling symmetries

(z,y,t,u,v,0,h, Q) — (XN 1z, X\ y, A%, du, Av, A0, Ah, A2Q)
and
(z,y,t,u,v,0,h, Q) — (XN tx, X1y, A\, A, Av, A20, APk, A2Q)
Construct a candidate density, for example,
p = c1920 + cauy 0 4 c3v,0 + caur 0 + c5v.0

which is scaling invariant under both symmetries.



Step 2: Determine the constants ¢;

Compute E = —D;p and remove time derivatives
dp dp dp dp dp
E = — Uty Uty Vig Viy + —6
(8ux : Ouy Y Buy Ovy S 2

= caf(uug + vuy — 2Qv + %heac + 0hz ).
+ c20(uug + vuy — 2Qu + Lhl, + 0hy),
+ c50(uvy + vuy + 2Qu + %hﬁy + 0hy)x

+ c30(uvy + vuy + 2Qu + %th + 6hy),
+ (c1€2 + couy + c3vy + caug + c5v) (uby + vy)

Require that

Lou@y) &= Lo@y) &= Lo@y) £ = Lpay) £ =0.



Solution: ¢

=2, co=—1,c3=c4 =0, c5 =1 gives

p=0 (20— uy + vy)

Step 3: Compute the flux J
E = 0(ugvg + uvgg + vzvy + vugy + 2Quy

-20hy

-20v, —

— UgUy — UlUgy — UyUy — UyyU
20yhz) + 2Qub, + 2Q00,

— Uy VOy + uv;0; 4+ vu 0,

Apply the 2D homotopy operator:

J=(J,Jo)

=Div ! E = (H(w) H(y) E)

u(z ,y)

u(z,y)



IYME = w0+ %v29y + uv,0

Iéx)E — %92hy + 2Qub — uuy6 + uv,0
I'WE = —166,h



= AAQul + A7 ( Buvz0 + Su”0y — 2uuyl + vuyd

+50°0y + 56°hy — %Oeyh))dA
= 2Qub0— %uuyH—l— UV 04 %vvye—l— %u29y
+v°0y — cho0y+ <hy0°



Hence,

J_1 12Qu0 — 4uuy, 0+ 6uv, 0+ 2vv,0 + (u? +v?) 0, — h0O, + h, 6>
6\ 12000+ 40,0 — 6vuyd — 2uugd — (u? +v2) 0+ R0, — hyh?




T here are curl terms in J

Indeed, subtract K where DivK = 0

Here

—(2uuy 0+ 2vvy 0 +u?0, +v0,+2h00,+ h,06?)

1
K=-—
6 200,60+ 2uu,0 + 120, +v%0.,+2h00.,. + .02

Note that K = (D,¢, —D,¢) with ¢ = —(h6* + u?0 + v?0)

(curl in 2D).






PART II: DISCRETE CASE
Problem Statement
Discrete case in 1D:

Example:
fn= —unuanUn—v%—l—unﬂunmvnﬂ —|—fui+1 4+ Up+3Vn+2—Unt1Un
Question: Can the expression be summed by parts?

If yes, find F,, = A~'f, (so, f.=AF,=F,1—F,)

Result (by hand): Fn:v,,% + UnUn+1Vn + Un+1VUn + Unt2Unt1
How can this be done algorithmically?

Can this be done as in the continuous case?



Tools from the Discrete Calculus of Variations

Definitions:

D is the up-shift (forward or right-shift) operator
DF;, = n+l — Fn|n_>n+1
D~!the down-shift (backward or left-shift) operator

D 'F,=F,1=F,

|n—>n—1

A =D —1is the forward difference operator

AF, = (D —1)F, = Foy1 — F,

Problem to be solved: Given f,.
Find F, = A~'f, (so f,=AF, = F,.1 — F,)



Analogy Continuous & Discrete Cases

Euler Operators

Continuous Case

Discrete Case

M

Lu@z) = Y (—Dg)"

k=0

o,
auk x




Analogy Continuous & Discrete Cases

Homotopy Operators & Integrands

Continuous Case

Discrete Case

1 N d\ 1 N d\
Hu@yf= Y Lo HIAal——Hu, fo={ Y (L ¢ fa)Aup]—
0 =1 ‘ 0 = &
M) M) 1
I.oJ = Z Iug>fn — Z
k=1 i=0
k—1 M)
(J) k—(i+1) of G) O —(k—1)
u; (—Dxz) — = Uy Z D fn
i=0 au/(ja;? augj)uz k=i+1




Euler Operators Side by Side

Continuous Case (for component w)

0 0 0 0
L,=— —D, - D? — D
ou Ouy Ouay Ou3y
Discrete Case (for component uy)
0 0 0 0
Lu, = D! D~ -D° -
Oun 8un—l—l 8fUJn—l—Q aun—I—S

0
— I+D ' +D“?+D5+...)

Our,



Homotopy Operators Side by Side

Continuous Case (for components u and v)

d\
] = /(f f 1o f) )

with

and




and




Analogy of Definitions & Theorems

Continuous Case (PDE)

Semi-discrete Case (DDE)

u:=F(u,uz, uz,, )

un:F( - - ,un_ljun7un_|_17 - - )

Dtp—|—D33J =0

Dtpn‘I‘AJn:O

Definition: f, is exact iff f,, = AF, = F,.1 — Fj

neorem (exactness test): f, = AF, iff Ly, fn, =0

neorem (summation with homotopy operator):

If f, is exact then F, = A~ f, = Hu, (fn)




Testing Exactness — Discrete Case

For example,

2 2
fn = —UpUn+1Un—V,, +Un+1Un+2Un+1 _l‘vn_|_1 +Up+3Un+2—Un+1Un

fn is exact

After summation by parts (done by hand):

2
by = UV, + UnUn+-1Un + Un+1Un + Unt2Unt1



Exactness test with Euler operator:

For component wu, (highest shift 3):

0
Lugfo = 7 (14D 4+ D24+ D?)
Oun,
— —Un+1Un — Un—1Un—1 —|— Un+1Un —Un—1
+ Up—1Un—1 + Un—1
=0
Similarly,
0
Ovs,

= UpUp+1 + 2Un — UpUpt+1 — 2VUn

0



Application of Discrete Homotopy Operator
Example:

2 2
fn:_unun—l—lvn — U, +Un+1Un+2VUn+1 +Un—|—1 T+ Un+-3Un+2 — Un+1Un

Here, M) =3 and M2 = 2.

Compute
0
Iun fn —  Un (D_l + D_2 + D_S)fn
Our,
o
+ Un+1 (D_l + D_Q)fn
8Ufn—l—l
o
+ Up42 D_lfn
8un—|—2

— 2UpUp4+1Vn + Up+1Vn + Up+2Un+1



0
1
/ 2)«07% -+ 3)\2unun+1fvn + 2 \Up+1Vn + 2)\un+2fvn+1) d\
0

2
= V,, + UnUn+1Vn + Up+1VUn + Un4+-2Un+1



Application: Computation of Conservation Laws

System of DDEs

Conservation law
Dipn, + AJ, =0 (on DDE)

conserved density p, and flux J,



ypical density-flux pair:

;057,3) — %’UJ% + un(vn—l + Un)
J?S,S) = Up—1UnUn—1 + U?L_l



Computation Conservation Laws for Toda Lattice

Step 1: Construct the form of the density

he Toda lattice is invariant under scaling symmetry

(t, Un, Un) — (A1, Aup, ANvp)
Construct a candidate density, for example,
Pn = C1L U, + C2 UnUn—1 + €3 UnVp,

which Is scaling invariant under the symmetry



Step 2: Determine the constants ¢;

Compute E,, = D¢p, and remove time derivatives

E, = (3c1 —c2)ulvn_1+ (c3 — 3c1)uvn + (c3 — c2)vn_1vn

2 2
+C2Un—1URUp—1 + C2V,,_ 1 — C3URUp+1Vn — C3V,,

Compute E,, = DE,, to remove negative shift n — 1
Require that £y, E, = Ly, En =0

Solution: ¢ = ,c0 = c3 = 1 gives

W[

Pn — % 'UJ?L + un(Un—l + Un)




Step 3: Compute the flux J,

~

2 2
En = DEp = UnUn+1Vn + Uy, — Un4+1Un42Un+1 — Uy i1

Apply the homotopy operator
J, =DJ, = —A"YE,) = —Hu, (E,)

Compute
- O ~ o, ~
I, E, = un— (D '+D E, + uni1 (D HE,
= —(2upUn+1Vn)
Likewise,
- o .
I, E, = (D_l)En = —(UnUpt+1Vn + 21}3)

Vyy ——
Ovy,



2
= UnpUn+1Un + U,

Finally, backward shift J, = D~1(J,) given

2
Jn = Un—1UnUn—1 + W




Software Demonstration

Demonstrations of ConservationLawsMD.m

Demonstration of DDEDensityFlux.m

Software packages in Mathematica

Codes are available via the Internet:

URL: http://inside.mines.edu/~whereman/



Conclusions

Continuous Euler and homotopy operators:
» Testing exactness
> Integration by parts: D! and Div !

» Application: conservation laws of PDEs

Discrete Euler and homotopy operators:
» Testing exactness (summability)
» Summation by parts: A—!
» Application: conservation laws of DDEs and

lattices

Useful analogy between the formulas.
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