Symbolic Computation of Travelling Wave Solutions of Nonlinear Partial Differential and Differential-Difference Equations

Willy Hereman

Department of Mathematical and Computer Sciences
Colorado School of Mines
Golden, Colorado, U.S.A.
whereman@mines.edu
http://www.mines.edu/fs_home/whereman/

Centre de Recherches Mathématiques Tuesday, May 29, 2007, 15:30.

Acknowledgements

Collaborators:

Ünal Göktaş (Wolfram Research, Inc.)

Graduate student: Douglas Baldwin

(University of Colorado – Boulder)

Several undergraduate students.

Research supported in part by NSF under Grants DMS-9912293 & CCR-9901929

This presentation was made in TeXpower

"Make Things as Simple as Possible but No Simpler"

Albert Einstein

Outline

- Purpose and Motivation
- Typical Examples of ODEs, PDEs, and DDEs
 - Part I: Tanh Method for PDEs
- Review of Tanh Algorithm
- Typical Example
- Other Types of Functions
- Demo PDESpecialSolutions.m

Part II: Tanh Method for DDEs (Lattices)

- Algorithm for Tanh Solutions
- Typical Examples
- Table of Results
- Demo DDESpecialSolutions.m
- Conclusions and Future Research
- Research Papers and Software

- Develop and implement various methods to find exact solutions of nonlinear PDEs and DDEs: direct methods, Lie symmetry methods, similarity methods, etc.
- Fully automate the hyperbolic and elliptic function methods to compute travelling solutions of nonlinear **PDEs**.
- Fully automate the tanh method to compute travelling wave solutions of nonlinear DDEs (lattices).
- Class of nonlinear PDEs and DDEs solvable with such methods includes famous evolution and wave equations, and lattices.

Examples PDEs: Korteweg-de Vries, Boussinesq, and Kuramoto-Sivashinsky equations. Fisher and FitzHugh-Nagumo equations.

Examples ODEs: Duffing and nonlinear oscillator equations.

Examples DDEs: Volterra, Toda, and Ablowitz-Ladik lattices.

PDEs: Solutions of tanh (kink) or sech (pulse) type model solitary waves in fluids, plasmas, circuits, optical fibers, bio-genetics, etc.

DDEs: discretizations of PDEs, lattice theory, queing and network problems, solid state and quantum physics.

 Benchmark solutions for numerical PDE and DDE solvers.

- Research aspect: Design high-quality application packages to compute solitary wave solutions of large classes of nonlinear evolution and wave equations and lattices.
- Educational aspect: Software as course ware for courses in nonlinear PDEs and DDEs, theory of nonlinear waves, integrability, dynamical systems, and modeling with symbolic software.
 - REU projects of NSF. Extreme Programming!
- Users scientists working on nonlinear wave phenomena in fluid dynamics, nonlinear networks, elastic media, chemical kinetics, material science, bio-sciences, plasma physics, and nonlinear optics.

Typical Examples of ODEs and PDEs

The Duffing equation

$$u'' + u + \alpha u^3 = 0$$

Solutions in terms of elliptic functions

$$u(x) = \pm \frac{\sqrt{c_1^2 - 1}}{\sqrt{\alpha}} \operatorname{cn}(c_1 x + \Delta; \frac{c_1^2 - 1}{2c_1^2}),$$

and

$$u(x) = \pm \frac{\sqrt{2(c_1^2 - 1)}}{\sqrt{\alpha}} \operatorname{sn}(c_1 x + \Delta; \frac{1 - c_1^2}{c_1^2}).$$

The Korteweg-de Vries (KdV) equation

$$u_t + 6\alpha u u_x + u_{3x} = 0.$$

Solitary wave solution

$$u(x,t) = \frac{8c_1^3 - c_2}{6\alpha c_1} - \frac{2c_1^2}{\alpha} \tanh^2 \left[c_1 x + c_2 t + \Delta \right],$$

or, equivalently,

$$u(x,t) = -\frac{4c_1^3 + c_2}{6\alpha c_1} + \frac{2c_1^2}{\alpha} \operatorname{sech}^2 \left[c_1 x + c_2 t + \Delta \right].$$

Cnoidal wave solution

$$u(x,t) = \frac{4c_1^3(1-2m) - c_2}{\alpha c_1} + \frac{12m c_1^2}{\alpha} \operatorname{cn}^2(c_1x + c_2t + \Delta; m),$$

modulus m.

The modified Korteweg-de Vries (mKdV) equation

$$u_t + \alpha u^2 u_x + u_{3x} = 0.$$

Solitary wave solution

$$u(x,t) = \pm \sqrt{\frac{6}{\alpha}} c_1 \operatorname{sech} \left[c_1 x - c_1^3 t + \Delta \right].$$

 Three-dimensional modified Korteweg-de Vries equation

$$u_t + 6u^2u_x + u_{xyz} = 0.$$

Solitary wave solution

$$u(x, y, z, t) = \pm \sqrt{c_2 c_3} \operatorname{sech} \left[c_1 x + c_2 y + c_3 z - c_1 c_2 c_3 t + \Delta \right]$$

The Fisher equation

$$u_t - u_{xx} - u(1 - u) = 0.$$

Solitary wave solution

$$u(x,t) = \frac{1}{4} \pm \frac{1}{2} \tanh \xi + \frac{1}{4} \tanh^2 \xi,$$

with

$$\xi = \pm \frac{1}{2\sqrt{6}} x \pm \frac{5}{12} t + \Delta.$$

The generalized Kuramoto-Sivashinski equation

$$u_t + uu_x + u_{xx} + \sigma u_{3x} + u_{4x} = 0.$$

Solitary wave solutions

(ignoring symmetry $u \rightarrow -u, x \rightarrow -x, \sigma \rightarrow -\sigma$):

For
$$\sigma = 4$$

$$u(x,t) = 9 - 2c_2 - 15 \tanh \xi (1 + \tanh \xi - \tanh^2 \xi),$$

with
$$\xi = \frac{x}{2} + c_2 t + \Delta$$
.

For
$$\sigma = \frac{12}{\sqrt{47}}$$

$$u(x,t) = \frac{45 \mp 4418c_2}{47\sqrt{47}} \pm \frac{45}{47\sqrt{47}} \tanh \xi$$
$$-\frac{45}{47\sqrt{47}} \tanh^2 \xi \pm \frac{15}{47\sqrt{47}} \tanh^3 \xi,$$

with
$$\xi = \pm \frac{1}{2\sqrt{47}} x + c_2 t + \Delta$$
.

For
$$\sigma = 16/\sqrt{73}$$

$$u(x,t) = \frac{2(30 \mp 5329c_2)}{73\sqrt{73}} \pm \frac{75}{73\sqrt{73}} \tanh \xi$$
$$-\frac{60}{73\sqrt{73}} \tanh^2 \xi \pm \frac{15}{73\sqrt{73}} \tanh^3 \xi,$$

with
$$\xi = \pm \frac{1}{2\sqrt{73}} x + c_2 t + \Delta$$
.

For
$$\sigma = 0$$

$$u(x,t) = -2\sqrt{\frac{19}{11}}c_2 - \frac{135}{19}\sqrt{\frac{11}{19}}\tanh\xi + \frac{165}{19}\sqrt{\frac{11}{19}}\tanh^3\xi,$$

with
$$\xi = \frac{1}{2} \sqrt{\frac{11}{19}} \ x + c_2 t + \Delta$$
.

The Boussinesq (wave) equation

$$u_{tt} - u_{2x} + 3uu_{2x} + 3u_x^2 + \alpha u_{4x} = 0,$$

or written as a first-order system (v auxiliary variable):

$$u_t + v_x = 0,$$

$$v_t + u_x - 3uu_x - \alpha u_{3x} = 0.$$

Solitary wave solution

$$u(x,t) = \frac{c_1^2 - c_2^2 + 8\alpha c_1^4}{3c_1^2} - 4\alpha c_1^2 \tanh^2 \left[c_1 x + c_2 t + \Delta\right],$$

$$v(x,t) = b_0 + 4\alpha c_1 c_2 \tanh^2 \left[c_1 x + c_2 t + \Delta\right].$$

sine-Gordon equation (light cone coordinates)

$$\Phi_{xt} = \sin \Phi$$
.

Set
$$u = \Phi_x$$
, $v = \cos(\Phi) - 1$,

$$u_{xt} - u - u v = 0,$$

$$u_t^2 + 2v + v^2 = 0.$$

Solitary wave solution (kink)

$$u = \pm \frac{1}{\sqrt{-c}} \operatorname{sech}\left[\frac{1}{\sqrt{-c}}(x - ct) + \Delta\right],$$

$$v = 1 - 2\operatorname{sech}^{2}\left[\frac{1}{\sqrt{-c}}(x - ct) + \Delta\right].$$

Solution:

$$\Phi(x,t) = \int u(x,t)dx$$

$$= \pm 4 \arctan \left[\exp \left(\frac{1}{\sqrt{-c}} (x - ct) + \Delta \right) \right].$$

Typical Examples of DDEs (lattices)

The Volterra lattice

$$\dot{u}_n = u_n(v_n - v_{n-1}),$$
 $\dot{v}_n = v_n(u_{n+1} - u_n).$

$$u_n(t) = -c_1 \coth(d_1) + c_1 \tanh[d_1n + c_1t + \delta],$$

 $v_n(t) = -c_1 \coth(d_1) - c_1 \tanh[d_1n + c_1t + \delta].$

The Toda lattice

$$\ddot{u}_n = (1 + \dot{u}_n) (u_{n-1} - 2u_n + u_{n+1}).$$

$$u_n(t) = a_{10} \pm \sinh(d_1) \tanh \left[d_1 n \pm \sinh(d_1) t + \delta \right].$$

The Ablowitz-Ladik lattice

$$\dot{u}_n(t) = (\alpha + u_n v_n)(u_{n+1} + u_{n-1}) - 2\alpha u_n,$$

$$\dot{v}_n(t) = -(\alpha + u_n v_n(v_{n+1} + v_{n-1}) + 2\alpha v_n.$$

$$u_n(t) = \frac{\alpha \sinh^2(d_1)}{a_{21}} \left(\pm 1 - \tanh \left[d_1 n + 2\alpha t \sinh^2(d_1) + \delta \right] \right),$$

$$v_n(t) = a_{21} (\pm 1 + \tanh \left[d_1 n + 2\alpha \sinh^2(d_1) t + \delta \right]).$$

2D Toda lattice

$$\frac{\partial^2 u_n}{\partial x \partial t}(x,t) = \left(\frac{\partial u_n}{\partial t} + 1\right) \left(u_{n-1} - 2u_n + u_{n+1}\right).$$

$$u_n(x,t) =$$

$$a_{10} + \frac{1}{c_2} \sinh^2(d_1) \tanh \left[d_1 n + \frac{\sinh^2(d_1)}{c_2} x + c_2 t + \delta \right].$$

Algorithm for Tanh Solutions of PDEs

System of nonlinear PDEs of order m

$$\Delta(\mathbf{u}(\mathbf{x}),\mathbf{u}'(\mathbf{x}),\mathbf{u}''(\mathbf{x}),\cdots\mathbf{u}^{(m)}(\mathbf{x}))=\mathbf{0}.$$

Dependent variable \mathbf{u} has M components u_i (or u, v, w, ...).

Independent variable \mathbf{x} has N components x_j (or x,y,z,...,t).

Seek solution $\mathbf{u}(\mathbf{x}) = \mathbf{U}(T)$, with

$$T = \tanh \xi = \tanh \left[\sum_{j}^{N} c_{j} x_{j} + \delta \right].$$

- Observe $\tanh' \xi = 1 \tanh^2 \xi$ or $T' = 1 T^2$. Hence, all derivatives of T are polynomial in T. For example, $T'' = -2T(1-T^2)$, etc.
- Repeatedly apply the operator rule

$$\frac{\partial \bullet}{\partial x_j} = \frac{\partial \xi}{\partial x_j} \frac{dT}{d\xi} \frac{d\bullet}{dT} = c_j (1 - T^2) \frac{d\bullet}{dT}$$

Produces a nonlinear system of ODEs

$$\Delta(T, \mathbf{U}(T), \mathbf{U}'(T), \mathbf{U}''(T), \dots, \mathbf{U}^{(m)}(T)) = \mathbf{0}.$$

Compare with ultra-spherical (linear) ODE

$$(1 - x^2)y''(x) - (2\alpha + 1)xy'(x) + n(n + 2\alpha)y(x) = 0,$$

with integer $n \geq 0$ and α real. Includes:

- * Legendre equation $(\alpha = \frac{1}{2})$,
- * ODE for Chebeyshev polynomials of type I $(\alpha = 0)$,
- * ODE for Chebeyshev polynomials of type II $(\alpha = 1)$.

Example: For the Boussinesq system

$$u_t + v_x = 0,$$

$$v_t + u_x - 3uu_x - \alpha u_{3x} = 0,$$

after cancelling common factors $1-T^2$,

$$c_2 U' + c_1 V' = 0,$$

$$c_2 V' + c_1 U' - 3c_1 U U' + \alpha c_1^3 \left[2(1 - 3T^2)U' + 6T(1 - T^2)U'' - (1 - T^2)^2 U''' \right] = 0.$$

Seek polynomial solutions

$$U_i(T) = \sum_{j=0}^{M_i} a_{ij} T^j.$$

Determine the highest exponents $M_i \geq 1$.

Substitute $U_i(T) = T^{M_i}$ into the LHS of ODE.

Gives polynomial $\mathbf{P}(T)$.

For every P_i consider all possible balances of the highest exponents in T.

Solve the resulting linear system(s) for the unknowns M_i .

 Example: Balance highest exponents for the Boussinesq system

$$M_1 - 1 = M_2 - 1$$
, $2M_1 - 1 = M_1 + 1$.

So,
$$M_1 = M_2 = 2$$
.

Hence,

$$U(T) = a_{10} + a_{11}T + a_{12}T^2,$$

$$V(T) = a_{20} + a_{21}T + a_{22}T^2.$$

- Derive algebraic system for the unknown coefficients a_{ij} by setting to zero the coefficients of the power terms in T.
- Example: Algebraic system for Boussinesq case

$$a_{11}c_{1}(3a_{12} + 2\alpha c_{1}^{2}) = 0,$$

$$a_{12}c_{1}(a_{12} + 4\alpha c_{1}^{2}) = 0,$$

$$a_{21}c_{1} + a_{11}c_{2} = 0,$$

$$a_{22}c_{1} + a_{12}c_{2} = 0,$$

$$a_{11}c_{1} - 3a_{10}a_{11}c_{1} + 2\alpha a_{11}c_{1}^{3} + a_{21}c_{2} = 0,$$

$$6a_{10}a_{12}c_{1} + 16\alpha a_{12}c_{1}^{3} + 2a_{22}c_{2} = 0.$$

- Solve the nonlinear algebraic system with parameters.
- Example: Solution for Boussinesq system

$$a_{10} = \frac{c_1^2 - c_2^2 + 8\alpha c_1^4}{3c_1^2}, \quad a_{11} = 0,$$
 $a_{12} = -4\alpha c_1^2, \quad a_{20} = \text{free},$
 $a_{21} = 0, \quad a_{22} = 4\alpha c_1 c_2.$

- PRETURN to the original variables.

 Test the final solution(s) of PDE.

 Reject trivial solutions.
- Example: Solitary wave solution for Boussinesq system

$$u(x,t) = \frac{c_1^2 - c_2^2 + 8\alpha c_1^4}{3c_1^2} - 4\alpha c_1^2 \tanh^2 [c_1 x + c_2 t + \delta],$$

$$v(x,t) = a_{20} + 4\alpha c_1 c_2 \tanh^2 [c_1 x + c_2 t + \delta].$$

Other Types of Solutions for PDEs

Case	ODE $(y' = \frac{dy}{d\xi})$	Chain Rule
$\tanh(\xi)$	$y'=1-y^2$	$\frac{\partial \bullet}{\partial x_j} = c_j (1 - T^2) \frac{d \bullet}{d T}$
$\operatorname{sech}(\xi)$	$y' = -y\sqrt{1 - y^2}$	$\frac{\partial \bullet}{\partial x_j} = -c_j S \sqrt{1 - S^2} \frac{d \bullet}{d S}$
$\tan(\xi)$	$y'=1+y^2$	$\frac{\partial \bullet}{\partial x_j} = c_j (1 + \tan^2) \frac{d \bullet}{d \text{TAN}}$
$\exp(\xi)$	y' = y	$\frac{\partial \bullet}{\partial x_j} = c_j E \frac{d \bullet}{d E}$
$cn(\xi;m)$	y' =	$\frac{\partial \bullet}{\partial x_j} = -c_j$
_	$-\sqrt{(1-y^2)(1-m+my^2)}$	$\sqrt{(1-\mathrm{CN}^2)(1-m+m\mathrm{CN}^2)} \frac{d\bullet}{d\mathrm{CN}}$
$\left \operatorname{sn}(\xi;m)\right $	y' =	$\frac{\partial ullet}{\partial x_j} = c_j$
	$\sqrt{(1\!-\!y^2)(1\!-\!my^2)}$	$\sqrt{(1\!-\!\mathrm{SN}^2)(1\!-\!m\mathrm{SN}^2)}\!\frac{d\bullet}{d\mathrm{SN}}$

Algorithm for Jacobi Cn and Sn Solutions of PDEs

Given: System of nonlinear PDEs of order m

$$\Delta(\mathbf{u}(\mathbf{x}),\mathbf{u}'(\mathbf{x}),\mathbf{u}''(\mathbf{x}),\cdots\mathbf{u}^{(m)}(\mathbf{x}))=\mathbf{0}.$$

Dependent variable \mathbf{u} has M components u_i (or u, v, w, ...).

Independent variable \mathbf{x} has N components x_j (or x,y,z,...,t).

Step CN1

• Seek solution $\mathbf{u}(\mathbf{x}) = \mathbf{U}(CN)$, with

$$CN = \operatorname{cn}(\xi; m) = \operatorname{cn}\left[\sum_{j=0}^{N} c_{j}x_{j} + \Delta\right]; m$$
.

with modulus m.

• Observe $\operatorname{cn}'(\xi; m) = -\operatorname{sn}(\xi; m)\operatorname{dn}(\xi; m)$.

Using

$$\operatorname{sn}^{2}(\xi; m) = 1 - \operatorname{cn}^{2}(\xi; m), \, \operatorname{dn}^{2}(\xi; m) = 1 - m + m \operatorname{cn}^{2}(\xi; m),$$

one has

$$CN' = -\sqrt{(1 - CN^2)(1 - m + m CN^2)}.$$

Repeatedly apply the operator rule

$$\frac{\partial \bullet}{\partial x_j} = \frac{d \bullet}{d \mathsf{CN}} \frac{d \mathsf{CN}}{d \xi} \frac{\partial \xi}{\partial x_j} = -c_j \sqrt{(1 - \mathsf{CN}^2)(1 - m + m \, \mathsf{CN}^2)} \frac{d \bullet}{d \mathsf{CN}},$$

produces a nonlinear ODE:

$$\Delta(CN, \mathbf{U}(CN), \mathbf{U}'(CN), \mathbf{U}''(CN), \dots, \mathbf{U}^{(m)}(CN)) = \mathbf{0}.$$

Example: The KdV equation

$$u_t + \alpha u u_x + u_{xxx} = 0,$$

transforms into

$$\begin{split} & \left(c_1^3 (1 - 2m + 6m \, \mathsf{CN}^2) - c_2 - \alpha c_1 U_1 \right) U_1' \\ & + 3 c_1^3 \mathsf{CN} (1 - 2m + 2m \, \mathsf{CN}^2) U_1'' \\ & - c_1^3 (1 - \mathsf{CN}^2) (1 - m + m \, \mathsf{CN}^2) U_1''' = 0. \end{split}$$

Seek polynomial solutions

$$U_i(CN) = \sum_{j=0}^{M_i} a_{ij}CN^j.$$

Determine the highest exponents $M_i \geq 1$.

• Example: For KdV case: $M_1 = 2$. Thus,

$$U_1(CN) = a_{10} + a_{11}CN + a_{12}CN^2$$
.

- Derive the algebraic system for the coefficients a_{ij} .
- Example: Algebraic system for KdV case

$$-3 a_{11} c_1 (\alpha a_{12} - 2 m c_1^2) = 0,$$

$$-2 a_{12} c_1 (\alpha a_{12} - 12 m c_1^2) = 0,$$

$$-a_{11} (\alpha a_{10} c_1 - c_1^3 + 2 m c_1^3 + c_2) = 0,$$

$$-\alpha a_{11}^2 c_1 - a_{12} (2 \alpha a_{10} c_1 - 16 m c_1^3 - 8 c_1^3 + 2 c_2) = 0.$$

Note: modulus m is extra parameter.

- Solve the nonlinear algebraic system with parameters.
- Example: Solution for KdV system

$$a_{10} = \frac{4c_1^3 (1 - 2m) - c_2}{\alpha c_1},$$
 $a_{11} = 0,$
 $a_{12} = \frac{12m c_1^2}{\alpha}.$

- Return to the original variables. Test the final solution(s) of PDE. Reject trivial solutions.
- Example: Cnoidal solution for the KdV equation

$$u(x,t) = \frac{4c_1^3(1-2m)-c_2}{\alpha c_1} + \frac{12m c_1^2}{\alpha} \operatorname{cn}^2(c_1x+c_2t+\Delta;m).$$

NOTE: For Jacobi sn solutions, use

$$\operatorname{cn}^{2}(\xi; m) = 1 - \operatorname{sn}^{2}(\xi; m),$$

 $\operatorname{dn}^{2}(\xi; m) = 1 - m \operatorname{sn}^{2}(\xi; m),$
 $\operatorname{sn}'(\xi; m) = \operatorname{cn}(\xi; m) \operatorname{dn}(\xi; m).$

Hence,

$$SN' = \sqrt{(1 - SN^2)(1 - mSN^2)},$$

with $SN = \operatorname{sn}(\xi; m)$.

Chain rule:

$$\frac{\partial \bullet}{\partial x_j} = \frac{d \bullet}{d \mathsf{SN}} \frac{d \mathsf{SN}}{d \xi} \frac{\partial \xi}{\partial x_j} = c_j \sqrt{(1 - \mathsf{SN}^2)(1 - m \, \mathsf{SN}^2)} \frac{d \bullet}{d \mathsf{SN}}.$$

Algorithm for Tanh Solutions of DDEs

Nonlinear DDEs of order m

$$\Delta(\mathbf{u}_{\mathbf{n}+\mathbf{p}_1}(\mathbf{x}), \mathbf{u}_{\mathbf{n}+\mathbf{p}_2}(\mathbf{x}), \cdots, \mathbf{u}_{\mathbf{n}+\mathbf{p}_k}(\mathbf{x}), \mathbf{u}'_{\mathbf{n}+\mathbf{p}_1}(\mathbf{x}), \mathbf{u}'_{\mathbf{n}+\mathbf{p}_2}(\mathbf{x}),$$

$$\cdots, \mathbf{u}'_{\mathbf{n}+\mathbf{p}_k}(\mathbf{x}), \cdots, \mathbf{u}^{(r)}_{\mathbf{n}+\mathbf{p}_1}(\mathbf{x}), \mathbf{u}^{(r)}_{\mathbf{n}+\mathbf{p}_2}(\mathbf{x}), \cdots, \mathbf{u}^{(r)}_{\mathbf{n}+\mathbf{p}_k}(\mathbf{x})) = \mathbf{0}.$$

Dependent variable $\mathbf{u_n}$ has M components $u_{i,\mathbf{n}}$ (or $u_{\mathbf{n}},v_{\mathbf{n}},w_{\mathbf{n}},\cdots$)

Independent variable \mathbf{x} has N components x_i (or t, x, y, \cdots).

Shift vectors $\mathbf{p}_i \in \mathbf{Z}^Q$.

 $\mathbf{u}^{(r)}(\mathbf{x})$ is collection of mixed derivatives of order r.

Simplest case for independent variable (t), and one lattice point (n):

$$\Delta(..., \mathbf{u}_{n-1}, \mathbf{u}_n, \mathbf{u}_{n+1}, ..., \dot{\mathbf{u}}_{n-1}, \dot{\mathbf{u}}_n, \dot{\mathbf{u}}_{n+1}, ..., \mathbf{u}_{n-1}, \dot{\mathbf{u}}_n, \dot{\mathbf{u}}_{n+1}, ...) = \mathbf{0}.$$

Step D1

• Seek solution $\mathbf{u_n}(\mathbf{x}) = \mathbf{U_n}(T_n)$, with $T_n = \tanh(\xi_n)$,

$$\xi_{\mathbf{n}} = \sum_{i=1}^{Q} d_i n_i + \sum_{j=1}^{N} c_j x_j + \delta = \mathbf{d} \cdot \mathbf{n} + \mathbf{c} \cdot \mathbf{x} + \delta.$$

Repeatedly apply the operator rule

$$\frac{d\bullet}{dx_j} = \frac{\partial \xi_{\mathbf{n}}}{\partial x_j} \frac{dT_{\mathbf{n}}}{d\xi_{\mathbf{n}}} \frac{d\bullet}{dT_{\mathbf{n}}} = c_j (1 - T_{\mathbf{n}}^2) \frac{d\bullet}{dT_{\mathbf{n}}},$$

transforms DDE into

$$\Delta(\mathbf{U_{n+p_1}}(T_n), \cdots, \mathbf{U_{n+p_k}}(T_n), \mathbf{U'_{n+p_1}}(T_n), \cdots, \mathbf{U'_{n+p_k}}(T_n), \cdots, \mathbf{U'_{n+p_k}}(T_n), \cdots, \mathbf{U'_{n+p_k}}(T_n), \cdots, \mathbf{U'_{n+p_k}}(T_n), \cdots, \mathbf{U'_{n+p_k}}(T_n)) = \mathbf{0}.$$

Note: U_{n+p_s} is function of T_n not of T_{n+p_s} .

Example: Toda lattice

$$\ddot{u}_n = (1 + \dot{u}_n) (u_{n-1} - 2u_n + u_{n+1})$$

transforms into

$$c_2^2(1-T^2)\left[2TU_n' - (1-T^2)U_n''\right] + \left[1 + c_2(1-T^2)U_n'\right]\left[U_{n-1} - 2U_n + U_{n+1}\right] = 0.$$

Seek polynomial solutions

$$U_{i,\mathbf{n}}(T_{\mathbf{n}}) = \sum_{j=0}^{M_i} a_{ij} T_{\mathbf{n}}^j.$$

Use

$$\tanh(x+y) = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}$$

to deal with the shift:

$$T_{\mathbf{n}+\mathbf{p}_s} = \frac{T_{\mathbf{n}} + \tanh \phi_s}{1 + T_{\mathbf{n}} \tanh \phi_s},$$

where

$$\phi_s = \mathbf{p}_s \cdot \mathbf{d} = p_{s1}d_1 + p_{s2}d_2 + \dots + p_{sQ}d_Q,$$

Substitute $U_{i,\mathbf{n}}(T_{\mathbf{n}}) = T_{\mathbf{n}}^{M_i}$, and

$$U_{i,\mathbf{n}+\mathbf{p}_s}(T_{\mathbf{n}}) = T_{\mathbf{n}+\mathbf{p}_s}^{M_i} = \left[\frac{T_{\mathbf{n}} + \tanh \phi_s}{1 + T_{\mathbf{n}} \tanh \phi_s}\right]^{M_i},$$

and balance the highest exponents in $T_{\mathbf{n}}$ to determine M_i .

Note: $U_{i,\mathbf{n}+\mathbf{0}}(T_{\mathbf{n}}) = T_{\mathbf{n}}^{M_i}$ is of degree M_i in $T_{\mathbf{n}}$.

$$U_{i,\mathbf{n}+\mathbf{p}_s}(T_{\mathbf{n}}) = \left[\frac{T_{\mathbf{n}} + anh \phi_s}{1 + T_{\mathbf{n}} anh \phi_s}\right]^{M_i}$$
 is of degree zero in $T_{\mathbf{n}}$.

Example: Balance of exponents for Toda lattice

$$2M_1 + 1 = M_1 + 2$$
.

So, $M_1 = 1$. Hence,

$$U_n(T_n) = a_{10} + a_{11}T_n,$$

$$U_{n\pm 1}(T(n\pm 1)) = a_{10} + a_{11}T(n\pm 1)$$

$$= a_{10} + a_{11}\frac{T_n \pm \tanh(d_1)}{1 \pm T_n \tanh(d_1)}.$$

- Determine the algebraic system for the unknown coefficients a_{ij} by setting to zero the coefficients of the powers in T_n .
- Example: Algebraic system for Toda lattice

$$c_1^2 - \tanh^2(d_1) - a_{11}c_1 \tanh^2(d_1) = 0,$$

 $c_1 - a_{11} = 0.$

- Solve the nonlinear algebraic system with parameters.
- Example: Solution of algebraic system for Toda lattice

$$a_{10} = \text{free}, \quad a_{11} = \pm \sinh(d_1), \quad c_1 = \pm \sinh(d_1).$$

 Return to the original variables. Test solution(s) of DDE.

Reject trivial ones.

Example: Solitary wave solution for Toda lattice

$$u_n(t) = a_{10} \pm \sinh(d_1) \tanh \left[d_1 n \pm \sinh(d_1) t + \delta \right].$$

Example: Relativistic Toda Lattice

$$\dot{u}_n = (1 + \alpha u_n)(v_n - v_{n-1}),$$

 $\dot{v}_n = v_n(u_{n+1} - u_n + \alpha v_{n+1} - \alpha v_{n-1}).$

Change of variables

$$u_n(t) = U_n(T_n), \qquad v_n(t) = V_n(T_n),$$

with

$$T_n(t) = \tanh \left[d_1 n + c_1 t + \delta \right].$$

gives

$$c_1(1 - T^2)U'_n - (1 + \alpha U_n)(V_n - V_{n-1}) = 0,$$

$$c_1(1 - T^2)V'_n - V_n(U_{n+1} - U_n + \alpha V_{n+1} - \alpha V_{n-1}) = 0.$$

Seek polynomial solutions

$$U_n(T_n) = \sum_{j=0}^{M_1} a_{1j} T_n^j, \qquad V_n(T_n) = \sum_{j=0}^{M_2} a_{2j} T_n^j.$$

Balance the highest exponents in T_n to determine M_1 , and M_2 :

$$M_1 + 1 = M_1 + M_2, \quad M_2 + 1 = M_1 + M_2.$$

So, $M_1 = M_2 = 1$. Hence,

$$U_n = a_{10} + a_{11}T_n, \qquad V_n = a_{20} + a_{21}T_n.$$

Algebraic system for a_{ij} :

$$-a_{11} c_1 + a_{21} \tanh(d_1) + \alpha a_{10} a_{21} \tanh(d_1) = 0,$$

$$a_{11} \tanh(d_1) (\alpha a_{21} + c_1) = 0,$$

$$-a_{21} c_1 + a_{11} a_{20} \tanh(d_1) + 2\alpha a_{20} a_{21} \tanh(d_1) = 0,$$

$$\tanh(d_1) (a_{11} a_{21} + 2\alpha a_{21}^2 - a_{11} a_{20} \tanh(d_1)) = 0,$$

$$a_{21} \tanh^2(d_1) (c_1 - a_{11}) = 0.$$

Solution of the algebraic system

$$a_{10} = -\frac{1}{\alpha} - c_1 \coth(d_1),$$
 $a_{11} = c_1,$
 $a_{20} = \frac{c_1 \coth(d_1)}{\alpha},$
 $a_{21} = -\frac{c_1}{\alpha}.$

Solitary wave solution in original variables:

$$u_n(t) = -\frac{1}{\alpha} - c_1 \coth(d_1) + c_1 \tanh\left[d_1 n + c_1 t + \Delta\right],$$

$$v_n(t) = \frac{c_1 \coth(d_1)}{\alpha} - \frac{c_1}{\alpha} \tanh\left[d_1 n + c_1 t + \Delta\right].$$

Example: 2D Toda Lattice

2D Toda lattice:

$$\frac{\partial^2 y_n}{\partial x \partial t} = \exp(y_{n-1} - y_n) - \exp(y_n - y_{n+1}),$$

 $y_n(x,t)$ is displacement from equilibrium of the n-th unit mass under an exponential decaying interaction force

between nearest neighbors.

Set

$$\frac{\partial u_n}{\partial t} = \exp(y_{n-1} - y_n) - 1. \tag{*}$$

Then,

$$\exp(y_{n-1} - y_n) = \frac{\partial u_n}{\partial t} + 1,$$

and the 2D-Toda lattice becomes

$$\frac{\partial^2 y_n}{\partial x \partial t} = \frac{\partial u_n}{\partial t} + 1 - \left(\frac{\partial u_{n+1}}{\partial t} + 1\right) = \frac{\partial u_n}{\partial t} - \frac{\partial u_{n+1}}{\partial t}.$$

Integrate with respect to t to get

$$\frac{\partial y_n}{\partial x} = u_n - u_{n+1}.$$

Differentiate (*) with respect to x and

$$\frac{\partial^2 u_n}{\partial x \partial t} = \frac{\partial}{\partial x} \left(\exp(y_{n-1} - y_n) - 1 \right)$$

$$= \exp(y_{n-1} - y_n) \left(\frac{\partial y_{n-1}}{\partial x} - \frac{\partial y_n}{\partial x} \right),$$

$$= \left(\frac{\partial u_n}{\partial t} + 1 \right) \left[(u_{n-1} - u_n) - (u_n - u_{n+1}) \right],$$

$$= \left(\frac{\partial u_n}{\partial t} + 1 \right) (u_{n-1} - 2u_n + u_{n+1}).$$

So, the 2D Toda lattice is written in polynomial form:

$$\frac{\partial^2 u_n}{\partial x \partial t}(x,t) = \left(\frac{\partial u_n}{\partial t} + 1\right) \left(u_{n-1} - 2u_n + u_{n+1}\right).$$

Travelling wave solution:

$$u_n(x,t) = a_{10} + \frac{1}{c_2} \sinh^2(d_1) \tanh \left[d_1 n + \frac{\sinh^2(d_1)}{c_2} x + c_2 t + \delta \right]$$

Example: Ablowitz-Ladik Lattice

The Ablowitz-Ladik lattice:

$$\dot{u}_n(t) = (\alpha + u_n v_n)(u_{n+1} + u_{n-1}) - 2\alpha u_n,$$

$$\dot{v}_n(t) = -(\alpha + u_n v_n(v_{n+1} + v_{n-1}) + 2\alpha v_n.$$

Travelling wave solution:

$$u_n(t) = \frac{\alpha \sinh^2(d_1)}{a_{21}} \left(\pm 1 - \tanh \left[d_1 n + 2\alpha t \sinh^2(d_1) + \delta \right] \right)$$

$$v_n(t) = a_{21} (\pm 1 + \tanh \left[d_1 n + 2\alpha \sinh^2(d_1) t + \delta \right]).$$

Solving Nonlinear Parameterized Systems

Assumptions

- ▶ All $c_i \neq 0$ and $d_i \neq 0$ (and modulus $m \neq 0$).
- Parameters $(\alpha, \beta, \gamma, ...)$. Otherwise the maximal exponents M_i may change.
- ightharpoonup All $M_i \geq 1$.
- ▶ All $a_{iM_i} \neq 0$. Highest power terms in U_i must be present, except in mixed sech-tanh-method.
- ▶ Solve for a_{ij} , then c_i , $\tanh(d_i)$, and m. Then find conditions on parameters.

- Strategy followed by hand
 - Solve all linear equations in a_{ij} first (branching).
 Start with the ones without parameters.
 Capture constraints in the process.
 - Solve linear equations in c_i , $\tanh(d_i)$, m if they are free of a_{ij} .
 - Solve linear equations in parameters if they free of $a_{ij}, c_i, \tanh(d_i), m$.
 - Solve quasi-linear equations for $a_{ij}, c_i, \\ \tanh(d_i), m.$

- ▶ Solve quadratic equations for $a_{ij}, c_i, \tanh(d_i), m$.
- ► Eliminate cubic terms for $a_{ij}, c_i, \tanh(d_i), m$, without solving.
- Show remaining equations, if any.

Alternatives

- Use (adapted) Gröbner bases techniques.
- Use Ritt-Wu characteristic sets method.
- Use combinatorics on coefficients $a_{ij} = 0$ or $a_{ij} \neq 0$.

Other applications (of the nonlinear algebraic solver)

Computation of conservation laws, symmetries, first integrals, etc. leading to **linear** parameterized systems for unknowns coefficients (see InvariantsSymmetries by Göktaş and Hereman).

Demonstration and Future Work

- Demonstration of Mathematica package for hyperbolic and elliptic function methods for PDEs and tanh function for DDEs.
- Long term goal: Develop PDESolve and DDESolve for analytical solutions of nonlinear PDEs and DDEs.
- Implement various methods: Lie symmetry methods, etc.

- Consider other types of explicit solutions involving
 - other hyperbolic and elliptic functions sinh, cosh, dn,....
 - ► complex exponentials combined with sech, tanh.

Papers and Software

Papers

- D. Baldwin, Ü. Göktaş, W. Hereman, L. Hong, R. Martino, and J.C. Miller, Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs, Journal of Symbolic Computation 37 (2004) 669–705.
- D. Baldwin, Ü. Göktaş, and W. Hereman,
 Symbolic computation of exact tanh solutions of nonlinear differential-difference equations,
 Computer Physics Communications 162 (2004) 203–217.

Software

D. Baldwin, Ü. Göktaş, W. Hereman, L. Hong, R. Martino, and J.C. Miller,

PDESpecialSolutions.m: A Mathematica program for the symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for systems of nonlinear partial differential equations (2001-2006).

Available on the Internet

URL: http://www.mines.edu/fs_home/whereman/

D. Baldwin, Ü. Göktaş, W. Hereman, L. Hong, R. Martino, and J.C. Miller,

program for the symbolic computation of tanh solutions for systems of nonlinear differential-difference equations (2001-2006).

Available on the Internet

URL: http://www.mines.edu/fs_home/whereman/