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Develop and implement various methods to find
exact solutions of nonlinear PDEs and DDEs:
direct methods, Lie symmetry methods, similarity
methods, etc.

Fully automate the hyperbolic and elliptic function
methods to compute travelling solutions of
nonlinear PDES.

Fully automate the tanh method to compute
travelling wave solutions of nonlinear DDES

(lattices).

Class of nonlinear PDEs and DDEs solvable with
such methods includes famous evolution and wave
equations, and lattices.



Examples PDEs: Korteweg-de Vries, Boussinesd,
and Kuramoto-Sivashinsky equations.
Fisher and FitzHugh-Nagumo equations.

Examples ODEs: Duffing and nonlinear oscillator
equations.

Examples DDEs: Volterra, Toda, and
Ablowitz-Ladik lattices.



PDEs: Solutions of tanh (kink) or sech (pulse)
type model solitary waves in fluids, plasmas,
circuits, optical fibers, bio-genetics, etc.

DDEs: discretizations of PDEs, lattice theory,

queing and network problems, solid state and
quantum physics.

Benchmark solutions for numerical PDE and
DDE solvers.



Research aspect: Design high-quality application
packages to compute solitary wave solutions of
large classes of nonlinear evolution and wave
equations and lattices.

Educational aspect: Software as course ware for
courses in nonlinear PDEs and DDEs, theory of
nonlinear waves, integrability, dynamical systems,
and modeling with symbolic software.

REU projects of NSF. Extreme Programming!

Users scientists working on nonlinear wave

phenomena in fluid dynamics, nonlinear networks,
elastic media, chemical kinetics, material science,
bio-sciences, plasma physics, and nonlinear optics.



Typical Examples of ODEs and PDEs

he Duffing equation
W+ u+aud =0

Solutions in terms of elliptic functions

7—1 ¢—1
’LL(ZE) = \/Cl CH(ClZE A) 1 9 )7
Vo e
and
2(cf — 1 1—cf
u(x) = + V2(ei — 1) sn(cixz + A; 261)



The Korteweg-de Vries (KdV) equation
ur + 6auu, + uz, = 0.

Solitary wave solution

8¢t — 2¢3
u(x,t) = 661 2 _ 2% tanh? lc1x + cot + A,
acy e

or, equivalently,

4c; 2
u(x,t) = — fir - 2%l sech? lc1x + cot + A].

bacy o

Cnoidal wave solution

4c;(1 —2m) —ca  12mcy

u(x,t) = | L cn?(crz+eat+A;m),

ocl o

modulus m.



The modified Korteweg-de Vries (mKdV) equation
U + oquux + usz, = 0.

Solitary wave solution

6
u(x,t) = £4/ — c1sech [cw —ct+ Al
e

T hree-dimensional modified Korteweg-de Vries
equation

Solitary wave solution

u(x,y, z,t) = £y/caczsech [c1x + coy + c32 — c1cacst + A



with




The generalized Kuramoto-Sivashinski equation

U + Uy + Ugy + oU3L + Ua, = 0.

Solitary wave solutions

(ignoring symmetry v — —u,z — —x,0 — —0) :

For |lo =14

u(x,t) =9 — 2cp — 15tanh & (1 + tanh & — tanh? £),

with € = £ + ot + A,



x + cot + A.

2\/_



For |c =16/ 73
2 (30 F 5329c¢») 79
u(x,t) = T tanh
(1) 73\ 73 73\ 73 S
60 15
— tanh® & + tanh? :
73\ 73 S 73\ 73 S
with & = + 2\/—x—l—02t—|—A
For |c =0

/1 135 / 165 [11
— 9 Co— —— £ tanh® &,
11 19

with € = 24 /15 =+ cat + A



The Boussinesg (wave) equation
Ut — U2z + Uty + 3ug® + attyy = 0,

or written as a first-order system (v auxiliary
variable):

ut +v, = 0,

vt + ur — 3uu, — axuz, = 0.

Solitary wave solution

2 _ 2 4
c] — ¢5 + Bacy
2
3c]

bo -+ 4acyco tanh? lcix + cot + A].

u(x,t) — dact tanh? [c1x + cot + A],

v(x,t)



sine-Gordon equation (light cone coordinates)
D,y = sin P.
Set u=®,, v=cos(P)—1,

Ut — U —uv = 0,

|
=

u? 4 2v + v*

Solitary wave solution (kink)

u = ——\/1_Csech[\/1_7(x—ct)—|—A],
v o= 1—ZSech2[\/;(x—ct)+A].






Typical Examples of DDEs (lattices)
The Volterra lattice

Up = un(vn_vn—l)y

Travelling wave solution:

un(t) = —c1 coth(dy) + ci tanh [din + ci1t + 9

vp(t) = —c1 coth(dy) — citanh [din + cit + §].






a sinh?(dy) (_

+1 — tanh [dln + 2at SinhQ(d1) + 5}) :

vp(t) = a21 (%1 + tanh [dln + 2 sinh?(dy)t + 5} ).



S111 1

aig + — Sinhz(dl) tanh |din 4 T + cot + 6

C2 C2



Algorithm for Tanh Solutions of PDEs

System of nonlinear PDEs of order m
A(u(x),u’'(x),u”(x),---u™(x)) = 0.

Dependent variable u has M components wu;
(or w,v,w,...).

Independent variable X has N components z;
(or x,y, z, ..., t).



Step T1
Seek solution u(x) = U(T), with

N
T = tanh & = tanh cha:j + 0

J

Observe tanh’ ¢ =1 — tanh?¢ or TV =1 — T?2.
Hence, all derivatives of T' are polynomial in T.
~or example, T = —2T(1 — T?), etc.

Repeatedly apply the operator rule

Oe o€ dT de de

Fyal = ¢;(1 — T%)—
Ox;  Ox; d§ dT dT




Produces a nonlinear system of ODEs
A(T,U(T), U’ (T),U"(T),..., U™ (1)) = 0.
Compare with ultra-spherical (linear) ODE
(1 —2%)y"(x) — (2a+ )ay'(z) + n(n + 2a)y(x) = 0,
with integer n > 0 and « real.
Includes:
* Legendre equation (a = 1),

2
* ODE for Chebeyshev polynomials of type I

(a = 0),
* ODE for Chebeyshev polynomials of type II
(. =1).



)

V! + Ul — 3aUU" + acB [2(1 _ 37U

L6T(1 — THU" — (1 — TQ)QU”’] — 0.



Step T2

Seek polynomial solutions
M;
U@(T) — Z aijTj.
=0

Determine the highest exponents M,; > 1.
Substitute U;(T) = TMi into the LHS of ODE.
Gives polynomial P(T).

For every P, consider all possible balances of the
highest exponents in 7.

Solve the resulting linear system(s) for the
unknowns M;.



U(T)
V(T)

@10

L allT |

a20 -

2
B alQT 9

_ i 70 =

- a22T2.



Step T3

Derive algebraic system for the unknown
coefficients a;; by setting to zero the coefficients

of the power terms in 7.

Example: Algebraic system for Boussinesq case

aiici(3a1z + 2act) = 0,

a12C1 (CL12 —+ 4()46%) = 0,

az21c1 + ar1ca = 0,

a22c| + ajeco = 0,
3
aiic1 — 3ajpaiict + 2aaiici + az1ca = 0,

baipaiaci + 1604&126? + 2a99co = 0.



Step T4

Solve the nonlinear algebraic system with
parameters.

Example: Solution for Boussinesqg system

c? — 2 — Sarct
- 1 2 1 —0
alng — 5 ,  a11 = U,
3(:1

alo = —404(:%, aoo = free,

a1 = 0, a2 = 4acico.



Step TH5

Return to the original variables.
Test the final solution(s) of PDE.
Reject trivial solutions.

Example: Solitary wave solution for Boussinesq
system

2 2 4
c] — ¢5 + 804(:1
2
3(:1

v(xz,t) = ag + 4acico tanh? lc1x + cot + 6] .

u(x,t) — dact tanh? [c1z + cot + 6],



Other Types of Solutions for PDEs

Case | ODE (y'=%) Chain Rule
tanh(§) |y =1 — y? ga:j =ci(1—T )j{-
sech(§) y’:—y\/l — y? g;j — _CJS\/l —5° Ccil;
tan(£) |y'=1+y° 5o, =c;(1 4 TAN?) 2R
exp(€) |y =y 5 =CIERE
cn(§m)y’ = by = ~Ci
/1=y =m+my?) | /(1) (1—m+men?)
sn(&;m)|y’ = aa;;j = G

\/(1—SN2)(1—mSN2)dSN

de




Algorithm for Jacobi Cn and Sn Solutions of PDEs

Given: System of nonlinear PDEs of order m
A(u(x), u’'(x),u”(x),---u™(x)) = 0.

Dependent variable u has M components wu;
(or w,v,w,...).

Independent variable X has N components z;
(or xz,y, z, ..., t).



Step CN1
Seek solution u(x) = U(CN), with

N
CN =cn(&;m) = en( cha:j—l—A ;m).

J

with modulus m.
Observe cn’(&;m) = —sn(&;m)dn(&;m).
Using

sn”(&;m) = 1—cn?(&; m), dn®(§;m) = 1—m+mcn”(&; m),

one has

CN' = —\/(1 — CN?)(1 — m + m CN?).



Repeatedly apply the operator rule

Oe  de dCN 0¢
dx; dCN d¢ Ox;

de
dCN’

— —cj\/ (1= CN2)(1—m4m CN?)——

produces a nonlinear ODE:

A(CN,U(CN),U (CN),U"(CN),..., U™ (CN)) = 0.

Example: The KAV equation

Ut + Uy + Ugzz = 0,
transforms into
(c:f(l —2m + 6m CN?) — ¢ — ozclUl) Uj

+3c3CN(1 — 2m + 2m CN*)U!
—c3(1— CN*)(1 — m +m CN)U) =



Step CN2

Seek polynomial solutions

M;
UZ(CN) — Z aijCNj.
7=0

Determine the highest exponents M, > 1.

Example: For KdV case: M; = 2. Thus,

Ul(CN) — a0 + @11 CN + CL12C|\|2.



Step CN3
Derive the algebraic system for the coefficients a;;.
Example: Algebraic system for KdV case
—3ai1c1 (xare — 2mc2) = 0,
—2a12¢1 (are — 12m(:2) — 0,

3 3
—a11 (cxajger — ¢ +2me] + c2) =0,

—aatc1 —an(2aaiger — 16me; — 8¢ + 2¢2) = 0.

Note: modulus m is extra parameter.



Step CN4

Solve the nonlinear algebraic system with
parameters.

Example: Solution for KdV system

4 (1—-2m) —c
aio — )
o C
0,
2

12m c]

S
—
—

|

87



Step CN5
Return to the original variables. Test the final
solution(s) of PDE. Reject trivial solutions.

Example: Cnoidal solution for the KdV equation

4c3(1 —2m) — o 12mc?
u(x,t) = 1( ) ° | e cn2(clzzz—|—(:2t—|—A;m).
Qcq Q




NOTE: For Jacobi sn solutions, use

cn’(§;m) = 1—sn*(§m),
dn®(¢;m) = 1—msn?(&m),
sn'(§5m) = cn(§;m)dn(§;m).

Hence,

SN’ = /(1 — SN?)(1 — m SN2),
with SN = sn(&;m).

Chain rule:
N d
Oo _ do BRI _ L (1-SN2)(1 - mSN3)-2
c%j dSN df (%j dSN



Algorithm for Tanh Solutions of DDEs

Nonlinear DDEs of order m

A(un—l—Pl (X)7 Un+po (X)v "o Un+py (X)v u;1+p1 (X)v u;nerg (X)a
Wy, (%), up ] (%), ul] (%), ull ) (%)) =0,

n+pg n-+pi n+p2 n-+pg

Dependent variable u, has M components u; p

(Or un, Un, wn7 © e )

Independent variable x has N components z;
(Or taxaya'”)'

Shift vectors p; € Z%.

ul”(x) is collection of mixed derivatives of order r.



Simplest case for independent variable (¢), and one
lattice point (n):

A(...,Un_17Un7Un+17...,un_17un, i].n+]_,...,
(7) (r) 14(7) _
u,’,u,’,u,’,...)=0.

Step D1
Seek solution up(x) = Unp(Th), with T, = tanh(&,),

Q N
gn:Zdini+zcj$j+5:d°n—|—(3°x—|—5.
i=1 j=1



Repeatedly apply the operator rule

de Oén dly de 5, de
FU =c¢i(1 = Ty) 7=
dCBj axj dﬁn dT dT
transforms DDE into
A(Un+p,(Th), -+ s Untp, (Tn), Uy p, (Tn), -+ -,
r (7) _
UL, (Tn), Ufﬂlpl (Tn),+ » Uplp, (Th)) = 0.

Note: U,.,, Is function of 7, not of Ty1p..






Step D2

Seek polynomial solutions

M;
Ui,n(Tn) — Z CLZ']'T&.
j=0

Use

tanh x 4 tanh y

tanh(x + y) =

1 4+ tanh x tanh y

to deal with the shift:
In

tanh ¢,

Tn—|—ps —

where

1 —I—Tntamhqbg7

®s = Ps - d = ps1d1 + psada + -+ - 4+ psdQ,



Substitute U; (Tn) = T2, and

Th + tanh ¢ ]Mi

zn—l—ps( n) — n—I—ps - [1 -|—Tntanh¢s

and balance the highest exponents in 73 to
determine M;.

Note: U; . 0(Th) = T is of degree M; in Ty,.

Th+tanh ¢ M :
Ui ntp, (Tn) = [1an tanhqjs} IS of degree zero in Tj.



T, + tanh(dl)

1+ 7T, tanh(dl) .




Step D3

Determine the algebraic system for the unknown
coefficients a;; by setting to zero the coefficients
of the powers in 7,,.

Example: Algebraic system for Toda lattice

c; — tanh?(dy) — a11c1 tanh?(dy) = 0,

c1 —ai1 = 0.



Step D4

Solve the nonlinear algebraic system with
parameters.

Example: Solution of algebraic system for Toda
lattice

ajo = free, aj11 = £sinh(d;), ¢; = £sinh(dy).



Step D5

Return to the original variables. Test solution(s)
of DDE.
Reject trivial ones.

Example: Solitary wave solution for Toda lattice

Un (t) — a0 T Sinh(dl) tanh [dln T Sinh(dl) t + (5} :




Example: Relativistic Toda Lattice

(1 + Oéun)('vn — Un—l);

Un(Un+1 — Un + QUpt1 — QUR—1).

Un,

Un,

Change of variables

with
T, (t) = tanh [din + c1t + 9] .

gives
c1(1 = THU! — (1 + aU,) (Vs — Vyi1) =0,
c1(1 = THV! — Vo (Ung1 — Uy + aVpi1 — aVy_1) = 0.




Seek polynomial solutions
M1 M2
Un(Tn) =) ai T3,  Va(Tn) =) agTY.
=0 5=0

Balance the highest exponents in 7;, to determine My,
and Mo :
My +1=M + My, My+1= M + Mo.

So, M7 = My = 1. Hence,

Un = aio+ allTny Vi = ago + a21'1y,.



as ta,nhZ(dl) ((31 - a11) = 0.



Solution of the algebraic system

alg = ———clcoth(dl),
(8%
ail — Ci,
C1 Coth(dl)
a20 = y
(8%
C1
ax; = ——.
(8%

Solitary wave solution in original variables:

1
un(t) = —— —c1 coth(dy) + c1 tanh [din + a1t + A],

87

th(d
op(t) = c1 _coth(di) — ﬂtanh ldin 4+ c1t + A].

87 87




Example: 2D Toda Lattice

2D Toda lattice:

0y
OxO0t

— €XP (yn—l — yn) — €XP (yn — yn+1)a

yn(x,t) is displacement from equilibrium of the n-th
unit mass under an exponential decaying interaction
force

between nearest neighbors.

Set
Our,

ot

= exp(Yn—1 — Yn) — 1. (*)

Then,

Our,

exp(Yn—1 — Yn) = = -1,







ot

Ouy,
= -1 (un—l — 2up + un—|—1) .



So, the 2D Toda lattice is written in polynomial form:

0%, ( O,

t) = -1 n—1 — 2Un n :
PGl 5t >(“ 1= 2un + Uns1)

Travelling wave solution:

1 inh?(d
Up(x,1) :a1o—|——sinh2(d1)tanh dimn - sinh™( 1)$ - cot + O
C2 C2




Example: Ablowitz-Ladik Lattice

The Ablowitz-Ladik lattice:

.
S
VS
~
N—"

|

(Oé + unvn)(un+1 + un—l) — 200U,

Un(t) — _(Oé + unvn(vn—l—l + Un—l) + 2avy,.

Travelling wave solution:

inh”(d
un(t) = asinh”(d1) (::1 — tanh [dln + 2ait sinh?(dy) + 5})
a21

vp(t) = a21(x1 4+ tanh {dln + 2acsinh?(dq)t + 5} ).



Solving Nonlinear Parameterized Systems

Assumptions

> All ¢; 20 and d; # 0 (and modulus m # 0).

» Parameters (a, 3,7, ...). Otherwise the maximal
exponents M; may change.

> All M; > 1.

> All a; . # 0. Highest power terms in U; must
be present, except in mixed sech-tanh-method.

> Solve for a;j, then ¢;, tanh(d;), and m.
Then find conditions on parameters.



Strategy followed by hand

> Solve all linear equations in a;; first

(branching).
Start with the ones without parameters.
Capture constraints in the process.

> Solve linear equations in ¢;, tanh(d;), m if they
are free of a;;.

» Solve linear equations in parameters if they
free of a;;, c;, tanh(d;), m.

> Solve quasi-linear equations for a;;, ¢,
tanh(d;), m.



> Solve quadratic equations for a;j, ¢;, tanh(d;), m.

> Eliminate cubic terms for a;j, ¢;, tanh(d;), m,
without solving.

» Show remaining equations, if any.

Alternatives
» Use (adapted) Grobner bases techniques.
» Use RIitt-Wu characteristic sets method.

> Use combinatorics on coefficients a;; =0 or
g # 0.



Other applications (of the nonlinear algebraic
solver)

Computation of conservation laws, symmetries,
first integrals, etc. leading to linear parameterized
systems for unknowns coefficients (see
InvariantsSymmetries by Goktas and Hereman).



Demonstration and Future Work

Demonstration of Mathematica package for
hyperbolic and elliptic function methods for PDEs

and tanh function for DDEs.

| ong term goal: Develop PDESolve and
DDESolve for analytical solutions of nonlinear
PDEs and DDEs.

Implement various methods: Lie symmetry
methods, etc.



Consider other types of explicit solutions involving

» other hyperbolic and elliptic functions sinh,

cosh, dn,....

> complex exponentials combined with sech,
tanh .



Papers and Software
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D. Baldwin, U. Goktas, W. Hereman, L. Hong, R.
Martino, and J.C. Miller, Symbolic computation of
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Journal of Symbolic Computation 37 (2004)
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D. Baldwin, U. Goktas, and W. Hereman,
Symbolic computation of exact tanh solutions of
nonlinear differential-difference equations,
Computer Physics Communications 162 (2004)
203—217.



Software

D. Baldwin, U. Goktas, W. Hereman, L. Hong, R.
Martino, and J.C. Miller,
PDESpecialSolutions.m: A Mathematica
program for the symbolic computation of exact
solutions expressible in hyperbolic and elliptic
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differential equations (2001-2006).

Available on the Internet

URL: http://www.mines.edu/fs_home/whereman/



D. Baldwin, U. Gdktas, W. Hereman, L. Hong, R.
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Available on the Internet

URL: http://www.mines.edu/fs_home/whereman/



