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Problem Statement
For continuous case:
Given, for example,
f=3uv? sin(u) — v sin(u) — 6vv cos(u) + 2u u” cos(u) + 8v'v"
Find F'so that f = D,F or F:/f dx.
Result:

F = 40" 4 u* cos(u) — 3v* cos(u)

Can this be done without integration by parts?

Can the problem be reduced to a single integral in one variable?

For discrete case:

Given, for example,

fn = —Up Up4+1Un — Ug, + Upt1 Upt2 Upt1 + U5+1 + Upt3 Upt2 — Upt1 Uy
Find F, so that f,, = AF, = F,.1 — F, or F, =A"'f,.

Result:

2
Fn =0, T Up Up41 Up + Upg1 Up + Upt2 Upyd-

How can this be done algorithmically?

Can this be done in the same way as the continuous case?



Part I: Continuous Case

Integration by Parts on the Jet Space
e Given f involving u(x) and v(x) and their derivatives
f=3uv? sin(u) —u” sin(u) —6v v cos(u)+2u u” cos(u)+8v'v"

e Find F'sothat f = D,F or F:/fdx.

Integrate by parts (compute F' by hand)

Sv'v" — s 4 U/2
2u/ u" cos(u) — u’? cos(u)
—u? sin(u)

—6v v cos(u) — —3v? cos(u)
3/ v? sin(u)

e Integral:
F = 40" 4+ u* cos(u) — 30 cos(u)

Remark: For simplicity we denote f(u,u’,u”,---,u™) as f(u).



e EExactness Criterion:

Continuous Euler Operator (variational derivative)

Definition (exactness):

A function f(u) is exact, i.e. can be integrated fully, if there exists
a function F'(u), such that f(u) = D, F'(u) or equivalently

F(u)=D;'f(u) = | f(u)dz.

D, is the (total) derivative with respect to x.

Theorem (exactness or integrability test):

A necessary and sufficient condition for a function f to be exact, i.e.
the derivative of another function, is that £(f) = 0 where £ is
the continuous Euler operator (variational derivative) defined by

0_ W oy 9
fo = 50 G
0 0 0 0
- _— —D,— +D? coi 4 (=1)mopm_—
ou ou’ Tou” oo (21D oul(mo)

where my is the order (of f).

Proof:
See calculus of variations (derivation of Euler-Lagrange equations —
the forgotten case!).



Example: Apply the continuous Euler operator to

f(u) = 3u’ v* sin(u)—u" sin(u)—6v v’ cos(u)+2u’ u” cos(u)+8v'v”

Here u = (u, v).

For component u (order 2):

0 0

LY(f) = 5 () =Dasy

= 3u' v* cos(u) — v’

9
(F)+Dig5(f)

cos(u) + 6v v sin(u) — 2u’ u” sin(u)

—D,[3v? sin(u) — 3u sin(u) + 2u” cos(u)] + D2[2u’ cos(u)]
3

3

= 3u’ v* cos(u) — u” cos(u) + 6v v’ sin(u) — 2u' v” sin(u)
—[3u/v? cos(u) + 6v v’ sin(u) — 3u” cos(u) — 6uu” sin(u)
—2u' u" sin(u) + 2u"" cos(u)]

+[—2u" cos(u) — 6u’ u” sin(u) + 2u™ cos(u)]

=0

For component v (order 2):

0 0

0
LY(f) = 5-(F) = D o(f) + D2 ()

— 6u’ v sin(u) — 6V cos(u) — D[—6v cos(u) + Sv"] + D?[8¢/]
= 6u'vsin(u) — 6v’ cos(u) —[6u'v sin(u) — 60" cos(u)+8v™]+8v
=0

"



e Computation of the integral F
Definition (higher Euler operators):

The continuous higher Euler operators are defined by

LS) = > (.)(—Dx)kZM

=i\ ul

These Euler operators all terminate at some maximal order m;.

Examples (for component u) :

L= aau 5 ai Diaiﬂ_Diaiw troet )mODxmoﬁj”m)
£{1= gD+ 30 g Dl (D
L= a(z aim xai *faf '+(_1>m2( 22)D?T23u?m2)

Similar formulae for component £1(f)



Definition (homotopy operator):
The continuous homotopy operator is defined by

Hw = [ S fwpa)

where

fi(w) = 3 DL fu, £0)
1=0

Py 18 the maximum order of u, in f
N is the number of dependent variables
fr(u)[Au] means that in f,.(u) one replaces u — Au, u’ — Au’, etc.

Example:
For a two-component system (N = 2) where u = (u, v):
1 dA
Hw = [ (AN + )]y
with -
fi(w) = X Dyful™Y)]
i=0
and

fo(u) = 5 DijpLl)
1=0

Theorem (integration via homotopy operator):

Given an integrable function f
F=D;'f=[fde="Hu)f)

Proof: Olver’s book ‘Applications of Lie Groups to Differential Equa-
tions’, p. 372. Proof is given in terms of differential forms.

Work of Henri Poincaré (1854-1912), George de Rham (1950), and lan
Anderson & Tom Duchamp (1980).



Example: Apply the continuous homotopy operator to integrate
f(u) = 3u'v*sin(u) — u” sin(u) — 6vv’ cos(u) + 2u'u” cos(u) + 8v'v”

For component u (order 2):

u

LEHV(f) D (ul{(f))

0 0
—3v?sinu — 3u?sinu + 2u” cosu

—2D, (2’ cosu)
—=3v?sinu + u?sinu — 2u” cosu | 3uv? sinu + wu'? sin u — 2uu” cos u
1 % f=2u'cosu D, [2uu’ cos u]

=2u"? cos u + 2uu’ cosu — 2uu’? sin u

Hence, fi(u)(f) = 3uv?sin(u) — v/ sin(u) + 2u'? cos(u)

For component v (order 2):

i | L) Dy Ly V()
0| —6v cos(u) + 8v" — 2D, [8V']
= —6v cos(u) — 8" —6v? cos(u) — Svv”
1|8 D, [8vv'] = 8v% + 8vv”

Hence, fo(u)(f) = —6v*cos(u) + Sv™
The homotopy operator leads to an integral for (one) variable A. (Use
standard integration by parts to work the integral).

Flu) = [{ fl(u)(f)[Au]+f2(u)(f)[)\u]}d;

— /01 [BA2uv? sin(Au) — XNuw sin(Au) + 2 u’ cos(Au)
—6Av% cos(Au) + 8\ dA

= 4v" 4 u cos(u) — 3v? cos(u)



e Application: Conserved densities and fluxes for PDEs
with transcendental nonlinearities

Definition (conservation law):
Diyp+D,J =0 (on PDE)

conserved density p and flux J.
Example: Sine-Gordon system (type u; = F)

U = U

Uy = Ugy + asin(u)
has scaling symmetry

(t, z,u, v, ) — (A, A e, Au, Av, ANa)

In terms of weights:

w(D;) =1, w(Dy) =1, w(u) =0, wv) =1, w(a) =2
Conserved densities and fluxes

pay = 2acos(u) + v + u,’ Joy = —2u,v

1 1
P2) = UgV Jio) = —[2v? + —u,”?

5 SUs” — @ cos(u)]

piy = 12cos(u)vu, + 203U, + 201> — 160,09,

pay = 2cos”(u) — 2sin®(u) + v* + 6v7u,” + u,” + 4 cos(u)v’
+20 cos(u)uy” — 16v,° — 16u9,°.

are all scaling invariant!

Remark: Jg3) and Jiy are not shown (too long).
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e Algorithm for Conserved Densities and Fluxes
Example: Density and flux of rank 2 for sine-Gordon system
Step 1: Construct the form of the density

p = ahy(u) + ho(u)v® + ha(w)u,” + ha(u)u,v
where h;(u) are unknown functions.

Step 2: Determine the functions h;

Compute
dp
E=Dip = %4 y(u)[F] (on PDE)
dp ™ dp 2 Odp
= T D D
ot +kz—:0 DUy Ut+kzo Oy " o

Since &/ = Dyp = —D,J, the expression /' must be integrable.
Require that £9(E) = 0 and £LY(E) = 0.
Solve the system of linear mixed system (algebraic eqs. and ODEs):

,,( )
hafu) =0
2h2 (U) — h3 (U) =0
2hy (1) — hs (u) =0
hl;(u) + 2sin(u)ha(u) = 0
hy (uw) + 2sin(u)hy (u) + 2 cos(u)ha(u) =0



Solution:

hi(u) = 2c1cos(u) + c3
hz(u) = hg(u) =
hy(u) = c

(with arbitrary constants ¢;).

Substitute in p
p = 2cia cos(u) + c1v? + crug” + cotv + acs
Step 3. Compute the flux J

First, compute

E=Dp = c1(—2amuy sinu + 20v; + 2 tyg) + Co(Up + ugty)
= c1(—2awvsinu + 2v (ug, + asinu) + 2u,v,)
+eo(v,0 + Uy (U9 + asinu))

= ¢1(2u9,V + 2u, v, ) + co(VUy + Ugtny + Qg Sin W)

Since E' = Dyp = —D,.J, one must integrate.

Apply the homotopy operator for each component of u = (u, v).

For component u (order 2):

i | LYTV(-E) D; (uLy™(-E))
0] 2¢10; + co(ugy — asinu) | 2ciuv, + co(uto, — cvusin u)
1| —2c10 — couy, —2¢1 (U0 + uv,) — ca(uZ + v,

Hence, f1(u)(f) = 2ciu,v — co(u? + ausinu)

12



For component v (order 1):
i | LUD(=E) | Dj(oL!(-E))
2

0| —2c1u, — cov | —2¢c1UV — CoU

Hence, fo(u)(f) = —2ciu,v — cov?

The homotopy operator leads to an integral for (one) variable X :

J) = [} (AN + Hu)(f) ) dAA
= — /o1 (dethugv + c2( Ml + cusin(Au) + Ao?)) dA
1 Ly

2
= —2C1UV — C9 (21} + 5% — (¢ COS u)

Split the density and flux in independent pieces (for ¢; and ¢3):

2

Py = 2acosu+ v+ Uy J(1> = —U,V
1 1
P) = Ugl Joy = —21}2 — 2ui + acosu

Remark: Computation of J3y and Ji4) requires integration with
the homotopy operator!

13



Computer Demos

(1) Use continuous homotopy operator to integrate

f =34 v? sin(u) —u” sin(u) —6v v cos(u)+2u u” cos(u)+8v'v"
(2) Compute densities of rank 8 and fluxes for 5th-order Korteweg-de
Vries equation with three parameters:

up + autu, + BuzUor + Yutg, + Us, = 0

(o, B,y are nonzero constant parameters).

(3) Compute density of rank 4 and flux for sine-Gordon system:

U = v

UV = Ugy + asin(u)

14



Analogy PDEs and DDEs

Continuous Case (PDEs) | Semi-discrete Case (DDEs)

System

w, = F(u,u,, uy,, ...)

w,=F(..,u, 1,4y, upy1,...)

Conservation Law Dip+D,J =0

pn+Jn+1_Jn:0

Symmetry

D,G = F'(u)[G]

€

= a@ (u+ €GQ)|e=o = %F(un + €G)|e=0

D,G = F'(u,)[G]

Recursion Operator | D,;R + [R,F/'(u)] =0

DR+ [R,F'(u,)] =0

Table 1:

Conservation Laws and Symmetries

KdV Equation

Volterra Lattice

Equation uy = 6ul, + Usy Uy = Up (Upy1 — Up—1)
o, . o 2 _ _ 1
Densities p=u, p=1u Pn = Un, Pn = un(iun"i_ un—i—l)
_ .31 1,3
p=u’—3 P = 35Uy FUn U g1 (Un +Un g1+ Unio)
Symmetries G=u;, G=06uu, +uz; | G = uptpi1 (Uy + Ups1 + Upi2)

G =30u?u, + 20u, s,
+10uus, + usy

_unflun<un72 + Up—1 + un)

Recursion Operator

R = D2 +4u + 2u, D!

R = u,(I+ D)(u,D — D7 1u,)
(D-1) 1L

Un

Table 2:  Prototypical Examples

15




Part II: Discrete Case

Definitions (shift and total difference operators):

D is the up-shift (forward or right-shift) operator if for F,
DF, = Fn—l—l = F,

|n—>n+1

D! the down-shift (backward or left-shift) operator if
D™'F,=F,1=F,

|n—>n—1

A =D — I is the total difference operator
AF,=(D-0)F,=F,1—F,

D (up-shift operator) corresponds the differential operator D,
F, n+1 — F, n DF, n

D, F = Axr =1
F(r) — o An (set Az )

Fork>0,D*=DoDo---0oD (k times).
Similarly, D*¥ =D 'oD lo-..0 D™

Problem to be solved:

Continuous case:

Given f. Find F so that f =D, F or F=D,!f = /fd:r:
Discrete case:

Given f,. Find F}, sothat f, = AF, =F,.,—F, or F, =A"1f,.

16



Inverting the A Operator
e Given f, involving u, and v, and their shifts:
_ 2 2
fn = —Up Up41 Up — Uy T Up41 Up+2 Unt1 +Un+1 T Up43 Up+2 — Up+1 Up

e Find F), so that f, = AF,=F,., — F, or F,=A"1f,.
Invert the A operator (compute F;, by hand)

2 2
—Uy, Up,
2
Un+1
—Up Up+1 Up > Up Up+1 Up

Up+1 Up4+2 Up+1

—Un+1Un > Up41Up
TUp+2 Un+1
—Un+2 Unt1 — Un+2Unp+t1
Un+3 Un+2
e Result:
2
Fn = Uy, + Up Upt1 Up + Upt1 Up + Upy2 Uptl-
Remarks: We denote f(u,, i1, Upio, -+, Unypyp) as f(uy,).

Assume that all negative shifts have been removed via up-shifting

_ F_M2F
Replace f, = up_ov, Vi3 by fr, = D7 f, = wy Uy Uns.

17



e ‘Total Difference’ Criterion:
Discrete Euler Operator (variational derivative)
Definition (exactness):

A function f,(u,) is exact, i.e. a total difference, if there exists a
function F,(u,), such that f,, = A F}, or equivalently F,, = AL,

D is the up-shift operator.

Theorem (exactness or total difference test):

A necessary and sufficient condition for a function f,, to be exact,
i.e. a total difference, is that Egon)( fn) = 0, where £$1073 is the discrete
Euler operator (variational derivative) defined by

o - Ypr 0
tn k=0  Oupyp
= ain D7 G, ) D2<3u2+2) et Dmo(au,imo)
= 50, (&P
LY = ain (I+D '+ D24+ D)

where my is the highest forward shift (in f;,).

18



Example: Apply the discrete Euler operator to

2 2
fn(un) = —Up Un+1 Un_vn+un+1 Un 42 Un+1+vn+1+un+3 Un4+2—Un41 Up
Here u,, = (ty,, ).

For component u,, (highest shift 3):

0
o (fa) = 5 —[[+ D™ + D7+ D7(f,)
[ unﬂvn] + [—Un—lvn—1+un+1vn—vn—1]+[Un—1vn—1]+[’Un—ﬂ
=0

For component v,, (highest shift 2):

Oh) = g+ D+ D)
= [
0

UpUp41 — 2?}71 - un—i—l] + [unun—i-l + 2?}”] + [un—i-l]

19



e Computation of F,,
Definition (higher Euler operators):
The discrete higher FEuler operators are defined by

Qg mi (k:) D)

Lo = a2
These Euler operators all terminate at some maximal shifts m;.

Hn aun k=1 7

Examples (for component u,):

Ly) = ain(l +D '+ D F 4D P D)

L) = ain@l +2D 243D +4D7 . My D)

Egzn) = 8in(D2 +3D3 +6D P+ 10D 4 - - + ;m2(m2 —1)D™™2)
LY = a(zn(D_3 +4D* +10D® + 20D O + - - - + (”;3)D—m3)

Similar formulae for [,Q(JQ

20



e Definition (homotopy operator):

The discrete homotopy operator is defined by

where

Pr ‘ .
frn(u,) = ZZ()(D — I)Z[U“”E&iﬁ})]

py 1s the maximum shift of u,, in f,

N is the number of dependent variables

frn(uy)[Au,| means that in f.,(u,) one replaces u,, — Au,,

u,+1 — )\U.n+1, etc.

Example:
For a two-component system (N = 2) where w,, = (uy, vy,):

() = ()] + foaln) e}

with .
fl,n(un) => (D~ I)l[un‘cz(f,jl)}
i=0
and

f2,n(un) — %2: (D - I)Z[Unﬁfgj—l)}
i=0

Theorem (total difference via homotopy operator):

Given a function f, which is a total difference, then
F,=A"f, = H(w,)(fn)

Proof: Recent work by Mansfield and Hydon on discrete variational
bi-complexes. Proof is given in terms of differential forms.

21



Higher Euler Operators Side by Side

Continuous Case (for component )

L) = (;?u - Dfaiz * Dia@ix - Diafi),x

£l = 8395 — 2D, 8; +3D? 83393 — 4D aj@ SRR
L2 = 03230 — 3D, 653x +6D? 83@ —10D3 85595
LB = aix — 4D, 85495 +10D? 03595 —20D3 ajﬁx

Discrete Case (for component u,,)

L0 = ain(l +D ' 4D P+ D )

LY = ain(Dl +2D2 43D 44D -1
L? = a‘Zn(D2 +3D 2 +6D*+10D° +-- )
-9 (D2 +4D™* + 10D +20D % + - . .)

o Quy,

22



Homotopy Operators Side by Side

Continuous Case (for components v and v)
1 d\
H(u) = /0 {f1(0)[Au] + fo(u)[Au]} BN
with . |
fi(w) = X Dy uly )]
i=0
and

folu) = 3 DLl
7=0

Discrete Case (for components u, and v,,)

Hiw) = [} Ll D] + o) g}
with P1 ) .
fl,n(un) => (D~ I)z[un‘cz(f,jl)}

i=0
and

fon(W,) = 5 (D — 1) [, £
1=0

23



Example: Apply the discrete homotopy operator to

2 2
fn(un) = —Up Un+1 Un_vn+un+l Un 42 Un+1+vn+1+un+3 Un4+2—Un41 Up

For component u,, (highest shift 3):

)

Lo ()

(D — 1) [un Ly

D(f.)]

0
1
2

Un—1Un—1 +un+1vn+2vn—1

Up—1Vp—1+ 3Un—1

Up—1

UpUp41Vp +3Up 10, —

Un4+2Un+1 —Up4+1Up —

Up—1UpVp—1 1 UpUp41Vp+ 2unvn—1

Up—1UnUp—1— Sunvn—l
Up+1Un T UpUp—1

Hence, fi,(u,)(fn) =

For component v,, (highest shift 2):

i LET(f) (D — D)o L5V (f,)]
0| UpUpat +2fun+2un+1 unun+1vn+20n+2un+1vn
1 Unp+1 Up++2Un+1—Up+1Un

2unun—|—1vn T Up+1Up + Up+2Un+1

Hence, fln(un)(fn) = UpUp+1Vp + 27}721 + Up+1Up + Up+2Un+1

The homotopy operator leads to an integral for (one) variable .

(Use standard integration by parts to work the integral).

Fo.(u,) = /0 {fln u,)(fo)[Au,] + fo n(un)(fn)[kun]} N

dA

= /0 2)\1)” + 3)\2 UpUpi1Vn + 2 MUy 1V, + 2)\un+gvn+1] d )\

2
= v, T UpUp4+1Un + Upt1Un + Up2Unt1

24




e Application: Conserved densities and fluxes for DDEs
Definition (conservation law):

Dipn + Ady = Dipp + Jni1 — Jo =0  (on DDE)

conserved density p, and flux .J,.
Example The Toda lattice (type u, = F) :

Uy = VUp—1 — Uy

7.}n - Un(un - un+1)
has scaling symmetry

(t, U, vp) — (ATHE, Ay, A20p).

In terms of weights:
w(d) =1, wu,) = w(ups) =1, w(v,) = w(v,_1) = 2.

Conserved densities and fluxes

) = In(v,) TV = u,

P = uy, JW =,

,0%2) = %u% + v, J7§2) = UpUp_1

p3) = %u% + Up(Vp_1 + vp) JB) =, _quyv,_1 + 02,

are all scaling invariant!

25



e Algorithm for Conserved Densities and Fluxes
Example: Density of rank 3 for Toda system
Step 1. Construct the form of the density.
Pn = C1 ui + Co UpVUp—1 + C3 ULV,
where ¢; are unknown constants.
Step 2: Determine the constants c;.
Compute

dpn
B, = Dip, = ;t + 4. (u,)[F] (on DDE)

= (3c1 — cz)uivn_l + (c3 — BCl)uflvn + (e3 — c2)Up_10y

2 2
+CoUp—1URVp—1 + CU,,_1 — C3URUR+1Vy — C3V,,

Compute E, = DE,, to remove negative shift n — 1.

Since F,, = —Ajn, the expression E,, must be a total difference.
Require
0)/ 7 0 ~1 =N 0 ~1
L, (E,) = (I+D " +D*)(E, = (D+14+D7)(Ey)

(%Ln 8un

= 2(3¢1 — co)upvy_1 + 2(c3 — 3c1)unvy

+(co — €3)Up_1Vp_1 + (C2 — €3)Up110, = 0

and
LO(E,) = 21+ D) (E,) = (D +1)(E,)
Un oy, vy,
= (301 — CQ)U%JA + (€3 — C2)vps1 + (c2 — €3)UnUn i1
+2(cy — e3)vy, + (3 — 3c)u’ + (c3 — c3)vp—1 = 0.

26



Solve the linear system
S = {301 — 9 20,63—361 20,62—63 :O}

1

Solution: 3¢y =cg=c3 Choose ¢; = 3, and ¢y = ¢35 = 1.

w

Substitute in p,
1

3 n
Step 3: Compute the flux J,.

Pn = ‘l_ un(vn 1 + Un)

Apply the discrete homotopy operator!

For component u,, (highest shift 2):

)

LOD(E,) [(D=1/(uw,Li(=E,)

Un

0
1

Up—1Un—1 +un+1vn UpUp—1Un—1 +unun+1vn
Up—1Un—1 Up+1UnpUp — UpUp—-1Un—1

Hence, j1.,(u,) = 2upuns1v,

For component v,, (highest shift 1):

1

LEI(=F,) [(D — (L0 (~E,)

Un

0

UpUp11+20, UpUnUn+1 +2Un

; 2
Hence, jo,(1,) = uptpi1v, + 20;

. d\
Jo = [ Gra(w)u] + Jou(u,)Au,) 5%

= /0 (BA* U Uy 1V + 2002) dA
= UpUp+1Un + vfl.
Final Result:
J, = D_ljn = Up_1UpUp—1 + vfl_l

27



Computer Demos

(1) Use discrete homotopy operator to compute £, = A™1f, for

fn = —Up Up41 Uy — Uq% T Up+1 Up+2 Unt1 +U¢2H_1 T Up43 Upt+2 — Up+1 Up
(2) Compute density of rank 4 and flux for Toda system:

un — Un—1—Up
@n - Un(“n - un—i—l)
(3) Compute density of rank 2 for Ablowitz-Ladik system:
LUy = Up+1 — 20y + Up—1 + Kvujlun(un—i—l + un—l)
(w? is the complex conjugate of u,,).
This is an integrable discretization of the NLS equation:
g + Upy + KUPUS = 0

Take equation and its complex conjugate.
Treat u, and v, = u; as dependent variables. Absorb 7 in t:

un = Up+1 — 2un + Up—1 + unvn(un—l—l + Un—l)

@n _(Un+1 - 2Un + Un—l) - unvn(vn+1 + Un—l)-

28



Future Research

e Generalize continuous homotopy operator in multi-dimensions (z, y, z, ...).

e Problem (in three dimensions):
Given E = V-J = JM 4+ J& 4+ J©.
Find J = (JW, J@ JB),

e Application:

Compute densities and fluxes of multi-dimensional systems of PDESs
(in t, x,y, 2).

e Generalize discrete homotopy operator in multi-dimensions (n, m, ...).

29



Higher Euler Operators Side by Side

Continuous Case (for component )

L) = (;?u - Dfaiz * Dia@ix - Diafi),x

£l = 8395 — 2D, 8; +3D? 83393 — 4D aj@ SRR
L2 = 03230 — 3D, 653x +6D? 83@ —10D3 85595
LB = aix — 4D, 85495 +10D? 03595 —20D3 ajﬁx

Discrete Case (for component u,,)

L0 = ain(l +D ' 4D P+ D )

LY = ain(Dl +2D2 43D 44D -1
L? = a‘Zn(D2 +3D 2 +6D*+10D° +-- )
-9 (D2 +4D™* + 10D +20D % + - . .)

o Quy,
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Homotopy Operators Side by Side

Continuous Case (for components v and v)
1 d\
H(u) = /0 {f1(0)[Au] + fo(u)[Au]} BN
with . |
fi(w) = X Dy uly )]
i=0
and

folu) = 3 DLl
7=0

Discrete Case (for components u, and v,,)

Hiw) = [} Ll D] + o) g}
with P1 ) .
fl,n(un) => (D~ I)z[un‘cz(f,jl)}

i=0
and

fon(W,) = 5 (D — 1) [, £
1=0
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