SOLITARY WAVE SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS USING A DIRECT METHOD AND MACSYMA

1. INTRODUCTION

A. Framework and Motivation

• Solitary Wave - Soliton

Famous example: the Korteweg-de Vries equation (KdV)

$$\frac{\partial u}{\partial t} + 6u \frac{\partial u}{\partial x} + \frac{\partial^3 u}{\partial x^3} = 0,$$

$$u(x,t) = \frac{c}{2} \operatorname{sech}^2 \left[\frac{\sqrt{c}}{2} (x - ct) + \delta \right]$$

or with $c = 4k^2$

$$u(x,t) = 2k^2 \operatorname{sech}^2 \left[k(x - 4k^2t) + \delta \right]$$

- Appearance:
 - shallow water waves (channels and beaches)
 - ion-acoustic waves in plasma's
 - continuum limit of non-linear lattice (Toda lattice)
 - non-linear transmission lines (electrical circuit)
- Observations:
 - critical balance between nonlinearity and dispersion
 - no change in shape (solitary wave) or speed
 - speed \propto amplitude
 - width $\propto \frac{1}{\sqrt{\text{amplitude}}}$
 - taller waves travel faster and are narrower
 - soliton behavior upon interaction

B. Examples

• Korteweg-de Vries equation and generalizations

$$u_t + au^n u_x + u_{xxx} = 0, \quad n \in \mathbb{N}$$

$$u(x,t) = \left\{ \frac{c(n+1)(n+2)}{2a} \operatorname{sech}^{2} \left[\frac{n}{2} \sqrt{c(x-ct)} + \delta \right] \right\}^{\frac{1}{n}}$$

• Burgers equation

$$u_t + auu_x - u_{xx} = 0$$

$$u(x,t) = \frac{c}{a} \left\{ 1 - \tanh\left[\frac{c}{2}(x - ct) + \delta\right] \right\}$$

• Fisher equation and generalizations

$$u_t - u_{xx} - u(1 - u^n) = 0, \quad n \in \mathbb{N}$$

$$u(x,t) = \left\{ \frac{1}{2} \left[1 - \tanh \left[\frac{n}{2\sqrt{2n+4}} (x - \frac{(n+4)}{\sqrt{2n+4}} t) + \delta \right] \right] \right\}^{\frac{2}{n}}$$

• Fitzhugh-Nagumo equation

$$u_t - u_{rr} + u(1-u)(a-u) = 0$$

$$u(x,t) = \frac{a}{2} \left\{ 1 + \tanh \left[\frac{a}{2\sqrt{2}} \left(x - \frac{(2-a)}{\sqrt{2}} t \right) + \delta \right] \right\}$$

• Kuramoto-Sivashinski equation

$$u_t + uu_x + au_{xx} + bu_{xxxx} = 0$$

$$u(x,t) = c + \frac{165ak}{19} \left\{ \tanh^3 \left[\frac{k(x-ct)}{2} + \delta \right] \right\}$$
$$- \frac{135ak}{19} \left\{ \tanh \left[\frac{k(x-ct)}{2} + \delta \right] \right\}$$

with $k = \sqrt{\frac{11a}{19b}}$

$$u(x,t) = c - \frac{15ak}{19} \left\{ \tanh^3 \left[\frac{k(x-ct)}{2} + \delta \right] \right\}$$
$$+ \frac{45ak}{19} \left\{ \tanh \left[\frac{k(x-ct)}{2} + \delta \right] \right\}$$

with
$$k = \sqrt{\frac{-a}{19b}}$$

• Dym-Kruskal equation

$$u_t + (1 - u)^3 u_{rxx} = 0$$

$$u(x,t) = \operatorname{sech}^{2} \left[\frac{1}{2} \sqrt{c} \left[x - ct + \delta(x,t) \right] \right]$$

$$\delta(x,t) = \frac{2}{\sqrt{c}} \tanh \left[\frac{\sqrt{c}}{2} \left[x - ct + \delta(x,t) \right] \right]$$

• sine-Gordon equation

$$u_{tt} - u_{xx} - \sin u = 0$$

$$u(x,t) = 4 \arctan \left\{ \exp \left[\frac{1}{\sqrt{-c}} (x - ct) + \delta \right] \right\}$$

• Coupled Korteweg-de Vries equations

$$u_t - a(6uu_x + u_{xxx}) - 2b \ vv_x = 0,$$

 $v_t + 3uv_x + v_{xxx} = 0$

$$\begin{array}{rcl} u(x,t) & = & 2 \ c \ \mathrm{sech}^2 \left[\sqrt{c}(x-ct) + \delta \right], \\ \\ v(x,t) & = & \pm c \sqrt{\frac{-2(4a+1)}{b}} \ \mathrm{sech} \left[\sqrt{c}(x-ct) + \delta \right], \end{array}$$

$$u(x,t) = c \operatorname{sech}^{2} \left[\frac{1}{2} \sqrt{c}(x - ct) + \delta \right]$$

$$v(x,t) = \frac{3}{\sqrt{6|b|}} u(x,t) = \frac{3 c}{\sqrt{6|b|}} \operatorname{sech}^{2} \left[\frac{1}{2} \sqrt{c}(x - ct) + \delta \right]$$

C. The Direct Method

• Goal: Exact solutions

Single solitary wave or soliton solutions N-solitons Implicit solutions

• Applicable to:

Single nonlinear evolution and wave equations Systems of nonlinear PDEs Nonlinear ODEs

• Method:

Hirota's direct method Rosales' perturbation method Trace method Hereman *et al* real exponential approach Frobenius method Phase space analysis: Poincaré and Liapunov

• Requirements:

Based on physical principles Simple and straightforward Programmable in MACSYMA, REDUCE, MATHEMATICA, SCRATCHPAD II, etc.

• Publications:

- A. Korpel, Phys. Lett. **68A**, 179-181 (1979)
- W. Hereman *et al*, Wave Motion **7**, 283-290 (1985)
- W. Hereman et al, J. Phys. A: Math. & Gen. 19, 607-628 (1986)
- W. Hereman *et al*, Proc. WASDA **III**, 166-191 (1988)
- W. Hereman, Proc. Math. Phys. Soc. Egypt 57, 291-312 (1988)
- W. Hereman et al, J. Phys. A: Math. & Gen. 22, 241-255 (1989)
- W. Hereman & S. Angenent, MACSYMA Newsletter 6, 11-18 (1989)
- P. Banerjee et al, J. Phys. A: Math. & Gen. 23, 521-536 (1990)
- W. Hereman & M. Takaoka, J. Phys. A: Math. & Gen. 23, 25 pages (1990)
- M. Coffey, SIAM J. Appl. Math. **50**, 2 papers in press (1990)
- W. Hereman, Proc. IMACS, 150-153 (1990)
- W. Hereman, Special Issue Comp. Phys. Comm. 42, 10 pages, in press (1990)

2. THE ALGORITHM

• Step 1: One equation or a system of coupled nonlinear PDEs

$$\mathcal{F}(u, v, u_t, u_x, v_t, v_x, u_{tx}, ..., u_{mx}, v_{nx}) = 0,
\mathcal{G}(u, v, u_t, u_x, v_t, v_x, u_{tx}, ..., u_{px}, v_{qx}) = 0, \quad (m, n, p, q \in \mathbb{N})$$

 \mathcal{F} and \mathcal{G} are polynomials in their arguments and

$$u_t = \frac{\partial u}{\partial t}, \quad u_{nx} = \frac{\partial^n u}{\partial x^n}$$

EXAMPLE: The Korteweg-de Vries equation

$$\mathcal{F}(u, u_t, u_x, u_{3x}) = u_t + 6uu_x + u_{3x} = 0$$

- Step 2:
 - Introduce the variable $\xi = x ct$, (c is the constant velocity)
 - Integrate the system of ODEs for $\phi(\xi) \equiv u(x,t)$ and $\psi(\xi) \equiv v(x,t)$ with respect to ξ to reduce the order
 - Ignore integration constants by assuming that ϕ and ψ and their derivatives vanish at $\xi = \pm \infty$
 - Carry out a nonlinear transformation (Painlevé analysis)

$$\phi = \tilde{\phi}^{\alpha}, \quad \psi = \tilde{\psi}^{\beta}$$

EXAMPLE: KdV type ODE in ϕ

$$-c\phi_{\xi} + 6\phi\phi_{\xi} + \phi_{3\xi} = 0$$

Integrate w.r.t. ξ

$$-c\phi + 3\phi^2 + \phi_{2\xi} = 0$$

No transformation needed, $\phi = \tilde{\phi}$

• Step 3:

– Expand $\tilde{\phi}$ and $\tilde{\psi}$ in a power series

$$\tilde{\phi} = \sum_{n=1}^{\infty} a_n \ g^n, \quad \tilde{\psi} = \sum_{n=1}^{\infty} b_n \ g^n$$

- $-g(\xi) = \exp[-K(c)\xi]$ solves the linear part of at least one of the equations
- Consider the dispersion laws K(c) of (one of) the linearized equations
- Substitute the expansions into the full nonlinear system
- $-\,$ Use Cauchy's rule for multiple series to rearrange the multiple sums
- Equate the coefficient of g^n to get the coupled recursion relations for a_n and b_n

EXAMPLE:

$$g(\xi) = \exp[-K(c)\xi]$$
 solves $-c\phi + \phi_{2\xi} = 0$

if $K(c) = \sqrt{c}$ (dispersion law)

With
$$\phi = \frac{c}{3} \sum_{n=1}^{\infty} a_n g^n$$

and Cauchy's rule

$$\sum_{n=1}^{\infty} (n^2 - 1)a_n g^n + \sum_{n=2}^{\infty} \sum_{l=1}^{n-1} a_l a_{n-l} g^n = 0$$

Note that a_1 is arbitrary

Recursion relation:

$$(n^{2} - 1)a_{n} + \sum_{l=1}^{n-1} a_{l}a_{n-l} = 0 \quad (n \ge 2)$$

• Step 4:

- Assume that a_n and b_n are polynomials in n
- Determine their degrees δ_1 and δ_2
- Substitute

$$a_n = \sum_{j=0}^{\delta_1} A_j \ n^j, \quad b_n = \sum_{j=0}^{\delta_2} B_j \ n^j$$

into the recursion relations

• Compute the sums by using the formulae for

$$S_k = \sum_{i=1}^n i^k, \quad (k = 0, 1, 2, ...)$$

• Examples:

$$S_0 = n$$
, $S_1 = \frac{n(n+1)}{2}$
 $S_2 = \frac{n(n+1)(2n+1)}{6}$, etc.

- \bullet Equate to zero the coefficients of the polynomial in n
- ullet Solve the algebraic (nonlinear) equations for the constant coefficients A_j and B_j

EXAMPLE:

 a_n is of degree $\delta_1 = 1$

Substitute $a_n = A_1 n + A_0$

Use S_0, S_1 and S_2

Solve the algebraic equations for A_1 and A_0 :

$$A_0(A_1 + 1) = 0$$

$$A_1^2 + 6A_0A_1 + 6A_1 - 6A_0^2 = 0$$

$$A_0(A_1 + 1) = 0$$

$$A_1(A_1 + 6) = 0$$

Nontrivial solution: $A_1 = -6$, $A_0 = 0$

Hence, $a_n = -6 \ n \ (a_0)^n = (-1)^{n+1} \ 6 \ n \ (\frac{a_1}{6})^n$

- Step 5:
 - Find the closed forms for

$$\tilde{\phi} = \sum_{n=1}^{\infty} \sum_{j=0}^{\delta_1} A_j \, n^j \, g^n \equiv \sum_{j=0}^{\delta_1} A_j \, F_j(g)$$

$$\tilde{\psi} = \sum_{n=1}^{\infty} \sum_{j=0}^{\delta_2} B_j \ n^j \ g^n \equiv \sum_{j=0}^{\delta_2} B_j \ F_j(g)$$

with

$$F_{j}(g) \equiv \sum_{n=1}^{\infty} n^{j} g^{n}$$

 $F_{j+1}(g) = gF'_{j}(g) \quad (j = 0, 1, 2, ...)$

- Examples:

$$F_0(g) = \frac{g}{1-g}, \quad F_1(g) = \frac{g}{(1-g)^2}$$

$$F_2(g) = \frac{g(1+g)}{(1-g)^3}, \quad \text{etc.}$$

- Return to ϕ and ψ and then to the original variables x and t to obtain the travelling wave solution(s) u(x,t) and v(x,t)

EXAMPLE:

$$\phi = \frac{c}{3} \sum_{n=1}^{\infty} (-1)^{n+1} 6 n \left(\frac{a_1}{6}\right)^n g^n$$

Use $F_1 = \frac{g}{(1-g)^2}$

$$\phi = 2c \frac{ag}{\left(1 + aq\right)^2}, \quad a = \frac{a_1}{6}$$

Return to the original variables, $g = \exp[-\sqrt{c}(x - ct)]$

$$u(x,t) = \phi = \frac{c}{2} \operatorname{sech}^2 \left[\frac{\sqrt{c}}{2} (x - ct) + \delta \right]$$

where $\delta = -\ln|a| = -\ln\left|\frac{a_1}{6}\right|$

3. EXAMPLE 1: The Kuramoto-Sivashinski Equation

- Step 1:
 - Consider the KS equation in 1+1 dimension

$$u_t + uu_x + au_{2x} + bu_{4x} = 0$$

with $a, b \in \mathbb{R}$

- Step 2:
 - Introduce the variable $\xi = x ct$, c is constant
 - Replace $\phi(\xi) \equiv u(x,t)$ by $C + \tilde{\phi}$
 - Integrate the equation w.r.t. ξ

$$(C-c)\tilde{\phi} + \frac{1}{2}\tilde{\phi}^2 + a\tilde{\phi}_{\xi} + b\tilde{\phi}_{3\xi} = 0$$

- Step 3:
 - Solve the linearized equation

$$(C-c)\tilde{\psi} + a\tilde{\psi}_{\xi} + b\tilde{\phi}_{3\xi} = 0$$

for
$$\tilde{\psi} = \exp[-K(c)\xi]$$

- Dispersion relation:

$$f(K,c) = (C - c) - aK - bK^{3} = 0$$

- Since c, K(c) and C are unknowns one cannot solve for K(c)
- Rely on the physical idea and take $g = \exp[-\frac{K(c)}{s}\xi]$, where $s \in \mathbb{N}$
- Assume that the roots K_1, K_2 and K_3 are integer multiples of a common \tilde{K} , i.e. $K_1 = s_1 \tilde{K}, K_2 = s_2 \tilde{K}$ and $K_3 = s_3 \tilde{K}$
- Seek a solution of the form

$$\tilde{\phi} = \sum_{n=1}^{\infty} a_n g^n$$

- Substitute this expansion and use Cauchy's rule for multiple series

- Recursion relation:

$$[(C-c) - \frac{n}{s}Ka - (\frac{n}{s})^3bK^3]a_n + \frac{1}{2}\sum_{l=1}^{n-1}a_la_{n-l} = 0 \quad (n \ge 2)$$

with a_1 arbitrary if s = 1 and $a_1 = 0$ if $s \neq 1$

- Replace $b K^3$ from the dispersion law

$$2 \left(\frac{n}{s} - 1\right) \left\{ \left[\left(\frac{n}{s}\right)^2 + (c - C)\left(\frac{n}{s}\right) + 1 \right] + \frac{aKn}{s} \left(\frac{n}{s} + 1\right) \right\} a_n + \sum_{l=1}^{n-1} a_l a_{n-l} = 0$$

• Step 4:

- Assume that a_n is a polynomial in n
- Calculate the degree $\delta_1 = 2$ of a_n in n
- Substitute $a_n = A_2 n^2 + A_1 n + A_0$
- Apply the formulae for S_0 through S_4
- Set the six coefficients of the polynomial of degree 5 in n equal to zero
- Solve the resulting nonlinear system:

$$A_0[2(C-c) - A_0] = 0$$

$$60A_1s(C-c) - A_2^2s + 10A_0A_2s - 5A_1^2s - 30A_0A_1 s$$

$$+30A_0^2s - 60aA_0K = 0$$

$$12A_2s(C-c) - A_1A_2s - 6A_0A_2s + 6A_0A_1s - 12aA_1K = 0$$

$$12A_0(C-c) - 4A_0A_2s^3 - A_1^2s^3 + 12aA_2Ks^2 - 12aA_0K = 0$$

$$A_1[12(C-c) - A_2s^3 - 12aK] = 0$$

$$A_2[60(C-c) - A_2s^3 - 60aK] = 0$$

• Step 5:

- Find the closed form for $\tilde{\phi}$

- Use
$$F_0(g) = \frac{g}{1-g}$$
 and $F_2(g) = \frac{g(1+g)}{(1-g)^3}$

$$\tilde{\phi} = \sum_{n=1}^{\infty} (A_2 n^2 + A_0) (a_0 g)^n$$

$$= A_2 F_2(a_0 g) + A_0 F_0(a_0 g)$$

$$= A_2 \frac{g(1+a_0 g)}{(1-a_0 g)^3} + A_0 \frac{a_0 g}{(1-a_0 g)}$$

$$= \frac{1}{4} A_2 \frac{(1+a_0 g)^3}{(1-a_0 g)^3} + \frac{1}{4} (2A_0 - A_2) \frac{(1+a_0 g)}{(1-a_0 g)} - \frac{1}{2} A_0$$

- Select the constant $a_0 = -\exp(-\Delta) < 0$
- Absorb the arbitrary phase Δ into the exponential g

$$\tilde{\phi} = \frac{1}{4}A_2 \tanh^3\left(\frac{\frac{K}{s}\xi + \Delta}{2}\right) + \frac{1}{4}(2A_0 - A_2) \tanh\left(\frac{\frac{K}{s}\xi + \Delta}{2}\right) - \frac{1}{2}A_0$$

- Return to the original variables x and t

CASE 1: s = 1:

$$\phi = c + \frac{15aK}{19} \left[11 \tanh^3 \left(\frac{K\xi + \Delta}{2} \right) - 9 \tanh \left(\frac{K\xi + \Delta}{2} \right) \right]$$

where $K = \sqrt{\frac{11a}{19b}}$

CASE 2: s = 2, 3 or -5:

$$\phi = c - \frac{15a\tilde{K}}{19} \left[\tanh^3 \left(\frac{\tilde{K}\xi + \Delta}{2} \right) - 3 \tanh \left(\frac{\tilde{K}\xi + \Delta}{2} \right) \right]$$

with $\tilde{K} = \sqrt{\frac{-a}{19b}}$

4. EXAMPLE 2: The sine-Gordon Equation

- Step 1:
 - Consider the SG in light cone coordinates

$$u_{xt} = \sin(u)$$

Remove the transcendental nonlinearity and transform it into a coupled system with strictly polynomial terms

$$\Phi_{xt} - \Phi - \Phi \Psi = 0$$

$$2\Psi + \Psi^2 + \Phi_t^2 = 0$$

where $\Phi = u_x$ and $\Psi = \cos(u) - 1$

- Step 2 and 3:
 - Substitute the scaled expansions

$$\Phi(x - ct) = \phi(\xi) = \frac{1}{\sqrt{-c}} \sum_{n=1}^{\infty} a_n \ g^n(\xi)$$

$$\Psi(x - ct) = \psi(\xi) = \sum_{n=1}^{\infty} b_n g^n(\xi)$$

with
$$g(\xi) = \exp[-K(c)\xi]$$

- Use the dispersion law $K^2 = -c$ for c < 0
- Coupled recursion relations:

$$(n^2 - 1) a_n - \sum_{l=1}^{n-1} a_l b_{n-l} = 0$$

$$2 b_n + \sum_{l=1}^{n-1} [b_l b_{n-l} + l (n-l) a_l a_{n-l}] = 0$$

for $n \ge 2$, a_1 is arbitrary, $b_1 = 0$

- Step 4:
 - Solve the coupled system of the recursion relations:

$$a_{2n} = 0, \quad b_{2n} = 8 (-1)^n \ n \ a_0^{2n}, \quad n = 1, 2, \dots,$$

 $a_{2n+1} = 4 (-1)^n \ a_0^{2n+1}, \quad b_{2n+1} = 0, \quad n = 0, 1, \dots$

with
$$a_0 = a_1/4 > 0$$

- Step 5:
 - Find the closed form for ϕ and ψ
 - Use the formulae for F_0 and F_1

$$\phi = \frac{4}{\sqrt{-c}} \sum_{n=0}^{\infty} (-1)^n (a_0 g)^{2n+1} = \frac{4}{\sqrt{-c}} \frac{a_0 g}{[1 + (a_0 g)^2]}$$

$$\psi = -8 \sum_{n=1}^{\infty} (-1)^{n+1} n (a_0 g)^{2n} = \frac{-8 (a_0 g)^2}{[1 + (a_0 g)^2]^2}$$

- Return to the original variables x and t

$$\cos[u(x,t)] - 1 = 1 - 2 \operatorname{sech}^{2}\left[\frac{1}{\sqrt{-c}}(x-ct) + \delta\right]$$

$$u(x,t) = \pm \frac{2}{\sqrt{-c}} \int \operatorname{sech}\left[\frac{1}{\sqrt{-c}}(x-ct) + \delta\right] dx$$

$$= \pm 4 \arctan\left\{\exp\left[\frac{1}{\sqrt{-c}}(x-ct) + \delta\right]\right\}$$

with $\delta = \ln |4/a_1|$

5. CONSTRUCTION OF N-SOLITON SOLUTIONS

Example: The sine-Gordon Equation

• Consider the SG in light cone coordinates

$$u_{xt} = \sin(u)$$

• Transform the SG into a coupled system with polynomial terms

$$\Phi_{xt} - \Phi - \Phi \Psi = 0$$
$$2 \Psi + \Psi^2 + \Phi_t^2 = 0$$

where $\Phi = u_x$ and $\Psi = \cos(u) - 1$

Substitute

$$\Phi^{(1)} = \sum_{i=1}^{N} c_i g_i(x,t)$$
$$= \sum_{i=1}^{N} c_i a_i \exp(K_i x - \Omega_i t)$$

into the linear part of the first equation

• Dispersion law:

$$\Omega_i = -\frac{1}{K_i}, \quad i = 1, 2, ..., N$$

• Starting term in the expansion of Ψ , say $\Psi^{(2)}$, must be of the form

$$\begin{split} \Psi^{(2)} &= \sum_{i=1}^{N} \sum_{j=1}^{N} d_{ij} \ g_{i} \ g_{j} \\ &= \sum_{i=1}^{N} \sum_{j=1}^{N} d_{ij} \ a_{i} \ a_{j} \ \exp[(K_{i} + K_{j})x - (\Omega_{i} + \Omega_{j})t] \end{split}$$

so that $-2 \Psi^{(2)}$ balances

$$\Phi^{2}_{t}^{(1)} = \sum_{i=1}^{N} \sum_{j=1}^{N} c_{i} c_{j} \Omega_{i} \Omega_{j} g_{i} g_{j}$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{N} c_{i} c_{j} a_{i} a_{j} \Omega_{i} \Omega_{j} \exp[(K_{i} + K_{j})x - (\Omega_{i} + \Omega_{j})t]$$

• Use the dispersion law and find

$$d_{ij} = -\frac{1}{2} c_i c_j \Omega_i \Omega_j$$

$$= -\frac{1}{2} \frac{c_i c_j}{K_i K_j}$$

$$= \frac{1}{2} c_i c_j \frac{\Omega_i + \Omega_j}{K_i + K_j}$$

- Note that Φ (Ψ , respectively) will only have an odd (even, respectively) number of g's
- Consider the action of the linear operator

$$L\bullet = \frac{\partial^2 \bullet}{\partial x \partial t} - 1 \bullet$$

on the $(2n+1)^{\rm th}$ term in the expansion of Φ

$$\Phi^{(2n+1)} = \underbrace{\sum_{i=1}^{N} \sum_{j=1}^{N} \dots \sum_{s=1}^{N} c_{ij\dots s} g_i g_j \dots g_s}_{2n+1 \text{ summations}}$$

with $n=0,1,\dots$

• Balance with the second term, written in its most symmetric form:

$$\frac{1}{2} \sum_{l=0}^{n-1} \Phi^{(2l+1)} \underbrace{(K_i, K_j, ..., K_o)}_{2l+1 \text{ arguments}} \Psi^{(2n-2l)} \underbrace{(K_p, K_q, ..., K_s)}_{2(n-l) \text{ arguments}} + \Psi^{(2n-2l)} \underbrace{(K_i, K_j, ..., K_l)}_{2(n-l) \text{ arguments}} \Phi^{(2l+1)} \underbrace{(K_m, K_n, ..., K_s)}_{2l+1 \text{ arguments}}$$

• Similarly, from the second equation, one has

$$\begin{split} \Psi^{(2n)} &= \underbrace{\sum_{i=1}^{N} \sum_{j=1}^{N} \dots \sum_{r=1}^{N} d_{ij\dots r} \ g_{i} \ g_{j} \dots g_{r}}_{2n \text{ summations}} \\ &= -\frac{1}{2} \sum_{l=1}^{n-1} \Phi^{(2l)} \underbrace{(K_{i}, K_{j}, \dots, K_{n})}_{2l \text{ arguments}} \Psi^{(2n-2l)} \underbrace{(K_{o}, K_{p}, \dots, K_{r})}_{2(n-l) \text{ arguments}} \\ &+ \underbrace{\sum_{l=0}^{n-1} \Phi_{t}^{(2l+1)}}_{2l+1 \text{ arguments}} \underbrace{(K_{i}, K_{j}, \dots, K_{o})}_{2(n-l)-1 \text{ arguments}} \Phi_{t}^{(2n-2l-1)} \underbrace{(K_{p}, K_{q}, \dots, K_{s})}_{2(n-l)-1 \text{ arguments}} \end{split}$$

with n = 1, 2, ...

- Determine the coefficients $d_{ij...r}$
- For example, c_{ijk} is computed by equating

$$L\Phi^{(3)} = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} [-(\Omega_{i} + \Omega_{j} + \Omega_{k})(K_{i} + K_{j} + K_{k}) - 1]c_{ijk}g_{i}g_{j}g_{k}$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} (K_{i} + K_{j})(K_{j} + K_{k})(K_{k} + K_{i}) \frac{c_{ijk}}{K_{i}K_{j}K_{k}}g_{i}g_{j}g_{k}$$

to

$$\frac{1}{2} \left\{ \Phi^{(1)}(K_i) \Psi^{(2)}(K_j, K_k) + \Psi^{(2)}(K_i, K_j) \Phi^{(1)}(K_k) \right\}
= -\frac{1}{4} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} (K_i + K_j) (K_j + K_k) (K_k + K_i) \frac{c_i c_j c_k}{K_i K_j K_k} g_i g_j g_k$$

• Thus, with $c_i = 1$,

$$c_{ijk} = \frac{-1}{4(K_i + K_j)(K_j + K_k)}$$

• After some lengthy calculations, with MACSYMA, one obtains

$$c_{ij \dots s} = \frac{(-1)^n}{4^n (K_i + K_j)(K_j + K_k) \dots (K_r + K_s)}, \quad n = 0, 1, \dots$$

$$d_{ij \dots r} = \frac{-2(-1)^n (\Omega_i + \Omega_j + \dots + \Omega_r)}{4^n (K_i + K_j)(K_j + K_k) \dots (K_q + K_r)}, \quad n = 1, 2, \dots$$

• Find the closed form of

$$\begin{split} \Phi &= \sum_{n=0}^{\infty} \Phi^{(2n+1)} \\ &= \sum_{i=1}^{N} g_i + \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} (\frac{-1}{4}) \frac{g_i g_j g_k}{(K_i + K_j)(K_j + K_k)} + \dots \\ &+ \sum_{i=1}^{N} \sum_{j=1}^{N} \dots \sum_{s=1}^{N} (\frac{-1}{4})^n \frac{g_i g_j \dots g_s}{(K_i + K_j)(K_j + K_k) \dots (K_r + K_s)} + \dots \end{split}$$

- Similar expression for Ψ
- Introduce the $N \times N$ identity matrix I and the $N \times N$ matrix B with elements

$$B_{ij} = \frac{1}{2} \frac{\sqrt{a_i \ a_j}}{(K_i + K_j)} \exp\left\{ \frac{1}{2} [(K_i + K_j)x - (\Omega_i + \Omega_j)t] \right\}$$

• N-soliton solution of the SG equation is

$$\Phi(x,t) = 4 \left[\text{Tr}(\arctan B) \right]_x,
\Psi(x,t) = -2 \left\{ \ln[\det(I+B^2)] \right\}_{xt}$$

where Tr stands for trace

• Finally, with $\Phi = u_x$ one has

$$u(x,t) = \pm 4 \operatorname{Tr}(\arctan B) = \pm (\frac{2}{i}) \operatorname{Tr} \left\{ \ln \left[\frac{I+iB}{I-iB} \right] \right\}$$

• Special case: The two-soliton solution:

$$u(x,t) = 4 \arctan \left\{ \left(\frac{K_1 + K_2}{K_1 - K_2} \right) F(x,t) \right\}$$

with

$$F(x,t) = \left[\frac{\exp[K_1 x - \Omega_1 t + \delta_1] - \exp[K_2 x - \Omega_2 t + \delta_2]}{1 + \exp[(K_1 + K_2)x - (\Omega_1 + \Omega_2)t + \delta_1 + \delta_2]} \right]$$

• Figure: select $K_1 = 1, K_2 = \sqrt{2}$, thus $\Omega_1 = 1, \Omega_2 = -\frac{\sqrt{2}}{2}$, and with $\delta_1 = \delta_2 = 0$