SOLITARY WAVE SOLUTIONS
OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
USING A DIRECT METHOD AND MACSYMA

1. INTRODUCTION

A. Framework and Motivation

e Solitary Wave - Soliton
Famous example: the Korteweg-de Vries equation (KdV)

ot “ax ox3

u(z,t) = g sech? [\f@ —ct) + 51

or with ¢ = 4k*
u(z,t) = 2k* sech® {k(m — 4k*t) + 6}

e Appearance:

- shallow water waves (channels and beaches)

- ion-acoustic waves in plasma’s

- continuum limit of non-linear lattice (Toda lattice)
- non-linear transmission lines (electrical circuit)

e Observations:

- critical balance between nonlinearity and dispersion
- no change in shape (solitary wave) or speed

- speed o< amplitude

- width L

4/ amplitude

- taller waves travel faster and are narrower
- soliton behavior upon interaction



B. Examples
e Korteweg-de Vries equation and generalizations

Uy + au" Uy + Uppr =0, n €N

3=

cn+1)(n+2)

u(z, t) = { » sech? g\/E(x —ct) + 5} }

e Burgers equation

U + QUUE — Uy = 0

u(z,t) = ¢ {1 — tanh [g(x —ct) + (5]}

a

e Fisher equation and generalizations

U — Uy —u(l—u") =0, nelN

u(a,t) = {; [1 — tanh [z\/;zﬂ(x _ \(/%t) +5H }

e Fitzhugh-Nagumo equation

Up — Ugz +u(l —u)(a—u) =0

u(z, t) =

{1 + tanh l2j§(x - (2\;;)75) + 5] }
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e Kuramoto-Sivashinski equation

u(z,t)
with k = %‘g
u(z,t)
with k& = /¢
e Dym-Kruskal equation
u(z,t)
d(z,t)

e sine-Gordon equation

u(z,t) = 4arctan {exp [

= C+

Ut + UUy + AUz + buacac:cx =0

1655k { tanh3 [k(w 2— ct) n 5]}

1

135ak k(x — ct)
Y

B 15ak 3 | k(x —ct)
= ¢c— 15 {tanh [2 +51}

45ak k(x — ct)
+ 19 {tanh[Q—l—(S]}

w4 (1 — u)?’uzm =0

= sech? B\/E [z —ct + 5(1’775)]]

ve

— jétanhl 5 [x—ct+5($,f)]]

Upp — Ugy — SINU = 0

1_ (x—ct)—i—é]}

y



e Coupled Korteweg-de Vries equations

wp — a(6uty, + Uggy) — 2b vv, =0,

Vs + UV, + Vppy = 0

u(z,t) = 2 csech’ {\/E(x —ct) + (5} ,

—2(4a +1)

v(z,t) = =c 7

sech {\/E(x —ct)+ 6} ,




C. The Direct Method

e Goal: Exact solutions

Single solitary wave or soliton solutions
N-solitons
Implicit solutions

e Applicable to:

Single nonlinear evolution and wave equations
Systems of nonlinear PDEs
Nonlinear ODEs

e Method:

Hirota’s direct method

Rosales’ perturbation method

Trace method

Hereman et al real exponential approach
Frobenius method

Phase space analysis: Poincaré and Liapunov

e Requirements :

Based on physical principles
Simple and straightforward
Programmable in MACSYMA, REDUCE,
MATHEMATICA, SCRATCHPAD II, etc.
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2. THE ALGORITHM
e Step 1: One equation or a system of coupled nonlinear PDEs

f(uavautauwuvtyvxautx;-u,umxavn:p) — 07

Q(u, UV, Uty Ugy Uty Vg Uggy -y upza qu) = 07 (m> n,p,q € ]N>
F and G are polynomials in their arguments and

ou o"u

Uy = Ea Ung = O

EXAMPLE: The Korteweg-de Vries equation

F(w, wg, Uy, Uy ) = Up + 6uly + uze =0

e Step 2:

— Introduce the variable £ =z — ¢t , (c is the constant velocity)

— Integrate the system of ODEs for ¢(§) = w(z,t) and ¥(&) = v(x,t) with respect to £ to reduce the
order

— Ignore integration constants by assuming that ¢ and 1 and their derivatives vanish at £ = +o0

— Carry out a nonlinear transformation (Painlevé analysis)

=9 =1



EXAMPLE: KdV type ODE in ¢

e + Bde + dac = 0

Integrate w.r.t. &

—cp+ 3¢° + e = 0

No transformation needed, ¢ = ¢

e Step 3:

— Expand ¢ and ¢ in a power series

g(&) = exp[—K(c)&] solves the linear part of at least one of the equations
— Consider the dispersion laws K (c) of (one of) the linearized equations

— Substitute the expansions into the full nonlinear system

Use Cauchy’s rule for multiple series to rearrange the multiple sums

— Equate the coefficient of ¢" to get the coupled recursion relations for a,, and b,



EXAMPLE:
g(§) = exp[—K(c)§] solves —cp + poe =0
if K(c)=+/c (dispersion law)
With gb:% S an g
n=1

and Cauchy’s rule

00 oo n—1
> =Dan ¢"+ D> wa, g" =0
n=1 n=2 [=1

Note that a; is arbitrary

Recursion relation:

n—1
(n* —1a, + Z aa,—; =0 (n>2)
=1

e Step 4:

— Assume that a,, and b, are polynomials in n
— Determine their degrees 9; and d,

— Substitute
01 A 02 _
an:ZAjnJ, bn:ZBjn]
=0 =0

into the recursion relations

e Compute the sums by using the formulae for



e Examples:

So=n, g ="+l
2
s, — n(n + 1)6(2n + 1)7 ot

e Equate to zero the coefficients of the polynomial in n

e Solve the algebraic (nonlinear) equations for the constant coefficients A; and B;

EXAMPLE:

a, is of degree 6; =1

Substitute a,, = A1n + Ap

Use Sg, S1 and S5

Solve the algebraic equations for A; and Ag:

AO(Al + 1) = 0

A2+ 640A; + 64, —64,2=0
AO(Al + 1) - O
A1 (Al + 6) = 0

Nontrivial solution: A; = —6, Ay =0

Hence, a, = —6n (ap)" = (—=1)"" 6 n (2)"



e Step 5:

— Find the closed forms for

5 oo 01
o = ZZA n g" _ZA Fi(g
n=1 j=0
5 oo 02
o= DY Bjng" _ZB Fi(g
n=1 j=0
with
Fi(g) = Y n'g"
n=1
Fin(g) = gFj(g) (j=0,1,2,..)
— Examples:
g g
F = F et
g(1+g)
F: = tc.

— Return to ¢ and ¢ and then to the original variables x and ¢ to obtain the travelling wave solution(s)
u(z,t) and v(z,t)

EXAMPLE:
C & n a\" ,
d=32 (=) 6n (L) g
n=1
Use F} = 99)2
ag a
=2c——, a=—
¢ (1+ag)® 6

Return to the original variables, g = exp[—+/c(x — ct)]

u(z,t) = ¢ = gsech2 [\f(x —ct) + (5]

where 0 = —In |a| = —1n|%1|



3. EXAMPLE 1: The Kuramoto-Sivashinski Equation

e Step 1:

— Consider the KS equation in 1 + 1 dimension
Up + Uy + AUy + bugy = 0

with a,b € R

e Step 2:
— Introduce the variable & = x — ct, ¢ is constant

— Replace ¢(€) = u(z,t) by C + ¢

— Integrate the equation w.r.t. &

(C—c)p + ;& + age + bpse = 0

e Step 3:

— Solve the linearized equation . 3 3
(O - C)l/) + (lwg + b¢3§ =0
for 0 = exp[~ K (0)¢]

— Dispersion relation:

f(K,c)=(C—c)—aK —bK*>=0
— Since ¢, K(c) and C' are unknowns one cannot solve for K (c)
— Rely on the physical idea and take g = exp[—@{], where s € IN

— Assume that Ehe roots K1, Ky and K3 are integer multiples of a common f(, ie. K= slf(, Ky = SQK
and K3 = s3 K

— Seek a solution of the form

(Z; = Z angn
n=1

— Substitute this expansion and use Cauchy’s rule for multiple series



— Recursion relation:

(C =)= “Ka— (%

S

n
S

n—1

1
*oK3a, + 5 > e, =0 (n>2)
=1

with a; arbitrary if s =1 and a; =01if s # 1

— Replace b K? from the dispersion law

2

2 (=D + (- o)

S

n—1

+ > @a, =0

=1

S

e Step 4:

— Assume that a,, is a polynomial in n
— Calculate the degree 6; = 2 of a,, in n
— Substitute a,, = Asn? + Ayn + Ay

— Apply the formulae for Sy through S

Solve the resulting nonlinear system:

Set the six coefficients of the polynomial of degree 5 in n equal to zero

Ap2(C —¢) — Ag] =

601418(0 - C) - A22S + 10140_/428 - 5A128— 30AOA1 S

+30A40%s — 60a Ao K

121428(0 — C) — AlAQS — 6AOA28 + 6A0A18 — 12@A1K =
12A0(C — ¢) — 4AgAys® — A)%s* + 12aA,Ks* — 12a 40K =

e Step 5:
— Find the closed form for ¢

A[12(C = ¢) — Aps® — 12aK] =
A3[60(C — ¢) — Ays® — 60a K]

o O O o O



—g (1—-9)?
5 = 3o (dan? + Ao)(ag)"

n=1

= AQFQ(G()Q) + AOFO(CLOg)

_ 4,90 ta0g) o aog

(1—&09)3 O(l_aﬂg)

1 (1+apg)® 1 (1+ag) 1

— A —(240— A — ;4
4 2(1—CL09)3+ (240 2)(1_a09) 27"

— Select the constant ag = —exp(—A) <0
— Absorb the arbitrary phase A into the exponential g

-1 s Ee+ Ay 1 Be+Ay 1
¢ = | Astanh <T> + (240 - Ap)tanh(==—=) — 540
— Return to the original variables x and ¢
CASE 1: s=1:
15a K K+ A K+ A
$=c+ ba {11 tanh?’(f;) -9 tanh( £+ )]
where K = %
CASE 2: s=2,3 or —5:
154K s KE+A K¢+ A
6= c— = tant ) = 3 tanh(=2"2)



4. EXAMPLE 2: The sine-Gordon Equation
e Step 1:
— Consider the SG in light cone coordinates
Uy = sin(u)

— Remove the transcendental nonlinearity and transform it into a coupled system with strictly polyno-
mial terms

by —P—dV = 0
2V 4+ U2 +d7 = 0

where ® = u, and ¥ = cos(u) — 1

e Step 2 and 3:
— Substitute the scaled expansions
1 oo

Ve > an g"(8)

n=1

Oz —ct) = o(§) =

Ule—ct) = V(E) =3 by g"(©)

with g(£) = exp[—K(c)¢]
— Use the dispersion law K% = —c for ¢ < 0

— Coupled recursion relations:

n—1
(n*—1) a, — Zal bp_y = 0
=1
n—1
2 bn + Z[bl bn_l +l (n - l) ay an_l] =0

=1

for n > 2, ay is arbitrary, by =0



e Step 4:

— Solve the coupled system of the recursion relations:

Aoy = O, bgn:8(—1)”na02", n = 1,2,... s
Aon+1 = 4 (_1)n a02n+17 b2n+1 = 07 n = 07 ]-7

with ag = a;/4 >0
e Step 5:

— Find the closed form for ¢ and v
— Use the formulae for Fy and F}

yr n__—8 (a0 g)?
v Z = 1
— Return to the original variables x and ¢
cosfu(z,t)) —1 = 1-2 sech2[\/_(ac —ct) + 9]
u(z,t) = \/_ sech| ! a:—ct)+5]d
1

-1

= =44 arctan {exp[

(x — ct) +6]}

with § = In|4/a|



5. CONSTRUCTION OF N-SOLITON SOLUTIONS

Example: The sine-Gordon Equation

e Consider the SG in light cone coordinates

Uy = sin(u)
Transform the SG into a coupled system with polynomial terms

Py —P—dVY = 0
20+ U2+ @7 =

where ® = u, and ¥ = cos(u) — 1

Substitute
N
o = ZCi gi(z,1)
N
= Z ¢ a; exp(Kyx — Q;t)
i=1

into the linear part of the first equation

Dispersion law:

Starting term in the expansion of ¥, say ¥(? must be of the form

N N

v = 3N dijaig
i=1j=1
N N

= szw a; a; expl[(IG+K;)r—(;+Q,)t]
i=1j—=1
so that —2 U@ balances
. N N
(th( ) ZZC c; Qi gi g

@
Il
i
.
Il
i

I
e
Mz

@
I

—
.
I

—

cicja;a; 2 Q; expl(Ki+Kj)x

—(i+8;)t]



e Use the dispersion law and find

dij = —; ci cj S §)
I ¢c

2 K, K

1 Q4 Q;

2% R K,

e Note that ® (U, respectively) will only have an odd (even, respectively) number of ¢'s

e Consider the action of the linear operator
0%

T ozot Le

Le

on the (2n + 1) term in the expansion of ®

N N N
O =3NNS s 90 g - s

i=1j=1 s=1

2n-+1 summations

withn =0,1,...

e Balance with the second term, written in its most symmetric form:

N[

n—1
ST OCH(K; K, K) WO (K K, LK)
=0 2l+1 arguments 2(n—1) arguments

+oUenN (KK LK) O (K, K, K)

2(n—I1) arguments 2l+1 arguments



e Similarly, from the second equation, one has

N N N
Uem = SN S dijer G5 5 e G

i=1j5=1 r=1

= 5 ST (K K, . Ky) OO (K, K, LK)

2l arguments 2(n—I1) arguments

+ Zcb@l“ Ki, K, ..., Ko)®, "2V (K, K, ..., K,)

2[+1 arguments 2(n—1)—1 arguments

withn =1,2, ...
e Determine the coefficients d;;

e For example, ¢;j, is computed by equating

N N N
= S S S KA K (K K) (K ) 25— g9,
i=1 j=1 k=1 P K K; K7

to

! fji i(K ) (K4 K ) (Kt K)ot
= - i j j k)L i) 7 7 1 Y9959k
4 i=1j=1k=1 ! ’ K; Kj K, ’
e Thus, with ¢; =1,
-1
Ciik —
A(K + K (K + K
e After some lengthy calculations, with MACSYMA, one obtains
1"
Cij..s = ( ) s TL_O,L
(K + Kj)(K; + Ky) ... (K, + Kj)
=2(=1D)"(% + Qi + ... +9Q,
dy . — D"+ + . +8) n=12.

4"(K; + Kj)(K; + Ky) ... (K,+ K,)’



e [ind the closed form of

)

e Similar expression for ¥

ANELRELE | 9i 9j 9k
Zgi+ZZZ(T)(Ki+Kj)(Kj+Kk) e

N N _qn 9i9;j -+ s
ZZ(T) (Ki+Kj)(Kj+Kk)...(Kr+Ks>

e Introduce the N x N identity matrix I and the N x N matrix B with elements

By = 5 e { (K K)o — (049,

(K + Kj)

e N-soliton solution of the SG equation is

where Tr stands for trace

¢(z,t) = 4 [Tr(arctan B)|_,
U(z,t) = —2 {ln[det(IJrBZ)]}x

t

e Finally, with & = u, one has

u(x,t) = +4 Tr(arctan B) = ﬂ:(z) Tr {ln [I + zB”

?

e Special case: The two-soliton solution:

with

P = |

K+ K
u(z,t) = 4 arctan { <Kith> F(x, t)}

exp| K1z — Ot + 1] — exp[Kax — Qo + 0]
1 -+ exp[(Kl —+ KQ){I? — (Ql + Qg)t + 51 -+ 52]

e Figure: select K3 =1, Ky = /2, thus Q1 = 1,0, = —%, and with 6; =9, =0

+ ..



