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• Purpose

Design and implement algorithms to compute polynomial conservation

laws and symmetries for nonlinear systems of evolution equations and

differential-difference equations

• Motivation

– Conservation laws describe the conservation of fundamental

physical quantities such as linear momentum and energy.

Compare with constants of motion (first integrals) in mechanics

– For nonlinear PDEs and DDEs, the existence of a sufficiently large

(in principal infinite) number of conservation laws and symmetries

assures complete integrability

– Conservation laws provide a simple and efficient method to study

both quantitative and qualitative properties of equations and

their solutions, e.g. Hamiltonian structures

– Conservation laws can be used to test numerical integrators

– Symmetries can be used to build new integrable equations
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PART I: Evolution Equations

• Conservation Laws for PDEs

Consider a single nonlinear evolution equation

ut = F(u, ux, u2x, ..., unx)

or a system of N nonlinear evolution equations

ut = F(u,ux, ...,unx)

where u = [u1, . . . , uN ]T and

ut
def=

∂u

∂t
, u(n) = unx

def=
∂nu

∂xn

All components of u depend on x and t

Conservation law:

Dtρ + DxJ = 0

ρ is the density, J is the flux

Both are polynomial in u, ux, u2x, u3x, ...

Consequently

P =
∫ +∞
−∞ ρ dx = constant

if J vanishes at infinity
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• The Euler Operator (calculus of variations)

Useful tool to verify if an expression is a total derivative

Theorem:

If

f = f (x, y1, . . . , y
(n)
1 , . . . , yN , . . . , y

(n)
N )

then

Ly(f ) ≡ 0

if and only if

f = Dxg

where

g = g(x, y1, . . . , y
(n−1)
1 , . . . , yN , . . . , y

(n−1)
N )

Notations:

y = [y1, . . . , yN ]T

Ly(f ) = [Ly1(f ), . . . ,LyN
(f )]T

0 = [0, . . . , 0]T

(T for transpose)

and Euler Operator:

Lyi
=

∂

∂yi
− d

dx
(

∂

∂yi
′) +

d2

dx2
(

∂

∂yi
′′) + · · · + (−1)n

dn

dxn
(

∂

∂yi
(n)

)
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• Example: Korteweg-de Vries (KdV) equation

ut + uux + u3x = 0

Conserved densities:

ρ1 = u, (u)t + (
u2

2
+ u2x)x = 0

ρ2 = u2, (u2)t + (
2u3

3
+ 2uu2x − ux

2)x = 0

ρ3 = u3 − 3ux
2,

(
u3−3ux

2
)
t
+

3

4
u4−6uux

2+3u2u2x+3u2x
2−6uxu3x


x

= 0

...

ρ6 = u6 − 60u3ux
2 − 30ux

4 + 108u2u2x
2

+
720

7
u2x

3 − 648

7
uu3x

2 +
216

7
u4x

2, ...... long ......

...

Note: KdV equation and conservation laws are invariant under

dilation (scaling) symmetry

(x, t, u) → (λx, λ3t, λ−2u)

u and t carry the weights of 2 and 3 derivatives with respect to x

u ∼ ∂2

∂x2
,

∂

∂t
∼ ∂3

∂x3
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• Key Steps of the Algorithm

1. Determine weights (scaling properties) of variables & parameters

2. Construct the form of the density (building blocks)

3. Determine the unknown constant coefficients

• Example: KdV equation

ut + uux + u3x = 0

Compute the density of rank 6

(i) Compute the weights by solving a linear system

w(u) + w(
∂

∂t
) = 2w(u) + w(x) = w(u) + 3w(x)

With w(x) = 1, w( ∂
∂t) = 3, w(u) = 2.

Thus, (x, t, u) → (λx, λ3t, λ−2u)

(ii) Take all the variables, except ( ∂
∂t), with positive weight and list all

possible powers of u, up to rank 6 : [u, u2, u3]

Introduce x derivatives to ‘complete’ the rank

u has weight 2, introduce ∂4

∂x4

u2 has weight 4, introduce ∂2

∂x2

u3 has weight 6, no derivatives needed
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Apply the derivatives and remove terms that are total derivatives with

respect to x or total derivative up to terms kept earlier in the list

[u4x] → [ ] empty list

[ux
2, uu2x] → [ux

2] since uu2x = (uux)x − ux
2

[u3] → [u3]

Combine the building blocks: ρ = c1u
3 + c2ux

2

(iii) Determine the coefficients c1 and c2

1. Compute Dtρ = 3c1u
2ut + 2c2uxuxt

2. Replace ut by −(uux + u3x) and uxt by −(uux + u3x)x

3. Apply the Euler operator or integrate by parts

Dtρ =−[
3

4
c1u

4−(3c1−c2)uu2
x + 3c1u

2u2x−c2u2x
2+ 2c2uxu3x]x

−(3c1 + c2)ux
3

4. The non-integrable term must vanish. Thus, c1 = −1
3c2.

Set c2 = −3, hence, c1 = 1

Result:

ρ = u3 − 3ux
2

Expression [. . .] yields

J =
3

4
u4 − 6uux

2 + 3u2u2x + 3u2x
2 − 6uxu3x
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• Example: Boussinesq equation

utt − u2x + 3uu2x + 3ux
2 + αu4x = 0

with nonzero parameter α. Can be written as

ut + vx = 0

vt + ux − 3uux − αu3x = 0

The terms ux and α u3x are not uniform in rank

Introduce auxiliary parameter β with weight.

Replace the system by

ut + vx = 0

vt + βux − 3uux − αu3x = 0

The system is invariant under the scaling symmetry

(x, t, u, v, β) → (λx, λ2t, λ−2u, λ−3v, λ−2β)

Hence

w(u) = 2, w(β) = 2, w(v) = 3 and w(
∂

∂t
) = 2

or

u ∼ β ∼ ∂2

∂x2
, v ∼ ∂3

∂x3
,

∂

∂t
∼ ∂2

∂x2

Form ρ of rank 6

ρ = c1 β2u + c2 βu2 + c3 u3 + c4 v2 + c5 uxv + c6 u2
x

Compute the ci. At the end set β = 1

ρ = u2 − u3 + v2 + αu2
x

which is no longer uniform in rank!
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• Application: A Class of Fifth-Order Evolution Equations

ut + αu2ux + βuxu2x + γuu3x + u5x = 0

where α, β, γ are nonzero parameters, and u ∼ ∂2

∂x2

Special cases:

α = 30 β = 20 γ = 10 Lax

α = 5 β = 5 γ = 5 Sawada− Kotera

α = 20 β = 25 γ = 10 Kaup−Kupershmidt

α = 2 β = 6 γ = 3 Ito

Under what conditions for the parameters α, β and γ does this equation

admit a density of fixed rank?

– Rank 2:

No condition

ρ = u

– Rank 4:

Condition: β = 2γ (Lax and Ito cases)

ρ = u2
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– Rank 6:

Condition:

10α = −2β2 + 7βγ − 3γ2

(Lax, SK, and KK cases)

ρ = u3 +
15

(−2β + γ)
ux

2

– Rank 8:

1. β = 2γ (Lax and Ito cases)

ρ = u4 − 6γ

α
uux

2 +
6

α
u2x

2

2. α = −2β2−7βγ−4γ2

45 (SK, KK and Ito cases)

ρ = u4 − 135

2β + γ
uux

2 +
675

(2β + γ)2
u2x

2

– Rank 10:

Condition:

β = 2γ

and

10α = 3γ2

(Lax case)

ρ = u5 − 50

γ
u2ux

2 +
100

γ2
uu2x

2 − 500

7γ3
u3x

2
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What are the necessary conditions for the parameters α, β and γ for

this equation to admit infinitely many polynomial conservation laws?

– If α = 3
10γ

2 and β = 2γ then there is a sequence

(without gaps!) of conserved densities (Lax case)

– If α = 1
5γ

2 and β = γ then there is a sequence

(with gaps!) of conserved densities (SK case)

– If α = 1
5γ

2 and β = 5
2γ then there is a sequence

(with gaps!) of conserved densities (KK case)

– If

α = −2β2 − 7βγ + 4γ2

45
or

β = 2γ

then there is a conserved density of rank 8

Combine both conditions: α = 2γ2

9 and β = 2γ (Ito case)

11



PART II: Differential-difference Equations

• Conservation Laws for DDEs

Consider a system of DDEs, continuous in time, discretized in space

u̇n = F(...,un−1,un,un+1, ...)

un and F are vector dynamical variables

Conservation law :

ρ̇n = Jn − Jn+1

ρn is the density, Jn is the flux

Both are polynomials in un and its shifts

d

dt
(
∑
n

ρn) =
∑
n

ρ̇n =
∑
n

(Jn − Jn+1)

If Jn is bounded for all n, with suitable boundary or periodicity con-

ditions
∑
n

ρn = constant

• Definitions

Define: D shift-down operator, U shift-up operator

Dm = m|n→n−1 Um = m|n→n+1

For example,

Dun+2vn = un+1vn−1 Uun−2vn−1 = un−1vn
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Compositions of D and U define an equivalence relation

All shifted monomials are equivalent, e.g.

un−1vn+1 ≡ un+2vn+4 ≡ un−3vn−1

Use equivalence criterion:

If two monomials, m1 and m2, are equivalent, m1 ≡ m2, then

m1 = m2 + [Mn −Mn+1]

for some polynomial Mn

For example, un−2un ≡ un−1un+1 since

un−2un = un−1un+1 +[un−2un−un−1un+1] = un−1un+1 +[Mn−Mn+1]

with Mn = un−2un

Main representative of an equivalence class; the monomial with label

n on u (or v)

For example, unun+2 is the main representative of the class with ele-

ments un−1un+1, un+1un+3, etc.

Use lexicographical ordering to resolve conflicts

For example, unvn+2 (not un−2vn) is the main representative of the

class with elements un−3vn−1, un+2vn+4, etc.

13



• Algorithm: Toda Lattice

mÿn = a[e(yn−1−yn) − e(yn−yn+1)]

Take m = a = 1 (scale on t), and set un = ẏn, vn = e(yn−yn+1)

u̇n = vn−1 − vn, v̇n = vn(un − un+1)

Simplest conservation law (by hand):

u̇n = ρ̇n = vn−1 − vn = Jn − Jn+1 with Jn = vn−1

First pair:

ρ(1)
n = un, J (1)

n = vn−1

Second pair:

ρ(2)
n = 1

2un
2 + vn, J (2)

n = unvn−1

Key observation: The DDE and the two conservation laws,

ρ̇n = Jn − Jn+1, with

ρ(1)
n = un, J (1)

n = vn−1

ρ(2)
n = 1

2un
2 + vn, J (2)

n = unvn−1

are invariant under the scaling symmetry

(t, un, vn) → (λt, λ−1un, λ
−2vn)

Dimensional analysis:

un corresponds to one derivative with respect to t

For short, un ∼ d
dt, and similarly, vn ∼ d2

dt2
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Our algorithm exploits this symmetry to find conserved densities:

1. Determining the weights

2. Constructing the form of density

3. Determining the unknown coefficients

• Step 1: Determine the weights

The weight , w, of a variable is equal to the number of derivatives with

respect to t the variable carries.

Weights are positive, rational, and independent of n.

Requiring uniformity in rank for each equation

u̇n = vn−1 − vn, v̇n = vn(un − un+1)

allows one to compute the weights of the dependent variables.

Solve the linear system

w(un) + w(
d

dt
) = w(vn)

w(vn) + w(
d

dt
) = w(vn) + w(un)

Set w( d
dt) = 1, then w(un) = 1, and w(vn) = 2

which is consistent with the scaling symmetry

(t, un, vn) → (λt, λ−1un, λ
−2vn)
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• Step 2: Construct the form of the density

The rank of a monomial is the total weight of the monomial.

For example, compute the form of the density of rank 3

List all monomials in un and vn of rank 3 or less:

G={un
3, un

2, unvn, un, vn}

Next, for each monomial in G, introduce enough t-derivatives, so that

each term exactly has weight 3. Use the DDE to remove u̇n and v̇n

d0

dt0
(un

3) = un
3,

d0

dt0
(unvn) = unvn,

d

dt
(un

2) = 2unvn−1 − 2unvn,
d

dt
(vn) = unvn − un+1vn,

d2

dt2
(un) = un−1vn−1 − unvn−1 − unvn + un+1vn

Gather the resulting terms in a set

H = {un
3, unvn−1, unvn, un−1vn−1, un+1vn}

Identify members of the same equivalence classes and replace them by

the main representatives.

For example, since unvn−1 ≡ un+1vn both are replaced by unvn−1.

H is replaced by

I = {un
3, unvn−1, unvn}

containing the building blocks of the density.

Form a linear combination of the monomials in I

ρn = c1 un
3 + c2 unvn−1 + c3 unvn

with constant coefficients ci
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• Step 3: Determine the unknown coefficients

Require that the conservation law, ρ̇n = Jn − Jn+1, holds

Compute ρ̇n and use the equations to remove u̇n and v̇n.

Group the terms

ρ̇n = (3c1 − c2)un
2vn−1 + (c3 − 3c1)un

2vn + (c3 − c2)vn−1vn

+c2un−1unvn−1 + c2vn−1
2 − c3unun+1vn − c3vn

2

Use the equivalence criterion to modify ρ̇n

Replace un−1unvn−1 by unun+1vn + [un−1unvn−1 − unun+1vn].

The goal is to introduce the main representatives. Therefore,

ρ̇n = (3c1 − c2)un
2vn−1 + (c3 − 3c1)un

2vn

+(c3 − c2)vnvn+1 + [(c3 − c2)vn−1vn − (c3 − c2)vnvn+1]

+c2unun+1vn + [c2un−1unvn−1 − c2unun+1vn]

+c2vn
2 + [c2vn−1

2 − c2vn
2]− c3unun+1vn − c3vn

2

Group the terms outside of the square brackets and move the pairs

inside the square brackets to the bottom. Rearrange the latter terms

so that they match the pattern [Jn − Jn+1]. Hence,

ρ̇n = (3c1 − c2)un
2vn−1 + (c3 − 3c1)un

2vn

+(c3 − c2)vnvn+1 + (c2 − c3)unun+1vn + (c2 − c3)vn
2

+[{(c3 − c2)vn−1vn + c2un−1unvn−1 + c2vn−1
2}

−{(c3 − c2)vnvn+1 + c2unun+1vn + c2vn
2}]
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The terms inside the square brackets determine:

Jn = (c3 − c2)vn−1vn + c2un−1unvn−1 + c2vn−1
2

The terms outside the square brackets must vanish, thus

S = {3c1 − c2 = 0, c3 − 3c1 = 0, c2 − c3 = 0}

The solution is 3c1 = c2 = c3. Choose c1 = 1
3, thus c2 = c3 = 1

ρn = 1
3 un

3 + un(vn−1 + vn), Jn = un−1unvn−1 + vn−1
2

Analogously, conserved densities of rank ≤ 5:

ρ(1)
n = un, ρ(2)

n = 1
2un

2 + vn

ρ(3)
n = 1

3un
3 + un(vn−1 + vn)

ρ(4)
n = 1

4un
4 + un

2(vn−1 + vn) + unun+1vn + 1
2vn

2 + vnvn+1

ρ(5)
n = 1

5un
5 + un

3(vn−1 + vn) + unun+1vn(un + un+1)

+unvn−1(vn−2 + vn−1 + vn) + unvn(vn−1 + vn + vn+1)
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• Application: A parameterized Toda lattice

u̇n = α vn−1 − vn, v̇n = vn (β un − un+1)

α and β are nonzero parameters. The system is integrable if α = β = 1

Compute the compatibility conditions for α and β, so that there is a

conserved densities of, say, rank 3.

In this case, we have S:

{3αc1−c2 = 0, βc3−3c1 = 0, αc3−c2 = 0, βc2−c3 = 0, αc2−c3 = 0}

A non-trivial solution 3c1 = c2 = c3 will exist iff α = β = 1

Analogously, the parameterized Toda lattice has density

ρ(1)
n = un of rank 1 if α = 1

and density

ρ(2)
n = β

2un
2 + vn of rank 2 if α β = 1

Only when α = β = 1 will the parameterized system have conserved

densities of rank ≥ 3
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• Example: Nonlinear Schrödinger (NLS) equation

Ablowitz and Ladik discretization of the NLS equation:

i u̇n = un+1 − 2un + un−1 + u∗nun(un+1 + un−1)

where u∗n is the complex conjugate of un.

Treat un and vn = u∗n as independent variables, add the complex con-

jugate equation, and absorb i in the scale on t

u̇n = un+1 − 2un + un−1 + unvn(un+1 + un−1)

v̇n = −(vn+1 − 2vn + vn−1)− unvn(vn+1 + vn−1)

Since vn = u∗n, w(vn) = w(un).

No uniformity in rank! Circumvent this problem by introducing an

auxiliary parameter α with weight,

u̇n = α(un+1 − 2un + un−1) + unvn(un+1 + un−1)

v̇n = −α(vn+1 − 2vn + vn−1)− unvn(vn+1 + vn−1).

Uniformity in rank requires that

w(un) + 1 = w(α) + w(un) = 2w(un) + w(vn) = 3w(un)

w(vn) + 1 = w(α) + w(vn) = 2w(vn) + w(un) = 3w(vn)

which yields

w(un) = w(vn) =
1

2
, w(α) = 1
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Uniformity in rank is essential for the first two steps of the algorithm.

After Step 2, you can already set α = 1.

The computations now proceed as in the previous examples

Conserved densities:

ρ(1)
n = c1unvn−1 + c2unvn+1

ρ(2)
n = c1(

1
2un

2vn−1
2 + unun+1vn−1vn + unvn−2)

+ c2(
1
2un

2vn+1
2 + unun+1vn+1vn+2 + unvn+2)

ρ(3)
n = c1[

1
3un

3vn−1
3

+unun+1vn−1vn(unvn−1 + un+1vn + un+2vn+1)

+unvn−1(unvn−2 + un+1vn−1)

+unvn(un+1vn−2 + un+2vn−1) + unvn−3]

+ c2[
1
3un

3vn+1
3

+unun+1vn+1vn+2(unvn+1 + un+1vn+2 + un+2vn+3)

+unvn+2(unvn+1 + un+1vn+2)

+unvn+3(un+1vn+1 + un+2vn+2) + unvn+3]
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• Scope and Limitations of Algorithm & Software

– Systems of PDEs or DDEs must be polynomial in dependent vari-

ables

– Only one space variable (continuous x for PDEs, discrete n for

DDEs) is allowed

– No terms should explicitly depend on x and t for PDEs, or n for

DDEs

– Program only computes polynomial conserved densities;

only polynomials in the dependent variables and their derivatives;

no explicit dependencies on x and t for PDEs (or n for DDEs)

– No limit on the number of PDEs or DDEs.

In practice: time and memory constraints

– Input systems may have (nonzero) parameters.

Program computes the compatibility conditions for parameters such

that densities (of a given rank) exist

– Systems can also have parameters with (unknown) weight.

Allows one to test PDEs or DDEs of non-uniform rank

– For systems where one or more of the weights are free,

the program prompts the user to enter values for the free weights

– Negative weights are not allowed

– Fractional weights and ranks are permitted

– Form of ρ can be given in the data file (testing purposes)
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• Conserved Densities Software

– Conserved densities programs CONSD and SYMCD

by Ito and Kako (Reduce, 1985, 1994 & 1996).

– Conserved densities in DELiA by Bocharov (Pascal, 1990)

– Conserved densities and formal symmetries FS

by Gerdt and Zharkov (Reduce, 1993)

– Formal symmetry approach by Mikhailov and Yamilov

(MuMath, 1990)

– Recursion operators and symmetries by Roelofs, Sanders and Wang

(Reduce 1994, Maple 1995, Form 1995-present)

– Conserved densities condens.m by Hereman and Göktaş

(Mathematica, 1996)

– Conservation laws, based on CRACK by Wolf (Reduce, 1995)

– Conservation laws by Hickman (Maple, 1996)

– Conserved densities by Ahner et al.

(Mathematica, 1995). Project halted.

– Conserved densities diffdens.m by Göktaş and Hereman

(Mathematica, 1997)
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PART III: Symmetries of PDEs and DDEs

• Symmetries of PDEs

Consider the system of PDEs

ut = F(x, t,u,ux,u2x, ...,umx)

space variable x, time variable t

dynamical variables u = (u1, u2, ..., un) and F = (F1, F2, ..., Fn)

Definition of Symmetry

Vector function G(x, t,u,ux,u2x, ...) is a symmetry if and only if

the PDE is invariant for the replacement

u → u + εG

within order ε. Hence

∂

∂t
(u + εG) = F(u + εG)

must hold up to order ε, or

∂G

∂t
= F′(u)[G]

where F’ is the Gateaux derivative of F

F′(u)[G] =
∂

∂ε
F(u + εG)|ε=0

Equivalently, G is a symmetry if the compatibility condition

∂

∂τ
F(x, t,u,ux,u2x, ...,unx) =

∂

∂t
G(x, t,u,ux,u2x, ...)
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is satisfied, where τ is the new time variable such that

∂u

∂τ
= G(x, t,u,ux,u2x, ...)

• Example: The KdV Equation

ut = 6uux + u3x

has infinitely many symmetries:

G(1) = ux G(2) = 6uux + u3x

G(3) = 30u2ux + 20uxu2x + 10uu3x + u5x

G(4) = 140u3ux + 70ux
3 + 280uuxu2x + 70u2u3x + 70u2xu3x + 42uxu4x

+14uu5x + u7x

G(5) = 630u4ux + 1260uux
3 + 2520u2uxu2x + 1302uxu2x

2 + 420u3u3x

+966ux
2u3x + 1260uu2xu3x + 756uuxu4x + 252u3xu4x

+126u2u5x + 168u2xu5x + 72uxu6x + 18uu7x + u9x

The recursion operator connecting them is:

R = D2 + 4u + 2uxD
−1

• Algorithm (KdV equation)

Use the dilation symmetry (t, x, u) → (λ−3t, λ−1x, λ2u)

λ is arbitrary parameter. Hence, u ∼ ∂2

∂x2 and ∂
∂t ∼

∂3

∂x3

Step 1: Determine the weights of variables

We choose w(x) = −1, then w(u) = 2 and w(t) = −3

Step 2: Construct the form of the symmetry

Compute the form of the symmetry with rank 7

25



List all monomials in u of rank 7 or less

L = {1, u, u2, u3}

Introduce x-derivatives so that each term has weight 7

∂

∂x
(u3) = 3u2ux,

∂3

∂x3
(u2) = 6uxu2x+2uu3x,

∂5

∂x5
(u) = u5x,

∂7

∂x7
(1) = 0

Gather the non-zero resulting terms in a set

R = {u2ux, uxu2x, uu3x, u5x}

which contains the building blocks of the symmetry

Linear combination of the monomials in R determines the symmetry

G = c1 u2ux + c2 uxu2x + c3 uu3x + c4 u5x

Step 3: Determine the unknown coefficients in the symmetry

Requiring that

∂

∂τ
F(x, t,u,ux,u2x, ...,unx) =

∂

∂t
G(x, t,u,ux,u2x, ...)

holds. Compute Gt and Fτ

Use the PDE,

ut = F

to replace ut, utx.utxx, ...

Use

uτ = G(x, t,u,ux,u2x, ...)

to replace uτ , uτx, uτxx, ...
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After grouping the terms

Fτ −Gt = (12c1 − 18c2)u
2
xu2x + (6c1 − 18c3)uu2

2x + (6c1 − 18c3)uuxu3x +

(3c2 − 60c4)u
2
3x + (3c2 + 3c3 − 90c4)u2xu4x + (3c3 − 30c4)uxu5x

≡ 0

This yields

S = {12c1 − 18c2 = 0, 6c1 − 18c3 = 0, 3c2 − 60c4 = 0,

3c2 + 3c3 − 90c4 = 0, 3c3 − 30c4 = 0}

Choosing c4 = 1, the solution is c1 = 30, c2 = 20, c3 = 10

Hence

G = 30u2ux + 20uxu2x + 10uu3x + u5x

which leads to Lax equation (in the KdV hierarchy)

ut + 30u2ux + 20uxu2x + 10uu3x + u5x

• x− t Dependent Symmetries

Algorithm can be used provided the degree in x or t is given

Compute the symmetry of the KdV equation with rank 2 (linear in x

or t)

Build list of monomials in u, x and t of rank 2 or less

L = {1, u, x, xu, t, tu, tu2}

Introduce the correct number of x-derivatives to make each term weight

2

∂

∂x
(xu) = u + xux,

∂

∂x
(tu2) = 2tuux,

∂3

∂x3
(tu) = tu3x,

∂2

∂x2
(1) =

∂3

∂x3
(x) =

∂5

∂x5
(t) = 0
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Gather the non-zero resulting terms

R = {u, xux, tuux, tu3x}

Linearly combine the monomials to obtain

G = c1 u + c2 xux + c3 tuux + c4 tu3x

Determine the coefficients c1 through c4

Compute Gt and Fτ and remove all t and τ derivatives (as before)

Group the terms

Fτ −Gt = (6c1 + 6c2 − c3)uux + (3c3 − 18c4)tu
2
2x + (3c2 − c4)u3x +

(3c3 − 18c4)tuxu3x ≡ 0

This yields

S = {6c1 + 6c2 − c3 = 0, 3c3 − 18c4 = 0, 3c2 − c4 = 0}

The solution is c1 = 2
3, c2 = 1

3, c3 = 6, c4 = 1

Hence

G =
2

3
u +

1

3
xux + 6tuux + tu3x

These are two x−t dependent symmetries (of rank 0 and 2)

G = 1 + 6tux and G = 2u + xux + t(6uux + u3x)
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• Symmetries of DDEs

Consider a system of DDEs (continuous in time, discretized in space)

u̇n = F(...,un−1,un,un+1, ...)

un and F have any number of components

bf Definition of Symmetry

A vector function G(...,un−1,un,un+1, ...) is called a symmetry of the

DDE

if the infinitesimal transformation

u → u + εG(...,un−1,un,un+1, ...)

leaves the DDE invariant within order ε

Equivalently

d

dτ
F(...,un−1,un,un+1, ...) =

d

dt
G(...,un−1,un,un+1, ...)

where τ is the new time variable such that
d

dτ
u = G(...,un−1,un,un+1, ...)

• Algorithm

Consider the one-dimensional Toda lattice

ÿn = exp (yn−1 − yn)− exp (yn − yn+1)

Change the variables

un = ẏn, vn = exp (yn − yn+1)

to write the lattice in algebraic form

u̇n = vn−1 − vn, v̇n = vn(un − un+1)
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This system is invariant under the scaling symmetry

(t, un, vn) → (λ−1t, λun, λ
2vn)

λ is an arbitrary parameter. Hence, un ∼ d
dt and vn ∼ d2

dt2

Step 1: Determine the weights of variables

Set w(t) = −1. Then w(un) = 1, and w(vn) = 2

Step 2: Construct the form of the symmetry

Compute the form of the symmetry of ranks {3, 4}

List all monomials in un and vn of rank 3 or less

L1 = {un
3, un

2, unvn, un, vn}

and of rank 4 or less

L2 = {un
4, un

3, un
2vn, un

2, unvn, un, vn
2, vn}

For each monomial in both lists, introduce the adjusting number of

t-derivatives so that each term exactly has weight 3 and 4, resp.

For the monomials in L1

d0

dt0
(un

3) = un
3,

d0

dt0
(unvn) = unvn,

d

dt
(un

2) = 2unu̇n = 2unvn−1 − 2unvn,
d

dt
(vn) = v̇n = unvn − un+1vn,

d2

dt2
(un) =

d

dt
(u̇n) =

d

dt
(vn−1 − vn) = un−1vn−1 − unvn−1 − unvn + un+1vn

Gather the resulting terms in a set

R1 = {un
3, un−1vn−1, unvn−1, unvn, un+1vn}
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Similarly

R2 = {un
4, un−1

2vn−1, un−1unvn−1, un
2vn−1, vn−2vn−1, vn−1

2, un
2vn,

unun+1vn, un+1
2vn, vn−1vn, vn

2, vnvn+1}

Linear combination of the monomials in R1 and R2 determines

G1 = c1 un
3 + c2 un−1vn−1 + c3 unvn−1 + c4 unvn + c5 un+1vn

G2 = c6 un
4 + c7 un−1

2vn−1 + c8 un−1unvn−1 + c9 un
2vn−1 + c10 vn−2vn−1 +

c11 vn−1
2 + c12 un

2vn + c13 unun+1vn + c14 un+1
2vn + c15 vn−1vn +

c16 vn
2 + c17 vnvn+1

Step 3: Determine the unknown coefficients in the symmetry

Requiring that Fτ = Gt holds

Compute d
dtG1,

d
dtG2,

d
dτ F1 and d

dτ F2 and remove all u̇n, v̇n,
d
dτ un,

d
dτ vn

Require that

d

dτ
F1 −

d

dt
G1 ≡ 0,

d

dτ
F2 −

d

dt
G2 ≡ 0

which gives

c1 = c6 = c7 = c8 = c9 = c10 = c11 = c13 = c16 = 0,

−c2 = −c3 = c4 = c5 = −c12 = c14 = −c15 = c17

With c17 = 1 the symmetry is

G1 = unvn − un−1vn−1 + un+1vn − unvn−1

G2 = u2
n+1vn − u2

nvn + vnvn+1 − vn−1vn
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• Conclusions and Further Research

– Two Mathematica programs are available:

condens.m for evolution equations (PDEs)

diffdens.m for differential-difference equations (DDEs)

– Usefulness

∗ Testing models for integrability

∗ Study of classes of nonlinear PDEs or DDEs

– Comparison with other programs

∗ Parameter analysis is possible

∗ Not restricted to uniform rank equations

∗ Not restricted to evolution equations provided that

one can write the equation(s) as a system of evolution equations

– Future work

∗ Generalization towards broader classes of equations (e.g. uxt)

∗ Generalization towards more space variables (e.g. KP equation)

∗ Conservation laws with time and space dependent coefficients

∗ Conservation laws with n dependent coefficients
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∗ Exploit other symmetries in the hope to find conserved densities

of non-polynomial form

∗ Constants of motion for dynamical systems

(e.g. Lorenz and Hénon-Heiles systems)

– Research supported in part by NSF under Grant CCR-9625421

– In collaboration with Ünal Göktaş and Grant Erdmann

– Papers submitted to: J. Symb. Comp., Phys. Lett. A

and Physica D

– Software: available via FTP, ftp site mines.edu

in subdirectories

pub/papers/math cs dept/software/condens

pub/papers/math cs dept/software/diffdens

or via the Internet

URL: http://www.mines.edu/fs home/whereman/
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Additional Examples

• Nonlinear Schrödinger Equation

iqt − q2x + 2|q|2q = 0

Program can not handle complex equations

Replace by

ut − v2x + 2v(u2 + v2) = 0

vt + u2x − 2u(u2 + v2) = 0

where q = u + iv

Scaling properties

u ∼ v ∼ ∂

∂x
,

∂

∂t
∼ ∂2

∂x2

First seven conserved densities:

ρ1 = u2 + v2

ρ2 = vux

ρ3 = u4 + 2u2v2 + v4 + ux
2 + vx

2

ρ4 = u2vux +
1

3
v3ux −

1

6
vu3x
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ρ5 = −1

2
u6 − 3

2
u4v2 − 3

2
u2v4 − 1

2
v6 − 5

2
u2ux

2 − 1

2
v2ux

2

−3

2
u2vx

2 − 5

2
v2vx

2 + uv2u2x −
1

4
u2x

2 − 1

4
v2x

2

ρ6 = −3

4
u4vux −

1

2
u2v3ux −

3

20
v5ux +

1

4
vux

3 − 1

4
vuxvx

2

+uvuxu2x +
1

4
u2vu3x +

1

12
v3u3x −

1

40
vu5x

ρ7 =
5

4
u8 + 5u6v2 +

15

2
u4v4 + 5u2v6 +

5

4
v8 +

35

2
u4ux

2

−5u2v2ux
2 +

5

2
v4ux

2 − 7

4
ux

4 +
15

2
u4vx

2 + 25u2v2vx
2

+
35

2
v4vx

2 − 5

2
ux

2vx
2 − 7

4
vx

4 − 10u3v2u2x − 5uv4u2x

−5uvx
2u2x +

7

2
u2u2x

2 +
1

2
v2u2x

2 +
5

2
u2v2x

2

+
7

2
v2v2x

2 − v2uxu3x +
1

4
u3x

2 +
1

4
v3x

2 + uv2u4x
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• The Ito system

ut − u3x − 6uux − 2vvx = 0

vt − 2uxv − 2uvx = 0

u ∼ ∂2

∂x2
, v ∼ ∂2

∂x2

ρ1 = c1u + c2v

ρ2 = u2 + v2

ρ3 = 2u3 + 2uv2 − ux
2

ρ4 = 5u4 + 6u2v2 + v4 − 10uux
2 + 2v2u2x + u2x

2

ρ5 = 14u5 + 20u3v2 + 6uv4 − 70u2ux
2 + 10v2ux

2

−4v2vx
2 + 20uv2u2x + 14uu2x

2 − u3x
2 + 2v2u4x

and more conservation laws
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• The dispersiveless long-wave system

ut + vux + uvx = 0

vt + ux + vvx = 0

u ∼ 2v w(v) is free

choose u ∼ ∂

∂x
and 2v ∼ ∂

∂x

ρ1 = v

ρ2 = u

ρ3 = uv

ρ4 = u2 + uv2

ρ5 = 3u2v + uv3

ρ6 =
1

3
u3 + u2v2 +

1

6
uv4

ρ7 = u3v + u2v3 +
1

10
uv5

ρ8 =
1

3
u4 + 2u3v2 + u2v4 +

1

15
uv6

and more

Always the same set irrespective the choice of weights
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• A generalized Schamel equation

n2ut + (n + 1)(n + 2)u
2
nux + u3x = 0

where n is a positive integer

ρ1 = u, ρ2 = u2

ρ3 =
1

2
ux

2 − n2

2
u2+ 2

n

For n 6= 1, 2 no further conservation laws
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• Three-Component Korteweg-de Vries Equation

ut − 6uux + 2vvx + 2wwx − u3x = 0

vt − 2vux − 2uvx = 0

wt − 2wux − 2uwx = 0

Scaling properties

u ∼ v ∼ w ∼ ∂2

∂x2
,

∂

∂t
∼ ∂3

∂x3

First five densities:

ρ1 = c1u + c2v + c3w

ρ2 = u2 − v2 − w2

ρ3 = −2u3 + 2uv2 + 2uw2 + ux
2

ρ4 = −5

2
u4 + 3u2v2 − 1

2
v4 + 3u2w2 − v2w2 − 1

2
w4

+5uux
2 + v2u2x + w2u2x −

1

2
u2x

2

ρ5 = − 7

10
u5 + u3v2 − 3

10
uv4 + u3w2 − 3

5
uv2w2 − 3

10
uw4

+
7

2
u2ux

2 +
1

2
v2ux

2 +
1

2
w2ux

2 +
1

5
v2vx

2

−1

5
w2vx

2 +
1

5
w2wx

2 + uv2u2x + uw2u2x −
7

10
uu2x

2

−1

5
vw2v2x +

1

20
u3x

2 +
1

10
v2u4x +

1

10
w2u4x
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• The Deconinck-Meuris-Verheest equation

Consider the modified vector derivative NLS equation:

∂B⊥

∂t
+

∂

∂x
(B2

⊥B⊥) + αB⊥0B⊥0 ·
∂B⊥

∂x
+ ex ×

∂2B⊥

∂x2
= 0

Replace the vector equation by

ut +
(
u(u2 + v2) + βu− vx

)
x

= 0

vt +
(
v(u2 + v2) + ux

)
x

= 0

u and v denote the components of B⊥ parallel

and perpendicular to B⊥0 and β = αB2
⊥0

u2 ∼ ∂

∂x
, v2 ∼ ∂

∂x
, β ∼ ∂

∂x

First 6 conserved densities

ρ1 = c1u + c2v

ρ2 = u2 + v2

ρ3 =
1

2
(u2 + v2)2 − uvx + uxv + βu2

ρ4 =
1

4
(u2 + v2)3 +

1

2
(ux

2 + vx
2)− u3vx + v3ux +

β

4
(u4 − v4)
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ρ5 =
1

4
(u2 + v2)4 − 2

5
(uxv2x − u2xvx) +

4

5
(uux + vvx)

2

+
6

5
(u2 + v2)(ux

2 + vx
2)− (u2 + v2)2(uvx − uxv)

+
β

5
(2ux

2 − 4u3vx + 2u6 + 3u4v2 − v6) +
β2

5
u4

ρ6 =
7

16
(u2 + v2)5+

1

2
(u2

2x + v2
2x)

− 5

2
(u2 + v2)(uxv2x−u2xvx) + 5(u2 + v2)(uux + vvx)

2

+
15

4
(u2 + v2)2(ux

2 + vx
2)− 35

16
(u2 + v2)3(uvx − uxv)

+
β

8
(5u8 + 10u6v2 − 10u2v6 − 5v8 + 20u2ux

2

− 12u5vx + 60uv4vx − 20v2vx
2)

+
β2

4
(u6 + v6)
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