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e Purpose

Design and implement algorithms to compute polynomial conservation
laws and symmetries for nonlinear systems of evolution equations and
differential-difference equations

e Motivation

— Conservation laws describe the conservation of fundamental
physical quantities such as linear momentum and energy:.
Compare with constants of motion (first integrals) in mechanics

— For nonlinear PDEs and DDEs, the existence of a sufficiently large
(in principal infinite) number of conservation laws and symmetries
assures complete integrability

— Conservation laws provide a simple and efficient method to study
both quantitative and qualitative properties of equations and
their solutions, e.g. Hamiltonian structures

— Conservation laws can be used to test numerical integrators

— Symmetries can be used to build new integrable equations



PART I: Evolution Equations

e Conservation Laws for PDEs

Consider a single nonlinear evolution equation
ur = F(u, ug, Uy, ovy Ung)

or a system of /N nonlinear evolution equations

w = F(u,u,...,u,,)

where u = [uq, ..., uy]? and
4y au7 W) = gy "
ot ox"
All components of u depend on x and ¢
Conservation law:
Dip+D,J =0

p is the density, J is the flux
Both are polynomial in u, w,, to,, U3y, ...

Consequently
P = /_t:o p dx = constant

if J vanishes at infinity



e The Euler Operator (calculus of variations)

Useful tool to verify if an expression is a total derivative

Theorem:
If
f:f(xayh '7y£77/)’ y YN, )y](\?))
then
Ly(f)=0
if and only if
f — ng
where
g:g(x7y]-7'"7y£n_1)7"'7yN7"'7y]<\7/:L_1))
Notations:
Yy = [yla . 7yN]
Ly(f) - ['Cyl(f)a e :LyN(f)}T
0=1[0,...,0"

(T" for transpose)

and Euler Operator:
0 d 0 > 0 a0

Ly = 0y; a dx(ay/) + da:'2(5’yi”) ot (1) dx”(ayi(”))




e Example: Korteweg-de Vries (KdV) equation
u + ut, +usz, =0

Conserved densities:

’U,Q
pP1 = U, (u)t + (2 + u2x)x =0
2 3
Py = U, (u2)t + (g + 2ulo, — uxQ)x =0

3 p)
p3 = U’ — 3u,”,

3
(u3—3ux2)t + <4u4—6uux2+3u2uzm+3u2x2—6uxu3x> =0

X

pe = u’ — 60u’u,” — 30u," + 108u’uy,”

+—Ug” — —UUE + —Usy", ... ong ......
7 2 7 3 7 4 g

Note: KdV equation and conservation laws are invariant under
dilation (scaling) symmetry

(z,t,u) — (A, t, \"%u)

w and t carry the weights of 2 and 3 derivatives with respect to x

0? 0 ok
U~ ——

SR T



e Key Steps of the Algorithm

1. Determine weights (scaling properties) of variables & parameters
2. Construct the form of the density (building blocks)

3. Determine the unknown constant coefficients

e Example: KdV equation
u + uty, +us, =0

Compute the density of rank 6

(i) Compute the weights by solving a linear system

w(u) + w(gt) = 2w(u) + w(x) = w(u) + 3w(x)
With w(z) = 1, w(Z2) =3, w(u)=2.

Thus, (z,t,u) — (Ax, N*t, \"%u)

(ii) Take all the variables, except (%), with positive weight and list all
possible powers of u, up to rank 6 :  [u, u?, u’]

Introduce x derivatives to ‘complete’ the rank

u has weight 2, introduce 59;1

9 : : 92
u” has weight 4, introduce 55

u? has weight 6, no derivatives needed



Apply the derivatives and remove terms that are total derivatives with
respect to x or total derivative up to terms kept earlier in the list
[uye] — [] empty list
[u,?, ut,] — [u,?] since wug, = (utly), — uy?
W] — [u]

Combine the building blocks: p = ciu’ + couy’

(iii) Determine the coefficients ¢ and ¢,

1. Compute D;p = 3crutuy + 2CoUy gy

2. Replace uy by —(uw, + us,) and uzs by —(uty + usy ).
3. Apply the Euler operator or integrate by parts

3
Dip = —[4C1U4— (3¢1 —02)uu:26 + 3C1U Uy — Colloy” + 209Uy Usy

— (361 + CQ)’U;:EB

4. The non-integrable term must vanish. Thus, ¢; = —%CQ.
Set co = —3, hence, ¢ =1
Result:
p = u’ — 3u,?
Expression |...] yields
3 4

J = Zu — 6un,’ + 3uug, + sy’ — Guytis,



e Example: Boussinesq equation

Uy — Uy + ey + 3uy” + gy = 0

with nonzero parameter .. Can be written as

U +V, =

vy + Uy — 3uu, — aug, = 0

The terms u, and a us, are not uniform in rank

Introduce auxiliary parameter (8 with weight.
Replace the system by

w+v, = 0

v + Pu, — 3uu, — aug, = 0
The system is invariant under the scaling symmetry

(z,t,u, v, B) — Az, N2t, A 2u, A%, A720)

Hence
w(u) =2, w(f) =2, w(w) =3 and w<(§t) =2
or
P A B
02’ dx3’ ot  Ox?

Form p of rank 6
_ 2 2 3 2 2
p=c1 B u+co Pu+ c3u’+cy v7+ 5 UV + cp U

Compute the ¢;. At the end set § =1

2

p=1u —u’ + v+ au?

X

which is no longer uniform in rank!

8



e Application: A Class of Fifth-Order Evolution Equations

up + autu, + BuzUoy + YU, + Us,y = 0

82
where «, 3, are nonzero parameters, and u ~ 5

Special cases:

= 30 B =20 v =10 Lax

=5 8=5 vy=25 Sawada — Kotera

= 20 6 =25 v =10 Kaup —Kupershmidt
= 2 B=6 v=3 [to

e o o L
|

Under what conditions for the parameters «, 3 and «y does this equation
admit a density of fixed rank?

— Rank 2:

No condition
p=u
— Rank 4:
Condition: =2y (Lax and Ito cases)

p=u’



— Rank 6:
Condition:
10 = —283* + 737 — 3

(Lax, SK, and KK cases)

p = u + 15 Uy’
(—28+7) "
— Rank 8:
1. 0=2v (Lax and Ito cases)
0 0
p= ut — luuf + *U2x2
o o)

2. a= —262_74557_472 (SK, KK and Ito cases)
., 1% L, 615,

p=u" — Ul + ——Uoy
26+~ (28 +7)?
— Rank 10:
Condition:
0=2
and
100 = 372
(Lax case)
50 100 500
p = u’ — fu2ux2 + —uugf — —ugx?‘
~2 73

10



What are the necessary conditions for the parameters «, 3 and ~ for
this equation to admit infinitely many polynomial conservation laws?

—Ifa= %72 and 8 = 27 then there is a sequence

(without gaps!) of conserved densities (Lax case)

—Ifa= %VZ and (3 =~y then there is a sequence

(with gaps!) of conserved densities (SK case)

—Ifa= %’y2 and 3 = gfy then there is a sequence

(with gaps!) of conserved densities (KK case)

— If
26% — 78~y + 4~2
o = —
45
or
B =2

then there is a conserved density of rank 8

Combine both conditions: a = 332 and 0 =27y (Ito case)

11



PART II: Differential-difference Equations

e Conservation Laws for DDEs

Consider a system of DDEs, continuous in time, discretized in space
u” — F(...7 Un_]_’ un, Un_l_:[’ ...)

u, and F are vector dynamical variables

Conservation law:
pn - Jn - Jn—|—1
pn is the density, J, is the flux

Both are polynomials in u,, and its shifts

d

dt(%: pn) — zn:pn — %:(Jn - Jn—l—l)

If J, is bounded for all n, with suitable boundary or periodicity con-
ditions

> pn = constant

n

e Definitions

Define: D shift-down operator, U shift-up operator

Dm = m’n—m—l Um = m’n—m—l—l

For example,

Dun+2vn = Un+1Un—1 Uun—Qvn—l — Up—1Un

12



Compositions of D and U define an equivalence relation
All shifted monomials are equivalent, e.g.

Up—1Unt1 = Up42Unt4 = Up—3Un—1
Use equivalence criterion:

If two monomials, my and msy, are equivalent, m; = ms, then

mp = Mo+ [Mn - Mn—i—l]

for some polynomial M,

For example, u,_ou, = U,_1U,1 sSince

Up—2Up = Up—1Up1 T [un—Qun - Un—lun—i—l] = Up_1Up41 T [Mn — Mn—H]
with M,, = u,,_su,,

Main representative of an equivalence class; the monomial with label

n on u (or v)

For example, u,u, 9 is the main representative of the class with ele-
ments Uy —1Up+1, Up+1Un+3, €HC.

Use lexicographical ordering to resolve conflicts

For example, u,v,.2 (not u, -v,) is the main representative of the
class with elements w,,_3v,_1, Uy 12U, 4, €tc.

13



e Algorithm: Toda Lattice
myn — a[e(yn—l_yn> _ e(yn_yn+1)]
Take m = a = 1 (scale on t), and set u, = §,, v, = eWn"¥n+1)
Up = Up—1 — Un, U, = Un(un - un—f—l)
Simplest conservation law (by hand):

Uy, = pn = Up—1 — Up = Jn - Jn—l—l with Jn = Up-1

First pair:

Second pair:

/0512) — %unQ + Up, J(Q) — UpUn—1

Key observation: The DDE and the two conservation laws,

pn = Jy — Jn+17 with

p7(7/2) = %unz -+ Up, Jygz) — UpUn—1

are invariant under the scaling symmetry

(t, Up, V) — (AL, A My, A 20)

Dimensional analysis:
u,, corresponds to one derivative with respect to ¢

d d2

For short, u, ~ &, and similarly, v, ~

14



Our algorithm exploits this symmetry to find conserved densities:

1. Determining the weights
2. Constructing the form of density

3. Determining the unknown coefficients

e Step 1: Determine the weights

The weight, w, of a variable is equal to the number of derivatives with
respect to t the variable carries.

Weights are positive, rational, and independent of n.

Requiring uniformity in rank for each equation
Uy = Uy — Un, Uy = Un(un - un—l—l)
allows one to compute the weights of the dependent variables.

Solve the linear system

w(uy,) + w((i) = w(vy)

w(vy,) + w((i) = w(v,) + w(uy)

Set w(4) = 1, then w(u,) = 1, and w(v,) = 2
which is consistent with the scaling symmetry

(t, Un, v,) — (AL, A, )\_Qvn)

15



e Step 2: Construct the form of the density

The rank of a monomial is the total weight of the monomial.
For example, compute the form of the density of rank 3

List all monomials in u,, and v,, of rank 3 or less:
3.2
g: {un y Up y UpUp, Up, vn}

Next, for each monomial in G, introduce enough ¢-derivatives, so that
each term exactly has weight 3. Use the DDE to remove u,, and v,

d() 5 5 d()

70(“71 ) = Up , ﬁ(unvn) = UpUp,

dt dt

d d

dt(unQ) = 2UpUp—1 — 2U,Up, dt(vn) = UpUp — Ups1Un,
d2

dtg(un) = Up—1Up—1 — UpUp—1 — UpUp + Up+1Un

Gather the resulting terms in a set
3
H = {un y UpUp—1, UpUp, Up—1Up—1, un—i—lvn}

Identify members of the same equivalence classes and replace them by
the main representatives.

For example, since u,v,_1 = u,41v, both are replaced by u,v,_1.
'H is replaced by
1= {unga UnUn—1, unvn}

containing the building blocks of the density.

Form a linear combination of the monomials in Z
3
Pn = C1 Up"~ + C2 UpUp—1 1 C3 UpUp
with constant coefficients ¢;

16



e Step 3: Determine the unknown coefficients
Require that the conservation law, p, = J, — J,, .1, holds
Compute p, and use the equations to remove , and v,.

Group the terms

pn = (3c1 — cz)un%n_l + (3 — 301)un20n + (c3 — )10y

2 2
FCoUp—1URVp—1 + CQUp—1” — C3UpUp+1Up — C3Uy
Use the equivalence criterion to modify p,,
Replace w, 1ty vn 1 BY Uptp 10U, + [Un_1UnUp_1 — UnUps1Uy).

The goal is to introduce the main representatives. Therefore,

pn = (3c1 — e)unvu_1 + (c5 — 3c1)un v,

+(c3 — c2)vpUps1 + [(c3 — C2)Un—1Vn — (€3 — €2)VVp11]
TCoUpUp4+1Vp + [C2un—1unvn—1 — C2unun—|—1vn]

2

2 2 2
+027)n + [CZUn—l — CoUp, ] — C3URUp+1Up — C3Uy

Group the terms outside of the square brackets and move the pairs
inside the square brackets to the bottom. Rearrange the latter terms
so that they match the pattern [J,, — J,11]. Hence,

on = (3c1 — e)un*vu_1 + (c5 — 3c1)un vy,

+(c3 — C2)UnUns1 + (€2 — C3)UnUp 1V + (2 — C3)03°
+[{(C3 - CQ)Un—lvn T Colp—1UpUp—1 T C2Un—12}

_{(03 — CQ)UnUn+1 + CoUpUp 1V, + CQU”Q}]

17



The terms inside the square brackets determine:

2
Jn = (3 — C2)Up_10n + Colpy_1URU,_1 + CoUpy 1

The terms outside the square brackets must vanish, thus

82{361—6220,63—36120,62—6320}

The solution is 3¢; = ¢o = ¢3. Choose ¢ = %, thus cp = c3 =1
1

3 2
Pn = 3 Up~ + un(vn—l + Un); Jn = Up—1UpUp—1 + Up—1

Analogously, conserved densities of rank < 5:

p7(11) = Unp, Py(zQ) = %unz + Uy

B = %un?’ + Up(Vp—1 + Up)

P = Lyt w2 (Ve + vn) F U1V + 3027+ VU
P = L P (a4 vn) F 10 (g + Uns)

+unvn—1(vn—2 + Up—1 + Un) + Unvn(vn—l + Unp, + Un+1>

18



e Application: A parameterized Toda lattice

Uy = QU1 — Un, Uy = Up (ﬁ Up — Un+1)

a and 3 are nonzero parameters. The system is integrableif o = =1

Compute the compatibility conditions for a and (3, so that there is a
conserved densities of, say, rank 3.

In this case, we have S:

{3aci—co =0, Bcz3—3c; =0, ac3—c2 = 0, Beg—c3 = 0, aco —c3 = 0}
A non-trivial solution 3c; = ¢y = c3 will exist iff a =3 =1
Analogously, the parameterized Toda lattice has density

o) =, of rank 1if av=1

n

and density

p2) = §un2 +wv, ofrank2 if af=1

Only when o« = 8 = 1 will the parameterized system have conserved
densities of rank > 3

19



e Example: Nonlinear Schrédinger (NLS) equation

Ablowitz and Ladik discretization of the NLS equation:
/Lun — Un+1 — 2un + Up—1 + u;un<un+1 + un—l)
where u; is the complex conjugate of w,,.

Treat u, and v, = w as independent variables, add the complex con-
jugate equation, and absorb ¢ in the scale on ¢

un = Up+1 — 2un + Up—1 + unvn(uTH—l =+ un—l)

v, = _<Un—|—1 — 2v, + vn—l) - Unvn<vn—|—1 -+ Un—l)
Since v, = u}, w(v,) = w(uy).

No uniformity in rank! Circumvent this problem by introducing an
auxiliary parameter oo with weight,

U, = a(un+1 — 2u, + un—l) + Unvn(un—l—l + un—l)

v, = _&<Un—i—1 - 2’Un + vn—l) - unvn(vn—i—l + Un—l)-
Uniformity in rank requires that

w(u,) +1 = wla) +wu,) = 2w(u,) + w(v,) = 3w(u,)
w(v,) +1 = wla)+w(v,) = 2w(v,) + w(u,) = 3w(vy,)

which yields

20



Uniformity in rank is essential for the first two steps of the algorithm.
After Step 2, you can already set o = 1.

The computations now proceed as in the previous examples

Conserved densities:

1
,07(1) = C1UpUp—1 + CQUpUp41
2 1, 2 2
107(1) — Cl(@“n Up—1" + UpUp+1Up—1Uy Un’l)n_g)

1,2 2
+ Ca(Un V41" F UnUni1Vns1Un2 + UnUni2)

P = G [%ungvn—lg
+unun—i—lvn—lvn<un'Un—1 + Up+1Up + un—i-QUn—i—l)
+unvn—1(unvn—2 + un—l—lvn—l)
+unvn(un+1vn—2 + un—{—QUn—l) + unvn—B]

+ 62[%un3vn+13
Uy Un41V4+1Vn+2(Un V1 + Uns 1042 + Uns2Un+3)
+Unvn+2(unvn+1 + un+1vn+2)

+unvn+3(un—|—1vn+1 + un+2vn+2) + unvn+3]

21



e Scope and Limitations of Algorithm & Software
— Systems of PDEs or DDEs must be polynomial in dependent vari-
ables

— Only one space variable (continuous x for PDEs; discrete n for
DDEs) is allowed

— No terms should explicitly depend on = and t for PDEs, or n for
DDEs

— Program only computes polynomial conserved densities;
only polynomials in the dependent variables and their derivatives;
no explicit dependencies on  and t for PDEs (or n for DDEs)

— No limit on the number of PDEs or DDEs.
In practice: time and memory constraints

— Input systems may have (nonzero) parameters.
Program computes the compatibility conditions for parameters such
that densities (of a given rank) exist

— Systems can also have parameters with (unknown) weight.
Allows one to test PDEs or DDEs of non-uniform rank

— For systems where one or more of the weights are free,
the program prompts the user to enter values for the free weights

— Negative weights are not allowed
— Fractional weights and ranks are permitted

— Form of p can be given in the data file (testing purposes)

22



e Conserved Densities Software

— Conserved densities programs CONSD and SYMCD
by Ito and Kako (Reduce, 1985, 1994 & 1996).

— Conserved densities in DELiA by Bocharov (Pascal, 1990)

— Conserved densities and formal symmetries F'S
by Gerdt and Zharkov (Reduce, 1993)

— Formal symmetry approach by Mikhailov and Yamilov
(MuMath, 1990)

— Recursion operators and symmetries by Roelofs, Sanders and Wang
(Reduce 1994, Maple 1995, Form 1995-present)

— Conserved densities condens.m by Hereman and Goktas
(Mathematica, 1996)

— Conservation laws, based on CRACK by Wolf (Reduce, 1995)
— Conservation laws by Hickman (Maple, 1996)

— Conserved densities by Ahner et al.
(Mathematica, 1995). Project halted.

— Conserved densities diffdens.m by Goktag and Hereman
(Mathematica, 1997)

23



PART III: Symmetries of PDEs and DDEs

e Symmetries of PDEs

Consider the system of PDEs
w = F(z,t,u,u;, vy, ..., W)
space variable x, time variable ¢
dynamical variables u = (uy, ug, ..., u,) and F = (Fy, Fy, ..., F},)
Definition of Symmetry

Vector function G(x,t,u, u,, Uy, ...) is a symmetry if and only if
the PDE is invariant for the replacement

u—u+eG

within order €. Hence

0 —(u+€eG) =F(u+eQ)
ot
must hold up to order €, or
0G
— =F(u)|G

where F’ is the Gateaux derivative of F

0
F'(u)[G| = (%F(u + €G)| =0
Equivalently, GG is a symmetry if the compatibility condition
0 0

P F(x,t,u,u,,ugy, ..., up,) = atG(aj,t,u, u,, Usy, ...

24



is satisfied, where 7 is the new time variable such that

Ou
or
e Example: The KdV Equation

= G(z,t,u,u,, Uy, ...)

Uy = buu, + Uz,

has infinitely many symmetries:

G = o, G = Obut, + U3y

GO = 300 u, + 20U, 9, + 10uus, + s,

GW = 1400wy, 4+ T0u,> + 280Uty ts, + 70U us, + T0Usp sy + 42Uy,
+14duus, + w7,

G® = 630utu, + 1260uu,” + 25200 Uy s, + 1302uu0,” + 420uPus,
19661, *us, + 1260ut9,us, + TH6UULUL, + 252Uz, Usy
+126uus, + 168U, tis, + T2Ustee + 18Uty + Uy

The recursion operator connecting them is:
R=D*+4u+2u,D™"

e Algorithm (KdV equation)

Use the dilation symmetry (¢, z, u) — (A3, A1z, Au)
o3

' ' 02 0
A Is arbitrary parameter. Hence, u ~ 75 and 5 ~ 573

Step 1: Determine the weights of variables

We choose w(z) = —1, then w(u) = 2 and w(t) = —3
Step 2: Construct the form of the symmetry
Compute the form of the symmetry with rank 7

25



List all monomials in u of rank 7 or less
L={1,u,u* v’}

Introduce z-derivatives so that each term has weight 7

Jd, 4 5 oA 0° o
—(u”) = 3u‘uy, (9:1;3(u ) = 6ugug,+2uus,, M(u) = Usy, :1:(1) =0

Ox

Gather the non-zero resulting terms in a set
R = {UZUxa Ur U2y, UU3y: u5x}
which contains the building blocks of the symmetry

Linear combination of the monomials in /R determines the symmetry

2
G = ¢1 U Uy, + Co UpUoy + C3 U3, + Cq Usy

Step 3: Determine the unknown coefficients in the symmetry
Requiring that
0

or
holds. Compute G; and F,

Use the PDE,

0
F(x,t,u,u,, ugy, ..., Uy, ) = 5 —G(z,t,u,u,, Uy, ...)

to replace g, Uy Upgs, ...

Use
u, = Gz, t,u,u,, uy,, ...)

to replace u,, Urg, Urpg, .-

26



After grouping the terms

F. — Gy = (12¢; — 18¢o)ulug, + (6¢; — 18c3)uus, + (6¢; — 18¢3)ut, us, +
(3cy — 60cs)us, + (3¢ + 3c3 — 90y )uoptiyy + (3¢3 — 304 )uptis,
=0

This yields

S = {12¢; — 18¢y = 0,6¢; — 18¢3 = 0, 3c3 — 60cy = 0,

3o + 3¢z — 90¢y = 0, 3¢5 — 30cy = 0}

Choosing ¢4 = 1, the solution is ¢; = 30, co = 20, c3 = 10

Hence
G = 30u’u, + 20U, o, + 10U, + Us,

which leads to Lax equation (in the KdV hierarchy)
up + 300w, + 20U, U0, + 10uus, + s,

x —t Dependent Symmetries
Algorithm can be used provided the degree in x or t is given

Compute the symmetry of the KdV equation with rank 2 (linear in x
or t)

Build list of monomials in u, x and ¢ of rank 2 or less
L ={1,u,x,zu,t, tu,tu*}

Introduce the correct number of x-derivatives to make each term weight
2

0 Jd ., 0’
%W) — u;r LUy, (2:c<tu ) = 2tuuy, axg@“) = lusy,
1, 0 1,

axg(l) = ax3<x) = (‘9x5(t> =0

27



Gather the non-zero resulting terms

R = {u, xuy, tuu,, tug, }

Linearly combine the monomials to obtain
G =cu+ cyxu, + catuu, + cqtus,
Determine the coefficients ¢; through ¢y

Compute G; and F; and remove all ¢ and 7 derivatives (as before)

Group the terms

F. — Gy = (6¢; + 6cy — c3)uu, + (3c3 — 18¢y)tus, + (3c3 — c4)us, +
(3cg — 18¢y)tuuz, =0

This yields
S = {6c1 + 6cp — 3 =0,3c3 — 18¢4 = 0,3¢ — ¢4y = 0}

The solution is ¢; = %, Cy = %, c3=0,c4 =1
Hence
2 1
G = gu + ga:ux + 6tuu, + tus,

These are two x —t dependent symmetries (of rank 0 and 2)

G =1+6tu, and G =2u+ zu, + t(6uu, + us,)

28



e Symmetries of DDEs
Consider a system of DDEs (continuous in time, discretized in space)
u, = F(; Up—1, Up, Upi1, )

u,, and F have any number of components

bf Definition of Symmetry

A vector function G(..., u,_1, Uy, Wy 1, ...) is called a symmetry of the
DDE

if the infinitesimal transformation

u—u+eG(...,u, 1,0, Uy, ...)

leaves the DDE invariant within order e

Equivalently
d d
dTF(, Up—1, Up, Upt1, ) — dtG(’ Up—1, Up, Upt1, )
where 7 is the new time variable such that
d
Eu = G, Wy 1, Uy, Uy, ---)

e Algorithm

Consider the one-dimensional Toda lattice
Yn = €xXP (Yn—1 — Yn) — €XP (Y — Yn+1)
Change the variables

Uy = Yn, Up = €XP (yn - yn—l—l)

to write the lattice in algebraic form

Up = Up—1 — Up, Uy = Un(un - un—i—l)

29



This system is invariant under the scaling symmetry

(t, Up, vy) — ()\_175, Ay, )\2vn)

d
dt

d2

and v,, ~ 2

A is an arbitrary parameter. Hence, u,, ~

Step 1: Determine the weights of variables

Set w(t) = —1. Then w(u,) = 1, and w(v,) = 2

Step 2: Construct the form of the symmetry

Compute the form of the symmetry of ranks {3, 4}

List all monomials in u,, and v,, of rank 3 or less
L1 = {un’, un®, un v, tn, v}

and of rank 4 or less

o 4 3 2 2 2
£2 — {Un y Up y Up Up, Up , UpUp,y Up, Uy 7Un}

For each monomial in both lists, introduce the adjusting number of
t-derivatives so that each term exactly has weight 3 and 4, resp.

For the monomials in £

d° d°

dt()(un?)) — Un?), dt()(unvn) = UpUp,

d d

dt(uf) = 2UpUy = 2UpUp—1 — 2U, Uy, dt(vn) = U, = UpUy — Upt1Up,
d? d d

dtg(un) — dt(un) — dt(vn_l - vn) = Up—1Up—1 — UpUp—1 — UpUp + Up+1Uy

Gather the resulting terms in a set
3
Rl - {un y Un—1Un—1, UpnUn—1, UpUn, un—i—lUn}
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Similarly

4 2 2 2 2
R2 — {un y Un—1 Un—1, Upn—-1UnUn—1, Up Un—1,Un-2Un—1,Un—-1 , Up Un,

2 2
UpUn+4+1Un, Up+1 Upy Un—1Un, Up Unvn+1}
Linear combination of the monomials in R and Ry determines

. 3
G1 = c1up” + CoUp_1Up—1 + C3U V1 + C4 UV + C5 Up11Vy

4 9 9
Gy = cgUy + CrUp—1"Up—1 + €8 Up_1UpVp—1 + Co Uy Vp—1 + C10 Vp—2Up_1 +
9 9 9
C11 Un—1" + C12 Up Uy, + C13 UpUp+1Vp + C14 Upt1 Uy + C15 Up—1Up +

9
C16 Un~ + C17 UpUp41

Step 3: Determine the unknown coefficients in the symmetry

Requiring that F; = G holds

Compute %Gl, %Gg, %Fl and C%Fg and remove all u,, v, d%un, dd—Tvn

Require that
d d d d
—F ——G1 =0, —F——Gy=0
ar e ! dr > dt °
which gives
Cl=C¢=Cr=0Cg=Cyg=Cg=C1] = C13= Ci6 =0,
—Cy = —(C3 = C = C5 = —C12 — C14 — —C15 = (17
With ¢i7 = 1 the symmetry is

Gl = UpUp — Up—1Up—1 T Up+1Up — UpUp—1

2 2
Gy = Uy Uy — UpUp + UpUpg1 — U1y
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e Conclusions and Further Research

— Two Mathematica programs are available:
condens.m for evolution equations (PDEs)
diffdens.m for differential-difference equations (DDEs)

— Usefulness

x Testing models for integrability

x Study of classes of nonlinear PDEs or DDESs

— Comparison with other programs

x Parameter analysis is possible
* Not restricted to uniform rank equations

x Not restricted to evolution equations provided that
one can write the equation(s) as a system of evolution equations

— Future work

* Generalization towards broader classes of equations (e.g. )
* Generalization towards more space variables (e.g. KP equation)

x Conservation laws with time and space dependent coefficients

« Conservation laws with n dependent coefficients
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x Exploit other symmetries in the hope to find conserved densities
of non-polynomial form

« Constants of motion for dynamical systems
(e.g. Lorenz and Hénon-Heiles systems)

— Research supported in part by NSE under Grant CCR-9625421
— Tn collaboration with Unal Goktas and Grant Erdmann

— Papers submitted to: J. Symb. Comp., Phys. Lett. A
and Physica D

— Software: available via F'TP, ftp site mines.edu
in subdirectories

pub/papers/math_cs_dept /software/condens
pub/papers/math_cs_dept/software/diffdens

or via the Internet

URL: http://www.mines.edu/fs_home/whereman /
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Additional Examples

e Nonlinear Schrodinger Equation
iqr — g2 +2lg)’q = 0

Program can not handle complex equations
Replace by

Uy — Vo + 20(u® +0?) = 0

v+ Ugy — 2u(u? +v%) = 0
where ¢ = u + v

Scaling properties

0 0 0?
u ~ v r~ -, —_—y —
ox ot  0x?
First seven conserved densities:
p1 = u® + v’
P2 = Vi,
p3 = ut 4+ 2ut0? + ot + ux2 + va
) L 1
Pr = U VUL + -0V Uy — ZVU3,

3 §
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P5

Pe =

P17

16342 §24_16522122

——U — UV — =uv -V — =U U — =V Uy
2 2 2 2 2 2
3 5) 1 1
—2u2vx2 — 21)21)332 + uvquQj — 4u2x2 — 41}2;52
3 1 3 1 1
—4u4vux — 2u203u$ — 2005% + 47}%3 — 41)%%2
L, I 4 1
+uvu U9, + Eu VU3, + EU U3y — Evum

5 15 5 35
= 4u8 + 5ulv? + 2u4v4 + 5u?0b + 41}8 + 2u4u$2
5} 7 15
—5utvu,? 4+ —vtu? — —ut + —ute,? + 2500,
2 4 2
35 5 7
+7U4vx2 — —uxQUxQ — —vf — 1Ou302u2x — 5uv4u2x
2 2 4
7 1 5
—5uvx2u2x + —u2u2x2 + —qugxz + —u2v2x2
2 2 2
7 1 1

2 2 2 2 2 2
+§v Vo~ — VUV ULU3, + ZU&T + 1’03;,; + UV Uy
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e The Ito system

up — U3y — 6uu, — 20v, = 0
vy — 2Uu,v — 2uv, = 0
0> 0?
U~ —:, vV~
Oz ox?
p1 = C1U+ CU
P2 = U2 + U2
p3 = 2> + 2uv® — ux2
ps = Su 4+ 6utv? + vt — 10uu,” + 20%ug, + ug,”

p5 = 14u° + 20uv? + 6uv®* — 7Ou2u$2 + 101)2%2

—4@2%2 + 20uv2u% + 14uu2x2 — u3x2 + 2”02U4x

and more conservation laws
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e The dispersiveless long-wave system

w +vu, +uv, = 0

vy + Uy +v0, = 0

u~2v wv) is free

choose u ~ g and 2v ~ 2
X ox

p1 =

p2 = U

p3 = uv

Py = u? 4 uv?

05 = 3utv 4w’

13 2 92 1 4
= —u" +uvc+ -uv
P6 3 G

pr = u3v+u2v3+110uv5
14 390, 924 1 g
Ps = gu + 2u°v” + uv +T5uv
and more

Always the same set irrespective the choice of weights
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e A generalized Schamel equation

n*us 4+ (n+1)(n + 2)u%ux + us; =0

where n is a positive integer

P1 = U, P2 —= U
1 n’ 242
Py = st = U

For n # 1,2 no further conservation laws
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e Three-Component Korteweg-de Vries Equation

up — buu, + 2vv, + 2ww, —uz, = 0
vy — 20U, — 2uv, = 0
wy — 2wu, — 2uw, = 0

Scaling properties

0? o 0
U~~~y ——

o2’ ot a3

First five densities:

P1
P2
P3

P4

P5

C1U + CcU + csw

u2—02—w2

—2u? + 2uv® + 2uw? + uxQ

1 1
4 2 9 4 2 2 2 2 4
——u” + 3u v — —v" + 3uTw —vw — —w
2 2 2
1
+5uux2 + v2u2x + wngx — 2u2x2
7 3 3 3
— + A — + ww? — Suvtw® — —uw®
10 10 5 10
7 1 1 1
+2U2Ux2 + 202%2 + 2w2ux2 + 51)2@552
1 1 7
—5w2vx2 + 5w2wx2 + uv2uzx + uwngx — muugxz
1 1 2 1, Ly

—ng Voy + %u;;x + 1—00 Ugy + 1—Ow Uy
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e The Deconinck-Meuris-Verheest equation

Consider the modified vector derivative NLS equation:
8BL 0 aBJ_ aQBJ_

+_—(BiB,)+aB (Byy- +e, X =0
ot 833( 1B1)+aB Bl ox T D2
Replace the vector equation by
u + <u(u2 +v?) + Bu — Ux>x =0
v + (v(u2 +v?) + ux)x =0
u and v denote the components of B | parallel
and perpendicular to B o and 8 = aB?,
0 0 0
u2 ~Y -, U2 ~J ~ /6 ~ —
ox Ox Ox
First 6 conserved densities
p1 = Clu + CU
py = u+v°
1
p3 = 2(u2 + %) — wv, + upv + fu’
Lo o3, 1. 2 3 3 B,y 4
P4 :4(u + v7) —1—2(% +v,%) — uv, + v u$+4(u — %)
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Ps =

P6

B 2 3 6 Lo o6, B
—1—5(2% — du’v, + 2u’ + 3uvT — v )—|—5u
7 1

= oW+ o) 5, + )

Do 9 2, .2 2
2( + v7) (Up V2 — U2,V ) + B(u” + v7) (uty + vvy)
15 9, 92 2 2 2, 23
—(u” +v)(uy” +v,7) — —(u” + v°)°(uv, — ug)
4 16
s

8(5u8 + 10uSv? — 1060 — 50° + 2002w,

12u°v, + 60uv*v, — 20v°v,?)

642(”&6 + oY)
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