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Commun. Pure Appl. Math. 21 (1968) 467-490



What are Lax Pairs of Nonlinear PDEs?

• Historical example: Korteweg-de Vries equation

ut + αuux + uxxx = 0

• Key idea: Replace the nonlinear PDE with a

compatible linear system (Lax pair):

ψxx +
(
1
6
αu− λ

)
ψ = 0

ψt + 4ψxxx + αuψx +
1
2
αuxψ + a(t)ψ = 0

ψ is eigenfunction; λ is constant eigenvalue

(λt = 0) (isospectral), and a(t) is an arbitrary

function. We will set a(t) = 0.



Class of Equations and Notation

• Consider a system of evolution equations:

ut = f(u,ux,uxx, . . . ,uMx)

with u(x, t) = (u(1), u(2), . . . , u(N)) and where

u
(j)
kx =

∂ku(j)

∂xk

• In examples, the components of u are u, v, . . . .

• Define the total derivative operator as

Dt • =
∂ •
∂t

+
N∑
j=1

M∑
k=0

∂ •
∂u

(j)
kx

Dk
x

(
u
(j)
t

)



Lax Pairs in Operator Form

• Replace a completely integrable nonlinear PDE

by a pair of linear equations (called a Lax pair):

Lψ = λψ and Dtψ =Mψ

• Require compatibility of both equations

Ltψ + LDtψ = λDtψ

Ltψ + LMψ = λMψ

= Mλψ

=̇ MLψ

Hence, Ltψ + (LM−ML)ψ =̇ 0.



• Lax equation: Lt + [L,M] =̇ O

with commutator [L,M] = LM−ML.

Furthermore, Ltψ = [Dt,L]ψ = Dt(Lψ)− LDtψ

and =̇ means “evaluated on solutions of the

PDE.”



Example: Lax operators for the KdV equation

• Recall:

ψxx +
(
1
6
αu− λ

)
ψ = 0

ψt + 4ψxxx + αuψx +
1
2
αuxψ = 0

• Can be written in the form

Lψ = λψ and Dtψ =Mψ

with L = D2
x +

1
6
αu I

M = −
(
4D3

x + αuDx +
1
2
αux I

)
• Note: Ltψ + [L,M]ψ = 1

6
α (ut + αuux + uxxx)ψ.



Alternate Operator Formulations

• Define L̃ = L − λ I and M̃ =M−Dt.

• Then, the Lax pair becomes

L̃ψ = 0 and M̃ψ = 0

and the Lax equation becomes [L̃,M̃] =̇ O.
Challenge: Find commuting operators modulo the

(nonlinear) PDE

• If S is an arbitrary invertible operator, then

L̂ = S LS−1 M̂ = SMS−1 D̂t = SDt S
−1

satisfy L̂t + [L̂,M̂] =̇ O.



Lax Pairs in Matrix Form

• Express compatibility of

DxΨ = X Ψ

DtΨ = T Ψ

where Ψ =


ψ1

ψ2

...

ψN

 , X and T are N ×N matrices

• Lax equation (zero-curvature equation):

DtX−DxT + [X,T] =̇ 0

with commutator [X,T] = XT−TX.



• Example: Lax pair for the KdV equation

X =

 0 1

λ− 1
6
αu 0



T =

 1
6
αux −4λ− 1

3
αu

−4λ2 + 1
3
αλu+ 1

18
α2u2 + 1

6
αu2x −1

6
αux


Substitution into the Lax equation yields

DtX−DxT + [X,T] = −1
6
α

 0 0

ut + αuux + u3x 0





Equivalence under Gauge Transformations

• Lax pairs are equivalent under a gauge

transformation:

If (X,T) is a Lax pair then so is (X̃, T̃) with

X̃ = G X G−1 + Dx(G) G−1

T̃ = G T G−1 + Dt(G) G−1

G is arbitrary invertible matrix and Ψ̃ = GΨ.

Thus,

X̃t − T̃x + [X̃, T̃] =̇ 0



• Example: For the KdV equation

X =

 0 1

λ− 1
6
αu 0

 and X̃ =

−ik 1
6
αu

−1 ik


Here,

X̃ = G X G−1 and T̃ = G T G−1

with

G =

−i k 1

−1 0


where λ = −k2.



Reasons to Compute a Lax Pair

• Compatible linear system is the starting point for

application of the IST and the Riemann-Hilbert

method for boundary value problems.

• Confirm the complete integrability of the PDE.

• Zero-curvature representation of the PDE.

• Compute conservation laws of the PDE.

• Discover families of completely integrable PDEs.

Question: How to find a Lax pair of a completely

integrable PDE?

Answer: There is no completely systematic method.



Dilation Invariance and Weights

• KdV equation is invariant under dilation symmetry

(x, t, u)→ (κ−1x, κ−3t, κ2u) = (x̃, t̃, ũ)

where κ is an arbitrary parameter. Indeed,

ut + αuux + uxxx = 0 →
1

κ5
(ũt̃ + αũũx̃ + ũx̃x̃x̃) = 0

• The weight W of a variable is the exponent of κ

in the symmetry. Thus, W (x) = −1,W (t) = −3, or

W (Dx) = 1, W (Dt) = 3, W (u) = 2.

• The total weight of the KdV equation is 5

because each monomial scales with κ5.



Key Observation

• The Lax operators for the KdV equation are

scaling invariant.

Indeed,
L = D2

x +
1
6
αu I

is uniform of weight 2.

M = −
(
4D3

x + αuDx +
1
2
αux I

)
is uniform of weight 3.

• Furthermore, Lψ = λψ and Dtψ =Mψ are

uniform in weight if W (λ) =W (L) = 2 and

W (M) =W (Dt) = 3.



Elementary Method to Compute Lax Pairs

Using the KdV equation as an example

• Select W (L) = 2. Here W (M) = 3. In general,

W (L) ≥W (u) and W (M) =W (Dt).

• Build L and M as linear combinations of scaling

invariant terms with undetermined coefficients:

L = D2
x + c1u I

M = c2D
3
x + c3uDx + c4ux I

• Substitute into Lt + [L,M] =̇ O, thus replacing

ut by −(αuux + u3x).



• Set the coefficients of D2
x,Dx, and I equal to zero.

• Set the coefficients of like monomial terms in

u, ux, uxx, etc. equal to zero.

• Reduce the nonlinear algebraic system

2c3 − 3c1c2 = 0, 2c4 + c3 − 3c1c2 = 0,

c1(c3 + α) = 0, c1 − c4 + c1c2 = 0

with the Gröbner basis method into

c1(6c1 − α) = 0, c1(c2 + 4) = 0, c1(c3 + α) = 0,

c1(2c4 + α) = 0, 6c1 + c3 = 0, 3c1 + c4 = 0

• Solve: c1 = 1
6
α, c2 = −4, c3 = −α, c4 = −1

2
α



• Substitute the coefficients into L and M :

L = D2
x +

1
6
αu I

M = −
(
4D3

x + αuDx +
1
2
αux I

)
• In complicated cases the nonlinear algebraic

systems are long and hard to solve (too many

solution branches).

• A divide and conquer strategy is needed!



Algorithm to Compute Lax Pairs

Using the KdV equation as an example

• Step 1: Compute the weights

W (Dx) = 1, W (Dt) = 3, W (u) = 2.

• Step 2: Build a candidate Lax pair

Select W (L) = 2. Here W (M) = 3.

The candidate Lax pair is

L = D2
x + f1 Dx + f0 I

M = c3 D3
x + g2 D2

x + g1 Dx + g0 I

with undetermined functions f0, f1, g0, g1, g2 and
undetermined constant coefficient c3.



• Step 3: Substitute into the Lax equation

Lt + [L,M]=(
2Dxg2 − 3c3Dxf1

)
D3
x

+
(

D2
xg2 − 3c3D

2
xf1 + f1Dxg2 + 2Dxg1 − 2g2Dxf1

−3c3Dxf0
)

D2
x

+
(

Dtf1 − c3D3
xf1 + D2

xg1 − g2D2
xf1 − 3c3D

2
xf0

+f1Dxg1 + 2Dxg0 − g1Dxf1 − 2g2Dxf0
)

Dx

+
(

Dtf0 − c3D3
xf0 + D2

xg0 − g2D2
xf0 + f1Dxg0 − g1Dxf0

)
I



• Step 4: Solve the kinematic constraints

(i.e., equations not involving Dt).

Equate the coefficients of D3
x and D2

x to zero and

solve, yielding

g2 = 3
2
c3f1,

g1 = 3
4
c3Dxf1 +

3
8
c3f

2
1 + 3

2
c3f0

• The candidate M operator reduces to

M = c3D
3
x +

3
2
c3f1D

2
x +

3
8
c3
(
2Dxf1 + f21 + 4f0

)
Dx + g0 I

• The candidate L remains unchanged.



• Step 5: Solve the dynamical equations

(i.e., equations that do involve Dt).

The coefficients of I and Dx yield

Dtf1 + 2Dxg0 − 1
8
c3Dx

(
2D2

xf1 + 12Dxf0

−f31 + 12f1f0
)
= 0

Dtf0 + D2
xg0 + f1Dxg0 − c3

(
D3
xf0 +

3
2
f1D

2
xf0

+3
4
Dxf1Dxf0 +

3
8
f21Dxf0 +

3
2
f0Dxf0

)
= 0

• Because W (L) = 2 one has f1 = 0. Thus,

2Dxg0 − 3
2
c3D

2
xf0 = 0

Dtf0 + D2
xg0 − c3

(
D3
xf0 +

3
2
f0Dxf0

)
= 0



• Step 5: continued

Solving these equations gives

g0 = 3
4
c3Dxf0 and f0 = b0u

• Replace ut by −(αuux + u3x),(
α+ 3

2
c3b0

)
uux +

(
1 + 1

4
c3
)
u3x = 0

• Hence,

c3 = −4, b0 = 1
6
α, f0 = 1

6
αu, f1 = 0, g0 = −1

2
αux



• Step 6: Substitute the coefficients into the

undetermined functions and these into the

candidate pair.

Thus,

L = D2
x +

1
6
αu I

and

M = −
(
4D3

x + αuDx +
1
2
αux I

)
form a Lax pair for the KdV equation.



Algorithm for Computing Lax Pairs

• Compute the scaling symmetry of the PDE

• Select W (L) = l ≥ 1.

From the Lax equation: W (M) =W (∂t) = m.

• Build a candidate Lax pair of the form

L = Dl
x + fl−1D

l−1
x + . . .+ f0 I

M = cmDm
x + gm−1D

m−1
x + . . .+ g0 I

for a constant cm.

• Substitute into the Lax equation.



• Separate into kinematic constraints and dynamical

equations.

• Solve the kinematic equations.

• Solve the dynamical equations.

• Substitute the coefficients into undetermined

functions and these into the candidate Lax pair.

• Test the Lax pair.



• Example 1: The modified KdV (mKdV) equation

ut + αu2ux + u3x = 0

has weights of W (u) =W (Dx) = 1 and W (Dt) = 3.

• Selecting W (L) = 1 gives a trivial Lax pair.

• Select W (L) = 2, as in the KdV case, yields

L = D2
x + f1Dx + f0 I

M = c3D
3
x + g2D

2
x + g1Dx + g0 I

• Requiring uniform weights gives

f1 = b0u, f0 = b1u
2 + b2ux, g0 = a1u

3 + a2uux + a3uxx



• Example 1: The mKdV equation – continued

• Solving the kinematic constraints and dynamical

equations gives the Lax pair

L=D2
x + 2εuDx +

1
6

((
6ε2 + α

)
u2 +

(
6ε±

√
−6α

)
ux

)
I

M=−4D3
x − 12εuD2

x

−
((

12ε2 + α
)
u2 +

(
12ε±

√
−6α

)
ux

)
Dx

−
((

4ε3 + 2
3
εα
)
u3 +

(
12ε2 ± ε

√
−6α+ α

)
uux

+
(
3ε± 1

2

√
−6α

)
uxx
)

I

[M. Wadati, J. Phys. Soc. Jpn., 1972-1973].



• Example 2: The Boussinesq system

ut − vx = 0

vt − βux + 3uux + αu3x = 0

has W (Dx)=1,W (Dt)=W (u)=W (β)=2,W (v)=3

• Select W (L) = 3. Then,

L = D3
x + f1Dx + f0 I

M = c2D
2
x + g0 I

• The kinematic constraint yields g0 = 2
3
c2f1 + c0β

The dynamical equations then become

Dtf1 = c2
(
2Dxf0 −D2

xf1
)

Dtf0 = c2
(

D2
xf0 − 2

3
D3
xf1 − 2

3
f1Dxf1

)



• Example 2: The Boussinesq system – continued

• The uniform weight ansatz gives

f1 = a1u+ a2β

f0 = a3ux + D−1x

(
a4u

2 + a5βu+ a6vx + a7β
2
)

• Solving the dynamical equations gives

L = D3
x +

1
4α

(3u−β)Dx+
3

8α2

(
αux± 1

3

√
3αv

)
I

M = ±
√
3αD2

x±
√
3α
2α

u I

[V. E. Zakharov, Sov. Phys. JETP, 1974].



• Example 3: The coupled KdV system (Hirota &

Satsuma)

ut − 6βuux + 6vvx − βu3x = 0

vt + 3uvx + v3x = 0

has W (Dx) = 1,W (Dt) = 3,W (u) =W (v) = 2.

• Select W (L) = 4. If β = 1
2
, then

L = D4
x + 2uD2

x + 2(ux − vx)Dx

+(u2 − v2 + u2x − v2x) I

M = 2D3
x + 3uDx + 3

(
1
2
ux − vx

)
I

[R. K. Dodd & A. Fordy, Phys. Lett. A, 1982].



• Example 4: The Drinfel’d-Sokolov-Wilson system

ut + 3vvx = 0, vt + 2uvx + αuxv + 2v3x = 0

has W (Dx) = 1,W (Dt) = 3,W (u) =W (v) = 2.

• Select W (L) = 6. If α = 1, then

L = D6
x + 2uD4

x + (4ux−3vx)D3
x

+
(
9
2
(u2x−v2x)−u2 − v2

)
D2
x

+
(
5
2
(u3x−v3x) + 2 (uux−vvx) + uxv−uvx

)
Dx

+
(
1
2
(u4x−v4x) + 1

2
(u+v)(u2x−v2x) + 1

4
(u2x−v2x)

)
I

M = D3
x + uDx − 1

2
(3vx−ux) I

[G. Wilson, Phys. Lett. A, 1974].



• Example 5: Class of fifth-order KdV equations

ut + αu2ux + βuxuxx + γuu3x + u5x = 0

includes several completely integrable equations:

Parameter ratios Commonly used values Equation name(
α
γ2 ,

β
γ

)
(α, β, γ)

( 3
10
, 2) (30, 20, 10), (120, 40, 20), Lax

(270, 60, 30)

( 1
5
, 1) (5, 5, 5), (180, 30, 30), Sawada-Kotera

(45, 15, 15)

( 1
5
, 5
2
) (20, 25, 10) Kaup-Kupershmidt



• Example 5: Fifth-order equations – continued

• For W (L) = 2, only Lax’s equation has a Lax pair

L = D2
x +

1
10
γu I

M = −16D5
x − 4γuD3

x − 6γux D2
x − γ

(
5uxx +

3
10
γu2

)
Dx

− γ
(
3
2
u3x +

3
10
γuux

)
I

[P. Lax, Commun. Pure Appl. Math., 1968].



• Example 5: Fifth-order equations – continued

• For W (L) = 3, the Sawada-Kotera and

Kaup-Kupershmidt equations have Lax pairs.

• For the Kaup-Kupershmidt equation:

L = D3
x +

1
5
γuDx +

1
10
γux I

M = 9D5
x + 3γuD3

x +
9
2
γux D2

x +
(
1
5
γ2u2 + 7

2
γuxx

)
+
(
1
5
γ2uux + γu3x

)
I

[A. Fordy & J. Gibbons, J. Math. Phys., 1980].



• Example 5: Fifth-order equations – continued

• For the Sawada-Kotera equation with W (L) = 3:

L = D3
x +

1
5
γuDx

M = 9D5
x + 3γuD3

x + 3γux D2
x +

(
1
5
γ2u2 + 2γu2x

)
Dx

[R. K. Dodd & J. D. Gibbon, Proc. R. Soc.
Lond. A, 1978].

Computations also resulted in:

L̃ = D3
x +

1
5
γuDx +

1
5
γux I = Dx L D−1x

M̃ = 9D5
x + 3γuD3

x + 6γux D2
x +

(
1
5
γ2u2 + 5γu2x

)
Dx

+
(
2
5
γ2uux + 2γu3x

)
I = DxM D−1x



Conclusions and Future Work

• Scaling invariant Lax pairs in operator form are

fairly easy to construct.

• Scaling invariant Lax pairs in matrix form are hard

to construct.

• Gauge equivalence: Which Lax pairs are useful,

which ones are not?

• Compare with Wahlquist & Estabrook method,

pseudo-differential operator method, etc.

• Implementation in Mathematica.



Thank You


