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Motivation, Problem Statement, Examples

Conservation laws of nonlinear PDEs

System of evolution equations of order M
u, = F(u®)(x))

with u = (u,v,w,...) and x = (x,y, 2).

Conservation law in (141)-dimensions

Dyp + DyJ = 0

where = means evaluated on the PDE.

Conserved density p and flux J.



Example 1: Short pulse equation (SPE)

gt = U + (u3)m = u + 6uu926 + 3u Uy

for u(x,t) is completely integrable.

First non-polynomial conservation law:

Dy (\/1 Gu%) D, (—Buz\/l

) OUL Ut
V1 + 6u2

Gu%) = 0

6us(u + 6uu’ + 3uug;)

1+ 6u?



Let
6uz(u + 6uu’ + 3uug;)

V1 + 6uZ
Question: Can the expression be integrated?

f=—

If yes, find F' = /f dr (so, f= D.F)

Result (by hand): F = —3u?\/1 + 6u2

Mathematica cannot compute this integral!

Can the integration capabilities of CAS be

improved for expressions with arbitrary functions?



Example 2: sine-Gordon equation

Uit — Upy = SIN U

or, equivalently,

Ut =V, VUt = Ugy + SIDU

First conservation laws:
Dt(Zcosu V2 u2) Dx(—Qvu,@)iO

I

Dy (2vux) + D, (2 cosu — v° — ui) =0
Dy (24vu$ cos u + 4v3um -+ 4vu§’c - 32@mu2x)
+D, (6 cos® u — 6sin® u + 1202 cos u

+4u? cosu — 6viu’ — v* — ul + 1602 + 16’05%33) =0



Let

3

281N U +2U U2 COS U —OVV,COS U —I—Suxv2sin U

Question: Can the expression be integrated?
If yes, find F' = /f dr (so, f= D.F)
Result (by hand): F = 4v2 + u2 cosu — 3v? cosu

Mathematica cannot compute this integral!



Conservation law in (241)-dimensions

Dtp—I—V-J:Dtp—I—ijl—FDyJQiO

Conserved density p and flux J = (J1, J2).

Conservation law in (341)-dimensions

Dtp—|—vJ:Dtp+DxJ1—|—DyJ2—|—DZJ3:O

Conserved density p and flux J = (Ji, J2, J3).



Example 3: Zakharov-Kuznetsov Equation
Ut + UUg + 6(“513:6 + Uyy):v =0

(models ion-sound solitons in a low pressure
uniform magnetized plasma).

Conservation laws:

Dy (u) + D, (%u2 + 5um) + Dy (5ua;y> =0

Dt( ) + Dy (m S — Bug — u;) + 2Bu(uze + uyy))

+ Dy( — 26u$uy) =0



D, (u3 - %( + U )) + Dy (3”“2(%“2 + Buzs)

2
— 6Bu(u) + uy) + - (ul, — ul,)
2
66 (g (Uzzz + Uzyy) + Uy (Uzzy + uyyy)))

+ Dy (35u2uxfy T %Umy(um T uyy)) =0
Mathematica has no function to compute Div !

Can this be done without integration by parts?

Can the computation be reduced to a single
Integral in one variable?



Example 4: Undo a Divergence

For u(x,y) and v(x,y)

Question: Is there an F so that f =DivF?
If yes, find F.

Result (by hand): F = (uvy, — uzvy, —uvy + Uzpvz)
Mathematica has no function to compute
Div !

Can the computation be reduced to a single

iIntegration?
Demonstration with Mathematica



Notation — Computations on the Jet Space

Independent variables: ¢ (time), x = (x,v, 2)

Dependent variables u = (uM, u .. w0 o uV)
In examples: u = (u,v,w,0,h,...)

. . . 8k ak—l—l
Partial derivatives wuy, = a—;,j, Ui g = 896—%1;, etc.
i H°
A%

Ugrx yyyy — U2x 4y — o2y

Differential functions
Example: f = uvv, + xzuifuw + UV



Total derivatives: D, D, Dy, ...

Example: Let f = uvv, + mzuivx + u, Ve 1 hen

of ., of o f

D:c — — Tx
/ ox “ ou T Ouy
of of of
+ Vg I + Vg v, ~ Uzxx S

— QQj’u,ifo U (va) uxx(?)ngu?va U:U:U)

+ Vg (uvm) + Vgz (UU + 332?1/935) + Ua:a::c(ua:)

3 2 2
»Uz + VULV 3x U, VpUgy T Uzzr Vs

2 2 3
‘|—va + UVVgy + I U, Vg + Uz Vgrx

= 22U



Tool from the Calculus of Variations
Euler Operator (Variational Derivative)

Find y(x) that extremizes, e.g., the functional

b
I(y) = / L(z,y(2), ¥ (2),y"(2)) do

where y(a) = ya, y(b) = yp, i.e., y(x) passes through
A(a,ya) and B(b,yp).

Let y* be the extremizing function



Functional (time to be minimized):

B b\/1_|_y/2
J(y)—/a s da



Solution: Consider a family of functions
y(x) = y*(x) + eh(x) with h(a) = h(b) = h/(a) = h'(b) = 0.

So,

b
J(y* + eh) = / L(z,y* +eh,y" + eh',y*" + eh") dx

View this as a function of ¢ and compute

dJ

—| =70

e=0

b
_ / (Ly(x, y*7 y*/) y*//)h _|_ Ly’ (CU, y*7 y*/’ y*//)h/
L

y// (ZC, y*) y*/7 y*//)h//) diC




Integrate by parts and use boundary conditions

b b
d
J(0) = /Lyhdx+(Ly/h)|g—/ b (Ly) da

b 2
d
/\ b b
+(Ly k"), — (B _d.CC(LyN))Ia +/a h = (Lyr) dzx

— /ab (Ly_i(Ly/) | dd;Z(Lyu))hdx

Use the fundamental lemma of the calculus of
variations:

J0)=0— Ly — F )+ &
B Y oode Y da?

(Ly”) =0

Solve Euler-Lagrange equation to get y*(x).



it
Solution y*: Cycloid

r = R(¢—sing) = R(m — 6 —sinb)
y = R(1—-cos¢)= R(1+ cosb)



Special case

If L =G’ for some function G(z,y(x),y'(z),y"(x)) then

b
I(y) = / G dz = Gz, y(x), ¢ (@), 4" ()|

= G(b,y(b),y'(b),y" (b)) — G(a,y(a),y'(a),y"(a))

is independent of the path y*(xz). Therefore,
d d?
Ly — g(lzy/) | 2 (Ly//) =0

Define the Euler-Lagrange operator as

0 0 1.0

L — €rT - . T
ay ay/ _|_ ay//

3
DfE ay///

0




Definition:
A differential function f is a exact iff f = DivF.
Special case (1D): f =D, F.

Question: How can one test that f = DivF?

Theorem (exactness test):
f =DivF iff [,u(j)(x)f =0, 579=1,2,...,N.
N is the number of dependent variables.

The Euler operator annihilates divergences

Comparison: curl annihilates gradients; divergence
annihilates curls.



Euler operator in 1D (variable u(x)):

o,
k=0 Oz
-9 _p, 2 - D2 0 — D} A

Euler operator in 2D (variable u(z,y)):

0
k ¢
’Cu(x,y) — D J(_Dw) (_Dy) S
k=0 (=0 ey
0 5 D
ou Ouy Ouy
+ D> -D,D 7 -D? 7 -D? 7




Application: Testing Exactness

Example:

3
x

2

f=8U,Vzr —u, sin U +2UzUzy COS U — O6VV, COS U + 33U,V SIN U

where u(xz) and v(x)
f Is exact

After integration by parts (by hand):

F:/fdaz:zélfug—l—u?]j cosu — 3v? cosu



Lv(w)f:g_[)waf i D2

of

=0
ov O, YOV




Concept from (differential) Topology

Homotopic & Homotopy

Two continuous functions are called homotopic if one
can be “continuously deformed” into the other. Such

a deformation is called a homotopy between the two
functions.

A=0

T(ug,u) =ug+ A(u—1ug) = (1 — Nug + Au

Demonstration with Mathematica



Tool from Differential Geometry
Question: How can one compute F = Div™! f?

Theorem (integration by parts):
e In 1D: If f is exact then

FZDaTlf:/fdiv:%u(x)f

e In 2D: If f is a divergence then

F =Div ' f=(H u(w s Hu@ )

T he homotopy operator inverts total

derivatives and divergences!



Homotopy operator in 1D (variable x):

Méj) k—1 . 3](
Iu(])f _ Z Z ug;) ( Dx)k—(Z—l—l) n

(L,» f)[Au] means that in I ¢ f one replaces
u — Au, u; — A\u,, €etc.

More general: u — A(u — ug) + ug

u,; — AN(ugy — uyg) +uyy etc.




Homotopy operator in 2D (variables x and vy):

(2) < 2
,Hu(x,y) f — Z( () f)P‘u] o
0 5
1 N
(1) B dA
Huy(:c,y) ;= . Zl( ne) FllAu] — \
]:

where for dependent variable u(x, y)

k—1 /¢ (zﬂ) (k—l—ﬁ—z:—j—l)
=3 (7? R

k=1 +¢=0 \ =0 3=0 (k)

k—i—1 -5\ Of
(_Dfﬁ) (_Dy) ) 81%;,;63/
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5. Generalized Symmetries

where
2 L+ 1 L+ 1
L = EI-J _ El,k P X
R a;l #I;ODI{Q’(#I+2 (B #I1+2° (F)
The Lie derivative formula (5.133) takes the form
prvg(P) = 121 DRy + Ay, (5.136)

where A, is given by (5.129) when L = Div P, which, using (5.130), is i

h+1 X
= ey o 7Y E ' \' . \
A=3 3 Sy eE )] (5137

(We leave to the reader the direct verification of (5.136).) 3
L The proof of (5.133) is perhaps the most complex calculation of this bo k.
7 (However, the present proof of the exactness of the D-complex is much ea

than previous computational proofs!) We begin by analyzing the right-hand
side using (5.132): 3

lo(Dw) = ‘g l[Dydx! A w)]

e n+l 2
- I:——lkr—-ﬁ#_ID’ {Q,E{"‘[w ADdx" A m)]},

a,l k,I=1

™

since Dew is an (r + 1)-form. The principal constituent in (5.138) is the inter
summation

(@ + 1)E£"‘[B%JD,(dx' A cu)] 2

a
= 7 Ik 1
R% (i, + DE; [D; (_ax" A(dx' A w))],

which we break into two pieces according to whether k = lor k # L.
then by (5.130), EL*- D, = E;\"¥, where, by convention, this ope
does not appear in I. Also, according to Exercise 1.37,

P
N
k,i=1

] i _ y a A
mJ(dx Aw)= —dx A(ﬁ_lw), k#1 ]

We conclude that

Ei"‘[a—iT‘ JDy(dx! A co)] = —ED* [dx' A (%i-] cu)] when



5. Generalized Symmetries

372

But these two summations agree upon changing the multi-index summation
variable from J to I = (J, I), noting that & =Ji + 8k, #I1= #J + 1. This
completes the proof of (5.133). d

We now specialize (5.133) to the case of the scaling vector field pr v, intro-
duced earlier in the proof of the exactness of the variational complex. Note |
that if P[u] = P(x, ) is any smooth differential function defined on a verti- ‘

cally star-shaped domain, then

d . OP 1
A= aZJ u;gu—;[lu] = prv(P)[Aul,

where the notation means that we first apply pr v, to P and then evaluate at
Au. Integrating, we find

. dA
P[u] — P[0] = L pr v,(P)[Au] -,

where P[0] = P(x,0)is a function of x alone. Since pr v, acts coefficient
on a total differential form w(x, u™), we have the analogous formula

t di . -
wlu] — o[0]= | prv, (o)Al (5.144
o
where w[0] = w(x, 0) is an ordinary differential form on the base space X. lf
we now use (5.133) in the case Q = u, whereby
' a 2 o+ 1 a
= IR M § aplkl |
o= £35S e (o)}
we obtain the homotopy formula
w[u] — w[0] = DH(®) + H(Dw),

where the total homotopy operator is
% da
H(w) = J. lu(@) [Au] -
o

meaning that we first evaluate I,(w) and then replace u by Au w
occurs. Except for the extra term w[0] this would suffice to prov
ness of the D-complex. However, @[0] is an ordinary different
Q = M n {u = 0}, so provided Q is also star-shaped we can use
Poincaré homotopy operator (1.69), with
@ [0] — we = dh(ew[0]) + h{dew[0]),

where wo = 0 if r > 0, while w, = f(0) if w[0] = f(x) is 2 func
For such forms, the total derivatives D; and the partial derivatil
the same, so we can replace the differential d by the total
Combining (5.146) and (5.148), we obtain

 — wo = DH*(w) + H¥*(Dw),



., o+ 1 )
| = apl.k *
(@) ;;;pﬁw#fﬂm{u el (a—ﬁx Jm)}, (5.145)

we obtain the homotopy formula

o[u] - 0[0] = DH(&) + HDw), (5.146)
where the total homotopy operator is

¢

.H(m)=J_1_|,(m][Au] S (5.147)
-1 1

meaning that we first evaluate | () and then replace u by Au wherever it
occurs. Except for the extra term w[0] this would suffice to prove the exact-



Homotopy Operator

Recall: Euler's theorem for homogeneous functions
If f(x1,x2,...,2,) IS hOomogeneous of degree p, i.e.,
f(Ax1, Ax2, ..., Axn) = NP f(x1,22,...,2Tn)

then, with g and P defined as follows

gEPfEZxZ- =pf
i=1 Oz,

Proof: Differentiate both sides with respect to A:

2o0w) ox 2" o0w) P

and set A = 1.



0

1 d)
/ pf(Ax1, Axa, ..., Axy)) N
0

1 d\
/ p)\pf(xl,a;g,...,a;n))—
0 A

1
_ f/ pAPLdN = fNP|L =
0



Sketch of Derivation and Proof
(in 1D with variable xz, and for one component u)

Definition: Degree operator M

Oy B %+ “ Ouy 2 Ouoy UM OU N 2

M
M= af _ of of o f o f
1=0

f is of order M in x

Example: fu] = vPuiul, (p,q,r non-negative integers)

Z Wiy — p + q + ) upu:%ugzc

8uw

Application of M computes the total degree




Theorem (inverse operator) M~'g[u] = [ g|
Proof:

d 0g|Au| al)\uwj dglAu] 1
—g|Au] = = — ) Uiy = — Mg\
I ; O\t Z s A

Integrate both sides with respect to A
L d A=1
/ L gpuldr = gPal[XT = glu] — go]
o dA
1 d\ 1 d)\
— / Mgldu] — = ./\/l/ gl u] —
0 A 0 A

Assuming g¢|0] = 0,



Example:

If glu] = (p+ q + r) vPuiul,, then

glhu] = (p+ g+ r)APTH wPudul,

Hence,
1
M glu] = / (b + g+ 1) XNHT L uPyt s d
0
=1
— upuq Ap+q+r . — upu%ugx

Note: Idea comes from converse part of Poincaré
Lemma (closed forms are exact on contractable
domains)



Theorem: If f is an exact differential function, then
F=D.'f = [ fdo=Hynf

Proof: Multiply

M
of

by u to restore the degree.

Split off u%l. Integrate by parts.

Split off uxaauf . Repeat the process.

of

8uM:L. )

Lastly, split off wys,









_ - k—(i+1) ~YJ of
Mf—D:c Zuzaz Z — )

k=1+1 8ukx

Apply M~! and use M~ 1D, = D, ML

— ( 1A§um2(®’“(z“ 8f)

k=1+1 aukx

Apply D! and use the formula for M1,

M—1
_ y i+1) O | 1y, 22
Fepr=[ (Z wk%( D) auw)[/\]/\
1 /M k—1 5 \
/O \; (; =) ) aukx/ Aul A




Early Work by Kruskal and Collaborators

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 11, NUMBER 3 MARCH 1970

Korteweg-deVries Equation and Generalizations. V. Uniqueness
and Nonexistence of Polynomial Conservation Laws

MARTIN D. KRUSKAL, ROBERT M. MIURA,* AND CLIFFORD S. GARDNERT
Plasma Physics Laboratory, Princeton University, Princeton, New Jerse y

AND
NORMAN J. ZABUSKY
Bell Telephone Laboratories, Inc., Whippany, New Jersey

(Received 5 September 1969)

The conservation laws derived in an earlier paper for the Korteweg-deVries equation are proved to be

the only ones of polynomial form. An algebraic operator formalism is developed to obtain explicit
formulas for them,



Zoom into the formula for computation of fluxes

We apply AG~! and note that AC1AGP = P because
only constant terms are annihilated by A6, and P has

none. Furthermore M commutes with D: for, by
(13), (= D,) does, so that

H UMDY M = MDA M,

while J~1Mo = HAM is the identity operator except
for constant terms, which, by (8), do not occur in
derivatives and are annihilated by D. Thus we have

w0

P=D (.M;“ Su, 3 (usy)*’-f-la,.p). (22)
S s

Note that the infinite summations are (formally)
well defined since we could have worked with deriva-
tive index slices, in each instance of which the
summations would obviously be finite. For the same
reason, if P is a polynomial, so is the expression in
brackets. |



Application of Homotopy Operator in 1D

Example:

3

£

2

=80,V —u) sin U +2Uz Uz COS U — O6VV, COS U + 33U,V SIN U

Goal: Find
F =492 +u2 cosu — 3v? cosu

Easy to verify: f =D,F

Compute
9, 9,
OU Kb
— —uui sin u + 3uv? sinu + Qu?C COS U



1 d
F = Hunf = [ (1f+10) ] T

1
— / (3)\211/02 sin(Au) — Muu? sin(Au)
0

+2Xu? cos(Au) — 6Av? cos(Au) + 8)\1)3;) dA\

2

% cosu — 3v° cos u

402
= 4v; +u



Application of Homotopy Operator in 2D
Application 1: Undo a Divergence

Given: | = uzvy — UzzVy — UyUp + UgyUs

By hand: F = (uvy — UgUy, —UVE + UzVg)

Easy to verify: f = DivF

Compute Div ! f

I,L(f)f — uaf F (ugl — uDy) of
OU

Uz
of

-+ (%uyl — %uDy)

1 1
= UVy + 5UyVz — UzVy T+ 5UVzy



1
__ 1 1
— /0 A (uvy + SUyVr — UgVy + 5UVZy — UyV + uwyv) dA

_ 1 1 1 1 1 1
= SUVy T UyVz — 5UzVy T 3 UVzy — 5UyV T 5UzyV



1 1 1

1 1
= —5UVz — JUVzz T UzVz T 53UV — SUzzV

2 4 2

So,

1 [ 2uvy + UyVz — 2UzVy + UVzy — 2UyU + 2UgqyV

—2UVy — UVgr + UpVr + 2UV — 2UpqV



~

Let K=F—F then

e 2UVy — UyUg — 2UgVy — UVgy + 2UyV — 2UgyV

1
4 —2UVs + UV + ULV — 2UV + 2UpqV
then DivK =0

Also, K = (D,¢, —D,¢) with ¢ =

(curl in 2D)

(2uv — vy — 2uzv)

H~ =

After removing the curl term K:

~

F=F+ K = (uvy — upvy, —uvy + uzvz)

Avoid curl terms algorithmically!



Application 2: Zakharov-Kuznetsov Equation
Computation of Conservation Laws

Step 1: Compute the dilation invariance

ZK equation is invariant under scaling symmetry

(t,x,y,u) — ( — 2 )= ({,Z,7,0)

A IS an arbitrary parameter.

Hence, the weights of the variables are

W(u) =2, WD) =3, W(D,)=1, W(D,) = 1.



A conservation law is invariant under the scaling
symmetry of the PDE.

W(u) =2, WD) =3, W(D,)=1, W(D,) = 1.

For example,

Dt(u?)——(u . ?)) + D, (Su (Su? +Busze) —68u(u; + u;)

-+ 362 (um u?vy — %(ux(uxa:x ‘|‘uaf;yy) T uy(uxffy ‘|—Uyyy))>
+ D, (SBUQU;@ - %uaﬁy(umﬁ + uyy)) = 0

Rank (p) = 6, Rank (J) = 8.

Rank (conservation law) = 9.



Compute the density of selected rank, say, 6.

Step 2: Construct the candidate density
For example, construct a density of rank 6.

Make a list of all terms with rank 6:
3 2 2
{u”, us, Uiy, Uy s Ulkyy s Ug Uy, Ulgy, Udg, Udzy, U202y, Uz3y, U4y }

Remove divergences and divergence-equivalent
terms.

Candidate density of rank 6:

3 2 2
p = Clu” + C2U, + C3Uy, T+ C4UL Uy




Step 3: Compute the undetermined coefficients

Compute
dp
Dip = E‘FP( w) | ue]
YY DkDeut
Ty
k=0 (= oau kx by

— (361’11, I 4+ 2cou,D, + 203uyDy + C4(uyD:U + Uny))ut

Substitute u; = —(auux 1 Wi uyy)x)



E = —Dip= SCluQ(Ozuuw + Bluge + Uzy)s)
+ 2coug (quug + B(Ugy + Uyy)z)z + 23Uy (Quuy
+ B(Uzz + Uyy)z)y + ca(uy(auug + B(Uze + Uyy)z)a
+ ug(auugy + B(uzz + Uyy)z)y)

Apply the Euler operator (variational derivative)

M OF
k 14
k=0 (=0 kx Ly

— 7 ((3016 + c30)UgUyy + 2(3c18 + c3a)uyzy

+2ca0UgUgy + CaouyUzy +3(3c10 —|—CQQ{)’U,;UUx:B)

0



Solve a parameterized linear system for the ¢;:

3c1B+c3a=0, caaa =0, 3c18+ coaa =0

Solution:

cir=1, co=—=, cg=—=, c4 =0

Substitute the solution into the candidate density

3 2 2
p = Clu” + C2U, + C3Uy, T+ C4UL Uy

Final density of rank 6:




Step 4: Compute the flux

Use the homotopy operator to invert Div:

_Div-! = (4@ (v)
J=Div " E= (”Hu(x,y)E, ”Hu(%y)E)
where . Lo d
KB = [ U9 BT
with

Similar formulas for HS& nE and ZWE.



Let A = auug + B(Ugzz + Uzyy) SO that
E = 3u?A — %y 4, — By A,
Then,

( 7y) u(x’y)
_ (3“ !4 Bu2(3use + 2uy,) — 268u(3ul + u2)
38wz + tay) — Lt (Dt + Gtigs)

2
_ B—Uy(4uwxy -+ Uyyy) + B (Su’x:p T QU’ZB?J T 4’U,§y

2
+ Sty B “wy — 4Putisuy
2
o 35 u(uxSy + USxy) — um(lgquaﬁy =+ 3Uyyy)

2
— 55 - Uy (U:m;a: + 3Uq:yy) + 945 ua;y(ua::c T Uyy))



PART II: DISCRETE CASE
Motivation, Problem Statement, Example

Conservation Laws for Nonlinear DDEs

System of DDEs

with u, = (un, vp, wn, .. .)

Conservation law in (1 + 1) dimensions

Dtpn + AJy, = Dtpn + Jn—l—l — Jn =0

conserved density p, and flux J,

Example: Toda lattice

Up = Un—1 — Un, Up = Un(Un — Un+t1)



First few densities-flux pairs for Toda lattice:

pﬁf) =In(vp) I =,
,07(21) — Un Jflg,l) — Un—1
o) =102 4 v, T = upvn_1

,07(13) — %u% + Unp (Un—l + Un) J’r(LB) = Up—1UnUn—1 + U%_l

Mathematica has no function to compute A



Problem Statement
Discrete case in 1D:

Example:

2 2
fn = —UpUn+1Un—V,, +Un+1Un+2Un+1 _l_vn—l—l +Up+3Un+2—Un+1Un

Question: Can the expression be summed by parts?
If yes, find F,, = A~'f, (so, f.=AF,=F,1—F,)

Result (by hand):

Iy, :’U,,% + UpUn+1Un + Un+1Un + Un+2Un+1
How can this be done algorithmically?

Can this be done as in the continuous case?



Tools from the Discrete Calculus of Variations
Definitions:

D is the up-shift (forward or right-shift) operator

DE, = n+1:Fn

‘n—>n—|—1

D~ ! the down-shift (backward or left-shift) operator

D'F =F, 1=F,

|n—>n—1
A =D —1is the forward difference operator

AF, = (D —1)F, = Fpt1 — F,

Problem to be solved: Given f,.
Find F,, = A~'f, (so f,=AF,=F, 1 — F,)



Analogy Continuous & Discrete Cases

Euler Operators

Continuous Case

Discrete Case

M

[:u(a:) — Z(_Dx)k

k=0

0
auk x




Analogy Continuous & Discrete Cases

Homotopy Operators & Integrands

Continuous Case

Discrete Case

1 N d\ 1 N d\
Huw f=[ D Ty HNal=—Hu, fo=[ D (I o) fn)[Aun]—
0 i A 0 53 " A
M) M)
Lo = Z L) fn = Z
k=1 k=1
k—1 k
. | o \ .y Of,
ug;) (_Dx)kz—(z—l—l) % D uq(zj—?—k {7)
i=0 aukx i=1 8un+k




Euler Operators Side by Side

Continuous Case (for component u)

fo=2 _p, 2 - D2 7 - D2 O 4.
ou OUy OU Ou3y

Discrete Case (for component u,)

5 ., 0 ., O

0
— I+D ' +D“?+D5+...)

Our,



Homotopy Operators Side by Side

Continuous Case (for components » and v)

d)\
S = /(f f 1 f) ]

with

and




Discrete Case (for components u, and v,)

I d\
Hunfn — (Iun fn + Ivn fn) P\un] 7
0
with
M) k
. (’)fn
Iu n — D™’ n
nJ 2;; ;g; 1L4%:au%+k
and
M) k

Ivn fn — Z Z D_i Un+k afn

k=1 \ i=1 OVn 1k



Analogy of Definitions & Theorems

Continuous Case (PDE)

Semi-discrete Case (DDE)

uw:=F(u,u;,uzy, )

un:F( . . 7un—17un7un—|—1, . . )

Definition: f, is exact iff f, = A F, = F,o1 — Fy,

neorem (exactness test): f, = AF, iff Ly, fn =0

neorem (summation with homotopy operator):

If f, is exact then F, = A~1f, = Hu, (fn)




Testing Exactnhess — Discrete Case
fn= —unun+1vn—vi—l—unﬂuwrzvnﬂ +U7%+1 4+ Up+3Un+2—Up+1Vn
fn Is exact
After summation by parts (done by hand):
F, = v% + UnUn+1Vn + Unt1Vn + Unt2VUnt1

Easy to verify: f, = AF, = F,+1 — F},



Exactness test with Euler operator:

For component wu, (highest shift 3):

0
Lusfo = 7 (14D 4+ D24+ D?)
Oun,
— —Un+1Un — Un—1Un—1 —|— Un+1Un —Un—1
+ Up—1Un—1 + Un—1
=0
Similarly,
o,
Ov,

= UpUp+1 + 2Un — UpUpt+1 — 2VUn

0



Application of Discrete Homotopy Operator
2 2
Jn=—UnUn+1Vn — U, +Un+1Un+2Vn+1+V; 11 +Un+3Vn+2 —Un+1Un

Here, M) = 3 and M®) = 2.

Compute
Ofn
Iy, fn = (D_l) Un+1 !
OUn 11
O fn
+ (D™ + D7) unyo /
OUn 12
Ofn
+ (D '+ D2+ D) unts /
OUn+3

2UpnUn4+1Vn + Un+1Un + Unt2Unt1



Finally,

1 d

1
— / (2)«07% + 3)\2unun+1vn + 2 \uUp+1Vn + 2)\un+2fun+1) d\
0

2
= V,, T UpUn+1VUn + Up+1Un + Un+2Un+1



Application: Computation of Conservation Laws

Conservation law:

Dtpn +AJn — Dtpn + Jn—l—l — Jn =0

conserved density p, and flux J,

Example: Toda lattice

Up = Up—1 — Up
Up = Un(un_un-l-l)

Typical density-flux pair:

p7(13) — %U% + Un(vn—l + Un)

3 2
JT(L ) = Un—1UnUn—1 + V,,_1



Computation Conservation Laws for Toda Lattice

Step 1: Construct the form of the density

he

oda lattice is invariant under scaling symmetry

t,Un,Un) — (A T, Aup, A"vp
AN g, A2

Construct a candidate density, for example,

3
Pn = C1 Uy T C2 UnUn—1 T C3 UnUn

which Is scaling invariant under the symmetry



Step 2: Determine the constants ¢,

Compute F,, = D¢p, and evaluate on DDE

E, = (3c1 — c2)ulvn_1 + (c3 — 3c1)uvn + (c3 — c2)vn_1vn

2 2
+ C2Up—1UnpUn—1 + C2V,,_1 — C3URUNR+1Vn — C3V,,

Compute E, = DE,, to remove negative shift n — 1
Require that £, E, = Ly, E, =0

Solution: ¢ = =,c0 = c3 = 1 gives

W

Pn — ,0%3) — %U% - un(vn—l -+ ’Un)




Step 3: Compute the flux J,

~

2 2
En = DE, = ununi1vn + Up — Un4+1Un+42Un+1 — Upyg

Apply the homotopy operator

~

jn =DJ, = —A_l(En) = —Hu, (En)

Compute
_ OF, OE,
[un b, = (D_l) Un+1 | (D_l + D_Q) Un+-2
= —2UpUnt1Un
Likewise, .
~ OF,

I, En = (D7) vpgr = — (UnUnt1Un + 202)

OVn41



2
= UnpUn+1Un + U,

Finally, backward shift J, = D~1(J,) given

2
n—1

Jn = I = un_1unVn_1 + v




Conclusions and Future Work

The power of Euler and homotopy operators:
» Testing exactness

> Integration by parts: D! and Div !
Integration of non-exact expressions
Example: f = u,v + uv; + U Uy
f fdx = uv + fu2umj dx

Use other homotopy formulas (moving terms
amongst the components of the flux; prevent curl

terms)



Homotopy operator approach pays off for
computing irrational fluxes

Example: short pulse equation (nonlinear optics)
gt = U + (ug)m = u + 6uui + 3u Uy
with non-polynomial conservation law

D, (\/1 +6ug) ~D, <3u2\/l +6ug) = 0

Continue the implementation in Mathematica

Software: http://inside.mines.edu/~whereman
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