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What are maps in 1D and 2D?

• Examples of maps in one dimension (1D):

Example 1:

xn = xn−1 + xn−2, xn ∈ IR, n ≥ 2, x0 = x1 = 1
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What are maps in 1D and 2D?

• Examples of maps in one dimension (1D):

Example 1:

xn = xn−1 + xn−2, xn ∈ IR, n ≥ 2, x0 = x1 = 1

Fibonacci numbers: 1,1,2,3,5,8,13,21,...,

Example 2:

zn+1 = z2
n + c, zn ∈ C, c ∈ C, z0 = 0

Mandelbrot set!



Benoit Mandelbrot Mandelbrot set

(1924-) Fractal image
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Example 3:

xn+1 = r xn(1− xn), xn ∈ IR+, x0 = 0.2, r ∈ [0, 4]
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Example 3:

xn+1 = r xn(1− xn), xn ∈ IR+, x0 = 0.2, r ∈ [0, 4]

Logistic or Verhulst map!

As r increases: repeated period doubling and....

eventually chaos (when r = 3.569946...)



.

Bifurcation diagram for logistic map
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• Examples of maps in two-dimensions (2D):

Example 4:

xn+1 = yn + 1− a x2
n

yn+1 = b xn, a, b, xn, yn ∈ IR, x0, y0 ≥ 0
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• Examples of maps in two-dimensions (2D):

Example 4:

xn+1 = yn + 1− a x2
n

yn+1 = b xn, a, b, xn, yn ∈ IR, x0, y0 ≥ 0

Hénon map! Strange attractors!
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Strange attractor for Hénon map

(a = 1.4, b = 0.3)



.

Example 5:

yn+1 =
1− 4

√
1− y4

n

1 + 4
√

1− y4
n

an+1 = (1 + yn+1)4an − 22n+3yn+1(1 + yn+1 + y2
n+1)

y0 =
√

2− 1

a0 = 6− 4
√

2
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Example 5:

yn+1 =
1− 4

√
1− y4

n

1 + 4
√

1− y4
n

an+1 = (1 + yn+1)4an − 22n+3yn+1(1 + yn+1 + y2
n+1)

y0 =
√

2− 1

a0 = 6− 4
√

2

The π map!
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Example 5:

yn+1 =
1− 4

√
1− y4

n

1 + 4
√

1− y4
n

an+1 = (1 + yn+1)4an − 22n+3yn+1(1 + yn+1 + y2
n+1)

y0 =
√

2− 1

a0 = 6− 4
√

2

The π map!

Compute:

y0 → y1, (a0, y1)→ a1, y1 → y2, (a1, y2)→ a2, etc.
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Then,

I 1
a1

= 3.1415926 (8 digits)

I 1
a2

=

3.1415926535897932384626433832795028841971

(41 digits)

I 1
a3

= π (171 digits)

I 1
a4

= π (694 digits)

I ....

I 1
a15

= π (2 billion digits)

Number of correct digits quadruples in each

iteration
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What are nonlinear P∆Es?

• Nonlinear maps with two lattice points!

Origin: full discretizations of PDEs in 2D



.
• Example: discrete potential Korteweg-de Vries

(pKdV) equation

(vn,m − vn+1,m+1)(vn+1,m − vn,m+1)− p2 + q2 = 0

or
vn+1,m+1 = vn,m −

p2 − q2

vn+1,m − vn,m+1
• Notation:

v is dependent variable or field

n and m are lattice points

p and q are parameters

• For brevity,

(vn,m, vn+1,m, vn,m+1, vn+1,m+1) = (x, x1, x2, x12)
• discrete pKdV equation:

(x− x12)(x1 − x2)− p2 + q2 = 0



.
• Background: Korteweg-de Vries (KdV) equation

∂u

∂t
+ αu

∂u

∂x
+
∂3u

∂x3
= 0 α ∈ IR

for u(x, t), or in subscript notation

ut + αuux + u3x = 0

• Potential form of the KdV equation:

Set u = vx and integrate with respect to x

vt +
α

2
v2
x + vxxx = 0
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Diederik Korteweg Gustav de Vries

(1848-1941) (1866-1934)
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(vn,m − vn+1,m+1)(vn+1,m − vn,m+1)− p2 + q2 = 0

(x− x12)(x1 − x2)− p2 + q2 = 0

x = vn,m x1 = vn+1,m

x12 = vn+1,m+1x2 = vn,m+1 p

p

q q
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Classification of 2D nonlinear integrable P∆Es

Adler, Bobenko, Suris (2003)

• Family of nonlinear P∆Es in two dimensions:

Q(x, x1, x2, x12; p, q) = 0

• Assumpsions:
1. Linear in each argument (affine linear):

Q(x, x1, x2, x12; p, q) = a1xx1x2x12 + a2xx1x2 +

. . .+ a14x2 + a15x12 + a16

2. Invariant under D4 (symmetries of square)

Q(x, x1, x2, x12; p, q) = εQ(x, x2, x1, x12; q, p)

= σQ(x1, x, x12, x2; p, q)

ε, σ = ±1



.
3. Consistency around the cube:

x

x123

x12

x13

x23

x1

x2

x3

p

q
k
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• Trick: Introduce a third lattice variable `

• View v as dependent on three lattice points:

n,m, `. So, x = vn,m −→ x = vn,m,`

• Moves in three directions:

n→ n+ 1 over distance p

m→ m+ 1 over distance q

`→ `+ 1 over distance k (spectral parameter)

• Require that the same lattice holds on front,

bottom, and left face of the cube

• Require consistency for the computation of

x123 = vn+1,m+1,`+1



.

x

x123

x12

x13

x23

x1

x2

x3

p

q
k
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Verification of Consisteny Around the Cube

Example: discrete pKdV equation

? Equation on front face of cube:

(x− x12)(x1 − x2)− p2 + q2 = 0

Solve for x12 = x− p2−q2
x1−x2

Compute x123 : x12 −→ x123 = x3 − p2−q2
x13−x23

? Equation on floor of cube:

(x− x13)(x1 − x3)− p2 + k2 = 0

Solve for x13 = x− p2−k2

x1−x3

Compute x123 : x13 −→ x123 = x2 − p2−k2

x12−x23



? Equation on left face of cube:

(x− x23)(x3 − x2)− k2 + q2 = 0

Solve for x23 = x− q2−k2

x2−x3

Compute x123 : x23 −→ x123 = x1 − q2−k2

x12−x13

? Verify that all three coincide:

x123 =x1 −
q2 − k2

x12 − x13
=x2 −

p2 − k2

x12 − x23
=x3 −

p2 − q2

x13 − x23

Upon substitution of x12, x13, and x23 :

x123 =
p2x1(x2 − x3) + q2x2(x3 − x1) + k2x3(x1 − x2)

p2(x2 − x3) + q2(x3 − x1) + k2(x1 − x2)

Consistency around the cube is satisfied!
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Tetrahedron property

x123 =
p2x1(x2 − x3) + q2x2(x3 − x1) + k2x3(x1 − x2)

p2(x2 − x3) + q2(x3 − x1) + k2(x1 − x2)

is independent of x. Connects x123 to x1, x2 and x3

x

x123

x12

x13

x23

x1

x2

x3

p

q
k
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Result of the ABS Classification

• List H

I (H1) Equation

(x− x12)(x1 − x2) + q − p = 0

I (H2) Equation

(x−x12)(x1−x2)+(q−p)(x+x1+x2+x12)+q2−p2 =0

I (H3) Equation

p(xx1 + x2x12)− q(xx2 + xx12) + δ(p2 − q2) = 0



.
• List A

I (A1) Equation

p(x+x2)(x1+x12)−q(x+x1)(x2+x12)−δ2pq(p−q) = 0

I (A2) Equation

(q2 − p2)(xx1x2x12 + 1) + q(p2 − 1)(xx2 + x1x12)

−p(q2 − 1)(xx1 + x2x12) = 0



.
• List Q

I (Q1) Equation

p(x−x2)(x1−x12)−q(x−x1)(x2−x12)+δ2pq(p−q) = 0

I (Q2) Equation

p(x−x2)(x1−x12)−q(x−x1)(x2−x12)+δpq(p−q)

(x+x1+x2+x12)−δ2pq(p−q)(p2−pq+q2)=0

I (Q3) Equation

(q2−p2)(xx12+x1x2)+q(p2−1)(xx1+x2x12)

−p(q2−1)(xx2+x1x12)−
δ2

4pq
(p2−q2)(p2−1)(q2−1)=0



.
I (Q4) Equation (mother)

a0xx1x2x12

+a1(xx1x2 + x1x2x12 + xx2x12 + xx1x12)

+a2(xx12 + x1x2) + ā2(xx1 + x2x12)

+ã2(xx2 + x1x12) + a3(x+ x1 + x2 + x12) + a4 = 0

the ai depend on the lattice parameters
(Weierstraß elliptic functions)
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Lax Pair of Nonlinear PDEs

• Historical example: Korteweg-de Vries equation

ut + αuux + uxxx = 0

• Lax equation: Lt + [L,M] = 0 (on PDE)

with commutator [L,M] = LM−ML

• Lax operators:

L =
∂2

∂x2
+
α

6
u

M = −4
∂3

∂x3
−
α

2

(
u
∂

∂x
+

∂

∂x
u

)
+A(t)



.
• Note: Ltψ + [L,M]ψ = α

6
(ut + αuux + uxxx)ψ

• Linear problem

? Sturm-Liouville equation: Lψ = λψ

For the KdV equation

ψxx +

(
α

6
u− λ

)
ψ = 0

? Time evolution of data: ψt = Mψ

? Eigenvalues of L are constant: λt = 0
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? Compatibility of Lψ = λψ and ψt = Mψ gives

Ltψ + Lψt = λψt

Ltψ + LMψ = λMψ

= Mλψ

= MLψ

Thus,
Ltψ + (LM−ML)ψ = O

Lax equation:

Lt + [L,M] = 0 (on PDE)
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Peter D. Lax (1926-)
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Reasons to compute a Lax pair

• Replace nonlinear PDE by linear scattering

problem and apply the IST

• Describe the time evolution of the scattering data

• Confirm the complete integrability of the PDE

• Zero-curvature representation of the PDE

• Compute conservation laws of the PDE

• Discover families of completely integrable PDEs

Question: How to find a Lax pair of a completely

integrable PDE?

Answer: There is no completely systematic method
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Lax Pair of Nonlinear P∆Es

• Require that ψ1 = Lψ, ψ2 = Mψ

Here L and M are 2× 2 matrices and ψ =

f
g


So, ψ1 = ψn→n+1, ψ2 = ψm→m+1

• Compatibility:

ψ12 = L2ψ2 = L2Mψ

ψ12 = M1ψ1 = M1Lψ

Hence, L2Mψ −M1Lψ = 0
• Lax equation:

L2M−M1L = 0 (on P∆E)
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• Example 1: Discrete pKdV equation

(x− x12)(x1 − x2)− p2 + q2 = 0

H1 after p2 → p, q2 → q

• Lax operators:

L = t

x p2 − k2 − xx1

1 −x1



M = s

x q2 − k2 − xx2

1 −x2


with t = s = 1 or t = 1√

k2−p2
and s = 1√

k2−q2
Note: t2

t
s
s1

= 1



.
• Note: L2M−M1L =

(
(x− x12)(x1 − x2)− p2 + q2

)
N

with

L =

x p2 − k2 − xx1

1 −x1



M =

x q2 − k2 − xx2

1 −x2



N =
1√

(p2 − k2)(q2 − k2)

−1 x1 + x2

0 1





.
• Example 2: Discrete modified KdV equation

p(xx2 − x1x12)− q(xx1 − x2x12) = 0

H3 for δ = 0 and x→ −x or x12 → −x12
• Lax operators:

L = t

−px kxx1

k −px1



M = s

−qx kxx2

k −qx2


with t = 1

x1
and s = 1

x2
, or t = s = 1

x

or t = 1√
(p2−k2)xx1

and s = 1√
(q2−k2)xx2

Note: t2
t

s
s1

= xx1

xx2
= x1

x2
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Algorithm to Compute a Lax Pair

(Nijhoff 2001, Bobenko & Suris 2001)

Applies to equations that are consistent on cube

Example: Discrete pKdV equation

• Step 1: Verify the consistency around the cube



px

q

x2

x3

x23

x1

k

x12

x13

x123
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? Equation on front face of cube:

(x− x12)(x1 − x2)− p2 + q2 = 0

Solve for x12 = x− p2−q2
x1−x2

Compute x123 = x3 − p2−q2
x13−x23

? Equation on floor of cube:

(x− x13)(x1 − x3)− p2 + k2 = 0

Solve for x13 = x− p2−k2

x1−x3

Compute x123 = x2 − p2−k2

x12−x23



? Equation on left face of cube:

(x− x23)(x3 − x2)− k2 + q2 = 0

Solve for x23 = x− q2−k2

x2−x3

Compute x123 = x1 − q2−k2

x12−x13

After substitution of x12, x13, and x23

x123 =
p2x1(x2 − x3) + q2x2(x3 − x1) + k2x3(x1 − x2)

p2(x2 − x3) + q2(x3 − x1) + k2(x1 − x2)

unique and independent of x (tetrahedron property)

Consistency around the cube is satisfied!
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• Step 2: Homogenization

Numerator and denominator of

x13 = x3x−xx1+p2−k2

x3−x1
and x23 = x3x−xx2+q2−k2

x3−x2

are linear in x3

Substitute x3 = f
g
−→ x13 = f1

g1
, x23 = f2

g2
.

From x13 : f1
g1

= xf+(p2−k2−xx1)g
f−x1g

Hence, f1 = t
(
xf + (p2 − k2 − xx1)g

)
and

g1 = t (f − x1g)

or, in matrix formf1

g1

 = t

x p2 − k2 − xx1

1 −x1

f
g





Matches ψ1 = Lψ with ψ =

f
g


Similarly, from x23 :f2

g2

 = s

x q2 − k2 − xx2

1 −x2

f
g


or ψ2 = Mψ. Therefore,

L = t Lc = t

x p2 − k2 − xx1

1 −x1



M = sMc = s

x q2 − k2 − xx2

1 −x2





. • Step 3: Determine t and s

? Substitute L = tLc,M = sMc into L2M−M1L = 0

−→ t2s(Lc)2Mc − s1t(Mc)1Lc = 0

? Solve the equation from the (2-1)-element for

t2
t

s
s1

= f(x, x1, x2, p, q, . . . )

? If f factors as

f =
F(x, x1, p, q, . . .)G(x, x1, p, q, . . .)

F(x, x2, q, p, . . .)G(x, x2, q, p, . . .)

then try t= 1
F(x,x1,...)

or 1
G(x,x1,...)

and

s= 1
F(x,x2,...)

or 1
G(x,x2,...)

−→ No square roots needed!
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Works for the following lattices: mKdV, H3 with

δ = 0, Q1, Q3 with δ = 0, (α, β)-equation.

Does not work for A1 and A2 equations!

Needs further investigation!

? If f does not factor, apply determinant to get

t2

t

s

s1
=

√
detLc

det (Lc)2

√
det (Mc)1

detMc

? A solution: t = 1√
detLc

, s = 1√
detMc

−→ Introduces square roots!
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How to avoid square roots?

Remedy: Apply a change of variables x = F (X)

t2

t

s

s1
= f(F (X), F (X1), F (X2), p, q, . . . )

=
F(X,X1, p, q, . . .)G(X,X1, p, q, . . .)

F(X,X2, q, p, . . .)G(X,X2, q, p, . . .)

Example 1: Q2 lattice

t2

t

s

s1
=

q
(
(x− x1)2 − 2δp2(x+ x1) + δ2p4

)
p
(
(x− x2)2 − 2δq2(x+ x2) + δ2q4

)
=

q
(
(X +X1)2 − δp2

) (
(X −X1)2 − δp2

)
p
(
(X +X2)2 − δq2

) (
(X −X2)2 − δq2

)
after setting x = F (X) = X2
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Example 2: Q3 lattice

t2

t

s

s1
=
q(q2−1)

(
4p2(x2+x2

1)−4p(1+p2)xx1+δ2(1−p2)2
)

p(p2−1)
(
4q2(x2+x2

2)−4q(1+q2)xx2+δ2(1−q2)2
)

Set x = F (X) = δ cosh(X) then

4p2(x2+x2
1)−4p(1+p2)xx1+δ2(1−p2)2

= (p−eX+X1)(p−e−(X+X1))(p−eX−X1)(p−e−(X−X1))

= (p−cosh(X +X1)+sinh(X +X1))

(p−cosh(X +X1)−sinh(X +X1))

(p−cosh(X −X1)+sinh(X −X1))

(p−cosh(X −X1)−sinh(X +X1))
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Equivalence under Gauge Transformations

Lax pairs are equivalent under a gauge

transformation

If L and M form a Lax pair then so do

L = G1LG−1 and M = G2MG−1

where G is non-singular diagonal matrix (or scalar

factor)

and φ = Gψ

Proof: Trivial verification that

(L2M−M1L)φ = 0↔ (L2M−M1L)ψ = 0
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Software Demonstration
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Additional Examples
• Example 3: H1 equation (ABS classification)

(x− x12)(x1 − x2) + q − p = 0

• Lax operators:

L = t

x p− k − xx1

1 −x1



M = s

x q − k − xx2

1 −x2


with t = s = 1 or t = 1√

k−p and s = 1√
k−q

Note: t2
t

s
s1

= 1



.
• Example 4: H2 equation (ABS 2003)

(x−x12)(x1−x2)+(q−p)(x+x1+x2+x12)+q2−p2 =0

• Lax operators:

L = t

p− k + x p2 − k2 + (p− k)(x+ x1)− xx1

1 −(p− k + x1)



M = s

q − k + x q2 − k2 + (q − k)(x+ x2)− xx2

1 −(q − k + x2)


with t = 1√

2(k−p)(p+x+x1)
and s = 1√

2(k−q)(q+x+x2)

Note: t2
t

s
s1

= p+x+x1

q+x+x2



.
• Example 5: H3 equation (ABS 2003)

p(xx1 + x2x12)− q(xx2 + xx12) + δ(p2 − q2) = 0

• Lax operators:

L = t

kx −
(
δ(p2 − k2) + pxx1

)
p −kx1



M = s

kx −
(
δ(q2 − k2) + qxx2

)
q −kx2


with t = 1√

(p2−k2)(δp+xx1)
and s = 1√

(q2−k2)(δq+xx2)

Note: t2
t

s
s1

= δp+xx1

δq+xx2



.
• Example 6: H3 equation with δ = 0 (ABS 2003)

p(xx1 + x2x12)− q(xx2 + xx12) = 0

• Lax operators:

L = t

kx −pxx1

p −kx1



M = s

kx −qxx2

q −kx2


with t = s = 1

x
or t = 1

x1
and s = 1

x2

Note: t2
t

s
s1

= xx1

xx2
= x1

x2



• Example 7: Q1 equation (ABS 2003)

p(x−x2)(x1−x12)−q(x−x1)(x2−x12)+δ2pq(p−q) = 0

• Lax operators:

L = t

(p− k)x1 + kx −p
(
δ2k(p− k) + xx1

)
p −

(
(p− k)x+ kx1

)


M = s

(q − k)x2 + kx −q
(
δ2k(q − k) + xx2

)
q −

(
(q − k)x+ kx2

)


with t = 1
δp±(x−x1)

and s = 1
δq±(x−x2)

,

or t = 1√
k(p−k)((δp+x−x1)(δp−x+x1))

and

s = 1√
k(q−k)((δq+x−x2)(δq−x+x2))

Note: t2
t

s
s1

=
q(δp+(x−x1))(δp−(x−x1))
p(δq+(x−x2))(δq−(x−x2))



• Example 8: Q1 equation with δ = 0 (ABS 2003)

p(x− x2)(x1 − x12)− q(x− x1)(x2 − x12) = 0

which is the cross-ratio equation
(x− x1)(x12 − x2)

(x1 − x12)(x2 − x)
=
p

q
• Lax operators:

L = t

(p− k)x1 + kx −pxx1

p −
(
(p− k)x+ kx1

)


M = s

(q − k)x2 + kx −qxx2

q −
(
(q − k)x+ kx2

)


Here, t2
t

s
s1

= q(x−x1)2

p(x−x2)2
. So, t = 1

x−x1
and s = 1

x−x2

or t = 1√
k(k−p)(x−x1)

and s = 1√
k(k−q)(x−x2)



• Example 9: Q2 equation (ABS 2003)

p(x−x2)(x1−x12)−q(x−x1)(x2−x12)+δpq(p−q)

(x+x1+x2+x12)−δ2pq(p−q)(p2−pq+q2)=0

• Lax operators:

L= t


(k−p)(δkp−x1)+kx

−p
(
δk(k−p)(δk2−δkp+δp2−x−x1)+xx1

)
p −

(
(k−p)(δkp−x)+kx1

)


M=s


(k−q)(δkq−x2)+kx

−q
(
δk(k−q)(δk2−δkq+δq2−x−x2)+xx2

)
q −

(
(k−q)(δkq−x)+kx2

)




.

• with

t = 1√
k(k−p)((x−x1)2−2δp2(x+x1)+δ2p4)

and

s = 1√
k(k−q)((x−x2)2−2δq2(x+x2)+δ2q4)

Note:

t2

t

s

s1
=

q
(
(x− x1)2 − 2δp2(x+ x1) + δ2p4

)
p
(
(x− x2)2 − 2δq2(x+ x2) + δ2q4

)
=

p
(
(X +X1)2 − δp2

) (
(X −X1)2 − δp2

)
q
(
(X +X2)2 − δq2

) (
(X −X2)2 − δq2

)
with x = X2, and, consequently, x1 = X2

1 , x2 = X2
2



• Example 10: Q3 equation (ABS 2003)

(q2−p2)(xx12+x1x2)+q(p2−1)(xx1+x2x12)

−p(q2−1)(xx2+x1x12)−
δ2

4pq
(p2−q2)(p2−1)(q2−1)=0

• Lax operators:

L= t


−4kp

(
p(k2−1)x+(p2−k2)x1

)
−(p2−1)(δk2−δ2k4−δ2p2+δ2k2p2−4k2pxx1)

−4k2p(p2−1) 4kp
(
p(k2−1)x1+(p2−k2)x

)


M=s


−4kq

(
q(k2−1)x+(q2−k2)x2

)
−(q2−1)(δk2−δ2k4−δ2q2+δ2k2q2−4k2qxx2)

−4k2q(q2−1) 4kq
(
q(k2−1)x2+(q2−k2)x

)




.

• with

t= 1

2k
√
p(k2−1)(k2−p2)(4p2(x2+x2

1)−4p(1+p2)xx1+δ2(1−p2)2)

and

s= 1

2k
√
q(k2−1)(k2−q2)(4q2(x2+x2

2)−4q(1+q2)xx2+δ2(1−q2)2)



Note:

t2

t

s

s1

=
q(q2−1)

(
4p2(x2+x2

1)−4p(1+p2)xx1+δ2(1−p2)2
)

p(p2−1)
(
4q2(x2+x2

2)−4q(1+q2)xx2+δ2(1−q2)2
)

=
q(q2−1)

(
4p2(x−x1)2−4p(p−1)2xx1+δ2(1−p2)2

)
p(p2−1)

(
4q2(x−x2)2−4q(q−1)2xx2+δ2(1−q2)2

)
=
q(q2−1)

(
4p2(x+x1)2−4p(p+1)2xx1+δ2(1−p2)2

)
p(p2−1)

(
4q2(x+x2)2−4q(q+1)2xx2+δ2(1−q2)2

)



where

4p2(x2+x2
1)−4p(1+p2)xx1+δ2(1−p2)2

= (p−eX+X1)(p−e−(X+X1))(p−eX−X1)(p−e−(X−X1))

= (p−cosh(X +X1)+sinh(X +X1))

(p−cosh(X +X1)−sinh(X +X1))

(p−cosh(X −X1)+sinh(X −X1))

(p−cosh(X −X1)−sinh(X +X1))

with x = cosh(X), and, consequently,

x1 = cosh(X1), x2 = cosh(X2)



.
• Example 11: Q3 equation with δ = 0 (ABS 2003)

(q2 − p2)(xx12 + x1x2) + q(p2 − 1)(xx1 + x2x12)

−p(q2 − 1)(xx2 + x1x12) = 0

• Lax operators:

L= t

(p2−k2)x1+p(k2−1)x −k(p2−1)xx1

(p2−1)k −
(
(p2−k2)x+p(k2−1)x1

)


M=s

(q2−k2)x2+q(k2−1)x −k(q2−1)xx2

(q2−1)k −
(
(q2−k2)x+q(k2−1)x2

)




.

• with t = 1
px−x1

and s = 1
qx−x2

or t = 1
px1−x and s = 1

qx2−x

or t = 1√
(k2−1)(p2−k2)(px−x1)(px1−x)

and s = 1√
(k2−1)(q2−k2)(qx−x2)(qx2−x)

Note: t2
t

s
s1

= (q2−1)(px−x1)(px1−x)
(p2−1)(qx−x2)(qx2−x)



.
• Example 12: (α, β)-equation (Tran)(

(p−α)x−(p+β)x1

) (
(p−β)x2−(p+α)x12

)
−
(
(q−α)x−(q+β)x2

) (
(q−β)x1−(q+α)x12

)
=0

• Lax operators:

L= t

(p−α)(p−β)x+(k2−p2)x1 −(k−α)(k−β)xx1

(k+α)(k+β) −
(
(p+α)(p+β)x1+(k2−p2)x

)


M=s

(q−α)(q−β)x+(k2−q2)x2 −(k−α)(k−β)xx2

(k+α)(k+β) −
(
(q+α)(q+β)x2+(k2−q2)x

)




.

• with t = 1
(α−p)x+(β+p)x1)

and s = 1
(α−q)x+(β+q)x2)

or t = 1
(β−p)x+(α+p)x1)

and s = 1
(β−q)x+(α+q)x2)

or t = 1√
(p2−k2)((β−p)x+(α+p)x1)((α−p)x+(β+p)x1)

and s = 1√
(q2−k2)((β−q)x+(α+q)x2)((α−q)x+(β+q)x2)

Note: t2
t

s
s1

=
((β−p)x+(α+p)x1)((α−p)x+(β+p)x1)
((β−q)x+(α+q)x2)((α−q)x+(β+q)x2)



• Example 13: A1 equation (ABS 2003)

p(x+x2)(x1+x12)−q(x+x1)(x2+x12)−δ2pq(p−q) = 0

Q1 if x1 → −x1 and x2 → −x2

• Lax operators:

L = t

(k − p)x1 + kx −p
(
δ2k(k − p) + xx1

)
p −

(
(k − p)x+ kx1

)


M = s

(k − q)x2 + kx −q
(
δ2k(k − q) + xx2

)
q −

(
(k − q)x+ kx2

)




.

• with t = 1√
k(k−p)((δp+x+x1)(δp−x−x1))

and

s = 1√
k(k−q)((δq+x+x2)(δq−x−x2))

Note: t2
t

s
s1

=
q(δp+(x+x1))(δp−(x+x1))
p(δq+(x+x2))(δq−(x+x2))

However, the choices t = 1
δp±(x+x1)

and s = 1
δq±(x+x2)

CANNOT be used.

This lattice needs further investigation!



.
• Example 14: A2 equation (ABS 2003)

(q2 − p2)(xx1x2x12 + 1) + q(p2 − 1)(xx2 + x1x12)

−p(q2 − 1)(xx1 + x2x12) = 0

Q3 with δ = 0 via Möbius transformation:

x→ x, x1 → 1
x1
, x2 → 1

x2
, x12 → x12, p→ p, q → q

• Lax operators:

L= t

 k(p2−1)x −
(
p2−k2+p(k2−1)xx1

)
p(k2−1)+(p2 − k2)xx1 −k(p2−1)x1



M=s

 k(q2−1)x −
(
q2−k2+q(k2−1)xx2

)
q(k2−1)+(q2−k2)xx2 −k(q2−1)x2





.

• with t = 1√
(k2−1)(k2−p2)(p−xx1)(pxx1−1)

and s = 1√
(k2−1)(k2−q2)(q−xx2)(qxx2−1)

Note: t2
t

s
s1

= (q2−1)(p−xx1)(pxx1−1)
(p2−1)(q−xx2)(qxx2−1)

However, the choices t = 1
p−xx1

and s = 1
q−xx2

or t = 1
pxx1−1

and s = 1
qxx2−1

CANNOT be used.

This lattice needs further investigation!



.
• Example 15: Discrete sine-Gordon equation

xx1x2x12 − pq(xx12 − x1x2)− 1 = 0

H3 with δ = 0 via extended Möbius transformation:

x→ x, x1 → x1, x2 → 1
x2
, x12 → − 1

x12
, p→ p, q → 1

q

Discrete sine-Gordon equation is NOT consistent

around the cube, but has a Lax pair!
• Lax operators:

L =

 p −kx1

−k
x

px1

x



M =

 qx2

x
− 1
kx

−x2

k
q





.

Conclusions and Future Work

• Mathematica code works for P∆Es in 2D defined

on quad-graphs (quadrilateral faces)

• Code can be used to test (i) consistency around

the cube and compute or test (ii) Lax pairs

• Consistency around cube =⇒ P∆E has Lax pair

• P∆E has Lax pair ; consistency around cube.

Indeed, there are P∆Es with a Lax pair that are

not consistent around the cube.

Example: discrete sine-Gordon equation



.

• Avoid the determinant method to avoid square

roots! Factorization plays an essential role!

• Hard case: Q4 equation (elliptic curves,

Weierstraß functions) (Nijhoff, 2001)

• P∆Es in 3D: Lax pair will be expressed in terms of

tensors. Consistency around a “hypercube”.

Examples: discrete Kadomtsev-Petviashvili (KP)

equations.



.



.

Thank You


