Head-on collisions of electrostatic solitons in multispecies plasmas

Frank Verheest^{1,2}, Manfred A Hellberg² and Willy A. Hereman³

Sterrenkundig Observatorium, Universiteit Gent, Belgium
 ² School of Chemistry and Physics, University of KwaZulu-Natal, Durban, SA
 ³ Applied Mathematics and Statistics, Colorado School of Mines, Golden CO, USA

・ロット 御マ トルボマ 大田マ しょうく

1. Motivation and model

- KdV equations possess exact solutions for interactions between N solitons, with full nonlinearity during overtaking, but only for solitons propagating in the direction that underlies the basic derivation of the parent equation
- In contrast, *head-on collisions* between two electrostatic solitons can only be dealt with by *approximate methods*, which limit the range of validity but offer valuable insight
- Framework is based on Poincaré-Lighthill-Kuo formalism of strained coordinates, which yields here (m)KdV families of equations plus phase (time) shifts that occur in the interaction
- Plasma consists of number of cold (positive and negative) ion species and Boltzmann electrons
- Continuity and momentum equations for different ion species are coupled to Poisson's equation

$$\frac{\partial \rho_i}{\partial t} + \frac{\partial}{\partial x} \left(\rho_i u_i \right) = 0$$
$$\frac{\partial u_i}{\partial t} + u_i \frac{\partial u_i}{\partial x} + z_i \frac{\partial \varphi}{\partial x} = 0$$
$$\frac{\partial^2 \varphi}{\partial x^2} + \sum_i \rho_i z_i - \exp(\varphi) = 0$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Stretching of independent variables reflects propagation in opposite directions

$$\begin{split} \xi &= \varepsilon(x-t) + \varepsilon^2 P(\xi,\eta,\tau) + \dots \\ \eta &= \varepsilon(x+t) + \varepsilon^2 Q(\xi,\eta,\tau) + \dots \\ \tau &= \varepsilon^3 t \end{split}$$

- Both space coordinates have to use same linear acoustic phase velocity in medium, here $c_a = 1$ with proper choice of normalization
- This is coupled to *expansions* for densities, velocities and electrostatic potential

$$\begin{split} \rho_i &= \rho_{i0} + \varepsilon \rho_{i1} + \varepsilon^2 \rho_{i2} + \varepsilon^3 \rho_{i3} + \varepsilon^4 \rho_{i4} + \dots \\ u_i &= \varepsilon u_{i1} + \varepsilon^2 u_{i2} + \varepsilon^3 u_{i3} + \varepsilon^4 u_{i4} + \dots \\ \varphi &= \varepsilon \varphi_1 + \varepsilon^2 \varphi_2 + \varepsilon^3 \varphi_3 + \varepsilon^4 \varphi_4 + \dots \end{split}$$

 Steps in expansion are left general, so as to deal with generic and critical compositions in one coherent treatment

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

3. Lower order results and bifurcation

To lowest order perturbations obey

$$\left(\frac{\partial \rho_{i1}}{\partial \eta} - \frac{\partial \rho_{i1}}{\partial \xi} \right) + \rho_{i0} \left(\frac{\partial u_{i1}}{\partial \xi} + \frac{\partial u_{i1}}{\partial \eta} \right) = 0$$

$$\left(\frac{\partial u_{i1}}{\partial \eta} - \frac{\partial u_{i1}}{\partial \xi} \right) u_{i1} + z_i \left(\frac{\partial \varphi_1}{\partial \xi} + \frac{\partial \varphi_1}{\partial \eta} \right) = 0$$

$$\sum_i \rho_{i1} z_i - \varphi_1 = 0$$

and lead to separability at linear level

$$\rho_{i1} = \rho_{i0} z_i \left(\varphi_{1\xi} + \varphi_{1\eta}\right) \qquad \qquad u_{i1} = z_i \left(\varphi_{1\xi} - \varphi_{1\eta}\right) \qquad \qquad \varphi_1 = \varphi_{1\xi} + \varphi_{1\eta}$$

Next order leads to bifurcation

$$\left(3\sum_{i}\rho_{i0}\,z_{i}^{3}-1\right)\varphi_{1\xi}^{2}=0\qquad \left(3\sum_{i}\rho_{i0}\,z_{i}^{3}-1\right)\varphi_{1\eta}^{2}=0$$

so that in generic case $\varphi_{1\xi} = \varphi_{1\eta} = 0$ or else, at critical parameters $\sum_i \rho_{i0} z_i^3 = \frac{1}{3}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

4. Generic case: Korteweg-de Vries equations and phase shifts

After much complicated algebra one arrives at KdV equations and phase shifts

$$\begin{vmatrix} \frac{\partial \varphi_{2\xi}}{\partial \tau} + A\varphi_{2\xi} & \frac{\partial \varphi_{2\xi}}{\partial \xi} + \frac{1}{2} & \frac{\partial^3 \varphi_{2\xi}}{\partial \xi^3} = 0 & \& & \frac{\partial P}{\partial \eta} = B\varphi_{2\eta} \\ \frac{\partial \varphi_{2\eta}}{\partial \tau} - A\varphi_{2\eta} & \frac{\partial \varphi_{2\eta}}{\partial \eta} - \frac{1}{2} & \frac{\partial^3 \varphi_{2\eta}}{\partial \eta^3} = 0 & \& & \frac{\partial Q}{\partial \xi} = B\varphi_{2\xi} \end{vmatrix}$$

where

$$A = \frac{1}{2} \left(3 \sum_{i} \rho_{i0} z_{i}^{3} - 1 \right) \gtrless 0 \qquad B = \frac{1}{4} \left(\sum_{i} \rho_{i0} z_{i}^{3} + 1 \right)$$

One-soliton solutions for each KdV equation are

$$\varphi_{2\xi} = \frac{3v_{\xi}}{A}\operatorname{sech}^{2}\left[\sqrt{\frac{v_{\xi}}{2}}(\xi - v_{\xi}\tau)\right] & \& \quad P = \frac{3B\sqrt{2v_{\eta}}}{A}\left\{\tanh\left[\sqrt{\frac{v_{\eta}}{2}}(\eta + v_{\eta}\tau)\right] + 1\right\}$$
$$\varphi_{2\eta} = \frac{3v_{\eta}}{A}\operatorname{sech}^{2}\left[\sqrt{\frac{v_{\eta}}{2}}(\eta + v_{\eta}\tau)\right] & \& \quad Q = \frac{3B\sqrt{2v_{\xi}}}{A}\left\{\tanh\left[\sqrt{\frac{v_{\xi}}{2}}(\xi - v_{\xi}\tau)\right] - 1\right\}$$

• Only same sign polarities (positive or negative) are possible for both waves

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

5. Illustrations for two ion species: head-on collisions in generic case

- Left figure: values $z_1 = 4$ and $z_2 = 1/4$, typical for H⁺ and O⁺, so that A > 0 (potential and density humps) and B > 0 (propagation delays due to interaction)
- Right figure: values $z_1 = 0.1$ and $z_2 = -0.1$, typical for a fullerene plasma with electron contamination, so that A < 0 (potential and density dips) but B > 0 (propagation delays due to interaction)

<ロ> (四) (四) (三) (三) (三) (三)

Algebra in critical case is even more involved but leads to mKdV equations plus phase shifts

$$\begin{aligned} \frac{\partial \varphi_{1\xi}}{\partial \tau} &+ C \, \varphi_{1\xi}^2 \, \frac{\partial \varphi_{1\xi}}{\partial \xi} + \frac{1}{2} \, \frac{\partial^3 \varphi_{1\xi}}{\partial \xi^3} = 0 & \& & \frac{\partial P}{\partial \eta} = D \, \varphi_{1\eta}^2 \\ \frac{\partial \varphi_{1\eta}}{\partial \tau} &- C \, \varphi_{1\eta}^2 \, \frac{\partial \varphi_{1\eta}}{\partial \eta} - \frac{1}{2} \, \frac{\partial^3 \varphi_{1\eta}}{\partial \eta^3} = 0 & \& & \frac{\partial Q}{\partial \xi} = D \, \varphi_{1\xi}^2 \end{aligned}$$

where

$$C = \frac{1}{4} \left(15 \sum_{i} \rho_{i0} z_{i}^{4} - 1 \right) > \frac{1}{6} \qquad D = \frac{1}{8} \left(1 - \sum_{i} \rho_{i0} z_{i}^{4} \right) < \frac{1}{9}$$

 Solutions can now be of either sign and thus allow for collision between counterstreaming negative and positive polarity solitons

$$\varphi_{1\xi} = \pm \sqrt{\frac{6v_{\xi}}{C}} \operatorname{sech} \left[\sqrt{2v_{\xi}} (\xi - v_{\xi}\tau) \right] \quad \& \quad P = \frac{3D}{C} \sqrt{2v_{\eta}} \left\{ \tanh \left[\sqrt{2v_{\eta}} (\eta + v_{\eta}\tau) \right] + 1 \right\}$$
$$\varphi_{1\eta} = \pm \sqrt{\frac{6v_{\eta}}{C}} \operatorname{sech} \left[\sqrt{2v_{\eta}} (\eta + v_{\eta}\tau) \right] \quad \& \quad Q = \frac{3D}{C} \sqrt{2v_{\xi}} \left\{ \tanh \left[\sqrt{2v_{\xi}} (\xi - v_{\xi}\tau) \right] - 1 \right\}$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

7. Illustrations for two ion species: head-on collisions in critical case

• At criticality, one also requires $z_2 = \frac{z_1 - 1/3}{z_1 - 1} < 0$

- Values $z_1 = 0.739$ and $z_2 = -1.552$, typical for Ar⁺ and F⁻ plasma experiments at critical densities
- Here C > 0 and D > 0, but negative polarity soliton propagates to the right and positive polarity soliton to the left, with positive phase shifts (propagation delays)

(ロ) (同) (ヨ) (ヨ) (ヨ) (ヨ) (の)

8. Summary and remarks

- In generic case KdV equations govern collisions between left- and right-propagating solitons, with corresponding phase shifts
- At critical plasma composition modified KdV equations are needed, with corresponding phase shifts, a case not addressed before
- When all ion species are positive, $A \ge 1$ and $B \ge 1/2$ (no critical compositions): polarities and phase shifts are positive (equivalent to delays compared to single-soliton trajectory)
- Negative polarities in general require at least one negative ion species, in addition to necessary positive ions, hence *A* < 0
- Criticality also needs at least one negative species to make A = 0, but then always has C > 0
- Comparison with recent experimental observations of two counter-propagating solitons of equal amplitude in a monolayer strongly coupled dusty plasma indicates qualitative agreement regarding delays occurring after interaction, and general behaviour
- However, amplitude of overlapping solitons during collision was less than sum of initial soliton amplitudes, which cannot correctly be dealt with by available Poincaré-Lighthill-Kuo formalism
- Analytical treatment of more complicated plasma models is qualitatively analogous

(ロ) (同) (目) (日) (日) (の)