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1. INTRODUCTION

• Construct solitary wave solutions by a direct method

• Applicable to:

Single nonlinear evolution and wave equations
Systems of nonlinear PDEs
Nonlinear ODEs

• Goal: Exact solutions

Single solitary wave or soliton solutions
N-solitons
Implicit solutions

• Method:

Hirota’s direct method
Rosales’ perturbation method
Trace method
Hereman et al real exponential approach

• Requirements :

Based on physical principles
Simple and straightforward
Programmable in MACSYMA, REDUCE,
MATHEMATICA, SCRATCHPAD II





2. EXAMPLES

• Korteweg-de Vries equation and generalizations

ut + aunux + uxxx = 0, n ∈ IN

u(x, t) =
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• Burgers equation

ut + auux − uxx = 0

u(x, t) =
c
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• Fisher equation and generalizations

ut − uxx − u(1− un) = 0, n ∈ IN
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• Fitzhugh-Nagumo equation

ut − uxx + u(1− u)(a− u) = 0

u(x, t) =
a

2

1 + tanh

 a

2
√

2
(x− (2− a)√

2
t) + δ




• Kuramoto-Sivashinski equation

ut + uux + auxx + buxxxx = 0

u(x, t) = c +
165ak

19

 tanh3

k(x− ct)

2
+ δ




− 135ak

19

 tanh

k(x− ct)

2
+ δ




with k =
√

11a
19b
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• Harry Dym equation

ut + (1− u)3uxxx = 0

u(x, t) = sech2
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• sine-Gordon equation

utt − uxx − sinu = 0

u(x, t) = 4 arctan
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• Coupled Korteweg-de Vries equations

ut − a(6uux + uxxx)− 2b vvx = 0,

vt + 3uvx + vxxx = 0

u(x, t) = 2 c sech2
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]
,

v(x, t) = ±c
√√√√√√−2(4a + 1)

b
sech

[√
c(x− ct) + δ

]
,

u(x, t) = c sech2
1
2

√
c(x− ct) + δ



v(x, t) =
3√
6|b|

u(x, t) =
3 c√
6|b|

sech2
1
2

√
c(x− ct) + δ





3. THE ALGORITHM

• Step 1: System of two coupled nonlinear PDEs

F(u, v, ut, ux, vt, vx, utx, ..., umx, vnx) = 0,

G(u, v, ut, ux, vt, vx, utx, ..., upx, vqx) = 0, (m,n, p, q ∈ IN)

where F and G are polynomials in their arguments and

ut =
∂u

∂t
, unx =

∂nu

∂xn

• Step 2:

– Introduce the variable ξ = x− ct, (c is the constant velocity)

– Integrate the system of ODEs for φ(ξ) ≡ u(x, t) and ψ(ξ) ≡
v(x, t). with respect to ξ to reduce the order

– Ignore integration constants and assume that the solutions φ
and ψ and their derivatives vanish at ξ = ±∞

• Step 3:

– Expand φ and ψ in a power series

φ =
∞∑
n=1

an g
n, ψ =

∞∑
n=1

bn g
n

– g(ξ) = exp(−K(c)ξ) solves the linear part of one of the equa-
tions



– Consider the dispersion laws K(c) of the linearized equations

– Substitute the expansions into the full nonlinear system

– Use Cauchy’s rule for multiple series to rearrange the multiple
sums

– Equate the coefficient of gn to get the coupled recursion rela-
tions for an and bn

• Step 4:

– Assume that an and bn are polynomials in n

– Determine their degrees δ1 and δ2

– Substitute

an =
δ1∑
j=0

Aj n
j, bn =

δ2∑
j=0

Bj n
j

into the recursion relations



– Compute the sums by using the formulae for

Sk =
n∑
i=1
ik, (k = 0, 1, 2, ...)

– Examples:

S0 = n, S1 =
(n + 1)n

2
,

S2 =
n(n + 1)(2n + 1)

6
, etc.

– Equate to zero the different coefficients of the polynomial in n

– Solve the algebraic (nonlinear) equations for the constant co-
efficients Aj and Bj

• Step 5:

– Find the closed forms for

φ =
∞∑
n=1

δ1∑
j=0

Aj n
j gn ≡

δ1∑
j=0

Aj Fj(g),

ψ =
∞∑
n=1

δ2∑
j=0

Bj n
j gn ≡

δ2∑
j=0

Bj Fj(g)

with

Fj(g) ≡
∞∑
n=1

njgn

Fj+1(g) = gF ′
j(g), j = 0, 1, 2, ...



– Examples

F0(g) =
g

1− g
, F1(g) =

g

(1− g)2
,

F2(g) =
g(1 + g)

(1− g)3
, etc.

– Return to the original variables x and t to obtain the travelling
wave solution(s)



4. EXAMPLE: The Coupled KdV Equations

• Step 1: System of PDEs:

ut − a(6uux + u3x)− 2b vvx = 0,

vt + 3uvx + v3x = 0, a, b ∈ IR

• Step 2:

– Introduce the variable ξ = x− ct, c is the constant velocity

– Integrate the system of ODEs for φ(ξ) ≡ u(x, t) and ψ(ξ) ≡
v(x, t)

cφ + 3aφ2 + αφ2ξ + bψ2 = 0,

−cψξ + 3φψξ + ψ3ξ = 0

• Step 3:

– Expand φ and ψ in a power series

φ =
c

3

∞∑
n=1

an g
n, ψ =

c√
3|b|

∞∑
n=1

bn g
n

– g(ξ) = exp(−K(c)ξ) solves the linear part of one of the equa-
tions in the system

– Consider the dispersion law K(c) =
√
c of the second equation



– Substitute the expansions into the full nonlinear system

– Use Cauchy’s rule for multiple series to rearrange the sums

– Equate the coefficient of gn to get the coupled recursion rela-
tions

(1 + a n2) an +
n−1∑
l=1

(a al an−l + e bl bn−l) = 0,

n (n2 − 1) bn +
n−1∑
l=1

l bl an−l = 0, n ≥ 2

(1 + a)a1 = 0,

with b1 arbitrary, and e = ±1 if |b| = ±b

• CASE 1: a 6= −1 then a1 = 0 thus, a2n−1 = 0,
b2n = 0, (n = 1, 2, ...)

– Shift the labels in the recurrence relations

(1 + 4a n2) a2n +
n−1∑
l=1

a a2l a2(n−l) + e
n∑
l=1

b2l−1 b2n−2l+1 = 0,

4n (n− 1)(2n− 1) b2n−1 +
n−1∑
l=1

(2l − 1) b2l−1 a2(n−l) = 0, n ≥ 1



• Step 4:

– Assume that a2n and b2n−1 polynomials in n and determine
their degrees δ1 = 1 and δ2 = 0

– Substitute a2n = A1n + A0; b2n−1 = B0, (n = 1, 2, ...) into
the recursion relations

– Compute the sums by using the formulae for Sk =
n∑
i=1
ik

– Equate to zero the different coefficients of the polynomial in n
of degree 3

– Solve the algebraic (nonlinear) equations for the constant co-
efficients A1, A0 and B0

– Solution (with MACSYMA):

a2n = 24 n (−1)n+1 a0
n,

b2n−1 = (−1)n−1 b1 a0
n−1, n = 1, 2, ...

with a0 = −eb12/24(4a + 1) > 0

– Remark: b and 4a + 1 must have opposite signs



• Step 5:

– Find the closed forms for φ and ψ

– Use F0(g) =
g

1− g
and F1(g) =

g

(1− g)2
to get

φ = 8 c
∞∑
n=1

(−1)n+1 n (a0 g
2)n =

8 c a0 g
2

(1 + a0 g2)2

ψ =
c√
3|b|

∞∑
n=0

(−1)n b1 a0
n g2n+1 =

c b1 g√
3|b|)(1 + a0 g2)

– Return to the variables x and t

u(x, t) = 2 c sech2[
√
c(x− ct) + δ],

v(x, t) = ±c
√√√√√√−2(4a + 1)

b
sech[

√
c(x− ct) + δ],

with δ = 1
2 ln |24(4a + 1)/b1

2|
• CASE 2: a = −1 then a1 and b1 are arbitrary, take e = 1

– Solution of the recursion relations (with MACSYMA):

an = 12 n (−1)n+1 a0
n,

bn
2 =

an
2

2
= 72 n2 a0

2n, n = 1, 2, ...

with a0 = a1/12.



– Return to the original variables

u(x, t) = c sech2[
1

2

√
c(x− ct) + δ],

v(x, t) =
3√
6|b|

u(x, t) =
3 c√
6|b|
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with δ = 1
2 ln |12/a1|.

– Observe that for v(x, t) = 3√
6b
u(x, t) both equations reduce

to the KdV equation ut + 3uux + u3x = 0



• Sine-Gordon equation

utt − uxx − sinu = 0

u(x, t) = arctan
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• Coupled Korteweg-de Vries equations

ut − a(6uux + uxxx)− 2b vvx = 0,

vt + 3uvx + vxxx = 0

u(x, t) = 2 c sech2
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]
,
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