
Poster Presentation

Symbolic Computation of Conserved Densities

for Systems of Nonlinear Evolution and

Differential-difference Equations
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• Purpose

Design and implement an algorithm to compute polynomial conserva-

tion laws for nonlinear systems of evolution and differential-difference

equations

• Motivation

– Conservation laws describe the conservation of fundamental

physical quantities such as linear momentum and energy.

Compare with constants of motion (first integrals) in mechanics

– For nonlinear PDEs and DDEs, the existence of a sufficiently large

(in principal infinite) number of conservation laws assures complete

integrability

– Conservation laws provide a simple and efficient method to study

both quantitative and qualitative properties of equations and

their solutions, e.g. Hamiltonian structures

– Conservation laws can be used to test numerical integrators



PART I: PDEs

• Conservation Laws for PDEs

Consider a single nonlinear evolution equation

ut = F(u, ux, uxx, ..., unx)

Conservation law:

ρt + Jx = 0

ρ is the density, J is the flux

Both are polynomial in u and its x derivatives

Consequently

P =
∫ +∞
−∞ ρ dx = constant

if J vanishes at infinity



• Example

Consider the Korteweg-de Vries (KdV) equation

ut + uux + u3x = 0

Conserved densities

ρ1 = u, (u)t + (
u2

2
+ u2x)x = 0

ρ2 = u2, (u2)t + (
2u3

3
+ 2uu2x − ux

2)x = 0

ρ3 = u3 − 3ux
2,

(
u3−3ux

2
)
t
+

3

4
u4−6uux

2+3u2u2x+3u2x
2−6uxu3x


x

= 0

...

ρ6 = u6 − 60u3ux
2 − 30ux

4 + 108u2u2x
2

+
720

7
u2x

3 − 648

7
uu3x

2 +
216

7
u4x

2, ...... long ......

...

Note: KdV equation is invariant under the scaling symmetry

(x, t, u) → (λx, λ3t, λ−2u)

u (and t) carry the weight of 2 (resp. 3) derivatives with respect to x

u ∼ ∂2

∂x2
,

∂

∂t
∼ ∂3

∂x3



• Key Steps of the Algorithm

1. Determine weights (scaling properties) of variables & parameters

2. Construct the form of the density (building blocks)

3. Determine the unknown constant coefficients

• Example: For the KdV equation, compute the density of rank 6

(i) Take all the variables, except ( ∂
∂t), with positive weight.

Here, only u with w(u) = 2

List all possible powers of u, up to rank 6 : [u, u2, u3]

Introduce x derivatives to ‘complete’ the rank

u has weight 2, introduce ∂4

∂x4 ,

u2 has weight 4, introduce ∂2

∂x2 ,

u3 has weight 6, no derivative needed

(ii) Apply the derivatives

Remove terms that are total derivatives with respect to x

or total derivative up to terms kept earlier in the list

[u4x] → [ ] empty list

[ux
2, uu2x] → [ux

2] (uu2x = (uux)x − ux
2)

[u3] → [u3]



Combine the ‘building blocks’

ρ = c1u
3 + c2ux

2

(iii) Determine the coefficients c1 and c2

1. Compute
∂ρ

∂t
= 3c1u

2ut + 2c2uxuxt,

2. Replace ut by −(uux + u3x) and uxt by −(uux + u3x)x

3. Integrate the result with respect to x

Carry out all integrations by parts (or use the Euler operator)

∂ρ

∂t
=−[

3

4
c1u

4−(3c1−c2)uu2
x + 3c1u

2u2x−c2u2x
2+ 2c2uxu3x]x

−(3c1 + c2)ux
3

4. The non-integrable (last) term must vanish. Thus, c1 = −1
3c2.

Set c2 = −3, hence, c1 = 1

Result:

ρ = u3 − 3ux
2

Expression [. . .] yields

J =
3

4
u4 − 6uux

2 + 3u2u2x + 3u2x
2 − 6uxu3x



• Application

A Class of Fifth-Order Evolution Equations

ut + αu2ux + βuxu2x + γuu3x + u5x = 0

where α, β, γ are nonzero parameters

u ∼ ∂2

∂x2

Special cases:

α = 30 β = 20 γ = 10 Lax

α = 5 β = 5 γ = 5 Sawada− Kotera

α = 20 β = 25 γ = 10 Kaup−Kupershmidt

α = 2 β = 6 γ = 3 Ito

Under what conditions for the parameters α, β and γ does this equation

admit a density of fixed rank?

– Rank 2:

No condition

ρ = u

– Rank 4:

Condition: β = 2γ (Lax and Ito cases)

ρ = u2



– Rank 6:

Condition:

10α = −2β2 + 7βγ − 3γ2

(Lax, SK, and KK cases)

ρ = u3 +
15

(−2β + γ)
ux

2

– Rank 8:

1. β = 2γ (Lax and Ito cases)

ρ = u4 − 6γ

α
uux

2 +
6

α
u2x

2

2. α = −2β2−7βγ−4γ2

45 (SK, KK and Ito cases)

ρ = u4 − 135

2β + γ
uux

2 +
675

(2β + γ)2
u2x

2

– Rank 10:

Condition:

β = 2γ

and

10α = 3γ2

(Lax case)

ρ = u5 − 50

γ
u2ux

2 +
100

γ2
uu2x

2 − 500

7γ3
u3x

2.



What are the necessary conditions for the parameters α, β and γ for

this equation to admit ∞ many polynomial conservation laws?

– If α = 3
10γ

2 and β = 2γ then there is a sequence

(without gaps!) of conserved densities (Lax case)

– If α = 1
5γ

2 and β = γ then there is a sequence

(with gaps!) of conserved densities (SK case)

– If α = 1
5γ

2 and β = 5
2γ then there is a sequence

(with gaps!) of conserved densities (KK case)

– If

α = −2β2 − 7βγ + 4γ2

45
or

β = 2γ

then there is a conserved density of rank 8

Combine both conditions: α = 2γ2

9 and β = 2γ (Ito case)



PART II: DDEs

• Conservation Laws for DDEs

Consider a system of DDEs, continuous in time, discretized in one space

variable,

u̇n = F(...,un−1,un,un+1, ...)

un and F are vector dynamical variables

Conservation law:

ρ̇n = Jn − Jn+1

ρn is the density and Jn is the flux

Both are polynomials in un and its shifts

d
dt(

∑
n ρn) =

∑
n ρ̇n =

∑
n(Jn − Jn+1), and if Jn is bounded for all n,

with suitable boundary conditions,

∑
n

ρn = constant



• Definitions

D is the shift-down operator and U is the shift-up operator.

Dm = m|n→n−1 and Um = m|n→n+1.

For example, Dun+2vn = un+1vn−1 and Uun−2vn−1 = un−1vn.

Compositions of D and U define an equivalence relation

All shifted monomials are equivalent, e.g.

un−1vn+1 ≡ un+2vn+4 ≡ un−3vn−1

Use the following equivalence criterion:

If two monomials, m1 and m2, are equivalent, m1 ≡ m2, then

m1 = m2 + [Mn −Mn+1]

for some polynomial Mn

For example, un−2un ≡ un−1un+1 since

un−2un = un−1un+1+[un−2un−un−1un+1] = un−1un+1+[Mn−Mn+1],

with Mn = un−2un.

Main representative of an equivalence class; the monomial with label

n on u (or v)

For example, unun+2 is the main representative of the class with ele-

ments un−1un+1, un+1un+3, etc.

Use lexicographical ordering to resolve conflicts

For example, unvn+2 (not un−2vn) is the main representative in the

class with elements un−3vn−1, un+2vn+4, etc.



• Algorithm

Consider the Toda lattice

u̇n = vn−1 − vn, v̇n = vn(un − un+1)

Can compute a couple of conservation laws by hand:

u̇n = ρ̇n = vn−1 − vn = Jn − Jn+1

with Jn = vn−1.

Denote this first pair by

ρ(1)
n = un, J (1)

n = vn−1

A second pair:

ρ(2)
n = 1

2un
2 + vn, J (2)

n = unvn−1

Key observation: DDE and the above pairs, are invariant under the

scaling symmetry

(t, un, vn) → (λt, λ−1un, λ
−2vn)

Result of this dimensional analysis: un corresponds to one derivative

with respect to t

For short, un ∼ d
dt, and similarly, vn ∼ d2

dt2

Our algorithm exploits this symmetry to find conserved densities, which

has three steps:

1. Determining the weights,

2. Constructing the form of density,

3. Determining the unknown coefficients.



• Step 1: Determine the weights

The weight , w, of a variable is equal to the number of derivatives with

respect to t the variable carries

Weights are positive, rational, and independent of n

Set w( d
dt) = 1

For the Toda lattice, w(un) = 1, and w(vn) = 2

The rank of a monomial is the total weight of the monomial, in terms

of derivatives with respect to t

In each equation of the Toda lattice, all the terms are uniform in rank

Requiring uniformity in rank for each equation, allows one to compute

the weights of the dependent variables

Indeed,

w(un) + 1 = w(vn), w(vn) + 1 = w(un) + w(vn),

yields

w(un) = 1, w(vn) = 2,

consistent with the scaling symmetry



• Step 2: Construct the form of the density

For example, compute the form of the density of rank 3

List all monomials in un and vn of rank 3 or less:

G={un
3, un

2, unvn, un, vn}

Next, for each monomial in G, introduce enough t-derivatives, so that

each term exactly has weight 3. Using the equations of Toda lattice,

d0

dt0
(un

3) = un
3,

d0

dt0
(unvn) = unvn,

d

dt
(un

2) = 2unvn−1 − 2unvn,
d

dt
(vn) = unvn − un+1vn,

d2

dt2
(un) = un−1vn−1 − unvn−1 − unvn + un+1vn

Gather the resulting terms in a set

H = {un
3, unvn−1, unvn, un−1vn−1, un+1vn}

Identify members that belong to the same equivalence classes and re-

place them by the main representatives.

For example, since unvn−1 ≡ un+1vn both are replaced by unvn−1.

H is replaced by

I = {un
3, unvn−1, unvn},

containing the building blocks of the density.

Linear combination of the monomials in I with constant coefficients ci

gives

ρn = c1 un
3 + c2 unvn−1 + c3 unvn



• Step 3: Determine the unknown coefficients

Require that conservation law holds

Compute ρ̇n.

Use the equations to remove u̇n, v̇n, etc.

Group the terms

ρ̇n = (3c1 − c2)un
2vn−1 + (c3 − 3c1)un

2vn + (c3 − c2)vn−1vn

+c2un−1unvn−1 + c2vn−1
2 − c3unun+1vn − c3vn

2

Use the equivalence criterion to modify ρ̇n. Replace un−1unvn−1 by

unun+1vn + [un−1unvn−1 − unun+1vn]. The goal is to introduce the

main representatives. Therefore,

ρ̇n = (3c1 − c2)un
2vn−1 + (c3 − 3c1)un

2vn

+(c3 − c2)vnvn+1 + [(c3 − c2)vn−1vn − (c3 − c2)vnvn+1]

+c2unun+1vn + [c2un−1unvn−1 − c2unun+1vn]

+c2vn
2 + [c2vn−1

2 − c2vn
2]− c3unun+1vn − c3vn

2

Group the terms outside of the square brackets and move the pairs

inside the square brackets to the bottom. Rearrange the latter terms

so that they match the pattern [Jn − Jn+1]. Hence,

ρ̇n = (3c1 − c2)un
2vn−1 + (c3 − 3c1)un

2vn

+(c3 − c2)vnvn+1 + (c2 − c3)unun+1vn + (c2 − c3)vn
2

+[{(c3 − c2)vn−1vn + c2un−1unvn−1 + c2vn−1
2}

−{(c3 − c2)vnvn+1 + c2unun+1vn + c2vn
2}]



The terms inside the square brackets determine:

Jn = (c3 − c2)vn−1vn + c2un−1unvn−1 + c2vn−1
2

The terms outside the square brackets must all vanish, yielding

S = {3c1 − c2 = 0, c3 − 3c1 = 0, c2 − c3 = 0}

The solution is 3c1 = c2 = c3. Choose c1 = 1
3, c2 = c3 = 1,

ρn = 1
3 un

3 + un(vn−1 + vn), Jn = un−1unvn−1 + vn−1
2

Analogously, conserved densities of rank ≤ 5:

ρ(1)
n = un, ρ(2)

n = 1
2un

2 + vn,

ρ(3)
n = 1

3un
3 + un(vn−1 + vn),

ρ(4)
n = 1

4un
4 + un

2(vn−1 + vn) + unun+1vn + 1
2vn

2 + vnvn+1,

ρ(5)
n = 1

5un
5 + un

3(vn−1 + vn) + unun+1vn(un + un+1)

+unvn−1(vn−2 + vn−1 + vn) + unvn(vn−1 + vn + vn+1)



• Application

Parameterized Toda lattice:

u̇n = α vn−1 − vn, v̇n = vn (β un − un+1),

α and β are nonzero parameters, and integrable if α = β = 1

Compute the compatibility conditions for α and β, so that there is a

conserved densities of, say, rank 3.

In this case, we have S:

{3αc1−c2 = 0, βc3−3c1 = 0, αc3−c2 = 0, βc2−c3 = 0, αc2−c3 = 0}

A non-trivial solution 3c1 = c2 = c3 will exist iff α = β = 1

Analogously, parameterized Toda lattice has density

ρ(1)
n = un of rank 1 if α = 1,

and density

ρ(2)
n = β

2un
2 + vn of rank 2 if α β = 1

Only when α = β = 1 will the parameterized system have conserved

densities of rank ≥ 3



• Example: Nonlinear Schrödinger (NLS) equation

Ablowitz and Ladik discretization of the NLS equation:

i u̇n = un+1 − 2un + un−1 + u∗nun(un+1 + un−1),

where u∗n is the complex conjugate of un. Treat un and vn = u∗n as inde-

pendent variables and add the complex conjugate equation. Absorbing

i in the scale on t, gives

u̇n = un+1 − 2un + un−1 + unvn(un+1 + un−1),

v̇n = −(vn+1 − 2vn + vn−1)− unvn(vn+1 + vn−1)

Since vn = u∗n, w(vn) = w(un).

No uniformity in rank! Circumvent this problem by introducing an

auxiliary parameter α with weight,

u̇n = α(un+1 − 2un + un−1) + unvn(un+1 + un−1),

v̇n = −α(vn+1 − 2vn + vn−1)− unvn(vn+1 + vn−1).

Uniformity in rank requires that

w(un) + 1 = w(α) + w(un) = 2w(un) + w(vn) = 3w(un),

w(vn) + 1 = w(α) + w(vn) = 2w(vn) + w(un) = 3w(vn),

which yields

w(un) = w(vn) =
1

2
, w(α) = 1.



Uniformity in rank is essential for the first two steps of the algorithm.

After Step 2, set α = 1

The computations now proceed as in the previous examples

Conserved densities:

ρ(1)
n = c1unvn−1 + c2unvn+1,

ρ(2)
n = c1(

1
2un

2vn−1
2 + unun+1vn−1vn + unvn−2)

+ c2(
1
2un

2vn+1
2 + unun+1vn+1vn+2 + unvn+2),

ρ(3)
n = c1[

1
3un

3vn−1
3

+unun+1vn−1vn(unvn−1 + un+1vn + un+2vn+1)

+unvn−1(unvn−2 + un+1vn−1)

+unvn(un+1vn−2 + un+2vn−1) + unvn−3]

+ c2[
1
3un

3vn+1
3

+unun+1vn+1vn+2(unvn+1 + un+1vn+2 + un+2vn+3)

+unvn+2(unvn+1 + un+1vn+2)

+unvn+3(un+1vn+1 + un+2vn+2) + unvn+3].



• Scope and Limitations

– Systems must be polynomial in dependent variables

– Only two independent variables (x and t) are allowed

– No terms should explicitly depend on x and t

– Program only computes polynomial-type conserved densities;

only polynomials in the dependent variables and their derivatives;

no explicit dependencies on x and t

– No limit on the number of evolution equations and DDEs.

In practice: time and memory constraints

– Input systems may have (nonzero) parameters.

Program computes the conditions for parameters such that densities

(of a given rank) exist

– Systems can also have parameters with (unknown) weight.

Allows one to test systems with non-uniform rank

– For systems where one or more of the weights are free.

Program prompts the user to enter values for the free weights

– Negative weights are not allowed

– Fractional weights are permitted

– Form of ρ can be given (testing purposes)



• Conclusions and Further Research

– Mathematica programs condens.m and diffdens.m

– Analysis of class of parameterized equations

– Indicator of integrability

– Exploit other symmetries in the hope to find conserved densities of

non-polynomial form
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Conserved Densities for Sawada-Kotera and Lax 5th-order Equations

Density Sawada-Kotera equation Lax equation

ρ1 u u

ρ2 — 1
2u2

ρ3
1
3u3 − ux

2 1
3u3 − 1

6ux
2

ρ4
1
4u4 − 9

4uux
2 + 3

4u2x
2 1

4u4 − 1
2uux

2 + 1
20u2x

2

ρ5 — 1
5u5 − u2ux

2 + 1
5uu2x

2 − 1
70u3x

2

ρ6
1
6u6 − 25

4 u3ux
2 − 17

8 ux
4 + 6u2u2x

2 1
6u6 − 5

3u3ux
2 − 5

36ux
4 + 1

2u2u2x
2

+2u2x
3 − 21

8 uu3x
2 + 3

8u4x
2 + 5

63u2x
3 − 1

14uu3x
2 + 1

252u4x
2

ρ7
1
7u7 − 9u4ux

2 − 54
5 uux

4 + 57
5 u3u2x

2 1
7u7 − 5

2u4ux
2 − 5

6uux
4 + u3u2x

2

+ 648
35 ux

2u2x
2 + 489

35 uu2x
3 − 261

35 u2u3x
2 + 1

2ux
2u2x

2 + 10
21uu2x

3 − 3
14u2u3x

2

− 288
35 u2xu3x

2 + 81
35uu4x

2 − 9
35u5x

2 − 5
42u2xu3x

2 + 1
42uu4x

2 − 1
924u5x

2

ρ8 — 1
8u8 − 7

2u5ux
2 − 35

12u2ux
4 + 7

4u4u2x
2

+ 7
2uux

2u2x
2 + 5

3u2u2x
3 + 7

24u2x
4

+ 1
2u3u3x

2 − 1
4ux

2u3x
2 − 5

6uu2xu3x
2

+ 1
12u2u4x

2 + 7
132u2xu4x

2 − 1
132uu5x

2

+ 1
3432u6x

2



Conserved Densities for Kaup-Kupershmidt and Ito 5th-order Equations

Density Kaup-Kupershmidt equation Ito equation

ρ1 u u

ρ2 — 1
2u2

ρ3
1
3u3 − 1

8ux
2 —

ρ4
1
4u4 − 9

16uux
2 + 3

64u2x
2 1

4u4 − 9
4uux

2 + 3
4u2x

2

ρ5 — —

ρ6
1
6u6 − 35

16u3ux
2 − 31

256ux
4 + 51

64u2u2x
2 —

+ 37
256u2x

3 − 15
128uu3x

2 + 3
512u4x

2

ρ7
1
7u7 − 27

8 u4ux
2 − 369

320uux
4 + 69

40u3u2x
2 —

+ 2619
4480ux

2u2x
2 + 2211

2240uu2x
3 − 477

1120u2u3x
2

− 171
640u2xu3x

2 + 27
560uu4x

2 − 9
4480u5x

2

ρ8 — —

ρ9
1
9u9 − 13

2 u6ux
2 − 427

32 u3ux
4 − 10431

8960 u6
x —

+ 21
4 u5u2x

2 + 12555
448 u2ux

2u2x
2 + 2413

224 u3u2x
3

+ 16461
1792 ux

2u2x
3 + 1641

256 uu2x
4 − 267

112u4u3x
2

− 3699
896 uux

2u3x
2 − 4383

448 u2u2xu3x
2 − 76635

19712u2x
2u3x

2

− 18891
19712uxu3x

3 + 141
224u3u4x

2 + 8649
39424ux

2u4x
2

+ 27639
19712uu2xu4x

2 + 2715
39424u4x

3 − 927
9856u2u5x

2

− 2943
39424u2xu5x

2 + 9
1232uu6x

2 − 9
39424u7x

2


