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• Purpose

Design and implement an algorithm to compute polynomial-
type
conservation laws for nonlinear systems of evolution equations

• Conservation Laws

Conservation law for a nonlinear PDE

ρt + Jx = 0

ρ is the density, J is the flux

Consider a single nonlinear evolution equation

ut = F(u, ux, uxx, ..., unx)

If ρ is a polynomial in u and its x derivatives, and does not
depend explicitly on x and t, then ρ is called a polynomial
conserved density

If J is also polynomial in u and its x derivatives then this is
called
a polynomial conservation law

Consequently
P =

∫ +∞
−∞ ρ dx = constant

provided J vanishes at infinity



• Motivation

– Conservation laws describe the conservation of fundamental
physical quantities such as linear momentum and energy
Compare with constants of motion (first integrals) in me-
chanics

– or nonlinear PDEs, the existence of a sufficiently large

(in principal infinite) number of conservation laws

assures complete integrability

– Conservation laws provide a simple and efficient method to
study both quantitative and qualitative properties of PDEs
and their solutions, e.g. Hamiltonian structure(s)

– Connection to generalized symmetries
(Fokas, Stud. Appl. Math 77, 1987)

– Conservation laws can be used to test numerical integrators
for PDEs



For KdV equation, u and u2 are conserved quantities
Thus, a numerical scheme should preserves the quantities

∑
j

Un−1
j =

∑
j

Un
j

and ∑
j

[Un−1
j ]

2
=

∑
j

[Un
j ]2

For two such schemes see Sanz-Serna, J. Comput. Phys.
47, 1982



• Conserved Densities Software

– Conserved densities programs CONSD and SYMCD
by Ito and Kako (Reduce, 1985, 1994 & 1996)

– Conserved densities in DELiA by Bocharov
(Pascal, 1990)

– Conserved densities and formal symmetries FS
by Gerdt and Zharkov (Reduce, 1993)

– Conserved densities by Roelofs, Sanders and Wang
(Reduce 1994, Maple 1995, Form 1995, 1996)

– Conserved densities condens.m by Hereman and Göktaş
(Mathematica, 1995)

– Conservation laws, based on CRACK, by Wolf (Reduce,
1995)

– Conserved densities by Ahner et al.
(Mathematica, 1995)

Our program is available at ftp site: mines.edu
in subdirectory
pub/papers/math cs dept/software/condens



• Example

Consider the Korteweg-de Vries (KdV) equation

ut + uux + u3x = 0

Conserved densities

ρ1 = u, (u)t + (
u2

2
+ u2x)x = 0

ρ2 = u2, (u2)t + (
2u3

3
+ 2uu2x − ux

2)x = 0

ρ3 = u3 − 3ux
2,

(
u3 − 3ux

2
)
t
+
3
4
u4 − 6uux

2 + 3u2u2x + 3u2x
2 − 6uxu3x


x
=0

...

ρ6 = u6 − 60u3ux
2 − 30ux

4 + 108u2u2x
2

+
720

7
u2x

3 − 648

7
uu3x

2 +
216

7
u4x

2, ...... long ......

...



Note: KdV equation is invariant under the scaling symmetry

(x, t, u) → (λx, λ3t, λ−2u)

u and t carry the weight of 2, resp. 3 derivatives with respect
to x

u ∼ ∂2

∂x2
,

∂

∂t
∼ ∂3

∂x3



• Key Idea behind Construction of Densities

Compute the building blocks of density with rank 6

(i) Take all the variables, except ( ∂
∂t), with positive weight

Here, only u with w(u) = 2

List all possible powers of u, up to rank 6

[u, u2, u3]

Introduce x derivatives to ‘complete’ the rank

u has weight 2, so introduce ∂4

∂x4 ,

u2 has weight 4, so introduce ∂2

∂x2 ,

u3 has weight 6, so no derivative needed

(ii) Apply the derivatives
Remove terms that are total derivatives with respect to x
or total derivative up to terms kept earlier in the list

[u4x] → [ ] empty list

[ux
2, uu2x] → [ux

2] (uu2x = (uux)x − ux
2)

[u3] → [u3]



Combine the ‘building blocks’

ρ = u3 + c1ux
2

the constant c1 must be determined

(iii) Determine the unknown coefficients (c1)

1. Compute
∂ρ

∂t
= 3u2ut + 2c1uxuxt,

2. Replace ut by −(uux + u3x) and uxt by −(uux + u3x)x

3. Integrate the result with respect to x

Carry out all integrations by parts

∂ρ

∂t
=−[

3

4
u4 + (c1−3)uu2

x + 3u2u2x− c1u2x
2+ 2c1uxu3x]x

−(c1 + 3)ux
3,

4. The non-integrable (last) term must vanish. Thus, c1 = −3

Result:
ρ = u3 − 3ux

2

Expression [. . .] yields

J =
3

4
u4 − 6uux

2 + 3u2u2x + 3u2x
2 − 6uxu3x



• Algorithm and Implementation

Consider a system of N nonlinear evolution equations

ui,t + Fi(uj, u
(1)
j , . . . , u

(n)
j ) = 0 i, j = 1, 2, . . . , N

where ui,t
def=

∂ui

∂t
, u

(n)
i

def=
∂n(ui)

∂xn

All ui depend on x and t

Algorithm consists of three major steps

1. Determine weights (scaling properties) of variables & pa-
rameters

2. Construct the form of the density (building blocks)

3. Determine the unknown numerical coefficients



• Procedure to determine the weights (scaling prop-
erties)

Define

weight of a variable: the number of partial derivatives with
respect to x the variable carries

rank of a term: the total weight of that term in terms of partial
derivatives with respect to x

For example:

ut → r1,1 = w(u) + w(
∂

∂t
)

uux → r1,2 = 2w(u) + 1

u3x → r1,3 = w(u) + 3

where ri,k denotes the rank of the kth term in the ith equation
w denotes the weight of its argument
Uniformity in rank requires

r1,1 = r1,2 = r1,3

Thus

w(u) = 2, w(
∂

∂t
) = 3



Require that all terms in any particular equation have the same
rank
(uniformity in rank )

Different equations in the same system may have different ranks



Introduce the following notations:

w returns the weight of its argument

g returns the degree of nonlinearity of its argument

d returns the number of partial derivatives with respect
to its argument

ri,k denotes the rank of kth term in the ith equation

Pick

w(
∂

∂x
) = 1, . . . , w(

∂n

∂xn
) = n

All weight are assumed nonnegative and rational

List of ‘variables’ that carry weights

{ ∂

∂t
, u1, u2, . . . , uN , p1, p2, . . . , pP}



Step 1 Take the ith equation with Ki terms

Step 2 For each of its terms compute the rank

ri,k = d(x) + d(t) w(
∂

∂t
) +

N∑
j=1

g(uj) w(uj) +
P∑

j=1
g(pj) w(pj)

k = 1, 2, . . . , K

If the variable uj and/or the parameter pj is missing then
g(uj) = 0 or g(pj) = 0, or both

Step 3 Use uniformity in rank in the ith equation
Form the linear system

Ai = {ri,1 = ri,2 = · · · = ri,Ki
}

Step 4 Repeat steps (1) through (3) for all equations

Step 5 Gather the equations Ai

Form the global linear system

A =
N⋃

i=1
Ai

Step 6 Solve A for the N + P + 1 unknowns w(uj), w(pj)
and w( ∂

∂t)



• Example

Consider the Boussinesq equation

utt − u2x + uu2x + ux
2 + a u4x = 0

with nonzero parameter a

Can be written as a system of evolution equations

u1,t + u2
′ = 0

u2,t + u1
′ − u1u1

′ − a u
(3)
1 = 0

In the second equation

u1
′ and a u

(3)
1

do not allow for uniformity in rank

Introduce an auxiliary parameter b with weight and
replace the system by

u1,t + u2
′ = 0

u2,t + b u1
′ − u1u1

′ − a u
(3)
1 = 0



Determine ranks and weights

r1,1 = 1 w(
∂

∂t
) + 1 w(u1)

r1,2 = 1 + 1 w(u2)

r2,1 = 1 w(
∂

∂t
) + 1 w(u2)

r2,2 = 1 + 1 w(u1) + 1 w(b)

r2,3 = 1 + 2w(u1)

r2,4 = 3 + 1 w(u1)

Uniformity in rank for each equation requires

A1 = {r1,1 = r1,2}
A2 = {r2,1 = r2,2 = r2,3 = r2,4}

and A = A1 ∪ A2

Solve A for w(u1), w(u2), w( ∂
∂t) and w(b)

w(u1) = 2, w(b) = 2, w(u2) = 3 and w(
∂

∂t
) = 2

or

u1 ∼ b ∼ ∂2

∂x2
, u2 ∼

∂3

∂x3
,

∂

∂t
∼ ∂2

∂x2



• Construct the Form of the Density

Let V = {v1, v2, . . . , vQ} be the sorted list (descending weights)

of all variables, including all parameters, but excluding
∂

∂t

Step 1 Form all combinations of variables of rank R or less

Recursively, form sets consisting of ordered pairs

(Tq,s; Wq,s)

where Tq,s denotes a combination of different powers of the
variables
and Wq,s denotes the total weight of Tq,s

q refers to the variable vq

s refers to the allowable power of vq such that Wq,s ≤ R



Set B0 = {(1; 0)} and proceed as follows:

For q = 1 through Q do

For m = 0 through M − 1 do

Form Bq,m =
bq,m⋃
s=0
{(Tq,s; Wq,s)}

M is the number of pairs in Bq−1

Tq,s = Tq−1,m vq
s

Wq,s = Wq−1,m + s w(vq)

(Tq−1,m; Wq−1,m) is the (m + 1)st ordered pair in Bq−1

bq,m = [[
R−Wq−1,m

w(vq)
]] is the maximum allowable power of vq

Set Bq =
M−1⋃
m=0

Bq,m

Step 2 Set G = BQ

Note: G has all possible combinations of powers of variables
that produce rank R or less



Step 3 Introduce partial derivatives with respect to x

For each pair (TQ,s; WQ,s) in G, apply
∂`

∂x`
to the term TQ,s

provided ` = R−WQ,s is integer

This introduces just enough partial derivatives with respect to
x
so that all the pairs retain weight R

Gather in set H all the terms that result from computing
∂`(TQ,s)

∂x`

Step 4 Remove the terms from H that can be written as a
derivative with respect to x, or as a derivative up to terms kept
prior in the set

Call the resulting set I, which consists of the building blocks
of the density ρ with desired rank R

Step 5 If I has I elements, then their linear combination
will produce the polynomial density of rank R

ρ =
I∑

i=1
ci I(i)

I(i) denotes the ith element in I

ci are numerical coefficients, still to be determined



• Example

Return to the Boussinesq equation, where

w(u1) = 2, w(b) = 2, and w(u2) = 3

For example, construct the density with rank R = 6

V = {u2, u1, b}

Hence, v1 = u2, v2 = u1, v3 = b and Q = 3

Step 1 For q = 1, m = 0:

b1,0 = [[63]] = 2

Thus, with T1,s = u2
s, and W1,s = 3s, where s = 0, 1, 2

we obtain

B1 = B1,0 = {(1; 0), (u2; 3), (u2
2; 6)}

For q = 2, m = 0:

b2,0 = [[6−0
2 ]] = 3

So, with T2,s = u1
s, and W2,s = 2s, with s = 0, 1, 2, 3

we obtain

B2,0 = {(1; 0), (u1; 2), (u1
2; 4), (u1

3; 6)}



For q = 2, m = 1:

B2,1 = {(u2; 3), (u1u2; 5)} since b2,1 = [[6−3
2 ]] = 1

T2,s = u2 u1
s

and

W2,s = 3 + 2s, and s = 0, 1

For q = 2, m = 2:

b2,2 = [[6−6
2 ]] = 0

Therefore B2,2 = {(u2
2; 6)}

Hence,

B2 = {(1; 0), (u1; 2), (u1
2; 4), (u1

3; 6), (u2; 3), (u1u2; 5), (u2
2; 6)}

For q = 3: introduce possible powers of b

An analogous procedure leads to

B3,0 = {(1; 0), (b; 2), (b2; 4), (b3; 6)} B3,4 = {(u2; 3), (bu2; 5)}
B3,1 = {(u1; 2), (bu1; 4), (b2u1; 6)} B3,5 = {(u1u2; 5)}
B3,2 = {(u1

2; 4), (bu1
2; 6)} B3,6 = {(u2

2; 6)}
B3,3 = {(u1

3; 6)}

Thus

B3 = {(1; 0), (b; 2), (b2; 4), (b3; 6), (u1; 2), (bu1; 4), (b2u1; 6), (u1
2; 4),

(bu1
2; 6), (u1

3; 6), (u2; 3), (bu2; 5), (u1u2; 5), (u2
2; 6)}



Step 2 Set G = B3

Step 3 Apply derivatives to the first components of the pairs
in G

Compute ` for each pair of G :

` = 6, 4, 2, 0, 4, 2, 0, 2, 0, 0, 3, 1, 1, and 0

Gather the terms after applying partial derivatives w.r.t. x

Hence

H = {0, b3, u1
(4), bu1

(2), b2u1, (u1
′)

2
, u1u1

(2),

bu1
2, u1

3, u2
(3), bu2

′, u1u2
′, u1

′u2, u2
2}

Step 4 Remove from H the terms
that can be written as a derivative with respect to x or
as a derivative up to terms retained earlier in that set

This gives

I = {b2u1, bu1
2, u1

3, u2
2, u1

′u2, (u1
′)

2}

Step 5 Combine these building blocks and form ρ of rank 6

ρ = c1 b2u1 + c2 bu1
2 + c3 u1

3 + c4 u2
2 + c5 u1

′u2 + c6 (u1
′)

2



Calculus of Variations
provides a useful tool to verify if an expression is a derivative

Theorem

If
f = f (x, y1, . . . , y

(n)
1 , . . . , yN , . . . , y

(n)
N )

then
L~y(f ) ≡ ~0

if and only if

f =
d

dx
g

where

g = g(x, y1, . . . , y
(n−1)
1 , . . . , yN , . . . , y

(n−1)
N )

Notations:

~y = [y1, . . . , yN ]T

L~y(f ) = [Ly1(f ), . . . ,LyN
(f )]T

~0 = [0, . . . , 0]T

(T for transpose)



and Euler Operator:

Lyi
=

∂

∂yi
− d

dx
(

∂

∂yi
′) +

d2

dx2
(

∂

∂yi
′′) + · · · + (−1)n

dn

dxn
(

∂

∂yi
(n)

)

Proof: see Olver (1986, pp. 252)

• Determine the Unknown Coefficients

Step 1 Compute ∂ρ
∂t

Replace all (ui,t)
(j), i, j = 0, 1, ... from the given system

Step 2 The resulting expression E must be the total deriva-
tive of some functional (−J)

Two options:

– Integrate by parts

Isolate the non-integrable part

Set it equal to zero

The latter leads to a linear system for the coefficients ci to
be solved

– Use the Euler-Lagrange equations

Apply the Euler operator

Lui
=

∂

∂ui
− d

dx
(

∂

∂ui
′)+

d2

dx2
(

∂

∂ui
′′)+· · ·+(−1)n

dn

dxn
(

∂

∂ui
(n)

)

to E



If E is completely integrable no terms will be left, i.e.

Lu1(E) ≡ 0, . . . ,LuN
(E) ≡ 0

otherwise set the remaining terms equal to zero

and form the linear system for the coefficients ci

With either option, construct a linear system, denoted by S

Step 3 Two cases may occur, depending on whether or not
there are parameters in the system

Case I:

If the only unknowns in S are ci’s, just solve S for ci’s

Substitute the nonempty solution into ρ to get its final form

Case II:

If in addition to the coefficients ci’s there are also parameters
pi in S

Determine the conditions on the parameters so that ρ of the
given form exists for at least some ci’s nonzero



These compatibility conditions assure that the system has
other than trivial solutions

– Set C = {c1, c2, . . . , cI} and i = 1

– While C 6= {} do:

For the building block I(i) with coefficient ci to appear
in ρ, one needs ci 6= 0

Therefore, set ci = 1 and eliminate all the other cj from
S
This gives compatibility conditions consistent with the
presence of the term ciI(i) in ρ



If compatibility conditions require that some of the pa-
rameters are zero

then

ci must be zero since parameters are assumed to be
nonzero

Hence, set C = C\{ci}, and i = i′

where i′ is the smallest index of the cj that remain in
C

else

Solve the compatibility conditions and for each result-
ing branch

Solve the system S for cj

Substitute the solution into ρ to obtain its final form

Collect those cj which are zero for all of the branches
into a set Z
The ci in Z might not have occurred in any density yet

Give them a chance to occur:
Set C = C ∩ Z, and i = i′

where i′ is the smallest index of the cj that are still in
C



• Example

Consider the parameterized coupled KdV equations (Hirota-
Satsuma)

ut − 6αuux + 6vvx − αu3x = 0

vt + 3uvx + v3x = 0

Here, w(u) = w(u) = 2 and the form of the density of rank 4
is

ρ = c1 u2 + c2 uv + c3 v2 = c1 u1
2 + c2 u1u2 + c3 u2

2

Step 1 Compute ρt and replace all (ui,t)
(j) to get

E = 2c1u1

(
6αu1u1

(1) − 6u2u2
(1) + αu1

(3)
)

+c2u2

(
6αu1u1

(1) − 6u2u2
(1) + αu1

(3)
)

−c2u1

(
3u1u2

(1) + u2
(3)

)
− 2c3u2

(
3u1u2

(1) + u2
(3)

)

Step 2 Either integrate by parts or apply the Euler operator

Get the linear system for the coefficients c1, c2 and c3

S = {(1 + α)c2 = 0, 2 c1 + c3 = 0}

Obviously, C = {c1, c2, c3} with one parameter (α)



Step 3 Search for compatibility conditions

– Set c1 = 1, which gives

{c1 = 1, c2 = 0, c3 = −2}

without any constraint on the parameter α

Since only c2 = 0, Z = {c2} and C = C ∩ Z = {c2}, with
i′ = 2

– Set c2 = 1

This leads to the compatibility condition α = −1, and

{c1 = −1

2
c3, c2 = 1}

Since Z = {} the procedure ends

One gets two densities of rank 4, one without any constraint
on α, one with a constraint

In summary:

ρ = u1
2 − 2 u2

2

and

ρ = −1

2
c3u1

2 + u1u2 + c3u2
2

with compatibility condition α = −1



Search for densities of rank R ≤ 8

Rank 2: No condition on α

One always has the trivial density ρ = u

Rank 4: At this level, two branches emerge

1. No condition on α
ρ = u2 − 2v2

2. For α = −1

ρ = uv + c (v2 − 1

2
u2), c is free



Rank 6: No condition on α and

ρ = u3 − 3

α + 1
uv2 − 1

2
ux

2 +
3

α + 1
vx

2, α 6= −1

Rank 8: The system has conserved density

ρ = u4−12

5
u2v2+

12

5
v4−2uux

2−24

5
uvx

2−4

5
v2u2x+

1

5
u2x

2+
8

5
v2x

2

provided that α = 1
2

Therefore, α = 1
2 (integrable case!) appears in the computation

of density of rank 8

For α = 1
2, we also computed the density of Rank 10

ρ = − 7

20
u5 + u3v2 − uv4 +

7

4
u2ux

2 +
1

2
v2ux

2 + u2vx
2

+4v2vx
2 + uv2u2x + vx

2u2x −
7

20
uu2x

2 − 2uv2x
2 +

1

40
u3x

2

+
2

5
v3x

2 +
1

10
v2u4x



• Application 1

A Class of Fifth-Order Evolution Equations

ut + αu2ux + βuxu2x + γuu3x + u5x = 0

where α, β, γ are nonzero parameters

u ∼ ∂2

∂x2

Special cases:

α = 30 β = 20 γ = 10 Lax

α = 5 β = 5 γ = 5 Sawada− Kotera

or Caudry−Dodd−Gibbon

α = 20 β = 25 γ = 10 Kaup−Kupershmidt

α = 2 β = 6 γ = 3 Ito

Under what conditions for the parameters α, β, and γ does this
equation admit a density of fixed rank?

– Rank 2:
No condition

ρ = u

– Rank 4:
Condition: β = 2γ (Lax and Ito cases)

ρ = u2



– Rank 6:
Condition:

10α = −2β2 + 7βγ − 3γ2

(Lax, SK, and KK cases)

ρ = u3 +
15

(−2β + γ)
ux

2

– Rank 8:

1. β = 2γ (Lax and Ito cases)

ρ = u4 − 6γ

α
uux

2 +
6

α
u2x

2

2. α = −2β2−7βγ−4γ2

45 (SK, KK and Ito cases)

ρ = u4 − 135

2β + γ
uux

2 +
675

(2β + γ)2
u2x

2

– Rank 10:
Condition:

β = 2γ

and
10α = 3γ2

(Lax case)

ρ = u5 − 50

γ
u2ux

2 +
100

γ2
uu2x

2 − 500

7γ3
u3x

2.



What are the necessary conditions for the parameters α, β,
and γ so that this equation could admit ∞ many polynomial
conservation laws?

– If α = 3
10γ

2 and β = 2γ then there is a sequence
(without gaps!) of conserved densities (Lax case)

– If α = 1
5γ

2 and β = γ then there is a sequence
(with gaps!) of conserved densities (SK case)

– If α = 1
5γ

2 and β = 5
2γ then there is a sequence

(with gaps!) of conserved densities (KK case)

– If

α = −2β2 − 7βγ + 4γ2

45
or

β = 2γ

then there is a conserved density of rank 8

Combine both conditions: α = 2γ2

9 and β = 2γ (Ito case)



• Application 2

A Class of Seventh-Order Evolution Equations

ut + au3ux + bux
3 + cuuxu2x + du2u3x + eu2xu3x

+fuxu4x + guu5x + u7x = 0

where a, b, c, d, e, f, g are nonzero parameters

u ∼ ∂2

∂x2

Special cases:

SK− Ito Case a = 252, b = 63, c = 378, d = 126,

e = 63, f = 42, g = 21,

Lax Case a = 140, b = 70, c = 280, d = 70,

e = 70, f = 42, g = 14



What are the necessary conditions for the parameters so that
this equation could admit ∞ many polynomial conservation
laws?

Combine the conditions Rank 2 through Rank 8:

– If a = 5
98g

3, b = 5
14g

2, c = 10
7 g2, d = 5

14g
2, e = 5g, f = 3g

then there is a sequence (without gaps!) of conserved den-
sities
(Lax case)

– If a = 4
147g

3, b = 1
7g

2, c = 6
7g

2, d = 2
7g

2, e = 3g, f = 2g
then there is a sequence (with gaps!) of conserved densities
(SK-Ito case)

– What if a = 4
147g

3, b = 5
14g

2, c = 9
7g

2, d = 2
7g

2, e =
6g, f = 7

2g?

This case is not mentioned in the literature!

With g = 42 first five densities

ρ1 = u,

ρ2 = −8u3 + ux
2,

...

ρ5 = −480

53
u7 +

3780

53
u4ux

2 +
861

106
uux

4

−644

53
u3u2x

2 − 291

212
ux

2u2x
2 − 737

318
uu2x

3

+u2u3x
2 +

133

636
u2xu3x

2 − 2

53
uu4x

2 +
1

1908
u5x

2

Extension of Kaup-Kupershmidt case? YES, proof by Sanders



• More Examples

• Nonlinear Schrödinger Equation

iqt − q2x + 2|q|2q = 0

Program can not handle complex equations
Replace by

ut − v2x + 2v(u2 + v2) = 0

vt + u2x − 2u(u2 + v2) = 0

where q = u + iv

Scaling properties

u ∼ v ∼ ∂

∂x
,

∂

∂t
∼ ∂2

∂x2

First seven conserved densities:

ρ1 = u2 + v2

ρ2 = vux

ρ3 = u4 + 2u2v2 + v4 + ux
2 + vx

2

ρ4 = u2vux +
1

3
v3ux −

1

6
vu3x



ρ5 = −1

2
u6 − 3

2
u4v2 − 3

2
u2v4 − 1

2
v6 − 5

2
u2ux

2 − 1

2
v2ux

2

−3

2
u2vx

2 − 5

2
v2vx

2 + uv2u2x −
1

4
u2x

2 − 1

4
v2x

2

ρ6 = −3

4
u4vux −

1

2
u2v3ux −

3

20
v5ux +

1

4
vux

3 − 1

4
vuxvx

2

+uvuxu2x +
1

4
u2vu3x +

1

12
v3u3x −

1

40
vu5x

ρ7 =
5

4
u8 + 5u6v2 +

15

2
u4v4 + 5u2v6 +

5

4
v8 +

35

2
u4ux

2

−5u2v2ux
2 +

5

2
v4ux

2 − 7

4
ux

4 +
15

2
u4vx

2 + 25u2v2vx
2

+
35

2
v4vx

2 − 5

2
ux

2vx
2 − 7

4
vx

4 − 10u3v2u2x − 5uv4u2x

−5uvx
2u2x +

7

2
u2u2x

2 +
1

2
v2u2x

2 +
5

2
u2v2x

2

+
7

2
v2v2x

2 − v2uxu3x +
1

4
u3x

2 +
1

4
v3x

2 + uv2u4x



• The Ito system

ut − u3x − 6uux − 2vvx = 0

vt − 2uxv − 2uvx = 0

u ∼ ∂2

∂x2
v ∼ ∂2

∂x2

ρ1 = c1u + c2v

ρ2 = u2 + v2

ρ3 = 2u3 + 2uv2 − ux
2

ρ4 = 5u4 + 6u2v2 + v4 − 10uux
2 + 2v2u2x + u2x

2

ρ5 = 14u5 + 20u3v2 + 6uv4 − 70u2ux
2 + 10v2ux

2

−4v2vx
2 + 20uv2u2x + 14uu2x

2 − u3x
2 + 2v2u4x

and more conservation laws



• The dispersiveless long-wave system

ut + vux + uvx = 0

vt + ux + vvx = 0

u free, v free, but u ∼ 2v

choose u ∼ ∂

∂x
and 2v ∼ ∂

∂x

ρ1 = v

ρ2 = u

ρ3 = uv

ρ4 = u2 + uv2

ρ5 = 3u2v + uv3

ρ6 =
1

3
u3 + u2v2 +

1

6
uv4

ρ7 = u3v + u2v3 +
1

10
uv5

ρ8 =
1

3
u4 + 2u3v2 + u2v4 +

1

15
uv6

and more

Always the same set irrespective the choice of weights



• A generalized Schamel equation

n2ut + (n + 1)(n + 2)u
2
nux + u3x = 0

where n is a positive integer

ρ1 = u, ρ2 = u2

ρ3 =
1

2
ux

2 − n2

2
u2+2

n

For n 6= 1, 2 no further conservation laws



• Three-Component Korteweg-de Vries Equation

ut − 6uux + 2vvx + 2wwx − u3x = 0

vt − 2vux − 2uvx = 0

wt − 2wux − 2uwx = 0

Scaling properties

u ∼ v ∼ w ∼ ∂2

∂x2
,

∂

∂t
∼ ∂3

∂x3

First five densities:

ρ1 = c1u + c2v + c3w

ρ2 = u2 − v2 − w2

ρ3 = −2u3 + 2uv2 + 2uw2 + ux
2

ρ4 = −5

2
u4 + 3u2v2 − 1

2
v4 + 3u2w2 − v2w2 − 1

2
w4

+5uux
2 + v2u2x + w2u2x −

1

2
u2x

2

ρ5 = − 7

10
u5 + u3v2 − 3

10
uv4 + u3w2 − 3

5
uv2w2 − 3

10
uw4

+
7

2
u2ux

2 +
1

2
v2ux

2 +
1

2
w2ux

2 +
1

5
v2vx

2

−1

5
w2vx

2 +
1

5
w2wx

2 + uv2u2x + uw2u2x −
7

10
uu2x

2

−1

5
vw2v2x +

1

20
u3x

2 +
1

10
v2u4x +

1

10
w2u4x



• A modified vector derivative NLS equation

∂B⊥

∂t
+

∂

∂x
(B2

⊥B⊥) + αB⊥0B⊥0 ·
∂B⊥

∂x
+ ex ×

∂2B⊥

∂x2
= 0

Replace the vector equation by

ut +
(
u(u2 + v2) + βu− vx

)
x

= 0

vt +
(
v(u2 + v2) + ux

)
x

= 0

u and v denote the components of B⊥ parallel
and perpendicular to B⊥0 and β = αB2

⊥0

u2 ∼ ∂

∂x
, v2 ∼ ∂

∂x
, β ∼ ∂

∂x

First 6 conserved densities

ρ1 = c1u + c2v

ρ2 = u2 + v2

ρ3 =
1

2
(u2 + v2)2 − uvx + uxv + βu2

ρ4 =
1

4
(u2 + v2)3 +

1

2
(ux

2 + vx
2)− u3vx + v3ux +

β

4
(u4 − v4)



ρ5 =
1

4
(u2 + v2)4 − 2

5
(uxv2x − u2xvx) +

4

5
(uux + vvx)

2

+
6

5
(u2 + v2)(ux

2 + vx
2)− (u2 + v2)2(uvx − uxv)

+
β

5
(2ux

2 − 4u3vx + 2u6 + 3u4v2 − v6) +
β2

5
u4

ρ6 =
7

16
(u2 + v2)5+

1

2
(u2

2x + v2
2x)

− 5

2
(u2 + v2)(uxv2x−u2xvx) + 5(u2 + v2)(uux + vvx)

2

+
15

4
(u2 + v2)2(ux

2 + vx
2)− 35

16
(u2 + v2)3(uvx − uxv)

+
β

8
(5u8 + 10u6v2 − 10u2v6 − 5v8 + 20u2ux

2

− 12u5vx + 60uv4vx − 20v2vx
2)

+
β2

4
(u6 + v6)



• Scope and Limitations

– Systems must be polynomial in dependent variables

– Only two independent variables (x and t) are allowed

– No terms should explicitly depend on x and t

– Program only computes polynomial-type conserved densi-
ties
only polynomials in the dependent variables and their deriva-
tives
no explicit dependencies on x and t

– No limit on the number of evolution equations
In practice: time and memory constraints

– Input systems may have (nonzero) parameters
Program computes the conditions for parameters such that
densities (of a given rank) might exist

– Systems can also have parameters with (unknown) weight
Allows one to test systems with non-uniform rank

– For systems where one or more of the weights are free
Program prompts the user to enter values for the free weights

– Negative weights are not allowed

– Fractional weights are permitted

– Form of ρ can be given (testing purposes)



• Sample Data and Output

Data file for the Hirota-Satsuma system

ut − 6αuux + 6vvx − αu3x = 0

vt + 3uvx + v3x = 0

(* start of data file d_phrsat.m *)

debug = False;

(* Hirota-Satsuma System *)

eq[1][x,t] = D[u[1][x,t],t]-aa*D[u[1][x,t],{x,3}]-

6*aa*u[1][x,t]*D[u[1][x,t],x]+

6*u[2][x,t]*D[u[2][x,t],x];

eq[2][x,t] = D[u[2][x,t],t]+D[u[2][x,t],{x,3}]+

3*u[1][x,t]*D[u[2][x,t],x];

noeqs = 2;

name = "Hirota-Satsuma System (parameterized)";

parameters = {aa};

weightpars = {};

formrho[x,t] = {};

(* end of data file d_phrsat.m *)



Explanation of the lines in the data file

debug = False;

No trace of output. Set it True to see a detailed trace

eq[k][x,t] = ...;

Give the kth equation of the system in Mathematica notation
Note that there is no == 0 at the end

noeqs = 2;

Specifies the number of equations in the system

name = "Hirota-Satsuma System (parameterized)";

Pick a short name for the system. The quotes are essential

parameters = {aa};

Give a list of the parameters in the system
If there are none, set parameters = { };
weightpars = {};

Give a list of those parameters that are assumed to have weights
Weighted parameters are listed in weightpars, not in parame-
ters
The latter is only a list of weightless parameters

formrho[x,t] = {};

Unless the form of ρ is given, program will automatically com-
pute it
This option allows to test forms of ρ (from the literature)



Anything within (* and *) are comments (ignored by Mathe-
matica)

For testing purposes, the form of the density can be given

For example:

formrho[x,t]={c[1]*u[1][x,t]^3+c[2]*D[u[1][x,t],x]^2};

Density ρ must be given in expanded form and with coefficients
c[i]
The braces are essential

If ρ is given, the program skips both the computation of

scaling properties and the construction of ρ

Program continues with given ρ, and computes the c[i]

For search for densities of specific rank, set formrho[x,t] = { };



Menu Interface and Sample Output

Example: Compute ρ of rank 4 for Drinfel’d-Sokolov system

ut + 3vvx = 0

vt + 2v3x + 2uvx + uxv = 0

Start Mathematica

Type

In[1]:= <<condens.m

Menu interface: program prompts automatically for answers

*** MENU INTERFACE *** (page: 3)

-------------------------------------------

21) Kaup-Broer System (d_broer.m)

22) Drinfel’d-Sokolov System (d_soko.m)

23) Dispersiveless Long Wave System (d_disper.m)

24) 3-Component KdV System (d_3ckdv.m)

25) 2-Component Nonlinear Schrodinger Eq.(d_2cnls.m)

26) Boussinesq System (d_bous.m)

nn) Next Page

tt) Your System

qq) Exit the Program

------------------------------------------



ENTER YOUR CHOICE: 22

Enter the rank of rho: 4

Use Variational Derivative instead of

Integration by Parts? (y/n): y

Enter the name of the output file: d_soko4.o



*************************************************

WELCOME TO THE MATHEMATICA PROGRAM

by UNAL GOKTAS and WILLY HEREMAN

FOR THE COMPUTATION OF CONSERVED DENSITIES OF

Drinfel’d-Sokolov System

Version 2.2 released on February 29, 1996

Copyright 1996

*************************************************

2

This is the density: u[2][x, t]

**************************************************

This is the flux:

2 (1,0) 2

2 u[1][x, t] u[2][x, t] - 2 (u[2]) [x, t] +

(2,0)

> 4 u[2][x, t] (u[2]) [x, t]

**************************************************

Result of explicit verification (rho_t + J_x) = 0

**************************************************



In[2]:=

At the end of computation, density and flux are available

To see these, type

In[2]:= rho[x,t]

2

Out[2]= u[2][x, t]

In[3]:= j[x,t]

2

Out[3]= 2 u[1][x, t] u[2][x, t] -

(1,0) 2

> 2 (u[2]) [x, t] +

(2,0)

> 4 u[2][x, t] (u[2]) [x, t]



• Conclusions & Further Research

– Comparison with other programs

∗ Parameter analysis

∗ Not restricted to uniform rank

∗ Not restricted to evolution equations provided that
one can write the equation(s) as a system of evolution
equations

– Usefulness

∗ Testing models for integrability

∗ Study of classes of nonlinear PDEs

∗ Study of generalized symmetries

– Future work

∗ Generalization towards broader classes of equations

∗ Generalization towards non-local conservation laws

∗ Conservation laws with variable coefficients

∗ Interface issues between Mathematica, Maple and
Reduce programs



Table 1: Conserved Densities for the Sawada-Kotera and Lax 5th-order equations

Density Sawada-Kotera equation Lax equation

ρ1 u u

ρ2 ---- 1
2u2

ρ3
1
3u3 − ux

2 1
3u3 − 1

6ux
2

ρ4
1
4u4 − 9

4uux
2 + 3

4u2x
2 1

4u4 − 1
2uux

2 + 1
20u2x

2

ρ5 ---- 1
5u5 − u2ux

2 + 1
5uu2x

2 − 1
70u3x

2

ρ6
1
6u6 − 25

4 u3ux
2 − 17

8 ux
4 + 6u2u2x

2 1
6u6 − 5

3u3ux
2 − 5

36ux
4 + 1

2u2u2x
2

+2u2x
3 − 21

8 uu3x
2 + 3

8u4x
2 + 5

63u2x
3 − 1

14uu3x
2 + 1

252u4x
2

ρ7
1
7u7 − 9u4ux

2 − 54
5 uux

4 + 57
5 u3u2x

2 1
7u7 − 5

2u4ux
2 − 5

6uux
4 + u3u2x

2

+648
35 ux

2u2x
2 + 489

35 uu2x
3 − 261

35 u2u3x
2 +1

2ux
2u2x

2 + 10
21uu2x

3 − 3
14u2u3x

2

−288
35 u2xu3x

2 + 81
35uu4x

2 − 9
35u5x

2 − 5
42u2xu3x

2 + 1
42uu4x

2 − 1
924u5x

2

ρ8 ---- 1
8u8 − 7

2u5ux
2 − 35

12u2ux
4 + 7

4u4u2x
2

+7
2uux

2u2x
2 + 5

3u2u2x
3 + 7

24u2x
4 + 1

2u3u3x
2

−1
4ux

2u3x
2 − 5

6uu2xu3x
2 + 1

12u2u4x
2

+ 7
132u2xu4x

2 − 1
132uu5x

2 + 1
3432u6x

2



Table 2: Conserved Densities for the Kaup-Kuperschmidt and Ito 5th-order equations

Density Kaup-Kuperschmidt equation Ito equation

ρ1 u u

ρ2 ---- u2

2

ρ3
u3

3 − 1
8ux

2 ----

ρ4
u4

4 − 9
16uux

2 + 3
64u2x

2 u4

4 − 9
4uux

2 + 3
4u2x

2

ρ5 ---- ----

ρ6
u6

6 − 35
16u3ux

2 − 31
256ux

4 + 51
64u2u2x

2 ----

+ 37
256u2x

3 − 15
128uu3x

2 + 3
512u4x

2

ρ7
u7

7 − 27
8 u4ux

2 − 369
320uux

4 + 69
40u3u2x

2 ----

+2619
4480ux

2u2x
2 + 2211

2240uu2x
3 − 477

1120u2u3x
2

−171
640u2xu3x

2 + 27
560uu4x

2 − 9
4480u5x

2

ρ8 ---- ----



Table 3: Conserved Densities for the Sawada-Kotera-Ito and Lax 7th-order equations

Density Sawada-Kotera-Ito equation Lax equation

ρ1 u u

ρ2 ---- u2

ρ3 −u3 + ux
2 −2u3 + ux

2

ρ4 3u4 − 9uux
2 + u2x

2 5u4 − 10uux
2 + u2x

2

ρ5 ---- −14u5 + 70u2ux
2 − 14uu2x

2 + u3x
2

ρ6 −12
7 u6 + 150

7 u3ux
2 + 17

7 ux
4 − 48

7 u2u2x
2 −7

3u6 + 70
3 u3ux

2 + 35
18ux

4 − 7u2u2x
2

−16
21u2x

3 + uu3x
2 − 1

21u4x
2 −10

9 u2x
3 + uu3x

2 − 1
18u4x

2

ρ7 5u7 − 105u4ux
2 − 42uux

4 + 133
3 u3u2x

2 −2
3u7 + 35

3 u4ux
2 + 35

9 uux
4 − 14

3 u3u2x
2

+24ux
2u2x

2 + 163
9 uu2x

3 − 29
3 u2u3x

2 −7
3ux

2u2x
2 − 20

9 uu2x
3 + u2u3x

2

−32
9 u2xu3x

2 + uu4x
2 − 1

27u5x
2 5

9u2xu3x
2 − 1

9uu4x
2 + 1

198u5x
2

ρ8 ---- 3
2u8 − 42u5ux

2 − 35u2ux
4 + 21u4u2x

2

+42uux
2u2x

2 + 20u2u2x
3 + 7

2u2x
4 − 6u3u3x

2

−3ux
2u3x

2 − 10uu2xu3x
2 + u2u4x

2

+ 7
11u2xu4x

2 − 1
11uu5x

2 + 1
286u6x

2


