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e Purpose

Design and implement an algorithm to compute polynomial-

type
conservation laws for nonlinear systems of evolution equations

e Conservation Laws

Conservation law for a nonlinear PDE
Pt + Jx =0
p is the density, J is the flux

Consider a single nonlinear evolution equation
U = f(’u: Ugy Uggy -y una:)

If p is a polynomial in w and its x derivatives, and does not
depend explicitly on x and ¢, then p is called a polynomial
conserved density

If J is also polynomial in v and its = derivatives then this is
called

a polynomial conservation law

Consequently
P = ["" pdr = constant

provided .J vanishes at infinity



e Motivation

— Conservation laws describe the conservation of fundamental
physical quantities such as linear momentum and energy
Compare with constants of motion (first integrals) in me-
chanics

— or nonlinear PDESs, the existence of a sufficiently large
(in principal infinite) number of conservation laws

assures complete integrability

— Conservation laws provide a simple and efficient method to
study both quantitative and qualitative properties of PDEs
and their solutions, e.g. Hamiltonian structure(s)

— Connection to generalized symmetries

(Fokas, Stud. Appl. Math 77, 1987)

— Conservation laws can be used to test numerical integrators

for PDEs



For KdV equation, u and u? are conserved quantities
Thus, a numerical scheme should preserves the quantities

n—1 n
XUy =20

J

and ,
n— ny2
%[U j ' :%3[(] 7]
For two such schemes see Sanz-Serna, J. Comput. Phys.

47,1982



e Conserved Densities Software

— Conserved densities programs CONSD and SYMCD
by Ito and Kako (Reduce, 1985, 1994 & 1996)

— Conserved densities in DELiA by Bocharov
(Pascal, 1990)

— Conserved densities and formal symmetries F'S
by Gerdt and Zharkov (Reduce, 1993)

— Conserved densities by Roelofs, Sanders and Wang
(Reduce 1994, Maple 1995, Form 1995, 1996)

— Conserved densities condens.m by Hereman and Goktas
(Mathematica, 1995)

— Conservation laws, based on CRACK, by Wolf (Reduce,
1995)

— Conserved densities by Ahner et al.
(Mathematica, 1995)

Our program is available at ftp site:  maines.edu
in subdirectory
pub/papers/math_cs_dept/software/condens



e Example

Consider the Korteweg-de Vries (KdV) equation
Wy + uu, + ug, =0

Conserved densities

2

U
pP1 = U, (u)e + (2 + Usy )y =0
9 3
Py = u’, (uQ)t + (; + 2ul9, — uIQ)x —0

3 2
ps = u® —3u,?,

(u” — 3u,”) , +@u4 — Guu,’ + 3ulug, + g, — 6u$u3x) =

0 = u — 60w, — 30u,t + 108u us,”

20 ., 048 5 216
+—U9," — —-uuz,” +

7 7 7



Note: KdV equation is invariant under the scaling symmetry
(z,t,u) — (A, \’t, \"2u)

u and t carry the weight of 2, resp. 3 derivatives with respect
to x

¥ oo
Ox?’ ot  Ox3

U



e Key Idea behind Construction of Densities
Compute the building blocks of density with rank 6

(i) Take all the variables, except (gt), with positive weight
Here, only u with w(u) = 2

List all possible powers of u, up to rank 6

URGRT

Introduce x derivatives to ‘complete’ the rank
. . o4
u has weight 2, so introduce 5,

u? has weight 4, so introduce aa;)
u? has weight 6, so no derivative needed

(ii) Apply the derivatives
Remove terms that are total derivatives with respect to x
or total derivative up to terms kept earlier in the list

us] — | ] empty list

7uu2x: - U:L‘2] (uu2x — (uux>x - U$2)

[u’] — [u]



Combine the ‘building blocks’
p = u’ + cluf
the constant ¢; must be determined

(iii) Determine the unknown coefficients (cq)

1. Compute op _ 3ty + 261 Uylyy,

ot
2. Replace uy by —(uu, + us,) and uzy by —(uu, + usy ),

3. Integrate the result with respect to x

Carry out all integrations by parts

o _ B

5 = —[4u + (cl—S)uu?ﬁ + 3u g, — Cllo,—+ 201U, U3y ]
—(c1 + 3)u,”,
4. The non-integrable (last) term must vanish. Thus, ¢; = —3
Result:
p = ud — 3u,”
Expression |...] yields

3
J = 4u4 — 6ut,” + 3utug, + 3ug,” — G,



e Algorithm and Implementation

Consider a system of /N nonlinear evolution equations

wig+ Fi(uy,ul? o uy =0 ij=1,2,...,N

T
h def aul (n) def (9 (’U/Z)
where u; ¢+ = Uu; =
’ ox™

ot
All u; depend on x and ¢

Algorithm consists of three major steps

1. Determine weights (scaling properties) of variables & pa-
rameters

2. Construct the form of the density (building blocks)

3. Determine the unknown numerical coefficients



e Procedure to determine the weights (scaling prop-
erties)
Define

weight of a variable: the number of partial derivatives with
respect to x the variable carries

rank of a term: the total weight of that term in terms of partial
derivatives with respect to x

For example:

0
;)

ur — 111 = wlu) + w(

u, — 112 =2w(u) +1
Uusy — 7“1,3 = U)(’LL) -+ 3

where 7; ;; denotes the rank of the k' term in the i"" equation
w denotes the weight of its argument
Uniformity in rank requires

rn1=—"7T12=—"713

Thus



Require that all terms in any particular equation have the same
rank
(uniformity in rank)

Different equations in the same system may have different ranks



Introduce the following notations:

w returns the weight of its argument
g returns the degree of nonlinearity of its argument

d returns the number of partial derivatives with respect
to 1ts argument

r; x denotes the rank of k" term in the " equation

Pick
9, "

ax>:1, Ceey ’U](@xn

w( )=n

All weight are assumed nonnegative and rational

List of ‘variables’ that carry weights

0
{at7u17u27 ce o UN, P1, P2y - - 7pP}



Step 1 Take the i equation with K; terms
Step 2 For each of its terms compute the rank
0 N P
rig = d(z) +d(t) wiz )+ > gluy) wluy) + X g(pj) wip;)
k=1,2,....K
[f the variable u; and/or the parameter p; is missing then

g(uj) =0 or g(p;) =0, or both

Step 3 Use uniformity in rank in the i equation
Form the linear system

Ai={rii=ri2="=riK}

Step 4 Repeat steps (1) through (3) for all equations

Step 5 Gather the equations A;
Form the global linear system

N
./4 — ‘91 Az

Step 6 Solve A for the N + P + 1 unknowns w(u;), w(p;)
and w(5)



e Example
Consider the Boussinesq equation

2
U — Uy + U2y + U™ + a Uy, =0

with nonzero parameter a

Can be written as a system of evolution equations

/
ul,t—FuQ = (

/ / 3
Ut + UL — UL —aug) = 0

In the second equation
(3)

/
u; and a w

do not allow for uniformity in rank

Introduce an auxiliary parameter b with weight and
replace the system by

/
Ui+ Uy = 0

(3)

/ /
u2’t—|—bu1—u1u1—au1 = 0



Determine ranks and weights

T2 = 1+1 ’LU(UQ)

0
ro1 = 1 w<é9t> + 1 w(us)

roo = 14+ 1 w(uy)+ 1 w(d)
7“2,3 = 1+2w(u1)

7”2,4 = 3 + 1 w(ul)
Uniformity in rank for each equation requires

A = {7“1,1 :7“1,2}
Ay = {7”2,127“2,2:7“2,3:7“2,4}

and ./4 = Al UAQ
Solve A for w(uy), w(us), w(2) and w(b)

w(uy) =2, w(b) =2, w(ug) =3 and w<§t> =2
or
S
u1 A T L R P



e Construct the Form of the Density

Let V = {v1,v,...,vg} be the sorted list (descending weights)

of all variables, including all parameters, but excluding —

ot

Step 1 Form all combinations of variables of rank R or less

Recursively, form sets consisting of ordered pairs

(Tq,s? Wq,8>

where 7}, ¢ denotes a combination of different powers of the
variables
and W, s denotes the total weight of T},

q refers to the variable v,

s refers to the allowable power of v, such that W, ; < R



Set By = {(1;0)} and proceed as follows:
For ¢ = 1 through () do

For m = 0 through M — 1 do

bg.m
Form Bq’m = S(JL:JO{(Tq,s; Wq,s>}

M is the number of pairs in B,
- S

Tgs =14-1.m Vg

Wys = Woim + s w(v,)

(Ty—1.m; Wy_1.m) is the (m + 1)* ordered pair in B,_

bym = [[R_ng‘)l’m]] is the maximum allowable power of v,
M-1
Set B, = U Bynm
m=0

Step 2 Set G = Bg

Note: G has all possible combinations of powers of variables
that produce rank R or less



Step 3 Introduce partial derivatives with respect to x

14

e,

For each pair (T ; Wos) in G, apply Dl to the term Tp 4
T

provided £ = R — Wy, is integer

This introduces just enough partial derivatives with respect to
x
so that all the pairs retain weight R

Gather in set ‘H all the terms that result from computing
0'(T,s)

oxt

Step 4 Remove the terms from ‘H that can be written as a
derivative with respect to x, or as a derivative up to terms kept
prior in the set

Call the resulting set Z, which consists of the building blocks
of the density p with desired rank R

Step 5 If Z has I elements, then their linear combination
will produce the polynomial density of rank R

1
p=x cI(i)

Z(i) denotes the 7" element in Z

c; are numerical coeflicients, still to be determined



e Example
Return to the Boussinesq equation, where
w(uy) = 2,w(b) =2, and w(us) =3
For example, construct the density with rank R =6
V = {us, uy, b}
Hence, v1 = ug,v9 = up,v3 =b and Q) =3
Step 1 Forqg=1,m =0:
bio=[5] =2
Thus, with T s = u®, and Wy ¢ = 3s, where s = 0,1, 2

we obtain

By = By = {(1;0), (us; 3), (u2*; 6)}

For g =2,m = 0:

boo =[] =3

So, with T5 ¢ = u;%, and Wy 3 = 2s, with s =0,1,2,3
we obtain

Bao = {(1;0), (u1;2), (w1% 4), (v 6)}



Forg=2,m = 1:

BQ}l = {(UQ; 3), <U1UQ; 5)} since 52,1 = [[6;3]] =1
TIo s = ug uy®

and

Wys=3+2s, and s=0,1

For g =2,m = 2:

boo = [%°] =0

Therefore By s = {(us”;6)}

Hence,

By = {(1;0), (u1;2), (u1”;4), (u1”; 6), (ug; 3), (urus; 5), (ug” 6)}

For ¢ = 3: introduce possible powers of b

An analogous procedure leads to

Bso = {(1;0), (b:2), (0%4), (b%6)}  Bsa = {(u2:3), (bus; 5)}

Bs1 = {(u1;2), (buy; 4), (b*u1;6)} Bss; = {(ujug;5)}
Bsy = {(u1%4), (bus*; 6)} Bss = {(u2?6)}
Bsz = {(u1’6)}

Thus

Bs = {(1;0), (0;2), (b%4), (1% 6), (u1;2), (bui; 4), (b*us;6), (wr”; 4),
(bui?; 6), (w1 6), (u2; 3), (bug; ), (urus; ), (us; 6)}



Step 2 Set G = Bs

Step 3 Apply derivatives to the first components of the pairs
in g
Compute ¢ for each pair of G :

¢ =6,4,2,0,4,2,0,2,0,0,3,1,1, and 0

Gather the terms after applying partial derivatives w.r.t. «

Hence

H o= {0.6%, uy ™, b, b, (), gy @,

3

2 3 / / / 2
bur?, u®, wus®, bus’, wyuy’, i us, us }

Step 4 Remove from H the terms
that can be written as a derivative with respect to x or
as a derivative up to terms retained earlier in that set

This gives

2
1= {b2u1, bu12, U13, U22> Uy us, (Ull) }

Step 5 Combine these building blocks and form p of rank 6

2 2 3 2 / N2
p261bU1‘|‘CQbU1 + C3 U1” + C4 U9 —|—C5U1UQ—|—C6<U1)



Calculus of Variations
provides a useful tool to verify if an expression is a derivative

Theorem

It
f:f('x?yl)"'aygn)v"‘7yN7"'7y~§\7;))

then

Li(f)=0
if and only if

d

J= da:g

where
g:g<x7y17"'ay§n_1)7°"7yN7°°°7y](\7f1_1)>
Notations:
37: [yla"'vyN]T
Li(f) =Ly (f),-- Lyu(N)]
0=10,...,0"

(T" for transpose)



and Euler Operator:
0 d, o d> 0 a0
_ e (—1)"
0y d:v((?y/) * d:z:2<(9y/’) o= dx”<(9yz-(”)>

Proof: see Olver (1986, pp. 252)

£yz‘ —

e Determine the Unknown Coeflicients

0
Step 1  Compute 37

Replace all (ui,t)(j ), i,7 =0,1, ... from the given system

Step 2 The resulting expression £ must be the total deriva-
tive of some functional (—.J)

Two options:

— Integrate by parts
[solate the non-integrable part
Set it equal to zero

The latter leads to a linear system for the coefficients ¢; to
be solved

— Use the Euler-Lagrange equations

Apply the Euler operator
o d, 0 d> 0 dar =0
— _ e (—1)
Ou, dat<8ui’>+dx2<8ui”>+ +(=1) da:”<(’9ul-(n)>
to E

L,



If E is completely integrable no terms will be left, i.e.
L,(E)=0,....,L,,(E)=0
otherwise set the remaining terms equal to zero

and form the linear system for the coefficients ¢;

With either option, construct a linear system, denoted by S

Step 3 Two cases may occur, depending on whether or not
there are parameters in the system

Case I:

If the only unknowns in S are ¢;’s, just solve § for ¢;’s

Substitute the nonempty solution into p to get its final form

Case 1I:

If in addition to the coeflicients ¢;’s there are also parameters
p;in S

Determine the conditions on the parameters so that p of the
given form exists for at least some ¢;’s nonzero



These compatibility conditions assure that the system has
other than trivial solutions

—Set C ={cy,¢9,...,citand i =1
— While C # {} do:
For the building block Z(7) with coefficient ¢; to appear

in p, one needs ¢; # 0

Therefore, set ¢; = 1 and eliminate all the other ¢; from

S

This gives compatibility conditions consistent with the
presence of the term ¢, Z(i) in p



If compatibility conditions require that some of the pa-
rameters are zero

then

c; must be zero since parameters are assumed to be
NONZEro

Hence, set C = C\{¢;}, and ¢ = ¢
where 7’ is the smallest index of the ¢; that remain in

C

else

Solve the compatibility conditions and for each result-
ing branch

Solve the system S for ¢;
Substitute the solution into p to obtain its final form

Collect those ¢; which are zero for all of the branches
into a set Z

The ¢; in Z might not have occurred in any density yet

Give them a chance to occur:
Set C=CNZ,andi="1

where ¢/ is the smallest index of the c; that are still in

C



e Example

Consider the parameterized coupled KdV equations (Hirota-
Satsuma)

u; — bauu, + 6vv, — aus, = 0
v + 3uv, + vz, = 0

Here, w(u) = w(u) = 2 and the form of the density of rank 4
1S

2 2 2 2
Pp=CLU +CUV+ C3V = C U~ + C UUy + C3 U9

Step 1 Compute p; and replace all (ui’t)(j ) to get

E = 2ciuq <6au1u1(1) — 6u2u2(1) + au1(3)>
+Coly <6ozu1u1(1) — 6U2U2(1) + ozul(g))

—CoU1 <3U1U2(1> + UQ(3)> — 203’LL2 <BU1U2(1) + UQ(3)>

Step 2 Either integrate by parts or apply the Euler operator

Get the linear system for the coefficients c;, co and c3

S={(1+a)cx=0,2¢;+c3=0}

Obviously, C = {c1, ¢o, c3} with one parameter («)



Step 3 Search for compatibility conditions
— Set ¢; = 1, which gives
{c1=1, =0, c3=-2}
without any constraint on the parameter a

Since only ¢ =0, Z = {2} and C = C N Z = {co}, with
i’ =2

—Set02:1

This leads to the compatibility condition o« = —1, and

1
{1 = —< 5 (3 C2 = 1}

Since Z = {} the procedure ends

One gets two densities of rank 4, one without any constraint
on «, one with a constraint

In summary:

2

P = Uy —2u22

and

1 2 2
p = —203u1 + ULU2 + C3U9

with compatibility condition o = —1



Search for densities of rank R < 8§

Rank 2: No condition on «

One always has the trivial density p = u

Rank 4: At this level, two branches emerge

1. No condition on «
p = u? — 20°

2. For a = —1

1
p=uv+c (v’ — 2u2), c is free



Rank 6: No condition on o and

3 1 3
I R 2 -2 2
p=1u a+1uv 2ux+a+1

Rank 8: The system has conserved density

12 12 24 1 1 8
p = u4—5u202+5v4—2uu5¢2—5uvx2—502u2x+5u2x2+502x2

- 1
provided that o = 3

Therefore, a = % (integrable case!) appears in the computation

of density of rank 8

For oo = %, we also computed the density of Rank 10
[ 3 2 TN S 2 2
= ——U +UV —Uv +-uu; +vUu; +tuv
P= 79 T :
+40%0,2 + w0 Uy, + Uy Uy — Qouuggf — U9, + 4011,3932

g
—V3," + — U Uy,
550 T00 Tt



e Application 1

A Class of Fifth-Order Evolution Equations

2

Uy + au U, + Bugor + Yuus, + use = 0

where a;, (3, v are nonzero parameters

62

U~ ——
Ox?

Special cases:
a = 30 6 =20 v =10 Lax
a =5 B =05 v=2>5 Sawada — Kotera
or Caudry —Dodd — Gibbon
a = 20 B =25 v =10 Kaup —Kupershmidt
a = 2 B =06 v =3 [to

Under what conditions for the parameters «;, 3, and v does this
equation admit a density of fixed rank?

— Rank 2:
No condition
p=1u
— Rank 4:

Condition: § = 27 (Lax and Ito cases)

p=u’



— Rank 6:
Condition:
1000 = —23* + 78y — 3v°

(Lax, SK, and KK cases)
15 ,
Uy
(=28 +7)

p = u’ +
— Rank 8:

1. B = 2v (Lax and Ito cases)

6 6
p = ut — fyuuf + Uy’
« «

2. v = —252_74%7_472 (SK, KK and Ito cases)

b=t 135 w4 675 "
280+ " 2B+
— Rank 10:
Condition:
B=2y
and
10a = 3~

(Lax case)

p = u’ — 5Ou2u$2 + 1020uu2x2 — wougf.

Y gl ok



What are the necessary conditions for the parameters «, 3,
and v so that this equation could admit oo many polynomial
conservation laws?

—Ifa= 1?672 and 3 = 2~ then there is a sequence
(without gaps!) of conserved densities (Lax case)

—Ifa= ény and (8 = = then there is a sequence
(with gaps!) of conserved densities (SK case)

—Ifa= é72 and = gfy then there is a sequence
(with gaps!) of conserved densities (KK case)

—If
2% — 70y + 472
& —_— —
45
or
B =2y

then there is a conserved density of rank 8

Combine both conditions: a = @2 and 8 = 2v (Ito case)



e Application 2

A Class of Seventh-Order Evolution Equations

3

3 2
U + au’u, + bu,” + cuu,uo, + duus, + eus,Usy

_l'fuxUZLfL‘ T JUUsy + U7y = 0
where a, b, c,d, e, f, g are nonzero parameters

62

U~ ——
0x?

Special cases:

SK — Ito Case a =252, b=063, ¢c=378, d= 120,
e=03, f=42, g=21,
Lax Case a= 140, b =70, ¢= 280, d =170,

e=70, f=42 g=14



What are the necessary conditions for the parameters so that
this equation could admit co many polynomial conservation
laws?

Combine the conditions Rank 2 through Rank 8:

—Ifa=gg’ b=10% c= g% d= ;9% e=5g. f=3g
then there is a sequence (without gaps!) of conserved den-
sities
(Lax case)

—Ifa=1:9° b=1¢% c=3¢*d=2¢% e=3g, [ =2g
then there is a sequence (with gaps!) of conserved densities
(SK-Ito case)

— What ifg, = 1?17937 b = 15492, c = 292, d = 392, e =
6g, f =397

This case 1s not mentioned in the literature!

With g = 42 first five densities

pP1L = U,
P2 = _8u3+u:€27
480 , 3780 , , 861
TR By W
— Uy, — Uy Usy” — U,
53 133 212 ) 318 .
20 9 199 2 4 2 2
+u U3y + 636u2xu3:1: 53uu4a: + 1908u5x

Extension of Kaup-Kupershmidt case? YES, proof by Sanders



e More Examples

e Nonlinear Schrodinger Equation
iqr — qor + 2|ql*qg = 0

Program can not handle complex equations
Replace by

Uy — Vop + 20(u® + %) = 0
Ve + Uy — 2u(u® +v?) = 0
where ¢ = u + v
Scaling properties
0 0 0?
u ~ 1V v e ~Y
ox ot Ox?

First seven conserved densities:
9 9
pr = u +v
P2 = VU,
4 2 9 4 9 9
p3 = U + 20V +v +u,” + v,

1 1
Py = u%uw -+ 31}3% — 6vu3x



P5

P6

P17

16342 324 16 522122

— U — UV — UV — =V — U U — =V Uy
% 2 - 2 2 . 2 . 2
—2u2vx2 — 21)2%2 + uv2u23j — 4u2x2 — 41}23;2
3 1 3 1 1
—utvu, — —utvPu, — 0 Uy ovu — Svu,?
4 2 20 4 4
- o, + o :
UVUL U9, + —U VU3, + —V U3, — — VU,
SR DR T
5} 15 5} 35
4u8 + 5ubv? + 2u4v4 + 5ueb + 4?)8 + 2u4ux2
5 7 15
—5u2v2ux2 + —v4ux2 — fuf + *u4vx2 + 25u2’z)21}$2
2 4 2
3D 5! 7
-|—2U4Ux2 — 2u:,;2@x2 — 41}334 — 10u302u2x — 5uv4u2x
7 1 5}
—5uvx2u2x + fu2u2x2 + fvzuggf + fu2v2$2
2 2 2
5 2 1 1 2

) )
+21) Vo — UV UpU3, + 4u3x + 41}33; + UV Uy,



e The Ito system

uy — U3y — ouu, — 20v, = 0
vy — 2u,v — 2uv, = 0

o o

U~ —5 UV~ —5

Ox? Ox?
pP1 = C1U + CU

2

P2 = U —|—U2

p3 = 2u” + 2uv* — u,”

ps = dut 4 6utv? + vt — 10uu,” + 20%ug, + Uy’

05 = 14u° + 200 v? + 6uv? — 70uu,” + 10v%u,>

—47}22)3;2 + 20u02u2x + 14uu2x2 — u3x2 + 2v2u4x

and more conservation laws



e The dispersiveless long-wave system

wy + vu, + v, = 0

vy +u, +vv, = 0

u free, viree, but u~ 2v

0 0
h ~ — d 2ve~_—
choose u I an v I
pPrL = U
p2 = U
p3 = uv

Py = u? 4 uv?

P5 = 3uv 4+ uv’

1 1
P = 3u3 + u?v? + 6uv4
p7 = wv + utv® + 1uv5
10
pg = 1u4 + 2utv? + utut 1u06
>3 15

and more

Always the same set irrespective the choice of weights



e A generalized Schamel equation

2
n*us + (n+1)(n + 2)unu, + uz, = 0
where n is a positive integer

2

pr = U, p2 = U
1 n? 2
Dy = 2%2 _ 2u2+n

For n # 1,2 no further conservation laws



e Three-Component Korteweg-de Vries Equation

uy — ouu, + 2vv, + 2ww, — ug, = 0
vy — 20U, — 200, = 0
wy — 2wu, — 2uw, = 0

Scaling properties

o 0o
Ox?’ ot  0x3

First five densities:

P1 = ClU + CU + Cc3W

oy = u? —v® — W’
p3 = —2u® + 2uv? + 2uw? + uf
5 1 :
py = —-u' + 3’ — “vt + 3utw® — vw? — “w!
2 2 1 2
‘|‘5’LLU332 + ’U2U2x + ’UJQ’LLQ:U — 2u2$2
T 5,.32 S 4, 39 S 99 3
= — U F UV = UV FUW — ZUDTWT — oUW
7 1 1 1
‘|‘2U2U/x2 + 2’02’ng:2 + 2w2u:l:2 -+ 502?]%2
Lo o 1 o 2 2 / 2
—wy, + W Wy + UV U9y + UW U, — 1012
I Ly 1 L,

—5vw Voy + 201533; + 101} Ugy + mw Uy



e A modified vector derivative NLS equation

0B |
ot

Replace the vector equation by

+ e, X

s,
B’B B,,B,,-
+8x( 1 ¢>+Oé 10b10 B

w + (u(u® +v%) + fu —v,) =0
v+ (0(u 4+ 0%) +u,) =0

u and v denote the components of B parallel
and perpendicular to B g and 3 = aB?,

, 0 , 0 0

N%7 v N~ — 6N7

ox’ Ox

u

First 6 conserved densities
p1 = C1U + CoU

P2 = U +v

p3 = —(u® 4+ v*)? — wv, + uv + Bu’

0B | 0°B | B
Ox?

=0



P5 =

P6 =

“(u? 4 D = D(upvay — UspVy) + 5(uux + vu,)

4( D

0
o+ 0w 4 u) = (6 02w, — )

3 3
+5(2ux — 4u’v, 4 2u® + 3uv? —v)+5u
7 1
o+ (g, £ vy)
S, 9 9 2 9 2
2(u + 07) (Ug Vo — U2,V ) + D(u” 4+ v7) (uu, + vuy)
15 35

o) (u vt — (vt D) (uv, — )
4 16
5}

8(5u8 + 10u%v?* — 10?0’ — 50° + 20u*u,

12u°v, + 60uvty, — 20v%0,?)

62

()



e Scope and Limitations

— Systems must be polynomial in dependent variables
— Only two independent variables (z and t) are allowed
— No terms should explicitly depend on x and ¢

— Program only computes polynomial-type conserved densi-
ties
only polynomials in the dependent variables and their deriva-
tives
no explicit dependencies on x and ¢

— No limit on the number of evolution equations
In practice: time and memory constraints

— Input systems may have (nonzero) parameters
Program computes the conditions for parameters such that
densities (of a given rank) might exist

— Systems can also have parameters with (unknown) weight
Allows one to test systems with non-uniform rank

— For systems where one or more of the weights are free
Program prompts the user to enter values for the free weights

— Negative weights are not allowed
— Fractional weights are permitted

— Form of p can be given (testing purposes)



e Sample Data and Output

Data file for the Hirota-Satsuma system

u; — bouu, + 6vv, — aus, = 0
vy + 3uv, + vz, = 0

(* start of data file d_phrsat.m *)
debug = False;

(* Hirota-Satsuma System *)

eql1] [x,t] D[ull] [x,t],t]l-aa*xD[ull] [x,t],{x,3}]-
6xaaxull] [x,t]*D[ull] [x,t],x]+

6xul[2] [x,t]*D[ul2] [x,t],x];

eq[2] [x,t] = D[ul2] [x,t],t]+D[ul2] [x,t],{x,3}]+
3xull] [x,t]*D[ul2] [x,t],x];

noeqs = 2;
name = "Hirota-Satsuma System (parameterized)";

parameters = {aa};
weightpars = {};

formrho[x,t] = {};

(x end of data file d_phrsat.m *)



Explanation of the lines in the data file

debug = False;

No trace of output. Set it True to see a detailed trace
eqlk] [x,t] = ...;

Give the k™ equation of the system in Mathematica notation
Note that there is no == 0 at the end

noeqs = 2;
Specifies the number of equations in the system

name = "Hirota-Satsuma System (parameterized)";

Pick a short name for the system. The quotes are essential

parameters = {aa};

Give a list of the parameters in the system
If there are none, set parameters = { };

weightpars = {};

Give a list of those parameters that are assumed to have weights
Weighted parameters are listed in weightpars, not in parame-
ters

The latter is only a list of weightless parameters

formrho[x,t] = {};

Unless the form of p is given, program will automatically com-
pute it
This option allows to test forms of p (from the literature)



Anything within (* and *) are comments (ignored by Mathe-
matica)

For testing purposes, the form of the density can be given

For example:

formrho [x,t]={c[1]*ul1] [x,t] "3+c[2]*D[ul1] [x,t],x]"2%};

Density p must be given in expanded form and with coefficients
c[i]

The braces are essential

If p is given, the program skips both the computation of

scaling properties and the construction of p

Program continues with given p, and computes the cli]

For search for densities of specific rank, set formrho [x,t] = { };



Menu Interface and Sample Output

Example: Compute p of rank 4 for Drinfel’d-Sokolov system

wy + dvv, =0
vy + 203, + 2uv, + u,v =0

Start Mathematica
Type
In[1] := <<condens.m

Menu interface: program prompts automatically for answers

21) Kaup-Broer System (d_broer.m)

22) Drinfel’d-Sokolov System (d_soko.m)

23) Dispersiveless Long Wave System (d_disper.m)

24) 3-Component KdV System (d_3ckdv.m)

25) 2-Component Nonlinear Schrodinger Eq.(d_2cnls.m)
26) Boussinesq System (d_bous.m)

nn) Next Page

tt) Your System

qq) Exit the Program



ENTER YOUR CHOICE: 22

Enter the rank of rho: 4

Use Variational Derivative instead of
Integration by Parts? (y/n): y

Enter the name of the output file: d_soko4.o
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This is the density: ul2] [x, t]
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This 1s the flux:

2 (1,0) 2
2 ul1] [x, t] ul2][x, t] -2 (u[2]) [x, t] +

(2,0)
> 4 ul[2] [x, t] (ul[2]) [x, t]
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In[2]:=
At the end of computation, density and flux are available

To see these, type

In[2] := rholx,t]
2
OQut [2]= ul[2] [x, t]

In[3]:= j[x,t]

2
OQut[3]= 2 ull]l[x, t] ul2][x, t] -

(1,0) 2
> 2 (ul2]) [x, t] +

(2,0)
> 4 ul[2] [x, t] (ul[2]) [x, t]



e Conclusions & Further Research

— Comparison with other programs

x Parameter analysis
x Not restricted to uniform rank

* Not restricted to evolution equations provided that
one can write the equation(s) as a system of evolution
equations

— Usefulness

x Testing models for integrability
x Study of classes of nonlinear PDEs

x Study of generalized symmetries

— Future work

x Generalization towards broader classes of equations
x (Generalization towards non-local conservation laws
+ Conservation laws with variable coefficients

x Interface issues between Mathematica, Maple and
Reduce programs



Table 1: Conserved Densities for the Sawada-Kotera and Lax 5th-order equations
Density Sawada-Kotera equation Lax equation
P1 U U
po |-
1.3 2 1.3 1,2
P3 gu — Uy gu — gux
1,4 9 2 2 1,4 1 2 2
P4 U — JUUy 4 ugx U — JUUz” + 55U
1.5 2, 2 1 2 1 2
P5 T U — UTUg + sUU2x" — 7aU3z
1 25 2 17 2 2 1 5 2 5 2
06 sul — 2ulug? — Fugt + 6ulug, tub — 20du,? — 2wyt + LuPug,
3 21 2 3 2 5 1 2 1 2
+2ug,” — Fuuzs” + gUdg Tz U2s” — 7UU3L" T g5 U4
p7 Tu” = 9utu,? — Huuyt + Ludug,? u” = Butu,? — Suugt + wlug,?
648, 2 489 3 _ 261 2 1, 2 2 10 3 3,2 2
+5 35 Uz U2z + 35 U2z 35 20142 U3y +§ua¢ U2z + 51 UlU2z™ — 77U U3g
_ 288 2 9 2 5 2 1 2 1 2
35 u2xu3m + 35uu4x — 35Usz — g U2z U3 + 5 UULL” — gz Usa
08 - Tud = TuPu,? — 32uu,t + Tutug,”
7 2 2 5,2 3 7 4 1,3 2
+§uuw Uy + gu Uy” + ﬂuzm + iu U3y
1, 2 2 5 2 1,2 2
Uz U3x" — gUU2r U3y + Ta U Uy

T 2 _ 1 2 1
+132u2xu4m 132uu5x + 3432u6$

2




Table 2:

Conserved Densities for the Kaup-Kuperschmidt and Ito 5th-order

equations

Density Kaup-Kuperschmidt equation Ito equation
P1 U U
2
u

P2 == 5

3

2
ps | W - bu,
ut 2 2 w9 2 2

P4 4 T 1gUUx + 64 W2z 4 T gUUg + 1 U2z
P5 S I

6 35,3, 2 31, 4, 51,2 2
Pé &~ IgUU” — 55gle” + U U2 i

3 15 2 3 2

7 27,4, 2 _ 369 4, 69,3 2
P7 o SUug” — gppUy” + fpUUoe T

2619 2211 3 477 02, 2

+4480ux uz,® + 92240 UU2z~ — 1ot U3z
171 27 2 9 2
~ 640 U2x“31 + 560 U4z~ — Zgg0 Usz

P8




Table 3: Conserved Densities for the Sawada-Kotera-Ito and Lax 7th-order equations
Density Sawada-Kotera-Ito equation Lax equation
P1 U U
P2 - u?
P3 —ud + u,? —2u3 + u,?
04 3ut — Quug? + ugy? Sut — 10uug? + ugy?

—14u® + 70u%uy? — 14uugg® + usy?

P5 I
12,6, 150,3, 2, 17, 4 _ 48 2, 2 7,6 4 70,3, 2, 35 4 2, 2
06 —FU + FuUgT F T U — TUTU, —3u’ + Fuuy” + [3us” — TuTug,
16, 3 2_ 1, 2 10, 3 2 1, 2
—57U2:z” T UU3L" — 57 U4dg — g U2g” + UU3L" — g4z
p7 5u” — 105utu,? — 42uuyt + B3udu,,? — 207 + Butu,? + Buuyt — Huduy,?
+24u,2 U9, + 1%:3uuzw3 — 2—39u2u312 — Tug2ug,? — %uuhg + u2uz,?
32 2 2_ 1, 2 5 2 _ 1 2, 1 2
—5 U2zU3z” + UU4e” — 57 Usy QU22U3s" — gUU4L" + TogUsa
ps | ——-- Sud — 42uPu,? — 35ulu,t + 21utus,

+42uu, U0y + 20ulug, + %uzx‘l — 6ulus,?

—3ux2u;:,12 — 10uusz312 + uPuy,?

7 2 1 2 1 2
17 U2zU4z” — {7UUSE" T 55 UG




