SYMBOLIC SOFTWARE FOR SOLITON THEORY

Willy Hereman

Dept. of Mathematical and Computer Sciences Colorado School of Mines Golden, Colorado, USA

> KDV '95 International Symposium Monday, January 24, 1995 11:30

I. INTRODUCTION

Symbolic Software

- Solitons via Hirota's method (Macsyma & Mathematica)
- Painlevé test for ODEs or PDEs (Macsyma)
- Conservation laws of PDEs (Mathematica)
- Lie symmetries for ODEs and PDEs (Macsyma)

Purpose of the programs

- Study of integrability of nonlinear PDEs
- Exact solutions as bench mark for numerical algorithms
- Classification of nonlinear PDEs
- Lie symmetries solutions via reductions

Collaborators

- Ünal Göktaş (MS student)
- Chris Elmer (MS student)
- Wuning Zhuang (MS student)
- Ameina Nuseir (Ph.D student)
- Mark Coffey (CU-Boulder)

II. FOUR SYMBOLIC PROGRAMS

Example 1 – Macsyma/Mathematica Solitons – Hirota's Method

- Hirota's Direct Method allows to construct soliton solutions of
 - nonlinear evolution equations
 - wave equations
 - coupled systems
- Test conditions for existence of soliton solutions
- Examples:
 - Korteweg-de Vries equation (KdV)

$$u_t + 6uu_x + u_{3x} = 0$$

- Kadomtsev-Petviashvili equation (KP)

$$(u_t + 6uu_x + u_{3x})_x + 3u_{2y} = 0$$

- Sawada-Kotera equation (SK)

$$u_t + 45u^2u_x + 15u_xu_{2x} + 15uu_{3x} + u_{5x} = 0$$

Hirota's Method

Korteweg-de Vries equation

$$u_t + 6uu_x + u_{3x} = 0$$

Substitute

$$u(x,t) = 2\frac{\partial^2 \ln f(x,t)}{\partial x^2}$$

Integrate with respect to x

$$ff_{xt} - f_x f_t + f f_{4x} - 4f_x f_{3x} + 3f_{2x}^2 = 0$$

Bilinear form

$$B(f \cdot f) \stackrel{\text{def}}{=} (D_x D_t + D_x^4) (f \cdot f) = 0$$

Introduce the bilinear operator

$$D_x^m D_t^n(f \cdot g) = (\partial x - \partial x')^m (\partial t - \partial t')^n f(x, t) g(x', t')|_{x'=x, t'=t}$$

Use the expansion

$$f = 1 + \sum_{n=1}^{\infty} \epsilon^n f_n$$

Substitute f into the bilinear equation

Collect powers in ϵ (book keeping parameter)

$$O(\epsilon^{0}) : B(1\cdot1) = 0$$

$$O(\epsilon^{1}) : B(1\cdot f_{1} + f_{1}\cdot 1) = 0$$

$$O(\epsilon^{2}) : B(1\cdot f_{2} + f_{1}\cdot f_{1} + f_{2}\cdot 1) = 0$$

$$O(\epsilon^{3}) : B(1\cdot f_{3} + f_{1}\cdot f_{2} + f_{2}\cdot f_{1} + f_{3}\cdot 1) = 0$$

$$O(\epsilon^{4}) : B(1\cdot f_{4} + f_{1}\cdot f_{3} + f_{2}\cdot f_{2} + f_{3}\cdot f_{1} + f_{4}\cdot 1) = 0$$

$$O(\epsilon^{n}) : B(\sum_{j=0}^{n} f_{j}\cdot f_{n-j}) = 0 \quad \text{with } f_{0} = 1$$

Start with

$$f_1 = \sum_{i=1}^{N} \exp(\theta_i) = \sum_{i=1}^{N} \exp(k_i x - \omega_i t + \delta_i)$$

 k_i, ω_i and δ_i are constants Dispersion law

$$\omega_i = k_i^3$$
 $(i = 1, 2, ..., N)$

If the original PDE admits a N-soliton solution then the expansion will truncate at level n=N Consider the case N=3

Terms generated by $B(f_1, f_1)$ determine

$$f_{2} = a_{12} \exp(\theta_{1} + \theta_{2}) + a_{13} \exp(\theta_{1} + \theta_{3}) + a_{23} \exp(\theta_{2} + \theta_{3})$$

$$= a_{12} \exp[(k_{1} + k_{2}) x - (\omega_{1} + \omega_{2}) t + (\delta_{1} + \delta_{2})]$$

$$+ a_{13} \exp[(k_{1} + k_{3}) x - (\omega_{1} + \omega_{3}) t + (\delta_{1} + \delta_{3})]$$

$$+ a_{23} \exp[(k_{2} + k_{3}) x - (\omega_{2} + \omega_{3}) t + (\delta_{2} + \delta_{3})]$$

Calculate the constants a_{12} , a_{13} and a_{23}

$$a_{ij} = \frac{(k_i - k_j)^2}{(k_i + k_j)^2}$$
 $i, j = 1, 2, 3$

Terms from $B(f_1 \cdot f_2 + f_2 \cdot f_1)$ determine

$$f_3 = b_{123} \exp(\theta_1 + \theta_2 + \theta_3)$$

$$= b_{123} \exp[(k_1 + k_2 + k_3)x - (\omega_1 + \omega_2 + \omega_3)t + (\delta_1 + \delta_2 + \delta_3)]$$
with

 $b_{123} = a_{12} a_{13} a_{23} = \frac{(k_1 - k_2)^2 (k_1 - k_3)^2 (k_2 - k_3)^2}{(k_1 + k_2)^2 (k_1 + k_3)^2 (k_2 + k_3)^2}$

Subsequently, $f_i = 0$ for i > 3

Set
$$\epsilon = 1$$

$$f = 1 + \exp \theta_1 + \exp \theta_2 + \exp \theta_3 + a_{12} \exp(\theta_1 + \theta_2) + a_{13} \exp(\theta_1 + \theta_3) + a_{23} \exp(\theta_2 + \theta_3) + b_{123} \exp(\theta_1 + \theta_2 + \theta_3)$$

Return to the original u(x,t)

$$u(x,t) = 2\frac{\partial^2 \ln f(x,t)}{\partial x^2}$$

Single soliton solution

$$f = 1 + e^{\theta}$$
, $\theta = kx - \omega t + \delta$

 k, ω and δ are constants and $\omega = k^3$

Substituting f into

$$u(x,t) = 2 \frac{\partial^2 \ln f(x,t)}{\partial x^2}$$
$$= 2 \left(\frac{f_{xx}f - f_x^2}{f^2} \right)$$

Take k = 2K

$$u = 2K^2 \operatorname{sech}^2 K(x - 4K^2t + \delta)$$

Two-soliton solution

$$f = 1 + e^{\theta_1} + e^{\theta_2} + a_{12}e^{\theta_1 + \theta_2}$$

$$\theta_i = k_i x - \omega_i t + \delta_i$$
with $\omega_i = k_i^3$, $(i = 1, 2)$ and $a_{12} = \frac{(k_1 - k_2)^2}{(k_1 + k_2)^2}$
Select

$$e^{\delta_i} = \frac{c_i^2}{k_i} e^{k_i x - \omega_i t + \Delta_i}$$

$$\tilde{f} = \frac{1}{4} f e^{-\frac{1}{2}(\tilde{\theta}_1 + \tilde{\theta}_2)}$$

$$\tilde{\theta}_i = k_i x - \omega_i t + \Delta_i$$

$$c_i^2 = \left(\frac{k_2 + k_1}{k_2 - k_1}\right) k_i$$

Return to u(x,t)

$$u(x,t) = \tilde{u}(x,t) = 2\frac{\partial^2 \ln \tilde{f}(x,t)}{\partial x^2}$$
$$= \left(\frac{k_2^2 - k_1^2}{2}\right) \left(\frac{k_2^2 \operatorname{cosech}^2 \frac{\tilde{\theta}_2}{2} + k_1^2 \operatorname{sech}^2 \frac{\tilde{\theta}_1}{2}}{(k_2 \operatorname{coth} \frac{\tilde{\theta}_2}{2} - k_1 \tanh \frac{\tilde{\theta}_1}{2})^2}\right)$$

HIROTA'S CONDITIONS

Single Bilinear equation

$$P(D_x, D_t)(f \cdot f) = 0$$

P is an arbitrary polynomial

Example: KdV equation

$$P(D_x, D_t) = D_x D_t + D_x^4$$

If P satisfies

$$P(D_x, D_t) = P(-D_x, -D_t)$$

$$P(0, 0) = 0$$

then the equation always has a two-soliton solution

• For 2-soliton solution of KdV equation

$$f = 1 + e^{\theta_1} + e^{\theta_2} + a_{12}e^{\theta_1 + \theta_2}$$

$$\theta_i = k_i x - \omega_i t + \delta_i$$

$$P(k_i, -\omega_i) = 0 \quad \text{or} \quad \omega_i = k_i^3, \quad i = 1, 2$$

$$a_{12} = -\frac{P(k_1 - k_2, -\omega_1 + \omega_2)}{P(k_1 + k_2, -\omega_1 - \omega_2)} = \frac{(k_1 - k_2)^2}{(k_1 + k_2)^2}$$

 \bullet For the general N-soliton solution

$$f = \sum_{\mu=0,1} \exp \left[\sum_{i< j}^{(N)} A_{ij} \mu_i \mu_j + \sum_{i=1}^{N} \mu_i \theta_i \right]$$

$$a_{ij} = \exp A_{ij} = -\frac{P(k_i - k_j, -\omega_i + \omega_j)}{P(k_i + k_j, -\omega_i - \omega_j)}$$

Additional condition for $P(D_x, D_t)$

$$S[P, n] = \sum_{\sigma = \pm 1} P\left(\sum_{i=1}^{n} \sigma_{i} k_{i}, -\sum_{i=1}^{n} \sigma_{i} \omega_{i}\right)$$

$$\times \prod_{i < j}^{(n)} P(\sigma_{i} k_{i} - \sigma_{j} k_{j}, -\sigma_{i} \omega_{i} + \sigma_{j} \omega_{j}) \sigma_{i} \sigma_{j} = 0,$$
for $n = 2, \dots, N$

Special Features of the Programs

• Expressions for Hirota's bilinear operators

$$D_x^n(f \cdot g) = \sum_{j=0}^n \frac{(-1)^{(n-j)} n!}{j! (n-j)!} \frac{\partial^j f}{\partial x^j} \frac{\partial^{n-j} g}{\partial x^{n-j}}$$

$$D_x^m D_t^n(f \cdot g) = \sum_{j=0}^m \sum_{i=0}^n \frac{(-1)^{(m+n-j-i)} m! n!}{j! (m-j)! i! (n-i)!} \frac{\partial^{i+j} f}{\partial t^i \partial x^j} \frac{\partial^{n+m-i-j} g}{\partial t^{n-i} \partial x^{m-j}}$$

• Exponential functions $h(x,t) = \exp(kx - \omega t + \delta)$ are never introduced, they are defined via **gradef**

$$\frac{\partial h(x,t)}{\partial x} = kh(x,t)$$

$$\frac{\partial h(x,t)}{\partial t} = -\omega h(x,t)$$

- Test for existence of soliton solutions uses random numbers
- Symbolic test is available (may be slow)

Macsyma and Mathematica Programs

The user provides

- \bullet the bilinear operator B
- N for n-soliton solution
- number of random tests for 3-soliton solution
- symbolic test for 3-soliton solution (true or false)
- number of random tests for 4-soliton solution
- symbolic test for 4-soliton solution (true or false)

The symbolic programs calculates

- conditions for existence of up to a 4-soliton solution
- the one-, two- and three- soliton solutions
- a_{ij} and b_{123} in factored form
- the function f, so that u(x,t) can be computed

Example 2 – Macsyma/Mathematica Painlevé Integrability Test

- Painlevé test for 3rd order equations by Hajee (Reduce, 1982)
- Painlevé program (parts) by Hlavatý (Reduce, 1986)
- ODE_Painlevé by Winternitz & Rand (Macsyma, 1986)
- PDE_Painlevé by Hereman & Van den Bulck (Macsyma, 1987)
- Painlevé test by Conte & Musette (AMP, 1988)
- Painlevé analysis by Renner (Reduce, 1992)
- Painlevé test for simple systems by Hereman, Elmer and Göktaş (Macsyma, 1994-96, under development)

Example 3 - Mathematica Conserved Densities

• Purpose

Compute polynomial-type conservation laws of single PDEs and systems of PDEs

Conservation law:

$$\rho_t + J_x = 0$$

both $\rho(u, u_x, u_{2x}, \dots, u_{nx})$ and $J(u, u_x, u_{2x}, \dots, u_{nx})$

Consequently

$$P = \int_{-\infty}^{+\infty} \rho dx = \text{constant}$$

provided J vanishes at infinity

Compare with constants of motions in classical mechanics

• Example

Consider the KdV equation

$$u_t + uu_x + u_{3x} = 0$$

Conserved densities:

$$\rho_{1} = u$$

$$\rho_{2} = u^{2}$$

$$\rho_{3} = u^{3} - 3u_{x}^{2}$$

$$\vdots$$

$$\rho_{6} = u^{6} - 60u^{3}u_{x}^{2} - 30u_{x}^{4} + 108u^{2}u_{2x}^{2}$$

$$+ \frac{720}{7}u_{2x}^{3} - \frac{648}{7}uu_{3x}^{2} + \frac{216}{7}u_{4x}^{2}$$

$$\vdots$$

Integrable equations have ∞ conservation laws

• Algorithm and Implementation

Consider the scaling (weights) of the KdV

$$u \sim \frac{\partial^2}{\partial x^2}, \qquad \frac{\partial}{\partial t} \sim \frac{\partial^3}{\partial x^3}$$

Compute building blocks of ρ_3

(i) Start with building block u^3

Divide by u and differentiate twice $(u^2)_{2x}$

Produces the list of terms

$$[u_x^2, uu_{2x}] \longrightarrow [u_x^2]$$

Second list: remove terms that are total derivative with respect to x or total derivative up to terms earlier in the list

Divide by u^2 and differentiate twice $(u)_{4x}$

Produces the list: $[u_{4x}] \longrightarrow []$

[] is the empty list Gather the terms:

$$\rho_3 = u^3 + c[1]u_x^2$$

where the constant c_1 must be determined

(ii) Compute
$$\frac{\partial \rho_3}{\partial t} = 3u^2u_t + 2c_1u_xu_{xt}$$

Replace u_t by $-(uu_x + u_{xxx})$ and u_{xt} by $-(uu_x + u_{xxx})_x$

(iii) Integrate the result with respect to x

Carry out all integrations by parts

$$\frac{\partial \rho_3}{\partial t} = -\left[\frac{3}{4}u^4 + (c_1 - 3)uu_x^2 + 3u^2u_{xx} - c_1u_{xx}^2 + 2c_1u_xu_{xxx}\right]_x$$
$$-(c_1 + 3)u_x^3$$

The last non-integrable term must vanish

Thus, $c_1 = -3$

Result:

$$\rho_3 = u^3 - 3u_x^2$$

(iv) Expression [...] yields

$$J_3 = \frac{3}{4}u^4 - 6uu_x^2 + 3u^2u_{xx} + 3u_{xx}^2 - 6u_xu_{xxx}$$

Computer building blocks of ρ_6

(i) Start with u^6

Divide by u and differentiate twice

 $(u^5)_{2x}$ produces the list of terms

$$[u^3u_x^2, u^4u_{2x}] \longrightarrow [u^3u_x^2]$$

Next, divide u^6 by u^2 , and compute $(u^4)_{4x}$

Corresponding list:

$$[u_x^4, uu_x^2u_{2x}, u^2u_{2x}^2, u^2u_xu_{3x}, u^3u_{4x}] \longrightarrow [u_x^4, u^2u_{2x}^2]$$

Proceed with
$$(\frac{u^6}{u^3})_{6x} = (u^3)_{6x}, (\frac{u^6}{u^4})_{8x} = (u^2)_{8x}$$

and
$$(\frac{u^6}{u^5})_{10x} = (u)_{10x}$$

Obtain the lists:

$$[u_{2x}^3, u_x u_{2x} u_{3x}, u u_{3x}^2, u_x^2 u_{4x}, u u_{2x} u_{4x}, u u_x u_{5x}, u^2 u_{6x}] \longrightarrow$$

$$[u_{2x}^3, uu_{3x}^2]$$

$$[u_{4x}^2, u_{3x}u_{5x}, u_{2x}u_{6x}, u_{x}u_{7x}, uu_{8x}] \longrightarrow [u_{4x}^2]$$

and
$$[u_{10x}] \longrightarrow []$$

Gather the terms:

$$\rho_6 = u^6 + c_1 u^3 u_x^2 + c_2 u_x^4 + c_3 u^2 u_{2x}^2 + c_4 u_{2x}^3 + c_5 u u_{3x}^2 + c_6 u_{4x}^2$$

where the constants c_i must be determined

(ii) Compute $\frac{\partial}{\partial t}\rho_6$

Replace $u_t, u_{xt}, \dots, u_{nx,t}$ by $-(uu_x + u_{xxx}), \dots$

(iii) Integrate the result with respect to x

Carry out all integrations by parts

Require that non-integrabe part vanishes

Set to zero all the coefficients of the independent combinations involving powers of u and its derivatives with respect to x

Solve the linear system for unknowns c_1, c_2, \ldots, c_6 Result:

$$\rho_6 = u^6 - 60u^3u_x^2 - 30u_x^4 + 108u^2u_{2x}^2 + \frac{720}{7}u_{2x}^3 - \frac{648}{7}uu_{3x}^2 + \frac{216}{7}u_{4x}^2$$

(iv) Flux J_6 can be computed by substituting the constants into the integrable part of ρ_6

• Further Examples

* Conservation laws of generalized Schamel equation

$$n^2 u_t + (n+1)(n+2)u^{\frac{2}{n}}u_x + u_{xxx} = 0$$

n positive integer

$$\rho_1 = u
\rho_2 = u^2
\rho_3 = \frac{1}{2}u_x^2 - \frac{n^2}{2}u^{2+\frac{2}{n}}$$

no further conservation laws

* Conserved densities of modified vector derivative nonlinear Schrödinger equation

$$\frac{\partial \mathbf{B}_{\perp}}{\partial t} + \frac{\partial}{\partial x} (B_{\perp}^2 \mathbf{B}_{\perp}) + \alpha \mathbf{B}_{\perp 0} \mathbf{B}_{\perp 0} \cdot \frac{\partial \mathbf{B}_{\perp}}{\partial x} + \mathbf{e}_x \times \frac{\partial^2 \mathbf{B}_{\perp}}{\partial x^2} = 0$$

Replace vector equation by

$$u_t + (u(u^2 + v^2) + \beta u - v_x)_x = 0$$

$$v_t + (v(u^2 + v^2) + u_x)_x = 0$$

u and v denote the components of \mathbf{B}_{\perp} parallel and perpendicular to $\mathbf{B}_{\perp 0}$ and $\beta = \alpha B_{\perp 0}^2$

The first 5 conserved densities are:

$$\rho_1 = u^2 + v^2$$

$$\rho_2 = \frac{1}{2}(u^2 + v^2)^2 - uv_x + u_xv + \beta u^2$$

$$\rho_3 = \frac{1}{4}(u^2 + v^2)^3 + \frac{1}{2}(u_x^2 + v_x^2) - u^3v_x + v^3u_x + \frac{\beta}{4}(u^4 - v^4)$$

$$\rho_4 = \frac{1}{4}(u^2 + v^2)^4 - \frac{2}{5}(u_x v_{xx} - u_{xx} v_x) + \frac{4}{5}(uu_x + vv_x)^2$$

$$+\frac{6}{5}(u^2+v^2)(u_x^2+v_x^2)-(u^2+v^2)^2(uv_x-u_xv)$$

$$+\frac{\beta}{5}(2u_x^2 - 4u^3v_x + 2u^6 + 3u^4v^2 - v^6) + \frac{\beta^2}{5}u^4$$

$$\rho_5 = \frac{7}{16}(u^2 + v^2)^5 + \frac{1}{2}(u_{xx}^2 + v_{xx}^2)
- \frac{5}{2}(u^2 + v^2)(u_xv_{xx} - u_{xx}v_x) + 5(u^2 + v^2)(uu_x + vv_x)^2
+ \frac{15}{4}(u^2 + v^2)^2(u_x^2 + v_x^2)^2 - \frac{35}{16}(u^2 + v^2)^3(uv_x - u_xv)
+ \frac{\beta}{8}(5u^8 + 10u^6v^2 - 10u^2v^6 - 5v^8 + 20u^2u_x^2)
- 12u^5v_x + 60uv^4v_x - 20v^2v_x^2)
+ \frac{\beta^2}{4}(u^6 + v^6)$$

A Class of Fifth-order Evolution Equations

$$u_t + \alpha u^2 u_x + \beta u_x u_{2x} + \gamma u u_{3x} + u_{5x} = 0$$

Special cases:

Table 1 Conserved Densities for Sawada-Kotera and Lax equations			
Density	Sawada-Kotera equation	Lax equation	
$ ho_1$	u	u	
$ ho_2$		$\frac{1}{2}u^2$	
$ ho_3$	$\frac{1}{3}u^3 - u_x^2$	$\frac{1}{3}u^3 - \frac{1}{6}u_x^2$	
$ ho_4$	$\frac{1}{4}u^4 - \frac{9}{4}uu_x^2 + \frac{3}{4}u_{2x}^2$	$\frac{1}{4}u^4 - \frac{1}{2}uu_x^2 + \frac{1}{20}u_{2x}^2$	
$ ho_6$		$\frac{1}{5}u^5 - u^2u_x^2 + \frac{1}{5}uu_{2x}^2 - \frac{1}{70}u_{3x}^2$	
$ ho_6$	$\frac{1}{6}u^6 - \frac{25}{4}u^3u_x^2 - \frac{17}{8}u_x^4 + 6u^2u_{2x}^2 + 2u_{2x}^3 - \frac{21}{8}uu_{3x}^2 + \frac{3}{8}u_{4x}^2$	$\frac{\frac{1}{6}u^6 - \frac{5}{3}u^3u_x^2 - \frac{5}{36}u_x^4 + \frac{1}{2}u^2u_{2x}^2}{+\frac{5}{63}u_{2x}^3 - \frac{1}{14}uu_{3x}^2 + \frac{1}{252}u_{4x}^2}$	
<i>ρ</i> 7	$ \frac{1}{7}u^{7} - 9u^{4}u_{x}^{2} - \frac{54}{5}uu_{x}^{4} + \frac{57}{5}u^{3}u_{2x}^{2} + \frac{648}{35}u_{x}^{2}u_{2x}^{2} + \frac{489}{35}uu_{2x}^{3} - \frac{261}{35}u^{2}u_{3x}^{2} - \frac{288}{35}u_{2x}u_{3x}^{2} + \frac{81}{35}uu_{4x}^{2} - \frac{9}{35}u_{5x}^{2} $	$ \frac{1}{7}u^7 - \frac{5}{2}u^4u_x^2 - \frac{5}{6}uu_x^4 + u^3u_{2x}^2 + \frac{1}{2}u_x^2u_{2x}^2 + \frac{10}{21}uu_{2x}^3 - \frac{3}{14}u^2u_{3x}^2 - \frac{5}{42}u_{2x}u_{3x}^2 + \frac{1}{42}uu_{4x}^2 - \frac{1}{924}u_{5x}^2 $	
$ ho_8$		$ \frac{1}{8}u^{8} - \frac{7}{2}u^{5}u_{x}^{2} - \frac{35}{12}u^{2}u_{x}^{4} + \frac{7}{4}u^{4}u_{2x}^{2} + \frac{7}{2}uu_{x}^{2}u_{2x}^{2} + \frac{5}{3}u^{2}u_{2x}^{3} + \frac{7}{24}u_{2x}^{4} + \frac{1}{2}u^{3}u_{3x}^{2} - \frac{1}{4}u_{x}^{2}u_{3x}^{2} - \frac{5}{6}uu_{2x}u_{3x}^{2} + \frac{1}{12}u^{2}u_{4x}^{2} + \frac{7}{132}u_{2x}u_{4x}^{2} - \frac{1}{132}uu_{5x}^{2} + \frac{1}{3432}u_{6x}^{2} $	

Π

Table 2 Conserved Densities for Kaup-Kuperschmidt and Ito equations		
Density	Kaup-Kuperschmidt equation	Ito equation
$ ho_1$	u	u
$ ho_2$		$\frac{u^2}{2}$
$ ho_3$	$\frac{u^3}{3} - \frac{1}{8}u_x^2$	
$ ho_4$	$\frac{u^4}{4} - \frac{9}{16}uu_x^2 + \frac{3}{64}u_{2x}^2$	$\frac{u^4}{4} - \frac{9}{4}uu_x^2 + \frac{3}{4}u_{2x}^2$
$ ho_5$		
$ ho_6$	$\frac{u^6}{6} - \frac{35}{16}u^3u_x^2 - \frac{31}{256}u_x^4 + \frac{51}{64}u^2u_{2x}^2 + \frac{37}{256}u_{2x}^3 - \frac{15}{128}uu_{3x}^2 + \frac{3}{512}u_{4x}^2$	
ρ7	$ \frac{u^7}{7} - \frac{27}{8}u^4u_x^2 - \frac{369}{320}uu_x^4 + \frac{69}{40}u^3u_{2x}^2 + \frac{2619}{4480}u_x^2u_{2x}^2 + \frac{2211}{2240}uu_{2x}^3 - \frac{477}{1120}u^2u_{3x}^2 - \frac{171}{640}u_{2x}u_{3x}^2 + \frac{27}{560}uu_{4x}^2 - \frac{9}{4480}u_{5x}^2 $	
$ ho_8$		

П

Example 4 – Macsyma Lie-point Symmetries

ullet System of m differential equations of order k

$$\Delta^{i}(x, u^{(k)}) = 0, \quad i = 1, 2, ..., m$$

with p independent and q dependent variables

$$x = (x_1, x_2, ..., x_p) \in \mathbb{R}^p$$

 $u = (u^1, u^2, ..., u^q) \in \mathbb{R}^q$

• The group transformations have the form

$$\tilde{x} = \Lambda_{group}(x, u), \quad \tilde{u} = \Omega_{group}(x, u)$$

where the functions Λ_{group} and Ω_{group} are to be determined

ullet Look for the Lie algebra ${\mathcal L}$ realized by the vector field

$$\alpha = \sum_{i=1}^{p} \eta^{i}(x, u) \frac{\partial}{\partial x_{i}} + \sum_{l=1}^{q} \varphi_{l}(x, u) \frac{\partial}{\partial u^{l}}$$

Procedure for finding the coefficients

- Construct the k^{th} prolongation $\text{pr}^{(k)}\alpha$ of the vector field α
- Apply it to the system of equations
- Request that the resulting expression vanishes on the solution set of the given system

$$\operatorname{pr}^{(k)} \alpha \Delta^i \mid_{\Delta^{j=0}} \quad i, j = 1, ..., m$$

- This results in a system of linear homogeneous PDEs for η^i and φ_l , with independent variables x and u (determining equations)
- Procedure thus consists of two major steps:

deriving the determining equations solving the determining equations

Procedure for Computing the Determining Equations

• Use multi-index notation $J = (j_1, j_2, ..., j_p) \in \mathbb{N}^p$, to denote partial derivatives of u^l

$$u_J^l \equiv \frac{\partial^{|J|} u^l}{\partial x_1^{j_1} \partial x_2^{j_2} \dots \partial x_p^{j_p}} ,$$

where $|J| = j_1 + j_2 + ... + j_p$

- $u^{(k)}$ denotes a vector whose components are all the partial derivatives of order 0 up to k of all the u^l
- Steps:
 - (1) Construct the k^{th} prolongation of the vector field

$$\operatorname{pr}^{(k)} \alpha = \alpha + \sum_{l=1}^{q} \sum_{J} \psi_{l}^{J}(x, u^{(k)}) \frac{\partial}{\partial u_{J}^{l}}, \quad 1 \leq |J| \leq k$$

The coefficients ψ_l^J of the first prolongation are:

$$\psi_l^{J_i} = D_i \varphi_l(x, u) - \sum_{i=1}^p u_{J_i}^l D_i \eta^j(x, u),$$

where J_i is a p-tuple with 1 on the ith position and zeros elsewhere

 D_i is the total derivative operator

$$D_{i} = \frac{\partial}{\partial x_{i}} + \sum_{l=1}^{q} \sum_{J} u_{J+J_{i}}^{l} \frac{\partial}{\partial u_{J}^{l}}, \quad 0 \le |J| \le k$$

Higher order prolongations are defined recursively:

$$\psi_l^{J+J_i} = D_i \psi_l^J - \sum_{j=1}^p u_{J+J_j}^l D_i \eta^j(x, u), \quad |J| \ge 1$$

(2) Apply the prolonged operator $\operatorname{pr}^{(k)}\alpha$ to each equation $\Delta^i(x,u^{(k)})=0$

Require that $pr^{(k)}\alpha$ vanishes on the solution set of the system

$$\operatorname{pr}^{(k)} \alpha \Delta^{i} |_{\Delta^{j}=0} = 0 \quad i, j = 1, ..., m$$

- (3) Choose m components of the vector $u^{(k)}$, say $v^1, ..., v^m$, such that:
- (a) Each v^i is equal to a derivative of a u^l (l = 1, ..., q) with respect to at least one variable x_i (i = 1, ..., p).
- (b) None of the v^i is the derivative of another one in the set.
- (c) The system can be solved algebraically for the v^i in terms of the remaining components of $u^{(k)}$, which we denoted by w:

$$v^i = S^i(x, w), \quad i = 1, ..., m.$$

(d) The derivatives of v^i ,

$$v_J^i = D_J S^i(x, w),$$

where $D_J \equiv D_1^{j_1} D_2^{j_2} ... D_p^{j_p}$, can all be expressed in terms of the components of w and their derivatives, without ever reintroducing the v^i or their derivatives.

For instance, for a system of evolution equations

$$u_t^i(x_1, ..., x_{p-1}, t) = F^i(x_1, ..., x_{p-1}, t, u^{(k)}), \quad i = 1, ..., m,$$

where $u^{(k)}$ involves derivatives with respect to the variables x_i but not t, choose $v^i = u_t^i$.

- (4) Eliminate all v^i and their derivatives from the expression prolonged vector field, so that all the remaining variables are independent
- (5) Obtain the determining equations for $\eta^i(x, u)$ and $\varphi_l(x, u)$ by equating to zero the coefficients of the remaining independent derivatives u_J^l .

III. OTHER SOFTWARE

Painlevé Integrability Test

- Painlevé test for 3rd order equations by Hajee (Reduce, 1982)
- Painlevé program (parts) by Hlavatý (Reduce, 1986)
- ODE_Painlevé by Winternitz & Rand (Macsyma, 1986)
- PDE_Painlevé by Hereman & Van den Bulck (Macsyma, 1987)
- Painlevé test by Conte & Musette (AMP, 1988)
- Painlevé analysis by Renner (Reduce, 1992)
- Painlevé test for simple systems by Hereman, Elmer and Göktaş (Macsyma, 1994-96, under development)

Conserved Densities, Lax Pairs & Bäcklund Transformations

- Lax pairs by Ito (Reduce, 1985)
- Conserved densities by Ito & Kako (Reduce, 1985)
- Lax pairs & Bäcklund Transformations by Conte & Musette (AMP, C++, 1991-1993)
- Conserved densities by Gerdt (Reduce, 1993)
- Conserved densities by Hereman, Verheest and Göktaş (Mathematica, 1993-1995)

Explicit Solitary Wave Solutions & Solitons

- Hirota operators by Ito (Reduce, 1988)
- Solitary wave solutions via truncated Laurent series by Hereman (Macsyma, 1989)
- Solitary wave solutions based on exponential method by Hereman (Macsyma, 1992)
- Classification of bilinear operators by Hietarinta (Reduce, 1989)
- Hirota's method by Hereman & Zhuang (Macsyma, 1990)
- Hirota's method by Hereman & Zhuang (Mathematica, 1995)
- Simplified version of Hirota's method by Hereman and Nuseir (Macsyma, 1995)

IV. PLANS FOR THE FUTURE

Extension of Symbolic Software Packages (Macsyma/Mathematica)

- Lie symmetries of differential-difference equations
- Solver for systems of linear, homogeneous PDEs (Hereman)
- Painlevé test for systems of PDEs (Elmer, Göktaş & Coffey)
- Solitons via Hirota's method for bilinear equations (Zhuang)
- Simplification of Hirota's method (Hereman & Nuseir)
- Conservation laws of PDEs with variable coefficients (Göktaş)
- Lax pairs, special solutions, ...

New Software

- Wavelets (prototype/educational tool)
- Other methods for Differential Equations