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[. INTRODUCTION

Symbolic Software

e Solitons via Hirota’s method (Macsyma & Mathematica)
e Painlevé test for ODEs or PDEs (Macsyma)
e Conservation laws of PDEs (Mathematica)

e Lie symmetries for ODEs and PDEs (Macsyma)
Purpose of the programs

e Study of integrability of nonlinear PDEs

e [ixact solutions as bench mark for numerical algorithms

e (Classification of nonlinear PDEs

e Lic symmetries — solutions via reductions
Collaborators

e Unal Goktas (MS student)

e Chris Elmer (MS student)

e Wuning Zhuang (MS student)

e Ameina Nuseir (Ph.D student)

e Mark Coffey (CU-Boulder)



[I. FOUR SYMBOLIC PROGRAMS

Example 1 — Macsyma/Mathematica
Solitons — Hirota’s Method

e Hirota’s Direct Method
allows to construct soliton solutions of

— nonlinear evolution equations
— wave equations

— coupled systems
e '[est conditions for existence of soliton solutions
e Examples:

— Korteweg-de Vries equation (KdV)
u; + 6uu, + ug, = 0
— Kadomtsev-Petviashvili equation (KP)
(ur + 6uny + usy), + 3ugy =0
— Sawada-Kotera equation (SK)
wp + 450, + 15ute, + 15uts, + s, = 0



Hirota’s Method
Korteweg-de Vries equation
uy + 6uu, + ug, = 0

Substitute
O0?In f(x,t)

ox’

u(z,t) =2
Integrate with respect to x
Jfor = Jofe [ fro = Afofso +3f5, =0
Bilinear form
B(f-f) ¥ (D.Dy+ D) (f-f) =0

Introduce the bilinear operator

Dy D (f-g) = (0w — 92')"(0t — 0t')" f(=,1) g(a',¥')

x'=x t'=t

Use the expansion
f =1+ % €' fn
n=1

Substitute f into the bilinear equation



Collect powers in € (book keeping parameter)
O(") + B(1-1) =0
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Start with
N N
fi= ;1 exp(6;) = ;1 exp (k;x — w;t + 0;)

ki, w; and 9; are constants
Dispersion law

wi=k  (i=1,2,..,N)

If the original PDE admits a N-soliton solution
then the expansion will truncate at level n = N



Consider the case N=3

Terms generated by B(fi, f1) determine

fo = a9 exp(By + 6) + a3 exp(6y + 03) + as3 exp(bs + 63)
= arz exp (k1 + ko) & — (w1 +w2) T + (01 + 02)]
+ a3 exp [(k1 + k3) x — (w1 +ws3) L+ (01 + 03)
+ a3 exp (kg + k3) v — (wa +w3) t + (92 + 93)]

Calculate the constants aq9, a1z and ag3

2

(ki —Ky)
" (k)
Terms from B(fi-fo + f2 f1) determine
f3 = b123 eXp<@1 + (92 + (93)
= biogexp |(k1+ka+k3)
with

1,7 =1,2,3

T — (w1 +W- —|—W3>t—|— ((51 —|—52—|—53)]

(k1 — ko)? (k1 — k3)* (ko — k3)”
(]ﬁ —+ ]{2>2 (kl —+ k3>2 (kQ -+ kg)z
Subsequently, f; =0 for ¢ > 3

5123 = Q12413423 =

Set € =1

f =14expb; +exply+expbs
+ ajo exp(01 + 03) + a1z exp(01 + 63) + as3 exp(hy + 63)
+ biaz exp(6y + 6o + 03)



Return to the original u(x,t)

B 2(92 In f(x,t)

u(x,t) = 9.2
Single soliton solution
]":1—|—ee7 0=kr—wt+0

k,w and ¢ are constants and w = &?

Substituting f into

232 In f(x,t)
O
f:m:f o fa%
72

u(x,t) =

= o |

Take k = 2K
u = 2K?sech’K (v — 4K*t + 0)



Two-soliton solution

f=14e"+e”+ apet®

0; = kix — wit + 0;

. . - 2
with w; = k7 , (1 = 1,2) and ayp = 2241232
Select

2
0; _ sz kix—w;t+A,;
e kie
~ 1 1 .5
f="fe 5(01+02)
4

é@' = kix — wit + A,

k -+ k
2 2 1
‘ (kz — ]{1)

Return to u(x,t)

~

’LL(ZI],t) — a(ilf,t) _ 262 1H6)j£;<2£€,t>

_ (k% — k%) kSCOSGCh?% + k%sechzil
2 </€2 coth 922 — ]{1 tanh )2

o |

|



HIROTA’S CONDITIONS

Single Bilinear equation

P is an arbitrary polynomial

Example: KdV equation

P(D.,D,) = D,D,+ D

If P satisfies

P(D,, Dy)

P(-D,,—D,)
P(0,0) = 0

then the equation always has a two-soliton solution

e For 2-soliton solution of KdV equation

f=1+e"+e% 4 apet



lekla:—wthréz
P(kj,—w;) =0 or wi=k, i=12

P(kl — kg, —uw1 -+ CUQ) <]€1 — ]{2>2

42 = _P<]€1 + kg, —W1 — CU2> N (kl + k2)2

e For the general N-soliton solution

(V) N
= X exp|X Ajjpip; + ,Zl,uz'@z']
u i=

=0,1 1<

P(kz — kj, —W; + w]')
P(kz + ]Cj, —W; — (,Uj)

Clz'j — €XP Az’j = —

Additional condition for P(D,., D)

1=

S|[P,n| = X P(ﬁlmku—ilaiwi)

o==1 1=

n
X H P(O’ikz‘ — O'j]fj, —O,W; + O'dej)O'Z‘O'j =0 ,
1<)

for n=2,...,N



Special Features of the Programs

e Eixpressions for Hirota’'s bilinear operators

n (—=1)"=Inloifor—ig
D (f-g) = : :
:(f-9) j§0 gl (n — 7)! Ox Oz

DDy (f-g) =

mn (_1>(m+n—j—z’)m!n! 8i+jf 8n+m—i—jg
Z0.50 j1(m — )il (n — §)0EOI0t Dz

e Exponential functions h(x,t) = exp(kxr — wt + 9)
are never introduced, they are defined via gradef

Oh(z,t)
5 = kh(x,t)
Oh(z,t)
5 wh(x,t)

e 'Test for existence of soliton solutions uses random numbers

e Symbolic test is available (may be slow)



Macsyma and Mathematica Programs

The user provides
e the bilinear operator B
e N for n-soliton solution
e number of random tests for 3-soliton solution
e symbolic test for 3-soliton solution (true or false)
e number of random tests for 4-soliton solution

e symbolic test for 4-soliton solution (true or false)

The symbolic programs calculates
e conditions for existence of up to a 4-soliton solution
e the one-, two- and three- soliton solutions
e a;; and bye3 in factored form

e the function f, so that u(x,t) can be computed



Example 2 — Macsyma/Mathematica
Painlevé Integrability Test

e Painlevé test for 3rd order equations by Hajee
(Reduce, 1982)

e Painlevé program (parts) by Hlavaty (Reduce, 1986)

e ODE_Painlevé by Winternitz & Rand
(Macsyma, 1986)

e PDE _Painlevé by Hereman & Van den Bulck
(Macsyma, 1987)

e Painlevé test by Conte & Musette (AMP, 1988)
e Painlevé analysis by Renner (Reduce, 1992)

e Painlevé test for simple systems by Hereman, Elmer
and Goktag (Macsyma, 1994-96, under development)



Example 3 - Mathematica
Conserved Densities

e Purpose

Compute polynomial-type conservation laws
of single PDEs and systems of PDEs

Conservation law:
Pt + Jx =0

both p(u, ts, Uog, . .., Upz) and J(u, Uy, Ugg, . . -

Consequently
P = [T pdzx = constant

provided J vanishes at infinity

Compare with constants of motions in classical
mechanics

) unaz)



e Example
Consider the KdV equation
Uy + Uty + ug, = 0

Conserved densities:

P = U
P2 = u’
p3 =  u —3u’
pe = u’—60utu? — 30us + 108u us,
20 4 648 , 216 ,
T e T T e T

Integrable equations have oo conservation laws



e Algorithm and Implementation

Consider the scaling (weights) of the KAV
oA 0 ok
U~ —

ox? Ot Oxd
Compute building blocks of p3

(i) Start with building block u?
Divide by u and differentiate twice (u?),

Produces the list of terms
[uF, uug,) — [ug)

Second list: remove terms that are total derivative
with respect to x or total derivative
up to terms earlier in the list

Divide by u? and differentiate twice ()4,
Produces the list: [uyg,] — []

| ] is the empty list
Gather the terms:



where the constant ¢; must be determined

0
(ii) Compute o _ 3uuy 4 201Uty

ot

Replace uy by —(utty + Uye) and wzy by —(uthy + Upgs ) o
(iii) Integrate the result with respect to x

Carry out all integrations by parts

0 3
;753 = —[4u4 + (e =3)un? + 3utty, — crul, + 201 Uplyrs] o

—(cy + 3)u?
The last non-integrable term must vanish
Thus, ¢ = —3
Result:

p3 = u’ — 3u’
(iv) Expression |...| yields
3
Jy =yt — 6uu:2v + 3utu,, + SU?M — OUL Uy s

4



Computer building blocks of pg
(i) Start with u"

Divide by u and differentiate twice

(u°)a, produces the list of terms

[u?’ui, u4u2$] — [u%i]

Next, divide u5 by u?, and compute (u*)y,

Corresponding list:

4 9 2 9 9 3 4 2 9
(U, UUS U, UWUS,, U U U3y, U] — Uy, UZUS,]

Proceed with (%)63; = <u3>6x; <§I)8x - (U2)8x

and (Zghox = (u)104

Obtain the lists:

3
219
3 2
_u23:7 uu?)x]

[ 2 2
Uprs U3 UByy U2p: UGy UgUT sy uqu] ? [u4x]

2 2

- )
Uy UgU2,U3gy U3,y U Udgy YU Ul gy U Uy, U UGx] —

and [u10;] — ||

Gather the terms:

3 2,2 2

6 2 4 3 2
P = U + C1U U, + CoU,. + C3U U5y, + C4UY,. + C5UU3, + Caly,



where the constants ¢; must be determined

(ii) Compute gtpf;

Replace ug, Uy, - . .y Upg s By —(Wlhy + Ugga), - - -
(iii) Integrate the result with respect to x
Carry out all integrations by parts

Require that non-integrabe part vanishes

Set to zero all the coefficients of the independent
combinations involving powers of u and
its derivatives with respect to x

Solve the linear system for unknowns cq, cs, . . ., g
Result:
ps = ub —60uPu? — 30u? + 108uu3,
720 4 648 , 216 ,
7“23} o 7 Uz, + 7 Uyy

(iv) Flux Jg can be computed by substituting
the constants into the integrable part of pg



e Further Examples

* Conservation laws of generalized Schamel equation

n?u; + (n+1)(n+ 2)’w%ux + Uypyy = O

n positive integer

pPL = U
P2 = u’
1 n? 2

no further conservation laws

* Conserved densities of modified vector derivative
nonlinear Schrodinger equation

BB B B ;-
o + 8:1:'( 1 L) +ab 9B g

Replace vector equation by

0B | 0°B |
T = (
ox T € X Ox?

w + (u(u® +v%) + fu —v,) =0
v+ (0(u” 4+ v%) +u,) =0

1w and v denote the components of B parallel
and perpendicular to B g and 8 = aB?,



The first 5 conserved densities are:

2 2

pr = u +v
L o9 99 2
0y = 2(u +v7)" — uv, + uv + Bu
Lo 9s, 1, 9, o 3 3 4
p3 = 4(u + v%) +2(ux+vx)—u Uy + U ux+4(u —v
1 2 4
p1 = —(u* + ) — Sy — UpeVy) + - (Utly + VV,)?
4 5 5
0
+ 5(u2 + %) (U2 +v2) — (U + v*)* (uvy — uv)
2
+ ﬁ(Zui — 4w, + 2u’ 4 3utv® — ) + ﬁu4

5



P5 =

7 1

(W + 0 o (ug, + g

D, 9 2 9

2( + 07) (Ug Vs — Uz Vs ) + D(u” + 07) (un, + vu,)
15 35

4(u2 + UQ)Q(U?U + 02)2 — 16(u2 + 112)3(11,% — ULD)
5}

8(5u8 + 10u’v? — 10u*0°® — 50° + 20u*u?

12u°v, + 60uv*v, — 201}21}5)
2

6 6 6
4<U —|—U>

2



A Class of Fifth-order Evolution Equations

w4+ cuuy 4+ Bugus, + Yuus,: + Us, = 0

Special cases:

a = 30 B =20 v =10 Lax
a =5 B=05 v =25 Sawada Kotera
or Caudry —Dodd — Gibbon
a = 20 6 =25 v =10 Kaup — Kuperschmidt
a = 2 B =0 v=3 [to



Table 1

Conserved Densities for Sawada-Kotera and Lax equations

Density Sawada-Kotera equation Lax equation
Pl U U
2
P2 . 53U
3 2 3 1,2
4 3,,2 4 1 2
P4 U — Fuuy + Fus, U — JuuUy + 55U5,
1.5 2,2 2 1.2
P6 - EUT — UTUL + FUUY, — mUS,
06 %uﬁ — 245u3u2 17 ul st 6u? u2x gu6 — %ug’ui 35 U, + uzu%x
3 21 3 1 2 1.2
+2u2x ] uu3z + u4x +@u2x - EUUSx + ﬁuélx
4 1
p7 7 [ 9u4ug 55 uu + 57u3u%x 7u7 — %u‘lui guu +u u%x
648 2 489,,.,3 261, 2 10,.,,3 3,22
+35u U3, + 35 Ul — 35 U u3, + uguz, + op Uy — 74U U3y
_ 288 2 81 2 9,2 5 2 1 2 1,2
35 U2zU3, T 35UUL, — 35U5, Tz U2alsy Tz UL, — Gy Uss
1
P8 —_—— gug — %u5u§ 3gu2u4 + 4u u%x
7 2,2 5,2,,3 7,4 1,32
+§U’U,Z’U,2I + gu ’LLQx + ﬂU’QZ‘ + EU U3x
1,2,2 2 1.2 2
T g Uz U3y — 6uu2xu3m + puTug,
7 2 1 1 2
T T3 U2e Uiy — T33UU5e T 3433 UGe




Table 2

Conserved Densities for Kaup-Kuperschmidt and Ito equations

Density Kaup-Kuperschmidt equation Ito equation
Pl U U
2
—— u?
P2 2
ub 1,2 —_—
p3 3 sUz
w9 2 4 342 w902 4+ 34,2
P4 T 7 16Uz T 512z I T qUlUy T Uy
P5 B B
ub _ 35 3 2 51,2, 2 —_—
P6 &~ Teutud — shgus + grutul,
15 2
+o6 Uy — Tog WS, + 519Ul
u’ _27.4,2 _ 369 69,3 —_
p7 = Futud - sppuug + utud,

2619, 2, 2 2211, 3 _ 477 .2
+ 1480 Yz Y2r T 2550 U U2 — 1120 ¥ “3m

171 2 9 .2
~ 640 U2 U3, + 560 Uy, — 7480 Ysa

P8




Example 4 — Macsyma
Lie-point Symmetries

e System of m differential equations of order k

Az, u™)y =0, i=1,2,..,m

with p independent and ¢ dependent variables
r = (21,9, ...,2,) € R?
uw = (u',u?, ..., u?) € R
e The group transformations have the form
F = Agroup(@10), 1= Qg0

where the functions A g, and 4.0, are to be determined

e Look for the Lie algebra L realized by the vector field

e, )0+ ale,u)
P Ox; I=1 PR e




Procedure for finding the coefficients

e Construct the k™ prolongation pri®a of the vector field a
e Apply it to the system of equations

e Request that the resulting expression vanishes
on the solution set of the given system

prfaA |y 4, i=1,....m
e This results in a system of linear homogeneous PDEs

for " and ¢y, with independent variables z and u
( determining equations)

e Procedure thus consists of two major steps:

dertving the determining equations
solving the determining equations



Procedure for Computing the Determining Equations

e Use multi-index notation J = (j1, jo, ..., jp) € IN¥,
to denote partial derivatives of u!

6|J\ul
0x1710x972...02, P

where |J| = g1+ j2 + ... + Jp

,

e ul*) denotes a vector whose components are all the partial
derivatives of order 0 up to k of all the v’

e Steps:
(1) Construct the k* prolongation of the vector field

0
prla = a+ > 2o/ (z,u)

1< |JI<Ek
=17 oul; SHE

The coefficients 1) of the first prolongation are:
. p .
leZ = Di@l(xa u) — 'Zl ’Uf]jDﬂ?] (ZC, u),
]:

where J; is a p—tuple with 1 on the ™ position and zeros
elsewhere
D; is the total derivative operator

b ¥, Y
T
o, =17 "Hioul

D; = O0<|J| <k



Higher order prolongations are defined recursively:

J J; P -
= z?vbl jzz:l U{]JFJ]-DWJ(CU:U): |J‘ Z 1

(2) Apply the prolonged operator pr®a to each
equation A’(z,u®) =0

Require that pr® o vanishes on the solution set of the sys-
tem

pl‘(k)a Al |AJ:O =0 4,7=1,....m
(3) Choose m components of the vector u("“),
say vl ...,v™, such that:

(a) Each v’ is equal to a derivative of a u' (I = 1,...,q)
with respect to at least one variable z; (2 =1, ..., p).

(b) None of the v' is the derivative of another one in the
set.

(¢) The system can be solved algebraically for the v' in
terms of the remaining components of u¥), which we de-
noted by w:

v' =Sz, w), i=1,..,m.

(d) The derivatives of v,

U?] — DJSZ(CC,U)),



where D; = D{lD%Q...DgP, can all be expressed in terms
of the components of w and their derivatives, without ever

reintroducing the v* or their derivatives.
For instance, for a system of evolution equations

up(wy, ..., 2y 1,t) = F'(21, ...,:cp_l,t,u(k)), i=1,...,m,

where u'®) involves derivatives with respect to the variables

x; but not ¢, choose v' = w;.

(4) Eliminate all v* and their derivatives from the ex-
pression prolonged vector field, so that all the remaining
variables are independent

(5) Obtain the determining equations for n'(z,u) and

¢i(x,u) by equating to zero the coefficients of the remain-

ing independent derivatives u/.



[II. OTHER SOFTWARE
Painlevé Integrability Test

e Painlevé test for 3rd order equations by Hajee

(Reduce, 1982)
e Painlevé program (parts) by Hlavaty (Reduce, 1986)

e ODE_Painlevé by Winternitz & Rand
(Macsyma, 1986)

e PDE _Painlevé by Hereman & Van den Bulck
(Macsyma, 1987)

e Painlevé test by Conte & Musette (AMP, 1988)
e Painlevé analysis by Renner (Reduce, 1992)

e Painlevé test for simple systems by Hereman, Elmer
and Goktas (Macsyma, 1994-96, under development)



Conserved Densities, Lax Pairs &
Backlund Transformations

e Lax pairs by Ito (Reduce, 1985)
e Conserved densities by Ito & Kako (Reduce, 1985)

e Lax pairs & Backlund Transformations by Conte &
Musette (AMP, C++, 1991-1993)

e Conserved densities by Gerdt (Reduce, 1993)

e Conserved densities by Hereman, Verheest and Goktas
(Mathematica, 1993-1995)



Explicit Solitary Wave Solutions & Solitons

e Hirota operators by Ito (Reduce, 1988)

e Solitary wave solutions via truncated Laurent series
by Hereman (Macsyma, 1989)

e Solitary wave solutions based on exponential method
by Hereman (Macsyma, 1992)

e (Classification of bilinear operators by Hietarinta
(Reduce, 1989)

e Hirota’s method by Hereman & Zhuang
(Macsyma, 1990)

e Hirota’s method by Hereman & Zhuang
(Mathematica, 1995)

e Simplified version of Hirota’s method
by Hereman and Nuseir (Macsyma, 1995)



IV. PLANS FOR THE FUTURE

Extension of Symbolic Software Packages
(Macsyma/Mathematica)

e Lie symmetries of differential-difference equations

e Solver for systems of linear, homogeneous PDEs
(Hereman)

e Painlevé test for systems of PDEs
(Elmer, Goktag & Coffey)

e Solitons via Hirota’s method for bilinear equations (Zhuang)
e Simplification of Hirota’s method (Hereman & Nuseir)
e Conservation laws of PDEs with variable coefficients (Goktas)

e Lax pairs, special solutions, ...

New Software

e Wavelets (prototype/educational tool)
e Other methods for Differential Equations



