SYMBOLIC SOFTWARE FOR NONLINEAR PDEs: INTEGRABILITY, SYMMETRIES AND EXACT SOLUTIONS

Willy Hereman

Dept. of Mathematical and Computer Sciences Colorado School of Mines Golden, Colorado, USA

Nonlinear Dynamical Systems Workshop RIACA, Amsterdam, The Netherlands June 1995

II. FOUR SYMBOLIC PROGRAMS

Example 1 – Macsyma Lie-point Symmetries

ullet System of m differential equations of order k

$$\Delta^{i}(x, u^{(k)}) = 0, \quad i = 1, 2, ..., m$$

with p independent and q dependent variables

$$x = (x_1, x_2, ..., x_p) \in \mathbb{R}^p$$

 $u = (u^1, u^2, ..., u^q) \in \mathbb{R}^q$

• The group transformations have the form

$$\tilde{x} = \Lambda_{group}(x, u), \quad \tilde{u} = \Omega_{group}(x, u)$$

where the functions Λ_{group} and Ω_{group} are to be determined

ullet Look for the Lie algebra ${\cal L}$ realized by the vector field

$$\alpha = \sum_{i=1}^{p} \eta^{i}(x, u) \frac{\partial}{\partial x_{i}} + \sum_{l=1}^{q} \varphi_{l}(x, u) \frac{\partial}{\partial u^{l}}$$

Example 2 – Macsyma

Painlevé Integrability Test

Integrability of a PDE requires that the only **movable singularities** in its solution are **poles**

Definition: A simple equation or system has the *Painlevé Property* if its solution in the complex plane has no worse singularities than movable poles

Aim: Verify if the PDE satisfies the **necessary criteria** to have the *Painlevé Property*

The solution f expressed as a Laurent series,

$$f = g^{\alpha} \sum_{k=0}^{\infty} u_k g^k$$

should only have movable poles

Example 3 - Mathematica Conserved Densities

• Purpose

Compute polynomial-type conservation laws of single PDEs and systems of PDEs

Conservation law:

$$\rho_t + J_x = 0$$

both $\rho(u, u_x, u_{2x}, \dots, u_{nx})$ and $J(u, u_x, u_{2x}, \dots, u_{nx})$

Consequently

$$P = \int_{-\infty}^{+\infty} \rho dx = \text{constant}$$

provided J vanishes at infinity

Compare with constants of motions in classical mechanics

• Example

Consider the KdV equation

$$u_t + uu_x + u_{3x} = 0$$

Conserved densities:

$$\rho_{1} = u$$

$$\rho_{2} = u^{2}$$

$$\rho_{3} = u^{3} - 3u_{x}^{2}$$

$$\vdots$$

$$\rho_{6} = u^{6} - 60u^{3}u_{x}^{2} - 30u_{x}^{4} + 108u^{2}u_{2x}^{2}$$

$$+ \frac{720}{7}u_{2x}^{3} - \frac{648}{7}uu_{3x}^{2} + \frac{216}{7}u_{4x}^{2}$$

$$\vdots$$

Integrable equations have ∞ conservation laws

• Algorithm and Implementation

Consider the scaling (weights) of the KdV

$$u \sim \frac{\partial^2}{\partial x^2}, \qquad \frac{\partial}{\partial t} \sim \frac{\partial^3}{\partial x^3}$$

Compute building blocks of ρ_3

(i) Start with building block u^3

Divide by u and differentiate twice $(u^2)_{2x}$

Produces the list of terms

$$[u_x^2, uu_{2x}] \longrightarrow [u_x^2]$$

Second list: remove terms that are total derivative with respect to x or total derivative up to terms earlier in the list

Divide by u^2 and differentiate twice $(u)_{4x}$

Produces the list: $[u_{4x}] \longrightarrow []$

[] is the empty list

Gather the terms:

$$\rho_3 = u^3 + c[1]u_x^2$$

where the constant c_1 must be determined

(ii) Compute
$$\frac{\partial \rho_3}{\partial t} = 3u^2u_t + 2c_1u_xu_{xt}$$

Replace u_t by $-(uu_x + u_{xxx})$ and u_{xt} by $-(uu_x + u_{xxx})_x$

(iii) Integrate the result with respect to x

Carry out all integrations by parts

$$\frac{\partial \rho_3}{\partial t} = -\left[\frac{3}{4}u^4 + (c_1 - 3)uu_x^2 + 3u^2u_{xx} - c_1u_{xx}^2 + 2c_1u_xu_{xxx}\right]_x$$
$$-(c_1 + 3)u_x^3$$

The last non-integrable term must vanish Thus, $c_1 = -3$

Result:

$$\rho_3 = u^3 - 3u_x^2$$

(iv) Expression [...] yields

$$J_3 = \frac{3}{4}u^4 - 6uu_x^2 + 3u^2u_{xx} + 3u_{xx}^2 - 6u_xu_{xxx}$$

Computer building blocks of ρ_6

(i) Start with u^6

Divide by u and differentiate twice

 $(u^5)_{2x}$ produces the list of terms

$$[u^3u_x^2, u^4u_{2x}] \longrightarrow [u^3u_x^2]$$

Next, divide u^6 by u^2 , and compute $(u^4)_{4x}$

Corresponding list:

$$[u_x^4, uu_x^2u_{2x}, u^2u_{2x}^2, u^2u_xu_{3x}, u^3u_{4x}] \longrightarrow [u_x^4, u^2u_{2x}^2]$$

Proceed with
$$(\frac{u^6}{u^3})_{6x} = (u^3)_{6x}, (\frac{u^6}{u^4})_{8x} = (u^2)_{8x}$$

and
$$(\frac{u^6}{u^5})_{10x} = (u)_{10x}$$

Obtain the lists:

$$[u_{2x}^3, u_x u_{2x} u_{3x}, u u_{3x}^2, u_x^2 u_{4x}, u u_{2x} u_{4x}, u u_x u_{5x}, u^2 u_{6x}] \longrightarrow$$

$$[u_{2x}^3, uu_{3x}^2]$$

$$[u_{4x}^2, u_{3x}u_{5x}, u_{2x}u_{6x}, u_{x}u_{7x}, uu_{8x}] \longrightarrow [u_{4x}^2]$$

and
$$[u_{10x}] \longrightarrow []$$

Gather the terms:

$$\rho_6 = u^6 + c_1 u^3 u_x^2 + c_2 u_x^4 + c_3 u^2 u_{2x}^2 + c_4 u_{2x}^3 + c_5 u u_{3x}^2 + c_6 u_{4x}^2$$

where the constants c_i must be determined

(ii) Compute $\frac{\partial}{\partial t}\rho_6$

Replace $u_t, u_{xt}, \dots, u_{nx,t}$ by $-(uu_x + u_{xxx}), \dots$

(iii) Integrate the result with respect to x

Carry out all integrations by parts

Require that non-integrabe part vanishes

Set to zero all the coefficients of the independent combinations involving powers of u and its derivatives with respect to x

Solve the linear system for unknowns c_1, c_2, \ldots, c_6 Result:

$$\rho_6 = u^6 - 60u^3u_x^2 - 30u_x^4 + 108u^2u_{2x}^2 + \frac{720}{7}u_{2x}^3 - \frac{648}{7}uu_{3x}^2 + \frac{216}{7}u_{4x}^2$$

(iv) Flux J_6 can be computed by substituting the constants into the integrable part of ρ_6

• Further Examples

* Conservation laws of generalized Schamel equation

$$n^2 u_t + (n+1)(n+2)u^{\frac{2}{n}}u_x + u_{xxx} = 0$$

n positive integer

$$\rho_1 = u
\rho_2 = u^2
\rho_3 = \frac{1}{2}u_x^2 - \frac{n^2}{2}u^{2+\frac{2}{n}}$$

no further conservation laws

* Conserved densities of modified vector derivative nonlinear Schrödinger equation

$$\frac{\partial \mathbf{B}_{\perp}}{\partial t} + \frac{\partial}{\partial x} (B_{\perp}^2 \mathbf{B}_{\perp}) + \alpha \mathbf{B}_{\perp 0} \mathbf{B}_{\perp 0} \cdot \frac{\partial \mathbf{B}_{\perp}}{\partial x} + \mathbf{e}_x \times \frac{\partial^2 \mathbf{B}_{\perp}}{\partial x^2} = 0$$

Replace vector equation by

$$u_t + (u(u^2 + v^2) + \beta u - v_x)_x = 0$$

$$v_t + (v(u^2 + v^2) + u_x)_x = 0$$

u and v denote the components of \mathbf{B}_{\perp} parallel and perpendicular to $\mathbf{B}_{\perp 0}$ and $\beta = \alpha B_{\perp 0}^2$

The first 5 conserved densities are:

$$\rho_1 = u^2 + v^2$$

$$\rho_2 = \frac{1}{2}(u^2 + v^2)^2 - uv_x + u_xv + \beta u^2$$

$$\rho_3 = \frac{1}{4}(u^2 + v^2)^3 + \frac{1}{2}(u_x^2 + v_x^2) - u^3v_x + v^3u_x + \frac{\beta}{4}(u^4 - v^4)$$

$$\rho_4 = \frac{1}{4}(u^2 + v^2)^4 - \frac{2}{5}(u_x v_{xx} - u_{xx} v_x) + \frac{4}{5}(uu_x + vv_x)^2$$

$$+\frac{6}{5}(u^2+v^2)(u_x^2+v_x^2)-(u^2+v^2)^2(uv_x-u_xv)$$

$$+\frac{\beta}{5}(2u_x^2 - 4u^3v_x + 2u^6 + 3u^4v^2 - v^6) + \frac{\beta^2}{5}u^4$$

$$\rho_5 = \frac{7}{16}(u^2 + v^2)^5 + \frac{1}{2}(u_{xx}^2 + v_{xx}^2)
- \frac{5}{2}(u^2 + v^2)(u_xv_{xx} - u_{xx}v_x) + 5(u^2 + v^2)(uu_x + vv_x)^2
+ \frac{15}{4}(u^2 + v^2)^2(u_x^2 + v_x^2)^2 - \frac{35}{16}(u^2 + v^2)^3(uv_x - u_xv)
+ \frac{\beta}{8}(5u^8 + 10u^6v^2 - 10u^2v^6 - 5v^8 + 20u^2u_x^2)
- 12u^5v_x + 60uv^4v_x - 20v^2v_x^2)
+ \frac{\beta^2}{4}(u^6 + v^6)$$

Conserved Densities, Lax Pairs & Bäcklund Transformations

- Lax pairs by Ito (Reduce, 1985)
- Conserved densities by Ito & Kako (Reduce, 1985)
- Conserved densities in DELiA by Bocharov (Pascal, 1990)
- Lax pairs & Bäcklund transformations by Conte & Musette (AMP, C++, 1991-1993)
- Conserved densities by Gerdt (Reduce, 1993)
- Conserved densities by Roelofs and Sanders (Reduce, 1994)
- Conserved densities by Hereman, Verheest and Göktas (Mathematica, 1993-1995)

Example 4 – Macsyma/Mathematica Solitons – Hirota's Method

- Hirota's Direct Method allows to construct soliton solutions of
 - nonlinear evolution equations
 - wave equations
 - coupled systems
- Test conditions for existence of soliton solutions
- Examples:
 - Korteweg-de Vries equation (KdV)

$$u_t + 6uu_x + u_{3x} = 0$$

- Kadomtsev-Petviashvili equation (KP)

$$(u_t + 6uu_x + u_{3x})_x + 3u_{2y} = 0$$

- Sawada-Kotera equation (SK)

$$u_t + 45u^2u_x + 15u_xu_{2x} + 15uu_{3x} + u_{5x} = 0$$

Hirota's Method

Korteweg-de Vries equation

$$u_t + 6uu_x + u_{3x} = 0$$

Substitute

$$u(x,t) = 2\frac{\partial^2 \ln f(x,t)}{\partial x^2}$$

Integrate with respect to x

$$ff_{xt} - f_x f_t + f f_{4x} - 4f_x f_{3x} + 3f_{2x}^2 = 0$$

Bilinear form

$$B(f \cdot f) \stackrel{\text{def}}{=} (D_x D_t + D_x^4) (f \cdot f) = 0$$

Introduce the bilinear operator

$$D_x^m D_t^n(f \cdot g) = (\partial x - \partial x')^m (\partial t - \partial t')^n f(x, t) g(x', t')|_{x'=x, t'=t}$$

Use the expansion

$$f = 1 + \sum_{n=1}^{\infty} \epsilon^n f_n$$

Substitute f into the bilinear equation

Collect powers in ϵ (book keeping parameter)

$$O(\epsilon^{0}) : B(1\cdot1) = 0$$

$$O(\epsilon^{1}) : B(1\cdot f_{1} + f_{1}\cdot 1) = 0$$

$$O(\epsilon^{2}) : B(1\cdot f_{2} + f_{1}\cdot f_{1} + f_{2}\cdot 1) = 0$$

$$O(\epsilon^{3}) : B(1\cdot f_{3} + f_{1}\cdot f_{2} + f_{2}\cdot f_{1} + f_{3}\cdot 1) = 0$$

$$O(\epsilon^{4}) : B(1\cdot f_{4} + f_{1}\cdot f_{3} + f_{2}\cdot f_{2} + f_{3}\cdot f_{1} + f_{4}\cdot 1) = 0$$

$$O(\epsilon^{n}) : B(\sum_{j=0}^{n} f_{j}\cdot f_{n-j}) = 0 \quad \text{with } f_{0} = 1$$

Start with

$$f_1 = \sum_{i=1}^{N} \exp(\theta_i) = \sum_{i=1}^{N} \exp(k_i x - \omega_i t + \delta_i)$$

 k_i, ω_i and δ_i are constants Dispersion law

$$\omega_i = k_i^3$$
 $(i = 1, 2, ..., N)$

If the original PDE admits a N-soliton solution then the expansion will truncate at level n=N Consider the case N=3

Terms generated by $B(f_1, f_1)$ determine

$$f_2 = a_{12} \exp(\theta_1 + \theta_2) + a_{13} \exp(\theta_1 + \theta_3) + a_{23} \exp(\theta_2 + \theta_3)$$

$$= a_{12} \exp[(k_1 + k_2) x - (\omega_1 + \omega_2) t + (\delta_1 + \delta_2)]$$

$$+ a_{13} \exp[(k_1 + k_3) x - (\omega_1 + \omega_3) t + (\delta_1 + \delta_3)]$$

$$+ a_{23} \exp[(k_2 + k_3) x - (\omega_2 + \omega_3) t + (\delta_2 + \delta_3)]$$

Calculate the constants a_{12} , a_{13} and a_{23}

$$a_{ij} = \frac{(k_i - k_j)^2}{(k_i + k_j)^2}$$
 $i, j = 1, 2, 3$

Terms from $B(f_1 \cdot f_2 + f_2 \cdot f_1)$ determine

$$f_3 = b_{123} \exp(\theta_1 + \theta_2 + \theta_3)$$

= $b_{123} \exp[(k_1 + k_2 + k_3)x - (\omega_1 + \omega_2 + \omega_3)t + (\delta_1 + \delta_2 + \delta_3)]$

with

$$b_{123} = a_{12} a_{13} a_{23} = \frac{(k_1 - k_2)^2 (k_1 - k_3)^2 (k_2 - k_3)^2}{(k_1 + k_2)^2 (k_1 + k_3)^2 (k_2 + k_3)^2}$$

Subsequently, $f_i = 0$ for i > 3

Set $\epsilon = 1$

$$f = 1 + \exp \theta_1 + \exp \theta_2 + \exp \theta_3 + a_{12} \exp(\theta_1 + \theta_2) + a_{13} \exp(\theta_1 + \theta_3) + a_{23} \exp(\theta_2 + \theta_3) + b_{123} \exp(\theta_1 + \theta_2 + \theta_3)$$

Return to the original u(x,t)

$$u(x,t) = 2\frac{\partial^2 \ln f(x,t)}{\partial x^2}$$

Single soliton solution

$$f = 1 + e^{\theta}$$
, $\theta = kx - \omega t + \delta$

 k, ω and δ are constants and $\omega = k^3$

Substituting f into

$$u(x,t) = 2 \frac{\partial^2 \ln f(x,t)}{\partial x^2}$$
$$= 2(\frac{f_{xx}f - f_x^2}{f^2})$$

Take k = 2K

$$u = 2K^2 \operatorname{sech}^2 K(x - 4K^2t + \delta)$$

Two-soliton solution

$$f = 1 + e^{\theta_1} + e^{\theta_2} + a_{12}e^{\theta_1 + \theta_2}$$

$$\theta_i = k_i x - \omega_i t + \delta_i$$
with $\omega_i = k_i^3$, $(i = 1, 2)$ and $a_{12} = \frac{(k_1 - k_2)^2}{(k_1 + k_2)^2}$
Select
$$e^{\delta_i} = \frac{c_i^2}{k_i} e^{k_i x - \omega_i t + \Delta_i}$$

$$\tilde{f} = \frac{1}{4} f e^{-\frac{1}{2}(\tilde{\theta}_1 + \tilde{\theta}_2)}$$

$$\tilde{\theta}_i = k_i x - \omega_i t + \Delta_i$$

$$c_i^2 = \left(\frac{k_2 + k_1}{k_2 - k_1}\right) k_i$$

Return to u(x,t)

$$u(x,t) = \tilde{u}(x,t) = 2\frac{\partial^2 \ln \tilde{f}(x,t)}{\partial x^2}$$
$$= \left(\frac{k_2^2 - k_1^2}{2}\right) \left(\frac{k_2^2 \operatorname{cosech}^2 \frac{\tilde{\theta}_2}{2} + k_1^2 \operatorname{sech}^2 \frac{\tilde{\theta}_1}{2}}{(k_2 \operatorname{coth} \frac{\tilde{\theta}_2}{2} - k_1 \tanh \frac{\tilde{\theta}_1}{2})^2}\right)$$

III. PLANS FOR THE FUTURE

Extension of Symbolic Software Packages (Macsyma/Mathematica)

- Lie symmetries of differential-difference equations
- Solver for systems of linear, homogeneous PDEs (Hereman)
- Painlevé test for systems of PDEs (Elmer, Göktaş & Coffey)
- Solitons via Hirota's method for bilinear equations (Zhuang)
- Simplification of Hirota's method (Hereman & Nuseir)
- Conservation laws of PDEs with variable coefficients (Göktaş)
- Lax pairs, special solutions, ...

New Software

- Wavelets (prototype/educational tool)
- Other methods for Differential Equations