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Purpose & Motivation

e Develop and implement various methods to find exact (closed
form) solutions of nonlinear PDEs and DDEs: Lie symmetry meth-
ods, similarity methods, etc.

e Fully automate the tanh and sech methods to compute closed
form solitary wave solutions of nonlinear (systems) of partial differ-
ential equations (PDEs) and differential-difference equations (DDEs
or lattices).

e Class of nonlinear PDEs and DDEs solvable with the tanh/sech
method includes famous evolution and wave equations.

Typical examples: Korteweg-de Vries, Fisher and Boussinesq PDEs,
Toda and Volterra lattices (DDESs).

e Solutions of tanh or sech type model solitary waves in fluid dy-
namics, plasmas, electrical circuits, optical fibers, bio-genetics, etc.

e Benchmark solutions for numerical PDE solvers.

e Research aspect: Design a high-quality application package for
the computation of exact solitary wave solutions of large classes of
nonlinear evolution and wave equations.

e Educational aspect: Software as course ware for courses in non-
linear PDEs, theory of nonlinear waves, integrability, dynamical sys-
tems, and modeling with symbolic software. REU Projects.

e Users: scientists working on nonlinear wave phenomena in fluid
dynamics, nonlinear networks, elastic media, chemical kinetics, ma-
terial science, bio-sciences, plasma physics, and nonlinear optics.



Typical Examples of Single PDEs and Systems of PDEs

e The Korteweg-de Vries (KdV) equation:
u + auu, + ug, = 0.

Solitary wave solution:

8¢t — 2c}
u(x,t) = 661046102 — ;1 tanh? [c1x + cot + AJ,

or, equivalently,

et 2
u(x,t) = — 6610;162 + ;1 sech? [c1x + cat + A .

e The modified Korteweg-de Vries (mKdV) equation:
Uy + auQUx + ug, = 0.

Solitary wave solution:
6 3
u(x,t) = +,|— ¢1 sech [Clx —cit+ Al
o

e Three-dimensional modified Korteweg-de Vries equation:
(T 6u2ux + Ugy = 0.
Solitary wave solution:

u(z,y, z,t) = £/caczsech [c1x + coy + €372 — cieocst + A].



e The combined KdV-mKdV equation:
wy + 6o, + 68u Uy + Yus, = 0.

Real solitary wave solution:

Y
t)=—— R4 h
u(z,t) = 2 561 sech(cix +

Complex solutions:

u(x,t) = —— :I: Z\Fcl tanh(cix +

25(304 — 2Bych)t + A).

25(3(1 + 487yt + A),

u(x,t) = —— + 1@61 (seché + itanhf),

25
" u(z,t) = _o Te (seché F itanh§)
, 25~ 2\ F i tan

with £ = ciz + 5 (Sa + Bye)t + A.
e The Fisher equation:
Up — Upy — u (1 —u) =0.

Solitary wave solution:

1,1 1
u(z,t) = 1 + 2tanh§ + 4tanh2§,

with | .
= +—— :l:—t A,
§ 2\[33 +



e The generalized Kuramoto-Sivashinski equation:

U + Uy + Upy + OUZ, + Ugye = 0.
Solitary wave solutions
(ignoring symmetry u — —u,x — —x,0 — —0) :
For o =4 :
u(z,t) =9 — 2¢5 — 15tanhé (1 + tanhé — tanh®)

With§:%+62t+ﬁ.

For o = \}2—7 ;

u(z,t) = i ;%862 j:47% tanhg_zﬁ%ﬁzﬁ tanh%iﬂ% tanh’¢
Withfziz\}ﬁa:JchtnLA.

For o = 16//73

u(zx,t) = : <307;F;%962) 73% tanh& — — \/7 tanh2§:|:73$ﬁ tanh’¢

: _ 1
Wlthf—:lzz—maﬂrcthtﬁ.

For o =0 :

19 135 165 11
u(z,t) = —QJT Co — J» — —9 tanh’¢

with € = 1/ 2+ et + A



e The Boussinesq (wave) equation:
Ust — Uop + SUloy + SUy’ + iy, = 0,

or written as a first-order system (v auxiliary variable):

Ut +UI — 07
vy + Uy — 3uu, — aus, = 0.
Solitary wave solution:
2 2 1
ci — ¢; + 8ac
u(x,t) = 2 L — 4ac? tanh? [ex + cot + A,

3c?
v(x,t) = by + dacicytanh? [erx + cot + A].

e The Broer-Kaup system:

Uty + 2(Uty )y + 2055 — Ugyy = 0,
v + 2(uv)y + v = 0.

Solitary wave solution:

c
u(x,t) = —22’1 + ¢ tanh [c1x + coy + st + A],

v(x,t) = cics — c1co tanh? [c1X + coy + 3t + A].



e System of three nonlinearly coupled equations (Gao & Tian, 2001):

U — Uy — 20 =0,

vt + 2uw = 0,
wy + 2uv = 0.
Solutions:
u(x,t) = Zco tanhé,
1
v(a:,t) = :F262(61 — 02) SeCh2§7
1
w(m,t) = —262(61 - 02) sechzf,
and
u(z,t) = Zicy sechg,
1
v(x,t) = j:QiCQ(cl — ¢9) tanh¢ seché,
w(z,t) = 162((31 — C9) (1 — 2sech2§)
Y, 4 )
and also

1
u(z,t) = :i:2i02 (sech§ + itanh§) ,
1

vz, t) = i402(cl — ¢9) sech€ (seché + itanhf) ,
w(z,t) = —iCQ(Cl — ¢9) seché (sech€ + itanh§)

with & = cix + cot + A.



e Nonlinear sine-Gordon equation (light cone coordinates):

q)xt = sin ®.
Set u = &, v = cos(P) — 1,

Uy — U — UV = 0,
up +2v+v° = 0

Solitary wave solution (kink):

1 1
sech|

NENE

1
v = 1 — 2sech?|

w = + (x —ct) + Al

Iy

(x —ct) + Al

exp (

Upy = —u+u3 +auv2,

Vpe = bV + v’ + av(u® —1).

By

Solution:

P(x,t) = /u(x,t)dx = +4 arctan

(x—ct)+A)] .

-

e ODEs from quantum field theory:

Solitary wave solutions:

2

a’ — ¢
= +tanh A
U anh| 2(a—c)X+ ],
1 — 2 _
v =+ asech[ a Cx+A],
a—c 2(a — ¢)
CL2—C

provided b = )"



Typical Examples of DDEs (lattices)

e The Toda lattice:
Uy = (14 1) (Up—1 — 2Up + Upi1) -
Solitary wave solution:

u,(t) = ag £ sinh(cy) tanh [cyn £ sinh(cy) t + A

e The Volterra lattice:

un - un(vn - Un—1)7
Un = Up(Ups1 — Up).
Solitary wave solution:
un(t) = —co coth(cy) + cotanh [cin + cot + AJ,
v,(t) = —co coth(cy) — o tanh [en + cot + A] .

e The Relativistic Toda lattice:

U, = (14 auy) (v, — vy_1),

Un = Un(Unt1 — Up + QU1 — QUL_1).

Solitary wave solution:

1
un(t) = —cy coth(cy) — - + ¢ tanh [cin + ot + A,

th
ua(t) = 2 ) e [ein + cot + A
87 87
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Algorithm for Tanh Solutions for system of PDEs

Given: System of nonlinear PDESs of order n
A(u(x), u'(x), u"(x),---u"(x)) = 0.

Dependent variable u has M components u; (or u,v,w, ...).
Independent variable x has N components z; (or z,vy, 2, ..., t).

Step T1:
e Seck solution u(x) = U(T'), with

T = tanhf = tanh

N
ZCJXJ + A} .
J

e Observe tanh’¢é =1 — tanh?¢ or 7" = 1 — T?. Hence, all derivative
of T are polynomial in T'. For example, 7" = —2T'(1 — T?), etc.

e Repeatedly apply the operator rule
Oe  de OT
Or; dTOox;
Produces a nonlinear system of ODEs

A(T,U(T), U (T),U"(T),..., U™(T)) =

Note: Compare with the ultraspherical (linear) ODE:
(1 —29)y"(x) — 2a + Day'(z) + n(n + 2a)y(z) =0
with integer n > 0 and « real. Includes:

* Legendre equation (o = 3),
* ODE for Chebeyshev polynomials of type I (a = 0),

* ODE for Chebeyshev polynomials of type I (v = 1).

11



e Fixample: For the Boussinesq system

U + UV, = O,

vt + Uy — 3uu, — aug, = 0,
after cancelling common factors 1 — 772,

CQU/ + 01V/ = O,
CQV/ + ClU/ — 361UU/
+act [2(1 = 373U +6T(1 — THU" — (1 — T*)°U"| = 0.

Step T2:

e Seek polynomial solutions
M; .
UZ(T) = Z CLZ']‘TJ.
5=0

Determine the highest exponents M; > 1.
Substitute U;(T) = T*i into the LHS of ODE.
Gives polynomial P(T).

For every P; consider all possible balances of the highest exponents
in 1.

Solve the resulting linear system(s) for the unknowns M;.

e Example: Balance highest exponents for the Boussinesq system
My—1=M,—1, 2M;—1= M;+1.
So, My = My = 2.
Hence,

U(T) = a+anT + a1,
V(T) = a9 + CLQlT + CL22T2.

12



Step T3:

e Derive algebraic system for the unknown coefficients a;; by setting
to zero the coeflicients of the power terms in 7.

e Example: Algebraic system for Boussinesq case
a1 ¢1 (3ays + 2 c%) =0,
ar ¢ (arg + 4acl) = 0,
azi ¢+ ajpca =0,
a2 €1 + ajp o =0,
ai1 ¢ — dayg aip ¢ + 2aaqy C:i) + a9y cg = 0,

2
—3(111 C1 + 2 a19 C1 — 6&1() 12 C1 + 16y a2 C? + 2&22 Cy = 0.

Step T4.:
e Solve the nonlinear algebraic system with parameters.

e Example: Solution for Boussinesq system

ci — c3 + 8ac]

ay = ai; =0
SC% ) )
_ 2 _
ayy = —4dacy, agy = free,
as1 = 0, 99 — 4040162.

Step T'5:

e Return to the original variables. Test the final solution(s) of PDE.
Reject trivial solutions.

e Example: Solitary wave solution for Boussinesq system:

2 _ 2 4
c] — ¢ + 8ac
u(z,t) = ?ic% L — 4ac? tanh? [eix + ot + A

v(x,t) = ag + 4acicy tanh? [ex + cot + A

13



Algorithm for Sech Solutions for system of PDEs

Given: System of PDEs of order n
Alu(x), ' (x),u"(x),---u™(x)) = 0.

Dependent variable u has M components u; (or u, v, w, ...).

Independent variable x has N components z; (or z,¥, 2, ..., ).
Step S1:

e Seck solution u;(x) = U;(.5), with

S = seché = sech

N
ZCij + A] .
J

e Observe (sech &)’ = —tanh&sech or S' = —TS = —y/1 - 52 8.

e Repeatedly apply the operator rule

Oe  de 0S de
= — _ S — 257
oz, dSox,  TOVIT g

Leads to coupled system of nonlinear ODEs

T(S,U(S), U'(S),...) + V1 - S2II(S, U(S), U'(S),...) = 0.

All components of I and IT are polynomial ODEs.

First case: I' =0 or II = 0.
A(S,U(S),U'(S),...)=0.

A stands for either I' or I1.

Note: All terms in the given system of PDE must be of even or odd

order.

14



e Fxample: For the 3D mKdV equation
up + 6ulu, + Ugy> = 0,
after cancelling a common factor —V/1-2528 :
e U'+6c,U°U ¢ c903[(1—-65%)U'+35(1-25%) U"+S%(1-S*)U™] = 0.

Step S2:

e Seek polynomial solutions

S

UZ(S) = . CLZ']‘SJ.

7=0

Substitute U;(S) = S™i and balance the highest power terms in S
to determine M;.

e Eixample: Balance of exponents for the 3D mKdV case
3My —1=M; +1.
So, M7 = 1. Hence,
U(S) = ay+ a15.

Step S3:

e Derive algebraic system for the unknown coefficients a;; by setting
to zero the coeflicients of the power terms in .S.

e Eixample: Algebraic system for 3D mKdV case

2
a1 (CLH — 9 Cg) = 0,
2
a1y (6ajyc1 4+ c1eacs+¢q) =0,

2
ajpa 1 = 0.

15



Step S4:

e Solve the nonlinear algebraic system with parameters.

e Example: Solution for 3D mKdV case

app = 07
anp = £/ cs,
C4 = —C1CC3.

Step S5:

e Return to the original variables. Test the final solution(s). Reject
trivial solutions.

e Eixample: Solitary wave solution for the 3D mKdV equation

u(x,y, z,t) = £+/co c3sech(cy X + coy + 32 — c109c3 t).

Second case: I' # 0 and II # 0.
['(S,U(S),U'(S),...)+v1—S2II(S,U(S), U (S),...) =0.

Most general solution

Double series is not necessary! Solution can be rearranged as

UZ<S) = Z CL@jSJ + T Z bijS].
7=0 j=0

16



Algorithm for Mixed Tanh/Sech Solutions for PDEs

Step ST1:
e Seek solution in u;(x) = U;(.S), with

S = seché = sech

N
ZCij + A] .
J

Repeatedly apply the operator rule
Oe  de 0S de
= = —c;SV1—5—
ox;  dSow; ds

e Example: Coupled system due to Gao and Tian (2001)
U — Uy — 20 =0,
v + 2uw = 0,
wy + 2uv = 0,

transforms into

(Cl _CQ)S\/l_SQU/—QV:O,

coSV1 — S2V! — 2UW =0,
coSV1 — S2W — 2UV = 0.

Step ST2:

e Scek solution
M;

UA(S) = z 05" + V1 — z bisSY.

First, determine the leading exponents M;, N;. Substitute
Ui(S) = ajo + a;ip, 5™ + V1 — S2 (g + b v, S™)

17



to get
P(S)+v1-52Q(S)=0.
P and Q are polynomials.
Consider possible balances of the highest exponents in P; and Q);.

Get a linear system of 2M (or less) equations for the 2M unknown
Mi and Nz

No longer assume M; > 1, N; > 1 (some M; or N; may be zero).

Trouble. Strongly underdetermined problem. Set all M; = 2 and
N; = 1.

e Example: Quadratic solutions in .S and 7" only.

Substitute

U(S) = ap+ anS + a5 + V1 — 82 (b + b11.5),
V(S) = ag+ anS + anS? + V1 — 52 (byy + by S),
W(S) = asp + a1 S + CL3252 ++v1 - 52 (bg() + bng).

leads to
P(S)+v1—-52Q(S) =0,
P and Q are polynomials.
Step ST3:

e Derive the algebraic system for the coeflicients a;;, b;; by setting to
zero the coefficients of power terms in S in P = 0 and Q = 0
separately.

e Example: Algebraic system has 25 equations (not shown).

18



Step ST4:

e Solve the nonlinear algebraic system with parameters.

e Example: 11 solutions in total: 3 are trivial (U; = constant), 8 are
nontrivial.

Step ST5:

e Return to the original variables. Test the final solution(s). Reject
trivial (constant) solutions.

e Eixample: Solitary wave solutions:

u(z,t) = 4o tanhé,

1

v(z,t) = :F262(61 — Cg) sechzf,
1

w(z,t) = —262(01 — o) sechQE,

(could have been obtained with tanh-method), and
u(z,t) = Zicy sechg,

1
v(x,t) = j:QiCQ(cl — ¢9) tanh¢ seché,
1
w(z,t) = 402(01 — C9) (1 — 2sech2§) :
and also
1
u(x,t) = iQiCQ (seché + itanhf) ,
1
vz, t) = i4cz(cl — ¢9) sech& (seché + itanhf) ,
1
w(z,t) = —402(01 — ¢9) sech (sech€ 4 itanhf) .

plus the c.c. solutions.

In all solutions & = c1x + ot + A.

19



Algorithm for Tanh Solutions for system of DDEs

Given: System of nonlinear differential-difference equations (DDEs) of
order m

. m
A(...’ un_]_7 un, u”+17 ERR) un7 ceey u7(’L )) - O-

Dependent variable u,, has M components w;, (01 wy, Uy, Wy, ...)
Independent variable x has 2 components x; (or n,t).

No derivatives on shifted variables!

Step D1:

e Seck solution u,(t) = U, (T), with

T =T,(t) = tanh [cyn + cot + A] .

e Note: The argument of T depends on n.

e Repeatedly apply the operator rule

de de dT de
ot (1 -T?)
i arar )T

Produces a nonlinear system of type

A(Ta e 7Un—17Un7Un+17 e 7U%7UZ7 e 7U£Lm)) = 0.

e Fixample: Toda lattice
Uy = (1 + un) (un—l — 2u, + Un+1)
transforms into

(1=T7) 27U}, — (1= THU 14 eo(1 = T*)U| [Une1 — 2Un+ Uy 1] =0.

20



Step D2:
e Seek polynomial solutions
M; :
Uin(Th) = X ayT,.
j=0

Use
tanhx + tanhy

1 + tanhxtanhy

tanh(x +y) =

to deal with the shift:

M; - T, £ tanh(pc;) /
intp (T'(n£p))= ig L = i.j '
Uinsp (T(n % p)) jgo a;j [T'(n+ p)] ]EO Yij |1+ T,, tanh(pcy)

Substitute U; ,, = TT{WZ', and

Uintp (T'(n £ p)) = [T'(n + p)]Mi —

T, £ tanh(pcy) 1"
1 + T, tanh(pcy)

and balance the potential highest exponents in 7}, to determine M,;.

Note: U; 1, (T'(n £ p)) is homogeneous of degree zero in 7.
e Example: Balance of exponents for Toda lattice
2My — 1= M; + 1.
So, M; = 1.
Hence,

Un(T),) = aio + anT,,
T,, £ tanh(cy)

U, ot (T(n+ 1)) = T(n+1)= -
+1(T'(n£1)) = a+ anT(n+1) a10+a111iTntanh(Cl)

21



Step D3:

e Determine the algebraic system for the unknown coefficients a;; by
setting to zero the coefficients of the powers in T,.

e Example: Algebraic system for Toda lattice
c5 — tanh?(c;) — aqico tanh*(c;) = 0,

Co — a1 = 0.

Step D4:

e Solve the nonlinear algebraic system with parameters.
e Fixample: Solution of algebraic system for Toda lattice
ayg = free,

a;; = =Esinh(cy),
co = =+sinh(e).

Step D5:

e Return to the original variables. Test solution(s) of DDE. Reject
trivial ones.

e Eixample: Solitary wave solution for Toda lattice:

u,(t) = ag £ sinh(cy) tanh [cyn £ sinh(cy) t + A] .

22



Example: System of DDEs: Relativistic Toda lattice
U, = (14 auy)(v, — v,_1),
v, = Un(um—l — Up T QUpy] — Oﬂ}n—l)-

Change of variables

with
T,(t) = tanh[cin + cot + A].

gives

co(1 —=THU — (1 +aU,)(V,, — V1) =0,
co(1 =TV =V, (Ups1 — Uy + Vs — aV,_y) = 0.

Seek polynomial solutions
M1 . M2 .
Un(Tn) =) alega Vn(Tn) = > a2jTg-
5=0 5=0

Balance the highest exponents in 7;, to determine M, and Mo :
My+1=M + M, My+1=DM;+ M.

So, My = My = 1. Hence,
Up = ao+anl,, V,=ax+ anl,.

Algebraic system for a;;

—aq1 ¢y + agq tanh(cy) + avaygagy tanh(cy) =0,

ai1 tanh(cy) (avagy + co) =0,

—ag1 C2 + a1y azy tanh(cy) 4+ 2 agy agy tanh(cq) = 0,
tanh(c;) (aj; ag, + 2 a3, — ajq agy tanh(cy)) = 0,

as tanh2(cl) (CQ — an) = 0.

23



Solution of the algebraic system

1
ajg = —cocoth(ey) — —,
Q
ail; = Cg,
¢y coth(cq)
a0 = )
Q
€2
a1 = ——-
Q
Solitary wave solution in original variables:
1
un(t) = —co coth(ey) — — + cotanh [egn + cot + A]
o

th
vn(t) = ¢ coth(e) _ e tanh [cin + cot + A] .
o) o)

24



Solving /Analyzing Systems of Algebraic Systems with Parameters

Class of fifth-order evolution equations with parameters:
wy + ay?utu, 4+ Bryugus, + Yuus, + usy = 0.
Well-Known Special cases

Lax case: a = 1%, B =2,~v = 10. Two solutions:
u(z,t) = 4c* — 6¢* tanh? {clx — 56¢3t + A] :
and
_ 2 2 2 3 5
u(z,t) = ag — 2cy tanh {ClX — 2(15agc; — 40agc; + 28c))t + A} :

where ag is arbitrary.

Sawada-Kotera case: o = %, B =1,v=1>5. Two solutions:
u(z,t) = 8ci — 12¢f tanh? [Clx — 16c3t + A} :
and
u(z,t) = ag — 6¢f tanh? {clx — (Bazc; — 40agc; + 76¢7)t + A} :

where ag is arbitrary.

Kaup-Kupershmidt case: o =z, 3 = %, v = 10. Two solutions:

W =

u(z,t) = ¢ — ~cj tanh? [Clx — it + A}

DO

and
u(z,t) = 8c¢i — 12¢% tanh? [Clx — 176c3t + A] :

No free constants!

2
Q9

u(w,t) = 20c] — 30c] tanh® [c1x — 96c7t + A

[to case: a = %, 8 = 2,7 = 3. One solution:

25



What about the General case?
Q1: Can we retrieve the special solutions?

Q2: What are the condition(s) on the parameters «, (3, for solutions
of tanh-type to exist?

Tanh solutions:

u(x,t) = ag + ag tanh [c;x + cot + A] 4 ay tanh? lc1x + ot + A

Nonlinear algebraic system must be analyzed, solved (or reduced!):

ar(ay?a3 + 6yasct + 2Byasct + 24cy) = 0,
ar(ay?a? + 6ayapas + 6yagc; — 18yasc — 12Bvyasct — 120¢)) = 0,
ay?a3 + 12yasc: + 65vasc? + 360c] = 0,

ey aiay + 2aagas + 3yaick + Byaici + 12vagasc:
—8yaic: — 8B3yaict — 480asci = 0,

ar(ay?aiey — 2vagcs + 2Byasc; + 1667 + ¢3) = 0,

ay’agaic) + aylajasc; — yaic; — Bryaic; — Syapasc; + 26vasc
+136asc; + ascy = 0.

Unknowns: ag, a1, as.
Parameters: c1, o, a, 3, 7.

Solve and Reduce cannot be used on the whole system!

26



Strategy to Solve/Reduce Nonlinear Systems

Assumptions:
e All¢; #0

e Parameters (a, 3,7, ...) are nonzero. Otherwise the maximal expo-
nents M; may change.

e All M; > 1 in tanh- and sech-methods.

o All a; 57, # 0 in tanh- and sech-methods. Highest power terms in U;
must be present, except in mixed sech-tanh-method.

e Solve for a;j, then ¢;, then find conditions on parameters.

Strategy followed by hand:

e Solve all linear equations in a;; first (cost: branching). Start with
the ones without parameters. Capture constraints in the process.

e Solve linear equations in ¢; if they are free of a;;.
e Solve linear equations in parameters if they free of a4, ¢;.
e Solve quasi-linear equations for a;;, ¢;, parameters.
e Solve quadratic equations for a;;, ¢;, parameters.
e Fliminate cubic terms for a;j, ¢;, parameters, without solving.
e Show remaining equations, if any.
Alternatives:
e Use (adapted) Grébner Basis Techniques.

e Use combinatorics on coefficients a;; = 0 or a;; # 0.

27



Actual Solution: Two major cases:

CASE 1: a1 = 0, two subcases
Subcase 1-a:

3
a2 = —50,0,

cy = ¢(24c] — Byap),
where a is one of the two roots of the quadratic equation:

ay’al — 8yapci — 4B8vyage] + 160c; = 0.

Subcase 1-b: If § = 10a — 1, then

6 5
a/2 = — Cl7
ary
1
co = ——(a*yadc; — Sayapc + 12¢) + 16ac)),
o

where a is arbitrary.

CASE 2: a; # 0, then

1
— (394383 4 832
and
168
Ay = ——————C],
V(3 +28) "

provided [ is root of
(1043% + 8863 + 1487)(5208° + 21583* — 11033 — 8871) = 0.
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Subcase 2-a:If[?zzz——ii(886¢3+-1487),then

28+ 5
@ = — ’
26
49¢2(9983 + 43783)
ayg = — ’
0 267(8 + 36)(3 + 23)?
336¢2
g = T—————,
Y(3 4+ 20)
168¢3
ay = ——————,
v(3 4+ 20)
364 ¢2 (3851 + 163403)
Cy = — .
’ 6715 + 29463
Subcase 2-b: If 3% = (8871 + 11036 — 21583%), then
39 4 383 + 83
C‘f p—
392 ’
28 ¢ (6483 + 55294 + 106652)
a’ — )
YT (3+28)(23+608)(81 + 268)7
o 28224 ¢t (46 — 1)(264 — 17)
L (3 4+ 283)2(23 + 66)(81 + 263)~2’
168¢3
Ay = ———— >,
Y(3+ 25)

__8(%(1792261977—%116106388L3—%18890011452)

© = 050833473 + 632054969 + 10517678632
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Implementation Issues — Software Demo — Future Work
e Demonstration of Mathematica package for tanh/sech methods.

e Long term goal: Develop PDESolve for closed form solutions of
nonlinear PDEs and DDEs.

e Implement various methods: Lie symmetry methods, etc.
e Look at other types of explicit solutions involving

— hyperbolic functions sinh, cosh, tanh, ...

— complex exponentials combined with sech or tanh.

e Seck solutions u(x,t) = U(F(£)), for special functions F, where
F'(&) is polynomial or irrational expression in F.

Examples:
— If F' = tanh¢
F'(§) =1~ F*(¢)
Chain rule: e e
a—xj =¢;(1 — FZ)dF.
— If F = sech&
F'(§) = =F(§y1 = F*(§)
Chain rule: e e
a—xj = —¢;jF mdﬁ,
—If F'= cné

cn' € = —snédné,
F'(&) = —V1— F2V/1 — k2 4+ k2F2,
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Chain rule:

Oe de
— =—c;V1 = F’V1 - k2 + k2F?——.
835j Cj\/ \/ i dF’
The modulus (k) of the elliptic functions is added to the list of

C;.

e Add the constraining differential equations to the system of PDEs
directly.

e Why are tanh and sech solutions so prevalent?

e Other applications (of the nonlinear algebraic solver):

Computation of conservation laws, symmetries, first integrals, etc.
leading to linear parameterized systems for unknowns coefficients
(see InvariantsSymmetries by Goktag and Hereman).

e Preprint:
D. Baldwin, U. Goktag, W. Hereman, L. Hong, R. Martino, and J.
Miller, Symbolic computation of tanh and sech solutions of non-
linear partial differential and differential-difference equations,
Journal of Symbolic Computation (2001), to be submitted.
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