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Outline
Conservation Laws of PDEs in multi-dimensions
Example: shallow water wave equations (Dellar)
Algorithmic Methods for conservation laws
Computer Demonstration
Tools:

e Euler operators (testing exactness)

e Calculus-based formulas for homotopy operator
* symbolic integration by parts
* inversion of the total divergence operator

Application: shallow water wave equations

Conclusions: future work, software and
publications



Notations — Computations on the Jet Space
Independent variables x = (z, vy, z)

Dependent variables u = (v, u® ... w0 . . u)
In examples: u = (u,v,0,h,...)

ak ak—l—l

Partial derivatives wug, = 5%, Ukzly = 5,1 o etc.

Differential functions
Example: f = uvv, + 2?uv, + ugvee for u(z), v(z)

Total derivative (with respect to x)

M M®
Do = o+ Z Us1)s Z Ukt 1)a

8ukx 8@;%

MY is the order of f in u (with respect to z), etc.



Conservation Laws

Conservation law in (1 + 1) dimensions

Dip + D,J = 0| (on PDE)

conserved density p and flux J

Example: Korteweg-de Vries (KdV) equation

U + ugy + usy =0

Sample conservation law
Dy (u3 - 3ux2) —

3
D, (Zufl — 6uug’ + 3ulusy + 3usy’ — Gumu3x> =0



Key property: Dilation invariance

Example: KAV equation and its density-flux pairs
are invariant under the scaling symmetry

(z,t,u) — (=, E’AZUJ)’

A IS arbitrary parameter.



3
JB) — Zufl - 6uux2 — 3u2uzx - 3u2x2 — OUL U3

,0(6) — u% —60 u3ug;2 — 30 ux4 + 108 u2u2m2
720 5 648 5 216 5

| U2z~ — —— UU3L~ Ugy

7 7 7




Conservation law in (3 + 1) dimensions

Dip+V-J =Dyp+ DyJi + DyJs + D.Js = 0] (on PDE)

conserved density p and flux J = (J1, J2, J3)

Example: Shallow water wave (SWW) equations

[P. Dellar, Phys. Fluids 15 (2003) 292-297]

1
u: + (u-V)u+2Q xu+ V(0h) — EhVH =0
ht + V-(uh) = 0

where u(x,y,t),0(x,y,t) and h(x,y,t).



In compone

nts:

1
ut—l—uua;—l—vuy—ZQU—l—ith—l—Hhx:O

0 -

1
v + uvg + vy + 2 Qu + §h9y + 0hy, =0

- 40, -

ht + hug + why + hvy + vhy = 0

SWW equations are invariant under
(337 Y, t? u, v, ha 97 Q) —
ALz, Ay, A0 A0, A0 e, A%h, APPTT20, A0Q0))

where W(h) =a and W(Q2) =b (a,b€ Q).



First few densities-flux pairs of SWW system:

o) = p g — [
vh

0@ = po g — v
vh6
ho?

53 = pp2 3@ = [
vho?

u3h + uv?h + 2uh?6

p = (W2 +0v)h+h%20 JW =
v3h + u?vh + 2vh%0

p®) = 0.0 — u, 0 + 290
4Q0ul — 2uuy,0 + 2uv0 — ho0,
4000 4 2vv.:0 — 2vu,0 + h00,






Algorithmic Methods for Conservation Laws
Use Noether's Theorem (Lagrangian formulation).

Direct methods (Anderson, Bluman, Anco, Wolf,
etc.) based on solving ODEs (or PDES).

Strategy (linear algebra and variational calculus).

e Density is linear combination of scaling invariant
terms with undetermined coefficients.

e Use variational derivative (Euler operator) to
compute the undetermined coefficients.

e Use the homotopy operator to compute the flux
(invert D, or Div) (Deconinck and Nivala).

e \Work with linearly independent pieces in finite
dimensional spaces.



Review of Vector Calculus
The curl annihilates gradients!
T he divergence annihilates curls!
The Euler operator annihilates divergences!

Formula for Euler operator (variational derivative)

in 1D:
M) 5
d%) :Z(_Dm)k '
2 k=0 8u%2
9, 8, 8, 8,

—— D, : ID?U ,—Di ..
Ould) aug) 8u%3 aug)



ou) 8ug) aug)
0, o,

DD . . - — .
’ 8ué]y) Y (9ugy) 8u§2

+D?

o



Inverting D, and Div
Problem Statement

In 1D:

Example: For u(x) and v(x)
3

> s1n U —6vVv, COS U+2Uz U2, COS UFHBVL V2

f =3ugv? sin u—u

Find F:/f dr Thus, f= D,F.



Inverting D, and Div

Problem Statement
In 1D:

Example: For u(x) and v(x)

f= 3u$v2 sin u—ui SIN U—6VV, COS U+ 2U, U2, COS UFEVL V24

Find F = /f dr Thus, f= D,F.
Result (by hand):

F =4v° 4+ u? cosu — 3v° cosu



Inverting D, and Div

Problem Statement
In 1D:

Example: For u(x) and v(x)

f= Sumqﬂ Sin u—ui Sin u—0vVV,; COS U+ 2U, U9 COS UV, V2

Find F = /f de Thus, f= D,F.
Result (by hand):
F = 4v2 +u® cosu — 3v% cosu

Mathematica cannot compute this integral!






F = (uvy — ugvy, —uvg + Ugvy)



In 2D or 3D:

Example: For u(z,y) and v(z,y)
I = uzgVy — U2z:Vy — UyVgp + Uy Vs

Find F=Div'' f Thus, f = DivF.
Result (by hand):

~

F = (uvy — UgUy, —UUz + Ug¥y)

Mathematica cannot do this!



In 2D or 3D:

Example: For u(z,y) and v(z,y)
I = uzgVy — U2z:Vy — UyVgp + Uy Vs

Find F=Div'' f Thus, f = DivF.
Result (by hand):

~

F = (uvy — UgUy, —UUz + Ug¥y)

Mathematica cannot do this!
Can this be done without integration by parts?



In 2D or 3D:

Example: For u(z,y) and v(z,y)
I = uzgVy — U2z:Vy — UyVgp + Uy Vs

Find F=Div'' f Thus, f = DivF.
Result (by hand):

~

F = (uvy — UgUy, —UUz + Ug¥y)

Mathematica cannot do this!
Can this be done without integration by parts?

Can this be reduced to single integral in one variable?



In 2D or 3D:

Example: For u(z,y) and v(z,y)
I = uzgVy — U2z:Vy — UyVgp + Uy Vs

Find F=Div'' f Thus, f = DivF.
Result (by hand):

~

F = (uvy — UgUy, —UUz + Ug¥y)

Mathematica cannot do this!
Can this be done without integration by parts?

Can this be reduced to single integral in one variable?

Yes! With the Homotopy operator.



Integration by Parts with Homotopy Operator

Theorem (integration with homotopy operator):

e In 1D: If f is exact then

e In 2D: If f is a divergence then

- |
F=Div " f=(H u(x,y fv Hu(m,y)f)

e In 3D: If f is a divergence then

_Div-1f_ (@ )
F=Div"f=MH,,,»H o H xyz)f)

u(z,y,z)




Simplified Formula for Homotopy Operator

In 1D (with variable z):

1 N d\
Hu)f = Z([u(y)f)[)‘u] ~
0 =
with integrand
M
Iu(j>f — Z Dé (u(j) L:S(i'_)l(l)f)
i=0
M9 M(j)
_ Z Z (i) of
k=i+1 8ul(~cjx)

N dependent variables, (I, f)Au] means that in
I, f one replaces u(x) — A\u(x), ug(x) — Aug(x),...



In 2D (with variables x and y):

1 N
() B dA
Hu(a:,y)f_ 0 Z( (g)f)P‘u] \
j=1
with integrand
(z) z i ( (5) (1+zw,zy))
=S % (e oeot (el
1z=0 14=0
M9 My MY My (korthy—ia—iy =1y
'Izaz‘|"b kac_ia:_l
=D IDACOTETS SED'S vy
12 =0 14=0 ke=t:+1 ky=ty [
. . O
(=Dy)fe 7 (=) (j)f
8ukxxkyy

(y)
Analogous formulas for H ,fand I S



Application of Homotopy Operator in 1D

Example:

3

o sinu — 6vv; COS U + 2Uz Uz COS U + ULV

f = 3uyv’sinu — u

Compute
I.f = uﬁf - Uy of — uD, of
aum auQx aqu
= 3uv’sinu — uwu’ sinu + 2uZ cosu
Similarly,
I,f = vaf -V, of — vD, of
a’Ugg anw anCE

= —6v’cosu + 82}%



= 402 + uZ cosu — 3v° cosu



Computation of Conservation Laws for SWW

QuicC

k Recapitulation

Conservation law in (2 + 1) dimensions

Dip+V-J=Dip+ DyJi +DyJo = 0] (on PDE)

conserved density p and flux J = (Ji, J2)

Example: Shallow water wave (SWW) equations

1
ut—l—uug;—kvuy—ZQv—l—ih@x—l—@hx:O

0 -

1
v + uvg + vuy + 2 Qu + §h9y +0hy =0

- 10, -

-v0, =0

ht + hug + why + hvy + vhy = 0






Algorithm
Step 1: Construct the form of the density

The SWW equations are invariant under the
scaling symmetries

(z,y,t,u,v,0,h Q) — N1z, X\ y, A%t A, Av, A0, A, A*Q)
and
(z,y,t,u,v,0,h, Q) — (AN 1z, A y, A%, Au, v, A20, A\°h, A°QQ)
Construct a candidate density, for example,
p = c1€20 + couy 0 4 c3v,0 + caur 0 + c5v.0

which is scaling invariant under both symmetries.



Step 2: Determine the constants ¢

Compute £ = —D;p and remove time derivatives
dp dp dp dp dp
<8u$ o Ouy Uty + OV, ol Ovy iy T 59 06 )

= caf(uug + vuy — 2Qu + %hea: + 0hz )

+ co0(uug + vuy, — 2Qv + %hezc + Ohy )y

+ c50(uvy 4+ vuy + 2Qu + %hﬁy + 0hy )z

+ c30(uve + vuy + 2Qu + hoy + Ohy),

. (clﬂ 1+ Co2Uy + C3Vy + CAUL + CSU:I:)(UH:B T vﬁy)

Require that

(0, O) (0,0) (0,0) (0, O) L
Luleyl = Lo P = Loyl = Lreyt =0



Solution: ¢t =2, co=—-1, cs=c4 =0, cg =1 gives

p = 200 — u,0 + v,.0

Step 3: Compute the flux J

E = 0(ugvgy + uveg + U0y + vy + 2Quy,
——%Hmhy — Ugly — Ulgy — UyUy — UyV
+2Qv, — %Hyhx)

+2Qub; + 2Qv0, — uuy,0;

—uyvly, + uv0; + vu,0,

Apply the 2D homotopy operator:

J=(J1, J2) = Div ' E = (H(w() ) HEly()a:,y) )



Uu

I E =y -u

Compute

oOF oOF oF 1 OF 1
O, Ou, Ouzz 2 “Ougy 2

1
= uvg0 + 2Qul + §u29y — ULy 0

Similarly, compute

IWE

1
VU, 0 + 51)299 + uv,0
. 1
Ie( )E — gezhy + 2Qul — uuy0 4+ uv, 0

. 1
IE = 5 00,h




1 1 1
+-0%0y + S0%hy — 5eeyh>)d,\

2 1 1
= 2Qub0— guuye—l— UV 04 gvvye—l— guZHy

1 1 1
4—6v29y — 8heeer Ehﬁ?



Analogously,

J2 H(y)

U(w,y)

2 1 1 1
= 2000 + —vv,0 — vuy 0 — —uu 0 — “ul0, — —v%0,
3 3 6 6

1 1
+-h00, — —h,.0°
6 6
Hence,

1 12Qub — duuy, 0 +6uv,0+ 2vv,0 +u?0, +v*0, — h00,+ h,H°
6\ 12000+ 4vv,0 — 6vuy 0 — 2uu0 — u0, — 120, +hO6, — h,0?






Conclusions and Future Work

Usefulness of the homotopy operator: Integration
by parts, D-!. and Div !

To do: integration of non-exact expressions.
Example: f = uyv + uvg + uugy

[ fdx = uwv + quuzx dzx.

To do: integration of parametrized differential
functions.

Example: f = auzv + buv,

[ fdz = uv if a =b.

To do: various PDEs (other than those of
evolution type).

To do: full implementation in Mathematica.



Software packages in Mathematica

Codes are available via the Internet:
URL: http://www.mines.edu/fs_home/whereman /
and via anonymous FTP from mines.edu in directory:

pub/papers/math_cs_dept /software/
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