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Global Positioning System (GPS)



BeelLine
GPS Tracker

You have to admire any company that
is comfortable with calling itself “Big-
RedBee.” Not BeeTrex. Not BeeCom. Just
BigRedBee.

This is a small business with a small,
clever product: the BeeLine GPS Tracker.
The BeeLine is a tiny (1% x 3 inch) module
that contains a GPS receiver and GPS patch
antenna, a Lithium-Poly battery and a 70-cm
FM transmitter. The whole package weighs
about 2 ounces.

The BeeLine is designed to be a go-any-
where APRS tracker. In case you’re unfamiliar
with the term, APRS stands for the Automatic
Position Reporting System. An APRS tracker
takes position information supplied by a
Global Positioning System (GPS) receiver,
reformats it as packet radio data, converts
the data to a modulated audio
signal and passes the signal to
a transmitter (typically a VHF
FM radio). At the receiving end,
a packet radio Terminal Node
Controller (TNC) decodes the
transmission and feeds the in-
formation to a computer running
APRS software. The result is a
computer-generated map that dis-
plays the location of the tracker
(and the object being tracked).

Unlike some bulky APRS
tracking setups comprised of
separate GPS receivers, TNCs
and radios, the BeeLine integrates
everything, including the battery,

SHORT TAKES

specialized applications where you’re not
concerned with making the position informa-
tion available to the traditional APRS network,
this probably isn’t an issue.

The BeeLine Package

For this review I purchased the complete
BeeLine GPS package, which includes a bat-
tery charger, serial adapter (to communicate
with your computer) and a 70-cm antenna.

The battery charger is an imported device
originally intended to charge cell phone bat-
teries. The BigRedBee Web site suggests
modifying the charger to make it easier to
interconnect with the BeeLine module. That’s
the approach I took, modifying the charger by
adding a cable with a small three-terminal con-
nector (DigiKey part number WM4201-ND)

so that I could easily plug in the BeeLine for
recharging.

The serial adapter is something you’ll use
only occasionally to program the BeeLine
with your call sign and other parameters.
The BeeLine Communicator software for
Windows is downloadable from the BigRed-
Bee Web site. You simply plug the BeeLine
into the serial adapter, plug the serial adapter
into a convenient COM port on your com-
puter and then read and write your settings
to the BeeLine. It is interesting to note that
you can also set the transmit frequency and
output power in this fashion. The BeeLine
will transmit anywhere in the 70-cm band. T
set my unit on 433.920 MHz with full output
power (about 16 mW).

The antenna s a quarter wavelength flex-
ible wire terminated in an SMA connector.

Kitty Tracker!

My first impulse was to launch the Bee-
Line in amodel rocket, but the odds of it find-
ing anew home in a treetop placed that notion
well outside my comfort zone. So, I grabbed
the nearest moving object at hand—my cat.
T attached the BeeLine to her harness and
turned her loose for a neighborhood patrol. T
set the BeeLine to transmit a position beacon
once every 60 seconds.

The BeeLine’s GPS receiver quickly ac-
quired enough satellite signals to determine
her position and apparently maintained GPS
lock throughout most of her journey. Back at
home, I had no difficulty receiv-
ing the BeeLine’s reports. You
can see the result in Figure 1.

Serious Applications

The minimal size and weight
of the BeeLine makes it ideal
for a variety of tracking appli-
cations such as model rockets,
high-altitude Amateur Radio bal-
loons, radio-controlled airplanes,
search and rescue, etc. The
BeeLine also features onboard
memory that will record about 10
minutes worth of position data.
This is particularly useful for

model rocket and R/C airplane

into a single compact unit. The
only downside is that the BeeLine
operates on 70 cm, whereas most
APRS activity takes place on
2 meters (144.39 MHz). For

Figure 1—Herding cats may be impossible, but tracking one with
a BeeLine GPS certainly works! These position reports were
received on 433.920 MHz using a Kenwood TS-2000 transceiver
(with its built-in packet radio TNC) and displayed with UI-View
APRS software.

activity.

Manufacturer: BigRedBee,
5752 Bay Point Dr; Lake Oswe-
g0, OR 97035; www.bigredbee.
com. $299 O5%]
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How did we get into this?
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Accidents Happen




Bulldozer with Beacons

Figure 1.1 Illustration of the Positioning System



Applications of our Algorithim
“Thunder Basin Coal Mine” — locating bulldozers
Surveying without triangulation (Mining)
Mobile computing — sensor networks
Geosensing networks (SmartGeo)
Precision manufacturing

Positioning systems for medical applications
(Electrical Engineering)

“Ignite’” program — blasting rockets



By Neesha Hosein

nce is not such an out-of-this-world
concept for some high tudents,
thanks to the SystemsGo Aeroscience Program.
ermsGo is a product of gnite, a nonprofit organization

Brett Wiliams, an instructor at Fred burg High School
in Fredericksburg, Texas, is the founder and director of
SystemsGo, whic around tedching students to

“It is a progressive, innovative public education program,
developed to promote prc i learning (and) problem-
solving. Its intent i
field of engineering,” Williams said.

The program is supported by NASA
junio

f remotely operated and unmanned
for research or industrial applications.
r Is when students design and fabricate
, reaching elevations of 80,000 to

100,000 feet.
ide from NASA, Sy, fied by The Space
, Johnson Space Ce Army, as well as

with NASA Shuttle S
also with some local school of
the program.

With Governor Perry's approval of funding, William's said
the program could extend beyond Texas to Tennessee, Indiana,
lowa, Maryland, Virginia and New York

Michelle Woods, program coordinator, said that SystemsGo
promotes teamwork.

"It is remarkable to see the kids divide ir
delegate responsibilities, while at the same i
together,” Woods said.

lgnite President Carson Dickie said that “after two years of
outreach, Ignite has established SystemsGo at 26 high schools
across Texas."

“We presently have five schools in Houston,” Williams said.
Williams hopes the program, in partnership with NASA,
will continue to grow to other areas and draw more schools
to participate.
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Problem Statement and Setup

® Bg(xg) ys) 28)
%Bl(xl’ y]’ ZI)

Figure 1.2 Illustration of Mathematical Symbols



Notations
0 = (x,y, z) : spatial coordinates of target point 6.

B; = (z;,y;, z;) : exact location of beacon B;.
1=1,2,...,n with n > 4.

di(0) = \/(x — 3;)%2 + (y — v:)2 + (z — 2;)2 : true distance
between beacon B; and target 6.

(zr,yr, zr) : €Xact coordinates of a reference point.

d;y = \/(azz —xr)? 4+ (yi —yr)? + (z; — 2r)? : true distance
between reference point and beacon B,;.

dr(0) = \/(z —x)2+ (y — yr)2 + (z — 2,)? : true distance
between the reference point and the target 6.



Derivation of an Exact Linear Model

Apply a simple trick (the cosine rulel!)

di(0)? = (& — )+ (y — vi)? + (2 — 2)’
= (x—xrF+xr — )+ (y— yr +yr — yi)°
+(z —2r + 2 — ,zz)2
= (z—x)°+2(xr —x)(z — z7) + (zr — 25)°
+(y = yr)” +2(yr — y) (Y — yr) + (yr — vi)°
+(z — 2,)° +2(2r — z:)(z — 2) + (20 — 2)*




Keep the double product terms on the left hand side.
2 (@i — @) (@ = 20) + (5 — )y — 90) + (20— 2) (2 — =)
= (z—z) '+ (@Y —y) + (2 —2)°

+(zr — @) + (e — w)° + (2 — 21)° — di(6)°
= d,(0)% + din? — d;(0)”

where 1 =1,2,...,n with n > 4.



Use any beacon (say, Bi) as reference point.
Replace exact distances by measured distances.
(T2 — z1)(T —71) + (Y2 — y1)(¥y — v1) + (22 — 21)(2 — 1)

1
~ 5 [r12 —ro? + d%l] = bo1

(x3 —z1)(x — 1) + (y3 —y1)(¥ — 1) + (23 — 21)(2 — 21)

1
~ 5 [7"12 —r3? + d%ﬂ = b31

Linear system of (n — 1) equations in 3 unknowns.



Write the linear system in matrix form:

with

Linear Least Squares (LSQ) Model

/5172_5131 Y2—Yi 22—2’1\

L3—IL1 Y3 —Yl1 <3<l

\Zn—T1 Yn—Y1 Zn—21)

Ax~Db

(-1 )

Yy—u1

Sy

/521\

oy



Minimizing the sum of the squares of the residuals
S=(b—Ax) (b — Ax)
requires solving the normal equation
ATAx=A'"p

Solution method depends on the condition number of
ATA.

If ATA is non-singular and well-conditioned then

x=(ATA)'A'D




If ATA is nearly-singular (poorly conditioned):

* Compute | A = QR

Q) is orthonormal matrix,

R is upper-triangular matrix.

x Solve | Rx = Qb

by back substitution when A is full rank.

() (a1 )

he target 0 isthen @ = | y | =x+ | »n1

\*/ \*1 )




Nonlinear Least Squares (NLSQ) Model

Minimize the sum of the squares of the errors on the
distances:

F(Q) fo, Zfzmya

where

filz,y,2) = fi(0) :=di(0) — 7
— \/(5'j — xi)Q + (y — yi)2 4=z — Zi)Q — 7.

Recall: r; are the measured distances between the
target 0 = (x,y,2) and beacon B; = (z;,yi, 2i), and n is

the number of beacons.



Differentiating F' with respect to x vyields

8F(9)_ - .8fi(9)_ - .8di(9)
ox —2;fz Ox —2;fz or

The formulae for 81;—50) and ag_g) are similar.
Let
(aF(e)\
ox
(fl(e)\
v,
wo)— | "] v - | oo
\ fu(0) / OF(6)




0dn(0) 0dn(0) 0Odn(0)
oz Oy 0z )



J(0)'£(0) =

2

D

=
y—yi)Jfi(0)

d; (0)

(2—
zi) fi(0)

d; (0)

/



Newton-Raphson Method — Iterative Solver

Problem: Solve the scalar problem | f(x) =0

Solution: Newton’'s method:

Lk4+1 — Lk —

Problem: Solve the vector problem: | f(x) =0

simplest case: n equations, n unknowns.

Solution: Newton's method:

Xpy1 = Xg — [J(xp)] 7 (x8)




Apply Newton's method to g(8) = J(0) ' £(6) = 0.
Solution:

Okr1y = Oy — [J(Q{k})TJ(Q{k})]_1-](9{k})Tf(9{k})

where 0, denotes the kth estimate of the target.

A reasonably accurate initial guess, 9{1}, could be
computed with the LSQ method.

Starting with 6y, iterate until the change
|0¢rr1y — Ogy || 1s sufficiently small.



zyzl(x—wi)(z—zi) n (y—vyi)(2—2;) )2
\ LoF il 07 Zz’ﬂ% )



Mathematica Demonstration 1

Computation of Target using the NLSQ Method

Mathematica’s NMinimize Function



Mathematica Demonstration 2

Computation of Target using the NLSQ Method

Newton Iteration



Computation of Target using the LSQ Method



Simulation — Results of Experiments
Beacon coordinates (8 beacons were used)

X Y Z
920 3977.5 —77.125
7360 2577.5 —53.125
3090 —3892.5 83.875
3910 —4512.5 27.875
—2710 —3742.5 4.875
—5420 —1082.5 59.875
—6740 1657.5 —42.125
—5410 5017.5 —0.125










Requirement: determine target within 2 feet
(distances measured within & foot).

One thousand target points on a rectangular grid.
Top of box is 5 feet below lowest beacon.

For each target point, 10,000 data sets were
generated.

Each data set consisted of one measurement from
each beacon.

Each measurement was obtained by adding to the
true distance a random error distributed uniformly
on (—0.5, 0.5).



Methods were implemented in Macsyma and C++4

Horizontal coordinates were accurate
(98% of test points).

Vertical coordinate (height) was imprecise
(off by several feet for 5% of test points).

Trouble with hardware (AccuTrack, Canada).



Conclusions
Exact linearization for nonlinear problem.
LSQ method is reliable even with small samples.
NLSQ method gives best performance.
Methods are easy to implement.

Good alternative for applications where GPS
cannot be used.

Publications are on the Internet:
URL: http://inside.mines.edu/~whereman/
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