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Purpose

e Design symbolic code (in Mathematica) to automate the computa-
tion of conservation laws (symmetries, recursion operators) of
nonlinear systems of PDEs and DDEs.

e Systems of PDEs in (1+1) and (34 1) dimensions with polynomial
as well as transcendental nonlinearities.

e Systems involving arbitrary parameters (classification problems).

e Eixtend the algorithms to differential-difference equations (DDEs,
semi-discrete lattices), continuous in time and one discretized space
variable.



Motivation

e Conservation laws describe the conservation of fundamental physical
quantities (linear momentum, energy, etc.).

Compare with constants of motion (linear momentum, energy) in
mechanics.

e Conservation laws provide a method to study quantitative and qual-
itative properties of equations and their solutions,
e.g. Hamiltonian structures.

e Conserved densities can be used to test numerical integrators.

e For PDEs and DDEs; the existence of a sufficiently large (in principal
infinite) number of conservation laws or symmetries assures complete
integrability.

e Conserved densities and symmetries aid in finding the recursion oper-
ator (which guarantees the existence of infinitely many symmetries).



Definitions:
e Conservation law in (1 + 1) dimensions
Dip+D,J =0 (on PDE)
conserved density p and flux J.

e Conservation law in (3 + 1) dimensions
Dip+V-J=Diyp+D,JV+D,J? +D.J® =0  (on PDE)
conserved density p and flux J = (JM, J@) JG)),

Typical examples:

e Korteweg-de Vries (KdV) equation
Up + Uty + ug; = 0

First few conservation laws:

U2

Py = U Dy(u) + Dx(? + ug,) = 0.
2 2 u’ 2
Py = U, Dy(u®) + Dx(? + 2uto, — uy”) = 0.

pi) = u’—3u,’,
3
D; (u3—3ux2> +D, (1u4—6uux2+3u2u%+3u2x2—6uxu3x> =0.

pe = u’—60u’u,” — 30u," + 108u’us,”

LTy 648, 206
——U9,” — —UU3, —— Uy
7 2 7 3 7 4



e Sine-Gordon equation
U = U

U = Uy + asin(u)
First few density-flux pairs:

pay = 2ccos(u) + V% 4 Uy, Jay = —2u,v
P2 = 2u,0, Jig) = 2 cos(u) — v° — u,”
pi) = 12cos(u)vu, + 203U, + 20u,° — 160,19,
pray = 2cos(u) — 2sin®(u) + v + 6v7u,” + u,” + 4 cos(u)v’
+ 20 cos(u)u,® — 16v,” — 16ug,>
J(3) and Ji4) are not shown (too long).

e A class of fifth-order evolution equations
wr + oy + Pugliog + Yuus, + Usy = 0

where o, (3, are nonzero parameters.

Special cases:

= 30 B =20 v =10 Lax Equation

=5 B=5 v = Sawada — Kotera Equation

= 20 6 =25 v =10 Kaup — Kupershmidt Equation
= 2 6=506 v =3 [to Equation

e o L 2

Conditions for a, 3 and ~ so that conserved densities exist?



e Shallow water wave equations with an inhomogeneous layer (Dellar)

1
W+ (wViu+2Q xu+ V(0Oh) — §hV9 =0

hi+ V-(uh) =0

0 +u-(VO) =0
Q is constant. In components, V = (Z, a%, 0), u=(u,v,0),
Q=(0,0,9):

1
ut+uux+vuy—2ﬂv+§h9x+6hx=O

1
vt+uvx+vvy+2§2u+§h9y+9hy:O
h + hu, + uh, + hv, + vh, =0
@t+u€x+v€y20

First few conserved densities and fluxes:

uh uht
p(l) = h, J(l) = | vh , p(g) = h@, J(g) = | vhb
0 0
uh?
p(g) = h92, J(g) = Uh@z
0
wh + uv?h + 2uh?0
piy = (U +v°)h+ h*0, Juy = | v*h+ w’vh + 20h*0
0

Py = vt — w0 + 200

12Qub — 4uu,0 + 6uv,0 + 2vv,0 + u29y + v29y — hoo, + hy92
J 5= c 12Qv0 + 4vv,0 — 6vu,0 — 2uu,l — u?0, — v*0, + ho0, — h,6”
0



Definition:

Conservation law for DDE:

D;pn+AJ,=Dip,+ Jyy1—J, =0 on DDE

conserved density p, and associated flux .J,.

Typical Examples:

e Kac-van Moerbeke (Volterra) lattice

Uy = un<un+1 - un—l)

1 1
Pgl ) = Up, Pgl ) = _un + UpUn+1
3 1,, 3
Py(l ) = 3Unp + unun+1(un + Upy1 + un—|—2)
4 ) 1, 4 3 3, 2 2 2
p7(1) — Zun + Uy, Unp+1 + Qun Unp+1 + UpUp+1 (un—l—l + un+2)

+unun+1un+2(un + Un+1 + Un4-2 + un+3)
e Combined KdV-mKdV lattice (Taha & Herbst)

w, = —(1+ ah®u, + Bh*u?) { hlg (1un+2 Up1 + Up—1 — %Un_z)

af,,2 2
+ ﬁ[un—i-l — Uy + un(un+1 - un—l) T Up1Up+2 — un—lun—Q]

discretizes the combined KdV-mKdV equation

wy + 6aut, + 68Uty 4 Uppy = 0

(1)

Py = Quy + Bunti, g
2 2
2) _ © 2y o 2 2
Pn’ = %un 5 — UpUp+1 — UpUpt1 + QUR Upt1 T QURUR+1

1
2 2
+ iﬁun Up41” + UpUpy2 + QURUp 41U 12 + BUpUps1 Uy 2.



e Toda lattice

un = Up—1 — Up
?.)n — Un(“n - un—i—l)

First few conserved densities (fluxes not shown):

o = un, i) = Jun® + vy

pff’) = %un?’ + U (Vp—1 + Uy)

A = duyt w2 (vt 4 0n) + Ul 10n + 20,7 4 VU
Pff) = %%5 + Uy (Un—1 + Un) + Un U 10 (U + Ups1)

+UpUp—1(Vp—2 + U1 + Un) + UpUp(Vn—1 + Uy + Vpi1).
e Ablowitz-Ladik lattice
Py = U1 — 2Up + Up_1 + KU Uy (Upr1 + Up_1),
discretizes the nonlinear Schrodinger equation

iy + Upy + KUPU =0

uy is the complex conjugate of u,. Treat uw, and v, = u as inde-
pendent variables and add the complex conjugate equation.

Set k = 1 (scaling), absorb 7 in scale on ¢, introduce auxiliary para-
meter a (with weight):

un — O‘(“n+1 - Qun + un—l) + unvn(un—i—l + un—l);

@n — _&(Un+1 - 2vn + Un—l) - unvn(vn—i—l + Un—l)-



First few conserved densities (o = 1, in original variables):

Pg) = Uply,_

(2) _ *
Pp’ = Unlpiq

3 1, 2 %2 * *
pgz ) = QUpUpy_1 + UpUp 41Uy Un + Uplly,_o

(4 _ 1,2, %2 * * *
Pr, = SUuUpoq T+ Uplp g1 Uy Uy o+ UpUy o

) 1,3, %3 * * * * *
pl) = SUp Uy |+ Up U 10Uy, Uy (Up Uy g+ Up 18Uy, + Up oWy, )
* * * * * * *
+ UnUy_q (unun—Q +un+1un—1) +unun<un+1un—2 +un+2un—1> + UnUy_3
6) _ 1,3, %3 * * * * *
Pn’ = 3unun+1+unun+1un+1un+2<unun+l+un+1un+2+un+2un+3>

* S * S * S *
Uy g (Un Uiy 4 1 Un 18y, 4 9) F Uy, 3(Uns1 Uy gy Un2lly, o) +Unlly, 3

Density missed:
P(O) = In(1 + uyuy,).

n

We cannot find the Hamiltonian (constant of motion):

H = —i 3 [u)(up—1 + tng1) — 2In(1 + upuy)],



Key Observations

Conserved densities, generalized symmetries, and recursion operators are
invariant under the dilation symmetry of the given PDE or DDE.

Overall Strategy
Exploit dilation symmetry as much as possible.
Keep the computations as simple as possible.

Use linear algebra
* solve linear systems
* construct basis vectors (building blocks)
* use linear independence
* work in finite dimensional spaces

Use calculus and differential equations
* derivatives
* integrals (as little as possible)
* solve systems of linear ODEs

Use tools from variational calculus
* variational derivative (Euler operator)

* Fréchet derivative
* Homotopy operator

Use analogy between continuous and semi-discrete cases

10



OUTLINE

Part I: Continuous Case
Integration by Parts on the Jet Space (by hand) + Mathematica Experiment
Exactness or Integrability Criterion: Continuous Euler Operator
Continuous Homotopy Operator
Application of Continuous Homotopy Operator
Demo of Mathematica software

Part II: Discrete Case

Inverting the Total Difference Operator (by hand)
Exactness or ‘Total Difference’ Criterion: Discrete Euler Operator
Discrete Homotopy Operator
Application of Discrete Homotopy Operator
Demo of Mathematica Software

Conclusions and Ongoing Research

11



Problem Statement
For continuous case:
Given, for example,
f =34 v?sin(u) — u” sin(u) — 6v v’ cos(u) +2u u” cos(u) + 8v'v"
Find F'so that f = D,F or F:/f dx.
Result:

F = 40" +u* cos(u) — 3v* cos(u)

Can this be done without integration by parts?

Can the problem be reduced to a single integral in one variable?

For discrete case:

Given, for example,

2 2
Jn = —UpUpi1Vp — Uy + Upg1 Unt2 Vgl + Uy g+ Ung3 Unga — Upyl Up
Find F, so that f,, = AF, = F,;1 — F, or F, = A"'f,.

Result:
2
Fn = Uy, + Up Upt1 Uy + Upt1 Up T+ Upt2 Uptl-

How can this be done algorithmically?

Can this be done in the same way as the continuous case?

12



Part I: Continuous Case

Integration by Parts on the Jet Space
e Given f involving u(x) and v(x) and their derivatives
/i IS/

f=3uv? sin(u) —u” sin(u) —6v v cos(u)+2u v cos(u)+8v'v

e I'ind I so that f = D, F or F:/fda:.
Integrate by parts (compute F' by hand)

f F
8v'v” — 40
2u/u” cos(u) —  u cos(u)
—u/3 sin(u)
—6vv cos(u) —  —30v? cos(u)

3’ v? sin(u)

e Integral:
F =40 4+ u* cos(u) — 3v* cos(u)

Remark: For simplicity we denote f(u,u’,u”,---,u™) as f(u).

13



e Exactness Criterion:

Continuous Euler Operator (variational derivative)

Definition (exactness):

A function f(u) is exact, i.e. can be integrated fully, if there exists
a function F'(u), such that f(u) = D, F'(u) or equivalently

F(u)=D;'f(u) = [ f(u)dz

D, is the (total) derivative with respect to x.

Theorem (exactness or integrability test):

A necessary and sufficient condition for a function f to be exact, i.e.
the derivative of another function, is that £ f) = 0 where £ is
the continuous Euler operator (variational derivative) defined by

0 _ 2, w9
Eu 1;::0( D:) ou)
P o ., 9 )
=gu Prgw TP T H CUTDN S A

where my is the order (of f).

Proof:
See calculus of variations (derivation of Euler-Lagrange equations —
the forgotten case!).

14



Example: Apply the continuous Euler operator to

/i !N

f(u) =3 v’ sin(u)— —u sin(u)—6v v’ cos(u)+2u’ u” cos(u)+8v'v
Here u = (u,v).

For component u (order 2):

0 0

0
4Wﬁ=5ﬁﬂ Dy 2(f) + Dl ()
13 I

= 3u/ v* cos(u) — u” cos(u) + 6v v sin(u) — 2u'u” sin(u)
—D [31} sin(u) — 3u* sin(u) + 2u” cos(u)] + D3[2u’ cos(u)]

= 3u'v? cos(u) — " cos(u) 4 6v v’ sin(u) — 20’ u” sin(u)

—[3u'v? cos(u) + 6v v’ sin(u) — 3u" cos(u) — 6uu” sin(u)
—2u'u" sin(u) + 2u"" cos(u)]
+[—2u" cos(u) — 6u’ u” sin(u) + 2u™ cos(u)]

=0

For component v (order 2):

0 0 0
£0(5) = 2(p - b, 2+ 02 L
= 6u’ v sin(u) — 6v" cos(u) — D,[—6v cos(u) + 8v"] + D3[Sv/]
= 6u'vsin(u) — 6v’ cos(u) — [6u'v sin(u) — 60" cos(u)+8v™]+8v"

=0

15



e Computation of the integral F
Definition (higher Euler operators):

The continuous higher Euler operators are defined by

: m; [k 0
L=y (.)(—Dx)“a@

=i\ ul

These Euler operators all terminate at some maximal order m;.

Examples (for component u) :

550):% - Dxa{i D: ai// - Diaim D 6u?m0>

L= 8au ai 3Dia§~f—4Diaj _(_1)mlm1D?1_18u?m”
552):@3 aim xaf "”c?uiF L (722) D?Q_Qau?m”
LO= aa/// D 55 TmDiaj ”’”85 4= (=1)"3 (77;3) D?‘H%

Similar formulae for component Eq(f)

16



Definition (homotopy operator):
The continuous homotopy operator is defined by
1 N d\
Hy = /0 r; fr(u)[)‘u]T

where .
frlw) = > Difu L]
i=0

Py 1s the maximum order of u, in f
N is the number of dependent variables
fr(u)[Au] means that in f,(u) one replaces u — Au, u’ — Au', ete.

Example:
For a two-component system (N = 2) where u = (u, v):
1 dA
Ha = /0 {fi(w)[Au] + fo(u)[Au]} Y
with -
fi(w) = ¥ Dyl
i=0
and

fo(w) = 5 Di L))
7=0

Theorem (integration via homotopy operator):

Given an integrable function f
F=D,'f=[[de="Huf)

Proof: Olver’s book ‘Applications of Lie Groups to Differential Equa-
tions’, p. 372. Proof is given in terms of differential forms.

Work of Henri Poincaré (1854-1912), George de Rham (1950), and lan
Anderson & Tom Duchamp (1980).
Proofs based on calculus: Deconinck and Hereman.

17



Example: Apply the continuous homotopy operator to integrate
f(u) = 3u'v*sin(u) — u” sin(u) — 6vv’ cos(u) + 2u'u” cos(u) + 8v'v”

For component u (order 2):

u

L) D;, (ul " (f))

0 0
0 Wf - 2Dw(Wf)
=3v?sinu — 3u?sinu + 2u” cosu

—2D,(2u’ cosu)
—=3v?sinu + u?sinu — 2u” cosu | 3uv?sinu + wu'? sin u — 2uu” cos u
1| 2 f=2ucosu D, [2uu’ cos u]

=2u"? cosu + 2uu’ cosu — 2uu’? sin u

Hence, fi(u)(f) = 3uv*sin(u) — uu’ sin(u) + 2u’ cos(u)

For component v (order 2):
i | L) D; Ly D(f)]
0| —6v cos(u) + 8v" — 2D, 8]

1

= —6v cos(u) — 8v —6v? cos(u) — Svv”
1|8 D, [8vv'] = 8" + Suv”

Hence, fo(u)(f) = —6v*cos(u) + 8v™
The homotopy operator leads to an integral for (auxiliary) variable A.
(Use standard integration by parts to work the integral).

F(u) = Hulf) = f (A ()] + o) ()} 2
= /01 [BA*uv? sin(Au) — MNuw sin(Au) + 2 u’ cos(Au)
—6v* cos(Au) 4+ 8Av"?] dA

= 40" + 1 cos(u) — 3v° cos(u)

18



e Application: Conserved densities and fluxes for PDEs
with transcendental nonlinearities

Definition (conservation law):

Dip+D,J =0 (on PDE)
conserved density p and flux J.
Example: Sine-Gordon system (type u; = F)

Uy — U

Vi = Uy + arsin(u)
has scaling symmetry
(t, 2, u,v,a) — (A, A e, N, Ao, AVa)
In terms of weights:

w(D,) =1, wD;) =1, wu) =0, wv) =1, wla) =2

Conserved densities and fluxes

Py = 2acos(u) + v+ U, Jy = —2ugv

1 1
P(2) = Upl Jio) = —[ivz + §um2 — acos(u)]
p@i) = 12cos(u)vu, + 205U, + 20u,° — 160,09,

pray = 2cos”(u) — 2sin®(u) + v + 6v7u,” + u,” + 4 cos(u)v’
+20 cos(u)u,? — 16v,* — 16us,”.

are all scaling invariant!

Remark: J3) and Jiy) are not shown (too long).

19



e Algorithm for Conserved Densities and Fluxes
Example: Density and flux of rank 2 for sine-Gordon system
Step 1. Construct the form of the density

p = ahy(u) + ha(u)v® + ha(uw)u,” + hy(u)u,v
where h;(u) are unknown functions.

Step 2: Determine the functions h;

Compute
B _Op
dp ™ Op M2 dp
= D D
T = T T A = T

Since £/ = Dyp = —D,J, the expression /' must be integrable.
Require that £9(E) =0 and L"(E) = 0.

Solve the system of linear mixed system (algebraic eqs. and ODEs):

hg(U) - h3(u) =0

>

(u)
(u)
()

u

2

>
(ON)]
I
o o ©O o O

> S
N

(u
i) =0
2h2 (u) - hg (u) =0
2hy (1) — hs (u) =0
hy (w) + 2sin(uw)ho(u) = 0

/

hy (u) + 2sin(w)hs (w) + 2 cos(u)ha(u) = 0

/
/
/
/
/

/
/

>

—— ——



Solution:
hi(u) = 2c1cos(u) + c3
ho(u) = hs(u) = ¢
hy(u) = co

(with arbitrary constants ¢;).

Substitute in p
p = ci(2acos(u) + v° + u,”) + cauv) + c3a
Step 3: Compute the flux J

First, compute

E=Dp = c1(—2auy sinu + 20v; + 2 ty) + Co(Up + ugty)
= c1(—2avsinu + 2v (ug, + asinu) + 2u,v,)
+Co (VU + Uy (Ugy + arsinu))

= 12U,V + 2u, ;) + Co(VVy + UgUny + Qg Sin )

Since E = Dyp = —D,J, one must integrate f = —F.

Apply the homotopy operator for each component of u = (u, v).

For component u (order 2):
i | L7V D;, (uliV(f))

0| 2¢10; + e2(ugy — asinu) | 2ciuv, + co(uto, — au sin u)

1| —2c1v — couy —2¢1 (v + uv,) — ca(u? + uusgy)

Hence, fi(u)(f) = —2ciuv — co(u? + ausin u)

21



For component v (order 1):

i L) D (et ()

0| —2c1uy — v | —2c1U0 — Cov?

Hence, fo(u)(f) = —2c1uv — cov?

The homotopy operator leads to an integral for (one) variable A :

Jw) = Hul) = [ )]+ fw)()Da)) 2

A
-~ (derdug + oMl + ausin(Au) + Av?)) dX
9 (1 2+1 2 )
= —2c1u,0 — ¢y | =0® + —u® — acosu
1 2 9 9 T

Split the density and flux in independent pieces (for ¢; and ¢3):

p(1)y = 2ccosu + v® + ux2 J(l) = —2U,v
1 1
P2) = Ugl Jo) = —§v2 — éui + a cosu

Remark: Computation of J3) and J4) requires integration with
the homotopy operator!

22



Computer Demos

(1) Use continuous homotopy operator to integrate
f =34 v? sin(u) —u” sin(u) —6v v cos(u)+2u u” cos(u)+8v'v"

(2) Compute densities of rank 8 and fluxes for 5Sth-order Korteweg-de
Vries equation with three parameters:

Wy + Uy + Sugtio, + Yuls, + usy = 0

(cr, 3,7 are nonzero constant parameters).

(3) Compute density of rank 4 and flux for sine-Gordon system:

U = U

Uy = Ugy + asin(u)

23



Analogy PDEs and DDEs
Continuous Case (PDEs) | Semi-discrete Case (DDEs)

System w, = F(u,u,,uy,...) w,=F(...,u,_1,u,,u41,...)
Conservation Law Dip+D,J =0 P+ Jpy1 — S =0
Symmetry DG = F'(u)[G] D,G = F'(u,)[G]

= % (u+€G)|e=o = %F(un + €G)|e=0

Recursion Operator | DR + [R,F'(u)] =0 D:/R + [R,F'(u,)] =0

Table 1:  Conservation Laws and Symmetries

KdV Equation Volterra Lattice
Equation Uy = 6UlU, + Usy Up = Up (Upy1 — Up—1)
Densities p=u, p= u’ Pn = Un, Pn = un(%“n"" un-i—l)
P = u?— % ;Qn Pn= %u%+unun+1(un+un+l +un+2)
Symmetries G=uz, G=6uu, + us; | G = uptpi1 (Uy + Ups1 + Upyo)
G =30u?u, + 20w, U9, ~ U1 Uy (Up— + U1 + Up)
+10uus, + s,
Recursion Operator | R = D2 + 4u + 2u,D;' | R = u,,(I+ D)(u,D — D7 'u,)
(D-D)~'

Table 2:  Prototypical Examples

24




Part II: Discrete Case

Definitions (shift and total difference operators):

D is the up-shift (forward or right-shift) operator if for F},
DF, = Fn—H = I,

’n—m—i—l
D! the down-shift (backward or left-shift) operator if
D™'F, =F,1 =F,

’n—m—l

A = D — [ is the total difference operator

AF,=(D—-1)F, = F,,1 — F,

D (up-shift operator) corresponds the differential operator D,
Fn—H - Fn AFn

D, F(z) — e - AL (set Az =1)

Fork>0,D¥=DoDo---0oD (k times).
Similarly, D”* =D 'oD 'o...0o D71

Problem to be solved:

Continuous case:

Given f. Find F so that f =D, F or F=D_!f = /fdx
Discrete case:

Given f,. Find F}, so that f, = AF, = F,,,1—F, or F, = A"'f,.

25



Inverting the A Operator
e Given f, involving u, and v, and their shifts:
Jn = —Up Upt1 U, — U7%+Un+1 Up+2 Up+1 +U7%+1 T Up43 Un+2 — Up+1 Up
e Find F), so that f, = AF, = F,,1 — F,, or F, =A"'f,.
Invert the A operator (compute F), by hand)

In F,
2 2
—Uy Up
2
Un—l—l

—Up Up41 Un - Up Up+1 Up

Up+1 Up+2 Up41

—Unp41Un ? Un+1 Un
TUp42 Un+1
—Un4+2 Un+1 ? Un+2 Un+1
Unp+3 Un+-2
e Result:
F = 2
n — Uy, + Up Unp+1 Un =+ Unp+1 Un + Un4+2 Un41-
Remarks: We denote f(u,, U411, Upio, -+, Wypyp) as f(uy,).

Assume that all negative shifts have been removed via up-shifting
Replace f, = u,—2 v, vyq3 by fn = D2fn — Up Un+42 Un45-

26



e ‘Total Difference’ Criterion:
Discrete Euler Operator (variational derivative)
Definition (exactness):

A function f,(u,) is exact, i.e. a total difference, if there exists a
function Fj,(u,), such that f, = A F, or equivalently F}, = A7Lf,,.

D is the up-shift operator.

Theorem (exactness or total difference test):

A necessary and sufficient condition for a function f, to be exact,
i.e. a total difference, is that EE&)( fn) = 0, where £1(10n) is the discrete
Euler operator (variational derivative) defined by

o — Ypi 9
tn =0 Oupyy
- ot D G Dz(auiﬁ) e Dmo(auimo)
= a5
LY = ain(l +D '+ D %+ 4 D)

where my is the highest forward shift (in f,).

27



Example: Apply the discrete Euler operator to

2 2
fn(un) = —Up Un41 Un_vn+un+1 Un4-2 Un+1+vn+1+un+3 Un+2—Un41 Up
Here w,, = (up, vy,).

For component u,, (highest shift 3):

£9(f) = - [+D 4D+ D ()
— [_un+1vn] + [_un—lvn—1+un+1vn_vn—1]+[un—1vn—1]+[vn—1]
=0

For component v,, (highest shift 2):

Oh) = gl + D7+ D)
- [
0

UpUpt1 — 20, — Un+1] + [unun+1 + 2%] + [Un+1]

28



e Computation of Fj,
Definition (higher Euler operators):
The discrete higher Euler operators are defined by

g, mi (k) D)

cy, (=
These Euler operators all terminate at some maximal shifts m;.

tn aun k=i 7

Examples (for component w,):

L) = 6Zn(l +D '+ D+ D 4 D)

L) = ain(Dl 42D 243D 44D oy D)

Lq(fn) = ain(DQ 43D 3 4+6D* 10D 4+ + %mg(mg —1)D ™)
ES’;] = a(zn(D3 + 4D+ 10D +20D 0 4+ ... + (”;3) D)

Similar formulae for Eq(fn)
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e Definition (homotopy operator):

The discrete homotopy operator is defined by

where

Dr

fran(wn) = 3 (D = 1)/ £

: Ur n
=0 ’

pr 1s the maximum shift of u,.,, in f,

N is the number of dependent variables

frn(ay)[Au,] means that in f.,(u,) one replaces u,, — Au,,
U,r1 — )\U.n_H, etc.

Example:
For a two-component system (N = 2) where u,, = (u,, v,):

P, = [} U)o + fon () )5

with .
fl,n(un) => (D~ I)Z[unﬁg:l)]
i=0
and

fon(W,) = 5 (D = 1)i[u, £

i=0
Theorem (total difference via homotopy operator):

Given a function f, which is a total difference, then
F, = A_lfn — Hun<fn)

Proof: Recent work by Mansfield and Hydon on discrete variational
bi-complexes. Proof is given in terms of differential forms.
Proof based on calculus: Deconinck and Hereman.
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Higher Euler Operators Side by Side

Continuous Case (for component u)

LY = a% - Dxai +D; afix -D; afi,x

£l = aiw — 2D, 8321; +3D? 8331; —4D? 834:,5 o
L2 = 8321; — 3D, 85335 +6D? 85435 —10D? 85535
LB = 83% — 4D, 85435 +10D? 8351; —20D? afm

Discrete Case (for component u,)

L0 = a‘zn(l +D D 24D )

Ll = 6;;(1)1 +2D 243D +4D7 1 4 )
P = ain(DQ +3D7? + 6D+ 10D + - )
LB = 0 (D3 +4D* 410D +20D 0 + ...

o Ouy,
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Homotopy Operators Side by Side

Continuous Case (for components u and v)

d\

Ha = fy {Au(w)Xu] + folw)ral} =5

with .
fitu) = X Dijuli™]
i=0
and

folu) = 3 DL+
7=0

Discrete Case (for components u,, and v,,)

P, = [} U)o + fon () )5

with .
fl,n(un) => (D~ I)i[unﬁgjl)]
i=0
and

fon(W,) = 5 (D = 1)i[u, £

1=0
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Example: Apply the discrete homotopy operator to

2 2
fn(un) = —Up Un41 Un_vn+un+1 Un4-2 Un+1+vn+1+un+3 Un+2—Un41 Up

For component u,, (highest shift 3):

)

Lo ()

(D — I)i [UnLQ(LH

V()]

0
1
2

Up—1Un—1 ‘|’un+1vn+27}n—1

Up—1Vp—11 3Un—1

Un—1

UpUn+1Un +3un+1vn -

Un+2Un+1 —Up+1Up —

Up—1UpUp—1 1 UpUp41Vp+ 2unvn—1

Up—1UnpUp—1— 3unvn—l
Up41Up+UpUp—1

Hence; fl,n(un)(fn) — 2ununjtlvn + Up+1Up + Up+2Un+1

For component v,, (highest shift 2):

! L5 (fa) (D — 1)’ [ L3 (f2)]
0| wptp i1 "|' 20,4 2Up 11 | UpUpy1Vp+ 2Un ‘|’ 2Up 110y
1 Un+1 Up4-2Un41—Un+1Un

Hence, fo,(,)(fn) = tunUni1v, + 202 + Upy 1Vp + Upy2Uns1

The homotopy operator leads to an integral for variable A. (Use

standard integration by parts to work the integral).

Fn(“n) — un fn

/O{fln U—n fn [)‘un] + f2

() 5

= /0 2)\vn + 3N U U1 Un + 2N U1y + 2\, 1 2Un 1] A

2
= U, T UpUp+1Up T Up+1Un T+ Up42Un+1
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e Application: Conserved densities and fluxes for DDEs

Definition (conservation law):
Dipp + AJy = Dypy + Jps1 — J, =0  (on DDE)

conserved density p, and flux J,,.
Example The Toda lattice (type u, = F) :

Up = Up—1 = Up

U = Uty — Uny1)
has scaling symmetry

(t, U, vn) — (A7, Auy, A2y).

In terms of weights:
w(d) =1, w(u,) = w(ugs1) = 1, wlv,) = w(v,_1) = 2.

Conserved densities and fluxes

o = Infu,) 70—,
P = up JW =, 4

pP) = %U% + Un J?) = w,v,_4

PP = ud + (vt + vp) JB) =, _uyv,_1 + 02,

are all scaling invariant!
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e Algorithm for Conserved Densities and Fluxes
Example: Density of rank 3 for Toda system
Step 1: Construct the form of the density.
Pn = C1 ui + Co UpVyp—1 + C3 UpUy,
where ¢; are unknown constants.
Step 2: Determine the constants c;.
Compute

Ipn
B, =Dyp, = a‘; + p.(u,)[F] (on DDE)

= (3¢ — c)ulvy_y + (c3 — 3¢ )ulv, + (c3 — c2)vu_1vy,

2 2
TCoUp—1UpUp—1 + C2U, 1 — C3URUR+1Vp — C3V,

Compute E, = DE,, to remove negative shift n — 1.

Since £, = —Ajn, the expression E,, must be a total difference.
Require
LOE,) = 0 I+D ' +D?)(E,) = 0 (D+1+D HYE,)
n ou, Ouy,
= 2(3c1 — Co)upvp_1 + 2(c3 — 3¢1)unvy,
+(cg — €3)Up_1Up_1 + (C2 — €3)Up 10, =0
and
LO(B) = (04 DY (E) = (D + (B,
n ov, ov,,

- (361 - CQ)U’%l—i-l + <C3 - CQ)UH+1 + (02 - CS)unun+1
+2(cy — e3)vy, + (3 — 3c1)u’ + (c3 — c2)vp—1 = 0.
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Solve the linear system
S = {361 — Cy = O,Cg —361 = O,CQ — C3 = 0}

1

Solution:  3¢; = ¢y = c¢3  Choose ¢ = 3,

Substitute in p,

1
Pn = gu% + un<vn—1 + vn)
Step 3: Compute the flux J,.
Start from —En = —UpUp1Vy — v% + Up41Up42Un+1 + vg 4

Apply the discrete homotopy operator to f,, = —F,,.

For component u,, (highest shift 2):

)

Lo (D= D' Li (- E))

0
1

Up—1Up—1 +un+1vn UpUp—1UVp—1 +unun+1vn
Up—1Up—1 Up+1UpUp —UpUp—1Un—1

Hence, fi,(u,)(fn) = 2uptn1v,

For component v,, (highest shift 1):

)

L5, V(fa) | (D=1 (L3 (-~ Ey))

0

unun+1 +2vy, UpUnUn+1 ‘|‘2Un

Hence, fo,(1,)(fn) = tUntni1v, + 21}%

jn — un fn /0 fln un)(fn)[)\un] + f2 n(fn)(un)[)\un])

— /0 3>\ UpUp4+1Un + 2)‘vn) dA

2
= UpUp+1Up + V.
Final Result:
—17 2
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Computer Demos

(1) Use discrete homotopy operator to compute F,, = A~ f, for

_ 2 2 _
o n
Jn Up Up+1 Up — Uy +Upt1 Up+2 Upt1 T Vg1 T Upt3 Upt2 — Upy1 Up
(2) Compute density of rank 4 and flux for Toda system:

Uy = Up—1 — Uy
’Dn — Un(un - un—i—l)
(3) Compute density of rank 2 for Ablowitz-Ladik system:
LUy = Up+1 — 2y, + Up—1 + K'u;un<un+1 + un—l)
(w! is the complex conjugate of u,,).
This is an integrable discretization of the NLS equation:
iy + Uy + KUAUS =0

Take equation and its complex conjugate.
Treat u, and v, = u;, as dependent variables. Absorb 7 in ¢:

Up = Ups1 — 2Up + U1 + UpVp (Upr1 + Up—1)

vn _(Un—i—l - 2?}” + Un—l) - unvn<vn+1 + Un—l)-
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Conclusions and Ongoing Research

e Generalize continuous homotopy operator in multi-dimensions (z, y, z, ...).

e Problem (in three dimensions):
Given £ =V-J = ij(l) 4+ DyJ(Q) 4+ DZJ(3)
Find J = (JU, J@ J&),

e Application:

Compute densities and fluxes of multi-dimensional systems of PDESs
(int,z,y, 2).

e Generalize discrete homotopy operator in multi-dimensions (n, m, ...).
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Higher Euler Operators Side by Side

Continuous Case (for component u)

LY = a% - Dxai +D; afix -D; afi,x

£l = aiw — 2D, 8321; +3D? 8331; —4D? 834:,5 o
L2 = 8321; — 3D, 85335 +6D? 85435 —10D? 85535
LB = 83% — 4D, 85435 +10D? 8351; —20D? afm

Discrete Case (for component u,)

L0 = a‘zn(l +D D 24D )

Ll = 6;;(1)1 +2D 243D +4D7 1 4 )
P = ain(DQ +3D7? + 6D+ 10D + - )
LB = 0 (D3 +4D* 410D +20D 0 + ...

o Ouy,
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Homotopy Operators Side by Side

Continuous Case (for components u and v)

d\

Ha = fy {Au(w)Xu] + folw)ral} =5

with .
fitu) = X Dijuli™]
i=0
and

folu) = 3 DL+
7=0

Discrete Case (for components u,, and v,,)

P, = [} U)o + fon () )5

with .
fl,n(un) => (D~ I)i[unﬁgjl)]
i=0
and

fon(W,) = 5 (D = 1)i[u, £

1=0
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Implementation in Mathematica — Software

*P.J. Adams and W. Hereman
TransPDEDensityFlux.m: Symbolic computation of conserved
densities and fluxes for systems of partial differential equations with
transcendental nonlinearities (2002).

*D. Baldwin and W. Hereman, PDERecursionOperator.m:
A Mathematica program for the symbolic computation of recursion
operators for nonlinear partial differential equations (2004).

* H. Eklund and W. Hereman
DDEDensityFlux.m: Symbolic computation of conserved den-
sities and fluxes for nonlinear systems of differential-difference equa-
tions (2002).

* U. Goktag and W. Hereman
InvariantsSymmetries.m: A Mathematica integrability pack-
age for the computation of invariants and symmetries (1997).
Available from MathSource
(Item: 0208-932, Applications/Mathematics) via FTP:
mathsource.wolfram.com or URL
http://www.mathsource.com /cgi-bin /MathSource/Applications/

* U. Goktag and W. Hereman
CONDENS.M: A Mathematica program for the symbolic com-
putation of conserved densities for systems of nonlinear evolution
equations (1996).

* U. Goktag and W. Hereman
DIFFDENS.M: A Mathematica program for the symbolic com-
putation of conserved densities for systems of nonlinear differential-
difference equations (1997).
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All codes are available via the Internet

URL: http://www.mines.edu/fs home/whereman/
and via anonymous FTP from mines.edu in directory
pub/papers/math_cs_dept/software/
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