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Part I Purpose, Motivation, Strategy, Demo

• Purpose

Design and implement algorithms to compute polynomial

conservation laws, generalized symmetries, and recursion operators

for nonlinear systems of differential-difference equations (DDEs).

• Motivation

– Conservation laws describe the conservation of physical

quantities (linear momentum, energy, etc.).

Compare with constants of motion (linear momentum, energy)

in mechanics.

– Conservation laws help in the study of quantitative and

qualitative properties of DDEs and their solutions.

– Conserved densities can be used to test numerical integrators.

– The existence of a sufficiently large (in principal infinite)

number of conservation laws or symmetries assures complete

integrability.

– Conserved densities and symmetries aid in finding the recursion

operator (which guarantees the existence of infinitely many

symmetries).
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Definitions and Examples for DDEs (lattices)

• Nonlinear system of DDEs

(continuous in time, discretized in space)

u̇n = F(...,un−1,un,un+1, ...),

un = (u1,n, u2,n, · · · , um,n) and F = (F1, F2, · · · , Fm) are vector

dynamical variables.

In practice: denote components of un by (un, vn, wn, · · ·).
F is polynomial with constant coefficients (parameters).

No restrictions on the level of the shifts or the degree of nonlinearity.

• Typical Examples

? The Kac-van Moerbeke lattice

u̇n = un(un+1 − un−1).

? The (quadratic) Volterra lattice

u̇n = u2
n(un+1 − un−1).

? One-dimensional Toda lattice

ÿn = exp (yn−1 − yn)− exp (yn − yn+1).

yn is the displacement from equilibrium of the nth particle with unit

mass under an exponentially decaying interaction force

between nearest neighbors.

Change of variables:

un = ẏn, vn = exp (yn − yn+1)

yields

u̇n = vn−1 − vn, v̇n = vn(un − un+1).
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? The Ablowitz and Ladik lattice

i u̇n = un+1 − 2un + un−1 + κu∗nun(un+1 + un−1),

is an integrable discretization of the NLS equation:

iut + uxx + κu2u∗ = 0

u∗n is the complex conjugate of un.

Treat un and vn = u∗n as independent variables and add the complex

conjugate equation. Set κ = 1 (scaling) and absorb i in scale on t :

u̇n = un+1 − 2un + un−1 + unvn(un+1 + un−1),

v̇n = −(vn+1 − 2vn + vn−1)− unvn(vn+1 + vn−1).

? The Taha-Herbst lattice

u̇n = −(1 + αh2un + βh2u2
n)

{
1
h3 (1

2un+2 − un+1 + un−1 − 1
2un−2)

+ α
2h[u2

n+1 − u2
n−1 + un(un+1 − un−1) + un+1un+2 − un−1un−2]

+ β
2h[u2

n+1(un+2 + un)− u2
n−1(un−2 + un)]

}
,

is an integrable discretization of a combined KdV-mKdV equation

ut + 6αuux + 6βu2ux + uxxx = 0.

Discretizations the KdV and mKdV equations are special cases.

? The Belov-Chaltikian lattice:

u̇n = un(un+1 − un−1) + vn−1 − vn,

v̇n = vn(un+2 − un−1).
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? The Blaszak-Marciniak three field lattice:

u̇n = wn+1 − wn−1,

v̇n = un−1wn−1 − unwn,

ẇn = wn(vn − vn+1).

? The Blaszak-Marciniak four field lattice:

u̇n = vn−1zn − vnzn+1,

v̇n = wn−1zn − wnzn+2,

ẇn = zn+3 − zn,

żn = zn(un−1 − un).

? The relativistic Toda lattice:

u̇n = (1 + αun)(vn − vn−1),

v̇n = vn(un+1 − un + αvn+1 − αvn−1).
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• Dilation Invariance of DDEs

? The Kac-van Moerbeke lattice

u̇n = un(un+1 − un−1).

is invariant under the scaling symmetry

(t, un) → (λ−1t, λun).

Weight w(un) is defined in terms of t-derivatives.

Using w( d
dt) = 1 and w(un±p) = w(un),

w(un) + 1 = 2w(un).

Hence, w(un) = 1.

? The Toda lattice

u̇n = vn−1 − vn, v̇n = vn(un − un+1).

is invariant under the scaling symmetry

(t, un, vn) → (λ−1t, λun, λ
2vn).

Weights w(un), w(vn) are defined in terms of t-derivatives.

Using w( d
dt) = 1, w(un±p) = w(un), w(vn±p) = w(vn)

w(un) + 1 = w(vn),

w(vn) + 1 = w(vn) + w(un).

Hence,

w(un) = 1, w(vn) = 2.

The rank of a monomial is its total weight in terms of t-derivatives.
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• Conservation Law for DDEs:

ρ̇n = Jn − Jn+1 on DDE,

density ρn, flux Jn.

d

dt
(
∑
n

ρn) =
∑
n

ρ̇n =
∑
n

(Jn − Jn+1)

if Jn is bounded for all n.

Subject to suitable boundary or periodicity conditions

∑
n

ρn = constant.

First three density-flux pairs (computed by hand) for Toda lattice:

ρ(0)
n = ln(vn) J (0)

n = un

ρ(1)
n = un J (1)

n = vn−1

ρ(2)
n = 1

2u
2
n + vn J (2)

n = unvn−1

• Generalized Symmetries of DDEs

A vector function G(...,un−1,un,un+1, ...) is a symmetry iff

un → un + εG(...,un−1,un,un+1, ...)

leaves the DDE system invariant within order ε.

G must satisfy the linearized equation

DtG = F′(un)[G] =
∂

∂ε
F(un + εG)|ε=0 =

p∑
k=−q

(DkG)
∂F

∂un+k
,

where F′ is the Fréchet derivative of F in direction of G.

D is up-shift operator, D−1 is down-shift operator,

and Di = D ◦ D ◦ · · · ◦ D (i times).
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• Examples

? Kac-van Moerbeke lattice

u̇n = un(un+1 − un−1).

Higher order symmetries of rank (2,3)

G(1) = un(un+1 − un−1),

G(2) = unun+1(un + un+1 + un+2)− un−1un(un−2 + un−1 + un).

? Toda lattice

u̇n = vn−1 − vn, v̇n = vn(un − un+1).

First three higher-order symmetries:

G(1) =

 1

0



G(2) =

 vn − vn−1

vn(un − un+1)



G(3) =

 vn(un + un+1)− vn−1(un−1 + un)

vn(u2
n+1 − u2

n + vn+1 − vn−1)



9



• Recursion Operators of DDEs.

A recursion operator R connects symmetries

G(j+s) = RG(j), j = 1, 2, ...,

s is seed. For r-component systems, R is an r × r matrix.

Defining equation for R :

DtR+ [R,F′(un)] =
∂R
∂t

+R′[F] +R ◦F′(un)−F′(un) ◦ R = 0,

where [ , ] means commutator, ◦ stands for composition, and

F′(un) =
p∑

k=−q
(

∂F

∂un+k
) Dk

p, q are bounds of the shifts, D is up-shift operator and

Dk = D ◦ D ◦ · · · ◦ D (k times).

R′[F] is the Fréchet derivative of R in direction of F :

R′[F] =
p∑

k=−q
(DkF)

∂R
∂un+k

Example 1

The Kac-van Moerbeke lattice

u̇n = un(un+1 − un−1),

has recursion operator

R = unD + unD−1 + (un + un+1)I + un(un+1 − un−1)(D− I)−1 1

un
I

= un(I + D)(unD− D−1un)(D− I)−1 1

un
I

Note: ρ(0)
n = ln(un) and J (0)

n = −(un + un−1) are density-flux pair.
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Example 2

The (quadratic) Volterra equation

u̇n = u2
n(un+1 − un−1)

has recursion operator

R = u2
nD + u2

nD−1 + 2unun+1I + 2u2
n(un+1 − un−1)(D− I)−1 1

un
I

Example 3

The Toda lattice

u̇n = vn−1 − vn v̇n = vn(un − un+1)

has recursion operator

R =

 −unI −D−1 − I + (vn−1 − vn)(D− I)−1 1
vn

I

−vnI− vnD un+1I + vn(un − un+1)(D− I)−1 1
vn

I


The recursion operator can be factored as

R = HS

with Hamiltonian (symplectic) operator

H =

 D−1vnI− vnD −unvnI + unD−1vnI

−vnDunI + unvnI −vnDvnI + vnD−1vnI


and co-symplectic operator

S =

 0 (D− I)−1 1
vn

I
1
vn

D(D− I)−1 0
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• Key Observation

Conserved densities, generalized symmetries, and recursion opera-

tors are invariant under the dilation (scaling) symmetry of the given

DDE.

• Overall Strategy

Exploit dilation symmetry as much as possible.

Keep the computations as simple as possible.

Use linear algebra

* solve linear systems

* construct basis vectors (building blocks)

* use linear independence

* work in finite dimensional spaces

Use calculus and differential equations

* derivatives

* integrals (as little as possible)

* solve systems of linear ODEs

Use tools from variational calculus

* variational derivative (Euler operator)

* higher Euler operators and homotopy operator

* Fréchet derivative

* calculus with operators

Use analogy between continuous and semi-discrete cases
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Analogy PDEs and DDEs

ContinuousCase (PDEs) Semi-discrete Case (DDEs)

System ut = F(u,ux,u2x, ...) u̇n=F(...,un−1,un,un+1, ...)

Conservation Law Dtρ + DxJ = 0 ρ̇n + Jn+1 − Jn = 0

Symmetry DtG = F′(u)[G] DtG = F′(un)[G]
= ∂

∂ε
F(u + εG)|ε=0 = ∂

∂ε
F(un + εG)|ε=0

Recursion Operator DtR+ [R,F′(u)] = 0 DtR+ [R,F′(un)] = 0

Table 1: Conservation Laws and Symmetries

KdV Equation Volterra Lattice

Equation ut = 6uux + u3x u̇n = un (un+1 − un−1)

Densities ρ = u, ρ = u2 ρn = un, ρn = un(1
2
un+ un+1)

ρ = u3− 1
2
u2

x ρn = 1
3
u3

n+unun+1(un+un+1+un+2)

Symmetries G=ux, G=6uux + u3x G = unun+1 (un + un+1 + un+2)
G=30u2ux + 20uxu2x −un−1un(un−2 + un−1 + un)

+10uu3x + u5x

Recursion Operator R = D2
x + 4u + 2uxD

−1
x R = un(I + D)(unD−D−1un)

(D− I)−1 1
un

Table 2: Prototypical Examples
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Review of Algorithm for Conserved Densities of PDEs

(i) Determine weights (scaling properties) of variables and

auxiliary parameters.

(ii) Construct the form of the density (find monomial building blocks).

(iii) Determine the constant coefficients (parameters).

(iv) Compute the flux with the homotopy operator.

Example: Density of rank 6 for the KdV equation

ut + uux + u3x = 0

Step 1: Compute the weights (dilation symmetry).

Solve

w(u) + w(Dt) = 2w(u) + 1 = w(u) + 3.

Hence,

w(u) = 2, w(Dt) = 3.

Step 2: Determine the form of the density.

List all possible powers of u, up to rank 6 : [u, u2, u3].

Introduce x derivatives to ‘complete’ the rank.

u has weight 2, introduce D4
x.

u2 has weight 4, introduce D2
x.

u3 has weight 6, no derivative needed.

Apply the Dx derivatives.

Remove total derivative terms (Dxupx) and highest derivative terms:
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[u4x] → [ ] empty list.

[ux
2, uu2x] → [ux

2] since uu2x = (uux)x − ux
2.

[u3] → [u3].

Linearly combine the ‘building blocks’:

ρ = c1u
3 + c2ux

2.

Step 3: Determine the coefficients ci.

Use the defining equation

Dtρ + DxJ = 0 (on PDE),

Compute

E = Dtρ =
∂ρ

∂t
+

m∑
k=0

∂ρ

∂ukx
Dk

xut =
∂ρ

∂t
+ ρ′(u)[F ]

= 3c1u
2ut + 2c2uxuxt

= −3c1u
2(uux + u3x)− 2c2ux(uux + u3x)x.

= −(3c1u
3ux + 3c1u

2u3x + 2c2u
3
x + 2c2uuxu2x + 2c2uxu4x).

Apply the Euler operator (continuous variational derivative)

L(0)
u =

m∑
k=0

(−Dx)
k ∂

∂ukx

=
∂

∂u
− Dx

∂

∂ux
+ D2

x

∂

∂u2x
+ · · · + (−1)mDm

x

∂

∂umx
.

to E of order m = 4. Result:

L(0)
u (E) = −6(3c1 + c2)uxuxx ≡ 0

So, c1 = −1
3c2. Set c2 = −3, then c1 = 1.

Hence,

ρ = u3 − 3ux
2.
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Step 4: Compute the flux J.

– Method 1: Integrate by parts (simple cases)

Integration of DxJ = −E yields

J =
3

4
u4 − 6uux

2 + 3u2u2x + 3u2x
2 − 6uxu3x.

– Method 2: Build the form of J (cumbersome)

Note: Rank J = Rank ρ + Rank Dt − 1.

Build up form of J. Compute

DxJ =
∂J

∂x
+

m∑
k=0

∂J

∂ukx
u(k+1)x,

m is the order of J. Match DxJ = −E.

– Method 3: Use the homotopy operator (most powerful)

Higher Euler Operators:

L(i)
u =

∞∑
k=i

k

i

(−Dx)
k−i ∂

∂ukx
.

Examples (scalar case, u = u1 = u):

L(0)
u =

∂

∂u
− Dx

∂

∂ux
+ D2

x

∂

∂u2x
− D3

x

∂

∂u3x
+ · · ·

L(1)
u =

∂

∂ux
− 2Dx

∂

∂u2x
+ 3D2

x

∂

∂u3x
− 4D3

x

∂

∂u4x
+ · · ·

L(2)
u =

∂

∂u2x
− 3Dx

∂

∂u3x
+ 6D2

x

∂

∂u4x
− 10D3

x

∂

∂u5x
+ · · ·

L(3)
u =

∂

∂u3x
− 4Dx

∂

∂u4x
+ 10D2

x

∂

∂u5x
− 20D3

x

∂

∂u6x
+ · · ·
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The flux is

J(u) =
∫ 1

0

n∑
r=1

jr(u)[λu]
dλ

λ
.

where

jr(u) =
m−1∑
i=0

Di
x(urL(i+1)

ur
(−E))

m is the order of E, and jr(u)[λu] means

u → λu, ux → λux, u2x → λu2x, etc.

Demonstration (scalar case, u = u1 = u, j1(u) = j(u)):

Compute J via the homotopy operator!

−E = 3u3ux + 3u2u3x − 6u3
x − 6uuxu2x − 6uxu4x.

i L(i+1)
u (−E) Di

x(uL(i+1)
u (−E))

0 3u3+24uu2x+18u4x+12u2
x 3u4+24u2u2x+18uu4x+12uu2

x

1 −24uux−36u3x −48uu2
x−24u2u2x−36uxu3x−36uu4x

2 3u2+24u2x 18uu2
x+9u2u2x+24u2

2x+48uxu3x+24uu4x

3 −6ux −18u2
2x−24uxu3x−6uu4x

Hence,

j(u) = 3u4 − 18uu2
x − 12uxu3x + 9u2u2x + 6u2

2x.

Thus, the homotopy operator gives

J(u) =
∫ 1

0
j(u)[λu]

dλ

λ

=
∫ 1

0
(3λ3u4 − 18λ2uu2

x − 12λuxu3x + 9λ2u2u2x + 6λu2
2x) dλ

=
3

4
u4 − 6uux

2 − 6uxu3x + 3u2u2x + 3u2x
2.
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Analogy PDEs and DDEs

Conservation laws for PDEs

Dtρ + DxJ = 0

density ρ, flux J.

Compute E = Dtρ.

To guarantee the existence of J , apply the Euler operator

L(0)
u =

m∑
k=0

(−1)kDk
x

∂

∂ukx

=
∂

∂u
− Dx(

∂

∂ux
) + D2

x(
∂

∂u2x
) + · · · + (−1)mDm

x (
∂

∂umx
).

to E of order m. Dx is the differential operator.

If L(0)
u (E) = 0, then E is a total x-derivative (−Jx).

If L(0)
u (E) 6= 0, the nonzero terms must vanish identically.

E must be in the kernel of L(0)
u operator, or equivalently, E must be in

the image of Dx operator.

Computation of flux J:

Apply the homotopy operator

J(u) =
∫ 1

0

n∑
r=1

jr(u)[λu]
dλ

λ
.

where jr(u) is computed with

jr(u) =
m−1∑
i=0

Di
x(urL(i+1)

ur
(−E))

with higher Euler operators (continuous):

L(i)
u =

m∑
k=i

k

i

(−Dx)
k−i ∂

∂ukx
.
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Conservation laws for DDEs

ρ̇n + Jn+1 − Jn = 0

density ρn, flux Jn.

Compute E = ρ̇n.

To guarantee existence of Jn, apply the discrete Euler operator

L(0)
un

=
p∑

k=−q
D−k ∂

∂un+k

=
∂

∂un
+ D(

∂

∂un−1
) + D2(

∂

∂un−2
) + · · · + Dq(

∂

∂un−q
)

+ D−1(
∂

∂un+1
) + D−2(

∂

∂un+2
) + · · · + D−p(

∂

∂un+p
)

to E with maximal negative and positive shifts on u are q and p.

D is the up-shift operator, D−1 the down-shift operator.

Applied to a monomial m

D−1m = m|n→n−1 and Dm = m|n→n+1.

Note: D (up-shift operator) corresponds the differential operator Dx due

to the forward difference

∂J

∂x
→ Jn+1 − Jn

∆x
(∆x = 1)

If L(0)
un

(E) = 0, then E matches −(Jn+1 − Jn).

If L(0)
un

(E) 6= 0, the nonzero terms must vanish identically.
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In practice:

Compute Ẽ = DqE (remove negative shifts) and apply

L(0)
un

=
∂

∂un
(
p+q∑
k=0

D−k)

=
∂

∂un
(I + D−1 + D−2 + · · · + D−(p+q))

Computation of flux J̃n

Apply the homotopy operator

J̃n =
∫ 1

0

m∑
r=1

j̃r,n(un)[λun]
dλ

λ
.

where j̃r,n(un) is computed with

j̃r,n(un) =
p+q−1∑

i=0
(D− I)i(ur,nL(i+1)

ur,n
(−Ẽ))

with discrete higher Euler operators:

L(i)
un

=
∂

∂un
(
p+q∑
k=i

k

i

D−k).

Down-shift J̃n by q steps: Jn = D−qJ̃n.
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Part II Algorithms for DDEs (lattices)

• Tool: Up and Down Shift Operators

D−1 and D are the down-shift and up-shift operators.

For a monomial m :

D−1m = m|n→n−1, and Dm = m|n→n+1.

Example

D−1un+2vn = un+1vn−1, Dun−2vn−1 = un−1vn.

Compositions of D−1 and D define an equivalence relation.

All shifted monomials are equivalent .

Example

un−1vn+1 ≡ un+2vn+4 ≡ un−3vn−1.

• Tool: Equivalence Criterion

Two monomials m1 and m2 are equivalent, m1 ≡ m2, if

m1 = m2 + [Mn −Mn+1]

for some polynomial Mn.

Example: un−2un ≡ un−1un+1 since

un−2un = un−1un+1+[un−2un−un−1un+1] = un−1un+1+[Mn−Mn+1].

Main representative of an equivalence class is the monomial

with label n on u (or v).

Example: unun+2 is main representative of class

{un−1un+1, un+1un+3, · · ·}.
Use lexicographical ordering to resolve conflicts.

unvn+2 (not un−2vn) is the main representative of class

{un−3vn−1, un+2vn+4, · · ·}
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• Algorithm for Conserved Densities of DDEs.

Three-step algorithm to find conserved densities:

(i) Determine the weights.

(ii) Construct the form of density.

(iii) Determine the coefficients.

(iv) Compute the flux with the discrete homotopy operator.

Example: Density of rank 3 of the Toda lattice,

u̇n = vn−1 − vn, v̇n = vn(un − un+1).

Step 1: Compute the weights.

Require uniformity in rank for each equation:

w(un) + w(
d

dt
) = w(vn−1) = w(vn),

w(vn) + w(
d

dt
) = w(vn) + w(un) = w(vn) + w(un+1)

Weights are shift invariant. Set w( d
dt) = 1 and solve the linear

system: w(un) = w(un+1) = 1 and w(vn) = w(vn−1) = 2.

Step 2: Construct the form of the density.

List all monomials1 in un and vn of rank 3 or less:

G={u3
n, u

2
n, unvn, un, vn}.

For each monomial in G, introduce enough t-derivatives to obtain

weight 3. Use the DDE to remove u̇n and v̇n :

d0

dt0
(u3

n) = u3
n,

d0

dt0
(unvn) = unvn,

1In general algorithm shifts are also needed: u3
n, unun+1un−1, u

2
nun+1, etc.
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d

dt
(u2

n) = 2unvn−1 − 2unvn,

d

dt
(vn) = unvn − un+1vn,

d2

dt2
(un) = un−1vn−1 − unvn−1 − unvn + un+1vn.

Gather the resulting terms in a set

H = {u3
n, unvn−1, unvn, un−1vn−1, un+1vn}.

Introduce main representatives.

Example: unvn−1 ≡ un+1vn are replaced by unvn−1.

Linearly combine the monomials in

I = {u3
n, unvn−1, unvn}

to obtain

ρn = c1 u3
n + c2 unvn−1 + c3 unvn.

Step 3: Determine the coefficients ci.

Require that ρ̇n + Jn+1 − Jn = 0 holds.

Compute ρ̇n. Use the DDE to remove u̇n and v̇n. Thus,

E = ρ̇n = (3c1 − c2)u
2
nvn−1 + (c3 − 3c1)u

2
nvn + (c3 − c2)vn−1vn

+c2un−1unvn−1 + c2v
2
n−1 − c3unun+1vn − c3v

2
n.

Shift E by q = 1 step up (remove negative shifts n− 1). Apply

L(0)
un

=
∂

∂un
(
p+q∑
k=0

D−k) =
∂

∂un
(I + D−1 + D−2 + · · ·)

to Ẽ = DE.
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The maximal shift p + q = 1 + 1 = 2 on un. Hence,

L(0)
un

(Ẽ) =
∂

∂un
(I + D−1 + D−2)(Ẽ)

= 2(3c1 − c2)unvn−1 + 2(c3 − 3c1)unvn

+(c2 − c3)un−1vn−1 + (c2 − c3)un+1vn ≡ 0

The maximal shift p + q = 0 + 1 = 1 on vn. Hence,

L(0)
vn

(Ẽ) = =
∂

∂vn
(I + D−1)(Ẽ)

= (3c1 − c2)u
2
n+1 + (c3 − c2)vn+1 + (c2 − c3)unun+1

+2(c2 − c3)vn + (c3 − 3c1)u
2
n + (c3 − c2)vn−1 ≡ 0.

Solve the linear system

S = {3c1 − c2 = 0, c3 − 3c1 = 0, c2 − c3 = 0}.
The solution is 3c1 = c2 = c3. Choose c1 = 1

3, and c2 = c3 = 1 :

Step 4: Compute the flux Jn.

– Method 1: Use equivalence criterion (simple cases)

Start from

E = ρ̇n = un−1unvn−1 + v2
n−1 − unun+1vn − v2

n.

Replace un−1unvn−1 by unun+1vn + [un−1unvn−1 − unun+1vn].

Replace v2
n−1 by v2

n + [v2
n−1 − v2

n]. Thus

E = [un−1unvn−1 − unun+1vn] + [v2
n−1 − v2

n]

Group the first and second terms in the square brackets to match

[Jn − Jn+1].

Hence

E = [un−1unvn−1 + v2
n−1]− [unun+1vn + v2

n].

Jn = un−1unvn−1 + v2
n−1.
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– Method 2: Use the homotopy operator (most powerful)

Discrete higher Euler operators:

L(i)
un

=
∂

∂un
(
p+q∑
k=i

k

i

D−k)

Examples (scalar case, u1,n = un):

L(0)
un

=
∂

∂un
(I + D−1 + D−2 + D−3 + · · ·)

L(1)
un

=
∂

∂un
(D−1 + 2D−2 + 3D−3 + 4D−4 + · · ·)

L(2)
un

=
∂

∂un
(D−2 + 3D−3 + 6D−4 + 10D−5 + · · ·)

L(3)
un

=
∂

∂un
(D−3 + 4D−4 + 10D−5 + 20D−6 + · · ·)

Similar formulas for L(i)
vn

.

The flux is

J̃n =
∫ 1

0
(j̃1,n(un)[λun] + j̃2,n(un)[λun])

dλ

λ

where,

j̃1,n(un) =
p+q−1∑

i=0
(D− I)i(unL(i+1)

un
(−Ẽ))

j̃2,n(un) =
p+q−1∑

i=0
(D− I)i(vnL(i+1)

un
(−Ẽ))

Note that p+q is the highest shift in Ẽ, and j̃r,n(un)[λun] means

un → λun, un+1 → λun+1, un+2 → λun+2, etc.
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Demonstration (vector case, un = (un, vn)) :

Compute Jn via the homotopy operator!

Start from

−Ẽ = −DE = −unun+1vn − v2
n + un+1un+2vn+1 + v2

n+1.

To find: flux Jn such that (D− I)Jn = −E.

Homotopy operator inverts the operator (D− I).

i L(i+1)
un

(−Ẽ) (D− I)i(unL(i+1)
un

(−Ẽ))

0 un−1vn−1+un+1vn unun−1vn−1+unun+1vn

1 un−1vn−1 un+1unvn−unun−1vn−1

i L(i+1)
vn

(−Ẽ) (D− I)i(vnL(i+1)
vn

(−Ẽ))

0 unun+1+2vn vnunun+1+2v2
n

Hence,

j̃1,n(un) = 2unun+1vn, j̃2,n(un) = unun+1vn + 2v2
n.

Thus, the homotopy operator gives

J̃n =
∫ 1

0
(j̃1,n(un)[λun] + j̃2,n(un)[λun])

dλ

λ

=
∫ 1

0
(3λ2unun+1vn + 2λv2

n) dλ

= unun+1vn + v2
n.

Summary:

ρn = 1
3 u3

n+un(vn−1+vn), Jn = D−1Jn = un−1unvn−1+v2
n−1.
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Analogously, conserved densities of rank ≤ 5:

ρ(1)
n = un ρ(2)

n = 1
2un

2 + vn

ρ(3)
n = 1

3un
3 + un(vn−1 + vn)

ρ(4)
n = 1

4un
4 + un

2(vn−1 + vn) + unun+1vn + 1
2vn

2 + vnvn+1

ρ(5)
n = 1

5un
5 + un

3(vn−1 + vn) + unun+1vn(un + un+1)

+unvn−1(vn−2 + vn−1 + vn) + unvn(vn−1 + vn + vn+1).
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• Algorithm for Generalized Symmetries of DDEs.

Consider the Toda system

u̇n = vn−1 − vn, v̇n = vn(un − un+1).

with

w(un) = 1 and w(vn) = 2.

Compute the form of the symmetry of ranks (3, 4), i.e. the first

component of the symmetry has rank 3, the second rank 4.

Step 1: Construct the form of the symmetry.

List all monomials in un and vn of rank 3 or less:

L1 = {u3
n, u

2
n, unvn, un, vn},

and of rank 4 or less:

L2 = {u4
n, u

3
n, u

2
nvn, u

2
n, unvn, un, v

2
n, vn}.

For each monomial in L1 and L2, introduce enough t-derivatives, so

that each term exactly has rank 3 and 4, respectively.

Using the DDEs, for the monomials in L1 :

d0

dt0
(u3

n) = u3
n,

d0

dt0
(unvn) = unvn,

d

dt
(u2

n) = 2unu̇n = 2unvn−1 − 2unvn,

d

dt
(vn) = v̇n = unvn − un+1vn,

d2

dt2
(un) =

d

dt
(u̇n) =

d

dt
(vn−1 − vn)

= un−1vn−1 − unvn−1 − unvn + un+1vn.
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Gather the resulting terms:

R1 = {u3
n, un−1vn−1, unvn−1, unvn, un+1vn}.

R2 = {u4
n, u

2
n−1vn−1, un−1unvn−1, u

2
nvn−1, vn−2vn−1, v

2
n−1, u

2
nvn,

unun+1vn, u
2
n+1vn, vn−1vn, v

2
n, vnvn+1}.

Linearly combine the monomials in R1 and R2

G(1) = c1 u3
n + c2 un−1vn−1 + c3 unvn−1 + c4 unvn + c5 un+1vn,

G(2) = c6 u4
n + c7 u2

n−1vn−1 + c8 un−1unvn−1 + c9 u2
nvn−1

+c10 vn−2vn−1 + c11 v2
n−1 + c12 u2

nvn + c13 unun+1vn

+c14 u2
n+1vn + c15 vn−1vn + c16 v2

n + c17 vnvn+1.

Step 2: Determine the unknown coefficients.

Require that the symmetry condition DtG = F′(un)[G] holds.

Solution:

c1 = c6 = c7 = c8 = c9 = c10 = c11 = c13 = c16 = 0,

−c2 = −c3 = c4 = c5 = −c12 = c14 = −c15 = c17.

Therefore, with c17 = 1, the symmetry of rank (3, 4) is:

G(1) = unvn − un−1vn−1 + un+1vn − unvn−1,

G(2) = u2
n+1vn − u2

nvn + vnvn+1 − vn−1vn.

Analogously, the symmetry of rank (4, 5) reads

G(1) = u2
nvn + unun+1vn + u2

n+1vn + v2
n + vnvn+1 − u2

n−1vn−1

−un−1unvn−1 − u2
nvn−1 − vn−2vn−1 − v2

n−1,

G(2) = un+1v
2
n + 2un+1vnvn+1 + un+2vnvn+1 − u3

nvn + u3
n+1vn

−un−1vn−1vn − 2unvn−1vn − unv
2
n.
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• Recursion Operators of DDEs.

Key Observation

? Recursion operator for the Kac-van Moerbeke lattice

u̇n = un(un+1 − un−1),

is

R = unD + unD−1 + (un + un+1)I + un(un+1 − un−1)(D− I)−1 1

un
I

= un(I + D)(unD− D−1un)(D− I)−1 1

un
I

D−1 and D are down and up-shift operators.

I is the identity operator.

D− I is the discretized version of Dx (PDE case).

(D− I)−1 corresponding to the integral operator D−1
x (PDE case).

The recursion operator has rank 1. Indeed, compare the ranks of

successive symmetries (ranks 2 and 3):

G(1) = un(un+1 − un−1),

G(2) = unun+1(un + un+1 + un+2)− un−1un(un−2 + un−1 + un),

which are linked via RG(1) = G(2).

Recursion operator splits into R = R0 +R1.

R0 has linear combinations of D−1, D, I and un±p.

R1 is of the form

R1 =
∑
j

∑
k

G(j)(D− I)−1ρ′(k)
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• Algorithm for Recursion Operators of DDEs.

Scalar Case

Step 1: Determine the rank of the recursion operator.

Recall: first two higher symmetries of Kac Van Moerbeke equation

are

G(1) = un(un+1 − un−1),

G(2) = unun+1(un + un+1 + un+2)− un−1un(un−2 + un−1 + un), .

Hence,

R = rank R = rank G(2) − rank G(1) = 3− 2 = 1.

Step 2: Construct the form of the recursion operator.

(i) Determine the pieces of operator R0

Compute the required shift (p) and linearly combine terms with

D−1, D, I and un±p.

Example: For the Kac-van Moerbeke lattice:

R0 = (c1un−1 + c2un + c3un+1)D
−1 + (c4un−1 + c5un + c6un+1)I

+(c7un−1 + c8un + c9un+1)D
+1,

where the ci’s are constant coefficients.

(ii) Determine the pieces of operator R1

Combine the symmetries G(j) with (D− I)−1 and ρ(k)
′(u), so that

every term in

R1 =
∑
j

∑
k

G(j)(D− I)−1ρ′(k)
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has rank R.

The indices j and k are taken so that

rank (G(j)) + rank (ρ(k)
′(u))− 1 = R.

Example: For the Kac-van Moerbeke lattice:

R1 = c10un(un+1 − un−1)(D
+1 − I)−1(

1

un
),

with c10 a constant coefficient.

(iii) Build the operator R

Build R = R0 +R1.

Example: For the Kac-van Moerbeke lattice:

R = (c1un−1 + c2un + c3un+1)D
−1 + (c4un−1 + c5un + c6un+1)I

+(c7un−1 + c8un + c9un+1)D
+1

+c10un(un+1 − un−1)(D
+1 − I)−1(

1

un
).

Step 3: Determine the unknown coefficients.

Substitute in the determining equation, alternatively, require that

RG(k) = G(k+1), k = 1, 2, 3, ...

Solution of the linear system:

c1 = c3 = c4 = c7 = c9 = 0, c2 = c5 = c6 = c8 = c10 = 1.

Final result:

Recursion operator for Kac-van Moerbeke lattice:

R = unD + unD−1 + (un + un+1)I + un(un+1 − un−1)(D− I)−1 1

un
I

= un(I + D)(unD− D−1un)(D− I)−1 1

un
I
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Matrix Case

Recursion operator (matrix) splits naturally in R = R0 +R1.

Entries of matrix R0 are linear combinations of (un,un±1,un±2, ...)

and (I, D, D−1, ...) of rank R.

Matrix R1 is of the form

∑
j

∑
k

G(j)(D− I)−1 ⊗ ρ′(k)

where ⊗ denotes the matrix outer product, and

ρ′(k) is the Fréchet derivative of ρ(k).

Example.

The Toda lattice

u̇n = vn−1 − vn, v̇n = vn(un − un+1).

Recursion operator:

R =

 −unI −D−1 − I + (vn−1 − vn)(D− I)−1 1
vn

I

−vI− vD un+1I + vn(un − un+1)(D− I)−1 1
vn

I
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• Example: The Ablowitz-Ladik Lattice.

Consider the Ablowitz and Ladik discretization,

i u̇n = un+1 − 2un + un−1 + κu∗nun(un+1 + un−1),

of the NLS equation,

iut + uxx + κu2u∗ = 0

u∗n is the complex conjugate of un. Treat un and vn = u∗n as indepen-

dent variables and add the complex conjugate equation. Set κ = 1

(scaling) and absorb i in the scale on t :

u̇n = un+1 − 2un + un−1 + unvn(un+1 + un−1),

v̇n = −(vn+1 − 2vn + vn−1)− unvn(vn+1 + vn−1).

Since vn = u∗n, w(vn) = w(un).

No uniformity in rank! Introduce an auxiliary parameter α with

weight.

u̇n = α(un+1 − 2un + un−1) + unvn(un+1 + un−1),

v̇n = −α(vn+1 − 2vn + vn−1)− unvn(vn+1 + vn−1).

Uniformity in rank leads to

w(un) + w(
d

dt
) = w(α) + w(un) = 2w(un) + w(vn),

w(vn) + w(
d

dt
) = w(α) + w(vn) = 2w(vn) + w(un).

For w( d
dt) = 1,

w(un) + w(vn) = w(α) = 1.

So, one solution is

w(un) = w(vn) =
1

2
, w(α) = 1.
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Alternatively, for w( d
dt) = 0,

w(un) + w(vn) = 0, w(α) = 0.

The second scale helps eliminate terms in candidate density ρ.

Conserved densities (for α = 1, in original variables):

ρ(1)
n = unu

∗
n−1

ρ(2)
n = unu

∗
n+1

ρ(3)
n = 1

2u
2
nu

∗2
n−1 + unun+1u

∗
n−1vn + unu

∗
n−2

ρ(4)
n = 1

2u
2
nu

∗2
n+1 + unun+1u

∗
n+1u

∗
n+2+ unu

∗
n+2

ρ(5)
n = 1

3u
3
nu

∗3
n−1 + unun+1u

∗
n−1u

∗
n(unu

∗
n−1 + un+1u

∗
n+ un+2u

∗
n+1)

+unu
∗
n−1(unu

∗
n−2+un+1u

∗
n−1)+unu

∗
n(un+1u

∗
n−2+un+2u

∗
n−1)+ unu

∗
n−3

ρ(6)
n = 1

3u
3
nu

∗3
n+1+unun+1u

∗
n+1u

∗
n+2(unu

∗
n+1+un+1u

∗
n+2+un+2u

∗
n+3)

+unu
∗
n+2(unu

∗
n+1+un+1u

∗
n+2)+unu

∗
n+3(un+1u

∗
n+1+un+2u

∗
n+2)+unu

∗
n+3

The Ablowitz-Ladik lattice has infinitely many conserved densities.

Density we missed

ρ(0)
n = ln(1 + unu

∗
n).

We cannot find the Hamiltonian (constant of motion):

H = −i
∑

[u∗n(un−1 + un+1)− 2 ln(1 + unu
∗
n)],

since it has a logarithmic term.
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• Application: Discretization of combined KdV-mKdV

equation.

Consider the integrable discretization

u̇n = −(1 + αh2un + βh2u2
n)

{
1
h3 (1

2un+2 − un+1 + un−1 − 1
2un−2)

+ α
2h[u2

n+1 − u2
n−1 + un(un+1 − un−1) + un+1un+2 − un−1un−2]

+ β
2h[u2

n+1(un+2 + un)− u2
n−1(un−2 + un)]

}

of a combined KdV-mKdV equation

ut + 6αuux + 6βu2ux + uxxx = 0.

Discretizations the KdV and mKdV equations are special cases.

Set h = 1 (scaling). No uniformity in rank!

Introduce auxiliary parameters γ and δ with weights.

u̇n = −(γ + αun + βu2
n)

{
δ(1

2un+2 − un+1 + un−1 − 1
2un−2)

+ α
2 [u2

n+1 − u2
n−1 + un(un+1 − un−1) + un+1un+2 − un−1un−2]

+ β
2 [u2

n+1(un+2 + un)− u2
n−1(un−2 + un)]

}
,

Uniformity in rank requires

w(γ) = w(δ) = 2w(un), w(α) = w(un), w(β) = 0.

Then,

w(un) + 1 = 5w(un),

Hence,

w(un) = w(α) = 1
4, w(γ) = w(δ) = 1

2, w(β) = 0,
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Conserved densities:

For the combined KdV-mKdV case (α 6= 0, β 6= 0) :

Rank 1
2 and 1 (after splitting):

ρ(1)
n = αun + βunun+1

ρ(2)
n =

α2

2β
un

2 +
α2

β
unun+1 − unun+1 + αun

2un+1 + αunun+1
2

+
1

2
βun

2un+1
2 + unun+2 + αunun+1un+2 + βunun+1

2un+2.

For the KdV case (β = 0) :

u̇n = −(γ + αh2un)
{

δ
h3(

1
2un+2 − un+1 + un−1 − 1

2un−2)

+ α
2h[u2

n+1 − u2
n−1 + un(un+1 − un−1) + un+1un+2 − un−1un−2]

}

with γ = δ = 1 is a completely integrable discretization of the KdV

equation

ut + 6αuux + uxxx = 0.

Now,

w(γ) = w(δ) = w(un), w(α) = 0.

Then,

w(un) + 1 = 3w(un).

So,

w(un) = w(γ) = w(δ) = 1
2, w(α) = 0.
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From rank 3
2 and 5

2 (after splitting):

ρ(1)
n = un,

ρ(2)
n = un(1

2un + un+1),

ρ(3)
n = un(1

3u
2
n + unun+1 + u2

n+1 + 1
αun+2 + un+1un+2)

ρ(4)
n = un(1

4u
3
n + u2

nun+1 + 3
2unu

2
n+1 + u3

n+1 + · · · + un+1un+2un+3)

ρ(5)
n = un(1

5αu4
n − 1

2u
3
n − 2u2

nun+1 + · · · +

αun+1un+2un+3un+4)

For the mKdV case (α = 0) :

u̇n = −(γ + βh2u2
n)

{
δ
h3(

1
2un+2 − un+1 + un−1 − 1

2un−2)

+ β
2h[u2

n+1(un+2 + un)− u2
n−1(un−2 + un)]

}

with γ = δ = 1 is a completely integrable discretization of the

modified KdV equation

ut + 6βu2ux + uxxx = 0.

Now,

w(γ) = w(δ) = 2w(un), w(β) = 0.

Then,

w(un) + 1 = 5w(un).

So,

w(un) = 1
4, w(γ) = w(δ) = 1

2, w(β) = 0.
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From rank 3
2 and 5

2 (after splitting):

ρ(1)
n = unun+1,

ρ(2)
n = un(1

2unu
2
n+1 + 1

βun+2 + u2
n+1un+2)

ρ(3)
n = un(1

3u
2
nu

3
n+1 + 1

βunun+1un+2 + + · · · + u2
n+1u

2
n+2un+3)

ρ(4)
n = un(1

4βu3
nu

4
n+1 + u2

nu
2
n+1un+2+· · · + βu2

n+1u
2
n+2u

2
n+3un+4)
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Part III Software, Future Work, Publications

• Scope and Limitations of Algorithms.

– Systems of DDEs must be polynomial in dependent variables.

– One discretized space variable (lattice point n)

– Program only computes polynomial conservation laws and gener-

alized symmetries (no recursion operators yet). (Non-polynomial

densities in progress).

– Program does not compute conservation laws and symmetries

that explicitly depend on n.

– No limit on the number of equations in the system.

In practice: time and memory constraints.

– Input systems may have (nonzero) parameters.

Program computes the compatibility conditions for parameters

such that conservation laws and symmetries (of a given rank)

exist.

– Systems can also have parameters with (unknown) weight.

This allows one to test lattice equations of non-uniform rank.

– For systems where one or more of the weights is free,

the program prompts the user for info.

– Fractional weights and ranks are permitted.

– Lattice equations must be of first-order in t.
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• Conclusions and Future Research

– Compute simple logarithmic and rational densities.

– Implement the recursion operator algorithm for DDEs.

– Improve software, compare with other strategies & packages.

– Add tools for parameter analysis (Gröbner basis, Ritt-Wu or

characteristic sets algorithms).

– Introduce multiple sets of weights based on w( d
dt) = 0 and

w( d
dt) = 1.

– Application: test model DDEs for integrability.

(study the integrable discretization of KdV-mKdV equation).
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• Implementation in Mathematica – Software

* P.J. Adams and W. Hereman

TransPDEDensityFlux.m: Symbolic computation of con-

served densities and fluxes for systems of partial differential equa-

tions with transcendental nonlinearities (2002).

* H. Eklund and W. Hereman

DDEDensityFlux.m: Symbolic computation of conserved den-

sities and fluxes for nonlinear systems of differential-difference

equations (2002).

* Ü. Göktaş and W. Hereman

InvariantsSymmetries.m: A Mathematica integrability pack-

age for the computation of invariants and symmetries (1997).

Available from MathSource

(Item: 0208-932, Applications/Mathematics) via FTP:

mathsource.wolfram.com or URL

http://www.mathsource.com/cgi-bin/MathSource/Applications/

* Ü. Göktaş and W. Hereman

CONDENS.M: A Mathematica program for the symbolic com-

putation of conserved densities for systems of nonlinear evolution

equations (1996).

* Ü. Göktaş and W. Hereman

DIFFDENS.M: A Mathematica program for the symbolic

computation of conserved densities for systems of nonlinear differential-

difference equations (1997).

All codes are available via the Internet

URL: http://www.mines.edu/fs home/whereman/

and via anonymous FTP from mines.edu in directory

pub/papers/math cs dept/software/
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1). P. J. Adams, Symbolic Computation of Conserved Densities
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