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• Purpose

Design and implement algorithms to compute polynomial conserva-

tion laws and generalized symmetries (later recursion operators) for

nonlinear systems of evolution and lattice equations.

• Motivation

– Conservation laws describe the conservation of fundamental phys-

ical quantities (linear momentum, energy, etc.).

Compare with constants of motion (linear momentum, energy)

in mechanics.

– Conservation laws provide a method to study quantitative and

qualitative properties of equations and their solutions,

e.g. Hamiltonian structures.

– Conservation laws can be used to test numerical integrators.

– For PDEs and DDEs, the existence of a sufficiently large (in

principal infinite) number of conservation laws or symmetries

assures complete integrability.

– Conserved densities and symmetries aid in finding the recursion

operator (which guarantees the existence of infinitely many sym-

metries).
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PART I: Evolution Equations (PDEs)

• System of evolution equations

ut = F(u,ux,u2x, ...,umx)

in a (single) space variable x and time t, and with

u = (u1, u2, ..., un), F = (F1, F2, ..., Fn).

Notation:

umx = u(m) =
∂u

∂xm
.

F is polynomial in u,ux, ...,umx.

PDEs of higher order in t should be recast as a first-order system.

• Examples:

The Korteweg-de Vries (KdV) equation:

ut + uux + u3x = 0.

Fifth-order evolution equations with constant parameters (α, β, γ):

ut + αu2ux + βuxu2x + γuu3x + u5x = 0.

Special case. The fifth-order Sawada-Kotera (SK) equation:

ut + 5u2ux + 5uxu2x + 5uu3x + u5x = 0.

The Boussinesq (wave) equation:

utt − u2x + 3uu2x + 3ux
2 + αu4x = 0,

written as a first-order system (v auxiliary variable):

ut + vx = 0,

vt + ux − 3uux − αu3x = 0.

4



A vector nonlinear Schrödinger equation:

Bt + (|B|2B)x + (B0 ·Bx)B0 + e×Bxx = 0,

written in component form, B0 = (a, b) and B = (u, v) :

ut +
[
u(u2 + v2) + βu + γv − vx

]
x

= 0,

vt +
[
v(u2 + v2) + θu + δv + ux

]
x

= 0,

β = a2, γ = θ = ab, and δ = b2.

• Key concept: Dilation invariance.

Conservation laws, symmetries and recursion operators are invariant

under the dilation (scaling) symmetry of the given PDE.

The KdV equation, ut + uux + u3x = 0, has scaling symmetry

(t, x, u) → (λ−3t, λ−1x, λ2u).

u corresponds to two x-derivatives, u ∼ D2
x. Similarly, Dt ∼ D3

x.

The weight , w, of a variable equals the number of x-derivatives the

variable carries.

Weights are rational. Weights of dependent variables are

nonnegative.

Set w(Dx) = 1.

Due to dilation invariance: w(u) = 2 and w(Dt) = 3.

Consequently, w(x) = −1 and w(t) = −3.

The rank of a monomial is its total weight in terms of x-derivatives.
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Every monomial in the KdV equation has rank 5.

The KdV equation is uniform in rank .

What do we do if equations are not uniform in rank?

Extend the space of dependent variables with parameters carrying

weight.

Example: the Boussinesq system

ut + vx = 0,

vt + ux − 3uux − αu3x = 0,

is not scaling invariant (ux and u3x are conflict terms).

Introduce an auxiliary parameter β

ut + vx = 0,

vt + βux − 3uux − αu3x = 0,

which has scaling symmetry:

(x, t, u, v, β) → (λx, λ2t, λ−2u, λ−3v, λ−2β).

• CONSERVATION LAWS.

Dtρ + DxJ = 0,

with conserved density ρ and flux J.

Both are polynomial in u,ux,u2x,u3x, ....

P =
∫ +∞
−∞ ρ dx = constant

if J vanishes at infinity.

Conserved densities are equivalent if they differ by a Dx term.
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Example: The Korteweg-de Vries (KdV) equation

ut + uux + u3x = 0.

Conserved densities:

ρ1 = u, Dt(u) + Dx(
u2

2
+ u2x) = 0.

ρ2 = u2, Dt(u
2) + Dx(

2u3

3
+ 2uu2x − ux

2) = 0.

ρ3 = u3 − 3ux
2,

Dt

(
u3−3ux

2
)
+Dx

3

4
u4−6uux

2+3u2u2x+3u2x
2−6uxu3x

=0.

...

ρ6 = u6 − 60u3ux
2 − 30ux

4 + 108u2u2x
2

+
720

7
u2x

3 − 648

7
uu3x

2 +
216

7
u4x

2.

Time and space dependent conservation law:

Dt

(
tu2 − 2xu

)

+ Dx

2

3
tu3 − xu2 + 2tuu2x − tu2

x − 2xu2x + 2ux

 = 0.

• Algorithm for Conservation Laws of PDEs.

1). Determine weights (scaling properties) of variables and

auxiliary parameters.

2). Construct the form of the density (find monomial building blocks).

3). Determine the constant coefficients.
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• Example: Density of rank 6 for the KdV equation.

Step 1: Compute the weights.

Require uniformity in rank. With w(Dx) = 1:

w(u) + w(Dt) = 2w(u) + 1 = w(u) + 3.

Solve the linear system: w(u) = 2, w(Dt) = 3.

Step 2: Determine the form of the density.

List all possible powers of u, up to rank 6 : [u, u2, u3].

Introduce x derivatives to ‘complete’ the rank.

u has weight 2, introduce D4
x.

u2 has weight 4, introduce D2
x.

u3 has weight 6, no derivative needed.

Apply the Dx derivatives.

Remove terms of the form Dxupx, or Dx up to terms kept prior in

the list.

[u4x] → [ ] empty list.

[ux
2, uu2x] → [ux

2] since uu2x = (uux)x − ux
2.

[u3] → [u3].

Linearly combine the ‘building blocks’:

ρ = c1u
3 + c2ux

2.
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Step 3: Determine the coefficients ci.

Compute Dtρ = 3c1u
2ut + 2c2uxuxt.

Replace ut by −(uux + u3x) and uxt by −(uux + u3x)x.

Integrate the result, E, with respect to x. To avoid integration by

parts, apply the Euler operator (variational derivative)

Lu =
m∑

k=0
(−Dx)

k ∂

∂ukx

=
∂

∂u
− Dx(

∂

∂ux
) + D2

x(
∂

∂u2x
) + · · · + (−1)mDm

x (
∂

∂umx
).

to E of order m.

If Lu(E) = 0 immediately, then E is a total x-derivative.

If Lu(E) 6= 0, the remaining expression must vanish identically.

Dtρ =−Dx[
3

4
c1u

4−(3c1−c2)uu2
x + 3c1u

2u2x

− c2u2x
2+ 2c2uxu3x]− (3c1 + c2)ux

3.

The non-integrable term must vanish.

So, c1 = −1
3c2. Set c2 = −3, hence, c1 = 1.

Result:

ρ = u3 − 3ux
2.

Expression [. . .] yields

J =
3

4
u4 − 6uux

2 + 3u2u2x + 3u2x
2 − 6uxu3x.

Example: First few densities for the Boussinesq system:

ρ1 = u, ρ2 = v,

ρ3 = uv, ρ4 = βu2 − u3 + v2 + αux
2.

(then substitute β = 1).
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• Application.

A Class of Fifth-Order Evolution Equations

ut + αu2ux + βuxu2x + γuu3x + u5x = 0

where α, β, γ are nonzero parameters.

u ∼ D2
x.

Special cases:

α = 30 β = 20 γ = 10 Lax.

α = 5 β = 5 γ = 5 Sawada− Kotera.

α = 20 β = 25 γ = 10 Kaup−Kupershmidt.

α = 2 β = 6 γ = 3 Ito.

What are the conditions for the parameters α, β and γ

so that the equation admits a density of fixed rank?

– Rank 2:

No condition

ρ = u.

– Rank 4:

Condition: β = 2γ (Lax and Ito cases)

ρ = u2.
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– Rank 6:

Condition:

10α = −2β2 + 7βγ − 3γ2

(Lax, SK, and KK cases)

ρ = u3 +
15

(−2β + γ)
ux

2.

– Rank 8:

1). β = 2γ (Lax and Ito cases)

ρ = u4 − 6γ

α
uux

2 +
6

α
u2x

2.

2). α = −2β2−7βγ−4γ2

45 (SK, KK and Ito cases)

ρ = u4 − 135

2β + γ
uux

2 +
675

(2β + γ)2
u2x

2.

– Rank 10:

Condition:

β = 2γ

and

10α = 3γ2

(Lax case)

ρ = u5 − 50

γ
u2ux

2 +
100

γ2
uu2x

2 − 500

7γ3
u3x

2.
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What are the necessary conditions for the parameters α, β and γ

so that the equation admits ∞ many polynomial conservation laws?

– If α = 3
10γ

2 and β = 2γ then there is a sequence

(without gaps!) of conserved densities (Lax case).

– If α = 1
5γ

2 and β = γ then there is a sequence

(with gaps!) of conserved densities (SK case).

– If α = 1
5γ

2 and β = 5
2γ then there is a sequence

(with gaps!) of conserved densities (KK case).

– If

α = −2β2 − 7βγ + 4γ2

45
or

β = 2γ

then there is a conserved density of rank 8.

Combine both conditions: α = 2γ2

9 and β = 2γ (Ito case).

SUMMARY: see tables (notice the gaps!)
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• GENERALIZED SYMMETRY.

G(x, t,u,ux,u2x, ...)

with G = (G1, G2, ..., Gn) is a symmetry iff it leaves the PDE

invariant for the replacement u → u + εG within order ε. i.e.

Dt(u + εG) = F(u + εG)

must hold up to order ε on the solutions of PDE.

Consequently, G must satisfy the linearized equation

DtG = F′(u)[G],

where F′ is the Fréchet derivative of F, i.e.,

F′(u)[G] =
∂

∂ε
F(u + εG)|ε=0.

Here u is replaced by u + εG, and unx by unx + εDn
xG.

• Example.

Consider the KdV equation

ut = 6uux + u3x.

Generalized symmetries:

G(1) =ux, G(2) = 6uux + u3x,

G(3) = 30u2ux + 20uxu2x + 10uu3x + u5x,

G(4) =140u3ux + 70u3
x + 280uuxu2x + 70u2u3x

+70u2xu3x + 42uxu4x + 14uu5x + u7x.
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• Algorithm for Generalized Symmetries of PDEs.

Consider the KdV equation, ut = 6uux + u3x, with w(u) = 2.

Step 1: Construct the form of the symmetry.

Compute the form of the symmetry with rank 7.

List all powers in u with rank 7 or less:

L = {1, u, u2, u3}.

For each monomial in L, introduce the needed x-derivatives, so that

each term exactly has rank 7. Thus,

Dx(u
3) = 3u2ux, D3

x(u
2) = 6uxu2x + 2uu3x,

D5
x(u) = u5x, D7

x(1) = 0.

Gather the resulting (non-zero) terms

R = {u2ux, uxu2x, uu3x, u5x}.
The symmetry is a linear combination of these monomials:

G = c1 u2ux + c2 uxu2x + c3 uu3x + c4 u5x.

Step 2: Determine the unknown coefficients ci.

Compute DtG and use KdV to remove ut, utx, utxx, etc.

Compute the Fréchet derivative.

Equate the resulting expressions.

Group the terms:

(12c1 − 18c2)u
2
xu2x + (6c1 − 18c3)uu2

2x + (6c1 − 18c3)uuxu3x +

(3c2 − 60c4)u
2
3x + (3c2 + 3c3 − 90c4)u2xu4x + (3c3 − 30c4)uxu5x ≡ 0.
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Solve the linear system:

S = {12c1 − 18c2 = 0, 6c1 − 18c3 = 0, 3c2 − 60c4 = 0,

3c2 + 3c3 − 90c4 = 0, 3c3 − 30c4 = 0}.
Solution: c1

30 = c2
20 = c3

10 = c4.

Setting c4 = 1 one gets: c1 = 30, c2 = 20, c3 = 10.

Substitute the result into the symmetry:

G = 30u2ux + 20uxu2x + 10uu3x + u5x.

Note that ut = G is known as the Lax equation.

• x-t Dependent symmetries.

The KdV equation has also symmetries which explicitly depend on

x and t.

The same algorithm can be used provided the highest degree of x or

t is specified.

Compute the symmetry of rank 2, that is linear in x or t.

List all monomials in u, x and t of rank 2 or less:

L = {1, u, x, xu, t, tu, tu2}.
For each monomial in L, introduce enough x-derivatives, so that

each term exactly has rank 2. Thus,

Dx(xu) = u + xux, Dx(tu
2) = 2tuux, D3

x(tu) = tu3x,

D2
x(1) = D3

x(x) = D5
x(t) = 0.

Gather the non-zero resulting terms:

R = {u, xux, tuux, tu3x},
Build the linear combination

G = c1 u + c2 xux + c3 tuux + c4 tu3x.
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Determine the coefficients c1 through c4:

G =
2

3
u +

1

3
xux + 6tuux + tu3x.

Two symmetries of KdV that explicitly depend on x and t :

G = 1 + 6tux, and G = 2u + xux + 3t(6uux + u3x),

of rank 0 and 2, respectively.
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• RECURSION OPERATORS.

A recursion operator for a PDE system is the linear operator Φ

connecting two symmetries G and Ĝ:

Ĝ = ΦG.

For n-component systems, Φ is an n× n matrix.

Defining equation for Φ :

DtΦ + [Φ,F′(u)] =
∂Φ

∂t
+ Φ′[F] + Φ ◦ F′(u)− F′(u) ◦Φ = 0,

where [ , ] means commutator, ◦ stands for composition, and Φ′[F]

is the variational derivative of Φ.

• Example.

The recursion operator for the KdV equation (has rank 2)

Φ = D2
x + 2u + 2DxuD−1

x = D2
x + 4u + 2uxD

−1
x ,

where D−1
x is the integration operator.

For example

Φux = (D2
x + 2u + 2DxuD−1

x )ux = 6uux + u3x,

Φ(6uux + u3x) = (D2
x + 2u + 2DxuD−1

x )(6uux + u3x)

= 30u2ux + 20uxu2x + 10uu3x + u5x.
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• Key Observations.

The terms in the recursion operator are monomials in Dx, D
−1
x , u, ux, ...

Recursion operators split naturally in Φ = Φ0 + Φ1.

Φ0 is a differential operator (no D−1
x terms).

Φ1 is an integral operator (with D−1
x terms).

Application of Φ to a symmetry should not leave any integrals.

For instance, for the KdV equation:

D−1
x (6uux + u3x) = 3u2 + u2x is polynomial.

Use the conserved densities: ρ(1) = u, ρ(2) = u2, ρ(3) = u3 − 1
2u

2
x

Dtρ
(1) = Dtu = ut = −DxJ

(1),

Dtρ
(2) = Dtu

2 = 2uut = −DxJ
(2), and

Dtρ
(3) = Dt(u

3 − 1

2
u2

x) = ρ(3)′(u)[ut] = (3u2 − uxDx)ut = −DxJ
(3),

for polynomial J (i), i = 1, 2, 3.

So, application of D−1
x , or D−1

x u, or D−1
x (3u2 − uxDx)

to 6uux + u3x leads to a polynomial result.

• Algorithm for Recursion Operators of PDEs.

Step 1: Determine the rank of the recursion operator.

Recall: symmetries for the KdV equation, ut = 6uux + u3x, are

G(1) = ux, G(2) = 6uux + u3x,

G(3) = 30u2ux + 20uxu2x + 10uu3x + u5x.

Hence,

R = rank Φ = rank G(3) − rank G(2) = rank G(2) − rank G(1) = 2.
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Step 2: Construct the form of the recursion operator.

(i) Determine the pieces of operator Φ0

List all permutations of type Djuk of rank R, with j and k nonneg-

ative integers.

L = {D2, u}.

(ii) Determine the pieces of operator Φ1

Combine the symmetries G(j) with D−1 and ρ(k)′(u), so that every

term in

Φ1 =
∑
j

∑
k

G(j)D−1ρ(k)′(u)

has rank Φ1 = R.

The indices j and k are taken so that

rank (G(j)) + rank (ρ(k)′(u))− 1 = R.

List such terms:

M = {uxD
−1}.

(iii) Build the operator Φ

Linearly combine the term in

R = L⋃M = {D2, u, uxD
−1}.

to get

Φ = c1 D2 + c2 u + c3 uxD
−1.
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Step 3: Determine the unknown coefficients.

Require that

ΦG(k) = G(k+1), k = 1, 2, 3, ...

Solve the linear system:

S = {c1−1 = 0, 18c1+c3−20 = 0, 6c1+c2−10 = 0, 2c2+c3−10 = 0},

Solution: c1 = 1, c2 = 4, and c3 = 2. So,

Φ = D2 + 4 u + 2 uxD
−1.

Examples.

The SK equation:

ut = 5u2ux + 5uxu2x + 5uu3x + u5x.

Recursion operator:

Φ = D6 + 3uD4 − 3DuD3 + 11D2uD2 − 10D3uD + 5D4u

+ 12u2D2 − 19uDuD + 8uD2u + 8DuDu + 4u3

+ uxD
−1(u2 − 2uxD) + G(2)D−1,

with G(2) = 5u2ux + 5uxu2x + 5uu3x + u5x.

For the vector nonlinear Schrödinger system:

ut +
[
u(u2 + v2) + βu + γv − vx

]
x

= 0,

vt +
[
v(u2 + v2) + θu + δv + ux

]
x

= 0.

Recursion operator:

Φ =

 β − δ + 2u2 + 2uxD
−1u θ + 2uv − D + 2uxD

−1v

θ + 2uv + D + 2vxD
−1u 2v2 + 2vxD

−1v

 .
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PART II: Differential-difference (lattice) Equations

• Systems of lattices equations

Consider the system of lattice equations, continuous in time,

discretized in (one dimensional) space

u̇n = F(...,un−1,un,un+1, ...)

where un and F are vector dynamical variables.

F is polynomial with constant coefficients.

No restrictions on the level of the shifts or the degree of nonlinearity.

• CONSERVATION LAW:

ρ̇n = Jn − Jn+1

with density ρn and flux Jn.

Both are polynomials in un and its shifts.

d

dt
(
∑
n

ρn) =
∑
n

ρ̇n =
∑
n

(Jn − Jn+1)

if Jn is bounded for all n.

Subject to suitable boundary or periodicity conditions

∑
n

ρn = constant.
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• Example.

Consider the one-dimensional Toda lattice

ÿn = exp (yn−1 − yn)− exp (yn − yn+1)

yn is the displacement from equilibrium of the nth particle with

unit mass under an exponential decaying interaction force between

nearest neighbors.

Change of variables:

un = ẏn, vn = exp (yn − yn+1)

yields

u̇n = vn−1 − vn, v̇n = vn(un − un+1).

Toda system is completely integrable.

The first two density-flux pairs (computed by hand):

ρ(1)
n = un, J (1)

n = vn−1, and ρ(2)
n = 1

2u
2
n + vn, J (2)

n = unvn−1.

• Key concept: Dilation invariance.

The Toda system as well as the conservation laws and symmetries

are invariant under the dilation symmetry

(t, un, vn) → (λ−1t, λun, λ
2vn).

Thus, un corresponds to one t-derivative: un ∼ d
dt.

Similarly, vn ∼ d2

dt2
.

Weight , w, of variables are defined in terms of t-derivatives.

Set w( d
dt) = 1.
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Weights of dependent variables are nonnegative, rational, and

independent of n.

Due to dilation invariance: w(un) = 1 and w(vn) = 2.

The rank of a monomial is its total weight in terms of t-derivatives.

Require uniformity in rank for each equation to compute the weights:

(solve the linear system):

w(un) + 1=w(vn), w(vn) + 1=w(un) + w(vn),

Solving the linear system yields w(un) = 1, w(vn) = 2.

• Equivalence Criterion.

Define D shift-down operator, and U shift-up operator,

on the set of all monomials in un and their shifts.

For a monomial m :

Dm = m|n→n−1, and Um = m|n→n+1.

For example

Dun+2vn = un+1vn−1, Uun−2vn−1 = un−1vn.

Compositions of D and U define an equivalence relation.

All shifted monomials are equivalent .

For example

un−1vn+1 ≡ un+2vn+4 ≡ un−3vn−1.
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Equivalence criterion:

Two monomials m1 and m2 are equivalent, m1 ≡ m2, if

m1 = m2 + [Mn −Mn+1]

for some polynomial Mn.

For example, un−2un ≡ un−1un+1 since

un−2un = un−1un+1+[un−2un−un−1un+1] = un−1un+1+[Mn−Mn+1].

Main representative of an equivalence class is the monomial with

label n on u (or v).

For example, unun+2 is the main representative of the class

with elements un−1un+1, un+1un+3, etc.

Use lexicographical ordering to resolve conflicts.

For example, unvn+2 (not un−2vn) is the main representative of

the class with elements un−3vn−1, un+2vn+4, etc.

• Steps of the Algorithm for Lattices.

Three-step algorithm to find conserved densities:

1). Determine the weights.

2). Construct the form of density.

3). Determine the coefficients.
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Example: Density of rank 3 or the Toda lattice,

u̇n = vn−1 − vn, v̇n = vn(un − un+1).

Step 1: Compute the weights.

Here w(un) = 1 and w(vn) = 2.

Step 2: Construct the form of the density.

List all monomials in un and vn of rank 3 or less:

G={u3
n, u

2
n, unvn, un, vn}.

For each monomial in G, introduce enough t-derivatives to obtain

weight 3. Use the lattice to remove u̇n and v̇n :

d0

dt0
(u3

n) = u3
n,

d0

dt0
(unvn) = unvn,

d

dt
(u2

n) = 2unvn−1 − 2unvn,

d

dt
(vn) = unvn − un+1vn,

d2

dt2
(un) = un−1vn−1 − unvn−1 − unvn + un+1vn.

Gather the resulting terms in a set

H = {u3
n, unvn−1, unvn, un−1vn−1, un+1vn}.

Replace members in the same equivalence class by their

main representatives .

For example, unvn−1 ≡ un+1vn are replaced by unvn−1.

Linearly combine the monomials in

I = {u3
n, unvn−1, unvn}

to obtain

ρn = c1 u3
n + c2 unvn−1 + c3 unvn.
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Step 3: Determine the coefficients.

Require that ρ̇n = Jn − Jn+1, holds.

Compute ρ̇n and use the lattice to remove u̇n and v̇n.

Group the terms

ρ̇n = (3c1 − c2)u
2
nvn−1 + (c3 − 3c1)u

2
nvn + (c3 − c2)vn−1vn

+c2un−1unvn−1 + c2v
2
n−1 − c3unun+1vn − c3v

2
n.

Use the equivalence criterion to modify ρ̇n.

Replace un−1unvn−1 by unun+1vn + [un−1unvn−1 − unun+1vn].

Introduce the main representatives. Thus

ρ̇n = (3c1 − c2)u
2
nvn−1 + (c3 − 3c1)u

2
nvn

+(c3 − c2)vnvn+1 + [(c3 − c2)vn−1vn − (c3 − c2)vnvn+1]

+c2unun+1vn + [c2un−1unvn−1 − c2unun+1vn]

+c2v
2
n + [c2v

2
n−1 − c2v

2
n]− c3unun+1vn − c3v

2
n.

Group the terms outside of the square brackets and move the pairs

inside the square brackets to the bottom.

Rearrange the terms to match the pattern [Jn − Jn+1].

Hence

ρ̇n = (3c1 − c2)u
2
nvn−1 + (c3 − 3c1)u

2
nvn

+(c3 − c2)vnvn+1 + (c2 − c3)unun+1vn + (c2 − c3)v
2
n

+[{(c3 − c2)vn−1vn + c2un−1unvn−1 + c2v
2
n−1}

−{(c3 − c2)vnvn+1 + c2unun+1vn + c2v
2
n}].

The terms inside the square brackets determine:

Jn = (c3 − c2)vn−1vn + c2un−1unvn−1 + c2v
2
n−1.
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The terms outside the square brackets must vanish, thus

S = {3c1 − c2 = 0, c3 − 3c1 = 0, c2 − c3 = 0}.

The solution is 3c1 = c2 = c3, so choose c1 = 1
3, and c2 = c3 = 1:

ρn = 1
3 u3

n + un(vn−1 + vn), Jn = un−1unvn−1 + v2
n−1.

Analogously, conserved densities of rank ≤ 5:

ρ(1)
n = un ρ(2)

n = 1
2un

2 + vn

ρ(3)
n = 1

3un
3 + un(vn−1 + vn)

ρ(4)
n = 1

4un
4 + un

2(vn−1 + vn) + unun+1vn + 1
2vn

2 + vnvn+1

ρ(5)
n = 1

5un
5 + un

3(vn−1 + vn) + unun+1vn(un + un+1)

+unvn−1(vn−2 + vn−1 + vn) + unvn(vn−1 + vn + vn+1).
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• GENERALIZED SYMMETRIES

A vector function G(...,un−1,un,un+1, ...) is a symmetry if the

infinitesimal transformation un → un + εG(...,un−1,un,un+1, ...)

leaves the lattice system invariant within order ε.

Consequently, G must satisfy the linearized equation

DtG = F′(un)[G],

where F′ is the Fréchet derivative of F, i.e.,

F′(un)[G] =
∂

∂ε
F(un + εG)|ε=0.

Here, un → un + εG(...,un−1,un,un+1, ...) means that un+k is

replaced by un+k + εG|n→n+k.

• Example

Consider the Toda lattice

u̇n = vn−1 − vn, v̇n = vn(un − un+1).

Higher-order symmetry of rank (3, 4):

G1 = vn(un + un+1)− vn−1(un−1 + un),

G2 = vn(u2
n+1 − u2

n) + vn(vn+1 − vn−1).
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• Algorithm for Generalized Symmetries of DDEs.

Consider the Toda system with w(un) = 1 and w(vn) = 2.

Compute the form of the symmetry of ranks (3, 4), i.e. the first

component of the symmetry has rank 3, the second rank 4.

Step 1: Construct the form of the symmetry.

List all monomials in un and vn of rank 3 or less:

L1 = {u3
n, u

2
n, unvn, un, vn},

and of rank 4 or less:

L2 = {u4
n, u

3
n, u

2
nvn, u

2
n, unvn, un, v

2
n, vn}.

For each monomial in L1 and L2, introduce enough t-derivatives, so

that each term exactly has rank 3 and 4, respectively.

Using the lattice equations, for the monomials in L1 :

d0

dt0
(u3

n) = u3
n,

d0

dt0
(unvn) = unvn,

d

dt
(u2

n) = 2unu̇n = 2unvn−1 − 2unvn,

d

dt
(vn) = v̇n = unvn − un+1vn,

d2

dt2
(un) =

d

dt
(u̇n) =

d

dt
(vn−1 − vn)

= un−1vn−1 − unvn−1 − unvn + un+1vn.

Gather the resulting terms:

R1 = {u3
n, un−1vn−1, unvn−1, unvn, un+1vn}.
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R2 = {u4
n, u

2
n−1vn−1, un−1unvn−1, u

2
nvn−1, vn−2vn−1, v

2
n−1, u

2
nvn,

unun+1vn, u
2
n+1vn, vn−1vn, v

2
n, vnvn+1}.

Linearly combine the monomials in R1 and R2

G1 = c1 u3
n + c2 un−1vn−1 + c3 unvn−1 + c4 unvn + c5 un+1vn,

G2 = c6 u4
n + c7 u2

n−1vn−1 + c8 un−1unvn−1 + c9 u2
nvn−1

+c10 vn−2vn−1 + c11 v2
n−1 + c12 u2

nvn + c13 unun+1vn

+c14 u2
n+1vn + c15 vn−1vn + c16 v2

n + c17 vnvn+1.

Step 2: Determine the unknown coefficients.

Require that the symmetry condition holds.

Solution:

c1 = c6 = c7 = c8 = c9 = c10 = c11 = c13 = c16 = 0,

−c2 = −c3 = c4 = c5 = −c12 = c14 = −c15 = c17.

Therefore, with c17 = 1, the symmetry of rank (3, 4) is:

G1 = unvn − un−1vn−1 + un+1vn − unvn−1,

G2 = u2
n+1vn − u2

nvn + vnvn+1 − vn−1vn.

Analogously, the symmetry of rank (4, 5) reads

G1 = u2
nvn + unun+1vn + u2

n+1vn + v2
n + vnvn+1 − u2

n−1vn−1

−un−1unvn−1 − u2
nvn−1 − vn−2vn−1 − v2

n−1,

G2 = un+1v
2
n + 2un+1vnvn+1 + un+2vnvn+1 − u3

nvn + u3
n+1vn

−un−1vn−1vn − 2unvn−1vn − unv
2
n.
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• Example: Nonlinear Schrödinger (NLS) equation.

Ablowitz and Ladik discretization of the NLS equation:

i u̇n = un+1 − 2un + un−1 + u∗nun(un+1 + un−1).

u∗n is the complex conjugate of un.

Treat un and vn = u∗n as independent variables and add the complex

conjugate equation. Absorb i in the scale on t :

u̇n = un+1 − 2un + un−1 + unvn(un+1 + un−1),

v̇n = −(vn+1 − 2vn + vn−1)− unvn(vn+1 + vn−1).

Since vn = u∗n, w(vn) = w(un).

No uniformity in rank! Introduce an auxiliary parameter α with

weight.

u̇n = α(un+1 − 2un + un−1) + unvn(un+1 + un−1),

v̇n = −α(vn+1 − 2vn + vn−1)− unvn(vn+1 + vn−1).

Uniformity in rank leads to

w(un) + 1 = w(α) + w(un) = 2w(un) + w(vn) = 3w(un),

w(vn) + 1 = w(α) + w(vn) = 2w(vn) + w(un) = 3w(vn).

which yields

w(un) = w(vn) =
1

2
, w(α) = 1.

Uniformity in rank is essential for steps 1 and 2.

After Step 2, set α = 1. Step 3 leads to the result:

ρ(1)
n = c1unvn−1 + c2unvn+1, etc.
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PART III: Software

• Scope and Limitations of Algorithms.

– Systems of evolution equations or lattice equations must

be polynomial in dependent variables.

No explicitly dependencies on the independent variables.

– Only one space variable (continuous or discretized) is allowed.

– Program only computes polynomial conservation laws and gen-

eralized symmetries (no recursion operators yet).

– Program computes conservation laws and symmetries that ex-

plicitly depend on the independent variables, if the highest degree

is specified.

– No limit on the number of equations in the system.

In practice: time and memory constraints.

– Input systems may have (nonzero) parameters.

Program computes the compatibility conditions for parameters

such that conservation laws and symmetries (of a given rank)

exist.

– Systems can also have parameters with (unknown) weight.

This allows one to test evolution and lattice equations

of non-uniform rank.

– For systems where one or more of the weights is free,

the program prompts the user for info.

– Fractional weights and ranks are permitted.

– Complex dependent variables are allowed.

– PDEs and lattice equations must be of first-order in t.
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• Conclusions and Future Research

– Implement the recursion operator algorithm for PDEs.

– Design an algorithm for recursion operators of DDEs.

– Improve software, compare with other packages.

– Add tools for parameter analysis (Gröbner basis).

– Generalization towards broader classes of equations (e.g. uxt).

– Generalization towards more space variables

(e.g. Kadomtsev-Petviashvili equation).

– Conservation laws with time and space dependent coefficients.

– Conservation laws with n dependent coefficients.

– Exploit other symmetries in the hope to find conserved densities.

of non-polynomial form

– Application: test models for integrability.

– Application: study of classes of nonlinear PDEs or DDEs.

– Compute constants of motion for dynamical systems

(e.g. Lorenz and Hénon-Heiles systems)
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• Implementation in Mathematica – Software

– Ü. Göktaş and W. Hereman, The software package

InvariantsSymmetries.m and the related files are available at

http://www.mathsource.com/cgi-bin/msitem?0208-932.

MathSource is an electronic library of Mathematica material.

– Software: available via FTP, ftp site mines.edu

in

pub/papers/math cs dept/software/condens

pub/papers/math cs dept/software/diffdens

or via the Internet

URL: http://www.mines.edu/fs home/whereman/
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