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Introduction and goal
Gardner equation is delicate: coefficient B of quadratic nonlinearity should be very
small (close to zero), whereas coefficient C of cubic term should be finite

Not all plasma compositions can support this (here: specific dusty plasma model)

Often Sagdeev pseudopotential analysis can be used (but not for soliton
interactions)

Goal: compare Sagdeev pseudopotential analysis with reductive perturbation
methods (Gardner solitons) to learn how reliable the latter methods are

Korteweg-de Vries family of nonlinear evolution equations
Three fully integrable members :

Korteweg-de Vries (KdV) equation, with quadratic nonlinearity
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modified KdV equation, with cubic nonlinearity
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Gardner or mixed KdV equation, having both such nonlinearities
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Gardner equation is appropriate combination of KdV and mKdV equations

For consistency, C is of order unity and B should be very small, otherwise
quadratic term prevails over cubic term

Sign of B is irrelevant (can be re-scaled), but sign of C is important, because
physically relevant solitons can only be obtained for C > 0

Sagdeev pseudopotential analysis
This alternative method (contemporary to reductive perturbation theory in
plasmas!) works with nonlinearities in full, but requires all dependent
variables be expressible as functions of e.g. electrostatic potential φ

Moreover, method to generate solitary wave profiles in a co-moving frame
requires numerical integration for one profile at the time

Thus, possible interactions between such solitary waves cannot be studied,
whereas for integrable evolution equations elastic scattering properties can
be analyzed in theoretical framework, earning them the name “solitons”

Dusty plasma model and expressions
Model equations :

Boltzmann electrons : ne = (1 − f ) exp[σφ]

Cold negative dust : nd = f
(

1 +
2φ
V 2

)−1/2

Cairns protons : ni = (1 + βφ + βφ2) exp[−φ]

Poisson’s equation leads to conservation law in soliton frame (ζ = x − Vt)
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Sagdeev pseudopotential is

S(φ)={1 + 3β − (1 + 3β + 3βφ + βφ2) exp[−φ]}
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Sagdeev potentials, positive and negative soliton profiles
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Left column is for V = 1.170, middle for V = 1.175 and right for V = 1.180, all
above acoustic velocity Va = 1.16679

Figures have been drawn for f = 0.61, β = 4/7, σ = 1/20, chosen so that in
Gardner equation B = 0.0116414 and C = 0.456023

Gardner equation and its solutions for same model parameters
Treatment requires stretched variables ξ = ε(x − Mt) and τ = ε3t , and
expansions of densities, momentum, and electrostatic potential

ni=1 + εni1 + ε2ni2 + ε3ni3 + ...

ne=1 − f + εne1 + ε2ne2 + ε3ne3 + ...

nd=f + εnd1 + ε2nd2 + ε3nd3 + ...

ud=εud1 + ε2ud2 + ε3ud3 + ...

φ=εφ1 + ε2φ2 + ε3φ3 + ...

Standard reductive perturbation theory procedure yields Gardner equation
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with coefficients
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Solutions for C > 0 are given by

φ1(ξ, τ ) =
6v
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√
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where v is soliton velocity in (ξ, τ )-coordinates

Solutions and comparison with Sagdeev’s approach
Use Gardner equation with numerical coefficients corresponding to
compositional parameters
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Analytic solutions are depicted graphically (dashed lines) and compared to
Sagdeev numerical counterparts for V = 1.170, V = 1.175 and V = 1.180
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Observations :
• For V slightly above acoustic speed, Gardner soliton is slightly higher, but
as V increases the fully nonlinear solitons prevail

• Amplitudes increase when V or v increase while their widths decrease,
where link is v = V − Va = V − Ma

• Overall, Sagdeev profiles are taller and wider than Gardner solitons

What about simple KdV ion-acoustic solitons?
Same exercise, done for simplest ion-acoustic solitons based on KdV model,
indicates that KdV solitons (dashed lines) are taller than fully nonlinear Sagdeev
ones, and no longer match from v = 0.03 onwards (left: v = 0.01, right: v = 0.20)
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Conclusions
Comparison between Gardner equation and Sagdeev pseudopotential
analysis for same dusty plasma model shows interesting analogies and
differences
For φ ⩽ 0.3, Gardner solutions are reliable; for φ ⩾ 0.3, Sagdeev profiles
dominate both in amplitudes as in widths, and nonlinear effects can no longer
be limited to cubic terms
Comparison with simple ion-acoustic waves leads to different conclusions:
for v > 0.3, Gardner solitons become too tall
Results seem model-dependent and are also affected by conditions (B ≪ C,
with C > 0 and finite) for Gardner model
Sagdeev analysis indicates for same model parameters and velocities
positive and negative solutions, but with different amplitudes. Negative
solitons in Gardner analysis do not match amplitudes or boundary conditions
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