peer-reviewed papers and books

Note: PDF reprints are provided below within the context of fair use. Please obtain copies from the publisher if appropriate.
(+=undergraduate student author; *=graduate student author; #=postdoc author)


[113] – Dumont, M.# and Singha, K. (2024). Geophysics as a hypothesis-testing tool for critical zone hydrogeology. WIREs Water, doi: 10.1002/wat2.1732. (Invited.)

[112] – Singha, K., Sullivan, P.L., Billings, S., Walls, L., Li, L., Jarecke, K.#, Barnard, H., Gasparini, N., Madoff, R.D., Dhital, S., Jones, C.+, Kastelic, E.*, Ma, L., Perilla-Castillo, P.#, Song, B.#, Zhu, T. (2024). Expanding the spatial reach and human impacts of critical zone science. Earth’s Future, doi:10.1029/2023EF003971.

[111] – Hoagland, B.#, Rasmussen, K.*, Singha, K., Spear, J.R., and Navarre-Sitchler, A. (2024). Metal-oxide precipitation influences microbiome structure in hyporheic zones receiving acid rock drainage. Applied and Environmental Microbiology, doi:10.1128/aem.01987-23. (Press release by AAAS)

[110] – Warix, S.R.*, Navarre-Sitchler, A. and Singha, K. (2024). Water-rock interactions drive chemostasis. Hydrological Processes, doi:10.1002/hyp.15078. (Selected for an HP Editor’s Choice Award)

[109] – Han, Z.*, Kang, X., Singha, K., Wu, J. and Shi, X. (2024). Real-time monitoring of in situ chemical oxidation (ISCO) of aqueous-phase TCE by integrating electrical resistivity tomography and reactive transport modeling. Water Research, doi: 10.1016/j.watres.2024.121195.


[108] – Singha, K. (2023). Giving shape to a meaningful and fulfilling career in science: some no-nonsense advice. Perspectives of Earth and Space Scientists, (Invited.)

[107] – Guireli Netto, L.*, Singha, K., Moreira, C.A., Gandolfo, O.C.B., and Albarelli, D.N.S.A. (2023). Investigation of fractured rock beneath a uranium-tailing storage dam through UAV digital photogrammetry and seismic refraction tomography. Frontiers in Earth Science, doi: 10.3389/feart.2023.1281076.

[106] – Warix, S.R.*, Navarre-Sitchler, A., Manning, A.H., and Singha, K. (2023). Local topography and hydraulic conductivity influence riparian groundwater age and groundwater-surface water connection. Water Resources Research, doi:10.1029/2023WR035044.

[105] – Dorley, J.*, Singley, J.*, Covino, T., Singha, K., Gooseff, M. and González-Pinzón, R. (2023). Physical and stoichiometric controls on stream respiration in a headwater stream. Biogeochemistry Discussions., doi: 10.5194/bg-20-3353-2023.

[104] – Loiseau, B.*, Carrière, S., Jougnot, D., Singha, K., Mary, B., Delpierre, N., Guérin, R., and Martin-St.Paul, N. (2023). The geophysical toolbox applied to forest ecosystems – a review. Science of the Total Environment, doi: 10.1016/j.scitotenv.2023.165503.

[103] – Burns, E.F.*, Rempe, D.M., Parsekian, A.D., Schmidt, L.M., Singha, K., and Barnard, H.R. (2023). Ecohydrologic dynamics of rock moisture in a montane catchment of the Colorado Front Range. Water Resources Research, doi: 10.1029/2022WR034117.

[102] – Dorchester, C.*, Day-Lewis, F.D., and Singha, K. (2023). Evaluation of dual-domain mass transfer in porous media at the pore scale. Groundwater, doi:10.1111/gwat.13328.

[101] – Meeks, J.#, Mass, S.*, Adgate, J.A., Barton, K., Singha, K., McCray, J.E., Starling, A.P., and Higgins, C.P. (2023). Estimating historical exposure to perfluoroalkyl acids in Security, Fountain, and Widefield, Colorado: Use of water-infrastructure blending and toxicokinetic models. Environmental Science: Processes & Impacts, doi: 10.1039/D2EM00337F.

[100] – Zhang, X.#, Sawyer, A.H., and Singha, K. (2023). A numerical exploration of hyporheic zone solute transport behavior estimated from electrical resistivity inversions. Journal of Hydrology,

[99] – Marshall, A.*, Zhang, X.#, Sawyer, A.H., Wohl, E., and Singha, K. (2023). Logjam characteristics as drivers of transient storage in headwater streams. Water Resources Research, doi: 10.1029/2022WR033139.


[98] – Singley, J.G.*, K. Singha, M.N. Gooseff, A.S. Ward, and E.S. Hinckley (2022). Identification of hyporheic extent and functional zonation during seasonal streamflow recession by unsupervised clustering of time-lapsed electrical resistivity models. Hydrological Processes, doi: 10.1002/hyp.14713.

[97] – González-Pinzón, R., Dorley, J.*, Singley, J.*, Singha, K., Gooseff, M., Covino, T. (2022). TIPT: The Tracer Injection Planning Tool. Environmental Modelling and Software, (A SSRN Top Ten Download)

[96] – Heil, E.#, Warix, S.*, Singha, K., Navarre-Sitchler, A. (2022). Decadal trends in solute concentrations, mass flux, and discharge reveal variable hydrologic and geochemical response to climate change in two alpine watersheds. Applied Geochemistry,

[95] – Grana, D., A.D. Parsekian, B.A. Flinchum, N.Y. Smeltz, R.P. Callahan, A. Li, J. Hayes, B. Carr, K. Singha, C.S. Riebe; S. W. Holbrook (2022). Geostatistical rock physics inversion for predicting the spatial distribution of porosity and saturation in the critical zone. Mathematical Geosciences.

[94] – Hall, N.*, Rust, A.#, Hogue, T., and Singha, K. (2022). Analysis of watershed parameters controlling turbidity following the West Fork Complex Fire. Journal of Hydrology,

[93] – Singha, K., Johnson, T.C., Day-Lewis, F.D., and Slater, L.D. (2022). Electrical Imaging in Hydrogeology. The Groundwater Project, Guelph, Ontario, Canada, 74 pp. ISBN: 978-1-77470-011-2.

[92] – Sullivan, P.L, Billings, S., Hirmas, D., Li, L., Zhang, X., Ziegler, S., Murenbeeld, K., Ajami, H., Guthrie, A.*, Singha, K. , Gimenez, D.*, Duro, A.M.*, Moreno, V.*, Flores, A., Cueva, A., Koop, A.N., Aronson, E., Barnard, H., Banwart, S., Keen, R.#, Nemes, A.*, Nikolaidis, N., Nippert, J., Richter, D., Robinson, D., Sadayappan, K.*, Souza, L.*, Unruh, M.*, and Wen, H.# (2022). Embracing the dynamic nature of soil structure: A paradigm illuminating the role of life in critical zones of the Anthropocene. Earth-Science Reviews,


[91] – Singha, K. and Navarre-Sitchler, A. (2021). The importance of groundwater in critical zone science. Groundwater, doi: 10.1111/gwat.13143. (A Wiley Top Downloaded Paper 2021; Top Cited Paper 2021-2022)

[90] – Rey, D.M.*, Hinckley, E.S., Walvoord, M., and Singha, K. (2021). Integrating observations and models to determine the effect of seasonally frozen ground on hydrologic partitioning in alpine hillslopes in the Colorado Rocky Mountains, USA.  Hydrological Processes,

[89] – Rickel, A.*, Hoagland, B.#, Navarre-Sitchler, A. and Singha, K. (2021). Seasonal shifts in surface water-groundwater connections from electrical resistivity in a ferricrete-impacted stream. Geophysics,

[88] – Wilhelmsen, K.*, Sawyer, A., Marshall, A.*, McFadden, S.*, Singha, K., Wohl, E. (2021). Laboratory flume and numerical modeling experiments show log jams and branching channels increase hyporheic exchange. Water Resources Research, doi:10.1029/2021WR030299.

[87] – Harmon, R.*, Barnard, H., Day-Lewis, F.D., Mao, D., and Singha, K. (2021). Exploring environmental factors that drive diel variations in tree water storage using wavelet analysis. Frontiers in Water, doi: 10.3389/frwa.2021.682285.

[86] – Foster, A.*, Trautz, A.C.#, Bolster, D., Illangasekare, T., and Singha, K. (2021). Effects of large-scale heterogeneity and temporally varying hydrologic processes on estimating immobile pore space: A mesoscale-laboratory experimental and numerical modeling investigation. Journal of Contaminant Hydrology,

[85] – Beetle-Moorcroft, F.*, Shanafield, M., and Singha, K. (2021). Exploring conceptual models of infiltration and groundwater recharge on an intermittent river: the role of geologic controls. Journal of Hydrology-Regional Studies,

[84] – Ader, E.*, Wohl, E., McFadden, S.*, and Singha, K. (2021). Logjams as a driver of transient storage in a mountain stream. Earth Surface Processes and Landforms, (A Wiley Top Cited Paper 2021-2022)

[83] – Rice, A.K.*, McCray, J.E. and Singha, K. (2021). Numerical investigation of wellbore methane leakage from a dual-porosity reservoir and subsequent transport in groundwater. Water Resources Research,


[82] – Hoagland, B.#, Navarre-Sitchler, A., Cowie, R., and Singha, K. (2020). Groundwater-stream connectivity mediates metal(loid) geochemistry in the hyporheic zone of streams impacted by historic mining and acid rock drainage. Frontiers in Water,

[81] – Rey, D.M.*, Walvoord, M., Minsley, B., Ebel, B., Voss, C., and Singha, K. (2020). Wildfire-initiated talik development exceeds current thaw projections: Observations and models from Alaska’s continuous permafrost zone. Geophysical Research Letters,

[80] – Luo, Z.*, Deng, Z.#, Singha, K., Liu, N.*, Zhou, Y.*, He, X., and Guan, H. (2020). Temporal and spatial variation in water content within living tree stems determined by electrical resistivity tomography. Agricultural and Forest Meteorology,

[79] – Hampton, T.B.*, Zarnetske, J.P., Briggs, M.A., MahmoodPoor Dehkordy, F.*, Singha, K., Day-Lewis, F.D., Harvey, J.W., Roy Chowdhury, S.*, and Lane, J.W. (2020). Experimental shifts of hydrologic residence time in a sandy urban stream sediment–water interface alter nitrate removal and nitrous oxide fluxes. Biogeochemistry,

[78] – Doughty, M.*, Sawyer, A., Wohl, E., and Singha, K. (2020). Mapping increases in hyporheic exchange from channel-spanning logjams. Journal of Hydrology,​1016/​j.​jhydrol.​2020.​124931.

[77] – Cone, K.A.*, Palin, R.M., and Singha, K. (2020). Unsupervised machine learning with petrological database ApolloBasaltDB reveals complexity in lunar basalt major element oxide and mineral distribution patterns. Icarus,

[76] – Harmon, R.*, Barnard, H., and Singha, K. (2020). Water-table depth and bedrock permeability control magnitude and timing of transpiration-induced diel fluctuations in groundwater. Water Resources Research, 56, e2019WR025967.

[75] – Roy Chowdhury, S.*, Zarnetske, J.P, Phanikumar, M.S., Briggs, M.A., Day-Lewis, F.D. and Singha, K. (2020). Formation criteria for hyporheic anoxic microzones: Assessing interactions of hydraulics, nutrients and biofilms. Water Resources Research,

[74] – Swift Bird, K.*, Navarre-Sitchler, A., and Singha, K. (2020). Hydrogeochemical controls of arsenic and uranium contamination on the Pine Ridge Reservation, South Dakota. Applied Geochemistry,


[73] – Voytek, E.B.*, Barnard, H., Jougnot, D., and Singha, K. (2019). Transpiration- and precipitation-induced subsurface water flow observed using the self-potential method. Hydrological Processes, doi: 10.1002/hyp.13453.

[72] – Malenda, H.F.*, Sutfin, N.A.#, Stauffer, S.*, Guryan. G.+, Rowland, J.C., Williams, K.H., and Singha, K. (2019). From Grain to Floodplain: Evaluating heterogeneity of floodplain hydrostatigraphy using sedimentology, geophysics, and remote sensing. Earth Surface and Planetary Landforms, doi:10.1002/esp.4613.

[71] – MahmoodPoor Dehkordy, F.*, Briggs, M.A., Day-Lewis, F.D., Singha, K., Krajnovich, A.*, Hampton, T.*, Zarnetske, J., Scruggs, C.+, and Bagtzoglou, A.C. (2019). Multi-scale preferential flow processes in an urban streambed under variable hydraulic conditions. Journal of Hydrology, doi: 10.1016/j.jhydrol.2019.03.022.

[70] – Rey, D.M.*, Walvoord, M., Minsley, B., Rover, J., and Singha, K. (2019). Investigating lake-area dynamics across a permafrost-thaw spectrum using airborne electromagnetic surveys and remote sensing time-series data in Yukon Flats, AlaskaEnvironmental Research Letters, 14(2), doi: 10.1088/1748-9326/aaf06f. (Press release by the USGS)

[69] – Hampton, T.B.*, Zarnetske, J.P., Briggs, M.A., Singha, K., Harvey, J.W., Day-Lewis, F.D., MahmoodPoor Dehkordy, F.*, and Lane, J.W. (2019). Residence time controls on the fate of nitrogen in flow-through lakebed sediments. Journal of Geophysical Research-Biogeosciences, doi: 10.1029/2018JG004741.

[68] – Sparacino, M.*, Rathburn, S., Covino, T., Singha, K., Ronayne, M. (2019). Form-based river restoration decreases wetland hyporheic exchange: lessons learned from the Upper Colorado River. Earth Surface Processes and Landforms, doi: 10.1002/esp.4525, 13 p.


[67] – Sherman, T.*, Foster, A.*, Bolster, D. and Singha, K. (2018). Predicting experimental downstream concentration histories from upstream data in column experimentsWater Resources Research, doi: 10.1029/2018WR023420.

[66] – Herzog, S.P.*, Higgins, C.P., Singha, K., and McCray, J.E. (2018). Performance of engineered streambeds for inducing hyporheic transient storage and attenuation of resazurin. Environmental Science & Technology, doi: 10.1021/acs.est.8b01145, 10 p.

[65] – Briggs, M.A., Day-Lewis, F.D., Mahmood Poor Dehkordy, F.*, Hampton, T.*, Zarnetske, J.P., Scruggs, C.+, Singha, K., Harvey, J.W., Lane, J.W. (2018). Direct observations of hydrologic exchange occurring with less-mobile porosity and the development of anoxic microzones in sandy lakebed sediments. Water Resources Research, doi: 10.1029/2018WR022823, 16 p.

[64] – Foks, S.S.*, Stets, E.G., Singha, K. and Clow, D.W. (2018). Influence of climate on alpine stream chemistry and water sources. Hydrological Processes, 1-16, doi: 10.1002/hyp.13124, 16 p.

[63] – Rice, A.K.*, McCray, J.E., and Singha, K. (2018). Methane leakage from hydrocarbon wellbores into overlying groundwater: Numerical investigation of the multiphase flow processes governing migration. Water Resources Research, doi: 10.1002/2017WR021365, 17 p.

[62] – Rice, A.K.*, Lackey, G.*, Proctor, J.+, and Singha, K. (2018). Groundwater quality hazards of methane leakage from hydrocarbon wells: A review of observational and numerical studies and four testable hypotheses. Wiley Interdisciplinary Reviews (WIREs) Water, doi: 10.1002/wat2.1283, 18 p.


[61] – Pai, H.#, Malenda, H.*, Briggs, M., Singha, K., González-Pinzón, R., Gooseff, M., Tyler, S.W. and the AirCTEMPS Team (2017). Potential for small unmanned aerial systems applications for identifying groundwater-surface water exchange characteristics in a meandering river reach. Geophysical Research Letters, 44, doi: 10.1002/2017GL075836, 10 p.

[60] – Sherman, T.*, Fakhari, A.#, Miller, S.*, Singha, K. and Bolster, D. (2017). Parameterizing the Spatial Markov model from breakthrough curve data alone. Water Resources Research, 53, doi: 10.1002/2017WR021810, 11 p.

[59] – Parsekian, A., Claes, N.*, Singha, K., Minsley, B., Carr, B., Voytek, E.*, Harmon, R.*, Kass, M., Carey, A., Thayer, D.*, Flinchum, B.* (2017). Comparing measurement response and inverted results of electrical resistivity tomography instruments. Journal of Environmental and Engineering Geophysics, 22(3), 249-266.

[58] – Wieting, C.*, Ebel, B., and Singha, K. (2017). Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory. Journal of Hydrology-Regional Studies,, 43-57.

[57] – Day-Lewis, F.D., Linde, N., Haggerty, R., Singha, K. and Briggs, M.A. (2017). Pore-network modeling of the electrical signature of anomalous solute transport. Geophysical Research Letters, doi: 10.1002/2017GL073326, 9 p.

[56] – Ward, A.S., Schmadel, N.M.#, Wondzell, S.M., Gooseff, M.N. and Singha, K. (2017). Dynamic hyporheic and riparian flowpath geometry through baseflow recession in two headwater mountain stream corridors. Water Resources Research, doi: 10.1002/2016WR019875, 15 p.

[55] – Bolster, D., Benson, D., and Singha, K. (2017). Upscaling chemical reactions in multicontinuum systems: When might time fractional equations work? Chaos, Solitons and Fractals, doi: 10.1016/j.chaos.2017.04.028, 13 p.

[54] – Johnston, A.J.*, Runkel, R.L., Navarre-Sitchler, A. and Singha, K. (2017). Exploration of diffuse and discrete sources of acid mine drainage to a headwater mountain stream in Colorado, USA. Mine Water and the Environment, doi:10.1007/s10230-017-0452-6, 16 p.

[53] – Brantley, S., Lebedeva, M., Balashov, V., Singha, K., Sullivan, P., Stinchcomb, G. (2017). Toward a conceptual model relating chemical reaction fronts to water flow paths in hills. Geomorphology, doi: 10.1016/j.geomorph.2016.09.027, 18 p.

[52] – Williams, M.R.*, Buda, A.R., Singha, K., Folmar, G., Elliott, H.A., and Schmidt, J. (2017). Imaging hydrologic processes in headwater riparian seeps with time-lapse electrical resistivity. Groundwater, doi: 10.1111/gwat.12461, 13 p.


[51] – Sullivan, P.L.#, Hynek, S.#, Gu, X., Singha, K., White, T., West, N.#, Kim, H.#, Clarke, B.#, Kirby, E., Duffy, C., Brantley, S.L. (2016). Oxidative dissolution under the channel leads geomorphological evolution at the Shale Hills catchment. American Journal of Science, 316, p. 981-1026, DOI 10.2475/10.2016.02, 46 p.

[50] – Mares, R.*, Barnard, H.R., Mao, D.#, Revil, A. and Singha, K. (2016). Examining diel patterns of soil and xylem moisture using electrical resistivity imaging. Journal of Hydrology, doi: 10.1016/j.jhydrol.2016.03.003, 12 p.

[49] – Ward, A.S., Schmadel, N.M.#, Wondzell, S.M., Harman, C., Gooseff, M.N. and Singha, K. (2016). Hydrogeomorphic controls on hyporheic and riparian transport in two headwater mountain streams during baseflow recession. Water Resources Research, doi: 10.1002/2015WR018225, 19 p.

[48] – Voytek, E.*, Rushlow, C.*, Godsey, S., Singha, K. (2016). Identifying hydrologic flowpaths on arctic hillslopes using electrical resistivity and self potential. Geophysics, 81(1), WA225-WA232.

[47] – Meixner, T., Manning, A.H., Stonestrom, D., Ajami, H., Allen, D.M., Blasch, K., Brookfield, A., Castro, C.L., Clark, J.F., Gochis, D., Flint, A., Neff, K., Niraula, R., Rodell, M., Scanlon, B., Singha, K., and Walvoord, M. (2016). Implications of projected climate change for groundwater recharge in the western United States. Journal of Hydrology, 534, doi:10.1016/j.jhydrol.2015.12.027, 124-138.


[46] – Bethune, J.*, Randell, J., Runkel, R., and Singha, K. (2015). Non-invasive flow path characterization in a mining-impacted wetland. Journal of Contaminant Hydrology, doi:10.1016/j.jconhyd.2015.10.002, 11 p.

[45] – St. Clair, J.*, Moon, S.#, Holbrook, W.S., Perron, J.T., Riebe, C.S., Martel, S., Carr, B., Harman, C., Singha, K. and Richter, D. (2015). Geophysical imaging reveals topographic stress control of bedrock weathering. Science, 350(6260), doi: 10.1126/science.aab2210, 534-538.

[44] – National Research Council (2015). Characterization, Modeling, Monitoring, and Remediation of Fractured Rocks, National Academy Press, Washington D.C., 244 p. (one of 10 authors)

[43] – Williams, M.R.*, Buda, A.R., Elliott, H.A., Singha, K., and Hamlett, J. (2015). Influence of riparian seepage zones on nitrate variability in two agricultural headwater streams. Journal of the American Water Resources Association, JAWRA-14-0043-P, 15 p.

[42] – Binley, A., Hubbard, S.S., Huisman, J.A., Revil, A., Robinson, D.A., Singha, K., Slater, L.D. (2015). The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resources Research, doi: 10.1002/2015WR017016, 30 p. (Part of the WRR@50 Anniversary Issue.)

[41] – Hagarty, J.*, Azanu, D.*, Atosona, B.*, Voegborlo, R., Smithwick, E.A.H., and Singha, K. (2015). Chemistry of natural waters and its relation to Buruli Ulcer in Ghana. Journal of Hydrology: Regional Studies, 10.1016/j.ejrh.2015.03.006, 16 p.

[40] – Swanson, R.D.*, Binley, A., Keating, K., France, S.*, Osterman, G.*, Day-Lewis, F.D., Singha, K. (2015). Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties. Water Resources Research, doi: 10.1002/2014WR015284, 20 p.

[39] – Parsekian, A., Singha, K., Minsley, B., Holbrook, S., and Slater, L. (2015). Multiscale geophysical imaging of the Critical Zone. Reviews of Geophysics, doi: 10.1002/2014RG000465, 26 p.

[38] – González-Pinzón, R., Ward, A.S., Hatch, C.E., Wlostowski, A. N.*, Singha, K., Gooseff, M.N., Haggerty, R., Harvey, J.W., Cirpka, O.A., and Brock, J. (2015). A field comparison of techniques to quantify surface water–groundwater interactions. Freshwater Science, doi: 10.1086/679738, 22 p.


[37] – Slim, M.*, Perron, J.T., Martel, S., Singha, K. (2014). Topographic stress and rock fracture: A two-dimensional numerical model for arbitrary topography and preliminary comparison with borehole observations. Earth Surface Processes and Landforms, doi: 10.1002/esp.3646, 18 p.

[36] – Singha, K., Day-Lewis, F.D., Johnson, T., and Slater, L.D. (2014). Advances in interpretation of subsurface processes with time-lapse electrical imaging. Hydrological Processes, doi: 10.1002/hyp.10280, 28 p.

[35] – Ward, A.S.*, Gooseff, M.N., Fitzgerald, M.#, Voltz, T.*, and Singha, K. (2014). Spatially distributed characterization of solute transport along hyporheic flow paths during baseflow recession in a headwater mountain stream. Journal of Hydrology, 517, doi:10.1016/j.jhydrol.2014.05.036, p. 362-377.


[34] – Larson, L.N.*, Fitzgerald, M.#, Singha, K., Gooseff, M.N., Macalady, J.L., and Burgos, W. (2013). Hydrogeochemical niches associated with hyporheic exchange beneath an acid mine drainage-contaminated stream. Journal of Hydrology, 501,, p.163-174.

[33] – Ward, A.S.*, Gooseff, M.N., Voltz, T.J.*, Fitzgerald, M.#, Singha, K., and Zarnetske, J.P. (2013). How does rapidly changing discharge during storm events affect transient storage and channel water balance in a headwater mountain stream? Water Resources Research, 49, doi:10.1002/wrcr.20434, 14 p.

[32] – Voltz, T.*, Gooseff, M.N., Ward, A.S.*, Singha, K., Fitzgerald, M.#, and Wagener, T. (2013). Riparian hydraulic gradient and stream water exchange dynamics in steep headwater valleys. Journal of Geophysical Research – Earth Surface Processes, 118, p 1-17, doi:10.1002/jgrf.20074, 17 p.


[31] – Ward, A.S.*, Gooseff, M.N. and Singha, K. (2012). How does subsurface characterization affect simulations of hyporheic exchange? Ground Water, doi: 10.1111/j.1745-6584.2012.00911.x, 15 p.

[30] – Swanson, R.*, Singha, K., Day-Lewis, F.D., Binley, A., Keating K., Haggerty, R. (2012). Direct geoelectrical evidence of mass transfer at the laboratory scale. Water Resources Research, 48, doi:10.1029/2012WR012431, 10 p.

[29] – Ward, A.S.*, Fitzgerald, M.#, Gooseff, M.N., Voltz, T.*, Binley A., and Singha, K. (2012). Hydrologic and geomorphic controls on hyporheic exchange during baseflow recession in a headwater mountain stream. Water Resources Research, 48, W04513, doi:10.1029/2011WR011461, 20 p. (Selected as an AGU Research Spotlight in 2012; WRR Editor’s Choice Award in 2013) {Correction}


[28] – Pidlisecky, A., Singha, K., and Day-Lewis, F. D. (2011). A distribution-based parameterization for improved tomographic imaging of solute plumes. Geophysical Journal International, 187(1), doi: 10.1111/j.1365-246X.2011.05131.x, 11 p.

[27] – Kuntz, B.*, Rubin, S.*, Berkowitz, B., and Singha, K. (2011). Quantifying solute transport at the Shale Hills Critical Zone Observatory. Vadose Zone Journal, 10, doi:10.2136/vzj2010.0130, 15 p.

[26] – Regberg, A.*, Singha K., Tien, M., Picardal, F., Zhang, Q., Schieber, J., Roden, E. and Brantley S. L. (2011). Electrical conductivity as an indicator of iron reduction rates in abiotic and biological systems. Water Resources Research, 47, W04509, doi:10.1029/2010WR009551, 14 p.

[25] – Singha, K., Li, L., Day-Lewis, F.D., and Regberg, A.B.* (2011). Quantifying solute transport processes: Are chemically “conservative” tracers electrically conservative? Geophysics, 76(1), doi: 10.1190/1.3511356, 11 p.

[24] – Singha, K. and Loheide, S.P. II. (2011). Linking physical and numerical modeling in hydrogeology using sand tank experiments and COMSOL Multiphysics. International Journal of Science Education, doi: 10.1080/09500693.2010.490570, 25 p.


[23] – Ward, A.S.*, Gooseff, M.N., and Singha, K. (2010). Characterizing hyporheic transport processes–Interpretation of electrical geophysical data in coupled stream-hyporheic zone systems during solute tracer studies. Advances in Water Resources, doi:10.1016/j.advwatres.2010.05.008, 11 p.

[22] – Irving, J. and Singha, K. (2010). Stochastic inversion of tracer test and electrical geophysical data to estimate hydraulic conductivities. Water Resources Research, 46, W11514, doi:10.1029/2009WR008340, 16 p.

[21] – Wheaton, D.D.* and Singha, K. (2010). Investigating the impact of advective and diffusive controls in solute transport on geoelectrical data. Journal of Applied Geophysics, doi:10.1016/j.jappgeo.2010.06.006, 10 p.

[20] – Ward, A.S.*, Gooseff, M.N. and Singha, K. (2010). Imaging hyporheic zone solute transport using electrical resistivity. Hydrological Processes, 24, doi: 10.1002/hyp.7672, p. 948-953.


[19] – Nimmo, J.R., Perkins, K.S., Schmidt, K.M., Stock, J.D., Miller, D.M. and Singha, K. (2009). Hydrologic characterization of desert soils with varying degrees of pedogenesis: I. Field experiments evaluating plant-relevant soil-water behavior. Vadose Zone Journal, 8(2), doi: 10.2136/vzj2008.0052, p. 480-495.

[18] – Mirus, B.B.#, Perkins, K.S., Nimmo, J.R. and Singha, K. (2009). Hydrologic characterization of desert soils with varying degrees of pedogenesis: II. Inverse modeling for effective properties. Vadose Zone Journal, 8(2), doi: 10.2136/vzj2008.0051, p. 496–509.


[17] – Robinson, D.A., A. Binley, N. Crook, F. Day-Lewis, P.T. Ferre, V.J.S. Grauch, R. Knight, M. Knoll, V. Lakshmi, R. Miller, J. Nyquist, L. Pellerin, K. Singha, L. Slater (2008). Advancing process-based watershed hydrological research using near-surface geophysics: A vision for, and review of, electrical and magnetic geophysical methods. Hydrological Processes, doi: 10.1002/hyp.6963, 32 p.

[16] – Singha, K., Pidlisecky, A., Day-Lewis, F.D., and Gooseff, M.N. (2008). Electrical characterization of non-Fickian transport in groundwater and hyporheic systems. Water Resources Research, 44, W00D07, doi:10.1029/2008WR007048, 14 p.

[15] – Day-Lewis, F.D. and Singha, K. (2008). Geoelectrical inference of mass transfer parameters: theoretical basis and numerical experiments. Water Resources Research, 44, W05201, doi:10.1029/2007WR006750, 6 p.

[14] – Singha, K. (2008). An active-learning exercise for introducing ground-water extraction from confined aquifers. Journal of Geoscience Education, 56(2), 131-134.

[13] – Culkin, S.L.*, Singha, K. , and Day-Lewis, F.D. (2008). Implications of rate-limited mass transfer for aquifer storage and recovery efficiency. Ground Water, doi: 10.1111/j.1745-6584.2008.00435.x, 15 p.


[12] – Hyndman, D.W., Day-Lewis, F.D., and Singha, K., editors (2007). Subsurface Hydrology: Data Integration for Properties and Processes. American Geophysical Union, Geophysical Monograph Series Volume 171, doi:10.1029/170GM01, 253 pp.

[11] – Day-Lewis, F.D., Chen, Y.*, and Singha, K. (2007). Moment inference from tomograms. Geophysical Research Letters, 34(22), L22404, doi:10.1029/2007GL031621, 6 p.

[10] – Singha, K. , Day-Lewis, F.D. and Lane, J.W., Jr. (2007). Geoelectrical evidence of bicontinuum transport in groundwater. Geophysical Research Letters, 34(12), L12401, doi:10.1029/2007GL030019, 5 p.

[9] – Singha, K. , Day-Lewis, F.D. and Moysey, S. (2007). Accounting for tomographic resolution in estimating hydrologic properties from geophysical data, in Subsurface Hydrology: Data Integration for Properties and Processes, eds. D.W. Hyndman, F.D. Day-Lewis, and K. Singha, American Geophysical Union, Geophysical Monograph Series Volume 171, doi:10.1029/170GM01, p. 227-242.

[8] – Tschakert, P. and Singha, K. (2007). Contaminated identities: mercury and marginalization in the artisanal mining sector in Ghana. Geoforum, 38, doi:10.1016/j.geoforum.2007.05.002, p. 1304-1321.


[7] – Singha, K. and Moysey, S. (2006). Accounting for spatially variable resolution in electrical resistivity tomography through field-scale rock physics relations. Geophysics, 71(4), p. A25-A28.

[6] – Singha, K. and Gorelick, S.M. (2006). Hydrogeophysical tracking of 3D tracer migration: the concept and application of apparent petrophysical relations. Water Resources Research, 42, W06422, doi:10.1029/2005WR004568, 14 p.

[5] – Singha, K. and Gorelick, S.M. (2006). Effects of spatially variable resolution on field-scale estimates of tracer concentration from electrical inversions using Archie’s law. Geophysics, 71(3), p. G83-G91.

2005 and earlier

[4] – Day-Lewis, F.D., Singha K. , and Binley A. (2005). The application of petrophysical models to radar and electrical resistivity tomograms: resolution-dependent limitations. Journal of Geophysical Research, 110, B08206, doi: 10.1029/2004JB003569, 17 p.

[3] – Singha, K. and Gorelick, S.M. (2005). Saline tracer visualized with electrical resistivity tomography: field scale spatial moment analysis. Water Resources Research, 41, W05023, doi:10.1029/2004WR003460, 17 p.

[2] – Moysey, S., Singha K. , and Knight, R. (2005). Inferring field-scale rock physics relations through numerical simulation. Geophysical Research Letters, 32, L08304, doi:10.1029/2004GL022152, 4 p.

[1] – Williams, J.H., Lane, J.W. Jr., Singha, K. , and Haeni, F.P. (2002). Application and integration of advanced geophysical logging methods in the characterization of a fractured-sedimentary bedrock aquifer. U.S. Geological Survey Water-Resources Investigations Report 00-4083. 28 p.


Other Publications

(vision papers, commentaries, conference proceedings, news articles, tutorials; mostly non-peer reviewed)

[19] – Foroumandi, E.*, Moradkhani, H., Sanchez-Vila, X., Singha, K., Castelletti, A. and Destouni, G. (2023). ChatGPT in hydrology and Earth sciences: Opportunities, prospects and concerns. Water Resources Research, doi: 10.1029/2023WR036288. (One of the top 5 most-read papers in WRR in 2023)

[18] – Singha, K., Sullivan, P., Li, L. and Gasparini, N. (2020). Demystifying critical zone science to make it more inclusive. EOS, Transactions of the American Geophysical Union, 101, (Invited opinion.)

[17] – Mangel, A.#, Bradford, J.H. and Singha, K. (2018). Imaging changes in moisture within living tree trunks using ground-penetrating radar. Society of Exploration Geophysics Technical Program Extended Abstract, Oct 14-19, 2018, Anaheim, CA, Proceedings, 4 p.

[16] – Singha, K., Day-Lewis, F.D., and Briggs, M.A. (2018). Quantifying non-local solute transport behavior with electrical geophysics: a review. 8th International Conference on Environmental and Engineering Geophysics, June 10-13, 2018, Hangzhou, China, 4 p. (Invited.)

[15] – Singha, K. (2017). Geophysics is not a silver bullet, but worth a shot. Groundwater, editorial, doi: 10.1111/gwat.12495. (Invited.)

[14] – Voytek, E.*, Rushlow, C.*, Godsey, S., Singha, K. (2015) Identifying hydrologic flowpaths on arctic hillslopes using electrical resistivity and self potential. Society of Exploration Geophysics Technical Program Extended Abstract, Oct 18-23, 2015, New Orleans, Proceedings, 4 p.

[13] -Knight, R., Cannia, J., J. Fleming, R. Grimm, D. Heinze, C. Hobza, S. Huisman, J. Irving, A. Kemna, A. Menghini, B. Minsley, S. Moysey, F. Nguyen, J. Nyquist, A. Parsekian, D. Rucker, K. Singha, B. Smith, and J. van der Kruk. (2013). The State of the Science and a Vision of the Future: Report from the Hydrogeophysics Workshop. The Leading Edge, doi: 10.1190/tle32070814.1 v. 32 no. 7 p. 814-818.

[12] – Singha, K., Li, L., Day-Lewis, F.D. and Regberg, A.B.* (2012). Monitoring Tracers with Time-Lapse Electrical Methods: Issues with Reactions and Surface Conductance, Society of Exploration Geophysicists Technical Program Extended Abstract, November 2-4, 2012, Las Vegas, NV, Proceedings, 4 p.

[11] – Hagarty, J.*, Ward, A.*, Singha, K., and Gooseff, M.N. (2010). Electrical resistivity imaging to explore solute transport in a stream system, Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, April 11-15, 2010, Keystone, CO, Proceedings, 7 p.

[10] – Ferre, T., Bentley, L., Binley, A., Linde, N., Kemna, A., Singha, K., Holliger, K., Huisman, J., Minsley, B. (2009). Critical Steps for the Continuing Advancement of Hydrogeophysics. EOS, Transactions of the American Geophysical Union, 90 (23), p. 200.

[9] – Brantley, S.L. and Singha, K., (2008). “Better Water Management for a Thirsty World”. Op-Ed in the Centre Daily Times, Sept. 15, 2008.

[8] – Singha, K., Hyndman, D.W., and Day-Lewis, F.D. (2007). An introduction to subsurface hydrology: data integration for properties and processes, in Subsurface Hydrology: Data Integration for Properties and Processes, eds. D.W. Hyndman, F.D. Day-Lewis, and K. Singha, American Geophysical Union, Geophysical Monograph Series Volume 171, doi:10.1029/170GM01, p. 1-6.

[7] – Slater, L.D., Knight, R.J., Singha, K. , Binley, A. and Atekwana, E.A. (2006). Near Surface Geophysics: A new focus group. EOS, Transactions of the American Geophysical Union, 87 (25), p. 249.

[6] – Moysey, S., Knight, R.J. and Singha, K. (2006). Relating geophysical and hydrologic properties using field-scale rock physics. CMWR XVI — Computational Methods in Water Resources, Copenhagen, Denmark. 8 p.

[5] – Singha, K. and Moysey, S. (2004). Application of a new Monte Carlo approach to calibrating rock physics relationships: examples using electrical resistivity and ground penetrating radar tomography, Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems. 20 p.

[4] – Singha, K. (2003). Scanning the earth to help predict the movement of contaminants in groundwater. Stanford University Stanford Earth Sciences Report Fall 2003, 1 p.

[3] – Singha, K., Binley, A.M., Lane, J.W., Jr. and Gorelick, S.M. (2003). Electrical imaging of tracer migration at the Massachusetts Military Reservation, Cape Cod. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems. 11 p.

[2] – Singha, K. , Lane, J.W. Jr., and Kimball, K. (2000). Use of borehole-radar methods to characterize bedrock fractures and lithologic variations. U.S. Geological Survey Fact Sheet 054-00. 4 p.

[1] – Powers, C.J., Singha K., Haeni, F.P. (1999). Integration of surface geophysical methods for fracture detection in bedrock at Mirror Lake, New Hampshire, in Morganwalp, D.W. and Buxton, H.T., eds., USGS Toxic Substances Hydrology Program, Proceedings of the Technical Meeting. U.S. Geological Survey Water-Resources Investigations Report 99-4018C, 757-768.